当前位置: 仪器信息网 > 行业主题 > >

异构化糖

仪器信息网异构化糖专题为您整合异构化糖相关的最新文章,在异构化糖专题,您不仅可以免费浏览异构化糖的资讯, 同时您还可以浏览异构化糖的相关资料、解决方案,参与社区异构化糖话题讨论。

异构化糖相关的资讯

  • 使用超高效合相色谱系统对环金属铱(III)配合物进行同分异构分离
    使用ACQUITY UPC2 系统对环金属铱(III)配合物进行同分异构分离 Rui Chen 和John P. McCauley 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离均配铱络合物中的同分异构体,实现对物质纯化的实时监控。 ■ 在一次色谱运行操作中同时分离均配铱络合物中的同分异构体和光学异构体,实现对纯度的准确评估,而这在其他系统中需要多次色谱分离操作来完成。 ■ 可简单地从 UPC2TM 转换至半制备型超临界流体色谱(SFC),纯化目标异构体,并可以在缓和的条件下轻松地回收收集的组分,减少同分异构体的生成,从而获得有机发光二极体(OLED)设备制造所需的高纯材料。 沃特世解决方案 ACQUITY UPC2TM 系统 Investigator SFC系统 Empower&trade 3软件 ChromScope&trade 软件 ACQUITY UPC2BEH和BEH 2-EP色谱柱 关键词 铱配合物,OLED,同分异构体,面式,经式,对映体,合相色谱,UPC2 引言 有机发光二极体(OLED)应用中环金属铱(III)配合物的合成与表征引起了人们的浓厚兴趣,因为这些配合物具有很高的发光量子产率,并且能够通过简单的合成方法对配体进行系统修饰,从而对颜色进行调整。根据包围在中心铱原子的配体的类型,这些有机金属配合物可能分为均配物和杂配物。均配物和杂配物均可能存在同分异构体,这些异构体被称为经式异构体(meridional,mer)和面式(facial,fac)异构体。同分异构体具有不同的光物理和化学特性1-3,这些特性可影响OLED设备的性能和寿命以及稳定性。此外,杂配物具有光学异构性。富含对映体的配合物发出圆形的偏振光,可用于三维电子显示4。 多种异构形式为这些材料纯度评估以及理解发光设备故障机理所需的异构体的分离提出了特殊的挑战。这种挑战因为目前流行的针对这些材料的纯化方法(即升华)而变得更加复杂5-6。升华过程中,可能会发生分子内的热力学异构化。纯化过程通常生成异构混合物,而不是用于设备生产的预期单一异构体,导致性能降低。显然,开发出在温和条件下的纯化技术对减少异构化具有重大意义。 由于大部分环金属铱配合物溶解性低,目前环金属铱配合物的色谱分析方法一般采用正相液相色谱法(NPLC)。超临界流体色谱(SFC)以及更先进的超高效合相色谱(UPC2)提供了引人关注的正相色谱替代方法,从而可提高分辨率、缩短分析时间,降低有机溶剂的消耗量。在本应用纪要中,我们对三[2(2,4-二氟苯基)吡啶]铱(III)(Ir(Fppy)3)和双(4,6-二氟苯基)吡啶C2,N]甲酰合铱(III)(Flrpic)的结构采用沃特世(Waters® ) ACQUITY UPC2 进行了分离,如图1所示。将SFC用于纯化Flrpic的可行性也说明了使用Waters Investigator SFC系统的可行性。 实验 仪器:所有分析实验均在由Empower 3软件控制的ACQUITY UPC2 上进行。制备实验在由ChromScope软件控制的Investigator SFC系统上进行。 色谱柱:沃特世公司的ACQUITY UPC2 BEH和2-Ethyl Pyridine 3.0 x 100 mm,1.7&mu m色谱柱。CHIRALPAK AS-H 4.6 x 150 mm,5 &mu m,购自Chiral Tec hnologies公司(宾夕法尼亚州西切斯特)。 样品描述 样品购自Sigma Aldrich和1-Material公司。为了形成异构体,将样品置于控温箱内进行热应激,引发异构化反应。冷却至室温后,将样品溶于氯仿中,用于随后的分析操作。 结果与讨论 图2是未经处理以及经过热应激的Ir(Fppy)3 的UPC2/UV色谱图。色谱峰1与色谱峰2的质谱(未显示)相同,但紫外光谱(插图)明显不同,说明它们最有可能是面式异构体和经式异构体。标有&ldquo desfluoro&rdquo 的峰出现的原因是Ir(Fppy)3 中的一个F原子丢失。但是,两张图谱的主要差异在于峰1与峰2之间的相对比例。加热时,1/2的峰比将会增大。其可能是由热异构化过程引起的,在异构化过程中,稳定性较差的经式异构体(峰2)转化成稳定性较高的面式异构体(峰1)。图2清楚地表明,Ir(Fppy)3 的同分异构体可轻易地通过使用ACQUITY UPC2 进行分离。 图2 使用ACQUIT Y UPC2 2-EP3x100mm,1.7&mu m色谱柱得到的Ir(Fppy )3 UPC2/UV色谱图。(A)在280℃ 下处理24 小时的样品;(B)在25℃下未经处理的样品。流速为1.5mL /min;背压为2175 psi;30%异丙醇辅助溶液等度洗脱;温度为40℃。峰标记后面的数据表示以峰面积表示的每个峰的相对百分比。 图3是使用非手性固定相和手性固定相得到的Flrpic UPC2/UV色谱图。在手性柱中,Flrpic裂分为两个峰,如图3B所示。图3B中的两个峰具有相同的质荷比(未示出)和紫外光谱(插图),说明这两个峰最有可能来源于同一对对映体。与均配物Ir(Fppy)3 不同的是,杂配物Flrpic由两种不同的配体构成。这种分子对称性反过来产生了光学异构。在实际应用中,例如三维显示,具有高度的发光不对称性是很有利的。因此,UPC2 提供了一种简单的测定手性荧光化合物对映比的方法,这对于使化学结构与发光对称性相互关联是很重要的。 图3 标准级Flrpic的UPC2/U V 色谱图。(A)使用一根ACQUITY UPC2 BEH 3x100mm,1.7&mu m色谱柱;流 速为1.5mL/min,背压为1740psi,35%异丙醇等度洗脱,温度为40℃。(B)使用两根CHIRALPAKAS-H 4.6x150mm色谱柱(每根均为5&mu m)。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图4是在ACQUITY UPC2BEH色谱柱上得到的未经处理和经热应激的Flrpic UPC2/UV色谱图。对于经热应激的样品,会观察到一个多出的峰,如图4B所示。两个峰的质谱完全相同(结果未示出)。对紫外光谱更仔细地观察发现(如图5所示),图4B中的各个峰的紫外光谱并不相同。与图3B中所示的对映体不同,这些对映体的紫外光谱是相同的。图4B中的小峰的最大吸收波长&lambda max为245 nm,而主峰的最大吸收波长&lambda max为251nm。这些结果说明,经热应激的样品已经发生了异构化,生成了另一种同分异构体,这类似于升华过程中所观察到的一样5,6。因为总分析时间短于5分钟,UPC2 能够实现在升华后对材料纯度的快速测定,并可作为设备制造之前的质量控制方法。 图4 在ACQUITY UPC2 BEH3x100mm,1.7&mu m色谱柱上、等度洗脱(35%辅助溶剂)条件下得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为1.5 mL/min;背压为2175psi;35%异丙醇辅助溶液等度洗脱; 温度为40℃。 图5 一对Flrpic同分异构体的紫外光谱。 理论上讲,每个同分异构体均包含一对对映体。因此,我们尝试同时分离经热应激的Flrpic的四个异构体,如图4B所示。得到的紫外光谱图如图6所示。E1/E1' 和E2/E2' 是两对对映体,而E1/E2和E1' /E2' 是两对同分异构体。 图6 使用两根CHIRALPAK AS-H4.6x150mm色谱柱(每根均为5&mu m)得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图6中的异构体分离结果超过了简单分析的结果。作为发光设备中所用的环金属铱配合物的主要纯化方法,升华会引起不利的分子内热异构化,如图2、4、6及其他图所示5-6。因此,用在设备中的是异构体混合物而不是纯物质,通常导致性能下降,寿命缩短。图6所示分离说明了超临界色谱有望替代升华成为这些材料的纯化方法。 图7是使用半制备超临界色谱得到的经热应激的Flrpic的SFC/UV色谱图。可以得到所有四种异构体的基线分离度。在50℃下,使用异丙醇作为共溶液,纯异构体可在温和的条件下进行回收,从而降低了异构体形成的可能性。应当指出的是,虽然图6B和图7都是在相同的色谱条件下获得的,但是图6B中的分离度远高于图7中的分离度。分离度的提高很大程度是由于UPC2统体积最小化,因而引起峰分散度降低。 图7 在沃特世InvestigatorSFC系统上使用CHIRALPAK AS-H4.6x150mm色谱柱(每根均为0.5&mu m)得到的经热应激的Flrpic的SFC/UV色谱图。流速为3mL /min ,背压为2175p si ,23%异丙醇辅助溶液等度洗脱;温度为50℃。阴影区域表示收集的组分。 结论 在本应用中,我们论述了使用超高效合相色谱对铱均配物Ir(Fppy)3 和铱杂配物Flrpic异构体进行的分离。对于Ir(Fppy)3 ,面式和经式同分异构体可以轻易地在5分钟以内得以分离。对于Flrpic,四种异构体,无论是同分异构还是光学异构,均要在一次分离操作中实现同时分离。 本文提出的分离方法可提升用于纯化评估的传统分析技术的水平。而纯化评估是合成、工艺和OLED设备和相关材料生产的一个分析难题之一。此外,其中的超临界流体技术也能够把UPC2 方法转换到半制备型超临界色谱仪器的制备方法,从而对目标物质进行分离。 参考文献 1. Kappaun S, Slugovc C, List EJW. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int J Mol Sci. 2008 9: 1527-47. 2. Tamayo B, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN,Bau R, T hompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc. 2003 125(24): 7377-87. 3. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G. Probing the mer- to fac-isomerization of triscyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.Inorg Chem. 2008 47: 6681-91. 4. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminop. Inorg Chem. 2008 47: 2039-48. 5. Baranoff E, Saurez S, Bugnon P, Barola C, Buscaino R, Scopeletti R,Zuperoll L, Graetzel M, Nazeeruddin MK. Sublimation not an innocent technique: A case of bis-cyclometalated iridium emitter for OLED.Inorg Chem. 2008 47: 6575-77. 6. Baranoff E, Bolink HJ, De Angelis F, Fantacci S, Di Censo D, Djellab K,Gratzel M, Nazeeruddin MK. An inconvenient influence of iridium (III)isomer on OLED efficiency. Dalton Trans. 2010 39: 8914&ndash 18. 7. Sivasubramaniam V, Brodkord F, Haning S, Loebl HP, van ElsbergenV, Boerner H, Scherf U, Kreyenschmidt M. Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent Eur J Chem. 2009 7(4): 836&ndash 845.
