当前位置: 仪器信息网 > 行业主题 > >

样品表面润湿性

仪器信息网样品表面润湿性专题为您整合样品表面润湿性相关的最新文章,在样品表面润湿性专题,您不仅可以免费浏览样品表面润湿性的资讯, 同时您还可以浏览样品表面润湿性的相关资料、解决方案,参与社区样品表面润湿性话题讨论。

样品表面润湿性相关的论坛

  • 表面活性剂的润湿性

    最近看文献表征表面活性剂,指标有表面张力、润湿性等。表面张力我能理解,润湿性主要指示哪些方面的性能呢?尤其是在叶面肥方面。

  • 表面张力仪白金板法测量表面张力时,白金板不能被润湿

    如题我用的是方瑞的BZY-101,刚买回来的时候,白金板可以用来测量张力在20~30mN/m的水溶液样品(澄清透明),后来白金板烧黑变形后,送回厂家重新进行了表面处理,也重新买了一块新板,但是两块板在测量20~30mN/m的水溶液样品时,均存在不能被润湿(板浸泡不到液面下去),非得用滴管把板淋湿后才能测,这是什么原因? 是白金板表面处理没做好还是我操作的原因啊,哪位大神能帮忙解答一下。PS:我准备再买一台,但是预算有限,只能买国产的,帮忙推荐一家,谢谢

  • 落滴法测润湿性

    请问哪个学校可以用落滴法,测试材料在高温下的润湿性试验?具体是:将金属熔化成液滴后,滴在样品的表面,测量液体铺展的速度?

  • 深色面料芯吸高度测试时如何确定润湿线?

    深色面料芯吸高度测试时确定润湿线的方法有两种:1. 用浅色粉笔在样品表面沿着样品长度方向轻轻地画一条参考线,润湿和干燥的粉笔颜色会有较明显的色差,容易观察润湿线。2.用吸水性较好的试纸(如pH试纸)与样品表面接触,样品润湿处试纸会有变色现象。源自:GTT 2016纺织服装检测技术研讨会会议纪要

  • 什么是“相塌陷/可润湿性”问题

    [color=#9688a7]使用低含量有机相组分(3.2 umol/m[/color][color=#9688a7]2[/color][color=#9688a7])配体的反相填料上。润湿性表面的丢失导致可供溶质结合位点的减少,进而造成固定相对溶质保留能力和样品承载能力的下降。通过用高含量有机组分(50%)溶剂涤洗填料床可以反转该变化过程。这种现象主要发生在键合正十八烷基和正辛烷基、内孔孔径150Å 的填料上,但是即便是在正丁基键合型填料上,也需要避免使用100%的水性移动相以确保获得理想的色谱性能。[/color]

  • 【我们不一YOUNG】+对于深色面料在进行芯吸高度测试时如何确定润湿线?

    在进行深色面料的芯吸高度测试时,一般深色面料不容易确定润湿线,这种情况下实验室可以采取以下两种方法来辅助测试:1. 用浅色粉笔在样品表面沿着样品长度方向轻轻画一条参考线,润湿和干燥的粉笔颜色会有比较明显的色差,这样就容易观察了。2. 用吸水性较好的试纸与样品妙眠接触,样品润湿处的试纸会有颜色变化现象。

  • 【资料】(接触角测量仪)应用鼓泡法测量织物的表面能

    因为样品的不平坦而且会快速吸附(或吸收)液体,织物的润湿过程很难按标准接触角测量法定量检测。我们可以通过鼓泡法来补救,这种方法能在吸湿性样品上检测接触角。通过这种方法,我们测量了两种棉线和一种合成纤维的表面能、极性部分以及色散部分的数值。因此,这种混纺样品水分润湿能力的改变能得到正确测量。

