当前位置: 仪器信息网 > 行业主题 > >

医用胶塞

仪器信息网医用胶塞专题为您整合医用胶塞相关的最新文章,在医用胶塞专题,您不仅可以免费浏览医用胶塞的资讯, 同时您还可以浏览医用胶塞的相关资料、解决方案,参与社区医用胶塞话题讨论。

医用胶塞相关的资讯

  • 赛成科技发布赛成上新NZ-30黏着力试验机 胶粘制品专用仪器新品
    黏着力测试仪NZ-30是赛成依据2015年药典0952黏附力测定法中第四法要求研制。本仪器适用于测定贴膏剂、贴剂敷贴的黏性表面与皮肤附着后对皮肤产生的黏附力的大小。广泛应用于制药厂家、药检机构等单位。产品特点◎ 微电脑控制,液晶屏显示,实时测试曲线图同步画出,专业测控软件支持。◎ 丝杠传动系统,大大提高了传动位移的准确性,可以实现无级调速功能。◎ 采用高精度传感器,测试结果准确可靠。◎ 配备微型静音打印机。测试原理本机采用卧式结构,精密丝杠传动系统拖动负载夹头,有效提高了位移精度。整机由拖动电机、主机壳、微电脑控制器、 微型打印机等组成。测试标准中华人民共和国药典 2015年版应用领域NZ-30黏着力测试仪适用于贴剂、凝膏剂、膏药、医用辅料等材料的胶粘表面进行黏着力测定。创新点:◎ 微电脑控制,液晶屏显示,实时测试曲线图同步画出,专业测控软件支持。 ◎ 丝杠传动系统,大大提高了传动位移的准确性,可以实现无级调速功能。 ◎ 采用高精度传感器,测试结果准确可靠。 ◎ 配备微型静音打印机。 赛成上新NZ-30黏着力试验机 胶粘制品专用仪器
  • 医用注射器滑动性能测试仪的应用与重要性
    医用注射器滑动性能测试仪的应用与重要性在制药包装行业中,医用注射器作为一种不可或缺的医疗器械,扮演着至关重要的角色。它们被广泛用于临床医学中,通过吸入并注射药品至患者体内,以实现治疗目的。医用注射器的使用不仅需要确保药品的精确剂量,还需保证其在使用过程中的安全性和可靠性。因此,对医用注射器进行严格的性能测试,特别是滑动性能测试,显得尤为重要。医用注射器的应用与用途医用注射器通常由针管、活塞(芯杆)、针座、活塞柄、护帽和胶塞等部分组成,其设计精巧,操作简便。在制药包装行业中,医用注射器被用于封装各种药品,如注射液、疫苗等,以便安全、有效地传输给患者。其精确的剂量控制和密封性能,使得医用注射器成为临床治疗中不可或缺的工具。滑动性能测试的必要性为了确保医用注射器的使用质量,国家标准《GB15810-2001使用注射器》对其活塞滑动性能做出了严格规定。滑动性能是指活塞在注射器内移动时的顺畅程度,直接关系到注射过程中药品的推送效果和患者的感受。如果注射器的滑动性能不佳,可能会导致药品推注不畅、注射阻力过大或泄漏等问题,进而影响治疗效果和患者安全。因此,进行医用注射器滑动性能测试,是保障其使用质量、确保患者安全的重要措施。通过测试,可以评估注射器的滑动性能是否符合标准要求,及时发现并解决潜在问题。医用注射器滑动性能测试仪及其测试方法医用注射器滑动性能测试仪是一种专门用于检测注射器滑动性能的仪器。该仪器通过模拟实际使用过程中的推拉动作,对注射器的芯杆施加一定的力,并在一定速度下测量其试验拉力和试验推力。具体测试方法如下:固定器身:首先,将注射器的器身固定在测试仪上,确保其在测试过程中不会移动。施加力并测量:然后,给芯杆一端施加一个力,并设定测试仪的速度(通常为100mm/min±5mm/min)。在此速度下,测试仪将记录芯杆与注射器身之间的试验拉力和试验推力。数据记录与分析:测试仪将自动记录施加的力、芯杆的运动情况以及相应的拉力和推力数据。通过这些数据,可以分析注射器的滑动性能是否符合标准要求。值得注意的是,济南三泉中石实验仪器生产的注射器滑动性测试仪还配备了定制注射管夹具,可以精确测定注射时的初始力、滑动力以及保持力等参数。在拉伸和压缩技术试验模式下,控制横梁的上下移动模拟液体的注入和射出过程,生成相关数据,并计算分析报告初始、平均、最大和最小力等关键指标。综上所述,医用注射器滑动性能测试仪在制药包装行业中具有广泛的应用和重要的意义。通过严格的性能测试和评估,可以确保医用注射器的使用质量符合标准要求,保障患者的安全和治疗效果。
  • 生物医用材料研发重点专项名单公示
    近日,科技部公示了“生物医用材料研发与组织器官修复替代”重点专项拟进入审核环节的2016年度项目信息,其中31个项目名列在内,获得中央财政经费共计3.34亿元,项目实施周期为2-4.5年。 通知原文如下:  关于对国家重点研发计划“生物医用材料研发与组织器官修复替代”重点专项2016年度项目安排进行公示的通知 根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现将“生物医用材料研发与组织器官修复替代”重点专项拟进入审核环节的2016年度项目信息进行公示。序号项目编号项目名称项目牵头 承担单位项目 负责人中央财 政经费项目实施周期(年)12016YFC1100100基于天然细胞外基质的系列智能凝胶原位诱导非骨组织再生的机制及理论研究华中科技大学邵增务12504.522016YFC1100200生物材料化学信号、微纳米结构及力学特性对非骨组织再生诱导作用及其机制研究中国科学院上海硅酸盐研究所常江7504.532016YFC1100400生物材料表面/界面及表面改性研究浙江大学高长有14004.542016YFC1100500具有生物功能的个性化假体快速成型及3D打印关键技术研究与应用中国人民解放军第三军医大学唐康来13154.552016YFC1100600个性化硬组织重建植入器械的3D打印技术集成和应用研究上海交通大学郝永强11854.562016YFC1100700可降解医用高分子原材料产业化及其植入器械临床应用关键技术中国科学院长春应用化学研究所陈学思15804.572016YFC1100800具有原位组织诱导及修复再生功能的聚乙交酯及其共聚物纤维网复合真皮替代物的研发浙江大学韩春茂14204.582016YFC1100900动物源组织或器官免疫原性消除及防钙化技术中国人民解放军第二军医大学徐志云11254.592016YFC1101000动物源组织或器官免疫原性消除及防钙化技术中国医学科学院阜外医院王巍6754.5102016YFC1101100基于血管化的复杂组织工程化构建中国人民解放军第三军医大学朱楚洪12504.5112016YFC1101200基于轴突定向诱导的视神经再生微管关键技术研究温州医科大学附属眼视光医院吴文灿7504.5122016YFC1101300重要生命器官构建的工程化技术研究中国人民解放军军事医学科学院基础医学研究所王常勇10504.5132016YFC1101400人类器官的构建及工程化技术体系建立中国人民解放军第四军医大学金岩9504.5142016YFC1101500脊髓损伤及脑损伤再生修复生物材料产品的研发烟台正海生物科技股份有限公司张赛20004.5152016YFC1101600组织工程神经移植物产品研发与应用江苏益通生物科技有限公司杨宇民6254.5162016YFC1101700基于阵列微管精密3D打印的诱导型周围神经修复支架沈阳尚贤微创医疗器械股份有限公司罗卓荆3754172016YFC1101800耐磨、抗菌、生物活性固定PEEK人工关节的研发与产业化江苏奥康尼医疗科技发展有限公司王友10004.5182016YFC1101900高性能人工关节中奥汇成科技股份有限公司郑诚功10004.5192016YFC1102000生物活性脊柱及节段骨缺损修复器械的产品研发天津正天医疗器械有限公司张凯13154.5202016YFC1102100新型生物活性脊柱融合器和节段骨缺损修复产品的开发上海锐植医疗器械有限公司汤亭亭11854.5212016YFC1102200具有血管组织修复功能的新一代全降解聚合物支架四川兴康脉通医疗器械有限公司王云兵12504.5222016YFC1102300具有血管组织修复功能的全降解聚合物支架山东华安生物科技有限公司葛雷12504.5232016YFC1102400全降解镁合金冠脉药物洗脱支架研发赛诺医疗科学技术有限公司郑玉峰7904.5242016YFC1102500可降解锌合金冠脉支架的研发、评价和临床应用研究山东瑞安泰医疗技术有限公司张海军7104.5252016YFC1102600低模量高强度亲水牙种植体系统研发江苏创英医疗器械有限公司宿玉成5004.5262016YFC1102700新型牙种植体研发及其工程化技术研究成都普川生物医用材料股份有限公司周学东5004.5272016YFC1102800新型颌面软硬组织修复材料研发北京爱美客生物科技有限公司孙宏晨12104.5282016YFC1102900个性化颌面部软、硬组织再生修复材料研发上海瑞邦生物材料有限公司蒋欣泉10904.5292016YFC1103000新型血液净化材料及佩戴式人工肾关键技术研发及产业化成都欧赛医疗器械有限公司赵长生18034.5302016YFC1103100一种可穿戴便携式腹膜透析(人工肾)装置北京智立医学技术股份有限公司郑红光1972312016YFC1103200新一代生物材料质量评价关键技术研究中国食品药品检定研究院杨昭鹏19154.5  公示时间为2016年6月23日至2016年6月27日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。  联系人:于善江  联系电话:010-88225130  传真:010-88225200  电子邮件:yusj@cncbd.org.cn    中国生物技术发展中心  2016年6月23日
  • 注射剂瓶胶塞穿刺力测试仪的原理与应用
    注射剂瓶胶塞穿刺力测试仪的原理与应用在现代医疗与制药行业中,注射剂瓶作为药物传输的关键容器,其密封性与安全性直接关系到患者的健康与生命安全。而注射剂瓶的胶塞,作为连接瓶体与外部世界的“门户”,不仅需具备良好的密封性能,还需在药物输送过程中承受各种穿刺操作而不失效,确保药物的无菌、无污染传递。因此,使用三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02对其进行穿刺力测试,成为了保障药品质量与患者安全不可或缺的一环。注射剂瓶胶塞的使用用途与重要性注射剂瓶胶塞,作为药品包装系统的重要组成部分,其主要功能在于提供可靠的密封屏障,防止药品在储存和运输过程中受到外界污染,同时确保在药物使用过程中(如注射给药)能够顺利穿刺而不泄漏。其材质多为橡胶或热塑性弹性体,需具备良好的弹性、耐化学性、生物相容性及适当的硬度,以适应不同药物的存储需求和穿刺操作。穿刺力测试的必要性与意义随着医疗技术的不断进步和药品包装的多样化发展,对注射剂瓶胶塞的性能要求也日益严格。穿刺力测试作为评估胶塞质量的重要手段之一,旨在模拟实际使用过程中穿刺针或输液针等医疗器械对胶塞的穿刺行为,通过量化分析穿刺过程中的力值变化与位移变化,评估胶塞的耐穿刺性能、密封保持能力及可能的破损风险。这对于确保药品在传输过程中的完整性和无菌性至关重要,直接关系到患者的用药安全与治疗效果。注射剂瓶胶塞穿刺力测试仪的测试原理与技术应用济南三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02采用力学测试技术,将试样装夹在测试仪器的两个夹头之间,通过精密控制的相对运动,使标准要求的穿刺针以恒定速度或预设条件刺入试样。在此过程中,仪器实时记录并显示穿刺力(即刺破试样所需的最大力)和拔出力(即将穿刺针从试样中拔出时所需的力)等关键参数。这些数据不仅反映了胶塞的物理强度特性,还能揭示其潜在的密封失效风险,为产品设计与质量控制提供科学依据。注射剂瓶胶塞穿刺力测试仪的广泛应用领域由于穿刺力测试技术的广泛适用性和重要性,其应用范围已远远超出了注射剂瓶胶塞本身,涵盖了各种薄膜、复合膜、电池隔膜、人造皮肤、药品包装用胶塞、组合盖、口服液盖以及各类医疗穿刺器械(如注射针、穿刺针、输液针、采血针等)的穿刺力强度试验。这些测试在质检中心、药检中心、包装厂、药厂、医疗器械厂等单位得到了广泛应用,成为保障产品质量、提升生产效率、降低安全风险的重要工具。总之,三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02作为现代医疗与制药领域的一项重要检测设备,通过科学、精准的测试手段,为药品包装与医疗器械的安全性与有效性提供了坚实保障。
  • 浅谈国内医用3D打印技术及材料研究现状
    p style=" text-align: justify text-indent: 2em " 3D打印技术与生物医用材料的结合,可以实现个性化治疗,降低医疗成本,减少对人体的伤害,必将引领医疗领域的革命潮流。以生物医用材料及细胞为新型离散材料,利用3D打印技术,组织器官紧缺的问题。因此,医用3D打印技术及材料在医疗领域具有巨大的临床需求和科学意义。本文主要从临床应用和打印材料两方面介绍了国内医用3D打印技术及材料的研究现状与水平。 /p p style=" text-align: justify text-indent: 2em " strong 临床应用方面 /strong /p p style=" text-align: justify text-indent: 2em " 随着医用3D打印技术与材料的发展,国内的有关临床应用也越来越成熟。 /p p style=" text-align: justify text-indent: 2em " 西安第四军医大学采用金属3D打印技术打印出与患者锁骨和肩胛骨完全一致的钛合金植入假体,并通过手术成功将钛合金假体植入骨肿瘤患者体内,成为世界范围内肩胛带不定形骨重建的首次应用,标志着3D打印个体化金属骨骼修复技术的进一步成熟。 /p p style=" text-align: justify text-indent: 2em " 北京工业大学开发的数字化医疗3D打印模板导向技术,在内蒙古自治区肿瘤医院微创介入中心,成功地为一名上颌窦癌患者实施了放射性粒子植入术,即组织间放疗,首次将3D打印技术用在肿瘤的放射性粒子植入术中,是临床治疗的一次新的突破。 /p p style=" text-align: justify text-indent: 2em " 江西省人民医院应用3D打印技术制作出的导板,成功应用于无柄髋关节置换术中,并取得了最佳的定位效果。从脱位股骨头、扣上导航模板,到钻孔中心定位,仅仅用了5分钟,就成功实现了精准定位。按照常规定位方法,不仅要多花数倍时间,即使反复调整钻孔并经环锯削骨检验,也难免因偏心锯骨产生不同程度的骨缺损,影响关节安装的位置和强度。 /p p style=" text-align: justify text-indent: 2em " 浙江大学医学院采用立体喷射成型系统,以琥珀酸树脂为基本成型材料,制作下颌骨3D打印模型,根据下颌骨模型再制作术前预弯重建钛板。此钛板完全贴合于模型表面,省去了在术中弯制钛板的步骤,减少了手术时间,同时达到很好贴合效果。 /p p style=" text-align: justify text-indent: 2em " strong 打印材料方面 /strong /p p style=" text-align: justify text-indent: 2em " 3D打印制品结构表面的生物相容性和功能性不足,阻碍了3D打印技术和打印材料在生物医学领域的广泛应用。3D打印技术与传统的表面修饰技术相结合,可极大地增加和拓宽3D打印技术的应用,尤其在生物医用材料领域。 /p p style=" text-align: justify text-indent: 2em " 中国科学院上海陶瓷研究所将3D打印骨架和旋涂表面修饰结合,对骨架表面进行功能化修饰,结果显示MBG-β-TCP骨架具有了更高的成骨和骨再生基因表达,并改善了磷灰石的钙化及骨形成效率。 /p p style=" text-align: justify text-indent: 2em " 南昌大学利用等离子体增强原子层沉积技术,以及水热处理3D打印复杂结构表面,制备出了均匀和有序的功能纳米阵列,此过程没有有毒添加剂或有毒物残留,从而满足了高纯度产品制造的要求。另外,该团队还实现了精确打印人工耳塞,并进行了动物实验和人体试验,实验结果显示,这种耳塞具有优异的耐磨性、隔音效果,以及抑制病原体的生长能力;实验也进一步表明精确3D打印构架结合表面功能化修饰技术在医疗设备中具有一定的应用发展潜力。 /p p style=" text-align: justify text-indent: 2em " 国家对生物医用3D打印技术及装备等方面也给予了大力支持,国家重点研发计划“增材制造与激光制造”重点专项已部署了多个相关项目,取得了国内首次实现高生物相容性材料钽材料3D个性化打印成型等进展。