当前位置: 仪器信息网 > 行业主题 > >

液体颗粒

仪器信息网液体颗粒专题为您整合液体颗粒相关的最新文章,在液体颗粒专题,您不仅可以免费浏览液体颗粒的资讯, 同时您还可以浏览液体颗粒的相关资料、解决方案,参与社区液体颗粒话题讨论。

液体颗粒相关的资讯

  • 业界的一颗璀璨明星——液体颗粒计数器
    业界的一颗璀璨明星 液体颗粒计数器,无疑是业界的一颗璀璨明星,它以其卓越的性能、精准的检测和广泛的应用领域,赢得了广大用户的青睐与信赖。在精密仪器制造领域中,这款设备如同一颗熠熠生辉的宝石,熠熠生辉地展示着其独特的技术魅力。 作为液体颗粒检测领域的佼佼者,液体颗粒计数器拥有高精度的传感器和强大的数据处理能力,可以实时监测并精确分析液体中微小颗粒的数量、大小及分布。无论是用于药品生产、食品加工还是半导体制造等领域,它都能为用户提供准确、可靠的检测数据,助力企业提升产品质量,确保生产安全。 此外,液体颗粒计数器还具备智能化、自动化的特点,能够大大减轻操作人员的劳动强度,提高工作效率。通过先进的软件技术,用户可以轻松设定检测参数,实时查看检测结果,甚至可以在市场上,液体颗粒计数器以其卓越的性能和品质赢得了广泛的赞誉。它以其高可靠性、高稳定性和高重复性等特点,为用户提供了强有力的技术支持,推动了行业的持续发展。综上所述,液体颗粒计数器作为业界的一颗璀璨明星,以其卓越的性能、广泛的应用领域和智能化的特点,为液体颗粒检测领域注入了新的活力。我们有理由相信,在未来的发展中,它将继续闪耀光芒,为行业的进步贡献更多的力量。
  • PMT-2液体颗粒计数器在活性炭中颗粒管应用案例
    PMT-2液体颗粒计数器在活性炭中颗粒管应用案例一、方案背景在环保与水处理领域,活性炭作为高效吸附剂,其性能直接关乎水质净化效果。然而,活性炭在制备、运输及使用过程中,易吸附并滞留微小液体颗粒,这些杂质不仅降低活性炭的吸附效率,还可能成为二次污染源。因此,制定一套科学严谨的活性炭中液体颗粒管控实践方案,对于保障水质安全、提升净化效率具有重要意义。二、方案目标本方案旨在通过精细化管理与先进检测技术,实现对活性炭中液体颗粒的全面、准确监测与控制,确保活性炭在使用前达到既定清洁标准,最大化其吸附效能,减少对后续处理工艺的负面影响,从而守护水质纯净的每一道防线。三、仪器与试剂普洛帝PMT-2液体颗粒计数器是一种用于检测液体中颗粒数量的仪器,它采用光散射原理,能够精确测量液体中颗粒的大小和数量。在活性炭的制备过程中,通过使用液体颗粒计数器,可以实现对活性炭中颗粒的精确管控。普洛帝PMT-2液体颗粒计数器,让活性炭颗粒管控更轻松,更精准!四、检测步骤1. 样品预处理:采用物理方法,有效去除活性炭表面杂质,避免干扰因素。2. 分散与染色:利用专用分散剂将活性炭中的液体颗粒均匀分散,并借助染色剂增强颗粒可视性。3. 检测分析:运用高精度仪器对样品进行多维度扫描,精确测定液体颗粒的数量、大小及分布。4. 数据记录:详细记录检测过程中的各项参数与观察结果,为后续分析提供可靠依据。五、数据报告六、实验结论通过本方案的实施,可实现对活性炭中液体颗粒的有效管控,显著提升活性炭的纯净度与吸附性能。同时,也为活性炭在环保领域的广泛应用奠定了坚实的基础,推动了水处理技术的持续进步与发展。
  • 普洛帝发布液体消光颗粒光谱图谱集
    普洛帝,作为一家在流体颗粒监测技术领域深耕多年的创新型企业,近日正式发布了一套液体消光颗粒光谱图谱集。这套图谱集的诞生,不仅标志着普洛帝在光谱分析领域的一次重要突破,更为相关行业带来了前所未有的便利和可能。这套图谱集聚焦于液体消光颗粒的光谱特性,通过精密的实验与数据分析,将颗粒在不同波长下的消光特性以图谱的形式呈现出来。图谱中,每一个数据点都凝聚着普洛帝科研团队的心血与智慧,它们共同构成了一幅幅精细的光谱画卷,展现了液体消光颗粒的独特魅力。这套图谱集不仅具有高度的专业性和精确性,更在实用性上表现出色。它能够帮助科研人员更深入地了解液体消光颗粒的光谱性质,为相关领域的研究提供有力的数据支持。同时,图谱集也为工业生产中的质量控制提供了可靠的依据,有助于提升产品的性能和品质。普洛帝发布这套液体消光颗粒光谱图谱集,不仅展示了其在颗粒光谱技术领域的领先地位,更体现了其对推动行业发展的责任和担当。未来,普洛帝将继续深耕光谱技术领域,不断探索创新,为相关行业的进步贡献更多力量。可以说,普洛帝发布的这套液体消光颗粒光谱图谱集,不仅是一次技术成果的展示,更是一次对光谱技术领域未来发展的美好憧憬。它必将为相关行业的研究和生产带来更加深远的影响。
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 普洛帝油液监测新品上市---PMT液体颗粒计数器
    普洛帝油液监测新品展播二PMT液体颗粒计数器2017年6月6日英国普洛帝分析测试集团对外推出液监测家族新品-PMT系列液体颗粒计数器,这是继英国普洛帝油液监测家族新品PQ系列铁量仪展播后又一力作。2017年6月至9月是普洛帝油液监测技术型产品集体亮相的时间,普洛帝油液监测家族将汇集油液颗粒监测、油液物性监测、油液化学特性监测和油液磨损监测等相关监测设备及技术,集中向大家展示。英国普洛帝分析测试集团推出全新一代PULUODY/普洛帝PMT系列液体颗粒计数器,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,本系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨两个大单位级,是微纳米检测相融合的全新品类的技术型产品。可用于微米、纳米等微粒检测的PMT系列液体颗粒计数器是液样颗粒分析测试技术型硬件,该产品广泛应用于电子半导体、超纯水、医疗、液压、航空、航天等领域。英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,并与2017年3月伦敦、纽约、北京三地同时上市,2017年6月开放所有行业订购渠道。PULUODY/普洛帝PMT-系列液体颗粒计数器是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨三大单位级,是毫米、微米和纳米检测相融合的全新品类的技术型产品。具有非常高的灵敏度、准确性和重复性,在几秒钟内就可以测量出各种液样中的颗粒含量。近期我司将向广大客户开展油液监测技术报告会,详情请关注公司新闻:简述:油液监测技术的应用与发展,明确油液监测定义,回顾油液监测历程,剖析油液监测正面临的现状,例举离线、现场、在线等技术的特点和趋势。企业链接:油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。产品链接:润滑油铁量仪、润滑油量铁仪、润滑油铁浓度检测、液压油监测设备、颗粒计数器、润滑油监测设备、车用油监测设备、润滑脂检测设备、油液水分、粘度、密度传感器,专注测控 用心服务普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!
