当前位置: 仪器信息网 > 行业主题 > >

样品吸附

仪器信息网样品吸附专题为您整合样品吸附相关的最新文章,在样品吸附专题,您不仅可以免费浏览样品吸附的资讯, 同时您还可以浏览样品吸附的相关资料、解决方案,参与社区样品吸附话题讨论。

样品吸附相关的论坛

  • 【求助】色谱柱对样品有吸附?

    现有一个测定吸附率的方法如下,各位高手看看此方法是否可行啊?或者哪里需要改进啊?1. 配置样品标准溶液(A)以及空白溶液(B)2. 把样品标注液(A)进样到色谱系统,待得出结果3. 第二次将样品标准液(A)进样到色谱系统,待得出结果4. 用空白液(B)将定量环清洗干净5. 将空白液(B)进样到色谱系统,待得出结果如果色谱柱对样品有吸附,那么在第5步将空白液(B)进样到色谱系统时,会将吸附的样品洗脱出来,对照第2步和第3步的结果,可以推算出吸附率。

  • 样品吸附不出峰

    请问怎么确认液相清洗后的效果?有没有人遇到过样品出现吸附,致使不出峰或者峰面积减小的这种现象?怎么处理?紧急求助……

  • 大孔吸附树脂的类型对样品提取有多大影响?

    在做样品时有时用到大孔吸附树脂,但是凡是用到它的,样品含量都是不合格,现在实验室用的大孔吸附树脂型号是A20,药典上黄芪、人参叶是D101型,罗汉果用的是AB-8型,特别是罗汉果提取出来的样品几乎没有含量,样品都没有问题,怎么会是没有含量呢,是不是大孔吸附树脂的型号对提取有很大要求,那位朋友知道的指点一下,或者有做过这些品种的人交流一下,到底是那里出了问题?

  • 容易吸附水分的样品怎么做DSC热分析?

    对于容易吸附空气中水分的样品怎么做DSC?这种吸附水分现象多会在亲水性纤维类、多孔类材料上发生,比如多糖类、蛋白质类材料,以及活性炭等。通常在空气中它们会吸附自身重量1-10%的水分,即使在烘箱内烘干,但是测试前称量时也会很快吸附少量水分,造成测试曲线上出现明显水分挥发的吸热峰,因此掩盖掉100度以下的其它热转变现象。各位怎么处理这个问题?

  • 【原创大赛】物理吸附实验中样品加入方式改进

    【原创大赛】物理吸附实验中样品加入方式改进

    [align=center][b]物理吸附实验中样品加入方式改进[/b][/align][align=left] [/align][align=left] 当前在用的商品化的物理吸附仪多采用容量法的原理。为了保证样品在测试过程中不被仪器的真空系统倒吸且使样品在测试过程中保持恒温,多采用长的管臂,管壁尽头为一较大的玻璃泡,如图1所示。[/align][align=left][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031107_01_1879291_3.png[/img][/align][align=left] 测试时,实验所得到的有效的吸附量主要来源于玻璃泡中样品对于吸附质气体的吸附量。由于管壁较长,为了方便添加样品,仪器厂商一般会随主机附带一种可以固定在管口的金属材质或塑料材质的辅助加样装置,如图2所示。[/align][align=left][img=,690,474]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031109_01_1879291_3.png[/img][/align][align=left] 在实际使用过程中,对于颗粒状样品可以用该装置顺利加入到样品管的底部,而对于较轻的粉末状样品,在加入时由于静电作用则容易吸附在管壁,如图3所示。[/align][align=left][/align][align=left][img=,594,708]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031111_01_1879291_3.png[/img][/align][align=left] 对于吸附在管壁上的样品由于在实验过程中这些样品并没有浸泡在液面之下,对吸附质气体发生十分微弱甚至没有吸附,由此会带来测量数据偏小的不良后果。 为了避免这种现象,我们设计了一种可以直接将样品加入至样品管底部的玻璃材质的辅助加样装置,如图4所示。[/align][align=left][img=,417,716]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031112_01_1879291_3.png[/img][/align][align=left] 为了便于加载样品,该装置顶部采用漏斗状结构,下部较长的管状结构可以直接将样品传送到样品管的底部,从而有效地避免了粉末状样品粘附在样品管壁的现象。管径和长度可依据样品管尺寸做适当的变化 这种结构的玻璃材质的辅助加样装置易于加工,并且成本很低,便于在大多数实验室推广使用。[/align]

  • 你是否关注了你样品瓶的吸附问题?

    样品瓶是承载样品直接进样到液相系统中的,其本身制作材料对待测样品就可能存在污染、吸附,导致检测结果不准确,加标回收率低,通常这种问题又不容易找到原因。 你是否关注过你的样品瓶?是否采用的一般玻璃材质的样品瓶却没有引起重视?是否考虑过样品瓶对你的待测溶液的吸附使你找不到加标回收率低的原因? 欢迎参与讨论!

  • 大孔吸附树脂反复净化样品能用多久?

    检测中药材,比如黄芪测黄芪甲苷,就需要用大孔吸附树脂净化,我们一直都是反复活化使用,可是不知道这样反复使用能用多久,你有经验吗?大孔吸附树脂反复净化样品能用多久呢?

  • 请教大家有关多肽样品色谱柱吸附问题

    我们在用waters Symmetryshield RP18 做多肽样品时(这个柱子是个小孔径的,在筛选柱子时这根柱子分离效果较好,所以选用),一根新柱子做一段时间后,有关物质的自身对照溶液主峰面积就会很小,跟未稀释的样品溶液主峰面积不成比例,就是柱子会吸附多肽样品,这个问题曾咨询过waters工程师,他们说过一些冲洗柱子的方法,比如用TFA体系的流动相水相和有机相梯度冲洗,试过这些方法,效果不是很好,不知道大家有没碰到过类似的问题,有什么好的办法来解决柱吸附的问题,谢谢各位!