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/d808cc47-dea1-4660-877f-a8cc1f6a2b86.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 就目前来看,生物医用3D打印技术方面的研究成果正如雨后春笋般不断涌现。医用3D打印材料,特别是在组织工程支架材料方面已经取得了诸多成就。然而,生物医用3D打印技术及其材料还是一个新兴的领域,各种研究仍处于初始阶段,要想真正实现临床上的应用还有很长的一段距离,还存在很大的挑战。 /p p style=" text-align: justify text-indent: 2em " 随着3D打印技术在机械方面的快速发展,生物医用3D打印技术的发展也出现了很多的机遇。未来,可以利用3D打印技术打印出具有生物活性的人体器官,实现人造器官的临床应用,用于个性化治疗,降低治疗成本。将来也有望开发出更多的生物相容性和生物降解材料与3D打印技术相结合,以减轻因材料的不足而对人体产生的伤害。 /p p style=" text-align: justify text-indent: 2em " i span style=" color: rgb(127, 127, 127) " 注:本文摘自 张梦月,雷瑾亮,赵政.医用3D打印技术及材料发展现状与趋势[J].科技中国,2020(03):21-24. /span /i /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/BMM/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/e430bf9e-f1dd-4168-a53c-a2f653c23f54.jpg" title=" 1920_420.jpg" alt=" 1920_420.jpg" / /a /p p style=" text-align: justify text-indent: 2em " 生物医用材料又称生物材料,是用于诊断、治疗、修复、替换人体组织及器官或增进其功能的一类高技术新材料,是人工器官和医疗器械发展的基础,多应用在骨科、心外科、齿科、神经外科、整形外科、药物释放载体治疗和医疗美容等医学分支领域。由于生物医用材料与人体健康密切相关,因此,对其化学结构组成、物理机械等性能,及其与人体接触时的生物相容性、安全性等指标进行分析检测和评估,具有非常重要的实际意义。 /p p style=" text-align: justify text-indent: 2em " 为促进全国各地高校、科研院所、企业等生物医用材料相关从业人员进行检测技术交流,仪器信息网网络讲堂将于2020年5月12日举办“生物医用材料检测技术应用与进展”主题网络研讨会,邀请领域内杰出专家和业内人士带来精彩报告,并为参会人员搭建网络互动平台。 span style=" text-decoration: underline color: rgb(255, 0, 0) " strong a href=" https://www.instrument.com.cn/webinar/meetings/BMM/" target=" _self" style=" text-decoration: underline " (点击报名在线听会) /a /strong /span /p p style=" text-align: center text-indent: 0em " /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/4d505388-d466-4f3b-ab18-db11eb5bc07a.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/3c46575f-4f7f-4472-818d-c205c3bc733a.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 2em " 参会方式(手机电脑均可参会) /span /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/BMM/" target=" _self" style=" color: rgb(255, 0, 0) text-decoration: underline " strong span style=" color: rgb(255, 0, 0) " 1、点击进入报名页面。 /span /strong /a /p p style=" text-align: justify text-indent: 2em " 2、报名成功,通过审核后您将收到通知;态度敷衍乱填将不予审核。 /p p style=" text-align: justify text-indent: 2em " 3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。 /p p style=" text-align: center text-indent: 0em " strong 扫一扫,也可报名 /strong /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/36291ea3-daec-49be-b586-fa298dcb5acd.jpg" title=" 3.PNG" alt=" 3.PNG" / /strong /p
  • 聚焦热点|第二届“生物医用材料”网络研讨会即将召开
    p style=" text-align: justify text-indent: 2em " 仪器信息网将于2019年12月27日组织举办第二届“生物医用材料”网络研讨会,邀请该领域专家,围绕生物医用材料领域热点研究方向带来精彩报告,为生物医用材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高生物医用材料研究及应用水平。 span style=" color: rgb(227, 108, 9) " ( /span a href=" https://www.instrument.com.cn/webinar/meetings/biomedicalmaterial/" target=" _self" style=" color: rgb(227, 108, 9) text-decoration: underline " span style=" color: rgb(227, 108, 9) " 免费报名中 /span /a span style=" color: rgb(227, 108, 9) " ) /span /p p style=" text-align: left text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2193c5b8-c265-450c-b9f1-5b8225f274dc.jpg" title=" 1920_420.jpg" alt=" 1920_420.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 24px color: rgb(227, 108, 9) " 会议日程 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/4d0a6219-a832-4ee4-b79b-cd4e5c46986d.jpg" title=" 日程.PNG" alt=" 日程.PNG" / /p p style=" text-align: center " span style=" font-size: 24px color: rgb(227, 108, 9) " 报告嘉宾介绍 /span /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201912/uepic/86de8913-d501-4ecd-b26b-2961b7fb2374.jpg" alt=" å ?ª é ??è ?³ è ??å ¸ ?.png" width=" 150" height=" 229" border=" 0" vspace=" 0" title=" å ?ª é ??è ?³ è ??å ¸ ?.png" style=" width: 150px height: 229px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 18px " 只金芳 /span /strong ,中国科学院理化技术研究所研究员/博导。南开大学化学系本、硕士学位,日本东京大学工学部博士学位。日本NOK先端技术研究所任研究员。日本学术振兴事业团博士后。2003年8月作为中国科学院理化技术研究所国外引进人才回国。现任任中国感光学会常务理事,中国光催化专业委员会秘书长,副主任。中国抗衰老促进会专家委员会委员等。研究领域包括微生物传感器、碳基纳米材料在生物医学领域的应用以及有机-无机纳米复合光功能材料的开发。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot text-indent: 0em white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/201912/uepic/f3d709e5-afee-4cc5-9c7f-52437f1edbbd.jpg" title=" 王怀雨老师.png" alt=" 王怀雨老师.png" width=" 150" height=" 211" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 150px height: 211px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 18px " 王怀雨 /span /strong ,中国科学院深圳先进技术研究院研究员/博导,国家自然科学基金委优秀青年基金获得者/广东省特支计划科技创新青年拔尖人才/中国科学院青年促进会会员/深圳市孔雀计划B类人才。2004年本科毕业于北京大学药学院,2009年博士毕业于中国科学院理化技术研究所,2007-2009年以及2009-2013年分别以研究助理和博士后身份在香港城市大学进行研究工作,主要研究方向为生物材料的表/界面功能构建。先后承担国家自然科学基金、中国科学院STS区域重点、深港创新圈联合资助、深圳市基础研究布局等项目元。共发表SCI论文60余篇,引用3500余次;一作/通讯作者论文27篇,其中包括多篇发表在Nat. Commun., Adv. Mater., Angew. Chem. Int. Ed., Adv. Sci., Biomaterials, Small等权威刊物。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/201912/uepic/a393c10c-5068-44d8-b603-bb3eabe5b092.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 150" height=" 210" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 150px height: 210px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 18px " 秦蒙 /span /strong ,北京化工大学副教授。秦蒙博士于2018年经“海外高端人才计划”引进北京化工大学,目前从事仿生纳米药物的研究。秦蒙博士擅长从事交叉学科,融合材料化学、模式动物、分子生物的先进技术,在转基因/人源化小鼠、非人灵长类动物模型上完成多个候选新药及其制剂的药效评价及分子机制研究。以第一/并列第一作者在Advanced& nbsp Materials、Stem Cell Research & amp Therapy、Stem Cells Translational Medicine、Vascular Pharmacology等期刊上发表SCI论文8篇,以共同作者在Nature Biomedical Engineering、Therapy-Nucleic Acids等期刊上发表SCI论文14篇。申请发明专利9项,授权3项。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 150px height: 210px " src=" https://img1.17img.cn/17img/images/201912/uepic/26e9fc7f-b0a1-4a73-b3bd-2968c9df7b5c.jpg" title=" 黄潇楠老师.jpg" alt=" 黄潇楠老师.jpg" width=" 150" height=" 210" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 18px " 黄潇楠 /span /strong ,首都师范大学化学系副研究员。博士毕业于北京大学化学与分子工程学院,主要从事环境敏感高分子的设计合及其在新型给药系统方向应用的研究。2009年至2011年8月在美国得克萨斯大学西南医学中心做博士后研究,从事生物医用高分子在药物运输领域以及细胞和动物体成像的研究,2011年9月于首都师范大学工作,现为副研究员。曾主持国际自然科学基金青年基金,北京市教委项目,北京市留学归国人员基金等科研项目,在 Angew. Chem. Int. Ed., ACS Nano, JACS,Biomateril Science等期刊上发表论文多篇。获得国际专利PCT授权一项,申请国家发明专利四项。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/201912/uepic/ed738800-e3e0-4938-9608-dc508652ac85.jpg" title=" 黄达.jpg" alt=" 黄达.jpg" width=" 150" height=" 200" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 150px height: 200px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 18px " 黄达 /span /strong ,福州大学讲师。北京化工大学学士学位,中国科学院化学研究所硕士、博士学位,现任职于福州大学生物科学与工程学院,主要从事生物医用高分子材料的设计、制备及应用研究,包括高分子纳米材料和水凝胶材料的制备及其在药物递送、组织工程、生物成像以及分析检测等领域的应用研究。目前已在Biomaterials、Polymer Chemistry、Journal of Materials Chemistry B等SCI期刊上发表论文20余篇,其中第一作者或通讯作者论文11篇,授权专利2项。主持和参与多项国家自然科学基金和福建省自然科学基金。曾获得中科院化学所青年科学奖优秀奖。 /p p style=" text-indent: 0em text-align: center " span style=" font-size: 24px color: rgb(227, 108, 9) " 报名链接 /span /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/biomedicalmaterial/" target=" _self" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " 第二届“生物医用材料”网络研讨会 /span /a span style=" color: rgb(127, 127, 127) " ( /span a href=" https://www.instrument.com.cn/webinar/meetings/biomedicalmaterial/" target=" _self" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " 点击立即报名 /span /a span style=" color: rgb(127, 127, 127) " ) /span /p
  • 生物医用材料领域实验室高频配置仪器清单揭晓!