  • 硫酸铜产线颗粒管控利器——普洛帝硫酸铜液体颗粒计数器
    硫酸铜生产线上的颗粒管控,历来是确保产品纯度与品质的关键环节。而今,这一领域迎来了一位革新性的守护者——普洛帝硫酸铜液体颗粒计数器,它不仅是生产线上的科技明珠,更是提升生产效率与产品质量的智慧之钥。 普洛帝,以其精准的测量技术与非凡的创新设计,颠覆了传统颗粒检测的方式。这款液体颗粒计数器,专为硫酸铜溶液量身打造,如同一位精密的侦探,能在微观世界中捕捉每一粒可能影响产品纯净度的微小颗粒。其采用先进的光学传感技术,结合智能算法分析,能够实时、准确地计数并分类溶液中的微小颗粒,确保每一滴硫酸铜都纯净无瑕。在繁忙的生产线上,普洛帝展现出了无与伦比的稳定性与高效性。它能够连续工作,不间断地监测硫酸铜溶液的颗粒状况,为生产人员提供即时、可靠的数据支持。这不仅大大降低了人工检测的误差与成本,更使得生产线能够迅速响应颗粒污染问题,采取有效措施加以控制,从而保障了产品的整体质量。 普洛帝硫酸铜液体颗粒计数器的出现,无疑是硫酸铜生产领域的一次重大飞跃。它以其卓越的性能与广泛的应用前景,赢得了业界的广泛赞誉与信赖。在未来的日子里,普洛帝将继续以其专业的精神与不懈的努力,为硫酸铜生产线的颗粒管控贡献更多的智慧与力量。
  • 光刻管控新仪器-普洛帝光刻胶液体颗粒计数器
    光刻管控新纪元——普洛帝光刻胶微粒鉴识者的华丽登场 在科技浪潮的汹涌澎湃中,普洛帝光刻胶液体颗粒计数器的璀璨问世,不仅铸就了半导体制造精密控制艺术的又一巅峰,更如同一束曙光,照亮了产品质量飞跃与生产效率腾飞的康庄大道。这不仅仅是一款仪器,它是智慧的结晶,是精准与效率的代名词,正悄然成为各大芯片制造巨擘手中那把开启未来之门的钥匙。 普洛帝光刻胶液体颗粒计数器,这位光刻胶微粒世界的“显微镜大师”,以其无与伦比的敏锐洞察力和超凡脱俗的精准度,穿梭于微纳米世界的浩瀚之中。它仿佛一位严谨的科学家,时刻紧盯着光刻胶的每一个细微角落,不放过任何一粒可能扰乱光刻图案纯净与精准的“不速之客”。在它的守护下,芯片制造的每一寸土地都沐浴在纯净与精确的光辉之下,确保了每一块芯片的诞生都承载着对完美的无尽追求。 其流体力学设计的精妙绝伦,如同溪水潺潺,确保了样品在检测过程中的平稳流淌,减少了任何可能的波澜,让测量结果更加贴近真相。而激光散射技术的运用,更是将检测灵敏度推向了前所未有的高度,即便是纳米级的微小颗粒,也难逃其法眼,无所遁形。更令人叹为观止的是,普洛帝还融入了人工智能的智慧之光。它如同一位智慧的导师,能够自动识别并分类不同尺寸的颗粒,为工艺优化提供了宝贵的数据宝藏。这些数据如同繁星点点,指引着生产团队在质量控制的征途中不断前行,快速定位潜在污染源,精准调整工艺流程,让质量控制之路越走越宽广,越走越坚实。展望未来,随着5G、物联网等新兴技术的风起云涌,对芯片性能与可靠性的要求已不再是简单的数字堆砌,而是对极致与完美的无尽追求。普洛帝光刻胶液体颗粒计数器深知此道,它将以更加开放的姿态,拥抱量子传感、机器学习等前沿科技,不断迭代升级,以应对更加复杂多变的生产环境与挑战。同时,它也将积极拓展其应用版图,从半导体制造的深邃蓝海,驶向生物医药、精密机械等更广阔的高精度制造领域,为全球工业升级的壮阔画卷添上浓墨重彩的一笔。
  • 液体颗粒计数器解决高粘度光刻胶检测方案深度剖析
    在微纳米制造领域,高粘度光刻胶作为精密图形的关键转移媒介,其纯净度直接关系到最终产品的性能与良率。针对这一挑战,我们精心设计了基于先进液体颗粒计数器的检测方案,旨在精准捕捉并量化光刻胶中的微小颗粒,确保生产过程的无瑕衔接。1、方案背景:随着半导体工艺步入纳米时代,对光刻胶的洁净度要求达到了前所未有的高度。传统检测方法在面对高粘度、低流动性的光刻胶时,往往力不从心,难以有效分离并计数微小杂质。因此,开发一种高效、准确的检测方案显得尤为迫切。2、检测仪器亮点:本方案采用的液体颗粒计数器,集成了高精度激光散射技术与智能算法,能够轻松穿透高粘度介质,精准捕捉直径小至亚微米的颗粒。其独特的流路设计与温控系统,确保了检测过程中光刻胶的稳定流动与均匀分散,有效避免了因粘度差异引起的测量误差。3、检测步骤详解:1)样品预处理:采用特制稀释剂与搅拌装置,确保光刻胶均匀稀释至适宜粘度,同时减少气泡生成。2)自动进样:通过精密泵送系统,将处理后的光刻胶样品平稳送入计数器检测室。3)实时检测:激光束在样品中穿梭,散射光信号被高灵敏度探测器捕捉,转化为颗粒大小与数量的精确数据。4)数据分析:智能软件即时处理数据,生成直观报告,包括颗粒分布图、浓度趋势等关键信息。4、数据结果解读:检测结果不仅反映了光刻胶的即时洁净状态,还为工艺优化提供了宝贵依据。通过持续监测,可及时发现并纠正潜在污染源,保障生产线的稳定运行。5、注意事项:-确保检测环境无尘、恒温,以减少外界干扰。-样品处理时需严格控制稀释比例与搅拌时间,避免引入新污染源。-定期校准仪器,保证测量结果的准确性与可靠性。
  • 珀金埃尔默发布LPC 500 液体颗粒计数器新品
    简介LPC 500™ 液体颗粒计数器是一个单颗粒光学粒度分析(SPOS)系统,旨在以高分辨率对单个颗粒进行计数和粒度分析。SPOS 技术被设计用于检测通过一个非常薄的“光学传感区”的单个颗粒。用在油样检测时,无论是高粘度还是低粘度样品,通常都只需要消耗3 到4 mL10 倍稀释后的样品,即可得到可重复的结果,同时降低清洗溶剂消耗、减少溶剂浪费。LPC 500 硬件LPC 500 系统由三部分组成:光学传感器、多通道脉冲分析仪(MPA)和软件控制器。在分析过程中,液体通过光学传感器进行检测,产生脉冲电压,并由MPA 转化为粒度分布(PSD)。在LPC 500 软件中实时显示高分辨率的PSD:每个通道(8 到512)的绝对计数与直径,在光学传感器覆盖的总尺寸范围内(0.5 到400 微米)以对数间隔排列。其他衍生分布(微分和累积分布)?基于数量、面积和体积加权?根据测量的颗粒数分布计算。LPC 500 光学传感器LPC 500 光学传感器使用单颗粒光学粒度分析(SPOS)技术。这项技术被用于在单个颗粒通过一个非常薄的“光学传感区”时检测特定尺寸范围内的单个颗粒。传统上使用两种物理方法来实施SPOS 技术?消光和光散射:• 消光(LE)法:这种方法测量携带悬浮在流体中的颗粒的流体通道传输的光强度的降低,这是由单个颗粒在光束中瞬间通过引起的。• 光散射(LS)法:这种方法是对LE 法的补充。这种方法测量由穿过光学传感区的颗粒散射引起的光强度的增加。组合法?消光+ 光散射:这是一个新开发的混合设计(美国专利US5835211A),将LE 法的优势(粒径范围大,对颗粒组成相对不敏感)与LS 法的优势(高敏感度?更低直径下限)结合在一起。这是通过结合LE 和LS 电子信号响应实现的,从而在一个颗粒通过传感器的光学传感区时产生一个单一的“求和”信号脉冲。LPC 500 多通道脉冲分析仪MPA 用来检测光学传感器产生的每个脉冲,测量它的高度(不论是在消光模式下还是在求和模式下),通过传感器校准曲线确定与该值相关的颗粒直径。然后将一个额外的“计数”添加到包含这个特定颗粒尺寸的直径“通道”中。处理电子设备以高速率执行此任务,允许颗粒计数/ 粒度分析速率超过10,000 个/ 秒。可用配置LPC 500 提供了两种配置:将LPC 500 与Avio® 500 电感耦合等离子体发射光谱仪油品系统相结合,用于组合磨损金属和颗粒计数的联用配置以及仅用于颗粒计数的LPC 500 独立配置。联用配置LPC 500 液体颗粒计数器与Avio 500 电感耦合等离子体发射光谱仪油品系统相结合能够对同一次进样的稀释后样品进行磨损金属分析以及颗粒计数和粒度分析。对于无需颗粒计数的金属分析,这项技术提供平均45 秒的样品分析时间,使用OilPrep™ 油稀释装置制备样品只需稀释少于1 毫升的样品。LCP 500 系统的所有特点和数据输出都集成到了Syngistix™ ICP 软件中。方法中可以启用或禁用颗粒计数,可以选择各种报告格式和颗粒计数尺寸,增加了测试的灵活性。LPC 500 计数器独立配置LPC 500 也可以作为一个独立的颗粒计数器,它的样品需求量更少、样品制备更简单,单个样品分析时长仅95 秒。与联用配置不同的是,独立LPC 500 由一个单独的软件包控制,允许对颗粒计数参数进行更多的自定义。最后,独立LPC500 计数器的占地面积是用于在用油品分析的所有自动独立颗粒计数器中最小的。总结LPC 500 液体颗粒计数器单个样品的分析时长仅约45 秒,稀释样品制备使用的样品少于1 毫升。此外,凭借紧凑型设计,它还能与Avio 500 电感耦合等离子体发射光谱仪油品系统轻松结合,节约优化宝贵的实验室空间。创新点:LPC 500™ 与ICP-OES联用将突破性的提供一次运行中同时完成计数和元素分析的解决方案,将原本两次检测才能完成的工作一次性完成,颗粒物计数与元素分析均在ICP软件控制下自动完成,整个过程仅需45秒。每次分析使用少于1 毫升的润滑油样品。同时也是行业中最小的自动粒子计数器。这套LPC 500™ 与ICP-OES联用方案已在申请专利,是珀金埃尔默研发的独家润滑油行业解决方案,有效提升工作效率,节省运营成本。 LPC 500 液体颗粒计数器
  • 液体颗粒计数器-电子级超纯水领域水质管控的新星
    液体颗粒计数器,作为电子级超纯水领域水质管控的璀璨新星,正以其无与伦比的精准度与高效能,引领着高纯度水处理技术的革新浪潮。它宛如水质监测领域的精密之眼,能够洞悉并量化水体中微小至纳米级别的悬浮颗粒与污染物,确保每一滴电子级超纯水都纯净无瑕,满足半导体制造、生物医药、精密仪器清洗等尖端行业对水质极致纯净的严苛要求。 这颗新星不仅拥有卓越的分辨率与灵敏度,能在极短的时间内完成大量样本的精准分析,更以其智能化的操作界面与自动化流程设计,极大地简化了水质监测的复杂流程,提高了工作效率与数据准确性。它如同一位不知疲倦的守护者,24小时不间断地巡逻在超纯水系统的每一个角落,任何细微的杂质波动都逃不过它的敏锐洞察。 在电子级超纯水制备与应用的每一个环节,液体颗粒计数器都扮演着至关重要的角色。它不仅是提升产品质量、保障生产安全的关键工具,更是推动相关行业技术进步、实现绿色可持续发展的强大助力。随着科技的不断进步与应用领域的持续拓展,液体颗粒计数器这颗新星的光芒将愈发耀眼,照亮水质管控的未来之路。
  • 【霍尔德】液体在线式颗粒计数仪保障机械设备正常运行
    【液体在线式颗粒计数仪←点击此处可直接转到产品界面,咨询更方便】根据国内外资料统计,液压润滑系统故障中,70%~85%是由油液中的颗粒污染引起的。因此,液压润滑行业对油液的颗粒污染问题给予了高度重视,对油液的监控也变得至关重要。油液的清洁度直接关系到液压润滑系统的正常运行。液体在线式颗粒计数仪是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 今日动态:浙江检测机构从得利特引进液体颗粒计数仪成功验收使用
    北京得利特油品分析仪得到浙江检测机构顺利验收,浙江检测机构新建实验室成功投入了使用。近日,由北京得利特生产的一批油品检测设备顺利完成出厂检测,成功发往浙江检测机构实验室。据了解,此次发往电厂设备较多,设备清单如下:液体颗粒计数仪、卡尔费休微量水分测定仪 、破乳化试验器、闪点试验器。合同签订后,得利特从材料采购、工艺、制造、装配等全过程进行严格监督,深入一线严把质量关;经常召开进度协调会,对各类问题事无巨细进行讨论决策。为了确保了该批检测设备交货进度风险可识别和可管控。仪器发往客户实验室后,已经安排售后进行了安装调试,经过一台安装调试,实验室完成搭建!