  • 岛津DL氨基酸分析方法包,直击氨基酸异构体分离难点
    ☆ 导读 ☆对于多肽类药物而言,在药物的研发、生产、质量控制等环节,清楚地了解氨基酸的具体构型,把控氨基酸异构化现象,对于最终药物的质量与药效至关重要,也是多肽药物企业严格监控的重点之一。因此,氨基酸异构体的分离检测,在整个研发管线中必不可少。然而,D/L两种氨基酸成分分析经常遇到的难点有:分析难度大:各种各样的肽或氨基化合物的背景干扰较多分析时间长:传统的氨基酸异构体分析必需进行氨基酸的衍生化处理,通常分析时间超过10小时面对氨基酸异构体的分析难点,岛津公司推出LC/MS/MS DL氨基酸分析方法包(内含分析方法、报告模板和使用说明书)。结合LCMS-8045/8050/8060的高灵敏度分析能力,为DL氨基酸异构体分离提供准确、高效、简便的解决方案。 ☆ 什么是D/L氨基酸 ☆ 大部分氨基酸(除甘氨酸外)具有与羧基(COO-)相邻的手性碳原子,该手性中心存在彼此互为镜像的立体异构,分别称为D型氨基酸和L型氨基酸。L型氨基酸属于天然存在的氨基酸构型,可合成蛋白质,作为营养物质在人体内大量存在。D型氨基酸体内含量极低,多为人工合成,有研究发现,体内极微量的D型氨基酸,存在于肠腔或生物体肾脏。 ☆ 氨基酸名录 ☆☆ 方法包特点 ☆ l 同时分析42种D/L型氨基酸 可实现批处理分析,快速分析42种D/L氨基酸。l 快速分析检测(10min) 仅需10分钟即可完成高灵敏度的氨基酸分析。l 高灵敏度分析 结合LCMS-8045/8050/8060高灵敏度分析能力,可省去氨基酸衍生化实验流程。l D/L型氨基酸均可以实现柱上分离和定量分析 充分发挥手性分离优势,对于理化性质相近氨基酸(如谷氨酸和赖氨酸,苏氨酸,异亮氨酸和别异亮氨酸),本方法支持两种手性色谱柱同时分析,可以由两种数据结果共同确认组分,提供高准确性数据。☆ 典型应用 ☆ 利用岛津DL氨基酸分析方法包对某多肽药物水解样品进行检测分析,准确测定出L型氨基酸与极微量的D型氨基酸含量,并得出相关比例。 岛津独特的DL氨基酸构型分析方法结合三重四极杆质谱仪高精准的特点,可较完美解决D型与L型氨基酸异构体的分离难点,为多肽类或氨基酸类药物研发与质量控制、D-氨基酸机能研究及更具附加值的机能性食品或药物开发提供新型技术手段。 本文内容非商业广告,仅供专业人士参考。
  • N-聚糖唾液酸结合异构体鉴定——SialoCapper™ -ID试剂盒+MALDI-8020
    唾液酸(SA)是酸性单糖的家族名称,包括 N-乙酰神经氨酸 (NeuAc) 和 N-羟乙酰神经氨酸 (NeuGc),主要存在于聚糖的非还原末端。是一种天然存在的碳水化合物,最初由颌下腺粘蛋白分离出,因此而得名。唾液酸通常以低聚糖,糖脂,糖蛋白的形式存在。唾液酸可以以 α2,3- 或 α2,6- 键类型存在。这样的连接异构体在生物学上很重要,因为不同连锁类型可能与各种疾病有关,例如病毒感染和癌症。 近年来,质谱技术已被广泛应用于分析聚糖。然而,鉴定含有多个唾液酸残基的复杂聚糖的唾液酸键类型仍然具有挑战性。本研究工作通过使用“SialoCapper-ID 试剂盒”进行独特的衍生化,然后进行 MALDI-8020 MS分析,从而鉴定2-氨基吡啶(PA)标记的聚糖上的酸谱系类型。 SialoCapper-ID 试剂盒是一种用于聚糖预处理的新型试剂盒,可简化获得专利的唾液酸键特异性烷基酰胺化 (SALSA 方法)步骤。SALSA通过中和残留物来防止在聚糖预处理和 MS 分析过程中唾液酸残留物的损失。此外,它允许通过以特定键的方式衍生残基来基于 MS 区分唾液酸键异构体。 SALSA法的衍生方案 本实验中,N-连接聚糖通过肼解作用从51只大鼠102只耳蜗血管纹衍生的糖蛋白中释放出来的。N-聚糖的还原端用PA标记。然后根据唾液酸的数量通过 DEAE 阴离子交换 HPLC 对 PA 标记的聚糖进行分离,并在 ODS 柱上使用反相 (RP) HPLC 进一步分离。使用酰胺柱和 LC-MS 通过正相 (NP) HPLC 分析分级的 N-聚糖,并根据二维 (2-D) HPLC 分析 (RP/NP) 的结果确定 N-聚糖的结构 和 LC/MS 分析。最后,使用 SialoCapper-ID Kit 进行唾液酸键特异性衍生化,用于未确定唾液酸键类型的分离。 在用碳芯片对 14 份 PA 标记的聚糖进行脱盐后,使用 SialoCapper-ID 试剂盒在试管中以液相反应的形式进行唾液酸键特异性衍生化。除了通过 2-D HPLC 和 LC/MS 进行结构测定外,研究者另辟蹊径,使用MALDI-8020+ SialoCapper-ID 试剂盒根据唾液酸键特异性衍生化产生的质量变化来区分唾液酸键类型。相对于LC/MS,MALDI-MS有利于轻松快速鉴定唾液酸键类型,特别是在分析多个样品时。 A1-14 组分的质谱图和唾液酸键型鉴定结果A2-16 组分的质谱图和唾液酸键型鉴定结果 MALDI-8020+SialoCapper-ID 试剂盒唾液酸结合异构体鉴定优势1 无需与标准聚糖样品的分析结果进行比较,即可识别复杂聚糖的唾液酸键类型。2 SialoCapper-ID Kit可应用于标记糖链,无需改变常规分析流程即可进行唾液酸键联分析。3 无需 LC 分离, MALDI-MS 直接鉴定唾液酸键类型。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻:Sialic Acid Linkage Isomer Discrimination of N-glycansderived from Rat Cochlea using SialoCapper-ID KitM. Inuzuka, T. Nishikaze 本文内容非商业广告,仅供专业人士参考。
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍   糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。   二、检验标准的探讨   现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。   (一)样品的前处理   食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。   (二)还原糖测定和结果计算   GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。   直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):   X=   其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。   (三)计算公式的正确表达   1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。   2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:   X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。   (四)还原糖滴定法的注意事项   1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。   2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。   食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 南京农业大学兰维杰:高光谱成像技术是评价食品内部异构性的有效手段
    随着图像处理及分析相关的硬件和软件的不断进步,高光谱成像系统在各种研究项目中的使用越来越多,并被应用于各种领域。最新的研究报告显示,2023年全球高光谱成像系统市场估计为168亿美元,预计2028年有望达到343亿美元,预测期间复合年增长率为15.4%,市场极具活力!为了更好的展现高光谱技术和应用的创新成果,以及未来的发展趋势,仪器信息网特别策划《高光谱技术创新成果集》网络专题,集中展示高光谱领域的最新成果,包括但不限于仪器、部件、技术、方法、应用等。兰维杰 副教授南京农业大学食品科技学院在仪器信息网主办的“高光谱技术在农业领域的最新应用进展” 网络研讨会议中(相关精彩视频回放点击:https://www.instrument.com.cn/news/20230811/679327.shtml ),南京农业大学兰维杰副教授进行了《高光谱成像技术在苹果内部品质异构性的评价潜力研究》的报告分享。会后,我们再次邀请兰老师分享高光谱技术当前的研究进展及其团队研究成果。一、为什么要依靠高光谱技术来研究食品异构性高光谱成像技术是一种在不同波长范围内获取物体光谱信息的技术,其技术优势在于能够捕捉物体的细微光谱差异,并且集成了成像和光谱学,从而实现对物体内部构成和特性的定量或定性分析。目前,高光谱技术在食品质量检测领域应用广泛,如检测食源性污染物、鉴别真伪、果蔬成熟度及病害程度判断。其中,由于果蔬的内部物理性质(如大小、形状、颜色、位置和温度)和生物性质(如品种、季节、成熟度水平和地理来源)各不相同,造成组织具有较高异构性,影响了光学传播特性和与入射光的相互作用行为,从而降低了质量检测的精度。常规色谱、质谱化学分析方法探究单个水果组织水平上的内部异质性方面既昂贵又耗时,这些内部异质性已经被广泛证实,同时也显著影响了其加工后产品的质量安全与稳定性。目前,凭借空间和光谱信息的结合,高光谱成像技术拥有探究其内部品质异构性的潜力,这不仅为对食物内部异质性的科学研究提供了快速有效表征方法,同时也更为获得稳健、精准的食品品质指标预测模型提供关键指导。二、高光谱技术研究苹果异构性的部分进展本团队以苹果为研究对象,通过常规化学分析测定,证明了单个苹果内部在总糖、单糖、酸度、总酚含量等方面均存在显著空间异构性分布。目前,我们提供了一种基于近红外高光谱的简单高效方法来实现苹果内部化学指标异构分布的快速表型(图1)。首先,我们通过近红外高光谱成像系统获取了布瑞本(Braeburn)、嘎啦(Gala)、史密斯(Granny Smith)和高果树负载量(约200个/棵)与低果树负载量(约150个/棵)下的金冠(Golden Delicious)苹果的片状组织,获取了超1000个不同部位的待测样本;其次,对所有苹果切片的高光谱信息,采用主成分分析筛选出变异性较大的特征待测区域(共141个),基于每个部位的平均光谱进行PLS模型与机器学期预测模型构建,结果发现PLS模型能够较好实现特征测试样本的总糖(Total sugar)和干物质(DMC)的预测,模型R2与RPD值高于0.81和2.2;最后,通过该模型对全像素下的目标进行预测,成功实现了不同品种及不同位置的苹果内部的总糖及干物质分布的变异性可视化(图2、图3)。综述,该研究成果的优势在于依靠相对小样本测试数据,即可实现高通量的苹果内部品质指标可视化,这为田间及实验室内三维空间的品质表型提供简单可行方案参考。但是,本研究中高光谱技术也展现了评价单糖、总酚等内部品质指标空间分布的局限性。图1 基于近红外高光谱技术表征苹果内部品质异构性的方法图2基于近红外高光谱技术表征苹果内部干物质含量的可视化空间分布图图3 基于近红外高光谱技术表征苹果内部总糖含量的可视化空间分布图三、高光谱技术对水果硬度异构性与泛化预测模型的开发目前,本团队研究了不同“富士”苹果硬度空间异构性,发现其干物质和硬度也存在着较大变异性,并希望通过减少苹果果皮光学信号干扰,建立更加可靠的果肉硬度泛化检测模型。现有结果表明,在构建苹果果实硬度校正模型时,考虑到样品内部异构性( 10%)可有效提高模型精度和降低样本数量。由此,我们不仅减轻了样品测定的工作量并且保证了模型构建中样本的差异性。希望在后续的苹果硬度模型建立及矫正的过程中开展进一步验证性研究,为点状近红外对苹果硬度检测的泛化模型精度提升提供参考。四、高光谱成像技术探究食品异构性的几点展望目前,限制高光谱成像技术在评价果实内部品质异构性方面的应用依旧存在着以下三个方面:首先,高光谱数据量庞大,急需更有效的数据处理方法、人工智能和机器学习技术从数据中提取有用信息;其次,高精度、小型化的高光谱一起可以提高数据采集的质量和效率,实现食品加工产品在发酵、调配、包埋等过程中内部结构与化学变化的精准控制;最后,明确光在生物物体中传播路径模拟或与生物物体相互作用的机理也是提高模型精度必要的研究方向。这些方法的发展为高光谱成像技术在评价食品异构性的可能性提供了可行性。
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。
  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • 单克隆抗体标准物质电荷异构体研究
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。 br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 272px " src=" https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 272" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办 span style=" color: rgb(255, 0, 0) " strong 第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” /strong /span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " strong span style=" text-indent: 0em " 欢迎各位专家、同仁报名参会! /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right " 供稿:崔新玲 胡志上 span style=" text-indent: 2em " & nbsp /span /p
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 中国计量科学研究院李红梅团队:肝素类药物结构表征新方法建立
    p style=" text-indent: 2em " 中国计量科学研究院李红梅团队近期在Carbohydrate Polymers发表系列文章,阐述了团队近3年来针对肝素类药物结构表征新方法开发取得的研究进展(Wang, Zhang et al. 2018, Zhang, Liu et al. 2019, Zhang, Xie et al. 2020)。 /p p style=" text-indent: 2em margin-bottom: 10px " 肝素类药物是一种目前临床上应用最广泛的多糖类抗凝血药物,其构成组分极为复杂,分子量分布范围广,其中各组分的精细结构及含量决定了其药物活性。亚硝酸降解是针对肝素类药物进行结构分析的重要手段。降解得到的寡糖片段保留了肝素类药物的差向异构化构象,而差向异构化构象与药物活性密切相关。然而由于亚硝酸降解产物结构的复杂性,针对该类寡糖结构一直缺乏完善的表征方法。李红梅团队成功利用超高效亲水/弱阴离子交换色谱(UPLC-HILIC/WAX-MS)与高分辨串联质谱联用的分析方法,形成了一套完整的、针对亚硝酸降解产物的分析体系(图1)。另一方面,团队还建立了基于离线强阴离子交换-质谱(offline-SAX-MS)序列分析的寡糖链结构表征方法。以上方法适用于所有肝素类似物的结构表征,可以用来分析人工合成的、结构多样的硫酸乙酰肝素(HS),探究结构-功能的对应关系;完善肝素类药物结构表征方法,优化产品工艺,提升药物的安全性和有效性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 620px height: 419px " src=" https://img1.17img.cn/17img/images/202010/uepic/a67b8516-6919-461b-b256-81d7f99d1a02.jpg" title=" 2.png" alt=" 2.png" width=" 620" height=" 419" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 图1:亚硝酸降解四糖的UHPLC-MS表征 /strong /span /p p style=" text-indent: 0em margin-top: 10px " Wang, Z., T. Zhang, S. Xie, X. Liu, H. Li, R. J. Linhardt and L. Chi (2018). & quot Sequencing the oligosaccharide pool in the low molecular weight heparin dalteparin with offline HPLC and ESI–MS/MS.& quot Carbohydrate Polymers 183(Supplement C): 81-90. /p p style=" text-indent: 0em " Zhang, T., X. Liu, H. Li, Z. Wang, L. Chi, J. P. Li and T. Tan (2019). & quot Characterization of epimerization and composition of heparin and dalteparin using a UHPLC-ESI-MS/MS method.& quot Carbohydr Polym 203: 87-94. /p p style=" text-indent: 0em " Zhang, T., S. Xie, Z. Wang, R. Zhang, Q. Sun, X. Liu, L. Chi, J. P. Li, H. Li and T. Tan (2020). & quot Oligosaccharides mapping of nitrous acid degraded heparin through UHPLC-HILIC/WAX-MS.& quot Carbohydr Polym 231: 115695. /p p style=" text-indent: 2em margin-top: 10px " strong span style=" color: rgb(38, 38, 38) " 学者简介: /span /strong span style=" color: rgb(38, 38, 38) " 李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者。 /span /p