  • 【原创大赛】官人代发:物理吸附实验中样品用量的选择

    【原创大赛】官人代发:物理吸附实验中样品用量的选择

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]在《“诡异”的物理吸附等温线》一文发出后,受到了许多同行的高度关注,一些读者希望了解关于物理吸附实验中样品用量和脱气条件选择方面的内容。在实验中,选择合适的样品用量和脱气温度是得到高质量的物理吸附数据的关键。为了叙述方便,在本文中结合实例谈下物理吸附实验中样品用量选择问题。在下一篇文章中将讨论脱气条件的选择问题,敬请持续关注。在实验过程中,选择合适的样品用量对于最终得到的实验数据影响较大。样品用量过多,会导致实验的时间延长。而过长的实验时间会导致实验过程中液氮的液面下降。除了耗费时间之外,液氮液面下降过多还会导致样品所处的温度升高,引起等温线异常(图1)。另外,过少的样品量会导致样品表面对吸附质分子的吸附量下降,也会引起等温线异常(图2、图3)。因此,选择合适的样品用量是得到理想的物理吸附数据的关键。[align=center] [img=,480,405]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241420276086_2066_3224499_3.jpg!w480x405.jpg[/img] [/align][align=center]图1[/align][align=center][img=,412,344]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241420366366_4857_3224499_3.jpg!w412x344.jpg[/img][/align][align=center]图2[/align][align=center][img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241420447746_4326_3224499_3.jpg!w436x374.jpg[/img][/align][align=center]图3[/align]通常,根据待测样品的比表面积来估计实验时所使用的样品用量。如果对于待测的样品的比表面积不是十分了解,可以对于比表面积进行大体的估算。通常比表面积和样品量之间存在如下关系:[align=center]比表面积*样品量=5 (1)[/align]由等式(1)可见,样品量与比表面积成反比关系。比表面积越大,实验时所需的样品量就越少,反之亦然。当样品的比表面积为1m[sup]2[/sup]/g时,需要的样品质量为5g。而当样品的比表面积为10 m[sup]2[/sup]/g时,则需要的样品质量为0.5g。但以上关系式对于比表面积大于100m[sup]2[/sup]/g的样品并不适用。按照等式(1)计算,当比表面积大于100m[sup]2[/sup]/g时,由该关系式计算可以得到实验所需的样品量至少为0.05g(即50mg)。在物理吸附实验过程中,样品通常需要加入至一支重量约为20~40g,如果实验过程中加入的样品量少于0.05g,而在对经过脱气后的加入样品的样品管进行称量时,其质量也会在20~40g范围,甚至更高。因此物理吸附实验所使用的分析天平通常为万分之一克的天平。当样品质量低于50mg时,[b]由于确定样品的质量需要通过加入样品的样品管的质量和空白样品管的质量相减得到[/b],因此由称量带来的误差不容忽视。样品量越少,对于所得到的等温线的吸附量影响越大。因此,较少的样品质量也会对由等温线根据不同的模型计算得到的孔容积、比表面积、孔径分布曲线等结果产生影响。因此,当比表面积大于100m[sup]2[/sup]/g、小于300 m[sup]2[/sup]/g时,通常要求比表面积和样品量之间满足如下关系:[align=center]比表面积*样品量=30 (2)[/align]由等式(2)可见,对于比表面积为100m[sup]2[/sup]/g的样品而言,样品用量为0.3g。而当样品的比表面积为300m[sup]2[/sup]/g时,样品用量则为0.1g。当样品的比表面积大于为300m[sup]2[/sup]/g时,为了保证样品质量的准确性,实验的样品用量通常不低于50mg。需要特别指出,以上关系式为估算值,供制样时参考。