    生物医用材料, 是用于诊断、治疗、修复、替换人体组织及器官或增进其功能的一类高新技术材料,涉及材料、生物和医学等相关学科 ,是现代医学两大支柱——生物技术和生物医学工程的重要基础。近年来,我国现代生物医用材料领域的科学问题研究不断深入、产业化进程日趋加快、区位优势逐步显现、多元化产品龙头企业不断萌生。然而 ,我国在生物医用材料产业转化上与世界先进国家还有一定差距,高端产品仍依赖进口。实验室作为科学的摇篮,是科研人员解决生物医用材料关键科学问题、突破核心技术、提升成果转化力必不可少的研究基地,而科学仪器又是科研人员在实验室进行科学研究必不可少的工具。为此,仪器信息网特汇总分析了生物医用材料领域实验室的仪器设备明细,并推出生物医用材料领域实验室高频配置仪器清单,供读者参考。国内研究生物医用材料的实验室众多,由于信息统计来源于各实验室官网,很多实验室并未罗列仪器设备信息,部分实验室仅罗列了最主要或特色的仪器设备,因此在小编的雷达范围内,探测到了以下7个生物医用材料领域实验室的仪器配置单:华南理工大学生物医学材料与工程教育部重点实验室;武汉大学生物医用高分子材料教育部重点实验室;苏州大学生物医用高分子材料重点实验室;中科大-华南理工纳米药物与生物材料联合实验室;中国医学科学院生物医学工程研究所生物医学材料仪器共享平台;中山大学生物材料与转化医学实验室;上海交大张小农课题组生物医用金属材料与器械实验室。综合分析以上生物医用材料领域实验室的仪器配置,可以看出,紫外可见分光光度计、倒置荧光显微镜、激光共聚焦显微镜、荧光定量PCR仪、冷冻干燥机、流式细胞仪等成为配置频率较高的仪器设备。排名前30的生物医用材料领域实验室配置仪器清单如下:生物医用材料领域实验室高频配置仪器清单序号仪器名称1紫外可见分光光度计2倒置荧光显微镜3激光共聚焦显微镜4荧光定量PCR仪5冷冻干燥机6流式细胞仪7冷冻离心机8超速离心机9高效液相色谱仪10生物安全柜11荧光分光光度计12真空干燥箱13傅立叶变换红外光谱仪14粒径电位分析仪15材料试验机16低温冰箱17倒置相差显微镜18鼓风干燥箱19原子力显微镜20圆二色谱仪21正置荧光显微镜22超声细胞破碎仪23电子天平24凝胶渗透色谱仪25纯水仪26细胞培养箱27灭菌锅28扫描电镜29液质联用仪30动物活体成像系统(注:信息统计来源仅限于7个生物医用材料领域实验室官网,结果仅供参考。)7个生物医用材料领域实验室主要仪器配置详情汇总如下:华南理工大学生物医学材料与工程教育部重点实验室华南理工大学生物医学材料与工程教育部重点实验室以人体组织功能重建为核心、以个性化组织修复为目标,已建成我国人体组织功能重建的重要研发基地,是一个集科技创新、成果转化和高技术人才培养于一体、有国际先进水平的国家科技创新平台。实验室主要研究方向包括:生物医学材料的功能设计与制造、生物医学材料的组织学与细胞学行为、数字模拟与个性化制造。实验室科研仪器设备开放列表序号设备名称厂家机型号1场发射高分辨扫描电镜蔡司 Merlin2X射线衍射仪帕纳科锐影衍射系统3激光共聚焦显微镜莱卡 TCSSP84液相色谱-联质谱仪系统AB SCIEX公司API40005原子力显微镜Asylum Research MFP-3D-S6Micro-CT尼康Hamer 160x17钨灯丝扫描电镜FEI Q258万能材料试验机英斯特朗 Instron 59679凝胶渗透色谱马尔文 GPCMax VE200110高效液相色谱安捷伦 126011动态热机械分析仪TA公司 DMA Q80012QCM凯戈纳斯 E413标准型表面接触角分析仪克吕士公司 DSA2514同步热分析仪耐驰STA449C/4/G15傅里叶红外光谱仪尼高力Nexus Por Euro16三维显微镜HiroX公司HiroX770017动态生物力学实验机Bose公司ELF320018固体表面zeta电位仪安东帕surpass19比表面孔径测定仪康塔NOVA4200E20激光粒度分析仪马尔文MASTERSIZER200021纳米粒度/表面电位分析仪马尔文MPT-223荧光光谱仪日立7-700型24原子吸收光谱仪PerkinElmer PinAAde900725等离子喷涂系统Praxair公司7700-Biolabs26生物材料三维成型系统Gladbeck公司Envision TEC27微量混合流变仪HAAKE公司MiniLabII-minijetII28真空高温烧结炉Carbolite 公司SPLF1197129真空冷冻干燥器VIRTIS公司G25EL430全波长扫描多功能读数仪Thermo/ Varioskan31实时荧光定量PCR仪Life / QuantStudio 6 Flex32荧光定量PCRBiorad / Chromo433荧光生物显微镜ZEISS / 40FL AXIOSKOP34研究级倒置荧光显微镜NIKON / Eclipsc Ti-U型35倒置荧光显微镜Zeiss / Axio Observer.736超微量紫外可见光分光光度计Thermo / Nanodrop One37超微量荧光分光光度计Thermo / Nanodrop330038冰冻切片机莱卡 / CW1900 CVYOSTAT39高密度细胞培养系统Bs4000 Bellocell system40微毛细管细胞分析平台Merck Millipore / Guava easycyte 6HT-2L武汉大学生物医用高分子材料教育部重点实验室武汉大学生物医用高分子材料教育部重点实验室由国家教育部于2003年批准立项建设,实验室的前身是1993年原国家教委批准建立的生物医用高分子材料教育部开放实验室。实验室自上世纪80年代开始开展生物材料研究,是国内最早开展生物医用高分子研究的基地之一。实验室研究方向主要包括:材料的功能化及合成制备新方法;药物与基因传递材料; 疾病诊疗材料;天然高分子生物材料。实验室主要仪器设备序号设备名称1小动物活体成像仪2激光共聚焦显微镜3超高分辨率激光共聚焦显微镜4光声/超声成像仪5流式细胞仪6凝胶渗透色谱仪7激光散射仪8粒径电位分析仪9紫外可见分光光度计10红外光谱仪11倒置荧光显微镜12荧光分光光度计13偏光显微镜14酶标仪15接触角测量仪16核磁共振谱仪17高效液相色谱仪18冷冻干燥机19核酸合成仪20圆二色谱仪21液相质谱仪苏州大学生物医用高分子材料重点实验室苏州大学生物医用高分子材料重点实验室始建于2007年,以获取原创性成果和产业化为目标,围绕纳米药物和肿瘤等重大疾病的靶向治疗,在智能囊泡药物、脑靶向递送系统、核酸药物靶向递送、靶向放射性药物、蛋白药物定点递送、肿瘤免疫治疗等国际前沿领域开展创新性研究和开发工作。实验室与博瑞生物医药技术(苏州)有限公司合作,创立了苏州爱科赛尔生物医药有限公司,致力于靶向纳米药物的开发和临床转化。实验室主要仪器设备序号设备名称1纳米粒度及ZETA电位分析仪2凝胶渗透色谱仪3共聚焦激光扫描显微镜4动物活体成像系统5流式细胞仪6红外荧光定量PCR仪4生物安全柜5半导体激光驱动光源6
  • 科研人员构建“分子阻塞”超分子机制高阻尼凝胶材料
    近年来,凝胶材料因其灵活可调的力学特性和丰富的功能,受到了各领域研究者的极大关注。然而,凝胶材料往往因溶剂的迁移而具有较低的稳定性,容易溶胀或干燥变形,已经成为制约凝胶材料深入应用的瓶颈难题。尽管已经开发了多种策略来提高凝胶的稳定性,然而,从热力学角度来看,如果凝胶中溶剂的含量偏离了聚合物的平衡溶胀状态,溶剂将不可避免的发生迁移。因此,若要准确控制凝胶中的溶剂含量,保持高稳定性,需要有效抑制溶剂迁移的动力学过程。基于“分子阻塞”超分子机制的有机凝胶构建思路。(论文课题组供图)机械互锁作用通过分子结构中的几何关系将不同的分子连接起来,这使得非共价连接的分子,能够保持稳定的聚集状态。西安交通大学化学学院“智能高分子”团队吴宥伸副教授和张彦峰教授,从机械互锁超分子原理中汲取灵感,提出了“分子阻塞”超分子机制,利用溶剂分子与交联网状结构之间的尺寸差异带来的阻滞,有效抑制溶剂在凝胶内的迁移。通过设计和合成分子尺寸超过1.4 nm的液态支链柠檬酸酯(branched citrate ester, BCE),并将这种大体积分子作为溶剂与交联聚脲原位聚合,制备获得系列新型“分子阻塞”凝胶。“分子阻塞”凝胶具有与普通聚合物或弹性体相媲美的卓越稳定性,可储存10个月而无任何形貌或力学性能改变,并能耐受高温烘烤,保持质量和性能的稳定。特别是“分子阻塞”凝胶的杨氏模量能够在1.3 GPa至30 kPa的大范围内连续调控,变化幅度达到创纪录的43000倍,有效覆盖了现有交联树脂、塑料、弹性体和凝胶的范围。同时,“分子阻塞”效应作为一种非共价耗散机制,赋予了凝胶材料独特的粘弹性力学特性,使其具有高阻尼,达到和超过了商业化的聚氨酯和聚脲材料。上述研究成果,近期发表于《先进材料》,西安交通大学化学学院为第一单位,西安交通大学生命学院为合作单位。论文第一作者为化学学院吴宥伸副教授,论文通讯作者为化学学院副院长张彦峰教授。这一研究受到了国家自然科学基金和西安交通大学分析测试中心的支持。
  • 天津工业生物所|首次实现络塞维微生物发酵合成
    玫瑰红景天是我国传统藏药的瑰宝,在西方也有悠久的应用历史。玫瑰红景天提取物具有抗疲劳、抗抑郁、抗缺氧及保护心脑血管等疗效,广泛应用于中药制剂等领域。红景天苷和络塞维为玫瑰红景天的两大主要活性成分。其中红景天苷为红景天属植物共有活性成分,而络塞维是玫瑰红景天的特征成分,因而在玫瑰红景天药用价值中占重要地位。玫瑰红景天野生资源濒危,全球市场的需求不断增长,价格逐年攀升,且已供不应求。红景天(图片来源:网络)目前为止,国内外科研人员针对红景天苷的合成开展了大量工作,中国科学院天津工业生物技术研究所刘涛研究员团队先后在2014年和2018年发表了“Production of salidroside in metabolically engineered Escherichia coli”、“Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose. J Agric Food Chem”的论文,为发酵法生产红景天苷技术工业化奠定了重要基础;2018年,天津大学的赵广荣教授和乔建军教授将红景天苷的生物合成途径分配在两个大肠杆菌株中,进行了深度代谢改造,实现了红景天苷高效人工合成,产量是以往单菌生产的20倍以上。近日,中国科学院天津工业生物技术研究所刘涛研究员团队再次通过元件发掘和筛选、人工通路设计构建及代谢调控,首次实现了微生物发酵合成络塞维。团队首先对络塞维前体络塞合成通路中的关键酶进行了优选,提高了大肠杆菌合成络塞的能力。随后,通过对糖链延伸糖基转移酶的筛选,鉴定得到四个来自UGT91R亚家族以UDP-阿拉伯糖为糖基供体的糖基转移酶,并将活性最高的SlUGT91R1和UDP-阿拉伯糖合成途径引入产络塞的大肠杆菌,实现络塞维的从头合成。进一步,在重组大肠杆菌中引入了UDP-阿拉伯糖补救合成通路,解耦了UDP-葡萄糖和UDP-阿拉伯糖的合成通路,提高了糖基供体UDP-阿拉伯糖的合成效率,以葡萄糖和阿拉伯糖为原料,5L发酵罐补料分批发酵络塞维产量超过7500 mg/L。该技术的生产成本远低于传统的植物提取,具备了商业化的潜力。本研究通过工程改造大肠杆菌实现了从简单的碳源中高效生产有价值的天然产物,这为开发其他药用植物活性成分的生产方法提供了新思路。重组大肠杆菌利用葡萄糖和阿拉伯糖合成玫瑰红景天特征活性成分络塞维
  • “毒胶囊”中Cr快速检测的首选工具—塞曼原吸火焰
    近日曝光的&ldquo 毒胶囊&rdquo 事件引起了社会的广泛关注。在人们关注药品本身是否为&ldquo 良心药,放心药&rdquo 的同时,也把目光同样聚焦到了空胶囊中Cr等有毒有害元素的快速检测上。 天美公司采用Z-2000系列塞曼原子吸收分光光度计可以高质高效地解决这一难题。Z-2000系列的原子吸收光度计使用塞曼背景校正法,背景校正的波长是190~900nm,两个检测器完全同时的检测原子吸收信号和背景吸收信号,使测量的灵敏度有了很大的提高,又没有噪声的影响,所以可以使用火焰法进行Cr检测,使分析时间从每300秒一个样品,降低到3秒钟一个样品,分析的准确性,稳定性完全符合国家药检的规定,分析方法的检出限可以做到Cr&le 0.1ug/L。而传统的氘灯原子吸收光度计因为受到氘灯能量和发射噪声的限制,在Cr 359.3nm的分析波长处不能进行背景校正,因而不能应用于Cr的火焰法分析。此类原子吸收分光光度计在检测Cr时只能使用石墨炉方法。 天美公司同时提供应用塞曼火焰检测&ldquo 毒胶囊&rdquo 中Cr等有毒元素的火焰微量进样直接分析法、简易加标分析方法、石墨炉检测10-13g/L的分析方法。相关文件信息请访问: http://www.instrument.com.cn/netshow/SH100322/down_202805.htm http://www.instrument.com.cn/netshow/SH100322/down_203009.htm
  • 赛智科技积极研究工业明胶检测方案
    自工业明胶事件曝光后,赛智科技正在积极研究关于工业明胶的检测方案,并有可能在近几天推出,请关注。 拒绝工业明胶,做好企业本职,请不要让我们吃什么都恐惧。 赛智科技市场部 2012.04.17 关于赛智科技: 赛智科技是目前国内最大的液相色谱仪生产厂家之一,主要产品有:VI2010色谱数据工作站、浙大N2000色谱工作站、浙大N2010色谱工作站、N2000色谱工作站SP1版、LC-10Tvp液相色谱仪、STI501高效液相色谱仪、Vertex5000液相色谱仪、Solar系列光纤光谱仪等。
  • 西林瓶胶塞密封性测试有必要选择微生物侵入法密封性测试仪吗?