  • 东曹2016年色谱分离纯化技术研讨会邀请
    尊敬的用户: 您好! 东曹(上海)生物科技有限公司(TOSOH)将分别于2016年5月11日在北京、5月13日在上海举行两场“色谱分离分析及中低压层析纯化技术研讨会”。今年我们一如既往的邀请到了色谱分离领域的专家来与各位分享下游纯化方面的新技术与应用案例。此外,东曹公司的资深技术人员也会围绕单克隆抗体以及ADC药物在研发或生产中涉及的HPLC分离纯化等热门话题展开介绍及讨论。 我们诚挚地邀请您的参与并致以衷心的感谢! 会议提供自助午餐及茶歇,会后设置精彩抽奖环节,期待您的参与!会议日程:时间内容演讲嘉宾09:00-09:15报道、注册09:15-10:15Separation of modified proteins by chromatography /多聚体、PEG 化、电荷异构化等修饰后的蛋白的色谱分离技术(英语演讲)山本 修一教授日本山口大学10:15-10:30茶歇10:30-11:00Introduction of newly developed Protein A affinity column for high speed IgG quantification in cell culture /用于快速定量细胞培养液中IgG 的亲和色谱柱新产品——TSKgel ProteinA-5PW 的介绍(英语演讲)富泽 洋 先生TOSOH JAPAN 11:00-11:45针对不同种类的生物医药产品,TSKgel 色谱柱的选择方法以及典型应用史俊霞 应用工程师东曹(上海)生物科技11:45-12:00答疑&抽奖活动12:00-13:30自助餐北京研讨会 时 间:2016年5月11日(周三)9:00 – 13:00地 点:北京广西大厦会议厅(潘家园华威里26号) 上海研讨会时 间:2016年5月13日(周五)9:00 - 13:00地 点:上海张江碧波路699号博雅酒店1F 博雅厅活动联系:东曹(上海)生物科技有限公司联系人:徐绍纲 先生电 话:021-34610856传 真:021-34610858E-mail:xushaogang@tosoh.com.cn
  • 【CEM】Fmoc-His(Boc)-OH在基于Fmoc的固相肽合成中的应用
    一、组氨酸的差向异构化对映体纯度极大地影响肽的生物活性;因此,避免D-异构体含量的增加至关重要。1在固相肽合成(SPPS)的偶联过程激活阶段,组氨酸特别容易发生差向异构化。组氨酸倾向于差向异构化(图1)是一种分子内的副反应,这是由于咪唑Nπ上的孤对电子与酸性α碳氢的接近性所导致。当氨基酸被激活时,1号位的孤对电子具有足够的碱性以进行去质子化,从而形成一个无立体选择性的酯烯醇盐22。此时,转化为L-或D-异构体3并没有热力学上的优先途径。当反应位点聚集,且组氨酸在激活状态保持较长时间的期间,差向异构化的可能性增加。图1:Fmoc-His(PG)-OH在激活过程中高差向异构化水平的机制解释二、组氨酸侧链保护对咪唑环的保护(图2)通常采用在Nτ位置使用三苯甲基(Trt)基团的方式实现4。Trt基团因其体积大和具有吸电子性,能够有效抑制诸如环上N-酰化等副反应,然而在控制差向异构化方面效果有限。其他侧链保护基团,尤其是那些提供Nπ保护的,例如Fmoc-His(π-Mbom)-OH(5),通过阻断α-氢的接触途径来减少差向异构化。但这些衍生物的缺点在于它们本身的高成本和因多步骤合成策略导致的低批量供应,这种策略需要在连接Mbom基团时对Nα位置进行互斥保护。3,4,5,6此外,在肽切割过程中还需添加额外的清除剂,以防止新暴露的氨基功能团上发生羟甲基化。 本文中,Fmoc-His(Boc)-OH(6)被证实是Fmoc SPPS中组氨酸并入的宝贵替代物,因为它在高温下对差向异构化具有较高的稳定性,成本低,且比其他任何市场上可购买的衍生物具有更好的批量供应能力。 图2:Fmoc-SPPS用的组氨酸衍生物:Fmoc-His(Trt)-OH(4),Fmoc-His(π-Mbom)-OH(5)和Fmoc-His(Boc)-OH(6)三、Fmoc-His(Boc)-OH的优势Fmoc-His(Boc)-OH 能够以游离酸和环己胺(CHA)盐的形式大量购买。对于盐形式,需要通过提取过程来移除CHA基团。鉴于这一过程相对繁琐,我们的研究便专注于游离酸的应用。根据先前的报告,与His(Trt) 相比,His(Boc)在差向异构化方面的倾向性更低。7这一现象可以归因于氨基甲酸酯基团较强的吸电子效应,它有效地从π子中抽取电子云密度,从而降低了其碱性。四、讨论一项采用利拉鲁肽和1-42Beta淀粉样蛋白的可行性研究评估了-Boc基团在微波(MW)辅助固相肽合成(SPPS)过程中对差向异构化的抑制效果及侧链的稳定性。肽段是在HE-SPPS条件下制备的,具体操作包括1分钟90°C的去保护和2分钟90°C使用DIC和Oxyma Pure进行的偶联。8与基于尿嘧啶的激活策略相比,DIC/Oxyma Pure激活在偶联效率和抑制差向异构化方面提供了更优的结果。后者的表现归因于碳二亚胺活化所固有的酸性环境。9,10在室温或稍高的条件(例如50°C)下并入组氨酸能进一步降低D-异构体的形成,但这样的条件对于His(Trt)仍然不够理想。我们比较了His(Trt)和His(Boc)在使用两种常见协议时的偶联条件:(1)10分钟50°C和(2)2分钟90°C。最后,我们研究了溶液中的稳定性,以确定其在Liberty BlueTM HT12上的高通量自动化应用的可行性。利拉鲁肽的合成利拉鲁肽具有一个N端的组氨酸,这在与肽链的偶联中存在一定难度,因此,通过微波加热来增强酰化作用是有益的。使用三苯甲基保护在50°C下偶联组氨酸10分钟,结果显示D-异构体的形成增加到了6.8%(如表1所示)。在相同条件下,Fmoc-His(Boc)-OH显著减少了差向异构化,仅为0.18%。 Fmoc-His(Boc)-OH在90°C时的表现也相当出色,观察到的差向异构化水平为0.81%,相比之下His(Trt)则大于16%。Fmoc-His(Trt)-OH和Fmoc-His(Boc)-OH都以相当的粗纯度获得了目标肽(图3)。Fmoc-His(π-Mbom)-OH在纯度和D-His方面提供了与Fmoc-His(Boc)-OH相似的结果。 图3:使用(a) Fmoc-His(Trt)-OH或(b) Fmoc-His(Boc)-OH的利拉鲁肽UPLC色谱图。组氨酸偶联条件 = 50°C,10分钟。总合成时间 = 2小时55分钟 表1:利拉鲁肽中组氨酸在不同偶联条件下的D-异构体形成情况1-42Beta淀粉样的合成之前的研究表明,在长时间的哌啶处理过程中,Nτ-Boc侧链基团显示出不稳定性。11为了测试高温去保护过程中–Boc的稳定性,我们合成了包含三个组氨酸残基的1-42Beta淀粉样蛋白。1-42Beta淀粉样蛋白的合成序列是出了名的困难,需要使用特殊的偶联试剂,即使在严苛条件下,产物纯度通常也过低,无法进行分析和纯化。12与常规合成方法不同,HE-SPPS即便在未优化的条件下也能获得木及高的粗纯度。我们比较了His(Trt)和His(Boc)在50°C下偶联10分钟以及90°C下偶联2分钟的情况。His(Boc)将总合成时间从4小时24分钟缩短到3小时58分钟,并且将差向异构化的比例从2.88%降低至1.29% D-异构体(表2)。UPLC分析表明,这两种合成方法得到的目标产物在粗纯度上具有可比性(图4)。 表2:BA中His(Trt)和His(Boc)的差向异构化情况图4:使用(a) His(Trt)和(b) His(Boc)的1-42 Beta淀粉样蛋白的UPLC色谱图溶液中的稳定性在自动化高通量SPPS应用中,要求底物能在溶液中保持溶解状态长达10天。通常,像组氨酸这样的反应物由于保护基团的降解/丢失而导致变色和沉淀,其溶液寿命仅限于5天。在这项研究中,我们测试了组氨酸溶液(DMF,0.2 M)在大气条件下存放10天的稳定性(图5)。所有样品都迅速溶解,得到无色溶液。Fmoc-His(Trt)-OH的变色在短短24小时内就开始出现,并在10天的时间里加剧。10天后,Fmoc-His(π-Mbom)-OH溶液略呈黄色,而Fmoc-His(Boc)-OH溶液在研究期间保持无色。UPLC分析表明,Fmoc-His(Boc)-OH和Fmoc-His(π-Mbom)-OH保持了99%的纯度。基于强烈的变色,预计在10天的研究期间Fmoc-His(Trt)-OH样品中形成了几种杂质(图6)。然而,使用质谱对这些杂质进行定性未能成功。 图5:不同组氨酸衍生物溶液中的稳定性颜色测试 图6. 10天后DMF中组氨酸衍生物(0.2 M)的UPLC分析;(a) = Fmoc-His(Trt)-OH (b) = Fmoc-His(π-Mbom)-OH (c) = Fmoc-His(Boc)-OH五、结论上述数据表明,His(Boc)是一种强大的组氨酸衍生物,可以在90°C下高效偶联,提供优良的粗纯度,同时缩短偶联时间并显著降低差向异构化。与其他抑制差向异构化的N保护衍生物相比,Fmoc-His(Boc)-OH更易获得,同时保持相当的合成性能。总之,Fmoc-His(Boc)-OH的核心优势包括: &bull 商业批量可用性强,价格相对于Fmoc-His(Trt)-OH更具竞争力&bull 在高温下具有低水平的差向异构化;50°C及以下的偶联温度使得Fmoc-His(Boc)-OH适用于活性药物成分的合成,无需复杂的偶联试剂和条件13 &bull 优异的溶液稳定性;与Fmoc-His(π-Mbom)-OH相当,且优于Fmoc-His(Trt)-OH六、材料与方法试剂以下Fmoc氨基酸和树脂购自位于Matthews,NC的CEM公司,包含所示的侧链保护基团:Ala, Arg(Pbf), Asn(Trt), Asp(OMpe), Gln(Trt), Gly, His(Boc), His(Trt), Ile, Leu, Lys(Boc), Lys(palmitoyl-Glu-OtBu), Phe, Pro, Ser(tBu), Tyr(tBu), Val。Rink Amide ProTideTM LL, Cl-MPA ProTideTM LL, 以及Fmoc-Gly Wang PS LL树脂也购自CEM公司。二异丙基碳二亚胺(DIC),哌啶,三氟乙酉夋(TFA),3,6-二氧杂-1,8-辛二硫醇(DODT)和三异丙基硅烷(TIS)购自Sigma-Aldrich(St. Louis, MO)。二氯甲烷(DCM),N,N-二甲基甲酰胺(DMF),无水二乙酉迷(Et2O),乙酸,高效液相色谱级水,以及乙腈购自VWR(West Chester, PA)。液相色谱-质谱级水(H2O)和液相色谱-质谱级乙腈(MeCN)购自Fisher Scientific(Waltham, MA)。D-异构体通过手性GC-MS(C.A.T. GmbH)进行测定。肽合成:利拉鲁肽在CEM Liberty Blue自动化微波肽合成器上,以0.10 mmol的规模合成了该肽。使用了0.313克Fmoc Gly Wang PS LL树脂(0.32 meq/g置换)。去保护作用采用20%哌啶和0.1 M Oxyma Pure在DMF中执行。偶联反应使用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割则应用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。肽合成:1-42Beta淀粉样蛋白采用CEM Liberty Blue自动化微波肽合成器,以0.10 mmol的规模在0.512g Cl-MPA ProTide树脂(0.19 meq/g置换)上合成了该肽。去保护作用使用20%哌啶和0.1 M Oxyma Pure在DMF中进行。偶联反应用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割采用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。稳定性研究在50毫升离心管中,制备了0.2摩尔浓度的组氨酸溶液(总共5毫升DMF),并对管进行了密封。这些溶液在实验室环境下保持在室温,持续10天。为了准备用于超高效液相色谱-质谱分析的样品,将10微升的组氨酸溶液稀释到5毫升的50/50(体积比)乙腈和水的混合溶剂中。调整进样量,直至吸光度达到35 – 55单位。七、参考文献(1) Kusumoto, S. Matsukura, M. Shiba, T. Biopolymers, 1981, 20,1869 --1875.(2) Kates, S. A. Albericio, F. Solid-Phase Synthesis – A Practical Approach Kates, S. A Albericio, F. Eds. Marcel Dekker Inc: New York, New York, 2000 Chapter 4. Van Den Nest, W. Yuval, S. Albericio, F. J. Pept. Sci. 2001, 7, 115.(3) Colombo, R. Colombo, F. J. Chem. Soc., Chem. Commun. 1984, 0, 292 – 293. Mergler, M. Dick, F. Sax, B. Schwindling, J. Vorherr, Th. J. Pept. Sci. 2001, 7, 502 – 510.(4) Okada, Y. Wang, J. Yamatot, T. Mu, Y. Yokoi, T. J. Chem. Soc., Perkin Trans. 1 1996, 17, 2139 – 2143.(5) Hibino, H. Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947 – 4949.Hibino, H. Miki, Y. Nishiuchi, Y. J. Pept Sci. 2012, 18, 763 – 769.(6) Suppliers: EMD/Sigma-Aldrich = $1338 per 5g bottle Peptide Institute = $400.5 per 5gbottle.(7) Clouet. A Darbre, T. Reymond, J. L. Biopolymers, 2006, 84, 114.(8) Collins, J. M. Porter, K. A. Singh, S. K. Vanier, G. S. Org. Lett. 2014, 16, 940 – 943.(9) Patent: US20160176918(10) CEM Application Note (AP0124). “CarboMAX – Enhanced Peptide Coupling at Elevated Temperature.”(11) Sieber, P. Riniker, B. Tetrehedron Lett. 1987, 28, 6031 –6034.(12) Tickler, A. K Clippingdale, A. B Wade, J. D. Protein Peptide Lett. 2004, 11, 377 – 384.(13) Bacem Application Note. Mergler, M. Dick, F. Vorherr, Th. Methods for Fmoc-His(Trt)-OH Resulting in Minimal Racemization.(14) CEM Technical Note (P/N: 600837) - “Cl-MPA ProTide and Cl-TCP(Cl) ProTide Resin Loading and Protected Cleavage Procedures.