  • 【原创大赛】润湿性测试标准及测试方法

    【原创大赛】润湿性测试标准及测试方法

    润湿性测试标准人们已知,焊膏中含助熔剂有利于焊料的铺展与形成焊接点。这又决定于它的活性程度。如果铺展性太强,又易于因焊料合金粉过于铺展而造成焊点桥接。如遇及“过热”的工作条件助熔剂又会留下残渣难于净洗,以致焊点与元器件的引腿降质。因而,再流焊接工艺中,要求助熔剂具有最小必须的铺展性且易于净洗。在特定的条件下测定焊膏中的焊料在熔融状态下在基板上的扩展程度,从而评价焊膏的润湿效果。焊膏的润湿性应达到表1中1级或2级的评定标准。表1 焊膏润湿性评定标准级别试验结果1焊膏中的熔融焊料润湿了基体(试样),并且铺展至施加了焊膏的区域的边界之外。2基体(试样)上施加了焊膏的区域完全被焊膏中的熔融焊料润湿。3基体(试样)上有部分施加了焊膏的区域未被焊膏中的熔融焊料润湿。4基体(试样)明显未被焊膏中的熔融焊料润湿,焊膏中的熔融焊料聚集为一个或多个焊料球。润湿性实验测试是在无氧铜片上进行的。无氧铜片用铜清洗剂清洗试样载体15 ~ 20min,再用水冲洗,再用异丙醇漂洗,干燥后在去离子水中煮l0min,无水乙醇清洗,在空气中干燥。用厚度为0.2mm,带有3个直径为6.5mm圆孔的金属模板印刷焊膏到基板上。将试样放入自制电热板加热至260±2℃,保温1min,使焊料在铜板上铺展,进行焊料再流。冷却后清洗掉助焊剂。用体式显微镜观察试样(放大10~20倍)并照相,根据润湿性测试标准来确定焊料润湿的等级。润湿性实验结果SYS305焊膏焊后焊点形状不规则,有回缩、腐蚀现象,试样上有部分施加了焊膏的区域未被焊膏中的熔融焊料润湿,焊后残留物有粘性,成壳性差。根据润湿性测试标准评价,此为3级不合格焊膏。见图1a。SYS305-G焊膏焊后焊点形状规则,表面光亮,有轻微回缩现象,试样上施加了焊膏的区域完全被焊膏中的熔融焊料润湿。焊后残留物成壳性较好。根据润湿性测试标准评价,此为2级合格焊膏。见图1b。W焊膏焊后焊点形状规则,有轻微回缩现象,试样上施加了焊膏的区域完全被焊膏中的熔融焊料润湿,焊后残留物成壳性较好。根据润湿性测试标准评价,此为2级合格焊膏。见图1c。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif http://ng1.17img.cn/bbsfiles/images/2015/09/201509281032_568238_3042675_3.jpg图1 润湿性实验结果(a- SYS305;b-SYS305-G;c-W焊膏)从焊点的外观上来看,SYS305-G与W的焊点成形最为规则,有轻微回缩现象,SYS305焊点的有明显的回缩现象;从残留物看,SYS305的残留物有粘性,成壳性很差,而SYS305-G和W的残留物成形性较好,粘度低,不沾手,新型无铅焊膏和市场销售的W焊膏比原有的SYS305无铅焊膏有更好的润湿性和焊接可靠性。

  • 表面张力Dyne/cm与mN/m的单位换算关系,以及表面张力指标指示什么?

    [font=&][size=15px][color=#2f3034]1.Dyne和mN是什么关系,以及cm和m是什么关系。 1 Dyne 其实就是 1 达因,而1 mN 是 1 毫牛。我们知道:1 牛 = 10^5 达因所以,1 毫牛 = 10^5 ÷ 10^3 = 10^2 达因,也就是100达因。 接下来,我们看长度单位:1 m = 100 cm现在,我们可以找出Dyne/cm与mN/m的关系了:1 Dyne/cm = (1 Dyne ÷ 1 cm) = (1/100 mN ÷ 1/100 m) = 1 mN/m 所以,Dyne/cm和mN/m是相等的单位,它们之间没有换算关系,1 Dyne/cm 就是 1 mN/m。 2.产品的表面张力是越大越好吗? 产品的表面张力并不是越大越好,而是需要根据具体的应用场景和需求来确定。表面张力是液体表面分子间相互吸引力的结果,它使得液体表面有收缩的趋势,从而呈现出一种“弹性膜”的特性。在某些情况下,较高的表面张力可能是有益的,比如在一些需要液体形成稳定薄膜或液滴的应用中。然而,在其他情况下,过高的表面张力可能会导致问题,比如影响液体的润湿性、分散性或稳定性。因此,在评估产品的表面张力时,需要综合考虑其在实际应用中的表现和需求。例如,在某些涂料或清洁剂中,可能需要调整表面张力以改善其润湿性和分散性。而在其他应用中,如制备稳定的乳液或泡沫时,则可能需要保持较高的表面张力。[/color][/size][/font]