    西林瓶,又称为安瓿瓶,是医药行业常用的一种玻璃容器,通常用于储存注射剂、疫苗、血液制品等无菌药品。胶塞作为西林瓶的密封组件,其密封性能直接关系到药品的质量和安全性。微生物侵入法是一种评估包装密封性的测试方法,特别是针对无菌药品包装。微生物侵入法密封性测试仪的优势模拟实际条件:微生物侵入法通过模拟实际使用中可能遇到的微生物污染情况,评估包装的密封性能。全面性:该方法不仅能够检测包装的物理完整性,如微小的孔洞和裂缝,还能够评估包装材料对微生物的阻隔能力。符合药典要求:许多国家的药典,如中国药典、美国药典等,都推荐或要求使用微生物挑战测试来评估无菌药品包装的密封性。高灵敏度:微生物侵入法对于检测包装密封性的微小缺陷非常敏感,有助于确保药品的无菌保障水平。质量控制:使用微生物侵入法密封性测试仪可以作为药品生产过程中质量控制的重要环节,确保每批次产品的密封性能符合标准。其他密封性测试方法除了微生物侵入法,还有其他几种常用的密封性测试方法:压力衰减法:通过测量包装内部压力的变化来评估密封性能。气泡法:通过观察包装浸入水中时气泡的产生来判断密封性。色水法:使用染色液体来检测包装是否有泄漏。选择考虑因素在选择是否使用微生物侵入法密封性测试仪时,需要考虑以下因素:药品类型:对于无菌药品,特别是注射剂、疫苗等高风险药品,微生物侵入法是推荐的选择。法规要求:遵循相关法规和药典标准,确保测试方法的合规性。成本效益:考虑测试成本与获得的质量保证之间的关系。操作便利性:评估测试方法的操作复杂性、所需时间和技术要求。设备可用性:确保实验室具备相应的设备和条件进行微生物侵入法测试。结论对于西林瓶胶塞的密封性测试,选择微生物侵入法密封性测试仪是有必要的,特别是对于那些对无菌保障水平要求极高的药品。这种方法能够提供更为全面和严格的密封性能评估,有助于确保药品的质量和安全性,满足法规要求,并作为药品生产过程中重要的质量控制手段。然而,最终的选择应基于药品的具体类型、法规要求以及成本效益分析。
  • 大输液三层五层膜穿刺试验用拉力机兼顾胶塞穿刺和膜材穿刺双重功能介绍
    大输液包装通常采用多层复合膜材料,以确保药品的安全性和稳定性。在输液包装的质量控制中,穿刺试验是关键的测试项目之一,它评估包装材料在实际使用中的穿刺性能。拉力机是一种多功能的测试设备,除了基本的拉伸测试外,还可以通过特定的附件和设置,用于模拟胶塞穿刺和膜材穿刺,从而全面评估大输液包装的穿刺性能。胶塞穿刺测试测试目的:模拟实际使用中针头穿透胶塞的过程,评估胶塞的穿刺性能和可靠性。测试方法:使用拉力机的穿刺附件,将胶塞固定在测试台上,调整穿刺速度和力,模拟穿刺过程。数据分析:记录穿刺过程中的力-位移曲线,分析穿刺力、穿刺后的胶塞完整性等参数。膜材穿刺测试测试目的:评估复合膜材料在穿刺过程中的性能,如密封性和穿刺后的恢复性。测试方法:将复合膜材料固定在拉力机的夹具中,使用模拟穿刺头进行穿刺,模拟实际使用中的穿刺条件。数据分析:测量穿刺后的孔径、穿刺力以及材料的恢复性,评估膜材的穿刺性能。拉力机的双重功能多功能性:通过更换附件和设置,拉力机可以同时进行胶塞穿刺和膜材穿刺测试,提供全面的性能评估。高精度:拉力机配备高精度的力值传感器和位移传感器,确保测试结果的准确性和重复性。操作简便:用户友好的操作界面,简化了测试过程,提高了测试效率。试验操作步骤样品准备:按照测试要求准备胶塞和复合膜样品。设备设置:根据测试标准设置拉力机的参数,如穿刺速度、力值范围等。胶塞穿刺测试:将胶塞固定在测试台上,进行穿刺测试,记录数据。膜材穿刺测试:将复合膜固定在夹具中,进行穿刺测试,记录数据。数据分析:分析穿刺力-位移曲线,评估穿刺性能。结论拉力机通过兼顾胶塞穿刺和膜材穿刺的双重功能,为大输液包装的穿刺性能测试提供了一个高效、准确的解决方案。这种多功能的测试设备不仅提高了测试效率,而且通过全面的性能评估,有助于优化包装设计,提高产品的安全性和可靠性。随着医药包装行业的不断发展,拉力机在药品包装材料的穿刺性能测试中将发挥越来越重要的作用。
  • 应用 | 医用口罩用新型石墨烯无纺布性能测试与评价
    研究背景自疫情爆发以来,个人防护进入常态化,消费者对口罩的要求从最开始的单一防护功能向舒适化、可复用、时尚化等多功能性转变。市场对多功能化医用口罩的迫切需求,不断推动着现代医用口罩非织造布在新材料、新技术方面的不断探索和改进。有研究表明,将传统非织造织物材料与石墨烯相结合,可开发高效、低阻的新型复合材料。同时,利用石墨烯独特的网状结构和极高的比表面积,吸附和过滤颗粒、细菌和病毒,能有效阻隔冠状病毒,大大地拓宽了石墨烯的应用领域。2020年12月25日,在深圳举行的第22届中国国际高新技术成果交易会上,一种新型石墨烯无纺布一经面世就获得优秀产品奖,引起了社会各界的广泛关注。这种新型石墨烯无纺布是将传统原料聚丙烯替换为石墨烯/聚丙烯复合母粒,采用纺粘无纺布制造工艺制备获得。本文通过对这种新型石墨烯无纺布微观组织形貌及热性能、表面亲疏水(油) 性、防水性能、透气性、压力差、 配戴时效性及是否有异味等进行测试和评价,分析研究这种新型石墨烯无纺布在医用口罩方面的应用前景,开发石墨烯在医疗器械领域的应用潜力,为口罩生产企业的产品升级、转型提供数据支撑。图1. 石墨烯无纺布和医用无纺布扫描电子显微镜照片实验方法与仪器本文采用KRÜ SS DSA25B接触角测量仪对石墨烯无纺布进行接触角测试。DSA25B接触角测试仪实验开始前,将石墨烯无纺布用蒸馏水超声清洗,并在50°C的鼓风干燥箱中烘干。实验时, 样品平铺在载玻片上,水滴(油滴)体积约为2μL。高速相机捕捉水滴(油滴)照片,采用座滴法测量接触角,即在液滴轮廓和表面投影(基线)之间的交叉点上(三相接触点)使用座滴图像量取接触角,每张照片测量10组数据,取平均值作为测试结果。结果与讨论图2. 石墨烯无纺布表面亲疏水(油)性测试结果(注:a.水(油)滴光学照片;a.水(油)接触角)在室温条件下,分别测试了石墨烯无纺布正反面水和油的静态接触角。图2a所示为测试过程中捕捉的水(油)滴光学照片,通过座滴图像法量取的接触角如图2b所示。可知,石墨烯无纺布正面水接触角为132.6°,反面水接触角为138.8°,正面油接触角为142.8°,反面油接触角为129.9°。这种新型石墨烯无纺布纤维表面张力低于水、油的表面张力,使得水滴以及油污无法在织物表面铺展,因此证明这种新型石墨烯无纺布具有拒水、拒油的特性。同时,防水性能评价测试结果显示试样表面没有润湿,存有少量水珠,依照GB/T 4745-2012《纺织品防水性能的检测和评价沾水法》评价标准,沾水等级达到4~5 级,该材料具有良好的抗沾水性能。总结可看出减少银浆层的空洞是提高芯片键合强度的一种有效方法。合适的粘合促进剂可以帮助增加银浆在基材表面的浸润并减少界面银浆层里的空洞。新型石墨烯无纺布在医用口罩的应用中体现出了组织结构稳定、拒水、拒油、抗沾水、低阻透气、口罩无异味的特性,符合当下人们对口罩的舒适性、防护性和可重复使用性的要求,有助于口罩生产企业对产品的升级、转型。随着石墨烯无纺布生产技术和表面改性技术不断完善成熟,新型石墨烯无纺布在医用口罩、医用缝合线、医用辅料等医疗器械的应用将得到进一步拓展,从而实现石墨烯在功能无纺布应用中的商业化与规模化,未来可能会有越来越多功能各异的石墨烯无纺布产品陆续出现在市场上。参考文献:[1]陈大雷,陈凡红,元瑛,梁峰,杨晓辉,贺军权.医用口罩用新型石墨烯无纺布性能测试与评价[J].中国医疗器械信息,2022,28(23):17-20+73.DOI:10.15971/j.cnki.cmdi.2022.23.038.
  • 科普|岛津试验机推进医用植入物材料研究
    导语随着科技的发展,越来越多的医用植入物材料用于对失效组织进行介入治疗、修复或替换,能够显著改善病人的生存质量。医用植入物材料在体内长期受到多向复合载荷影响,因此基力学性能的稳定显得尤其重要。通过使用电子试验机,模拟医用植入材料在体内受到的各种力学模型下材料的变化状况与趋势,能为这些材料的设计、制造、长期可靠性的研究,提供客观科学的数据支持。今天,我们将带大家一起看看两种常见医用植入物新材料力学测试的案例,镁合金与Pluronic F127水凝胶。小科普镁合金是医用植入物最广泛采用的金属材料之一,如心血管支架、骨植入材料骨钉、骨板等。镁是人体必需的常量元素之一,人体可以通过尿液排出体外,多孔镁合金材料作为一种可降解的生物材料,能为再生细胞提供三维生长的空间,有利于养料和代谢物的交换运输。心血管支架用鞘管Pluronic F127水凝胶是由70%的聚氧化乙烯和30%的聚氧化丙烯构成的共聚物,是近年来应用于组织工程研究的一种良好的支架材料,在体内可稳定降解,可最终被再生组织完全替代吸,其降解吸收速度可通过改变溶液的浓度来调节,可以使用3D打印技术完成制造,是一种理想的骨移植支架新材料。Pluronic F127水凝胶岛津解决方案分析利器岛津采用AGS-X电子试验机开发了镁合金、F 127水凝胶材料的检测方法,测试方便快捷,数据与曲线准确直观。岛津AGS-X电子试验机高效实现镁合金材料(中空管)单一拉伸测试使用岛津AGS-X电子试验机配合岛津气动双推夹具,能够完成镁合金中空管的拉伸测试,测得镁合金中空管的抗拉强度和断裂点载荷,并保证断裂位置始终在管材的中间位置,此应用可适用于穿刺针类样品的拉伸测试,通过简单数据与曲线对照,就可以直观判定镁合金的抗拉性能是否达到要求。镁合金中空管拉伸测试曲线F127水凝胶循环拉伸/压缩测试使用岛津AGS-X电子试验机配合拉伸和压缩夹具,实现对F127水凝胶材料的循环拉伸、循环压缩测试,通过曲线可以直观观察水凝胶材料在循环拉伸过程中随着循环次数增加,载荷递增,循环压缩过程中出现载荷波动现象,还能输出原始数据文件(CSV文件),直接获取每个采样点上的准确数据。F127水凝胶循环拉伸测试与曲线F127水凝胶循环压缩测试与曲线岛津其他医用植入物测试夹具部分展示结语近年来,岛津AG系列电子试验机承担了越来越多新材料的检测项目,其优异的测试性能,简单便捷的操作,稳定的工作状态为医用植入物开发研究提供了便利,具有很大的优势。岛津一直致力于“为了人类和地球的健康”这一愿景,不断开发新方法,服务于大众,为医学领域的发展和人民生活健康安全保驾护航。撰稿人:王正宇本文内容非商业广告,仅供专业人士参考。
  • 浅析导致医用高压灭菌器灭菌失败的原因
    导致医用高压灭菌器灭菌失败的原因在使用高压灭菌器对医疗设备进行消毒处理时,经常会出现灭菌失败问题,导致医院感染事故出现。经过实际调查发现,导致医用高压灭菌器灭菌失败的原因主要体现在以下四个方面:第一,空气残留过多。由于灭菌器内部空气残留过多,导致被消毒器具上的细菌与病毒依然残留在表面,难以满足实际灭菌要求。经过长期经验积累发现,高压医用灭菌器内部空气残留对灭菌效果的影响十分显著,如果闭合的灭菌包裹里残留空气不能与蒸汽进行二次混合接触,则会导致空气形成一个气团,阻止蒸汽进入,使被消毒对象难以接触到蒸汽,更加无法实现消毒目标[2]。在使用传统预真空高压灭菌装置进行灭菌处理过程中,由于灭菌器对灭菌真空环境要求不高,在灭菌前只对灭菌室进行一次抽真空处理,灭菌后再次抽真空将气体强制干燥排出,致使空气残留量较多,引发灭菌失败问题。第二,蒸汽质量管控不严。在使用医用高压灭菌器开展灭菌工作时,向灭菌设备内注入高压,高温气体会导致微生物酶以及结构蛋白酶受到破坏,从而达到灭菌效果。由于饱和蒸汽穿透性比热干空气、过热蒸气都高,因此在使用高压灭菌装置期间,需要向其注入饱和蒸汽,确保消毒工作能够达到最佳效果。通常情况下,不同压力水的沸点存在一定差异,在一定压力下,容器内的水以及蒸汽温度不再上升,此压力与温度才能够达到饱和要求。与其他蒸汽种类相比,饱和蒸汽内部含有水分,因此又被称之为湿饱和蒸汽。由于部分医院消毒部门,忽视对蒸汽质量的检验工作,蒸汽往往没有达到饱和要求就被注入到容器内部,导致消毒效果始终处于有待提升阶段,难以在医疗感染控制工作中发挥出重要作用。第三,医用高压灭菌设备出现故障。在真空高压灭菌设备实际使用过程中,经常会出现电动门密封不好、温度不达标等故障问题,导致灭菌效果受到严重影响。在高压灭菌设备电动门关闭时,需要借助压缩空气将门胶条从密封槽中挤出。在多次开关门后,胶条经常会发生损坏问题,导致后期电动门关闭时留有缝隙,导致空气进入真空环境。同时,压缩空气压力没有达到实际要求,无法保证电动门密封效果,使得医用高压灭菌装置的灭菌效果有效性受到严重影响。不仅如此,医用高压灭菌设备故障问题也体现在内室漏气等方面。内室漏气主要就是与内室相连通的管道出现泄露问题,导致灭菌环境难以达到真空标准。由于医用高压灭菌器长期处于高压高温的运行环境下,管道衔接口之间的密封胶圈极容易出现老化问题,导致漏气情况发生。在内室漏气问题发生后,空气将会介入到真空环境,削弱室内温度,引发低温报警。第四,医用高压灭菌设备受到氯离子应力的腐蚀作用影响,导致消毒工作不彻底,二次污染设备等问题发生。由于在玻璃器皿消毒过程中,器皿表面会残留一定剂量的盐酸物质,此些盐酸在高温高压的环境下分解成氯离子,附着在高压灭菌设备表面,导致设备表面受到不同程度的腐蚀,出现破损等情况,严重影响到消毒效果。
  • 国家药监局发布| 医用高通量测序标准化技术归口单位公告