  • CEM Liberty PRO横空出世,多肽合成生产技术的重大突破
    CEM Liberty PRO横空出世,多肽合成生产技术的重大突破CEM是微波多肽合成领域的发明者和领导者,是最早开发采用微波能量用于全过程多肽反应专利技术的公司,利用其独特的环形电磁场技术和多项化学辅助技术方案,创多肽合成的多项世界纪录。Liberty能够在分子层面上直接促进极性离子的脱保护、偶联以及裂解反应,提高了多肽合成的速度、纯度和产率,而且大大降低了成本。CEM研发级多肽合成Liberty Blue 0.005-5mmol性能优异,一直在全球占据垄断地位,而生产级Liberty PRO 1000mmol的推出预示着大规模多肽合成的重大突破。目前,传统大规模多肽合成的研究和生产都面临着严峻挑战——反应釜体积大,工作流程缓慢且浪费严重,亟需优化。传统固相合成偶联时间需要几小时,约占了单次循环80%以上的时间,一条30个氨基酸的多肽合成可能需要一到两个月,而且长时间的偶联必然带来更多的副反应,降低产率和纯度。CEM全自动大规模多肽合成仪Liberty PRO&trade ,突破了传统多肽合成制造的局限,利用其独特的全过程微波电磁技术,保证反应边界条件高定量性和重复性。在特殊环形电磁场中,氨基酸构成的卷曲肽链充分展开,进行彻底的脱保护、偶联和裂解,达到神奇的反应效果和速度。CEM的HE-SPPS专利技术是唯一可以将微波能量用于整个多肽反应的全过程。从而帮助化学家进行前沿性多肽R&D 研究和工业生产的技术。Liberty PRO&trade 使用创新硬件与精确控制微波能量相结合的方式,有助于优化化学条件从而获得纯度更高,产率更大的药物相关肽。借助CEM多项技术专利的基础,如一锅法偶联和脱保护技术、CarboMAX增强型偶联方法、以及No Wash免洗工艺,实现了多肽合成速度和成果的重大突破,能够完成传统方法难以达成的复杂多肽合成。把偶联时间缩短为几分钟,快速完成更多更长的氨基酸偶联,防止长链多肽聚合,消除双重偶联和差向异构化现象,同时降低树脂的要求,并且减少95% 的DMF试剂的使用,30个氨基酸的合成如今仅需一两天便可完成生产。一线工作人员可以前所未有速度的进行多肽合成高效安全的生产。1. 1000mmol自动化合成 2. 15-45min循环时间3. 反应速度快、纯度高4. 减少85-90%碱基使用量5. 免清洗减少 95% DMF 用量6. 15 AA配置,3个活化剂位置7. 减少废液量,降低处理成本8. 研发到生产,可直接转换9. cGMP设备单元化设计10. 体积小节省厂房面积Liberty PRO&trade 工业级微波多肽自动合成设备,符合cGMP规范,满足不同规模的全自动生产需求。Liberty PRO&trade 仅需15-45分钟即可完成氨基酸的偶联循环,使得多肽合成技术速度比传统提高了10-20倍,每批次可生产出1000mmol的多肽,可以在一天内生产相当于传统100-300升反应器产量的肽。标准的10肽 ACP 序列合成纯度竟达到 98%,使后续的纯化更容易。Liberty PRO&trade 技术相较于传统多肽合成方法,提供了卓越的产品纯度和极快的周转时间,同时降低了多达90%的整体循环成本。自动化的Liberty PRO&trade 在一天之内可实现多批次多肽生产,以前所未有的速度、纯度完成多肽合成自动工业生产。1) One-Pot Coupling/Deprotection一锅法偶联和脱保护全过程微波多肽合成,这项技术的核心在于将脱保护试剂直接加入到未经排液处理的后偶联反应混合物中。从而快速完成脱保护与偶联步骤,省略升温时间提高反应效率;在液相中,更快的反应动力学加速了活泼酯的水解或自发偶联反应,从而避免树脂结合的氨基官能团处的潜在副反应。保持较高温度下不间断地进行Fmoc去除反应,通过优化脱保护试剂的使用量,确保了在脱保护步骤完成时,反应体系基本保持中性状态。2) CarboMAXTM 增强型偶联方法:碳二亚胺偶联反应的优势在于降低半胱氨酸和精氨酸中的γ-内酰胺的差向异构化作用,然而其活化速度相对较慢。CEM开发了增强型偶联工艺,通过在微波下提高碳二亚胺的当量,可以更快地形成关键的O -酰基脲中间体。从而更快更多的形成活化氨基酸,使得随后的偶联反应更快发生。另外,许多重要的侧链修饰对Oxyma Pure和HOBt酸性活化剂敏感。传统碳二亚胺化学反应可导致敏感基团的裂解,例如磷酸和O-连接的糖类化合物。CEM的专利工艺,在微波下使用碳二亚胺类活化剂并且通过碱平衡技术以稳定敏感的化学键,从而获得无与伦比的速度和纯度。总之,CarboMAXTM技术减少了氨基酸的活化时间,减少差向异构化,提高了产率和纯度。提高合成困难肽和长序列肽分子结构的稳定性。 3)No Wash 全过程免洗技术:CEM采用蒸馏法取代和去除了偶联和脱保护步骤后的洗涤过程。这一发明不仅提高了反应速度,而且减少了95% DMF溶剂的使用量。同时,所需的碱基使用量也显著减少,仅为标准用量的10-15%。而且保持了多肽合成的高纯度。这不仅降低合成成本,省去清洗时间,还节约了企业对后期处理有毒废液而产生的巨大费用。如此大幅度的节约试剂,前所未有的降低企业成本、降低安全风险、提高生产效益。Liberty PRO&trade 是一套完整的、符合cGMP标准的全自动大规模多肽合成模块化解决方案。它采用符合医药领域cGMP要求的惰性材料,并设计了满足可追溯性法律法规要求的硬件和软件系统,确保了反应边界条件的高精确度和优异的重复性。采用全新的流体输送技术,配备NIST可追溯性的内置温控模块,以及整合了优化的机械搅拌和氮气鼓泡的双重搅拌系统,确保了批次间的高度稳定性。CEM提供全系列的多肽合成装置,研究人员可基于Liberty Blue&trade 小规模0.005-5mmol级自动合成系统,在实验室中轻松开发和优化多肽合成方法。随后,可迅速在大规模cGMP工业级的Liberty PRO&trade 上无缝再现反应结果,保证从毫克级到千克级多肽生产的重复性和一致性。 Liberty PRO&trade 多肽合成技术代表了速度、纯度和可扩展性的完美结合,设备具备高性能、高可靠性、高灵活性,在遵循cGMP管理准则的同时,能够轻松调整合成序列大规模生产具有生物活性的API多肽原料药。不仅大幅削减了成本,还显著提升了交货速度,非常适合CDMO多肽合成服务。Liberty PRO&trade 彻底改变了传统的多肽合成思想观念,其高机动性的生产方式和管理方式,实现了灵活性、经济性,化整为零,降低了生产风险。其小型化、标准化和模块化,使得任何一个单元出现故障,都不会影响整个生产管理。Liberty PRO&trade 单元化组合的合成模块,彻底颠覆了传统多合成生产线生产方式,使得合成生产更经济、更灵活。而且,CDMO企业可以随时根据订单多肽序列和产量的不同,随时改变生产流程和重新配置。这标志着现代CDMO企业可采用前沿的多肽合成技术,构建全新的cGMP生产管理模式。
  • 可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究
    可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究关注我们,更多干货和惊喜好礼可比性研究生物类似药通常指与参考分子(原研药)高度类似的治疗性生物产品1。世界各地的监管机构,如美国食品药品监督管理局(United States Food and Drug Administration, USFDA), 欧洲药品管理局(European Medicines Agency, EMA)和中国市场监督管理总局(National Medical Products Administration, NMPA)均发布了指导规则,要求证实生物类似药与原研药之间在药品安全性/功效性等方面的相似度1。 随着高分辨质谱(HRAM MS)逐步成为创新药和生物类似药表征必不可少的分析工具,在氨基酸序列确认和化学/翻译后修饰等鉴定中,均起到不可或缺的作用2。2015年,Rogers 等2在公开发表的文献中提及可将基于肽图分析的Multi-Attribute Method (MAM) 工作流程用于多重PQA的监控与定量,与此同时还可进行新组分检测(new peak detection)2,进而提供更多产品质量相关信息,并提高生产率。由此,MAM在质量控制(QC)实验室中替代传统分析手段的潜力,引起越来越多生物制药行业和监管机构越来越多的关注2 3。2019年,US FDA的Rogstad等在发表的文献中提及可以考虑使用MAM替代一些常规的QC分析方法4。图1 赛默飞HR-MAM工作流程(点击查看大图)本期我们介绍赛默飞HR-MAM (图 1)工作流程的zui新进展:对未经处理/不同强制降解条件下的生物类似药与利妥昔原研药进行可比性研究,对多个选定PQA进行有效的鉴定、相对定量和监控,以减少分析实验所花费的时间,并提高生产率。 多PQA选定助力原研药与生物类似药结构相似性确证: PQA通常在药物安全性与有效性方面起到重要作用,基于肽图分析表征可以选择适合的PQA,如:糖基化(glycosylation),脱酰胺化(deamidation),琥珀酰亚胺化(succinimide formation),异构化(isomerization),氧化(oxidation),重链C-末端赖氨酸截断(C-terminal lysine truncation),N-末端焦谷氨酸环化(N-terminal pyroglutamate)。 所有被选中的PQA可在BioPharma Finder软件中创建为一个包含该PQA肽段保留时间/质荷比/价态/所有电荷态等信息的工作簿,随后此工作簿被导入至变色龙软件中,用于后续的MAM数据分析。使用HR-MAM工作流程,即使是含量约0.1%的组分,也可通过高分辨质谱平台提供的数据获得高重现性的定性与定量结果。在本文的研究中,选定了下列PQA来证实HR-MAM工作流程用于目标肽段定量的能力,进而评估利妥昔原研药与生物类似药之间的结构相似性:重链 N55 脱酰胺化和琥珀酰亚胺化 重链 N388和N393 脱酰胺化 重链 N388和N394 琥珀酰亚胺化 重链 M256 氧化 重链 D284 异构化 重链N-糖基化 重链C-末端赖氨酸截断和轻/重链N-末端焦谷氨酸环化。 PQA相对定量兼具稳健性与重现性,MAM展现独特潜力: 由于C-末端赖氨酸截断与N-末端焦谷氨酸环化等末端修饰会影响单克隆抗体产品的电荷异质性5,所以在结构可比性研究中需要对其进行评估。以本文中涉及的PQA为例,利妥昔原研药和两个不同批次的生物类似药,其重链C-末端赖氨酸截断与轻/重链N-末端焦谷氨酸环化的比率均在可比范围内(图2)。值得注意的是,所有定量结果三针技术重复的变异系数(coefficients of variation, CVs)均小于2%,显示了优异的重现性。图2. 利妥昔原研药/生物类似药在未经强制降解/强制降解条件下常见末端修饰相对定量结果。图中每个条柱均代表三针技术重复的平均值,误差线代表三针技术重复的标准偏差(下同)。(点击查看大图) N-糖基化可能会影响单克隆抗体产品的免疫原性、药效、抗体依赖的细胞介导细胞毒性(antibody-dependent cell-mediated cytotoxicity, ADCC)、补体依赖的细胞毒性(complement-dependent cytotoxicity, CDC)、血清清除率和药代动力学5。在生物类似药的开发和生产过程中,为了确保产品的安全性和有效性,N-糖基化必须被密切监控并严格控制。对于生物类似药开发厂商而言,生物类似药的糖基化异质性分布必须与其原研药具有可比性,以避免扩大临床试验的规模。 在本方案涉及的实验所用的原研药和生物类似药样品中,总共鉴定到15种不同糖型,这些糖型的相对含量在不同样品之间并没有明显区别(图3)。与传统N-糖链定量方法相比,未发生糖基化修饰的肽段相对含量也可在HR-MAM工作流程中同时被监控,这是传统方法无法做到的,展现了其独到价值。对所有糖型的相对定量结果同样显示了优异的重现性和灵敏度。例如,对于相对含量约0.3%的糖型A2S1G0F ,其技术重复之间的CVzui新应用方案,码上下载想要深入了解详细实验结果、参数设置、MAM优势,立即下载zui新Application Note相关阅读• 客户案例|辉瑞在多个实验室同时部署MAM• HR Multi-Attribute Method Workflow 化繁为简,有规可循|为生物制药表征和质量控制保驾护航 参考文献:[1] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [2] Liu, H., et al. A high-resolution accurate mass multi-attribute method for critical quality attribute monitoring and new peak detection. APPLICATION NOTE 72916. [3] Rogstad, S., et al. Multi-Attribute Method for Quality Control of Therapeutic Proteins. Anal. Chem. 2019, 91, 14170−14177.[4] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [5] Beck, A., et.al. Characterization of Therapeutic Antibodies and Related Products. Anal. Chem. 2013, 85,715−736. 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 沃特世与新加坡生物加工技术研究所深化合作,助力加速生物制剂生产