  • 【原创大赛】官人代发:物理吸附实验中样品脱气条件的选择

    【原创大赛】官人代发:物理吸附实验中样品脱气条件的选择

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]在上一篇文章中介绍了《物理吸附实验中样品用量的选择》,按照物理吸附实验程序,在确定了样品用量之后,接下来要对样品进行脱气处理。脱气条件的选择与样品量均十分重要,是取得理想的实验结果的前提。在本文中,将对吸附实验中的脱气条件的选择进行阐述。脱气的目的是最大程度地去除表面吸附的溶剂和从环境中吸附的水蒸气等其他分子。如果表面吸附的这些物种不能有效去除,在进行吸附实验时势必会影响最终的吸附等温线的吸附量数值,由此导致所得到的比表面积、孔容积等参数的数值变小。因此,只有选择合理的脱气条件,有效地脱除样品表面吸附的溶剂、水蒸气等分子,才可以得到理想的实验结果。常用的脱气方式分动态脱气和真空脱气两种。其中,动态脱气是在一定的温度下,使加入到样品管中的样品上方流通一定流速的气体(通常为氦气或者氮气),流动的气氛将加热时表面吸附的溶剂、水分子等带离样品管,从而达到脱气的目的。而真空脱气则是在一定的温度下,将装有样品的样品管连接在仪器的脱气装置的真空,通过负压将表面吸附的溶剂、水分子等带离样品管。显然,真空脱气方式的脱气效果要优于动态脱气方式。实际上,大多数的物理吸附实验采用在一定的温度(通常高于室温)下抽真空的方法。在选择脱气条件时,通常需要设定合适的脱气温度和等温时间。一般来说,脱气温度越高,表面吸附的溶剂、水分子等的脱除效果越好。设定合适的脱气时间可以使这些分子有足够的时间被脱除。通常,在较高的脱气温度下所需的脱气时间可以适当缩短。在实际设定脱气条件时,与脱气时间相比,合适的脱气温度显得更加重要。如果脱气温度设定过高,通常会引起样品发生熔融、分解、表面结构变化、孔塌缩,由此得到的结果并非测试样品的实验结果。图1为在较高的脱气温度下得到的异常等温线。由图可见,即使样品中含有大量的孔结构,过高的脱气温度引起了孔的塌缩,从而导致吸附能力减弱,无法得到正常的等温线。 [align=center] [img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241425496214_771_3224499_3.jpg!w436x374.jpg[/img] [/align][align=center]图1[/align]另一方面,在过低的脱气温度下,即使采用过长的等温时间(如12小时或24小时)也无法有效地脱除表面吸附的溶剂、水等分子。这些分子的存在会挤占表面的吸附位或者堵塞孔道,导致比表面积和孔容积下降。通常用热分析技术中的热重法(TG)和差示扫描量热法(DSC)来选择合适的脱气温度。理想的脱气温度应在熔点和分解温度之前。如果材料中含有结晶水,实验时如果不考虑结晶水存在时的结构状态,则脱气温度应在结晶水的分解温度之上。以下举例说明。例1 图1中的绿色曲线为含有结晶水的草酸钙样品的热重曲线,121℃开始的第一个失重台阶对应于结晶水的失去过程,389℃开始的第二个失重台阶对应于草酸钙分子结构中的CO的失去过程。(1)如果需要测量不含结晶水的草酸钙的物理吸附实验并由此得到比表面积孔容积等信息,则脱气温度应设置在300-350℃范围内。(2)如果需要测量含有结晶水的草酸钙样品的物理吸附实验并由此得到比表面积孔容积等信息,则脱气温度不得高于120℃。[b]需要特别指出,由于热重实验是在常压下的动态气氛下以恒定的加热速率条件下得到的,而吸附实验的真空脱气是在很定温度下的真空环境下进行的,设定的脱气温度应低于热重曲线的开始温度20-50℃,以免样品在脱气过程中发生分解。如果采用动态气体吹扫法进行脱气,则温度可以适当提高。由于脱气在等温下进行,所设定的脱气温度也应低于热重的开始分解温度5-10℃。[/b]例如,对于以上第(1)种情形的脱气温度可以设在80-100℃范围中的一个温度,对于以上第(1)种情形的脱气温度可以设在320-350℃中的一个温度。设置的温度越低,则脱气时间可以适当延长。常用的脱气时间为60-600分钟不等。另外,样品中孔的含量越多,脱气时间也应越长。[align=center][img=,560,270]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241425579422_175_3224499_3.jpg!w560x270.jpg[/img][/align][align=center]图2 含有结晶水的草酸钙的TG曲线[/align]例2 为一种有机物的DSC曲线,由图可见样品自130℃开始逐渐发生熔融,如果需要对这种样品进行物理吸附实验,则脱气温度可以设置在80-110℃。如果温度设置过高,则易引起样品中孔结构的塌缩。[align=center][img=,560,271]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241426055932_7531_3224499_3.jpg!w560x271.jpg[/img][/align][align=center]图3 一种有机物的DSC曲线[/align]综合以上两个实例,在设置脱气温度时应综合TG和DSC曲线来确定合理的脱气温度,对于熔点较高(高于400℃)或者不存在熔点的样品而言,只通过TG实验就足够了。另外,如果样品在加热过程存在不可逆相变,由于不同的结构形式的吸附能力也有差异,则脱气温度也应低于该温度。需要特别指出,[b]如果样品已经经过高温(高于400℃)热处理过程,由于脱气装置的最高工作温度在400-450℃范围,则可以直接将脱气温度设定在300-400℃[/b]。[b][color=black]如果样品中含有大量的微孔,在样品可以承受的最高温度下脱气时还应大幅度延长脱气时间,以使微孔中的吸附水、溶剂等分子彻底脱除。[/color][/b][color=black]如果样品中含有在合成或处理过程中引入的一些稳定性很好的无机盐如钠盐、钾盐等,这些化合物会堵塞表面的缺陷或孔,影响测量结果。如果不希望样品受这些无机化合物的影响,则应对样品进行再次处理。对于一些再合成或处理过程中有意在样品中负载的一些活性组分如铂、金等,则无需在处理时将这些活性组分进行置换。[/color]

  • 氮气物理吸附

    做氮气物理吸附,样品是含有积炭的分子筛,吸附值出现负值,什么原因?