    国家药监局关于成立医用高通量测序标准化技术归口单位的公告(2021年第137号)为推动医疗器械产业高质量发展,贯彻落实《国家药品监督管理局 国家标准化管理委员会关于进一步促进医疗器械标准化工作高质量发展的意见》,进一步完善医疗器械标准化组织体系,国家药监局决定成立医用高通量测序标准化技术归口单位,现予公布,组成方案见附件。  特此公告。 医用高通量测序.docx  国家药监局  2021年11月11日医用高通量测序标准化技术归口单位组成方案医用高通量测序标准化技术归口单位主要负责医用高通量测序专业领域的基础通用标准、产品标准、方法标准、管理标准和其他相关标准制修订工作。基础通用标准包括相关术语和定义、数据与数据库格式及定义、参比基因组等标准;产品标准包括核心工具产品(仪器、原材料、建库等前处理产品、试剂产品、生物信息数据分析软件产品技术标准、质量控制)等标准;方法标准包括遗传性疾病诊断及防控、肿瘤精准诊治与监测、传感染精准防治、大健康等应用领域的技术方法、方法评价及高通量测序技术研发、转化管理、试剂仪器原材料质量评价方法等标准;管理标准包括实验室建设、涵盖样本采集、处理、存储和共享等检测平台规范化、数据管理规范化、实验室信息化管理等标准。第一届医用高通量测序标准化技术归口单位人员名单见下表,秘书处由中国食品药品检定研究院承担。国家药监局医疗器械标准管理中心负责业务指导。第一届医用高通量测序标准化技术归口单位人员名单序号姓 名工作单位职 务1金 力复旦大学组 长2王佑春中国食品药品检定研究院副组长3李金明国家卫生健康委临床检验中心副组长4张河战中国食品药品检定研究院副组长5黄 杰中国食品药品检定研究院秘书长6刘东来中国食品药品检定研究院成 员7梅享林湖北省医疗器械质量监督检验研究院成 员8杨 忠北京市医疗器械检验所成 员9张文宏复旦大学附属华山医院成 员10林 戈中信湘雅生殖与遗传专科医院成 员11冯 强中国医学科学院肿瘤医院成 员12陈 冰上海交通大学医学院附属瑞金医院成 员13应建明中国医学科学院肿瘤医院成 员14纪 元复旦大学附属中山医院成 员15周 洲中国医学科学院阜外医院成 员16张国军首都医科大学附属北京天坛医院成 员17张 樱解放军总医院第一医学中心成 员18白净卫清华大学成 员19童贻刚北京化工大学成 员20高 媛山东大学成 员21刘 江中国科学院北京基因组研究所(国家生物信息中心)成 员22周李华中国测试技术研究院成 员23邓 涛北京博奥医学检验所有限公司成 员24孙 嵘北京市医疗器械技术审评中心成 员25赵 阳国家药品监督管理局成 员26黄伦亮国家药品监督管理局成 员27何静云国家药品监督管理局医疗器械技术审评中心成 员28陈亭亭国家药品监督管理局医疗器械技术审评中心成 员29颜莉华湖南省药品监督管理局成 员30陈 芳深圳华大智造科技股份有限公司成 员31李 庆因美纳(中国)科学器材有限公司成 员32许兴国赛默飞世尔科技(中国)有限公司成 员33杨学习广州市达瑞生物技术股份有限公司成 员34彭智宇深圳华大基因股份有限公司成 员35胡云富北京泛生子基因科技有限公司成 员36曹志生天津诺禾致源生物信息科技有限公司成 员37刘聪智上海思路迪生物医学科技有限公司成 员38邵 阳南京世和基因生物技术股份有限公司成 员39梁 波苏州贝康医疗股份有限公司成 员40夏 涵予果生物科技(北京)有限公司成 员41覃 兰迪安诊断技术股份集团有限公司成 员42聂俊伟南京诺唯赞生物科技股份有限公司成 员43李厦戎北京聚道科技有限公司成 员44李元浩烟台荣昌生物制药公司成 员45杨晓芳中国医疗器械行业协会成 员46朱宝利中国科学院微生物研究所成 员47张之宏广州燃石医学检验所有限公司成 员48李丽莉中国食品药品检定研究院秘 书49张 超中国食品药品检定研究院观察员50王文庆山东省医疗器械和药品包装检验研究院观察员51张 莉浙江省医疗器械检验研究院观察员52刘园园湖南省医疗器械检验检测所观察员53陈子天赛纳生物科技(北京)有限公司观察员54高旭年广州邦德盛生物科技有限公司观察员55李菁华菁良基因科技(深圳)有限公司观察员56伍启熹北京优迅医学检验实验室有限公司观察员57张建光北京贝瑞和康生物技术有限公司观察员58张介中安诺优达基因科技(北京)有限公司观察员59张 巍广州嘉检医学检测有限公司观察员60肖 锐浙江博圣生物技术股份有限公司观察员61莫俊业罗氏(上海)医药咨询有限公司观察员62楼 峰北京橡鑫生物科技有限公司观察员63陈维之无锡臻和生物科技有限公司观察员64白 健福建和瑞基因科技有限公司观察员65郑晓婉普瑞基准科技(北京)有限公司观察员66高志博深圳裕策生物科技有限公司观察员67蔡兴盛广州迈景基因医学科技有限公司观察员68唐东江珠海圣美生物诊断技术有限公司观察员69陈实富深圳市海普洛斯生物科技有限公司观察员70刘 蕊上海鹍远生物技术有限公司观察员71董 华厦门艾德生物医药科技股份有限公司观察员72易 鑫北京吉因加科技有限公司观察员73凌少平志诺维思(北京)基因科技有限公司观察员74王 洋北京希望组生物科技有限公司观察员75蔡从利武汉致众科技股份有限公司观察员76任海萍国药集团医疗器械研究院观察员
  • 北京赛克玛预祝亚太气溶胶年会在西安举办成功
    2011年第七届亚太气溶胶年会将在中国西安举行,亚太气溶胶年会是整个亚洲地区气溶胶学界的盛会,在中国气溶胶学会的努力下,首次在中国举行. 2011年度亚洲气溶胶年会将于明年8月在中国西安召开,主办方为中国科学院地球环境研究所。 亚洲气溶胶年会每两年召开一次,旨在进行高端交流,为促进研究和交流提供更广泛、更专业的平台。 北京赛克玛环保仪器有限公司届时将参加亚洲气溶胶年会,并协助中国科学院地球环境研究所进行先期准备事宜。 如需更多信息请浏览官方网站: http://aac2011.uconferences.com 会议小册子和注册表格: bmet.cn/show.asp 详见 亚太气溶胶年会通知img1.17img.cn/17img/old/NewsImags/File/2010/9/2010091919352679342.pdf 北京赛克玛环保仪器有限公司简介 北京赛克玛环保仪器有限公司是世界前沿的分析技术研发和制造商的中国代理公司,前身是北京莫尼特尔环境技术开发有限公司。专业从事环境大气监测的系统集成,拥有一流的专业技术和应用服务团队。致力于环境大气行业界最前沿的各种分析检测技术研究与应用开发,在全球范围内引进满足环境、气象、海洋和科研市场需求的高端分析、观测仪器,并为上述领域的大气环境观测的科研和业务化应用提供整体解决方案和全程售后服务。 北京赛克玛环保仪器有限公司结合中国的具体国情,引进世界一流的技术和设备,自行设计生产的AQMS9000环境大气质量监测系统、灰霾监测系统、大气复合型污染监测系统、空气质量(应急)监测车和各种环境大气的在线监测综合设备,为全国各地的环境监测部门,气象部门,海洋环境观测部门、高等院校、科学研究机构,和农业、交通、航空等领域,以及电力、石化等工业企业建立了多个环境大气自动监测站、流动应急监测站、沙尘暴观测站网、气溶胶观测站网等,并提供了相当数量的环境大气观测和分析仪器设备和专业技术服务。公司是ISO9001质量管理体系认证企业,是国家环保部推荐的优秀环保企业。 经过10多年的发展,公司拥有各类先进分析技术的丰富应用经验,目前是美国Magee科技公司(美国加州大学技术)、美国BGI公司(美国哈佛大学的技术)、美国Atmoslytic公司(美国沙漠研究所技术)、德国AMA(德国特里尔大学技术)、美国Belfort公司(美国FAA认证)在中国的总代理,同时也是美国Sabio公司、澳大利亚Ecotech公司和美国Thermo-Fisher公司、在中国的指定经销商, 我们主要的引进产品包括:  美国Magee科技公司的黑碳仪,是世界唯一可以在7个光波段同时测量大气中黑碳气溶胶的仪器,同时也是全球唯一获得美国EPA-ETV认证的仪器,目前已经通过中国国家质量监督检验检疫总局的计量器具型式批准证书;  美国Atmoslytic公司(美国沙漠研究所技术)的OC/EC分析仪,是美国灰霾监测站网IMPROVE中指定的分析方法,也是目前全世界对环境大气中有机碳/元素碳分析的主流方法,2003年由中国科学院地球环境研究所首次引进;  美国BGI公司的各种气溶胶采样器,是最早通过美国EPA认证的采样器,也是全球公认的质量最好的标准采样器;  德国AMA公司的在线色谱分析仪,按照PAMS标准设计,针对臭氧前提物中C2-C12的VOCs在线监测系统,整套系统2010年已经通过中国国家质量监督检验检疫总局的计量器具型式批准证书;  美国BELFORT公司生产的能见度仪器,该仪器现在服务于全球最大的中国环保部的沙尘暴站网;  澳大利亚Ecotech公司推出的新一代Aurora1000型和3000型浊度仪,是广泛使用的大气气溶胶散射的监测仪器;  美国Thermo-Fisher公司最新的i系列在线气体分析仪器,可监测O3、CO、CO2、SO2、H2S、TS、TRS、NO/NO2/NOX、NH3、NOy等气体;  还提供TISCH公司的大流量颗粒物采样器、美国SABIO公司的质量控制标校和标准传递设备等。 近年来,公司凭借一支高效的专业技术团队,在环保、气象、海洋、中科院、高等院校等领域取得了很大的发展。参与了国家环保部和国家气象局沙尘暴监测网点、国家气溶胶监测网、广东省灰霾监测网点、海洋局近海空气质量监测点等国家级重点项目的建设,提供了大批量国际一流的系统和设备。我们非常荣幸地参加了我国2007-2008年首次在南极中山站建立的大气监测系统建设配套;同时参与大型室内大气环境监测,在西安兵马俑博物馆、国家博物馆和首都博物馆等重量级的室内环境空气质量监测系统中提供我们的设备和服务。 公司拥有多年从事分析仪器和环境大气监测方面的专家,系统工程师,有一批赴美国、德国、等仪器制造商接受原厂技术培训并取得合格授权证书的专业技术人员;公司现有职工25人,其中高工、工程师和技术人员18人。除北京总部的售后服务技术中心,还在广州市、江阴市和贵阳市建立了三个技术服务中心。 北京售后服务技术中心 地址:北京市海淀区北清路160号65栋二层 邮编:100095 联系人:杨玉姝 电话:010-6246 1672 传真:010-6246 6355 手机:139 1006 2672 Email:Service@bmet.cn 江苏省维护站 地址:江苏省江阴市芙蓉新村9栋305室 邮编:214431 联系人:何京伟 电话:0510-8684 1250 手机:139 2122 1394 E-mail:bmetjw@bmet.cn 贵州省维护站 地址:贵州省贵阳市青云路304号702室 邮编:550002 联系人:陈微波 电话:0851-595 1249 手机:135 1195 9023 E-mail:bobo@bmet.cn 广东省维护站 地址:广州市环市东路371-375号世贸大厦南塔1803# 邮编:510095 联系人:冀奇龙 电话:020-8762 8103 手机:135 6030 4490 E-mail: gztchnlk@vip.163.com 深圳市维护站 地址:深圳市福田区竹子林越众小区6栋602室 邮编: 联系人:陈彪 138 2430 5612 E-mail:chenpiao@bmet.cn 陈兴 134 2877 4094 E-mail:chenxin@bmet.cn 电话:0755-2383 2730 北京赛克玛环保仪器有限公司致力于为大气环境的监测和研究提供更高性能、更智能化的监测设备和系统。为我们周边环境的改善和提高尽我们的微薄之力。
  • 高精密3D打印技术在医用内窥镜行业创新应用
    随着医用内窥镜在医疗诊断和治疗的广泛应用,内窥镜精密微型化、集成化和定制化、一次性使用等特点将成为未来行业发展趋势。医疗器件精密微型化趋势,同时也给研发、加工制造带来了巨大的挑战和机遇。行业背景随着世界老龄化趋势加深和环境问题日趋严峻,消化道、呼吸道等疾病的发病率不断提高,内窥镜检查的需求也越来越多。医用内窥镜技术凭借诊疗精准性高,创伤小,不易感染,术后恢复快和近乎无疤痕等特点受到医学界的广泛关注,也是全球医疗器械产业中增长最快的产品之一。目前,我国约90%的医疗机构已开展内窥镜下的微创诊疗项目,在消化内科、呼吸科、耳鼻喉科、腹部外科、泌尿外科、肛肠科、骨外科、胸腔心血管外科、神经外科、妇科等科室得到大规模推广应用。我国医用内窥镜企业主要集中于珠三角、长三角地带,产业增长潜力巨大。但国内内窥镜行业由于起步较晚,国产内镜厂商在核心技术与关键器件研发方面与国外厂商相比仍有较大差距,产品集中于中低端,且以单一产品生产为主,缺乏产业链协同优势,研发实力、销售能力、售后服务能力和海外内窥巨头企业还有一定差距,因而无论是软性内窥镜市场还是硬性内窥镜市场,现阶段所占据的市场份额均较小。近年来,在医疗器械整体高速发展的良好外部环境和国家政策的大力支持下,我国医用内窥镜企业越来越重视自主创新,研发投入逐年增加,技术水平不断提升,国产内镜品牌的国际竞争力日益增强。相对于工业内窥,医用内窥镜技术壁垒的较高,我国医用内窥镜行业发展起步相对较晚,创新体系尚不完善,在技术、标准、品牌、创新研发和生产能力等方面都面临国外企业的巨大挑战。目前,国内公司都在致力于自主创新微型精密化内窥镜,在医用内窥镜精密光学系统和精密机械系统等关键器件与核心技术领域取得突破性进展。为了减少病患者的疼痛感和提高患者使用体验,以及在诊治方面更好的推广医用内窥镜技术,微型化和定制化也将成为未来医用内窥镜重点发展的方向之一。市场概况2017年全球医用内窥镜市场已达350亿美元,预计到2019年,规模将达400亿美元,年均复合增长率为7.72%。美国、欧洲、日本等是内窥镜的主要消费市场,在这些发达国家,内窥镜应用非常成熟和广泛。随着内窥镜技术的推广和普及以及医疗水平的提高,中国、印度、巴西等发展中国家市场需求也在快速增长。内窥镜技术已成为继IVD、心血管诊断、影像、骨科和眼科之后市场份额最大的医疗技术。据统计,2017我国医用内窥镜市场规模已达约200亿元,年复合增长率高达25.7%,中国内窥镜市场规模预测在2019年将达到246亿元。内窥镜是集光学、电子、结构、材料等综合学科技术为一体的器械,技术壁垒极高,尤其是软性内窥镜,软性内窥镜市场基本被日本的奥林巴斯、富士胶片、宾得等企业垄断,市场份额超90%以上,其中奥林巴斯市场份额超过70%。之前国内内窥镜市场基本上被日本和欧美企业垄断,随着国内对医疗内窥镜行业的重视,已涌现出深圳开立和上海澳华等行业具有竞争力的企业逐渐占据了国内外部分高中低端市场。为了缩小和进口技术及设备的差距,国内企业正在布局加大产品创新创造力度,并将产品创新列为战略性方向。高精密3D打印在医用内窥镜行业的应用随着微型化和定制化趋势的到来,产品结构越来越小和薄,内窥镜企业都在致力于寻找相匹配的精密加工方法。对于壁厚小于0.15mm的精密内窥镜端部座,CNC和开模注塑等传统加工方式成型都比较困难,尤其对于一些深宽比大的薄壁件。下图中的内窥镜端部座中的圆管壁厚是70微米,管径1mm,高度为4mm,精度要求±10~25微米,CNC和开模注塑,很难加工出这样逼近极限的结构,深圳摩方公司的nanoArch P140设备约两个小时就可以加工出高质量合格的产品,最快一天内可以交付。相类似的壁厚大一点的产品,CNC加工的交期需要1周以上,模具加工的交期需要2周以上。图中端部座带有三根壁厚70微米和高度为4mm的圆管道,传统加工方式需要分别加工三根管道和主体部分然后装配在一起,非常耗时耗成本,而摩方精密3D打印可以实现低成本一次性成型,无需组装。随之内窥镜微型化的发展趋势,目前我们打印过的内窥镜头端部最小产品直径大小大概在2mm左右,壁厚在0.01~0.02mm,这种微型化的结构件开模和CNC加工都及其困难,这也是摩方高精密3D打印的技术价值所在。对于这种需求种类多数量少的微型高附加值内窥镜,定制化成为了他们的首选。目前,深圳摩方已服务过国内、欧美日等地区顶尖的内窥镜企业,客户使用摩方精密3D打印技术,可缩短研发周期和降低研发成本以及实现产品定制化。