  • 普洛帝多维跨越创造液体颗粒检测新高度 发布全新品类微纳米检测设
    普洛帝多维跨越创造液体颗粒检测新高度发布全新品类微纳米检测设备 [导读]英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,本系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨两个大单位级,是微纳米检测相融合的全新品类的技术型产品。 可用于微纳米微粒检测的PMT-2液样颗粒分析仪英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,并与2017年3月伦敦、纽约、北京三地同时上市,2017年5月将会向世界所有行业开放订购渠道。PULUODY/普洛帝PMT-2系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨三大单位级,是毫米、微米和纳米检测相融合的全新品类的技术型产品。PMT-2创新点多维跨越 创造液体颗粒检测新高度测试精度高 - 重新定义微米级别的检测(0.01微米或10纳米)检测误差小 - 双激光窄光技术一检测二核查的检测思维分析浓度高 - 创新构造传感器技术(PMT创新检测技术) 在线监测、便携移动式检测、实验室离线分析等多方式集于一体手机APP、PC分析、远程LAN监控等控制方式可多操作途径可实现纳米、微米和毫米减的一键切换应用于医药类微粒检测、油品类颗粒度检测和零部件清洁度监测知识链接:随着个人掌上电脑、数码产品的丰富,工业PC、商业电脑及各类工控设备的发展更新,电子半导体领域日新月异,对于生产过程中的污染物监测尤为重要。工业中的清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污染物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。产品是由零件经过设备加工装配而成,所以清洁度分为零件清洁度和产品清洁度。产品的清洁度与零件的清洁度有直接的关系,同时还与生产工艺过程、车间环境、生产设备及人员有密切关系。PULUODY/普洛帝PMT-2将会对污染物的种类、形状、尺寸、数量、重量等项目上进行相关的数据分析,并保证分析的误差、准确度和重复性,成为工业企业中污染物控制设备的有力检测工具。企业链接:油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!029-85643484
  • 普洛帝成功挺进了剥离液中颗粒计数的领域
    普洛帝成功挺进了剥离液中颗粒计数的领域,并为剥离制造业的发展注入了新的活并为剥离制造业的发展注入了新的活力。剥离液中的颗粒管控方案一直是工业制造领域中备受关注的问题。随着技术的不断进步,对剥离液中的微小颗粒进行精确计数和管控显得尤为重要。在这方面,普洛帝液体颗粒计数器凭借其卓越的性能和广泛的应用领域,成为了一个备受推崇的解决方案。 在剥离液颗粒管控的实际应用中,普洛帝液体颗粒计数器以其独特的测量原理和高精度检测能力,展现出了强大的实力。它采用先进的激光散射技术,能够准确测量剥离液中颗粒的尺寸和数量,为颗粒管控提供了可靠的数据支持。同时,计数器还拥有智能化的操作界面和便捷的数据处理功能,使得用户能够轻松掌握剥离液中的颗粒分布情况,从而制定更为精准的管控方案。 浙江半导体体制造企业,引入了普洛帝液体颗粒计数器对剥离液中的颗粒进行监测。在实际应用中,计数器不仅成功实现了对剥离液中颗粒的精确计数,还通过数据分析,帮助企业发现了生产过程中潜在的污染源。针对这些问题,企业及时采取了相应的措施,有效降低了剥离液中颗粒的含量,提高了产品的质量和稳定性。此外,普洛帝液体颗粒计数器还广泛应用于其他工业领域,如化工、制药、食品等。在这些领域中,同样需要对液体中的颗粒进行精确管控,以确保生产过程的顺利进行和产品质量的稳定。普洛帝液体颗粒计数器的广泛应用,不仅提高了生产效率,还为企业创造了更多的价值。
  • 油价一夜暴负,但谁来监控油品颗粒的污染?
    2020年注定是不平凡的一年,正当所有人的目光都还聚焦在新冠肺炎全年肆虐,可能对各自的生活和工作会造成多大影响时。4月20日晚,芝加哥商品交易所5月交货的轻质原油期货(WTI5月合约)出现闪崩行情,当天报以每桶-37.63美元结算,历史上首次跌入“负值”1,相当于买油不要钱还倒贴给你钱。这么好的事情对于我们这个原油消费大国而言,是不是一个很好的购买时机呢?因为根据海关总署的数据,2019年我国进口原油创纪录达到5.06亿吨,较2018年高出9.5%,原油对外依存度已突破70% 2 。对于国内的炼油厂而言,若此时大量低价进口原油,生产出汽柴油、航空煤油、润滑油、液压油等产品来销售,必将获取颇丰的利润。而对于下游的润滑油、液压油生产企业,也将在此次行情中减少购买成本。但不管是生产还是使用这些燃油和润滑油产品,产品的质量检测是无法回避的一环。其中一个是油液颗粒污染的检测,因为哪里有液体,哪里就有液体的颗粒污染。而解决此问题可能需要完成一系列关键步骤,例如仔细监控机器的磨损迹象、评估过滤器的过滤性能,确保所购液压油可供使用。根据国内外统计资料,液压传动系统的故障大约有80%是由于液压系统的污染引起的,在各种污染物中,固体颗粒污染物引起的液压系统故障占总故障的60-70% 3。颗粒污染虽然是不可避免的,但是其破坏性影响是可被消除的。通过借助自动化便携式/或在线液体颗粒计数器,可以在采油和炼油现场,快速地检测油液颗粒的污染程度,避免因为过度污染造成的严重后果。这些便携或在线的设备可以适用于海上油气钻井平台,也可以用于陆上油田和炼油厂。通过使用液体颗粒计数器,可以帮助生产和使用以上这些石油产品的企业:- 保证产品的质量- 降低维护的成本- 提高机器可靠性- 提高使用人员的操作安全性- 减少润滑剂和过滤器的消耗- 报告标准(ISO4406、SAE 4059、NAS 1638等)贝克曼库尔特的HIAC液体颗粒计数器长期以来一直处于业内领先地位。它们不仅符合了 ISO 11171-2016的准确性和可靠性准则,还致力于满足石油行业苛刻的易用性和维护标准的要求。HIAC 8011+ 实验室液体颗粒计数器- 分析液压油、溶剂和水溶液的样品- 监控移动和工业液压系统中的颗粒污染平- 测量设备的滚降清洁度- 测试零件清洗系统的清洁度HIAC PODS+ 便携式液体颗粒计数器- 适用于基于现场的流体动力应用和更多、 适应燃油、乙二醇、有机物和水性流体- 样品流体来自 1 - 425cSt,无需稀释- 数据分析时间在 60 秒以内- 流量路径在几秒钟内清洁,消除了样品结转HIAC ROC(远程在线计数器)- 连续在线 + 免维护操作- 设计适合任何应用 (2-424 cSt)- 高度可视化的视频显示(ISO、JAS 或 SAE 报告代码)- 高温和压力能力,适用于恶劣环境*上述产品仅供工业与科研使用,不用于临床诊断。参考资料1. “负油价”幕后 2. 深度解读 | “买油送钱” 你能捞到好处吗?3. 固体颗粒污染物对液压传动系统的危害请点击“阅读原文”获取“颗粒污染计数器”详细资料~
  • OPTON讲堂 | SEM中液体封装技术的应用
    扫描电镜(SEM)在现代科学研究以及工业生产的应用十分广泛,其对于样品的要求往往是固体样品。但是随着科学研究的深入发展以及工业产品的丰富,往往需要对液体样品进行观察,但是扫描电镜需要在真空状态下工作,所以在液体会在真空状态下挥发,并且污染电镜腔体,产生设备损坏。针对以上情况,市场上有厂家研发了大气压扫描电镜电镜,即可以在大气压下观察样品,但是由于气体对于电子束的强烈的散射作用,使得电子束发生偏转,大幅降低了电镜的分辨率,从而影响了其应用的范围。第二种解决方案是利用环境扫描模式,实际上就是可以把样品室的真空度变为很高的气压值,使得低于气体的蒸汽压,从而对含水样品进行观测,但是此种模式的缺点是由于样品仓真空度较低,使得样品室容易被污染,进而影响电镜灯丝的寿命以及拍摄效果。因此人们采用液体封装的技术来解决液体样品观察的技术难题,其本质的设计思路就是将液体单独封装在一个密封空间内,使得液体与样品室进行物理的隔绝,以避免液体对样品室的污染。其原理都是利用超薄的氮化硅材质作封装的窗口,因为氮化硅相对于电子束是透明的,可以透过其观察封装在内的液体样品。图 1液体封装技术示示意图[1]其实现形式有两种,第一种是上下两片的形式进行封装,如图2所示,待测液体放置在中间区域,且承载液体区域的上下两片都采用氮化硅材质。此类封装芯片价格相对较低,但是封装操作较为繁琐。第二种方式是采取侧面封装的结构,如图2所示,待观测液体由侧面注入,并进行封装的模式。图2 上下对粘液体封装系统与侧面液体封装系统示意图那么我们来看一看液体封装的实际应用案例吧。首先是在半导体工业上面,我们知道晶圆的制造过程中,需要对其进行精密的抛光处理,其抛光剂的组成形态往往直接对应着抛光效果的优良,因此经常要对抛光液的颗粒进行观察,但是由于抛光过程是在液体形式下进行的,所以单独观察抛光剂在干燥情况下的状态并不是真实的工作状态,同时由于在液体抛光剂干燥的过程中往往会产生颗粒的聚集,影响颗粒真实状态的观测,因此,液体封装技术对其观察可以得到真实的颗粒的分布状态。图3表示了在干燥后与液体条件下对Cu颗粒的电镜观察照片。 图3 Cu颗粒在不同模式下的电镜图像(左干燥后,右液体环境)第二个应用方面是在催化剂方面,因为催化剂的微观形态直接影响其化学活性以及催化效果,那么其生成的溶液环境的原味观察就十分必要了。如图4所示HAuCl4溶液中的电子束诱导生成枝晶结构的STEM观察。图4 SEM中液体封装系统显示电子束诱导HAuCl4溶液中的枝晶生长(STEM模式)[2]在Li金属电池中,工作环境常常是在液体环境中,其锂化反应的机理也需要在液体环境下进行观察,如图5所示了液体封装观察的示意图以及锂化反应中Si纳米线的反应过程,以及在变化过程中纳米线的形态变化以及成分变化。图5 液体封装锂电池锂化反应示意图[3]图6 LiFePO4材料在Li2SO4电解质中充放电过程中的结构与化学成分变化