    探索LC-MS数据分析方法,快速定性复杂生物分子 近日,沃特世公司(纽约证券交易所代码:WAT)宣布扩大与新加坡科学技术研究局(A*STAR)下属的生物加工技术研究所(BTI)的合作。在双方新的合作项目中,沃特世和BTI开始应用分析技术来快速识别糖组学及代谢组学数据中的复杂分子,并使其可视化,以帮助确保生物制剂生产的整体安全性、精度和速度。沃特世和BTI正在进行的数据分析研究,旨在消除生物药物定性中的一个主要瓶颈,即复杂生物分子的识别和定量,如游离N-和O-聚糖以及影响治疗功能的代谢产物。使用沃特世的先进仪器能有效解决聚糖和代谢产物异构现象这一棘手状况。然而由于生成的数据量庞大,需要利用先进的生物信息学方法和机器学习技术来为上述及其他生物分子提供可靠而精准的识别,从而克服昂贵且耗时的传统方法及现有分析软件无法充分解读或可视化上述数据的难题。作为此项目的一部分,沃特世将贡献专业的科学知识和仪器设备,包括SYNAPT系列质谱系统和BioAccord LC-MS系统。SYNAPT仪器采用离子淌度质谱技术,可完整定性复杂化合物和分子。BioAccord系统能用于实时监控产品质量属性,这些属性会影响创新药和生物类似药的有效性和安全性。图. SYNAPT G2-Si HDMS质谱系统(左)、BioAccord集成式液质联用系统(右)BTI执行副总监Andre Choo副教授表示:“分子的复杂结构分析可能是开发新疗法的关键,包括生物制剂和细胞及基因疗法。对复杂聚糖和异构化合物结构的理解很大程度上受限于能否从原始质谱数据中快速精准地分析这些结构。利用BTI在生物加工技术和生物分析能力方面深厚的领域专长,BTI联合沃特世开发将数据分析与广泛的生物信息学库相结合的方法,以简化复杂的数据注解。我们的目标是让科学家更轻松、更迅速地解读数据,以加快发现传统生物制剂和新疗法。”沃特世公司亚太区副总裁David Curtin先生表示:“我们与BTI的合作囊括了糖组学和生物加工研究领域的多个成功项目。BTI是新加坡生物制造的创新先驱,在生物加工科学和工程方面拥有国际水平的专业知识。该合作项目旨在帮助生物治疗制造商对复杂分子进行生产线取样(at-line)或生产线内(in-line)测量,以便快速定性日常生产过程中的问题,降低失败批次的成本或频率。”沃特世与BTI的合作关系始于2014年,双方专注于评估一款针对生物药物应用的新型N-糖标记试剂盒GlycoWork RapiFluor-MS及其用于糖基化分析的完整工作流程——从样品制备到分析。关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球先进的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。沃特世公司在35个国家和地区直接运营,下设14个生产基地,拥有7,400多名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 中科院上海有机化学所游书力团队在手性分子精准合成领域取得新突破
    仪器信息网讯 中国科学院上海有机化学研究所游书力团队利用金属铱催化剂的反应特点,从易得的Z—烯丙基酯原料出发,实现了含有Z—烯烃手性化合物的精准合成。该研究揭示了全新的不对称烯丙基取代反应模式,为含有Z—烯烃结构单元的手性分子提供了一个通用的合成策略,有望应用于药物化学、天然产物合成等领域。该研究成果以“铱催化Z式保留不对称烯丙基取代反应(Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions)”为题,于2021年1月22日在《科学》(Science)上在线发表。论文链接:https://science.sciencemag.org/content/371/6527/380#login-pane图1 (A) 含有Z-烯烃的手性天然产物和生物活性分子 (B) 过渡金属催化不对称烯丙基取代反应  过渡金属催化的不对称烯丙基取代反应可以便捷地实现含有烯烃结构的手性分子合成。在过渡金属催化的烯丙基取代反应中,Z-烯烃底物与金属发生氧化加成可先形成热力学不稳定的anti-π-烯丙基金属络合物,随后该物种通过“π-σ-π”异构化实现烯丙基构型翻转生成热力学稳定的syn-π-烯丙基金属络合物。一般情况下,亲核试剂进攻syn-π-烯丙基金属络合物,会得到以E-烯烃直链或末端烯烃支链为主的产物,因此高选择性地得到含有Z-烯烃的手性产物十分挑战(下图1B)。  游书力团队基于金属铱催化的烯丙基取代反应机理研究,发现π-烯丙基铱络合物的构型翻转较慢,Z-烯烃底物形成的anti-π-烯丙基铱络合物在发生异构化之前可以被亲核试剂捕获,从而实现了铱催化Z式保留的不对称烯丙基取代反应。他们使用Z-烯丙基底物,N-甲基保护的色醇衍生物为前手性亲核试剂,探究了铱催化Z式保留的不对称烯丙基取代反应。经过一系列条件筛选,反应能以20/1的Z/E比,83%的分离收率以及93% ee的对映选择性获得含有Z-烯丙基片段的目标化合物。值得一提的是,不同的色醇,色胺以及带有亲核碳边链的吲哚衍生物均可以参与反应,并以优秀的Z/E比和对映选择性控制得到目标化合物(图2,底物拓展大于50个例子)。  图2 铱催化吲哚衍生物的Z式保留不对称烯丙基取代反应  在进一步的机理研究中,他们通过核磁共振磷谱(31P NMR)和质谱实验观察到在三氟甲磺酸的促进下,一价铱物种可以与Z-烯丙基前体发生氧化加成生成anti-π-烯丙基铱络合物,并且该络合物在室温下可以逐渐异构化为热力学稳定的syn-π-烯丙基铱络合物(图3)。此外,若向含有anti-π-烯丙基铱络合物的反应体系中加入亲核试剂,该物种的磷谱和质谱信号均会立即消失,同时质谱上可以监测到产物信号。这进一步证实了π-烯丙基铱络合物接受亲核试剂进攻的速率远大于其异构化速率,即anti-π-烯丙基铱络合物异构化为syn-π-烯丙基铱络合物之前便可被亲核试剂捕获,生成含有Z-烯烃的手性产物。  图3 anti-π-烯丙基铱络合物的生成及异构化过程的表征  这种Z式保留不对称烯丙基取代反应模式具有很好的普适性。通过对催化剂和反应条件的调控,醛亚胺酯也可以作为前手性亲核试剂用于铱催化Z式保留不对称烯丙基取代反应,为含有Z-烯烃的手性氨基酸衍生物提供了一种高效合成方法(图4)。  图4 铱催化α-氨基酸衍生物的Z式保留不对称烯丙基取代反应
  • 中国科学院院士徐春明与多名高校专家线上讨论石化技术
    近日,2021石油深加工与绿色催化技术线上研讨会召开。中国科学院院士徐春明以及来自华东理工大学、北京理工大学、哈尔滨工业大学、东北石油大学等9所高校的专家学者,围绕石油深加工与绿色催化技术进行了探讨,为黑龙江省“油头化尾”战略提供了理论指导和技术支撑。  研讨会上,专家所作报告涉及到“油头”方向的石油炼制、石油加工以及“化尾”方向的精细化工、高分子材料。  徐春明院士指出,在碳中和背景下,要在炼化石油分子管理内涵发展上做文章,坚持炼化分子管理(工程),对石油加工复杂体系进一步进行分子结构定量表征,通过分子性质建模对炼化工艺进行优化,发现一些低能耗、低成本的方法,这样可以把石油加工复杂体系的分子进行分离,发挥每个分子的价值。他还认为,绿氢是能源结构的组成部分,将对传统化工带来变革性的发展。他们研发的电重构石油化工技术已建成1万吨/年电氢合成氨示范项目,这个路线若能打通,将开辟电氢氨重构煤化工新路线。  黑龙江大学教授、国家级催化技术国际联合研发中心吴伟认为,正构烷烃加氢异构化是生产清洁的异构化燃料油及耐低温润滑油的最有效有段,可提高异构化汽油辛烷值,降低生物柴油凝点,改善润滑油低温流动性能。提高双功能催化剂加氢异构化反应选择性是关键技术。  东北石油大学化学化工学院院长王俊表示,“油头化尾”战略的实施需要进一步整合国内的人才和技术资源。专家们围绕如何实施新技术生产高附加值产品进行研讨,给黑龙江省“油头化尾”产业提供了十分宝贵的经验,其中徐春明院士的研究思路对黑龙江省页岩油的加工利用有重要的指导作用。  此次线上研讨会由黑龙江“油头化尾”高附加值化工产品开发头雁团队主办、大庆高新区经济发展局协办,近300名学界和业界的代表在线参加了此次大会。
  • 大连化物所利用飞秒瞬态吸收光谱发现天然防晒霜防晒机理
    近日,中国科学院大连化学物理研究所复杂分子体系反应动力学研究组研究员韩克利团队发现了植物体叶表面防晒分子的超快反式-顺式光异构化机理及一种新的防晒霜分子,相关研究成果发表在《物理化学快报》(JPC Letters,DOI: 10.1021/acs.jpclett.7b00083)上。  紫外线照射到生物体上会引起DNA损伤,相对于动物,植物所受的光照时间更长。为防止紫外线造成不良影响,十字花科植物表面均匀分布了一层苹果酸类似物(Sinapoyl Malate,SM),其为一种芥子酸(Sinapic Acid,SA)的脂衍生物,可有效将紫外线的能量耗散到环境中,从而防止紫外线的破坏作用。但是,在溶液环境中,SM抵抗紫外线损伤的机理尚不清楚。  该研究团队利用飞秒瞬态吸收光谱技术和时间相关的密度泛函理论计算,发现在中性水溶液中,SM和SA都是去质子化的,它们吸收紫外线到达电子激发态后,会通过超快的光异构化方式内转换回到基态,有效地将紫外线的能量传递到环境中,避免了对遗传物质的伤害。但是,去质子化的SA发生光异构化后吸收紫外线的能力大大降低,而SM几乎没有变化,从而解释了自然选择SM作为防晒霜的原因。此外,该团队还发现处于质子化状态的SA能够在6个皮秒内通过反式-顺式光异构化的方式回到基态,生成的顺式产物也具有良好的吸收紫外线能力,为开发新型防晒霜指明了方向。  上述工作得到科技部“973”计划和国家自然科学基金的支持。
  • 厉害了,康宁在光反应动力学的又一大突破!!!
    摘要近日康宁AFR欧洲技术团队,基于紫外-可见光下(E)-偶氮苯的光异构化,开发了一种高效、低成本的多波长化学光量测量方法。由量子产率估算和1H NMR核磁共振分析表明,对于从紫外光到可见光范围的各种波长,结果都非常准确。研究者还通过对光化学反应器中光子通量密度的测定,核算N2-苯腙在405nm波长下的量子产率,对该方法进行了验证。小贴士量子产率:每吸收一个量子所产生的反应物的分子数,通常是对于特定的波长而言,即量子产率=(生成产物的分子数)/(吸收的量子数)。量子产率是进行光化学学动力学研究的重要参数。光子通量密度:表示单位时间单位面积上在特定波长范围内入射的光量子数。背景相对于批次间歇反应釜,连续流光化学反应器具有持液体积小、透光均匀、反应安全且重现性好等优点。随着单色度高、寿命长且能耗低的LED光源的发展,市场上涌现出了新一代高效的连续流光化学反应器,产能通量包括从实验室级(克/小时)到工业生产级(吨/天)。在上述背景下,为了量化通过光反应器的光子通量密度,帮助理解光化学反应机理,并能精确地描述光反应器在生产率变化时如何随时间变化和操作,迫切需要开发低成本和多功能的光量测量方法。然而,现有方法大多数都是基于昂贵的光量光度计和繁琐的程序,且极少有测定连续流微通道光化学反应器中接收光子通量密度的光量测量方法被报道。研究过程:一、理论模型与结果化学家们曾研究了大量一级光化学反应物质,这些物质在光的诱导下转化为另一种物质的速率可以被精确测量,并与入射的绝对光子通量密度相关联。在这类光化学反应体系中,光子被反应物R和产物P以不同的摩尔消光系数吸收,吸光度随时间而变化。作者在前人的研究基础上,建立了理论模型。并考虑到康宁Lab光化学反应微通道的几何形状,呈现了两个垂直于光源的平行壁,由于光路在通道的每个点上都是恒定的,到光源的距离也是固定的和恒定的。利用康宁连续流光学反应器来研究化学光量测量方法所面对的主要问题,是要对康宁微通道反应器的玻璃模块的玻璃层和换热层的光透射进行修正。图1.康宁LAB光化学反应器剖面图2017年,作者的团队报道了一种简单的方法,在溶剂中使用偶氮苯作为一种方便的光度计。该方法的主要优点在于偶氮苯的成本低和使用核磁共振作为一种定量光谱技术来简化动力学测量。图2. 偶氮苯的光异构化研究者展示了应用此方法在具有四个不同波长(365、385、405和475nm)的康宁® Lab光化学反应器进行光量测量,并给出了数据和拟合结果(以405 nm为例):图3.