  • 【资料】泡沫吸附硫脲石墨炉原子吸收法测定化探样品中的金

    泡沫吸附硫脲石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定化探样品中的金武警黄金第十二支队化验室 黄艳波一、方法提要:样品经焙烧后,用王水溶解,泡沫振荡吸附分离金,分离的泡沫洗净后于10g/L(1%)的硫脲溶液中经沸水解脱,用石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定。二、本方法测定范围:0.5×10-9~0.2×10-9 g/g三、试剂:1、硝酸(分析纯);2、盐酸(分析纯);3、王水(HCl+HNO3=3+1);4、硫脲(分析纯),配制成10g/L(1%)的水溶液,现用现配5、泡塑:聚胺脂型,剪成1×1×3cm形状,用水洗净后,用4%的盐酸溶液煮沸半小时,最后用清水洗至中性晾干备用;6、标准储备液:ρ(Au)=1mg/mL,称取国家标准物质纯金1.0000克于400mL烧杯中,加入新配制的王水20mL和氯化钾1克,稍加热溶解,冷却后移入1000mL容量瓶中,用水稀释至刻度、摇匀;7、标准工作液:ρ(Au)=100ng/mL 。将ρ(Au)=1mg/mL的储备液逐级稀释成100ng/mL的金标准工作溶液,介质10%王水(现用现配);8、标准系列:分别吸取0、0.1、0.2、0.5、2、5、10mL和3mL 100ng/L和1000ng/L的金标准工作液8个100mL的三脚瓶中,加10mL王水,用水稀释至体积100mL,加入泡塑,与样品一起振荡吸附,加10mL10g/L的硫脲于25mL比色管中,与样品一起于沸水中解脱半小时,趁热取出泡沫。四、仪器条件:日立 Z—5000型塞曼[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(一)、仪器条件:波长(nm):242.8 狭 缝(nm):1.3 时间常数(s): 0.2灯电流(mA):7 负高压(V):382 取样体积(uL): 20测量方式:PeakHight 石墨炉原子化器:Tube A背景校正:BKG Corr. 方程式线性:Quadratic(二)、原子化条件: 起始/结束温度 斜坡/保持时间 载气流量 (℃) (sec) (mL/min)干 燥 80/160 35/0 200灰 化 400/400 15/0 200原子化 2400/2400 0/5 30清 除 2600/2600 0/4 200冷 却 0/0 0/12 200五、分析手术:称取10克已加工好的样品于40mL瓷坩埚中,经650-700℃高温灼烧1h(在400℃保温0.5h),取出冷却后,将样品转移至250mL三角瓶中,加少量水润湿样品,加新配制的1:1的王水约40mL,用手摇动三角瓶,使样品在溶液中散开,置于电热板上加热分解样品,溶解至体积剩有10mL左右,取下,用自来水稀释体积至100mL左右,加入已经浸泡好的泡沫塑料,盖上塞子,放在振荡器上振荡30min,取出泡沫,用自来水冲洗至中性,挤干,放入预先加有10g/L硫脲的25mL比色管中,沸水浴中保持30min,取出泡塑,冷至室温,在石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计上测定。从工作曲线上查出相应的金量。六、注意事项:1、痕量金测试过程中易发生污染,所以玻璃器皿要洗涤干净,焙烧样品的坩埚要擦拭干净(遇到高含量样品,相应的坩埚用王水浸泡)。避免与常量分析物品,设备混用。2、配制金标准系列的移液管、容量瓶、烧杯要用水彻底、反复浸泡,否则低含量金标准溶液很容易污染而变高。较低含量的金标准溶液极不稳定,放置时间过长,器皿产生吸附,使浓度变低,应现配现用。3、泡沫塑料应处理干净,否则影响测试结果。4、振荡吸附时,溶液必须在室温下,热溶液会造成吸附率降低。酸溶液要控制在10%左右,超过30%,泡沫会失去弹性,降低吸附率。5、解脱出来的待测溶液应立即上机测试,否则器皿产生吸附,使结果偏低。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=88238]泡沫吸附硫脲石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定化探样品中的金[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=88237]泡沫吸附硫脲石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定化探样品中的金[/url]