  • 横河电机收购液体粒子成像解决方案提供商Fluid Imaging Technologies公司
    横河电机公司宣布,根据双方约定,于2020年4月8日完成对Fluid Imaging Technologies公司全部股份的收购。Fluid Imaging Technologies公司拥有分析悬浮在液体介质中的细胞和其他类型颗粒的尖端技术和经验,专门从事液体中悬浮细胞等粒子的测量设备的研发、制造和销售。通过将Fluid Imaging Technologies纳入横河集团,横河将能够扩展生命创新业务,提供细胞观察解决方案的产品组合,加强生物经济市场的业务。Fluid Imaging Technologies是开发流体成像仪器的先驱,这些仪器结合了传统显微镜(观察细胞)和流式细胞仪(高速分析悬浮在液体介质中的淋巴及其他类型血细胞的特性)的功能,能够对液体样品中的颗粒进行成像、测量、分析和计数,可用于海洋研究、市政水管理等领域,也可用于生物制药、化学制品、石油和天然气等行业。横河电机通过提供用于细胞内部三维观察的CSU系列共焦扫描仪单元及用于培养细胞进行药物自动评估实验的CellVoyager系列高含量筛选系统,支持活细胞成像系统的前沿研究和开发。这些仪器适用于观察培养在培养皿和其他培养皿表面的粘合细胞。横河电机产品系列中增加了Fluid Imaging Technologies的流体成像仪器后,将为客户提供更多选择,而我们将AI辅助图像分析技术与这些技术相结合,将使我们能够为生产线上的抗体药物的质量检查和供水系统的水质检查等应用提供新的解决方案。横河电机将流体成像技术与其在石油、化工、给排水处理行业的控制业务的核心技术和专业经验相结合,将能够在医疗保健、食品和饮料、制药和环境研究等不同领域为客户提供新的价值。Fluid Imaging Technologies公司总裁兼首席执行官Kent Peterson说:“流体成像仪器与横河电机的光学工程、人工智能软件、市场营销能力相结合,将加速FlowCamTM成为流体成像技术全球尖端品牌的定位。”横河电机执行役员兼生命创新业务总部负责人中尾宽说:“横河的长期目标是2050年为社会的可持续增长做出贡献。我们的目标之一是为所有人提供福利。我坚信流体成像技术将为实现这一目标做出巨大贡献。 流式成像颗粒分析系统
  • 斯达沃发布斯达沃实验室油液颗粒计数器SDW-901新品
    SDW-901油液颗粒计数器(也叫油液污染度测定仪)是依据GB/T 18854-2002(ISO11171-1999)等国家及国际标准研制的专门用于油液中污染粒子等级检测的仪器。该仪器采用光阻(遮光)法计数原理研制,当液体中的微粒通过一窄小的检测区时,与液体流向垂直的入射光,由于被不溶性微粒所阻挡,从而使传感器输出信号变化,这种信号变化与微粒的截面积成正比,从而检测液体中的颗粒的大小和数量。可提供快速、准确、可靠、可重复的检测结果及完整的污染监测分析报告 适用于液压油、润滑油、抗燃油、绝缘油和透平油等颗粒污染度的检测。可广泛应用于航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域。   主要应用:实验室油液分析、液压设备和日常维护的验收、系统的清洁验证、部件的清洁验证、液压部件的磨损测试。 主要特点■ 采用国际液压标准委员会制定的光阻(遮光)法计数原理■ 高精度的激光传感器,测试范围宽,性能稳定,噪声低,分辨率高■ 采用高压注射泵取样方式,可自行设定取样体积,进样速度稳定,取样精度高■ 采用了正负压结合的进样系统,可实现样品脱气,适合不同粘稠度的检品测试■ 内置压力传感器,可以设置压力值,并自动判断舱体内气压,保证安全■ 内置空气净化系统,保证测试不受污染■ 内置多重校准曲线,可兼容所有国内外常用标准进行校准■ 内置GJB-420B、NAS1638、ISO4406(GB/T14039)、SAE4059E和ГOCT17216-71等多种常用标准,支持自定义标准测试,并可根据客户需求设置所需标准。一次测试可以给出所有标准的测试数据和污染度等级。■ 16个任意设定粒径尺寸,内置近万个粒径,便于进行颗粒度分析。■ 可采用标准取样瓶或取样杯等多种取样容器,满足不同行业的检测要求■ 彩色触摸屏操作,内置打印机,结构简洁大方,操作简单方便■ 全功能自动操作,中文输入,具有数据存储、打印功能■ 内置数据分析系统,可根据标准判定样品等级■ 可进行单通道以及多通道校准,实现自动校准功能■ 具有RS232接口,可连接电脑或实验室平台进行数据处理■ 具有海量数据存储、打印功能,本机可存储1000组数据且支持U盘存储数据 技术指标■ 光源:半导体激光器■ 粒径范围:0.8um~600um(根据不同的传感器而定)■ 检测通道:16通道,任意设置粒径尺寸■ 分辨力:优于10%■ 重复性:RSD■ 粘度范围:最大350cSt■ 取样体积:0.2~1000ml■ 取样精度:优于±1%■ 取样速度:5 ~80mL/min■ 气压舱最大真空:0.08MPa■ 气压舱最大正压:0.8 MPa■ 最大颗粒浓度:20000粒/mL■ 电源:110~245V AC、50Hz,70W■ 外形尺寸:340mm╳410mm╳650mm l 配件指南l 超声波清洗器l 气压泵l 高压注射器 注意事项1.待气压仓的压力完全泄掉,方可打开气压仓;2.在安装或拆卸注射器时,要轻拿轻放,注意安装 或、拆卸方法;3.每次试验完,要用清洁的石油醚清洗注射器,以 便于下次试验。创新点:l 采用国际液压标准委员会指定的光阻(遮光)法计数原理。 l 高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高。 l 采用精密注射泵取样方式,可自行设定取样体积,进样速度稳定,取样精度高。 l 采用了正负压结合的进样系统,可实现样品脱气,适合不同粘稠度的检品测试。 l 内置空气净化系统,保证测试不受污染。 l 内置多重校准曲线,可兼容所有国内外常用标准进行校准,内置GJB-420B、NAS 1638、 l ISO 4406和ГOCT 17216 四种常用标准,支持自定义标准测试,并可根据客户需求设置所需标准。 l 可采用标准取样瓶或取样杯等多种取样容器,满足不同行业的检测要求。 l 彩色触摸屏操作,中文输入,自动存储数据,内置打印机,结构简洁大方,操作简单方便。 l 内置数据分析系统,可根据标准自动判定样品等级。 l 具有RS232接口,可连接电脑或实验室平台进行数据处理。 l 可有偿提供计量站测试报告。
  • 激光驱动液体流动新机理发现
    p & nbsp  激光最新发现与创新 br/ /p p   从电子科技大学基础与前沿研究院获悉,该院王志明教授团队与来自河南工程学院、休斯顿大学、哈佛大学等高校的合作者,发现了一种全新的光流体学机理,并成功利用脉冲激光在纯水中驱动持续高速的水流喷射。相关论文已在《科学前沿》在线发表并登上首页头条。 /p p   高效地利用脉冲激光直接驱动液体流动,一直是困扰国内外科学界一大难题。王志明团队在发现这种全新光流体学机理的实验中,首先在溶液中加入金纳米颗粒,利用光声效应实现激光对液体的首次驱动 随后将含有金纳米颗粒的液体替换成纯净水,再次利用脉冲激光照射后,发现其在纯水中依然可以持续、高速地驱动水流。 /p p   为揭开这一神奇现象,团队发现首次实验中玻璃皿内壁激光聚焦处,会产生一个附有大量金纳米颗粒的微流体腔,而这个如同“火山口”的微腔,正是溶液替换后依然能被激光驱动的关键。“这个‘火山口’连接了光声效应和声波驱动效应。”王志明说,该微腔通过激光照射后,在金纳米颗粒和腔体的共同作用下,可产生定向的高频超声波,通过声波驱动效应,驱动分散液产生高速流动可产生超声波并驱动液体流动。 /p p   “这种全新的光流体机理,有机地融合了光声效应和声波驱动流体效应两个基本的物理过程,最终实现激光对液体的驱动。”他说,正是在这种原理下,一旦微腔形成,将金纳米颗粒分散液替换为纯水或其他溶液后,激光依然可驱动其他液体流动。 /p p br/ /p
  • 原位液体环境透射电镜技术初相遇