  • 医用光学显微镜的应用有哪些注意
    首先介绍一下医用光学显微镜,它在很多的校园里用于教学科学研究,它的结构非常的匀称,显微镜的即体非常的稳定和刚性,整体上下是一体化结构,在电压方面,可以自我适应110伏特-220伏特的电压,无限远无应力物镜,提供像质更好,它能够提供给使用者非常清晰非常美观的微观世界。而且它的偏光载物台是专业的金属设置,转动、操作舒适,可以任意旋转,使用是非常方便的。  显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。  (一)、物镜  物镜是决定显微镜性能的zui重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。  1、物镜的分类  物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。  根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。  根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。(所谓象差是指所成的像与原物在形状上的差别;色差是指所成的像与原物在颜色上的差别)  (消除色差(当不同波长的光线通过透镜的时候,它们折射的方向略有不同,这导致了成像质量的下降)  2、物镜的主要参数:  物镜主要参数包括:放大倍数、数值孔径和工作距离。  ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。  显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。  ②、数值孔径也叫镜口率,简写N• A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。  ③、工作距离是指当所观察的标本zui清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。  3、物镜的作用是将标本作*次放大,它是决定显微镜性能的zui重要的部件——分辨力的高低。  分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的zui小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。  显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。  那么医用光学显微镜到底在哪些领域有所应用呢?适合电子、地质、矿产、冶金、化工和仪器仪表等行业,在这些行业领域中,用于观察透明、半透明或不透明的物资,例如金属陶瓷、集成块、印刷电路板、液晶板、薄膜、纤维、镀涂层以及其它非鑫属材料,除此之外,也适合医药、农林、*、学校、科研部门作观察分析用。透反射式矿相显微镜不仅能实时观察动态图像,还能将所需要的图片进行编辑、保存和打印。透反射式矿相显微镜广泛应用于生物学、细胞学、组织学、药物化学等研究工作。如果医用光学显微镜物象不在视野中心,可移动玻片,将所要观察的部位调到视野范围内。(注意移动玻片的方向与视野物象移动的方向是相反的)。如果视野内的亮度不合适,可通过调整光圈的大小来调节,如果在调节焦距时,镜台下降已超过工作距离(5.40mm)而未见到物象,说明此次操作失败,则应重新操作,切不可心急而盲目地上升镜台。
  • 直播预告|4.19生物医用材料研发与检测
    直播预告|4月19日生物医用材料研发与检测生物医用材料是一类用于诊断、治疗、修复或替换人体组织、器官或增进其功能的高技术材料,也称生物材料或生物医学材料。我国生物医用材料市场增速是全球的近4倍。由于生物医用材料与人体健康密切相关,因此,对其化学结构组成、物理机械等性能,以及其与人体接触时的生物相容性、安全性等指标进行分析检测和评估,具有非常重要的实际意义。为满足全国各地科研院所、医疗机构及生产企业等生物医用材料相关从业人员的交流需求,天津分析测试协会与仪器信息网将于2023年4月19日举办“生物医用材料研发与检测”主题网络研讨会。报告专家简介(点击专家名字可看介绍详情)张其清 中国医学科学院北京协和医学院清华大学医学部二级研究员(二级教授)、博导;福建吉特瑞生物科技有限公司任创始人、董事长;中国微纳米学会会士。致力创伤、肿瘤和退行性病变等导致的组织病缺损再生修复诊断和防治生物医学工程、食品工程及重大传染性和流行性疾病的防治等领域40余年,主持国家自然基金重大研究计划,国家杰出青年基金,863、973、科技支撑(攻关)、火炬和重点新产品计划,国家海洋示范项目等102项,开发出医用胶原膜、医用胶原修复膜、胶原基 神经修复导管等十余款产品;获三类医疗器械注册证6个,CE、ISO认证等7个;发表论文563篇,H因子68;论著12部;授权发明专利167项。获中国政府友谊奖(组织者),中国产学研合作创新成果一等奖,中国专利优秀奖,中华医学奖等45项,中国医学科学院北京协和医学院杰出贡献奖和成果转化奖等35项。与林巧稚、吴阶平等一起编入中国医学科学院北京协和医学院《协和精英》一书。黄显 天津大学精密仪器与光电子工程学院教授,浙江清华柔性电子技术研究院柔性可穿戴技术研究中心主任,天津大学生物医学柔性电子实验室负责人,博导。自然科学基金委“有机集成电路的核心材料基础”创新研究群体核心成员。2015年入选中组部第十一批青年千人计划,获天津大学北洋学者、天津市青年千人、天津青年创新能手称号。2016年在天津大学建立了生物医学柔性电子实验室,实现了天津市首个集柔性传感器设计、加工、测试和仿真为一体的综合研究平台。提出和研究了柔性磁电复合器件、高通量分布式柔性植入式器件、印刷瞬态电路技术和类皮肤多参数柔性传感器件等创新性柔性电子器件和技术。已在多本高水平期刊发表各类论文106篇,文章总引用达8000余次,获授权专利23项。其研究的植入式葡萄糖传感器获得美国糖尿病技术协会的研究金奖,MicroLED巨量检测设备获得第五届全国先进技术转化大赛优胜奖,并担任Advanced Material Technologies、BME Frontier等期刊的编委和青年编委。王蔚 南开大学高分子化学研究所副所长/副教授,现任南开大学化学学院党委副书记,高分子化学研究所副所长。研究领域为生物医用高分子材料,主要聚焦血管相关组织工程、阿尔兹海默药物研发以及肿瘤微环境调控等方向。主持参与国家基金委面上、青年基金,天津市自然科学基金面上、青年项目等科研项目十余项,在Acta Biomaterialia, Biomacromolecule等期刊发表SCI收录文章40余篇。钟成 天津科技大学教授/博士生导师,主持国家自然科学基金4项,国家重点研发计划子课题1项,以及农业部公益性行业专项、山东省重大科技计划、天津市自然科学基金重点项目以及企业委托开发课题20余项。兼任中国生化与分子生物学会工业生化与分子生物学分会理事,中国造纸学会纳米纤维素与材料专业委员会委员,中国化工学会生物化工专业委员会委员,中国微生物学会会员,2014年至今担任国际期刊Frontiers in Microbiology(影响因子:4.2)副编辑,以及二十多种国际期刊同行评议人。 申请发明专利60余项(其中授权发明专利20余项)。以第一完成人获2019年天津市科技进步二等奖1项,获天津市工程学位优秀教学成果奖1项(排名第一)。夏炎 南开大学化学学院教授、中心实验室主任,中国化学会高级会员,中国分析测试协会高校测试分会委员和青年部部长,天津市色谱研究会理事,实验室资质认定国家级评审员。主要从事样品预处理、色谱质谱分析研究和实验室资质认定管理工作。在多本专业期刊发表论文40余篇,主持国家自然基金、天津市自然基金及企业横向课题多项。会议日程报告题目报告人主持夏炎生物材料研发及转化的机遇和挑战张其清柔性永磁生物材料和柔性磁性生物医学器件黄显血管正常化新疗法及其在肿瘤治疗中的应用王蔚细菌纤维素纳米材料网状结构调控与应用钟成报名方式1、报名链接:https://www.instrument.com.cn/webinar/meetings/tjaia230419/ 2、扫码添加助教赞助参会目前赞助位置尚有剩余,欢迎感兴趣的厂商联系 刘经理:15718850776或者直接扫码添加刘经理微信号:
  • 【赛纳斯】什么是毒 品原植物!
    盼望着,盼望着,二月龙抬头,春风拂柳,万物复苏,在这万紫千红春光灿烂的时节,有些特殊的植物也悄悄“小荷才露尖尖角”,而它们一旦落入不法分子手中,那么就会变成可怕的毒 品.那什么是毒 品原植物呢?毒 品原植物,即用来提炼、加工成鸦片、海洛因、甲基苯丙胺、吗啡、可卡因等麻醉药品和精神药品的原植物。大麻大麻是一年生植物,含有400多种化学物质,其中有60多种具有类似的化学特性,因此被统称为大麻素。吸食大麻的人会出现严重的健康问题,如支气管炎、肺气肿和支气管哮喘。长期大剂量使用大麻可引起脑退行性变化的脑疾病、严重的行为损伤、免疫系统抑制和神经疾病等。罂粟罂粟是一年生草本。叶片碧绿,花朵五彩缤纷,茎株亭亭玉立,葫果高高在上,夏季开花,花大,单生枝顶。花瓣4片,红色、紫色或白色。果实球形或椭圆形,种子小而多。罂粟是制取鸦片的主要原料,从葫果上提取的汁液,可加工成鸦片、吗啡和海洛因。罂粟成为世界上毒 品的重要根源,因而罂粟这一美丽的植物被称为恶之花。古柯植物古柯原产南美洲高山地区,属于当地的一大特产,可以制作成医用局部麻醉剂。古柯叶能够提取出的古柯碱(Cocaine),主要用于制造毒 品可卡因。恰特草巧茶,又名阿拉伯茶、也门茶、埃塞俄比亚茶、恰特草,是一种卫矛科巧茶属的植物,分布在热带非洲、埃塞俄比亚、阿拉伯半岛等地。"巧茶"酷似市场上常见的苋菜,吸毒者可以直接像吃生菜一样嚼食,如果将恰特草晒千,外形又像茶叶一样,但无论是生吃还是晒干磨粉冲服,服食后的效果与海洛因相差无几,毒效惊人且成瘾性大。迷幻蘑菇“迷幻蘑菇”是一种非食用毒草。外形与普通菇相似,茎粗,顶部亦尖长及细小,在一些地方被加工成粉末食用,味苦,让人神经麻痹出现幻觉,因而得名。迷幻蘑菇中含有一种被称为裸盖菇素的物质,这种物质是一种血清素受体激动剂。在血清素缺席的场合,它能够刺激一些受体,使人产生做梦一样的感受。它能导致神经系统的紊乱和兴奋,人的言行失去控制。手持式拉曼光谱仪针对新形势下禁毒应用,厦门赛纳斯自主研发了1064 nm的手持式拉曼光谱仪,内置大量管控精神类药品和麻醉药品、毒 品数据库,结合表面增强拉曼试剂可实现低浓度(
  • 首台医用重离子加速器成功应用
    甘肃武威重离子中心治疗室,医生正用仪器给一名肿瘤患者进行碳离子放疗… … 这套治疗系统就是我国首台具备自主知识产权的重离子治疗肿瘤专用装置(即医用重离子加速器/碳离子治疗系统)。它由中科院近代物理研究所及其产业化公司研制和运行维护,由武威肿瘤医院负责临床运营。  这一装置的成功应用,标志着我国成为全球第四个拥有自主研发重离子治疗系统和临床应用能力的国家,实现我国在大型医疗设备研制方面的历史性突破,我国高端医疗器械装备国产化迈出了新的步伐。甘肃武威碳离子治疗装置。中国科学院近代物理研究所供图  医用重离子加速器建立在我国科研人员对重离子物理研究的突破性认识上  甘肃武威重离子中心的这套装置,核心是医用重离子加速器。它脱胎于中科院近代物理所建造的重大科学装置兰州重离子加速器,建立在我国科研人员对重离子物理研究的突破性认识上。  截至目前,人类已知的、归入元素周期表的元素共有118种,大多数都有同位素。例如氢的同位素有氕氘氚,碳的同位素有碳12、碳13和碳14等。科研人员了解和利用这些元素、同位素,为工业、农业和医学等领域服务。  射线能够以波或者粒子的形式穿过空间或物质释放能量,人类在医学上运用放射性元素和同位素消灭肿瘤的历史已有许多年。包括伽马射线和X射线的光子放疗、质子束的质子放疗,还有碳离子束的重离子放疗。  其中,重离子放疗具备明显优势。中国工程院院士、中科院近代物理所副所长夏佳文介绍,光子射线穿透人体健康组织时能量损耗较大,到达肿瘤时剂量变弱了。碳离子更像一枚精准制导的武器,能直抵病灶,集中释放能量,消杀癌细胞。其次,碳离子束对肿瘤DNA实施双链断裂的概率更高,相比其他放疗的单链断裂,更能防止癌细胞的残留和复发。令人振奋的是,碳离子放疗对健康人体组织产生破坏极小,不仅可以精准攻击并消灭肿瘤,而且治疗中无痛、副作用小,避免“杀敌一千,自损八百”的现象。正因如此,碳离子放疗是目前国际上公认的先进放疗手段。  我国在重离子领域的技术积累长达60余年。从“一五”期间中科院近代物理所建设1.5米回旋加速器为核物理研究夯实基础,到1988年建成我国第一台大型重离子研究装置兰州重离子加速器,再到“九五”期间研制出兰州重离子加速器冷却储存环,依托历代大科学工程和大科学装置,我国重离子研究呈现良好的发展局面。  依托雄厚的基础研究支撑和原创成果积累,1993年起,科研人员将目光投向重离子治疗癌症。2020年3月,我国首台具备自主知识产权的碳离子治疗系统在武威投入临床应用。  曾担任中科院近代物理所所长的中科院兰州分院院长肖国青自豪地说:“我们自主研发的这套‘回旋注入+同步主加速器’组合重离子医用装置,在主加速器的磁聚焦结构和注入方式上,实现了国产重离子治疗设备零的突破,走出一条从基础研究、技术研发、产品示范到产业化应用的全产业链自主创新之路。”  将重离子基础研究成果转化成现实应用,凝结了科研和工程技术人员近30年的心血汗水  将重离子基础研究成果转化成现实应用,把科研装置变成医疗器械,听起来只有一步之遥,做起来却隔着万水千山,凝结了我国科研和工程技术人员近30年的心血和汗水。  跨越性成就的背后,是整个医用重离子加速器团队攻克了三大难题。  从“大”变“小”。每座大科学装置都融合了最顶尖的技术和最复杂的工艺,重离子加速器也不例外——外观体积巨大,内部精细无比。想把一个庞然大物放进医院,不是单纯意义上建造一个“缩小版”,而是需要在理论设计上有所突破,通过技术创新使得加速器周长更短、结构更紧凑。  从“粗”到“细”。要把一张理论图纸变成加工图纸,挑战很大。由于科研和医疗的试验要求各有侧重,想做出一台真正的医疗器械,就要重新调整工艺细节,这对设备的加工制造提出了很高要求。例如,重离子束“打”在肿瘤上,要求束斑中心位置稳定性误差极小,相关工艺必须更细更精密。再比如,用重离子帮助患者治病,必须保证仪器运转的稳定与可靠。  从“专”到“全”。我国把医疗器械的安全性放在首位,相应对医疗器械的资格审批、规范制定、追溯流程都十分严格。