  • 固体吸附法

    气体样品中欲测组分的浓度往往很低,在进研色谱分析之前往往要进行富集。在直接采集欲测组分浓度很低的气体样品时,需要在现场采集体积很大的样品,回实验室进行富集,很不方便。为此研究了很多的气体样品的浓缩采集方法,主要有固体吸附法、溶液吸收法、低温浓缩(冰冻析出)法等等,下面先来介绍固体吸附法。 固体吸附法采样可有两种方式,一是将这些吸附材料制成吸附管,使用采样泵将空气样品以一己知的流量通过此吸附管,空气样品中挥发性有机污染物就被吸附管捕集浓缩,然后将吸附管加热解吸(或者通过溶剂解吸的方式,诸如二硫化碳、二氯甲烷等溶剂解吸)出这些被浓缩的挥发性有机污染物,通过色谱中的载气将它们送入色谱的分析测定系统中。此方法通常叫做吸附一热解吸(或者叫做吸附一溶剂解吸)方法。还有一种是将吸附材料制成带状的固体吸附采样器,通过扩散和渗透的方式将空气中挥发性有机污染物吸附浓缩(不是通过采样泵的动态采集方式),然后经热解吸或者溶剂解吸将浓缩的挥发性有机污染物提取出来,再送入色谱进行分析测定。此方法叫做扩散采样法或者叫做被动采样法。 固体吸附方法的核心材料是吸附剂,通常使用的吸附剂主要有活性炭、石墨化炭黑、多孔聚合物和多孔硅球等,其中活性炭和多孔聚合物在色谱分析样品制备中使用的最多。 吸附剂的物理特性参数主要有比表面积、孔径分布、极性、使用温度范围和组成结构等。人们经常根据这些参数选择合适的吸附剂并设计吸附浓缩的操作条件。 活性炭对大多数的有机物分子具有很好的吸附捕集特性,但是气体样品中的水分对活性炭的吸附干扰比较大,样品中的水分可能使活性炭采集的有机物成为不可逆吸附,并容易引起某些物质的降解,需要较高的热解吸温度(一般需要溶剂解吸)等都是它的缺点。 特别是使用活性炭采集和浓缩痕量物质时,这些缺点就更加突出,从而导致样品回收率低,也可能会伴随一些合成物质的产生。 活性炭可以制成条形或者带状的扩散型采样器,或者使用活性炭管直接扩散的方法采集空气样品(不是通过采样泵采集样品),同样可以获得较好的采集效率。活性炭管采集的样品也可以通过加热解吸的方式回收样品,同样可以得到较好的回收率。表1给出了美国 NIOSH 标准活性炭管采集湿空气中有机物的性能评价,表2给出了二硫化碳解吸活性炭管采集有机物的性能评价。[img=,690,1853]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091611018433_3388_2384346_3.jpg!w690x1853.jpg[/img][img=,690,679]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091611239574_4261_2384346_3.jpg!w690x679.jpg[/img] 由于石墨化炭黑具有较大的比表面积(100m[sup]2[/sup]/g),Carbotrap可以采集到许多C[sub]4[/sub]-C[sub]8[/sub]的有机化合物。而Carbotrap C(10 m[sup]2[/sup]/g)可以采集到更大的有机化合物。 Carbopack B和 c 分别与吸附材料Carbotrap和Carbotrap C 一样,只是在粒度上以60-80目取代了20-40目。石墨化炭黑可以被用来采集C[sub]4[/sub]-C[sub]10[/sub]的化合物,包括醇,游离酸,胺,酮,酚和烃类等化合物。表3给出了活性炭、石墨化炭黑和碳分子筛的物理特性参数。[img=,690,475]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091612247593_5016_2384346_3.jpg!w690x475.jpg[/img] 碳分子筛被用来吸附和浓缩永久气体和较小的碳氢化合物。例如: Carbosieve S-Ⅲ特别适合于采集像C[sub]2[/sub]的烃类气体,而Carboxen 563和 564 适合于采集C[sub]2[/sub]-C[sub]5[/sub]的挥发性有机物 (Carboxen 564的吸附能力优于 Carboxen 563 ) ;Carboxen 569 具有最大的捕集有机物的能力和较低的水干扰特性。 目前,在色谱分析中最常用的多孔聚合物有Tenax , Chromosorb,Porapak,HayeSep,Amberlitresins,GDX,TDX等系列。 多孔聚合物材料采集和浓缩有机物的解吸方法常常使用热解吸的技术,热解吸的温度常在180-230℃。碳分子筛和石墨化炭黑的热稳定性较好,可使用较高的热解吸温度,在用于采集较小的和较大的有机物分子时,为了获得较好的解吸效率,常使用较高的热解吸温度:230-350℃ 。表4给出了常用多孔聚合物吸附材料(吸附痕量挥发性有机物用)的特性参数。[img=,690,1112]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091612582374_9638_2384346_3.jpg!w690x1112.jpg[/img] 已有的实验和应用表明,选择合适的吸附材料是一件很难做好的事情,因为这取决于被收集样品的组成和它们的性质。虽然吸附剂对非挥发性物质具有很强的吸附性,但是它们的回收率仍然有限。另一方面,样品中挥发性物质还会通过吸附床而没有被吸附浓缩。此外,还必须避兔不重复的结果和样品被污染等现象发生。 XAD 树脂也是一种常用的吸附材料,有分析化学家采用玻璃纤维滤膜-XAD-2-活性炭串联方式进行挥发性有机物的吸附一溶剂解吸的回收率实验研究。研究结果(表5) 表明,样品湿度、采样流速或者有机滤膜颗粒物基木上不影响所研究的有机物的吸附浓度效率,此方式可应用于空气中挥发性有机污染物的采集和浓缩。[img=,690,1293]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091613216123_5363_2384346_3.jpg!w690x1293.jpg[/img] 几种吸附材料的组合或者结合可以达到优点互补,可以采集到所有的目标化合物。例如: HayeSep D , Carboxen 1000和Carbosieve S-Ⅱ结合组成吸附管,在 25 ℃ 条件下,采集5L 空气样品,在 200 ℃ 热解吸可以测定出所有的目标化合物。多种吸附材料充填的采样管具有适用性,可以采集更宽范围的挥发性有机物。有报道,适中的吸附材料可保持低挥发性物质,而挥发性较大物质穿透后被捕集在较强吸附材料上。此系统避免了低挥发性物质在后级吸附材料上的不可逆吸附。Tenax TA和Carbosphere S(石墨化炭黑)结合可以采集空气中C[sub]2[/sub]-C[sub]8[/sub]碳氢和卤代烃化合物,低挥发性物质被吸附在肠Tenax TA上,挥发性较大物质被吸附在Carbosphere S(上。当只采集C[sub]2[/sub]-C[sub]8[/sub]碳氢化合物时,可以采用Tenax TA,Carbotrap,Carbosieve S-Ⅲ三种材料结合的采样管。此系统可以捕集城区空气中汽车尾气污染物和香烟雾。采用具有不同表面积的碳吸附材料(Carbotrap C,Carbotrap和Carbosieve S-Ⅲ)可以采集空气样品中非极性C[sub]4[/sub]-C[sub]14[/sub]的烃类化合物。 美国国家环保局标准分析方法(空气中有毒有机物的测定方法TO系列)中采用的吸附采样管的尺寸和材料主要有三种:玻璃采样管,13.5mm(i.d.)×100mm,内部填充约1.5g的Tenax 吸附材料:不锈钢采样管,12.7mm(i.d.)×100mm,内部填充约1.5g的Tenax吸符材料;组合式吸附剂管,分别依次填充Carbotrap C,Carbotrap和Carbosieve S-Ⅲ等吸附材料。当然,可根据自己实验室的状况和条件,自己设计和加工吸附剂采样管。吸附剂采样管的制备通常需要如下的步骤: 第一,将玻璃管或者不锈钢管放入盛有甲醇的烧杯中并超声10min后,使用新鲜甲醇冲洗这些空心管,再使用己烷超声10min,使用新鲜已烷冲洗这些空心管。然后,在 100 ℃ 条件下于真空(约8kPa )干燥箱中干燥 5h ,贮存在干燥器中备用。 第二,仔细检查空心管,特别是玻璃管,如果在空心管的端口出现损坏或者裂纹,应当将它们舍弃。 第三,使用镊子夹取石英棉将空心采样管的一端堵住并形成约10-50的石英棉塞,再用漏斗从此空心管的另一端填充吸附材料(Tenax) ,然后,夹取石英棉将空心采样 管的另一端堵住约10-50mm。石英棉和吸附材料的充填紧度要适中,不要太紧密。 第四,填充完毕的采样管使用之前,应当进行预处理。方法是:在高纯氮气或者氦气的流动下(10-30ml/min)于常温至少吹扫10min,然后升温到 250 ℃ 并保持 2-5h 。然后,采样管在高纯氮气或者氦气的流动下降到常温时,取下采样管并将管的两端密封好置于干燥器中备用。 第五,使用采样管采集样品之前,应当做一下采样管的空白实验,然后进行标准样品的采集实验。确定了样品回收率之后,将每一个采样管做好标记,说明此采样管的充填材料种类、处理日期、编号等。 通常,填充的吸附材料需要进行洗涤纯化,特别是那些比较脏的吸附剂。以Tenax 为例,首先依次使用甲醇和己烷将吸附材料进行索氏抽提 48h ,然后分别滤掉甲醇和己烷溶剂,将Tenax 转入石英盘中并置于通风厨中于常温下自然蒸发 30-60min ,再置入真空(约8kPa )干燥器中于 100 ℃ 干燥 3h 后降至常温,经过筛后备用。