    p   撰文:王文 /p p   在透射电子显微镜中,搭建nano-lab,原位观察纳米材料在外场,如力、热、光、电、磁等作用下的行为,对于纳米材料研究者已经并不陌生。目前,原位电镜研究进行地如火如荼,并取得了很多令人瞩目的成果。今天,就为大家简单介绍一下原位透射电镜技术中的一种——液体环境透射电镜(Liquid cell TEM)。 /p p    strong 一、为什么要研究液体环境透射电镜技术? /strong /p p   绝大多数的液体,包括水和其他有机溶剂,有着较大的饱和蒸气压,无法在透射电镜的高真空环境中存在,因此在研究液体环境中纳米材料的行为时,需要构建液体存放单元,将液体与电镜中高真空环境隔离开来,这就需要利用Liquid cell TEM。Liquid cell TEM实际上就是通过微纳加工,制作液体存放单元(Liquid cell),然后将它固定在普通样品杆或者专用液体样品杆头部,放入电镜进行观察。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ad89408b-a05e-4162-a393-3ace84a9b2e2.jpg" title=" 1.jpg" / /p p style=" text-align: center "   strong  图 1. Liquid Cell 结构示意图 /strong /p p    strong 二、原位液体透射电镜技术发展史 /strong /p p   In-situ Liquid cell TEM的雏形可以追溯到1934年,比利时布鲁塞尔自由大学的Morton,利用两片铝箔包裹样品的方法首次尝试活体生物样品的透射电子显微学研究,但是由于铝片及液体层较厚,其分辨率仅能达到微米量级。 /p p   近年来得益于微纳加工技术以及微流控技术的进步,Liquid cell的制备得到突破性进展。2003年F. M. Ross设计制作的原位电化学Liquid cell芯片,是近代Liquid cell制备的里程碑。其结构如图2所示,底层硅片沉积一层多晶金电极,与顶层硅片之间通过SiO2环垫片胶合形成电化学反应器,顶层硅片有两个容器,分别引出两个电极用来施加电偏压。使用时将液体注入,通过毛细作用流入观察窗口,然后将Liquid cell密封,放入电镜中观察。由于成像电子束需要透过100nm氮化硅薄膜窗口,以及接近1μm液体层空间分辨率仅为5nm。这种在两层硅片之间形成液体腔室,采用氮化硅薄膜做观测窗口的芯片,是后续很多改进Liquid cell的发展原型。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/472b1387-271a-44da-a837-6d00c56951ea.jpg" title=" 2.jpg" / /p p    strong 图2 (A). Liquid cell示意图,(B)二电极Liquid cell光学照片(Rosset al., Nat. Mater., 2003, 532)。 /strong /p p   目前Liquid cell制作方式主要有两种,一类是closed cell,另一类是包含液体流通管道的flow cell(见图3)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/f501f1c1-4897-4d45-a12b-57c2381ca6f6.jpg" title=" 3.jpg" / /p p    strong 图 3. A.closed cell 三维结构示意图,B. 沿A图中横线横断面结构图(Zhenget al., Science, 2009, 1309)C. flow cell结构示意图(de JongeN et al., PNAS, 2009, 106). /strong /p p   2009年郑海梅报道了一种超薄氮化硅窗口Liquid cell如图3A& amp B,其氮化硅薄膜厚度仅为25nm,上下层芯片之间用超薄铟垫片键合形成Liquid cell室,观测窗口内液体层厚度约为200nm。在此基础上,2014年Liao等人对超薄氮化硅窗口Liquid cell技术进行改进,将氮化硅薄薄膜度进一步减小为13nm,液体层厚度约为100nm,有效地将空间分辨率提高到原子级。 /p p   2009年Neils de Jonge等人设计了开放Liquid cell,如图3C,在无需冷冻和干燥的条件下,原位观察完整细胞中的单个分子。其液层厚度约为7μm,空间分辨率可以达到4 nm。 /p p   除了采用氮化硅薄膜作为观测窗口,2012年Jong Min Yuk首次提出利用石墨烯薄膜制备Liquid cell,并原位研究了钯纳米晶体的生长过程,如图4。利用石墨烯作为观察窗口材料,可以有效较少甚至忽略电子散射进而实现原子级分辨率。随后,利用石墨烯作为电子束透射窗口,衍生出了多种复杂的石墨烯Liquid cell结构。特别的,2014年JongMin Yuk利用Liquid cell观察了硅纳米颗粒表面各向异性锂化过程,使得利用石墨烯Liquid cell进行电化学研究成为可能。但由于石墨烯薄膜很薄,很难放置常规的电化学电极,石墨烯Liquid cell用来研究电化学过程仍然受到很大的限制。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/d7943de3-4150-46a7-b462-f5f785b7233b.jpg" title=" 4.jpg" / /p p style=" text-align: center "    strong 图 4 石墨烯 Liquid cell 示意图(Li et al.,Science 2010,330). /strong /p p   Liquid cell TEM不仅可以用来原位观察液体环境中纳米材料的行为,还可以在Liquid cell芯片和液体杆上集成加热、冷冻元件,用于纳米材料功能性测试,极大地拓宽了透射电镜的研究范围。如Haimei Zheng 课题组Kai-Yang Niu等利用可加热Liquid cell,原位研究了柯肯达尔作用下,氧化铋空心纳米颗粒的形成过程。K.Tai利用冷冻平台,研究了结晶期间冰中的相变,以及结晶前表面与金颗粒的动态相互作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a142ae6e-5b9c-46c5-805d-1c81aab4e20f.jpg" title=" 5.jpg" / /p p    strong 图5. A.Hollownanoparticle growth dynamics via Kirkendall effect (Paul Alivisatoset al., Nano Lett,2013,13). B.The dynamic interactions of Aunanoparticles at the ice crystallization front (Dillon et al.,Microsc. Microanal, 2014, 330) /strong /p p   综上,目前Liquid cell芯片多是基于硅基衬底加工,窗口材料一般采用超薄氮化硅薄膜,Haimei Zheng课题组可以将氮化硅薄膜做到13nm左右,其他课题组以及商业化Liquid cell窗口材料一般做到30nm左右,窗口大小50*50μm。分辨率可以达到原子级,接近电镜固有分辨率。并且可以集成加热和冷冻功能,但对liquid cell稳定性要求较高,并不容易实现。 /p p   strong  三、原位液体透射电镜技术的应用 /strong /p p   利用In-situ Liquid cell TEM可以观察纳米颗粒成核和生长的过程,用实验证明一直存在争议的问题,例如纳米颗粒液相生长过程中主导机制是单体附加,还是颗粒融合。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/deb70f24-dd19-4eba-8290-004651bb1c0e.jpg" title=" 6.jpg" / /p p   strong  图 6. Video images showing simple growth by means of monomer addition (left column) or growth by means of coalescence (right column). (Zheng et al., Science, 2009, 1309) /strong /p p   可以研究异质纳米晶体生长过程 /p p style=" text-align: center" img style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201803/insimg/d3a4a6f9-e362-45d2-9efc-3eb88e58cc1c.jpg" title=" 7.jpg" height=" 246" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图7. Comparison of Pdgrowth on 5 and 15 nm Au seeds. (a, d)Starting dark-field STEM images of a 5 nm(a) and a 15 nm (c) Au nanoparticles in 10 μM aqueous PdCl2 solution (samescale). (b,e) The same two particles after Pd deposition (84 s total beamexposure). (c, f) Schematic illustration of the Pd growth morphology for thetwo sizes of Au seed nanoparticles (E. A. Sutter et al., Nano Lett, 2013, 13) . /strong /p p   可以研究纳米颗粒自组装过程 /p p style=" text-align: center" img style=" width: 450px height: 409px " src=" http://img1.17img.cn/17img/images/201803/insimg/a1977cd7-4f4d-412b-a23d-ae50c19761d1.jpg" title=" 8.jpg" height=" 409" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图8.TEM images of NPassembly formed under electron beam irradiation (a,b) and drop casting (c,d) onSiNx TEM grid. The scale bar is 100 nm (Jungwon Park et al., ACS NANO, 2012, 6) . /strong /p p   可以研究锂离子电池锂化过程。