康宁Lab光化学反应器中405 nm下的化学光量测量结果特定波长下(405nm),反应路径内的光子通量密度与光强之间的拟合公式如下:【编者语】康宁反应器不只是应用于工艺开发或者工业化生产,也适用于化学研究领域。不管是动力学理论研究,新的测量方法研究,还是新化合物的发明与发现,康宁反应器都有可能是您的得力助手。二、方法应用与验证:为了证明这种方法在连续流光化学反应动力学研究中的适用性,作者按照本文方法重新计算了isatin N2-phenylhydrazone的光量子产率(已知最近的文献中其光化学量子产率(ΦZ ≈ 1 × 10–3))。图3. 康宁实验室光化学反应器。前面铝箔覆盖包裹避免自然光照图4. isatin N2-phenylhydrazone 405nm异构化的光动力学研究 考虑到康宁Lab光化学反应器的通道极细(0.4mm),为了保证足够的量进行1H NMR分析,浓度增加到2×10−3mol.L−1。在上述浓度条件下,吸收约为99% (ε z=12270L.mol−1.cm−1),光子几乎全部吸收,可以通过核磁共振波谱进行非常精确的测量。由于康宁® Lab光化学反应器中良好的传热性能,温度可以保持在20°C,因此可以忽略热异构化的影响。由于Z-构型的氢键,E和Z异构体的浓度可以轻易的通过1H NMR进行定量。利用长停留时间确定了光静止状态。(Z)-异构体的甲醇溶液在405nm的不同停留时间照射,光功率为100%。 图5.isatin N2-phenylhydrazone的光异构化反应EPSS(0.20)被用作一个参数来绘制图ln (EPSS−E) 与时间的关系,它与相关系数表现出线性关系并具有良好的平方相关系数(R2=1.00) 。该图的斜率(0.070s−1)对应于公式:通过公式换算可以很容易的计算出量子产率ΦZ(1.1 × 10–3),这一数据与文献数值非常接近。结果与讨论康宁欧洲技术团队开发的此光量测量方法为应用连续流光化学反应器进行光反应动力学研究提供了参考。鉴于此方法安全、简单易操作,它的应用可以扩展到更大规模的连续流光反应器(如康宁G1和G3光化学反应器)中作为例行分析测试手段。参考文献:Photochemical & Photobiological Sciences. 8 January 2022
  • 安捷伦发布关键质量属性文章第三篇
    安捷伦 AdvanceBio 色谱柱专注用于生物制药分析,当您分析高度复杂的生物药物分子需要监控其纯度及关键质量属性,本章将为您讲述关键质量属性中的肽图分析和糖基化分析。肽谱分析 — 特异性地鉴定和定位修饰的唯一方法与先前讨论的 PTM 检测方法相比,肽谱分析是可以通过 LC/MS/MS 特异性地鉴定和定位修饰的唯一方法。肽谱分析主要用于检测目标蛋白的序列变异,但也越来越多地作为多属性方法( MAM ) 的一部分,用于同时定量 PTM,如氧化、脱酰胺基化、糖基化和异构化。在图 1 中,我们可以看到肽谱分析显示创新药物和生物仿制药 mAb 之间差异的示例。图 1. LC/MS 总离子色谱图显示了创新药和生物仿制药产品肽谱的差异。 突出显示的差异由 C 端赖氨酸截短引起MS/MS 实验表明,差异是由 C 端赖氨酸截短引起的。尽管样品前处理(还原、酶解和纯化蛋白质样品)过程较为复杂,但肽谱分析可以从单个实验中提供关于多个CQA 的大部分信息。在转移到 LC/UV 进行 QA/QC 之前,肽谱分析在蛋白质表征阶段严重依赖于 MS 检测。只进行紫外检测的情况下,无法确信已经建立了完整的肽谱图。精确质量数测定,通过 MS/MS 进行序列确认和 PTM 定位,对真实地表征蛋白质和鉴定关键质量属性非常必要。肽谱分析的局限性包括:相对较低的通量(液相色谱方法通常需要一个小时或更长的时间)、色谱柱化学键合相的选择(能在保持 MS 分析灵敏度的同时拥有最大的色谱分离度)、如何获得较宽的动态范围以及如何应对修饰和未修饰肽的化学多样性。糖基化分析—研究工具那么多,选哪个?糖链是修饰的异质性中独有的 PTM。由于糖链在细胞信号转导中具有重要作用并且可以影响蛋白质构象,糖链结构的变异可能会导致有效性和安全性的改变。蛋白质上的糖基化位点和糖链结构本身对表征都非常重要,可以用来分析多种样品类型,如完整蛋白质、糖肽和释放后的糖链。适用糖肽分析的研究工具由于糖链仅占完整蛋白质相对小的一部分,因此通常情况下色谱分离几乎不会提供完整蛋白质糖基化状态的信息。而对此最重要的例外是使用离子交换测量唾液酸糖链。但是,质谱可以准确地测量高水平的糖基化,并且可以进行相对定量分析。当与反相分离相结合时,可以评估蛋白质纯度和糖基化状态。对于这些完整蛋白质水平的方法需要注意的是,它们无法测定具体的位点修饰。释放后的糖链分析通常通过 HILIC 分离标记糖链结合荧光检测来实现。通常情况下,在将方法转移到 LC 荧光之前,会进行 MS 检测方法开发以确认峰归属。尽管 MS 确实比光学检测提供了更具体的信息,但糖链的结构表征仍然存在较大的问题。MS/MS 技术创新对糖基化分析做出了重大贡献,电子迁移裂解 ( ETD ) 等基于电子的技术可以产生比更成熟的碰撞诱导解离 ( CID )表现出的碎裂模式更为丰富的穿环裂解。糖肽分析很大程度上也依赖于 MS/MS,但糖肽不适合 HILIC 或反相分离。糖肽比大多数非糖基化肽更具亲水性,因此在用于肽谱分析的反相色谱柱上对其进行保留和分离具有很大挑战性。然而,糖肽的肽段基团常使它们难以通过 HILIC 进行保留和分离。混合模式色谱和二维液相色谱组合是可用于糖肽表征的研究工具。类似于糖肽引起的分离问题,肽段由 CID 充分而可预测(更重要)地进行碎裂,而如上所述,ETD 能给出更有帮助的糖链碎片。混合 ETD/CID 技术是未知糖肽表征的前沿技术。法规越来越严格,怎么办?生物固有的含水性使液相技术在生物治疗药物的 CQA 分析中占据主导地位。LC/UV 是 CQA 分析的重要基础,因成本不高、所需用户专业知识不多,这项技术的预计使用不会很快减少。然而,随着法规要求越来越严格,生物治疗药物变得越来越复杂,光散射和 MS 等可以提供更多信息和更高可信度的技术越来越受到青睐。由于效益与成本的比率以及所需技能的提高,这些技术一旦在生物制药公司的早期研究阶段和表征环境中应用后,便逐渐进入下游 QA/QC 环境中。前沿方向多属性方法 ( MAM ) 是 CQA 监测的一个备受关注的方向,因为可将多达六种分析方法整合到一种 LC/MS/MS 方法中。除了上述肽谱分析讨论中提到的 PTM 外,它还可以用于测量工艺杂质,如宿主细胞蛋白质。虽然高分辨质谱仪可能具有需要投资和大量的专业知识的缺点,但通过单次分析鉴定蛋白质、测量序列变异、片段、电荷异构体、糖链、其他 PTM 和工艺杂质可节省时间和成本,因此是一个值得关注的机会。“关键质量属性”系列文章就到这里啦,如果您对这个领域感兴趣,欢迎扫描下方二维码关注“安捷伦视界”微信平台,未来我们将为您送上更多精彩内容。本文仅限研究使用。不可用于诊断目的 。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 沃特世生物制药高端会议圆满落幕,共话大湾区生物医药产业发展
    近日,由沃特世公司组织的华南地区生物制药高端会议在广州成功举办。来自生物制药企业、监管机构及重大创新载体的业内人士汇聚一堂,分享分析科学技术在生物医药领域的最新发展成果,共话生物医药质量体系搭建,共谋产业创新发展。近年来,凭借中央与地方政府的政策支持及大湾区自身在资源、人才方面的区域优势,广州、深圳、珠海、中山等大湾区主要城市已初步形成了生物医药产业聚集,大湾区国际生物科技创新中心已“初具轮廓”。沃特世华南及渠道区域运营总经理于笑然先生在致辞中表示:“在国家政策鼓励及资本助力下,生物医药作为大湾区重点培育的战略性新兴产业,迎来了全新的发展机遇。60余年来,沃特世凭借对企业核心价值——‘客户的成功是我们的使命’的执着坚守,对技术创新的不断追求,研发出了诸多颠覆性的创新产品和解决方案,满足客户在行业壁垒高、监管标准日趋严格的新形势下打造核心竞争力的要求。未来,沃特世将一如既往地提供关键分析技术和全方位服务支持体系,与产业界、学术界、科学监管机构密切合作,为大湾区成为世界生物医药产业高地的国家战略提供助力。 沃特世华南及渠道区域运营总经理于笑然先生致欢迎辞分析科学技术——为生物医药“保驾护航”大会上,百奥泰生物制药股份有限公司高级副总裁刘翠华博士做了 “分析科学技术发展在生物医药领域的见证和展望”的主题报告。刘博士指出,分析科学是基石,帮助搭建满足国际化的生物医药集成研发(IPD)体系,分析科学可以走在工艺与制造之前,起到保驾护航的作用。此外,它可以帮助建立CMC研发到产业化的大数据库,其发展需要随着生物医药领域分子复杂谱而动态演化。刘博士从亲身经历谈起,分享了先进的分析技术影响产业界和法规监管门槛的精彩案例,并对国内企业走向国际化给予了前瞻性的见解和建议。 百奥泰生物制药股份有限公司高级副总裁刘翠华博士国家药品监督管理局药品审评中心在不久前刚发布的《治疗性蛋白药物临床药代动力学研究技术指导原则》中提到“LC-MS具有特异性、敏感性、可快速建立方法以及提供与定量信息相关的结构信息的能力,正成为蛋白质和多肽定量分析中的重要技术”。在题为“分析技术在药物PK和TK研究领域的现在与未来”的报告中,广东莱恩医药研究院生物样品分析室主任林俊粒女士针对LC-MS分析蛋白和肽药的难点进行了主要策略和工作流程的经验分享。莱恩医药研究院基于沃特世先进的ACQUITY UPLC、ACQUITY UPLC-MS/MS、UPC2-MS/MS、UPLC-Vion IMS QTof及科学信息管理系统,已成功打造了符合国际AAALAC要求、国际/国内GLP规范的药物非临床评价研究技术的完善体系。 广东莱恩医药研究院生物样品分析室主任林俊粒女士质谱技术——生物医药不可或缺的分析工具新型生物分子结构复杂、分子量大且具有天生“非均一性”的特点,需要深入结构剖析,质谱技术作为强有力的分析工具,能够解决其他方法可以发现却无法解释的问题。百奥泰理化分析副总监刘育杰博士在会上分享了“现代高分辨质谱在抗体药物分析中的应用与实例”。他从抗体药物常规表征的流程和案例谈起,介绍了新兴的非变性质谱(Native MS)及离子淌度技术(Ion Mobility Spectrometry)在ADCs药物、双特异性抗体、PEG/多糖修饰蛋白质分析、蛋白复合药物的结构学和拓扑学研究中的应用。他认为,随着质谱技术的不断进步,可获取更多高级结构信息,应用领域也将愈发广泛。与此同时,未来质谱的角色将从定性半定量向绝对定量转变,并从研发分析实验室走向质量控制实验室。 百奥泰理化分析副总监刘育杰博士沃特世以生物制药整体解决方案,全面助力生物科技创新沃特世同全球生物制药行业的发展保持着非常紧密的联系,专注于不断开发和完善生物制药研发、CMC、生产和上市申报要求的流程化应用方案。在企业追求质量、效率和日趋严格的监管科学体系下,沃特世完整、高效、合规的平台化解决方案贯穿药物研发和质控全流程,以帮助客户获得高质量数据、实现高效决策。会议上,沃特世大中华区生物大分子应用经理聂爱英博士分享了沃特世质谱技术的最新应用进展。沃特世在2019发布的BioAccord系统是一款专门针对生物制药市场开发的全面解决方案,基于BioAccord智能系统的MAM应用,结合Waters_Connect/UNIFI科学信息系统,能更好地对CQA甚至PQA进行监控分析,进而保障生物药物质量。聂博士还介绍了沃特世创新的淌度技术在完整蛋白、糖肽、异构化肽段、二硫键异构体和糖型异构体鉴定可靠性方面的应用,更好的淌度分辨率和特异性可以帮助理解化合物的结构、构象等特征。 左起:沃特世大中华区生物大分子应用经理聂爱英博士、信息学与合规部门业务顾问张立先生、化学消耗品部资深产品专家胡学桥博士此外,沃特世实验室信息学管理系统及化学消耗品可帮助生物制药实验室提升工作效率,应对当今分析实验室越来越严峻的管理挑战。在主题报告中,沃特世大中华区信息学与合规部门业务顾问张立先生介绍了NuGenesis专业实验室管理系统针对实验室的三个核心提升——样品流转电子化、实验记录自动化、数据管理规范化,可在确保合规性同时提高工作效率,并分享了业内其他企业的成功应用案例。沃特世大中华区化学消耗品部资深产品专家胡学桥博士则以肽图分析为例,重点介绍了沃特世新发布的ACQUITY PREMIER系列色谱柱,其采用创新的MaxPeak高性能表面(HPS)技术可以帮助最大程度降低非特异性吸附、保证良好的重复性。胡博士还针对迅速增长的双抗、融合蛋白市场,介绍了Glycan AX混合模式色谱柱与自动化液体处理机器人Andrew+、快速样品制备试剂盒GlycoWorks RapiFluor MS相配合,解决唾液酸化N糖分析难题的创新方案。在圆桌讨论环节,刘翠华博士、中山康天晟合生物技术有限公司高级副总裁袁军博士、广东莱恩医药研究院有限公司副总经理郭健敏博士,以及聂爱英博士就平台化分析方法建设的思路和要求、UPLC和MAM应用趋势、生物技术药物PK/TK的挑战应对、大数据如何帮助上游工艺中细胞培养工艺开发等话题进行了分享和讨论。 嘉宾代表进行圆桌讨论关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 海南炼化100万吨乙烯项目都采购了哪些仪器?