此前,医用重离子加速器在国内尚未有统一产品标准和检测方案。为了确保万无一失,国家对中科院近代物理所等单位研制的第一台医用重离子加速器审核,可谓是“严上加严”。  为了克服道道难关,中科院近代物理所的科研人员、产业化公司的技术人员、当地的医生们团结协作,边学边改,边检边调,开始了艰苦的工程化过程。中科院近代物理所产业化企业、国科离子医疗科技有限公司董事长马力祯回忆:“2018年,为了给相关审批部门提供严谨的检测报告,光准备的资料就堆满了房间,甚至用小车才拉得动。如果达不到医用标准,这台重离子加速器就是一堆废铁。”  从无到有,一步步走向产业化,团队不是闭门造车,而是注重市场牵引,要做满足医患需求的医疗器械。  马力祯介绍,他们曾经认为患者接受治疗,只需按照传统方式躺在病床上就可以。后来调研发现,用机械臂把患者抬起来,与加速器默契配合,能更方便地让射线照射患者身体。团队立刻整改细节,在第二代设备中加装了操作更灵活的机械臂。  功夫不负有心人。2019年下半年,整套碳离子治疗系统获得注册许可,我国终于有了自己的医用重离子加速器。  肖国青说,这台自主研发的医用重离子加速器,无论性能指标还是临床反馈,都不逊色于进口设备。尤其是国产重离子治疗装置成本只有发达国家的1/3至1/2,在价格上具备明显优势。同时,国产重离子治疗装置同步加速器的周长只有56.2米,是目前世界上所有医用重离子加速器中周长最短的同步加速器系统,有利于医院减少投入。依托国内完善的加工制造业体系,整套医疗器械的维修成本也大大降低,并且维修时效很快。  推动国产重离子治疗装置在全国落地,让这一大型医用设备为更多患者服务  武威重离子中心碳离子治疗系统包括中央控制室、物理计划室、中控大厅、配电室及电源间,配备4个治疗室。  “根据患者病种的不同,重离子治疗的时间和次数也不同。从目前完成治疗患者的临床随访结果来看,疗效显著,患者的病情得到有效控制。”武威肿瘤医院院长叶延程介绍,截至目前,中心共治疗患者375例(包括临床试验患者),治疗病种涵盖中枢神经系统肿瘤、头颈部和颅底肿瘤、胸腹部肿瘤、盆腔肿瘤等。  人类与癌症的斗争已经持续了数千年,即使是最微小的进步背后都有科学技术的加持。“作为科研人员,我们期望能在科学原理上取得更多突破,掌握更多重离子的机理奥秘,加快技术研发,争取为更有效的治癌手段提供科技支撑。”夏佳文表示。  下一步,国科离子医疗科技有限公司将推动国产重离子治疗装置在全国落地。马力祯说,除了已投入运营的武威重离子中心和将要开展临床试验的兰州重离子治疗装置,正在建设的还有其他城市的4台装置,另有多地也签订了合作协议。“建造布局将充分考虑人口和地理因素,将装置放在国家区域医疗中心,提升重离子治疗服务的可及性。”  肖国青说,未来将继续研制更加小型的治疗装置,降低占地面积、治疗费用,借助人工智能、5G技术等手段升级改造设备,提升智能化水平。还将大力培养重离子治疗的人才队伍,精心培训更多一线放疗医生和放射物理师,让医用重离子加速器为更多患者服务。
  • “诊疗装备与生物医用材料”重点专项2022拟启动78个方向
    近日,科技部发布“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项2022年度项目申报指南(征求意见稿),向社会征求意见和建议。征求意见稿中提到,2022年度指南部署坚持全链条部署、一体化实施的原则/要求,围绕前沿技术创新(含青年科学家项目)、重大产品研发、应用解决方案研究、应用评价与示范研究、监管科学与共性技术研究5个任务,拟启动78个方向。1. 前沿技术研究及样机研制1.1 诊疗装备前沿技术研究及样机研制1.1.1 便携式模块化机动急救手术技术研究及样机研制1.1.2 多维度自反馈可调式胸外心脏按压技术研究及样1.1.3 级联光子符合成像技术研究及样机研制1.1.4 牙齿内及周边软组织的高场MRI精细成像技术研究及样机研制机研制1.1.5 无创多模电磁精准调控技术研究及样机研1.1.6 基于电子直线加速器的X射线超高剂量率产生技术研究及样机研制1.1.7 动脉粥样硬化精准诊疗一体化技术研究及样机研制1.1.8 术中微电极记录技术研究及样机研制1.1.9 微型介入式人工心脏技术研究及样机研制1.1.10 人工耳蜗内耳重复递送电极技术研究及样机研制1.2 生物医用材料前沿技术研究及样机研制1.2.1 经导管微创介入心衰治疗材料及输送器械关键技术研究1.2.2 口腔黏膜病损修复用对称核苷生物医用材料研究1.2.3 炎症组织微环境调控的抗菌、促再生创面修复材料研究1.2.4 基于重组人胶原蛋白的三维光刻通孔多梯度高仿生真皮支架研制1.2.5 促口咽类瘘管修复的有机-无机杂化生物材料研究1.2.6 新型鼻、耳、泪道系统药物缓释支架研究1.3 体外诊断设备和试剂前沿技术研究及样机研制1.3.1 病原微生物快速鉴定、药敏检测技术研究与原型产品研制1.3.2 新型肿瘤药敏分析技术研究及原型产品研制1.3.3 单分子免疫检测技术及原型产品研制2. 重大产品研发2.1 诊疗装备重大产品研发2.1.1 高性能急救转运呼吸机研发2.1.2 用于高原作业的便携式变压吸附与膜分离耦合制氧系统研发2.1.3 双探头可变角人体SPECT/CT一体机研发2.1.4 基于光泵磁强计的脑磁图系统研发2.1.5 分离式变场术中磁共振成像系统研发2.1.6 基于CMOS的DSA用大面积X线平板探测器研发2.1.7 眼科手术导航显微镜研发2.1.8 激光扫描超广角共聚焦眼底成像系统研发2.1.9 荧光共聚焦显微内镜核心部件研发2.1.10 全飞秒激光角膜屈光手术装置研2.1.11 磁共振影像引导加速器研发2.1.12 基于国产化核心部件的系列束流模块研发2.1.13 危重症肺通气/肺灌注床边可视化无创监测系统研发2.1.14 具有免疫调节功能的肿瘤多模态热物理治疗装备研发2.1.15 植入式心脏再同步治疗起搏器研发2.1.16 植入式心律转复除颤器研发2.1.17 植入式闭环脑深部电刺激器研发2.1.18 经呼吸道诊疗机器人系统研发2.1.19 磁共振监测下精准适形激光消融机器人系统研发2.1.20 颅底-颌面肿瘤与畸形智能微创手术机器人系统研发2.1.21 智能影像引导穿刺机器人系统研发2.1.22 多模态情感交互式诊疗装备研发2.2 生物医用材料重大产品研发2.2.1 高性能多级结构生物活性人工骨研发2.2.2 新型高强度可吸收PLA或PLGA复合生物活性骨固定器械研发2.2.3 抗凝血涂层产品研发2.2.4 龋病预防和治疗矿化材料研发2.2.5 脑心电学器官组织修复产品研发2.2.6 具有良好生物愈合的复合型人工角膜研发2.2.7 高品质医用金属粉体材料及增材制造金属植入体研发2.2.8 碳纤维/聚醚醚酮复合骨科植入材料研发2.3 体外诊断设备和试剂重大产品研发2.3.1 病原微生物检测流水线全自动化系统研发2.3.2 智能化全自动医用流式细胞仪研发2.3.3 高性能实验室流水线全自动化系统研发2.3.4 便携式基因测序仪研制和临床产品研发2.3.5 体外诊断试剂关键原材料研发2.3.6 全自动高通量液相悬浮芯片系统研发2.3.7 术中分子病理快速检测系统研发2.3.8 临床高通量基因检测全自动一体化系统研发3. 应用解决方案研究3.1 基于国产创新PET/MR的神经系统疾病诊疗解决方案研究3.2 基于无创心磁图技术的冠脉微循环障碍临床诊断解决方案研究3.3 基于国产创新一体化放疗设备的临床新技术解决方案研究3.4 基于高诱导成骨活性材料的斜外侧腰椎椎间融合术临床应用解决方案研究3.5 周围神经缺损修复产品临床应用解决方案研究4. 应用评价与示范研究4.1 国产胸腔镜、腹腔镜及手术器械应用示范研究4.2 机器人远程诊疗与手术体系的研究与应用示范5. 监管科学与共性技术研究5.1 在用MRI和PET/CT检测校准及临床质控技术研究5.2 脉冲式激光治疗设备可溯源在线检测及临床质控技术研究5.3 放射治疗装备安全有效性评价体系研究5.4 医用手术机器人质量评价技术研究5.5 医疗器械中应用的纳米材料质量控制及评价技术研究5.6 组织工程类医疗器械产品安全性有效性评价技术研究5.7 恶性肿瘤早期诊断及筛查产品监管科学研究5.8 应急救治系列装备可靠性共性关键技术研究和评价体系构建6. 青年科学家项目6.1 诊疗装备青年科学家项目6.2 生物医用材料青年科学家项目6.3 体外诊断技术青年科学家项目7. 科技型中小企业研发项目7.1 诊疗装备科技型中小企业研发项目7.2 生物医用材料科技型中小企业研发项目7.3 体外诊断设备和试剂科技型中小企业研发项目附件:“诊疗装备与生物医用材料”重点专项2022年度项目申报指南(征求意见稿).pdf
  • 卫健委发布“十四五”大型医用设备配置规划
    近日,国家卫生健康委发布了“十四五”大型医用设备配置规划。提出,“十四五”期间全国规划配置大型医用设备3645台,其中甲类(重离子质子放射治疗系统、高端放射治疗类设备)117台,乙类(正电子发射型磁共振成像系统、X线正电子发射断层扫描仪、腹腔内窥镜手术系统、常规放射治疗类设备等)3528台。“十四五”大型医用设备配置规划详情如下:一、总体目标以人民为中心,立足新发展阶段,贯彻新发展理念,加快构建新发展格局,推动优质医疗资源扩容下沉和区域均衡布局,促进卫生健康事业高质量发展。充分发挥规划引领和资源调控作用,进一步推动形成区域布局更加合理、装备结构更加科学、配置数量与健康需求更加匹配、配置水平与经济社会发展和人民群众医疗服务需求更加适应的大型医用设备配置规划管理体系,促进医疗服务水平和能力提升,推进健康中国建设,更好满足新时期人民群众医疗服务需求。二、基本原则(一)以人为本、促进发展。坚持以人民为中心,更好满足人民群众多层次、多元化就医需求。与社会经济发展、医疗服务能力相适应,充分考虑高质量发展要求,支持医疗机构科学合理配置大型医用设备,推动高端医疗设备在高水平医院合理使用。支持社会办医健康有序发展。(二)均衡布局、扩容下沉。聚焦提升医疗卫生服务公平性和可及性,缩小区域之间资源配置和服务能力差异,科学规划配置数量,优化完善配置标准,促进优质医疗资源扩容下沉,优化区域均衡布局。(三)安全审慎、控制费用。坚决维护人民群众生命安全和身体健康,控制医疗费用不合理增长,对操作和维护技术复杂、应用风险大、投入运行成本和诊疗费用高的设备,严格把握配置标准、合理控制规划数量。三、规划内容“十四五”期间,全国规划配置大型医用设备3645台,其中:甲类117台,乙类3528台。具体规划数量详见附件1,甲类大型医用设备配置准入标准及乙类大型医用设备配置标准指引详见附件2、3。四、有关要求(一)科学实施规划。严格执行规划数量布局,科学把握配置标准,与上轮规划做好衔接,按年度有序、有效实施。为社会办医配置预留合理空间。(二)坚持依法行政。认真履行行政许可程序,严格评审要求,规范审批行为,维护公开公平公正,依法依规开展许可工作。(三)加强监督管理。健全监督和制约机制,强化事中事后监管,指导和督促医疗机构科学、规范配置和使用大型医用设备,提高质量和效率。(四)开展监测评估。强化本地区规划执行监测评估,定期向国家卫生健康委全面报告规划实施进度和效果。 附件一:“十四五”大型医用设备配置规划数 附件二:甲类大型医用设备配置准入标准 附件三:乙类大型医用设备配置标准指引
  • 科技守护生命科学——澳柯玛RFID医用智能冷冻柜
    在现代医疗领域,随着科学技术的飞速发展和生物医学研究的不断深入,对样本保存条件的要求日益严格。医用智能冷冻柜作为医疗、科研机构中不可或缺的重要设备,其使用背景主要体现在以下几个方面:生物样本保存:在临床研究、基因测序、细胞治疗及疫苗研发等过程中,各类生物样本如血液、组织、细胞株、微生物以及核酸等,需要在极低温度下保存以维持其活性与稳定性。医用智能冷冻柜通过精准控温技术,能在-20°C至-80°C乃至更低温条件下长期保存这些珍贵样本,确保后续实验分析的准确性和重复性。药品与疫苗存储:许多高敏感性药物、疫苗及生物制剂要求在特定的低温环境下存储,以防止变质或失去效用。医用智能冷冻柜凭借其稳定的制冷系统和智能监控功能,能够为这些医疗物资提供符合规范的储存环境,保障医疗质量和患者安全。科研材料保护:在生命科学研究中,许多实验材料和试剂对温度敏感,需要精确控制的低温环境来保持其稳定性和纯度。医用智能冷冻柜不仅提供了这样的环境,其智能化管理还能有效记录存储条件,为科研数据的可追溯性提供支持。安全与效率提升:相比传统冷冻设备,医用智能冷冻柜通常配备有先进的温控系统、远程监控报警、自动除霜和故障自检等功能,大大提升了样本存储的安全性和管理效率。特别是在大规模样本库或需24小时不间断监控的场景下,这些智能化特性显得尤为重要。医用智能冷冻柜的广泛应用,是现代医疗科技进步和生物医学研究深化的必然结果,它不仅保障了生物样本和医疗物资的质量与安全,也为科学研究的高效推进提供了坚实的基础。在此茂默科学推荐澳柯玛RFID 医用智能冷冻柜。温度控制系统●微电脑控制,数码显示箱内温度,箱内温度-10℃~-25℃可调。●高低温报警控制,可根据需要设定报警温度点。安全控制系统●多种故障报警:高温报警、低温报警、开门报警、传感器故障报警。●多种报警方式:声音蜂鸣报警、灯光闪烁报警。●多种保护功能:开机延时、停机间隔等制冷系统●采用国际优质压缩机和风机,制冷迅速。●加厚保温展,超微孔发泡技术,保温效果好。●无氟发泡、无急制冷剂,绿色环保。●具备强制制冷、速冻功能。●合理优化蒸发冷凝系统设计,制冷强劲。人性化设计●柚展设计,取放物品更方便。●安装压力平衡阀,开门更省力,安全门锁设计,防止随意开启。●LED照明灯,节能环保。●宽电压带设计,适应电源环境广。●宽气候带设计,适合10℃-32℃环境使用。配备温度测试便于监控箱内温度。●脚轮设计,移动轻松,带脚底螺钉,固定方便。●支持各种开门方式,如:人脸、IC卡等,防止随意开启。●可以快速读取RFID标签信息,自动存取相关数据。●RFID技术在读取上不受产品大小和外形限制,可以应用于不同的试剂。●读取精确度高,每个试剂粘贴有唯一RFID识别码,不会出现人员操作失误●配置有高清触控屏,操作方便,可上架、下架、领用、归还、查询等功能。●具有后台一键开门功能,便于紧急情况下管理员使用。可实时监控智能柜的使用情况,反馈和查询柜门的开关状态。●每种试剂的上架、位置、库存、领取、使用等过程后台可以记录和查询。●可以设置分级别管理员,每种管理权限不同,超级管理员可以新增和删除管理员。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多冷冻柜相关的产品,Welcome to consult~咨询有惊喜哦!