Huang 等人在开放 Liquid cell 中原位研究锂离子电池锂化过程中,氧化锌纳米线的膨胀、伸长和螺旋行为。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/965878a3-55a6-46c9-b846-05e5d30fc04a.jpg" title=" 9.jpg" / /p p    strong 图 9. Schematic of the experimental setup(Li et al.,Science 2010,330). /strong /p p   还可以用来观察一些生物样品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a94ef351-8826-4e37-be8b-e3ff343c362c.jpg" title=" 10.jpg" / /p p    strong 图 10. Image of the edge of a fixed COS7 cell after 5-min incubation with EGF-Au(de Jonge N et al., PNAS, 2009, 106). /strong /p p   当然Liquid cell TEM的研究内容不仅局限于这些,感兴趣的可以阅读Hong gang Liao 2016年发表在Annu. Rev. Phys.Chem.的一篇综述文章Liquid Cell Transmission Electron Microscopy。 /p p   看到这里,估计有人会问,在研究过程怎么排除电子束对反应过程的影响呢?电子束的确是让人又爱又恨的存在,既需要利用它来成像,又不希望它与研究材料发生相互作用影响实验结果。不过,别担心,Liquid cell TEM领域大牛Ross已经为你提供了量化电子束影响的理论依据!说到这里,小编不禁要感叹,Ross是一位学术造诣很深又乐于分享的大牛。某次会议有幸向Ross当面请教,她非常nice地鼓励了我蹩脚的英语和并不成熟的想法,并且很耐心地给我讲解,我们刚入门的科研人需要这样优秀的偶像。 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ef62778c-b47c-42b7-af9f-ca7df8f18d17.jpg" title=" 00.jpg" / /p p   strong  四、国内研究现状 /strong /p p   08年以来国内的透射电镜发展十分迅速,目前国内应该有超过60台带有球差校正的透射电镜,而且这一数字还在迅速增加。其中做Liquid cell TEM相关研究的课题组也有不少,并取得了不少重量级研究成果,鼓掌~~~~目前国内从事Liquid cell TEM研究的课题组主要有:浙江大学张泽院士、厦门大学廖洪刚教授、北京工业大学隋曼龄教授、上海交通大学邬剑波研究员、华东理工大学陈新教授,等。当然,还有弱弱的小编~(如有遗漏,恕小编才疏学浅)。 /p p   那么最后一个问题来了,想做in-situ Liquid cell TEM研究去哪里找芯片呢?目前Liquid cell芯片和液体样品杆已经部分商业化,如Hummingbird 和Protochip等,但其售价比较昂贵,适合土豪课题组。很多课题组仍然在使用自制液体芯片,或与其他国内微纳加工公司合作。 /p p   小编只是抛砖引玉,为大家做一下简单介绍一下,如有兴趣,可以先参阅Frances M. Ross, Honggang Liao, Xin Chen三位的综述文章。没错,其中有两位是中国人,而且目前在国内任职,小编是如此骄傲~~~ /p
  • 全新颗粒表面特性分析仪上市正式进军颗粒科学与技术领域
    全新颗粒表面特性分析仪上市正式进军颗粒科学与技术领域8月12-14日,纽迈科技携新产品“颗粒表面特性分析仪”参加“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”,正式进军颗粒科学与技术领域。颗粒表面特性分析仪适用于在非破坏的条件下连续监测悬浮液状态下颗粒与溶剂之间的表面化学、亲和性、润湿性以及颗粒的比表面积。对于粉体(浆料,粉料)的分散性,稳定性,亲和性以及比表面积的分析测试快速有效准确的测量手段。 PQ001颗粒表面特性分析仪产品功能:1. 悬浮液体系颗粒比表面积2. 粒子分散性、稳定性3. 颗粒与介质之间亲和性4. 粉体质量控制、分散工艺研究试用范围如下:1、颗粒:SiO2、SiC、ZnO、Al2O3、BaCO3、石墨烯、活性炭、炭黑等一百多种;2、悬浮体系溶剂类型:水、乙醇、丁酮、甲苯等各类含H质子溶剂。应用领域:1)制陶术:湿式制程、加工工艺改善, 分散性的质控和研发2)纳米科技:纳米粒子表面的化学状态, 如: 吸附和脱附作用, 比表面积的变化 等3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管4)墨水:碳黑、颜料分散, 最适研磨条件, 表面亲和性及化学和物理状态5)能源:电池, 太阳能板等的碳黑, 纳米碳管和浆料的分散, 粒子表面的化学和物理状态6)制药:API湿润性、亲和性及吸水性的差异7)其他: 全部的浓稠分散悬浊液体, 纳米纤维, 纳米碳等.纽迈科技提供专业的颗粒应用解决方案,强大的研发生产能力,完善的售后服务能力,欢迎来电了解颗粒表面特性分析仪详细信息
  • 蠕动泵:引领液体输送,创造无限商机
    传统的液体输送方式在很多场景下存在一系列的限制,如泵送粘稠液体困难、易堵塞、泵送压力不足等问题。然而,通过蠕动泵的应用,这些问题迎刃而解,为液体输送领域打开了一扇崭新的大门。蠕动泵以其卓越的性能和无限的商机,正在成为行业翘楚。蠕动泵采用蠕动输送原理,即通过压缩树脂制成的管路,利用挤压与松弛的作用,实现液体的连续输送。相比传统的离心泵等设备,蠕动泵具有独特的优势。首先,在泵送粘稠液体方面,蠕动泵能轻松应对,无论是高粘度的胶状物还是含有颗粒的液体,都能稳定输送。其次,蠕动泵由于采用柔性管路,不易产生堵塞,大大减少了设备维护和清洗的频率,节省了时间和成本。再者,蠕动泵工作时的蠕动波动可有效地保护被输送物料的性质,不会引起剪切或破坏,确保物料的完整性。此外,蠕动泵无需庞大的压力系统,即可实现高压输送,并能逆向输送,灵活性极高。蠕动泵在各个领域都能发挥重要作用。在化工行业,蠕动泵可用于粘胶、涂料、颜料等高粘度物料的输送;在制药领域,蠕动泵可用于输送细胞培养液、生物制剂等灵敏物料;在环保工程中,蠕动泵可用于污水处理、固液分离等等。而且,随着新材料和新工艺的不断推陈出新,蠕动泵的应用领域还将继续扩大。除了性能上的优势,蠕动泵还有着较高的稳定性和可靠性。庞大的工业系统都需要运行稳定、无故障,而蠕动泵正是它们的首选。柔性的管路和简单的工作原理使得蠕动泵易于操作和维护,能够长期稳定运行,为用户带来极大的便利。而一流的品牌商更是能够提供全方位的售前售后服务,保障用户的利益。作为一种颠覆性的技术革新,蠕动泵将传统液体输送方式推向了全新的高度。它的优异性能和广阔应用前景,为液体输送领域带来了无限商机。无论是在工业生产还是商业领域,蠕动泵都发挥着重要的作用,推动着行业的进步和发展。随着技术的不断创新和改进,蠕动泵有望继续领跑液体输送领域,为人们带来更大的价值。
  • “小贝开讲”之如何快速实现悬浮液、粉体颗粒粒度分布的准确分析
    时间:2018年12月12日 14:00 - 15:00内容简介:作为应用领域最广的粒度分析设备,激光衍射粒度仪有着其它粒度分析设备没有的更宽的测量范围,更高的重复性,更快的测量速度以及更简便的操作。但我们所测样品种类繁多,粒度分布极广,所以如何确保仪器上下限粒度的极限测量?如何确保快速准确区分单峰、多峰样品?如何简化并规范操作流程?这些都是我们关注的焦点。 本讲座将通过对样品的前处理探讨,以及测试过程中对激光粒度仪LS 13 320 XR软硬件设计的详细剖析,为您快速获知任何所测样品的准确粒度分布提供有力保障。主讲人简介:史艳轻产品应用技术专家 贝克曼库尔特生命科学市场部 在粉体制备、颗粒表征以及颗粒特性产品应用领域工作多年,有着丰富的样品颗粒分析和检测经验,现为贝克曼库尔特公司颗粒特性和计数产品专员,负责颗粒产品的技术和应用开发等相关工作。美国贝克曼库尔特公司于1997年由贝克曼公司和库尔特公司合并成立,现已成为世界著名的颗粒分析仪器公司。作为颗粒特性分析领域的先驱和领导者,贝克曼库尔特专注于为全球用户创造卓越的价值。众多应用领域如食品、制药、化工等和国际组织如美国ASTM,国家航空航天局 (NASA)等均将贝克曼库尔特的技术和产品定为标准方法或质量控制的专用仪器。秉承“为全球客户提供富于创新和值得信赖的科学解决方案”的使命,贝克曼库尔特不忘初心,不断创新,致力于为客户提供完整领先的颗粒表征及粒度分析解决方案。