    海南炼化位于海南西部的洋浦经济开发区,是中国石化步入21世纪按照国际水平建设的首个原油综合加工能力800万吨/年的炼厂,现原油综合加工能力已达920万吨/年。作为海南省石油化工产业的龙头企业,也是中国石化驻琼产业链条的核心,海南炼化现已发展成为我国东南沿海重要的进口原油加工基地、成品油出口基地和芳烃生产基地。为服务海南自贸区(港)建设,加快产业结构转型升级,2018年12月28日公司启动了100万吨/年乙烯及炼油改扩建工程建设。该工程是列入国家石化产业规划的重点项目,更是中国石化推进“两个三年、两个十年”发展战略,打造世界一流能源化工公司的支撑项目。项目投产后,将很大程度促进先进农业、绿色化工、旅游健康等下游产业发展,提高中国石化国际市场竞争力,保障国家能源安全,带动海南省经济发展和助力海南自贸区(港)建设。该工程将在原有工程基础上新增炼油部分和化工部分。其中,化工部分新建100万吨/年乙烯装置,改扩建工程实施后现有异构化装置停产;炼油部分新建500万吨/年常减压装置,250万吨/年蜡油加氢裂化、200万吨/年柴油加氢、160万吨/年重整,60万吨/年聚酯原料装置以及硫磺回收装置。项目总投资634.647亿元,其中建设投资为548.249亿元,环保总投资197610.15万元,环保投资占总投资的4.3%。项目厂址分为两部分,北片区为100万吨/年乙烯项目,位于洋浦石化功能区滨海东南侧;南片区为500万吨炼油项目,位于洋浦经济开发区内西部。2019年6月,海南炼化100万吨乙烯项目已经进入总体设计阶段,项目总体设计、“三通一平”等工作有序推进。2020年7月,海南炼化100万吨/年乙烯及炼油改扩建工程项目乙烯装置桩基正式举行开工仪式。2021年3月,该项目正在进行土建、配套码头等工程施工;6月,该项目配套码头引堤、防波堤工程项目建设进度过半。2022年01月,该项目大型设备安装已基本完成,现正进行相关配套设施的安装工作。而在项目工程不断推进的过程中,仪器采购工作也一直在进行。小编根据网络公开信息整理了仪器的中标信息如下表所示。自去年5月开始,就有了一些在线仪器的采购,5月-9月采购以水质分析仪和烟气分析仪为主,水质分析仪共采购44台,烟气分析仪共采购32台。今年2月,常州磐诺仪器有限公司(以下简称磐诺)中标了实验室通用气相色谱仪器77台,而在去年11月,磐诺曾中标了该项目气相色谱仪3台,短短3月,海南炼化项目又增加了77台仪器的采购大单,足以说明对该公司及其气相色谱的认可。在中标信息中,还有赛默飞的质谱分析仪、安捷伦的ICP-MS和实验室液相色谱仪、岛津的紫外可见分光光度计、布鲁克的核磁共振波谱仪、PerkinElmer的ICP-OES和原子吸收分光光度计、PAC的闪点仪等仪器,更多详细中标信息请看:中标时间采购仪器仪器数量中标单位仪器制作商2021.05.17烟气分析16宁波海恒自动化工程有限公司2021.05.18TOC2北京中冶拓展科技有限公司2021.05.21水质分析仪表29北京通广永隆科技发展有限公司2021.05.24热值分析仪1联合创达(北京)科技发展有限公司2021.06.07质谱分析仪2莱宝斯国际有限公司ThermoFisher2021.07.05水氧分析仪6北京北能润达贸易有限公司2021.07.29乙烯在线分析仪5广州市华忆科技有限公司2021.08.02氧分析仪4青岛三华泰工程技术有限公司2021.08.02电感耦合等离子体质谱仪1安捷伦科技贸易(上海)有限公司Agilent Technologies,Inc.2021.08.12水分析仪1昊有援航(北京)机电设备有限公司2021.08.30水分析仪6北京北能润达贸易有限公司2021.09.03水分析仪2昊有援航(北京)机电设备有限公司2021.09.13氢气纯度分析仪3北京英世创科技有限责任公司2021.09.23硫磺比值分析仪2青岛安生源科贸有限公司AAI2021.09.26CEMS16深圳市前海益鑫世纪实业有限公司2021.10.09弯曲模量测定仪1香港科唯仪器有限公司ZwickRoell GmbH Co. KG2021.11.19气相色谱仪3常州磐诺仪器有限公司常州磐诺仪器有限公司2021.11.28化学需氧量(COD)分析仪2浙江联大力普电气有限公司2021.11.28总有机碳TOC分析仪2北京优杰盛达科技有限公司2021.12.07高温模拟馏程色谱仪1京德联盛分析系统(北京)科技有限公司德国联合分析系统有限公司(JAS)2022.02.08紫外可见分光光度计6岛津(香港)有限公司岛津制作所2022.02.21汞分析仪1艾威仪器科技有限公司NIPPON INSTRUMENTS CORPORATION2022.02.21核磁共振波谱仪2派尔实验装备有限公司Bruker BioSpin GmbH2022.02.24实验室通用气相色谱77常州磐诺仪器有限公司常州磐诺仪器有限公司2022.02.27电感耦合等离子体发射光谱仪2珀金埃尔默企业管理(上海)有限公司PerkinElmer2022.02.27原子吸收分光光度计1珀金埃尔默企业管理(上海)有限公司PerkinElmer2022.02.27实验室液相色谱仪2安捷伦科技贸易(上海)有限公司Agilent Technologies,Inc.2022.03.01闪点仪4AC Analytical Controls B.V.PAC
  • 毛细管电泳技术在蛋白药物分析中的应用
    毛细管电泳技术在蛋白药物研发和质量控制中的发展 随着蛋白药物的开发热潮在全球兴起,毛细管电泳技术(Capillary Electrophoresis, CE)作为一种新兴的研发和质控的分析技术也越来越受到各大生物制药公司的青睐和法规机构的重视。全球大部分生物制药公司均已使用毛细管电泳系统用于蛋白药物的研发及质量控制分析。从培养基优化、克隆筛选、配方稳定性研究和纯化过程监测,到蛋白表征、相关杂质检测、蛋白结构鉴定和蛋白质药物产品的质量控制,蛋白药物的各个环节都需要使用到毛细管电泳。例如蛋白的纯度测定,已经从SDS-PAGE转变为十二烷基硫酸钠-毛细管凝胶电泳(CE-SDS)方法;蛋白质的等电点测定,毛细管等电聚焦(CIEF)比传统胶条方法更为准确;糖蛋白药物的糖基异质性表征,毛细管电泳是高分辨率分析方法之一。在各国药典中,毛细管电泳技术用于蛋白药物的检测方法也不断丰富与发展。药典中最早出现其对蛋白药物检测方法是促红细胞生成素(EPO)的糖异构体测定。糖蛋白的异构体差异小,普通的分析方法很难将EPO中的多种异构体分离定量。欧洲药典和美国药典将毛细管电泳方法确定为EPO异构体分析的标准,解决EPO产品中各种糖基化异构体的分离和定量问题。此外,生长激素的相关杂质检测标准也采用了毛细管电泳的方法。对于单克隆抗体药物的分析,在2006年,由惠氏、安进、基因技术、礼来、辉瑞、强生及加拿大卫生署等十几个实验室对“CE-SDS方法对单抗药物纯度分析”进行了联合验证。他们对方法的稳定性、可靠性、准确性等多方面进行了研究和考察。研究结果表明CE-SDS方法比传统的SDS-PAGE更适合单抗药物的表征与质量控制,其结果的稳定可靠性要远远超过SDS-PAGE,建议各生物制药公司使用CE-SDS代替原有的SDS-PAGE作为研发与质量分析的平台。随后,上述生物制药公司及机构又针对“CIEF方法进行单抗药的等电点测定及电荷异质性分析”、“CZE方法快速分析单抗药的电荷异质性”,“毛细管电泳技术进行单抗药中的糖基分析”进行了多实验室联合验证,结果展现了CE技术用于单抗药质量控制的优势及可行性。美国药典于2013年发布了利妥昔和曲拓珠等单克隆抗体药物的纯度检测、等电点/电荷异质性分析和糖基分析采用毛细管电泳方法。在中国,中国食品药品检定研究院于2012年联合国内外生物制药机构对“CE-SDS方法对单抗药物纯度分析”进行了验证,确认了CE-SDS方法在分辨率、定量准确性及自动化程度等方面的优势,并指出CE可以对单抗非糖基化重链进行准确定量。基于以上工作以及毛细管电泳技术在单抗药分析中的强大优势,中国药典2015版的第三部中增加了CE技术,明确了CE是单克隆抗体药物大小变异体、电荷变异体、鉴别与一致性和糖基化修饰分析中的重要方法。随着CE技术在生物制药领域的快速发展,以及新的蛋白质药物的不断上市,将会有更多的CE方法出现在各国药典中。毛细管电泳技术在单克隆抗体药物分析中的应用(1)单克隆抗体药物的纯度及大小异质性分析SDS-PAGE方法对单抗药物进行纯度分析,在分辨率、定量准确性和自动化程度上,已经不能满足生物制药研发和质量控制的要求。CE-SDS方法基于蛋白分子量的差异分离,用于还原和非还原单抗药物的纯度分析,免去了复杂的人工操作、定量更加准确,具有更高的分辨率,在还原模式中可对非糖基化重链进行分离和准确定量。图1. CE-SDS对还原单克隆抗体药物的纯度分析[1]选用不同的毛细管长度,可以实现高分辨率模式和快速模式的纯度分析。高分辨模式的CE-SDS方法提供最高的分辨率,快速模式的CE-SDS方法提供更短的冲洗和分离时间,提高了分析的通量。CE-SDS结合激光诱导荧光检测器(CE-SDS-LIF),通过5-Tarma或FQ染料对蛋白进行标记,可以获得更高的灵敏度,可以检测到含量在0.01%的杂质碎片。此外,LIF检测器的使用,可以最小化基线波动,使积分和定量更加准确。(2)单克隆抗体药物等电点的测定和电荷异质性的分析单抗药物在结构上会发生糖基化、脱酰胺化、异构化、氧化等翻译后修饰,造成蛋白表面电荷的改变,引起单抗的电荷异质性。每个变异体具有不同的等电点。基于等电点分离的毛细管等电聚焦技术(cIEF),可以对单抗药物的变异体进行高分辨率的分离和定量,可分离0.03个pI差异的变异体。方法使用等电点Marker制作校准曲线,对变异体的等电点进行准确的测定。是单抗药物等电点测定和电荷异质性分析的重要方法。图2. CIEF方法对单克隆抗体药物的等电点和电荷异质性分析[5]针对不同pI范围的蛋白样品,可以通过选用适当的两性电解质来实现高分辨率的分析。如对于大部分单抗,其pI值位于7-10之间,可使用pH 3-10范围的两性电解质;对于pI 在5-7范围内的蛋白样品,可使用pH 5-8的窄范围两性电解质;而对于pI 小于5的酸性蛋白,则可以使用反向聚焦和迁移模式,实现更好的分析。 (3)CZE方法对单克隆抗体药物电荷异质性的快速分析毛细管区带电泳(CZE)基于分析物电荷/体积的比进行分离,是毛细管电泳技术中最简单、快速的模式。由于单抗药物的各个变异体分子体积近乎相同,因此在CZE分离模式中,电荷变异体的分离取决于表面电荷的差异,与CIEF模式的变异体分离相一致。因此,CZE成为快速电荷异质性分析的平台方法被生物制药行业所使用。此外,由于CZE方法简单快速的特点,它也被用于单抗药的鉴别分析中。图3. 同一种CZE方法对23种单抗药物的电荷异质性分析[3](4)单克隆抗体药物的糖基异质性分析单克隆抗体等糖蛋白药物中,糖基的种类和排列顺序会导致糖基异质性。单抗药物的糖基化修饰对其安全性和药效有着很大的影响。因此对糖基异质性的质量控制十分重要。毛细管电泳方法对糖基异质性分析的流程包括糖蛋白中糖基的释放、糖基的标记和毛细管电泳分离。磁珠辅助的糖基释放和标记,使得前处理可在1小时内完成,加快了前处理的时间。采用APTS作为荧光标记物,不仅可以通过增加电荷提高分离效率, 还通过LIF检测实现了高灵敏的糖基分析。毛细管电泳技术对糖基分析的优势在于分辨率高,速度快。不但可以区分出一个糖基的差别,相同分子量的糖基异构体也可以得到分离,整个分离过程可在5-20分钟内完成。图4. CE-LIF方法对单抗药糖基分析的电泳图毛细管电泳技术在重组蛋白类药物分析中的应用重组人促红细胞生成素(rhEPO)是高度糖基化的蛋白药物。糖基化的异质性导致了多种变异体的存在。采用CZE方法可对EPO的变异体进行分离和定量,该方法已经成为欧洲药典中EPO变异体分析的标准方法。此外,CIEF方法也可以实现对EPO中各个变异体的高分辨分离,不但可以获得与CZE方法相同的变异体数目和定量信息,还可以提供每个变异体的精确的等电点数值。在对不同来源的EPO产品与参考品的比较中,可使用等电点对变异体进行鉴定。图5. CZE方法对EPO变异体的分析重组人生长激素(rhGH)的纯度及异质性分析中,CZE方法分离度高、定量准确,也已为欧洲药典所采用。图6 CZE方法对rhGH的电荷异质性分析总结在蛋白药蓬勃发展的今天,毛细管电泳技术以其分辨率高、模式多等优势,在蛋白药研发和质控的过程中起到了不可或缺的作用,被越来越多的企业和监管机构所认可,用于蛋白药的纯度、等电点及电荷异质性、糖基等分析中。随着蛋白药物、细胞/基因治疗以及新型疫苗等生物制品的不断发展,毛细管电泳技术将会具有更大的应用空间,在蛋白、核酸及病毒颗粒等分析中,发挥它的优势,提高生物制品的质量控制标准。
  • 矿物油入侵洋奶粉?LC-GCGCMS检测方案来帮忙