  • 吸附柱色谱的实验技术

    1. 吸附剂的选择及处理  吸附剂分为无机吸附剂如硅胶、氧化铝、活性炭、氧化镁、碳酸钙、磷酸钙,有机吸附剂如纤维素、淀粉、蔗糖、聚酰胺等。一般来说,所选择吸附剂应有较大的比表面积和足够的吸附能力:对欲分离的不同物质应有不同的吸附能力,即有足够的分辨力;与洗脱剂、溶剂及样品组分不会发生化学反应;吸附剂颗粒均匀。 吸附剂一般先经过筛获得均匀的颗粒(100-200目),对含有杂质的吸附剂可用有机溶剂如甲醇、乙醇、乙酸乙酯等浸泡处理或提取除去,有些吸附剂可用沸水洗去酸碱使呈中性,有些需经加热处理活化。  2. 溶剂与洗脱剂  两者常为同一组分,但用途不同。习惯上把用于溶解样品的溶液称为溶剂,把用于洗脱洗脱柱的溶液称洗脱剂。原则上所选的溶剂和洗脱剂要求纯度高,与样品和吸附剂不起化学反应,对样品的溶解度大,粘度小,易流动,易与洗脱的组分分开。常用的溶剂和洗脱剂有饱和碳氢化合物、醇、酚、醚、卤化烷、有机酸等。  3. 柱的装填和样品的加入  色谱柱一般为玻璃或有机玻璃管制成,柱下端装上一块2-4号烧结玻璃或垫一层玻璃丝以支持吸附剂,管内装吸附剂。有条件可附加压或减压装置,使流速保持恒定,色谱柱外也可配恒温管套。  装柱的方法通常是将一种在适当溶剂中的吸附剂调成糊状,慢慢地倒入关闭了出水口的柱中,同时不断搅拌上层糊状物,赶去气泡,并使装填物均匀的自然下降,装置所需要的高度后,打开出水口,让溶剂流出。注意柱的任何部分不能流干,即是说、再柱的表面始终保持着一层溶剂。  小心地用移液管把样品液绕柱内壁小心地加入,不要冲击着吸附剂的表面。加样的另一个办法是用一个注射器和蠕动泵把样品直接送到柱表面上。  3. 洗脱  在整个洗脱过程中,要使洗脱液通过柱时保持恒定的流速,可以用调节"操作压"来调控(操作压相当于在柱上面的贮液瓶中溶剂的水平和柱出口位置的水平之差)。另一个方法是时用蠕动泵。  洗脱过程中柱内不断发生溶解(解吸),吸附,在溶解,在吸附。被吸附的物质被溶剂解吸,随着溶剂向下移动,又遇到新的吸附剂又把该物质自溶剂中吸附出来,后来流下的新溶剂又在使该物质溶解而向下移动。如此反复解析,吸附,经过一段时间后,该物质向下移动至一定距离,此距离的长短与吸附剂对该物质的吸附力及溶剂对该物质的溶解能力有关,分子结构不同的物质溶解度和吸附能力不同,移动距离也不同,吸附较弱的就易溶解,移动距离较大。经过适当时间后,各物质就形成了各种区带,,每一区带可能是一种纯物质,如果被分离物质是有色的,就可以清楚地看到色层。随着洗脱剂向下移动,最后各组份按吸附力的不同顺序流出色谱柱,以流出体积对浓度作图,可得由一系列峰组成的曲线,每一峰可能相当于一个组分。

  • 7702.7的煤质活性炭碘吸附值取样越多,吸附碘量越小?

    扩项做7702.7,标准要求是对样品估值后按照0.01mol/L,0.02mol/L,0.03mol/L的滤液浓度,取三份样进行实验。我做完后发现取样多的反而小,取样少的反而吸附碘量多,这正常吗?按理来说不应该取样多吸附碘量多,取样少吸附碘量少吗?

  • 材料中物理吸附

    在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。

  • 硒的吸附性

    大家测量硒的时候会不会觉得硒元素有吸附性,比如测量完一个高浓度的样品接着测量低的会不会造成低的变高啊。

  • 求助吡啶红外吸附问题

    本人做催化剂酸性表征,采用吡啶吸附的原位红外表征方法,样品在400度下抽真空预处理2小时,降温至200度吸附吡啶,之后程序升温至400度,吸附吡啶前后分别采集200度、300度、400度的红外谱图,计算1450cm(L)和1540cm(B)酸对应的峰面积。按说随着温度升高,酸量会减少,为什么相应的峰面积反而变大呢?这种情况不止遇见一次。