  • 欧美克仪器参加中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会
    “一叶梧桐一报秋,稻花田里话丰收。”在二十四节气中,立秋标志着孟秋之季的正式开始。在这预示收获的季节,中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会于8月9日-12日在辽宁沈阳隆重举办。本届年会是由中国颗粒学会、中国科学院金属所、清华大学、大同大学(台湾)共同主办,共有近800名企事业单位、高校科研院所和业内代表人员参加了本次会议。作为拥有超过6000家客户的国内知名激光粒度仪生产商以及全球激光粒度仪领先品牌马尔文帕纳科旗下的全资子公司,欧美克仪器受邀全程深度参与了本次学术年会,并在展商区域展示了我司高端的Topsizer型号干湿法激光粒度分析仪。该仪器测量范围:0.02-2000μm(湿法),0.1~2000μm(干法),是我司经过多年的技术积累后研发出的一款具有量程宽、重复性好、精度高、测试结果真实、可靠性高等诸多优点的高性能激光粒度分析仪。既可测量须在液体中分散的样品,也可测量不能在液体中分散须在气体中分散的粉体材料,它代表了国产粒度检测与分析仪器的新高度。Topsizer型干湿法激光粒度分析仪本次学术年会时逢中国颗粒协会第七届理事会正副理事长和秘书长换届选举,并聘请对颗粒学会贡献突出的理事为学会高级理事,这其中也包含欧美克仪器销售总监吴汉平先生和产品总监傅晓伟博士;此外我司的销售应用经理沈兴志先生也被吸纳为青年理事成员为学会增加更多的技术储备人才。销售总监吴汉平先生受聘为高级理事 产品总监傅晓伟博士受聘为高级理事 销售应用经理沈兴志先生当选青年理事除8月10日上午为大会报告外,其余时间报告均于十六个分会场中进行,欧美克仪器由产品总监傅晓伟博士在第一分会场做了题为《QbD原则在颗粒测试方法开发中的应用》技术报告,销售总监吴汉平先生主持。现场和参会代表就颗粒的测试及表征进行了深入交流。傅晓伟博士在做技术报告经过本次年会期间的深入交流沟通,参会的各位海内外代表在感受到浓厚学术氛围的同时又体验到热烈的团聚气息,四天的时间转瞬即逝,会议只是载体,交流才是主题。相信颗粒届的各位同仁在新一届颗粒学会领导班子的带领下必将小颗粒成就大事业。
  • 如何快速分配液体——ELISpot实验小助手
    ELISpot(Enzyme-linked ImmunoSpot Assay)全名为酶联免疫斑点检测,在酶联免疫吸附技术(即ELISA)的基础上结合了细胞培养技术。ELISpot捕获的目标来自于包被板中培养的细胞在刺激下新鲜分泌的蛋白(抗体或者细胞因子等),去除细胞后,通过酶促反应放大效应展现出有色斑点。ELISpot是一种高度敏感的免疫检测技术,可在单细胞水平检测分泌细胞的频率,从而可以对样本中活细胞免疫状态进行动态的监测评估。ELISpot整个流程基于96孔微孔板,需要在96孔板之间来回转移液体,操作重复费时。Vaccu-Pette/96&trade 专为从细胞培养物中去除上清液而设计,不会干扰孔底部的细胞。换培养基的时候如果没有注意风机的影响,特别是所需换液的培养板很多时,容易使细胞因风吹失水而干缩破裂。这时候快速移液换液就很重要,VACCU-PETTE 96孔式移液装置可以在10 秒内吸出或分配 96孔板的液体。VACCU-PETTE 96孔式移液装置 10 秒内吸出或分配 96孔板的液体!Vacu-Pette&trade 非常适合同时更换培养基或从 96 孔板中添加/去除试剂 - 只需将Vaccu-Pette/96&trade 连接到一个大注射器并吸取大约 100 倍于所需的每孔体积。例如,要转移 50μL/孔,吸出并输送总共 5 mL。ELISA、细胞毒性和克隆程序的理想选择。1、非常适用于同时更换培养基或从96孔板中添加/移除试剂;2、只需连接一次性塑料注射器即可转移液体;3、它由透明塑料材料制成,一端有一个真空出口,并提供一根内径为 3.2 毫米(1/8 英寸)的短管用于注射器连接;4、无菌/一次性型号由透明一次性塑料制成,只能使用一次,不能进行高压灭菌或气体灭菌;5、可灭菌/可重复使用的型号由聚碳酸酯模压而成;在使用前,必须在不超过121º C的温度下,在15 psi的压力下进行20分钟的高压灭菌,以避免污染;6、无法进行气体消毒,因为可能会残留滞留气体;7、需要30毫升或更大的一次性无菌注射器(本产品不提供)。注:灭菌产品不可退货。产品信息货号类型尺寸F37876-0000一次性移液装置,无菌127 x 86 x 37 毫米F37876-0001可高压灭菌、可重复使用的移液装置127 x 86 x 37 毫米
  • 微型蠕动泵:小巧但功能强大的液体输送利器
    微型蠕动泵是一种小型而强大的液体输送设备,它被广泛应用于医疗、生物技术、环保、化工等众多领域。微型蠕动泵以其独特的工作原理和出色的性能受到了行业内外的关注和青睐。本文将全面介绍微型蠕动泵的原理、特点、应用及选择要点,帮助读者更好地了解和应用该设备。一、微型蠕动泵的工作原理微型蠕动泵基于蠕动泵的工作原理,即通过弹性管的收缩和蠕动运动实现液体输送。它的核心部件是管道和驱动装置。当驱动装置开始运转时,管道内的弹性管会被挤压和放松,从而将管道内的液体推送出去。微型蠕动泵以其独特的工作方式保证了输送液体的准确性和稳定性。二、微型蠕动泵的特点1. 紧凑小巧:微型蠕动泵体积小巧,重量轻,便于携带和安装。2. 高性能:微型蠕动泵具备高精度和高精确性,可实现精密的流量控制。3. 耐腐蚀性强:微型蠕动泵采用优质耐腐蚀材料制造,具有良好的耐腐蚀性,适应性广泛。4. 无泄漏:微型蠕动泵采用无泄漏设计,避免了对环境的污染和对操作人员的伤害。5. 低噪音:微型蠕动泵采用静音技术,噪音低,操作过程中不会产生噪音污染。三、微型蠕动泵的应用领域1. 医疗领域:微型蠕动泵在医疗器械中广泛应用,如药物输液、血液透析、血液分离等。2. 生物技术领域:微型蠕动泵可用于生物反应器的供料、生物制药等。3. 环保领域:微型蠕动泵可用于废水处理、气体监测等环保设备的液体输送。4. 化工领域:微型蠕动泵可用于化工生产过程中的液体加料、混合、输送等工作。5. 实验室研究:微型蠕动泵在实验室中无论是颗粒分选、加液分析还是试剂配置,都能发挥重要作用。四、选择微型蠕动泵的要点1. 流量需求:根据实际工作需求确定所需的流量范围,选择相应的微型蠕动泵。2. 压力要求:考虑工作过程中的液体输送压力,选择适合的微型蠕动泵。3. 耐腐蚀性:根据所输送液体的性质,选择具有良好耐腐蚀性的微型蠕动泵材料。4. 稳定性要求:考虑工作过程中的稳定性要求,选择具有高精确性的微型蠕动泵。5. 噪音控制:根据工作环境的要求,选择噪音较低的微型蠕动泵。综上所述,微型蠕动泵以其小巧便携、高性能、耐腐蚀、无泄漏和低噪音等特点,广泛应用于医疗、生物技术、环保、化工等领域。在选择微型蠕动泵时,需考虑流量、压力、耐腐蚀性、稳定性和噪音等因素。相信通过本文的介绍,读者对微型蠕动泵有了更全面的了解,能够在实际应用中做出更为精准的选择。
  • 普洛帝发布第八代颗粒检测技术
    2018年9月20日,英国普洛帝分析测试集团分析仪器事业部在伦敦和西安两地向液体颗粒检测行业发布其新一代升级技术-第八代颗粒检测技术,其第八代双激光窄光颗粒检测传感器技术结合工业4.0进行了创新性的研究,通过使用物联网、数据分析、机器学习和AI技术,使用户准确得到液体颗粒检测数据,将检测中的参数设定,校准标定,测试信息数据化、智慧化,最后达到快速,有效,个性化的的不同场景的创新应用。PULUODY公司以提供液体颗粒检测技术具有50余年的历史,不断推出各类高精度、高稳定性的分析装置,全面满足各领域的要求。其中,普洛帝液体颗粒监测技术第八代双激光窄光检测器科实现快速、准确以及出众的稳定性,是面向未来的多领域分析技术,是新一代颗粒检测科研成果。PULUODY利用公司自有的物联信息系统(Cyber—Physical SystemV8.0简称CPSV8.0)和液体颗粒监测技术第八代双激光窄光检测器有效结合,具有低能耗、进样重现性优异、分析精度高、准确性好等性能,并且支持多品类、多样品分析。检测通道可达1200个通道,可连续执行680次检测,分度值可达到纳米级别。 PULUODY此次在第八代颗粒检测技术基础上推出第八代双激光窄光颗粒检测器,可对颗粒进行自动测量、计数、分布、质量、百分比分析,可拓展水分、粘度、密度和颗粒形态及成分分析。第八代双激光窄光颗粒检测器由PLDMC伦敦、西安两地研发中心与CALDEE、PULL、PULUODY等公司共同合作开发,主要用于支持液体中颗粒大小与数量分析、粒度分布、污染物形态测试、物理表征等领域的研究。它可以自动定位及鉴别颗粒分子,适合分析诸如航空红油、航空燃料油、航空蓝油、清洁液压油、高纯试剂、齿轮油、痕量物质、液态药品、化学品、高纯水、电子行业清洗溶剂及过滤器上捕获的汽车零部件污染物和大气污染物等颗粒。第八代双激光窄光颗粒检测器(PCF-8A)的操作流程非常简单,首先定位颗粒,其次统计颗粒大小/形状,然后根据大小/形状筛选候选颗粒,最后再按照国际上相关标准采集污染度、清洁度和颗粒度。它可以与PLDMC的LabPC8软件进行完美的结合。后者是一款简单易用、功能强大的软件包,可提供完备的仪器操作、审计追踪、电子记录、电子签名、数据采集、数据处理分析及报告生成等。现在,将双激光窄光颗粒检测器(PCF-8A)入到LabPC8软件包后,系统能自动定位颗粒,自动判定清洁度等级,并统计颗粒的大小/形状及获取颗粒的化学属性等信息,这使得LabPC8的分析功能更为强大,工作效率也得到大幅度提升。第八代双激光窄光颗粒检测器(PCF-8A)和PLDMC全系列的油液颗粒度分析、不溶性微粒检查仪、液体颗粒计数分布仪等结合,将会给使用PLDMC液体颗粒检测设备进行颗粒表征的分析人员带来新的自动化操作体验,将复杂的试验变得简便。此外,第八代双激光窄光颗粒检测器还拓展了PLDMC颗粒检测系统的分析能力。不管是紧凑稳固、“一键点击分析”型的PLD-0203油液污染度监测仪,还是具有多功能全自动、多测量范围、先进的清洁度评判功能的PLD-0201油液颗粒度分析仪,还是携带审计追踪、电子记录、电子签名功能的PLD-601药典不溶性微粒检查仪,还是具有颗粒大小、多少、分布百分比等的PSD-890液体颗粒计数分布仪都可以使用第八代双激光窄光颗粒检测器(PCF-8A)。目前第七代双激光窄光颗粒检测器(PCF-8A)技术已经正式发布,如需了解更多信息,请联系普洛帝服务中心,获取“第八代双激光窄光颗粒检测器(PCF-8A)”最新资讯,或者联系您当地的PLDMC以获取升级资料及软件演示等更多信息。