  • 赛百味面包被曝含橡胶鞋底成分 或致呼吸性疾病(转自网络)
    赛百味面包含鞋底成分 国内面粉业仍用该添加剂 官方称中国区面包不含该物质  新年伊始,洋快餐赛百味就因面包含有偶氮二甲酰胺(azodicarbonamide)陷入了食品安全危机,据外媒报道,该成分通常拿来作为橡胶(15565, 140.00, 0.91%)鞋底和瑜伽垫的原料。对于事件,赛百味中国通过官方网站回应称,中国区的面包中不存在上述成分。  ■新快报记者 陆琨倩  偶氮二甲酰胺通常用作增筋剂  据外媒报道,全球连锁快餐Subway(赛百味)的面包内因含有化学物质偶氮二甲酰胺,已于美国时间2月6日自主宣布停用此成分。  消息称,偶氮二甲酰胺通常拿来作为橡胶鞋底和瑜伽垫的原料。中国台湾“卫福部食药署副署长”姜郁美接受媒体采访时表示,偶氮二甲酰胺具有氧化和漂白的效果,通常添加在面粉中作为增筋剂,加强面筋的弹性与韧性。  据记者了解,目前联合国食品法典委员会(Codex)及美国FDA均将其列为合法食品添加物,但欧盟与澳大利亚禁止使用这项化学物质,因为可能会引致呼吸性疾病和过敏。而根据FDA的限制,每公斤面包偶氮二甲酰胺含量不得超过45毫克,就不会影响身体健康。  赛百味中国否认使用该成分  对于事件,赛百味中国在官方网站发布声明称,中国区的面包中不存在上述成分,虽然该添加剂的使用已获得美国政府部门的批准,美国赛百味餐厅仍已经开始去除面包中的偶氮二甲酰胺。并出示了两家供应商的声明,其中供应商mission称,在中国、新加坡、马来西亚的面包都没有采用上述这种物质。  消息称,中国台湾当局已经采取行动,姜郁美说,中国台湾Subway过去未有添加偶氮二甲酰胺过量的纪录,这次美国厂商自主停用,会要求中国台湾Subway提交报告。  中国台湾林口长庚医院肾脏科主治医师颜宗海接受采访时也表示,动物实验曾发现偶氮二甲酰胺的代谢物氨基 (SEM)有致癌疑虑,新加坡、澳大利亚、日本等国都已禁用,就算是合法食品添加,气管较敏感的民众,食用过量可能会出现气喘、过敏等反应。  记者昨日试图联系赛百味中国相关负责人了解公司是否有向国内相关监督部门提供安全报告,但至截稿,仍未收到回复。(来源:新快报)
  • 多地联动!“生物医用材料”北化校友互动沙龙成功召开
    2022年11月6日下午,“生物医用材料”北化校友互动沙龙成功召开。本次活动得到了北京化工大学校友总会的大力支持,由北京化工大学新材料校友会(筹)主办,仪器信息网、厦门石地医疗、上海开伦投资集团协办,采用线上/线下结合的方式,北京、上海、厦门三地线下联动,吸引约130位生物医用材料领域北化校友积极参与。北京▪仪器信息网会场上海▪开伦会场厦门▪石地医疗会场青丽康医疗科技(苏州)有限公司总经理周鑫鑫主持会议活动伊始,校友会筹备组胡广君老师对北京化工大学新材料校友会进行了介绍。北京化工大学新材料校友会旨在建立一个新材料相关行业校友之间及校友与母校间高水平专业化的沟通、交流、服务与合作平台,成为北化新材料校友之家。目前,北京化工大学新材料校友会还在筹备当中,得到了学校老师和各位校友的大力支持,成立仪式拟于12月份在上海举行,截至11月6日,已有200余位校友报名参加。此外,胡广君老师提到,新材料校友会相关的活动都会在【化育新材】微信公众号上进行通知,欢迎各位校友关注。中国石油和化学工业联合会李文军研究员随后,中国石油和化学工业联合会李文军研究员对生物医用材料产业政策进行了讲解,并对新材料校友会的建设提出了建议。李文军校友分析了生物医用材料发展所处的良好机会,从化学动力学的角度来说,发展生物医用材料,具有强大的政策驱动力、市场需求力、技术创新力、资金推动力,动力十足,北京化工大学虽然是一个工科院校,但是在理科、材料、机械、电子等具有很强的科研能力,北化校友在生物医用材料的产业链、创新链、资金链和服务链上都有所作为,在这个新赛道新领域,北化校友可以协同发展,获得新动力新优势。李文军校友积极参与材料校友会的筹建,结合自己从事行业科技管理、科技成果转化的工作经历,对材料校友会的建设提出了殷切的希望,希望能打造出一个品牌的活动。本次生物医用材料沙龙就是一次有益探索。对务实推进材料校友会的建设,他提出了四点建议:一是搭建一个数据库或信息交流的平台;二是推进试验、测试平台的协同;三组建一个有向心力的委员会,整合资源;四是以结果为导向,正向激励,鼓励带货。北京化工大学材料学院俞丙然教授北京化工大学材料学院俞丙然教授对生物医用材料北京实验室,以及团队在新型多羟基阳离子生物材料构建方面取得的系列研究成果进行了介绍。俞丙然教授团队以PGEA(“非季铵盐型”聚阳离子材料)发现为起点,探索了系列可控构建方法/技术,研制了系列新型富含羟基的高性能阳离子材料,为重大疾病的多模式治疗提供了有前景的应用平台,引领阳离子材料发展方向,此外,推动了富含羟基的阳离子医用材料产业化,为人民健康和大健康产业做出了贡献。北京化工大学材料学院薛佳佳教授北京化工大学材料学院薛佳佳教授介绍了先进弹性体材料研究中心团队在面向组织功能重建新型生物医用材料与器件研发方面取得的系列研究成果。研究中心在生物医用高分子材料产品开发方面,突破技术创新,拔高技术含量,开发了用于骨科(人工颈椎间盘、椎间融合器、防粘连膜)、伤口外科(高端医用敷料、无创伤口闭合器、皮肤牵张器、疤痕贴)、整形外科(人工乳房硅胶假体、无创伤口闭合器、硅凝胶疤痕膏)、口腔科(引导组织再生膜)等科室的生物医用高分子材料产品,并发展了相关衍生产品(口罩、防护服、防雾霾产品、宠物产品)。宁波糖聚新材料有限责任公司总经理周孟博宁波糖聚新材料有限责任公司(简称:宁波糖聚)于2022年1月成立,以可持续绿色的“生物基多糖类材料”为核心,开发纳米纤维素、岩藻多糖等产品。宁波糖聚总经理周孟博从公司投资亮点、团队介绍、项目概况、市场概况、行业分析、商业模式、竞争格局、运营现状、未来规划、融资计划等方面进行了介绍,并提出一个“小目标”:8-10年后,销售5个亿以上。《医用塑料》主编、厦门石地医疗科技有限公司总经理段庆生《医用塑料》主编、厦门石地医疗科技有限公司总经理段庆生对塑料医疗应用市场热点与创新趋势进行了介绍。他提到,替代是新材料进入市场的主旋律,但是医疗行业是一个以“绝对”安全为基础的行业,替代并不简单;新行业、新技术的发展,往往带来巨大的变革,也是新材料进入市场的最佳时期;针对具体应用,材料性能的不足,可以通过改性或表面改性改善,这正是高分子材料优于传统材料,而成为医疗市场最重要的材料的特点之一;对医疗行业而言,几乎每个产品都是一项系统工程,材料应用往往面对着复杂的应用环境的挑战,跨界合作,真正了解医疗应用的需求非常重要;随着国家对医疗行业自主安全性的关注度不断提升,国产化替代是值得关注的大机遇。自由发言环节,部分参会校友展示在自由发言环节,北京▪仪器信息网会场、上海▪开伦会场、厦门▪石地医疗会场以及多位线上校友纷纷发言,进行自我介绍,发表对生物医用材料应用的感受及对市场的看法,线上线下气氛热烈。生物医用材料是新材料领域的一个重要分支,关联着医疗与新材料,近年来广受关注。过去20年来,医疗一直是高速发展的行业。近三年来,在新冠疫情影响下,防疫物资、疫情检测物资、疫苗等市场爆发,让这一市场关注度空前高涨。医疗行业成为各级政府部门、高校、科研院所、企业等都积极推动的经济增长点。本次活动,通过多位产业界校友和母校老师分享个人关于生物医用材料的亲身体验与行业经验,各位校友之间积极互动,将有效助力各位校友的企业发展或职业发展,并推动各位校友之间、校友和母校之间的积极互动。附:主办、协办单位简介北化新材料校友会(筹)旨在建立一个新材料相关行业校友之间及校友与母校间的高水平专业化沟通、交流、服务与合作平台,打造北化新材料校友之家,受学校校友总会领导,由个人会员和企业会员组成,并设有理事会及秘书处。校友会主要工作如下:(一)广泛联络和团结海内外新材料行业校友,促进新材料行业校友与母校之间、校友与校友之间的联系与交流,构建校友之间、校友和母校之间的联络网格;(二)组织开展新材料产业相关的前沿进展、成果推介、产业对接、企业成长、职业发展等各种形式的交流活动,推动母校与校友及校友之间开展新材料产业相关的协作与交流,加强校友之间的联系,助力校友职业发展及校友企业成长,提升学校在新材料行业的品牌和声誉,为国家新材料产业建设和母校发展做出贡献;(三)利用“化育新材”微信公众号等媒体工具,积极宣传校友、校友企业及母校在新材料产业的发展与成就,对接新材料相关企业发展切身需求,推动母校与校友及校友之间开展新材料产业相关的协作与交流,并根据需要为会员提供定制化的咨询服务。欢迎广大有意向的校友及校友企业加入(报名链接)!仪器信息网开通于1999年,隶属于北京信立方科技发展股份有限公司(股票代码:831401),是专业的科学仪器行业门户网站,是中国第一家科学仪器专业门户网站。通过二十余年的辛勤耕耘和大量的基础工作,仪器信息网已经发展成为中国科学仪器行业最重要的产业互联网平台。服务50000家仪器厂商,数千万行业用户。并连续多年被评为行业网站100强。网站自成立以来,以“互动、创新、整合”为服务理念,为科学仪器行业提供专业的信息和网络应用技术服务。2017年,仪器信息网推出仪器及检测行业首款应用产品-仪器信息网app,目前装机量已超过65万,月启动有近50万次,并且用户更精准,与科学仪器行业息息相关。厦门石地医疗科技有限公司以实现“医生” 的产品梦想为理念,为医疗行业提供创新产品的高效开发与批量化生产服务。石地医疗具有来自领先跨国企业及国内“独角兽”企业的研发、生产、管理团队,在医疗科技领域沉浸二十年的经验优势。我们团队致力于解决医疗行业的产品问题,善于对高难度、难量产、精品质的产品进行突破。目前石地已申请专利27项,其中发明专利10项;已授权专利16项,其中发明专利4项。从研发到生产,我们具有全产业的优势资源支持。目前公司具备三个万级洁净车间(厂房总面积3500+4000平方米,洁净室净面积近1200平方米),完备的生物检测实验室,石地可满足所有与医疗相关产品的创新及实现。 上海开伦投资集团成立于1995年,已形成以物业更新改造、租赁经营为主业,涵盖招商引资、内外贸易、金融服务等多元化板块的业务格局。2021年3月区政府批复同意将区管企业主体上海开伦造纸印刷集团有限公司调整为上海开伦投资集团有限公司,试点建设区国有资本运营平台,集团正积极推进新一轮转型发展,以市场化运作方式逐步培育增强投资功能。截至2021年底,集团总资产43.7亿元,净资产11.8亿元;经营的物业土地面积约50.3万平方米,建筑面积约33.2万平方米;下属实体运营企业26家,员工总数269人。
  • 领拓聚焦 | 第十三届全国大学生金相技能大赛选拔赛(省赛)
    为培养学生动手实践能力、激发同学们的科技创新活力,继第十三届全国大学生金相技能大赛校赛后,省赛渐渐拉开序幕。5月17日-19日,广西省和四川省第十三届全国大学生金相技能大赛选拔赛圆满完成。两场大赛均由领拓仪器倾情赞助。全国大学生金相技能大赛是面向全国高校材料类专业学生规格最高、覆盖面最广、影响力最大的一项赛事,是培养学生创新意识、合作精神和工程实践能力的最高水平材料学科竞赛。 本次赛事包括预赛和决赛,分两天进行。比赛规程严格按照全国大学生金相技能大赛的参赛流程及评分标准。选手们经过磨制、抛光、浸蚀、显微镜观察等工序的样品精心制作与观察,最终根据图像分、表面质量分及现场操作分最终得出评定总分。第十三届全国大学生金相技能大赛广西区选拔赛第十三届全国大学生金相技能大赛四川区选拔赛现场精彩回顾广西省全国金相技能大赛 四川省全国金相技能大赛 本次大赛中,领拓仪器携带了徕卡DM4M正置材料显微镜和徕卡DM2700正置材料显微镜来到现场作为大赛的裁判机,同时与各位专家学子们现场交流分享金相解决方案。 01. Leica DM4M正置材料显微镜&bull 研究级半自动智能数字式正置金相显微镜,适合金属、陶瓷、高分子材料、电子元件、粉尘颗粒等样品的观察分析&bull 模块化设计,可实现反射观察、透反射观察配置&bull 复消色差光路,整体光路支持25mm视野直径&bull 观察方式可实现明场、暗场、偏光、微分干涉02 DM2700P专业偏光显微镜在 5 倍可调中物镜转盘上使用5个物镜获取准确无误的样品信息在22-mm 视场中得大概览图借助入射光观测的 UC-3D 照明,获得效果良好的对比度内建反射光路斜射照明模式高度可调的调焦旋钮颜色编码的光阑、聚光镜设置聚焦锁定功能可有效避免样品碰撞物镜03 金相制备虚拟仿真教学软件金相试样制备虚拟仿真教学软件,可以实现金相制样流程的虚拟仿真教学,对金相试样的切割、镶嵌、研磨抛光等工序进行详细步骤介绍,支持学生自主练习以及模拟实操考核。
  • 上海蟠龙医用材料有限公司选购我司口罩拉力试验机
    上海东北亚新纺织科技有限公司董事长、有“袜王”之称的高宝霖决定直接扩大生产,在市区相关部门的支持下,他及时转型布局口罩生产线,他设立了专门生产口罩的上海蟠龙医用材料有限公司。口罩按照形状不同,有平面口罩、杯型、毛巾口罩、三角巾口罩、棉纱口罩以及防毒面具等。防护口罩包括防尘口罩、防护口罩、防毒面具等,根据结构和作用原理,可分为过滤式和隔离式呼吸防护器两大类。符合测试标准:YY 0469-2011 医用外科口罩标准规定每根口罩带与口罩体连接点处的断裂强力应不小于10NYY/T 0969-2013 一次性使用医用口罩标准规定每根口罩带与口罩体连接点处的断裂强力应不小于10NGB T 32610-2016 日常防护型口罩标准规定每根口罩带与口罩体连接点处的断裂强力应不小于20NGB T 32610-2016 日常防护型口罩技术规范规定了口罩带及口罩带与口罩体的连接处断裂强力试验方法测试设备:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制