  • 重量法蒸汽吸附仪 简介

    重量法蒸汽吸附仪 产品简介重量法动态蒸汽吸附仪DVS系列在测量水和有机蒸汽在粉体表面吸附方面处于世界领先地位,它通过在一定相对湿度下气体通过样品后重量的变化来测定蒸汽吸附,比传统的干燥法测量更快,更节省时间。由于其独特的优势,DVS系列产品世界各地的实验室有广泛的应用,可用于研发部门以及质控部门确定产品结构、产品稳定性、吸湿性、包装和产品开发中固体材料存在的问题。结合了微天平、气体流动和蒸汽的测量技术的优势使用干燥的载气,通常为氮气,可以选择任何两个蒸汽源中的一个质量流量控制和独特的水和有机蒸汽浓度实时监控结合可以精确控制饱和干燥载气流量的比例整个体系的温度可以由选择,并且在闭合环条件下可以精确控制,以保证吸附质的蒸汽压恒定具有极其高的灵敏度和精确度,仅需少量的样品(通常1-30mg),因而可快速达到平衡全自动惰气吹扫装置和有机泄露检测器可在发生有机蒸气泄漏时关闭联锁装置,保证安全 DVS Advantage软件可程序控制仪器,用户界面友好,满足数据完整性和安全性的最高标准待测样品置于微量天平上,已知浓度的蒸汽通过样品,记录式微天平可以测量由蒸汽吸附或脱附引起的质量变化。这种动态流动环境易于快速研究吸附/脱附过程。如果进一步实验选择需要,样品可以首先预热,这样可以加速体相吸附或者无机氧化物干燥过程的分析循环时间。加热过程可独立进行或通过软件来控制升温速率。

  • 吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较

    吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较

    转载声明:本论文版权归原作者所有,转载仅作为学术交流使用,如有侵权可删除本转载,但不承担其他责任吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较朱小红,潘 红,马二琴,康怡平(上海市建设工程质量检测中心 浦东分中心,上海201209)摘要 :分别采用吸附剂为Tenax-TA和活性炭的吸附管模拟现场采集室内环境空气,了解Tenax-TA和活性炭对空气中苯的吸附性能。当Tenax-TA吸附剂以0.5L/min的流量采集10L空气时,苯存在漏出现象。说明空气中苯的采集不宜用Tenax-TA吸附剂替代活性炭吸附剂。关键词 :吸附剂 ;Tenax-TA ; 活性碳 ; 漏出中图分类号:O656 文献标识码:B 文章编号:1004-1672(2006)05-0012-02Comparison of Adsorptive Capacity of Benzene in Air between Tenax TA Adsorbent and Activated Carbon / Zhu Xiaohong et al // Shanghai Construction Engineering Quality Testing CenterAbstract: Through simulated sampling of the ambient air indoors with adsorption tube filled with Tenax TA adsorbent andactivated carbon respectively,adsorptive capacity of benzene in air from Tenax TA adsorbent or activated carbon could befound out. If 10 liter of air was sampled with Tenax TA adsorbent at a flow of 0.5L/min, benzene would leak out whichindicated that Tenax TA adsorbent was not suitable for sampling of benzene in the air instead of activated carbon.Key Words: adsorbent; Tenax TA; activated carbon; leakTenax-TA是一种多孔高分子聚合物,化学名为2,6- 二苯基对苯醚,具有良好的耐温性(极低流失性),对碳6以上的烃类具有良好的吸附性和热解吸性,被广泛应用于有机挥发物和半挥发物的吸附,在GB 50325-2001《民用建筑工程室内环境污染控制规范》中TVOC吸附管所采用的吸附剂就是Tenax-TA。活性炭亦是一种非常优良的吸附剂,它具有物理吸附和化学吸附的双重特性,对于非极性有机物有强的保留性,常温下适合采集蒸气态有机物,最常用的是椰子壳活性碳。在GB 11737-1989《居住区大气中苯、甲苯、二甲苯卫生检验标准方法气相色谱法》中苯吸附管所采用的吸附剂就是椰子壳活性炭本文通过试验比较吸附剂Tenax-TA和活性炭对空气中苯的吸附性能。1 试验部分1.1 仪器与试剂空气采样泵:Gilair-3型,流量范围:0.005~0.5 L/min,±5%恒流;空气流量校正器:Cilibrator-2 型,流量范围:0.02~6 L/min,一级皂泡式;气相色谱仪:GC6890型和GC122型 ;热解吸仪装置:ULTRATD+UNITY型和RJ-Ⅲ型 ;Tenax-TA吸附管 :不锈钢管(内填200 mg 的60~80 目Tenax-TA吸附剂) ;活性炭吸附管:玻璃管(内填100 mg椰子壳活性炭) ;温湿度计:TES1360型 ;大气压力表。标气-氮气中苯系物(BTX/N2) ;高纯氮。1.2 吸附管的活化填装好的吸附管在使用前需在高温下(TenaxTA 吸附管320℃,活性炭吸附管350℃)通高纯氮活化至少30 min,活化好的吸附管立即密封,保存在洁净的干燥器中。1.3 Tenax-TA吸附剂对空气中苯的吸附性能的试验(1) 基准管的制备。将Tenax-TA吸附管与恒流采样泵的采气口连接,以100 mL/min的流量抽取BTX/N2标气,每支Tenax-TA 吸附管含苯0.886 g,取下后密封,作为基准管待用。(2) 样品管的制备。在温度为23.6℃,大气压为101.6 kPa,相对湿度为45.0%RH的试验室环境条件下,模拟现场空气采样,将基准管用硅橡胶管与恒流采样泵连接,以0.5 L/min的流量分别抽取3L、4L、5L、6L和10L的高纯氮(3) 热解吸和气相色谱分析条件。采用TenaxTA 吸附/ 二次热解吸/ 毛细管气相色谱法的热解吸和气相色谱分析系统。ULTRA TD+UNITY热解吸仪和自动进样器各参数 解吸温度300℃,解吸时间6 min,冷阱低温-10℃;气相色谱分析条件按GB50325-2001《民用建筑工程室内环境污染控制规范》附录E 中规定的执行,采用程序升温,即初始温度 50℃保持 10 min,升温速率 5℃/min, 终止温度 250℃,恒温5 min。(4) 所有基准管和样品管的试验均做两次平行样试验。1.4 活性炭吸附剂对空气中苯的吸附性能的试验(1) 基准管的制备。 方法同1.3.1, 每支活性炭吸附管的苯含量为2.110 m g。(2) 样品管的制备。 在温度为16.0℃, 大气压为102.6 kPa, 相对湿度为60.0%RH的试验室环境条件下, 模拟现场空气采样, 将基准管用硅橡胶管与恒流采样泵连接, 以0.5 L/min 的流量抽取10 L 高纯氮。(3) 热解吸和气相色谱分析条件。 采用热解吸和填充柱气相色谱分析条件。 解吸温度350℃, 解吸时间 10 min ; 色谱条件进样口温度150℃, 检测器温度 150℃,炉温 90℃恒温。(4) 所有基准管和样品管的试验均做6次平行样试验。2 试验结果2.1 Tenax-TA吸附剂对空气中苯的吸附性能结果试验结果以回收率表示, 即不同采气体积的样品管与不采样的基准管进行峰面积比较, 峰面积的值取两个平行试验的均值。试验结果见表 1http://ng1.17img.cn/bbsfiles/images/2015/04/201504241124_543386_2206495_3.jpg由表 1 可看出:当采样体积大于 4 L 时,苯的回收率出现下降趋势, 尤其是采样体积达到10 L 时,苯的回收率明显下降,仅相当于基准管的 60% 活性炭吸附剂对空气中苯的吸附性能结果试验结果同样以回收率表示, 即采样体积为10L 时的样品管与不采样的基准管进行峰面积比较,峰面积的值取六个平行试验的均值。 试验结果证明,用活性炭管吸附苯,其回收率达到 95% 以上。3 分析与讨论3.1固体吸附剂采样原理本试验中的采样属于固体吸附剂富集采样, 其采样过程类似色谱法中的样品前处理分析, 空气作为一个混合样品穿过吸附柱, 空气中氧、 氮和二氧化碳由于它们的吸附性弱且含量高首先流出, 一些吸附性强些的组分留在吸附剂上。 采样开始时, 空气中多数组分都滞留在吸附剂进气端, 随着抽过空气体积的增加, 被吸附的各组分向前推进, 由于各组分的吸附性能存在差异, 各组分间拉开距离, 一些吸附性小的组分先流出。3.2讨论与建议从试验数据可看出, 当以 0.5 L/min 的采样流量,用不同的采样体积通过内含 200 mg Tenax-TA吸附剂的吸附管, Tenax-TA吸附剂对空气中苯的保留能力显著不同, 采样体积从3 L变化到10 L, 回收率从 101.69% 下降到 60.09%。同样的采样条件,当采样体积为 10L 时,活性炭对苯的回收率大于95%,而 Tenax-TA 对苯的回收率只有 60%。一般来说, 用固体吸附剂采样当流出气中某组分浓度是流入气浓度的 5% 时则认为有漏出。 也就是说, TenaxTA吸附剂应用于苯的采样过程中时, 若以0.5 L/min的采样流量,采样体积为 10 L,苯会有漏出现象;而用同样的采样条件, 活性炭吸附剂应用于苯的采样, 则未发生漏出现象。 尽管吸附管的吸附能力和吸附剂与被吸附组分的性质、采样流量、温度、湿度、浓度和共存物等等有关,但是,其中的主要原因是 Tenax-TA 比活性炭对苯的吸附能力要弱。现行国家标准 GB 50325-2001 《民用建筑工程室内环境污染控制规范》 中规定, 空气中苯的采样采用活性炭吸附剂,TVOC 的采样采用 Tenax-TA 吸附剂。由于在 TVOC 的检测中,其中包含了苯的检测,为了省时省力,有些检测单位就以 TVOC 测定中的苯含量替代苯的检测,即对苯和 TVOC 的检测只做 TVOC 的检测,苯的数据就直接 TVOC 中报出。试验证明, 这种做法是不科学的, 因为在Tenax-TA吸附剂对苯的采样过程中,苯会有漏出现象发生,最终造成得到的 TVOC 测定中的苯含量结果会偏低。据此,笔者认为对于空气中苯的采样,其吸附剂不能用 Tenax-TA 替代活性炭。参考文献: GB50325-2001, 民用建筑工程室内环境污染控制规范