  • 海水中的纳米颗粒
    纳米科技在为现代生活提供各种高性能产品的同时,也对环境造成了严重的负担。之前的文章中,我们一起学习了饮用水、湖泊水、废水等水体中的纳米颗粒的单颗粒ICP-MS的测定过程,了解到纳米颗粒的无处不在。那么“大海啊,全是水”的海水中,是不是也一定存在着纳米颗粒呢但是,海水和其他水体不一样,含有更多的“盐分”,也就是基体不同。通常,在ICP-MS 分析中,分析之前需要稀释具有较高基体的样品,以免对仪器产生影响。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度(例如溶解有机质(DOM)和离子强度)对其具有极大影响。因此在处理纳米颗粒时,稀释可能触发转化,这意味着获得的结果可能无法准确反映样品中纳米颗粒的初始状态。为降低环境样品或其他高溶解固体含量样品在分析前稀释的必要性,PerkenElmer提供了适用于NexION系列ICP-MS(5000/2000/1000/350/300)的全基体进样系统(AMS)。这套系统包含一个耐高盐雾化器和一个带有氩气稀释气接口的雾室。稀释气的流速由独立的氩气通道控制,气流方向与雾化气流向垂直,以获得最佳的混合效果。可获得高达200倍的稀释比,避免了离线手工稀释的繁琐操作和随之而来的污染和误差。对于不需稀释的样品,只需将稀释气关掉,无需取下稀释气管路。借助AMS系统,对无需稀释的样品和需要稀释200倍以内的样品分别进行分析之间,无需对仪器再次进行参数优化。本文中,我们将探索模拟海水样品中金纳米颗粒的分析,并利用AMS 功能避免人为稀释,并讨论仪器配置条件对单颗粒ICP-MS进行精确和准确颗粒分析的影响。样品在超高纯(UHP)水中以1,2 和3 ppb 浓度制备离子金(Au+)标准品,并且在超高纯水中按60000 颗/mL制备60 nm 的金纳米颗粒标准品(NIST 8013)。使用标准参考物质(CASS-6,加拿大国家研究委员会)制备海水样品,并掺入60000 颗/mL的60 nm NIST 金纳米颗粒。在分析之前不进行进一步的样品稀释。实验所有分析均在NexION 2000 ICP-MS 上进行,并使用表1 中所示的进样附件和参数。全基体进样系统(AMS)的气流量设定为0.4 L/ 分钟,即10 倍稀释,可在未经任何人为稀释的情况下分析未稀释的海水,从而简化样品制备,并确保样品基体中纳米颗粒的完整性。实验结果如下图所示,在几种不同的AMS 气流量下精确确定NIST 60 nm 金颗粒的粒径,证明如果使用相应的离子校准,AMS 不会影响粒径测量的准确度。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响将金纳米颗粒分别添加到海水和去离子水样品中并进行测量。下图显示了添加到海水和去离子水中的60 nm纳米颗粒的粒径分布,两者基本没有差异。结果表明,适当的仪器参数设置和AMS降低了基体效应,从而能够在复杂的环境基体(如海水)中进行准确精准的纳米颗粒测量,而无需与离子校准标液进行基体匹配。这种能力简化了流程,增加了可用性,最重要的是,由于消除了液体稀释的需要,可在分析样品中获得纳米颗粒的准确结果。未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布结论使用配备了全基体进样系统(AMS)的PerkinElmer的NexION 2000 ICP-MS,可以无需考虑用水稀释导致的纳米颗粒状态的转化对于测量结果的影响,精确测量海水(典型的复杂基体)中纳米颗粒粒径大小和浓度,无需手工稀释样品。想要了解更多详情请扫描二维码《使用全基体进样系统和单颗粒ICP-MS快速测定海水中纳米颗粒》
  • 布鲁克固体/液体核磁网络研讨会
    尊敬的客户, 第四届磁共振网络会议将于2020年6月9日-10日开播,届时,布鲁克的应用专家将为广大用户朋友介绍核磁技术的最新进展。布鲁克固体核磁新技术布鲁克公司通过和用户紧密合作不断开发新技术,致力于为用户带来更高效的核磁共振新产品。其中,在今年ENC会议上发布的全自动CP/MAS iProbe、用于DNP核磁共振谱仪的0.7mm低温快速魔角旋转探头以及用于材料科学研究的新一代800MHz CP/MAS 超低温探头等新产品将赋予固体核磁共振技术全新的能力,进一步拓展其应用领域。布鲁克液体核磁新进展本报告将为您介绍布鲁克在液体核磁共振硬件和软件方面的最新进展,这些技术将有助于提升您核磁实验室的工作效率和实验灵敏度。其中包括:具有革命性创新的1.2GHz核磁共振波谱仪;布鲁克探头产品线的更新;通过人工智能提升核磁谱仪工作效率;方便实惠的桌面台式核磁F80。 时间和地点2020年6月9日10:30-11:00 布鲁克固体核磁新技术15:30-16:00 布鲁克液体核磁新技术演讲嘉宾 王秀梅 博士 布鲁克固体核磁应用专家 徐雯欣 博士布鲁克核磁应用专家现在报名!祝好!布鲁克网络课堂团队
  • 99%语音识别准确率,液体声学传感器突破技术瓶颈!
    【研究背景】随着可穿戴技术的发展,声学传感器因其在语音识别和人机交互中的潜力而成为研究热点。然而,现有的固体声学传感器在皮肤贴合性、灵敏度和对运动伪影的抗干扰能力方面存在诸多问题。这些挑战限制了其在实际应用中的广泛使用。鉴于此,加利福尼亚大学圣迭戈分校Kuldeep Mahato,Joseph Wang等科学家们提出了一种新型的自过滤液体声学传感器,基于永久流体磁体(PFM)构建。该传感器利用非布朗尼的钕铁硼磁性纳米颗粒,在载液中形成三维有序的磁网络,显著提升了声学性能。研究表明,该传感器能够检测到低至0.9 Pa的微小压力,具有69.1 dB的高信噪比,并通过自过滤能力有效减少低频运动伪影。此外,结合机器学习算法,开发的可穿戴语音识别系统在嘈杂环境中实现了99%的识别准确率。这一创新不仅为声学传感器的应用拓展提供了新的思路,还为声音健康监测和语音障碍患者提供了潜在的替代沟通方式。【表征解读】本文通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对NdFeB磁性纳米颗粒的形态进行观察,从而揭示了其在液体声学传感器中重要的磁性特性。针对液体声学传感器在语音识别中的表现,作者通过超导量子干涉设备磁强计测试了磁滞回线,得到了PFM的矫顽磁场和剩余磁化强度,进而挖掘了其在声学信号捕获中的优越性能。在此基础上,使用流变仪对PFM的流变特性进行表征,发现其流变性质可通过动态链断裂—重联机制和添加剂调节,实现剪切稀化与剪切增稠的动态转变。这一发现使得传感器的频率响应范围可以适应人声的动态声波,从而显著提升了其对微小声压的辨识能力。具体来说,液体声学传感器的声阻抗为1.61 MRayl,远低于传统固体传感器的40 MRayl,展现了更好的声学耦合性能。通过这些表征手段,最终得到了69.1 dB的信噪比和低至0.9 Pa的压力辨识能力,表明该传感器在复杂环境下的应用潜力。这些研究结果强调了液体声学传感器在减轻运动伪影和提高语音识别准确率(达99%)方面的重要性,为未来可穿戴设备的开发提供了新的思路。【图文速递】图1:自过滤液体声传感器。图2:永久性流体磁体permanent fluidic magnet,PFM形成过程。图3:液体声传感器的制造。图4: 液体声传感器的表征。图5: 基于液体声传感器的可穿戴语音识别系统。【结论展望】传统的固体声学传感器受限于低皮肤贴合性和对运动伪影的敏感性,而本研究开发的永久流体磁体(PFM)克服了这些挑战,展示了优越的声阻抗和自过滤能力。这一新型传感器不仅提高了声压识别精度,还通过流变特性调节,使其能够适应人声的动态变化,具有更广泛的应用潜力。此外,结合机器学习算法构建的可穿戴语音识别系统,实现了在嘈杂环境中99%的识别准确率,这为智能轮椅等设备的控制提供了可行性。更重要的是,液体声学传感器的开发为监测声带健康和识别声带疾病开辟了新的研究方向,尤其对有声障碍的人群来说,提供了替代沟通方式的希望。这一研究不仅推动了声学传感器技术的进步,也为人机交互和健康监测领域的创新应用提供了新的思路和基础。文献信息:Zhao, X., Zhou, Y., Li, A. et al. A self-filtering liquid acoustic sensor for voice recognition. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01196-y
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制