    近日,德国公益组织“食品观察(Foodwatch)”在官网上发布一份调查报告称,该组织对购自多国的婴幼儿奶粉进行检测,在部分奶粉中检出芳香烃矿物油残留物。 关于矿物油矿物油是原油经过物理分离(蒸馏、萃取)和化学转化(加氢反应、裂解、烷基化和异构化)过程形成的烃类混合物,主要存在于油墨、回收纸板和石蜡等。在人体中,会积蓄在肝脏、肾脏、脾脏和肠系膜淋巴结,具有急性毒性、慢性毒性、基因毒性和致癌性、免疫毒性和生殖毒性。未处理和粗处理过的矿物油,是国际癌症研究协会认定的确定致癌物,原因是其中含有大量的多环芳烃。通常,食品中的矿物油,主要来源于以下三个方面:一 包装材料与液体或半固体食物直接接触发生传质作用所导致的迁移:食品接触材料中矿物油的来源主要是回收纸或再生包装中残留的印刷油墨;聚苯乙烯和聚烯烃等塑料包装中的润滑剂,蜡纸、麻质纤维包装中的粘合剂也会产生矿物油迁移; 二 食品工艺过程中涉及的矿物油和白油:如我国GB 2760-2011中规定矿物油和白油可作为加工助剂(润滑剂、消泡剂、脱模剂等)用于油脂、糖果、膨化食品和豆制品等的生产;欧盟等许多国家和地区也允许食品级白油用作口香糖的胶姆糖基础剂和水果、蔬菜的表面处理剂; 三 环境污染:食品从原料的收割、晾晒到加工过程中接触到柴油发动机的润滑油、没有完全燃烧的汽油、轮胎和沥青的碎屑以及不洁净空气等,都会使食品受到矿物油污染;矿物油以气相的形式迁移到干性食品中,而后者是矿物油迁移的主要形式。食品中矿物油残留限量标准Standard for mineral oil residue limits in foods欧洲部分国家针对食品包装材料中矿物油有迁移限量要求。如2014年德国农业部&德国联邦风险评估所发布针对回收纸板(干性和非脂类食品)中矿物油的第3版立法草案,其中要求用于食品接触回收纸矿物油含量≤24mg MOSH/1kg纸或纸板,≤6mg MOAH/1kg纸或纸板。在食品中的迁移限值:≤4mgMOSH(C17-C20)/1kg;≤2mgMOSH(C20-C35)/1kg;≤0.5mg MOAH(C20-C35)/1kg 矿物油如何检测呢?l GC-FID方法快速、简便、高效、经济,但是无法分离处理那些结合态的目标物质;也无法高效彻底分离一些极性差异不明显的物质。GC-FID方法检测矿物油灵敏度低与选择性差。 l LC-GC&GC/MS矿物油分析仪赛默飞推出了一款高效液相色谱(HPLC)与气相色谱仪/气质联用(GC&GC/MS)的矿物油分析仪器。它通过在线净化、富集,有效提高了矿物油的浓度和纯度,大体积进样技术提高了检测方法的灵敏度,优化了对矿物油主成份MOAH和MOSH的分离,一针进样同时达到对MOAH和MOSH的测定。同时兼具高灵敏度、自动化程度高、能有效避免污染等优点。—TRACE 1300矿物油方案——ISQ 7000 MS/FID矿物油方案——高分辨轨道阱气质矿物油方案— 赛默飞GC&GC/MS分析矿物油方案技术特点:1 一次进样,完全分离MOSH和MOAH组分,分别进行定性定量,并获得低至0.1ppm甚至更低的检出限。2 采用专利技术,极大提高矿物油的检测灵敏度。3 自动化程度高,避免了复杂的人工前处理流程,极大提高样品分析通量。4 已在20多家欧盟政府单位,食品企业及第三方实验室成功应用,稳定可靠。5 丰富配置,满足不同的应用需求,提供TRACE 1300气相色谱方案、ISQ 7000单四极杆气质方案以及Q Exactive高分辨轨道阱气质方案。—LC-GC-FID分析MOAH组分——LC-GC-FID分析MOSH组分— 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 美国印第安纳大学生物质谱研究实验室获得沃特世创新中心荣誉称号
    David Clemmer教授率领的质谱研究已经为蛋白质组学和蛋白质表征领域的新发现铺平了道路。 马萨诸塞州米尔福德 - 2012年12月13日 David Clemmer教授(左2)与(从左至右)文理学院院长Larry Singell、沃特世公司John Gebler以及印第安纳大学科研副校长Jorge Jose合影留念。 在印第安纳大学卢明顿校区举办的庆典仪式上,沃特世公司 (NYSE:WAT)庆祝生物质谱实验室和David Clemmer教授、化工学会主席兼文理学院理科类副院长Robert 和 Marjorie Mann 加入沃特世创新中心计划。沃特世对Clemmer教授在离子淌度质谱方面做出的贡献给予高度赞扬,表彰其为世界各地的研究人员提供了在蛋白质表征及新兴蛋白质组学领域等方面进行探索的新方法。 印第安纳大学教务长兼执行副校长Lauren Robel表示:&ldquo 我谨代表印第安纳大学,非常荣幸地欢迎沃特世公司成为我们在学术研究领域的合作伙伴,同时我个人祝贺Clemmer教授及其研究小组成为沃特世创新中心的一员。这是一次令人振奋的合作,树立了顶尖大学研究团队与领先的技术公司合作伙伴共同实现突破性成就的典范。由此产生的创新成果可以革新我们的研究方法,显著加快科学探索进程,并为学生提供前所未有的学习机会及发展先进实验室技术的机遇。&rdquo &ldquo 这将成为我们学校和学院发展史上重要的里程碑。我非常荣幸能够代表大家发言表彰我们之中最杰出的一员&rdquo ,化学系的David Giedroc教授说。&ldquo David为离子淌度质谱的发展做出了巨大贡献。&rdquo 沃特世创新中心总经理John Gebler在发表讲话时表示:&ldquo 过去二十年,质谱研究取得了惊人的发展。今天我们可以自豪地宣布革命性的进展已经实现。当你参观David的实验室时,你可以看到由激情与热忱勾勒出的未来质谱研究发展雏形。&rdquo 接受该项殊荣时,曾于2009年荣获印第安纳大学研究和教学卓越性最高荣誉Tracy M. Sonneborn奖的Clemmer教授感谢了对他的职业生涯产生深远影响的人。&ldquo 沃特世的认可对我具有重要意义。我很幸运,一路走来,众多有天赋的学生、同事、顾问和导师,还有对我信任有加的行政管理人员都为我提供了很多帮助。他们对我的离子淌度质谱研究工作贡献颇多,我对此深表感激。&rdquo 在举办创新中心庆典仪式的同时,印第安纳大学还组织了为期半天的科学研讨会,探讨Clemmer教授所获殊荣的&ldquo 用于生物分子表征高清质谱进展&rdquo 项目。该研讨会汇集了全球顶尖的离子淌度质谱领域研究人员,其中包括:苏格兰爱丁堡大学Perdita Barran教授,美国华盛顿大学Michael Gross教授,德国康斯坦茨大学Michael Przybylski教授以及沃特世公司Kevin Giles博士。 关于离子淌度质谱 离子淌度质谱基于分子大小、质量和电荷分离气相离子,使科学家能够成功分离同分异构或构象异构化合物。因此,目前科学家在预测分子的大小以及具有重要意义的构象方面可以达到前所未有的精准度和清晰度。利用离子迁移数据,还可以建立蛋白质和蛋白质聚合体(两个或以上蛋白质的组合)的三维模型,这是利用传统二维质谱所不可能完成的工作。 离子淌度质谱技术已经在Waters SYNAPT® HDMS 质谱仪中使用,并已经在蛋白组学、脂类组学、全蛋白分析、小分子分析以及组织成像等领域实现了应用验证。 研讨会开始之前,印第安纳大学的生物质谱实验室接收了第二台Waters Synapt HDMS 质谱仪。 更多信息 Clemmer教授的研究小组:www.indiana.edu/~clemmer IMS/MS:It&rsquo s Time Has Come, Anal. Chem. 2008, 80 (21), 7918 &ndash 7920 DOI: 10.1021/ac8018608 关于美国印第安纳大学 印第安纳大学是一所著名的多校区公立研究机构,尤其以文理科教研最为突出,是专业、医疗和技术教育领域的全球领导者。创建于1820年的卢明顿校区位居印第安纳大学全州八大校区之首。创新、创造和学术自由是印第安纳大学卢明顿校区的典型标志及其在科研教学领域世界级贡献的象征。 关于沃特世创新中心计划 沃特世创新中心计划为科学工作者取得研究突破提供了认可与支持,包括:健康和生命科学研究、食品安全、环境保护、运动药剂等诸多领域。 Clemmer教授和其他19名研究者和研究中心共同参与了沃特世创新中心计划。具体包括:Ganesh Anand教授(新加坡国立大学);David Cowan教授(伦敦国王学院);Joseph Dalluge(美国明尼苏达大学);Marcos Eberlin教授(巴西坎皮纳斯大学);John Engen教授(美国马萨诸塞州东北大学);Albert J. Fornace, Jr.教授(华盛顿特区美国乔治敦大学综合癌症中心);Frank Gonzalez博士(美国国家癌症研究所);Julie Leary教授(美国加州大学戴维斯分校);Amit Kumar Mandal博士(印度班加罗尔圣约翰研究所);Arthur Moseley教授 美国北卡罗来纳州达勒姆杜克大学);Jeremy Nicholson教授(英国伦敦帝国学院);Devin Peterson博士(美国明尼苏达大学);Konstantinos Petritis博士(亚利桑那州凤凰城翻译基因组学研究院);Pauline Rudd教授(美国国家生物工艺研究和培训机构);Vladimir Shulaev教授(北德克萨斯大学);James Scrivens教授(英国考文垂华威大学);Sarah Trimpin教授(美国韦恩州立大学);以及Caroline West 和 Eric Lesselier(法国奥尔良奥尔良大学)。 上述著名的科学工作者们,正和沃特世一起,用液相色谱和质谱技术共同塑造未来的科研方向、探索科学奥秘。 关于沃特世公司(www.waters.com) 50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters和SYNAPT是沃特世公司商标。
  • 岛津推出二十烷以及其同分异构体的超快速LC/MS/MS同时检测方案
    在疾病研究中二十烷担负着重要作用,本方案将二十烷以及其同分异构体及代谢物50种成分的MRM条件最优化,建立了由54个通道组成的同时检测法。使用LCMS-8040对多成分检测,定量限达到pg以下。 花生四烯酸串联是非常重要的代谢路径之一,作为其代谢产物的二十烷以及其同分异构体及代谢物的同时分析方法,在疾病研究中起到重要作用。LC/MS/MS的MRM测定具有高灵敏度与高选择性,广泛应用于二十烷的分析,但随着成分数的增多,从分离・ 离子化的观点来看,现在很难获得稳定的分析结果。本方案使用快速LC/MS/MS系统开发了全面地定量分析二十烷和其类似物的新方法。 本方案作为全面、快速、高灵敏度分析脂信号分子的方法行之有效。 了解详情,请点击&ldquo 基于超快速LC/MS/MS的二十烷以及其同分异构体的同时分析&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 使用HR-MAM对 NIST单抗的关键质量属性进行监控
    随着治疗性生物产品在全球药物市场所占份额的不断提高,各 国监管机构通过发布质量源于设计(Quality by Design, QbD) 原则等手段,对生物药的质量控制提出了更高的要求。对于生 物制药企业而言,在生产及批次放行过程中对关键质量属性 (critical quality attribute, CQA)和杂质等进行鉴定、定量和监 控就显得尤为重要。传统的质控手段包括多种分离手段,如反 相色谱(reversed-phase high performance liquid chromatogra phy, RP-HPLC)、体积排阻色谱(size-exclusion chromatogra phy, SEC)、离子交换色谱(ion-exchange chromatography, IEX)和毛细管电泳(capillary electrophoresis, CE)等。  2015年,Rogers等基于Orbitrap高分辨质谱平台发展了Multi Attribute Method(MAM),用于在一针进样中同时对CQA进行 鉴定、定量和实时监控[1]。自从MAM发布以来,获得了业界的 极大关注,在近年的学术会议中屡屡成为热点议题[2]。 在本文中,我们使用Thermo Scienti c™ Q Exactive™ Plus Or bitrap™ 高分辨质谱平台,串联Thermo Scienti c™ Vanquish™ Flex UHPLC系统,使用Thermo Scienti c™ Chromeleon™ 7.2.9 Chromatography Data System (CDS) 与Thermo Scienti c™ Bio Pharma Finder™ 3.2 软件进行数据采集和处理。Figure 1. Thermo Scienti c HR MAM 工作流程图. 使用BioPharma Finder 软件对肽图分析的数据进行分析,与发现阶段进行对比以鉴定CQAs; 随后将BioPharma Finder生成的CQA列表导出至变色龙CDS中进行常规 GMP阶段符合合规要求的目标组分检测。  参考之前的报道,在本文的研究中我们选定了如下的CQAs用于 定量:糖基化(glycosylation)、脱酰胺(deamidation)、天 冬氨酸异构化(isomerization)和C端赖氨酸丢失(C-terminal lysine truncation)。对于每个CQA,我们选取了鉴定到的每个 电荷态的前四个同位素峰,在BioPharma Finder中另存为Target Peptide Workbook,并一键导出为BioPharma Finder workbook  le (.wbpf),随后将其导入变色龙 Processing Method中的 MS Component Table。  任何新发现的CQA可以随时添加进BioPharma Finder workbook 和变色龙方法中,这为方法开发和优化阶段提供了极大的灵活 性。一旦在变色龙软件中建立了标准化的分析方法,即可将该 方法应用于GMP环境下的应用中。 接下来,使用Chromeleon CDS 7.2.9软件进行CQA定量。我们 基于变色龙软件中的MS Quantitative模板创建了MAM数据处理 的方法,基本参数如表4所示。在变色龙软件中,可以对峰积分 的参数进行优化,以确保积分结果一致且可信,从而得到准确 的定量结果。  实验结果  本次实验选取的两份NIST mAb标准品来源于同一批次,通过 对比不同溶液置换耗材处理后选定CQA含量的变化趋势,进而 研究不同耗材对CQA定量结果的影响。图2展示了Biopharma Finder对两个样品进行肽图分析的结果,可见在上样量约4μg肽 段的情况下,NIST mAb标准品轻链覆盖度≥96%,重链覆盖度 ≥98%,除了一些胰酶酶切过短的肽段没有鉴定到,其余区域均 可鉴定到肽段信息,为CQA的选取和定量提供了坚实的基础。Figure 2. 两份NIST mAb标准品(RA2, 上;RA3, 下)酶解肽段基峰谱 图(Base Peak Chromatogram). 对于两个样品,我们分别进行了三针技术重复。表5展示了对主 要糖型的定量结果。由图中可以看出,分别使用不同前处理耗 材的两个样品的六针进样之间均呈现良好的重现性。  结论  在本实验中,我们使用基于Thermo高分辨质谱平台的HR-MAM 流程对在前处理步骤中使用不同溶液置换耗材的NIST mAb标准 品进行了CQA的鉴定和定量。得益于HR-MAM流程的稳健性、 灵活性、特异性和高灵敏度,我们可以在一次实验中同时对多个 CQA进行监控和定量。 对比不同溶剂交换前处理耗材的实验结果,可发现肽图强度、色 谱峰型及分离与肽图覆盖度等无明显差异,且与关键质量属性相 关的特定修饰,使用不同耗材处理得到的定量比率并无显著区 别,更进一步证明了HR-MAM流程的稳定性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制