  • 【讨论】气体吸附法的测试原理

    气体吸附法是测量材料比表面积和孔径分布的常用方法。其原理是依据气体在固体表面的吸附特征,在一定的压力下,被测样品表面在超低温下对气体分子可逆物理吸附作用,通过测定出一定压力下的平衡吸附量,利用理论模型求出被测样品的比表面积和孔径分布等与物理吸附有关的物理量。其中氮气低温吸附法是测量材料比表面积和孔径分布比较成熟而且广泛采用的方法。在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对来说压力表(P/P0),P为氮气压力表,P0为液氮温度下氮气的饱和蒸气压,当P/P[0在0.05-0.35范围内时,吸附量与相对压力P/P0符合BET方程,这是氮吸附法测定比表面积的依据;当P/P0符合BET方程,这是氮吸附法测定比表面积的依据,当P/P0≥0.4时,由于产生毛细凝聚现象,氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容-孔径分布(孔容随孔径的变化率)。 比表面积是多孔材料、超细粉体材料和催化剂的最重要物性之一。有两种常用的表示方法:一种是单位质量的固体所具有的表面积(m2/g),表示为 Sg=S/m 另一种方法是单位固体具有的表面积(m2/m3),表示为Sv=S/V式中:m-被测样品质量(g); V-被测样品体积(m2). 一般多用第一种方法来表示比表面积,计算比表面积的一般BET公式。假设Vd为吸附量(体积),Vm为单分子层的饱和吸附量,P/P0为N2的相对压力,C为第一层吸附热与凝聚热有关常数,P0为饱和蒸气压,W为样品质量,则BET公式为P/Vd(P0-P)=1/VmC+(C-1)/P/P0式中,P/P0一般选择相对压力在0.05-0.35范围内,仪器可以测得dV值。如果只需要的比表面积,就可以只选P/P0=0.05-0.35之间5点进行测量就可以了,也就是通常所说的五点法确定比表面积。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制