  • 【讨论】样品表面涂层如何移取,才有代表性

    有时候做分析,会接到送来的各种各样的样品,要求做表面测试。有的是塑料、有些是砂纸、有些是油漆、有些是卡纸,他们有的材质软,有的材质厚并且硬度高(比如砂纸)。用手术刀刮材质软的,是可以,但又怕刮到基材,影响测试结果,取样无代表性。硬度高的,比手术刀硬,会把手术刀磨蚀,带入金属粉末,影响结果。而且取样速度很慢,取样一克,有时候要几乎两个小时,一般都要一个多小时才能收集到足够的分析样品。请大家有什么好的建议和方法没有?

  • 【转帖】表面活性剂的功能 !

    润湿作用润湿是固体与液体接触时,扩大接触面而相互附着的现象。若接触面趋于缩小不能附着则称不润湿。可以用接触角θ的大小来描述润湿的情况。液体,比如把水滴在玻璃表面上,它很容易铺展开,在固液交界处有较小的接触角θ;而滴在固体石蜡上则呈球形,θ达到180°。接触角越小,液体对固体润湿得越好,θ为180°表示液体完全不润湿固体。显然,这是不同表面与界面的张力的作用的综合的结果。倘若加入表面活性剂,改变液体的表面张力,则接触角θ随之改变,液体对固体的润湿性也就改变了。能被液体所湿润的固体称为亲液性固体,反之称为憎液性固体。一般极性液体容易润湿极性固体物质。极性固体皆亲水,如硫酸盐、石英等。而非极性固体多数是憎水的,如石蜡、石墨等。乳化和增溶作用把一种液体以极其细小的液滴(直径约在0.1~数十μm数量)均匀分散到另一种与之不相混溶的液体中的过程称为乳化。所形成的体系称为乳状液。将两种纯的互不相溶的液体,比如水和油放在一起用力振荡(或搅拌)能看到许多液珠分散在体系中,这时界面面积增加了,构成了热力学不稳定体系。静置后水珠迅速合并变大,又分为两层,得不到稳定的乳状液。若想得到较稳定的乳状液,通常加入稳定剂,称为乳化剂。它实际上是表面活性剂。它的作用在于能显著降低表(界)面张力。由于表面活性剂分子在“液滴”,即胶束表层作定向排列,使“液滴”表层形成了具有一定机械强度的薄膜,可阻止“液滴”之间因碰撞而合并。若用离子型表面活性剂时,因为带同性电荷,胶束间相斥阻止了液滴的聚集。乳状液中所形成的胶束有两种。前者分散介质是水,分散质为油,这种乳状液称为水包油型(O/W);后者则正相反,这种乳状液是油包水型(W/O)。把某种表面活性剂加入到乳状液中,乳状液会变成透明溶液。表面活性剂的这种作用叫做增溶作用,起增溶作用的表面活性剂叫增溶剂。表面活性剂可以用于增溶的原因:是由于表面活性剂形成了各种形式的胶束,分散质进入胶束囊中或层间使胶束膨胀但又不破裂(体系外观也没有变化),因而“增加”了溶解度。与乳化类似,将磨细的固体微粒(粒径0.1μm至几十μm)分散到液体中时,加入少量的表面活性剂可增加液体对固体的润湿程度,抑制固体微粒的凝聚成团的倾向,从而能很好地均匀地分散在液体中。起泡和消泡作用大家知道纯水不易起泡,肥皂水却很容易形成较稳定的泡沫。泡沫是未溶气体分散于液体或熔融固体中形成的分散系。能使泡沫稳定的物质为起泡剂。它们大多数是表面活性剂,肥皂便是一种。气体进入液体(水)中被液膜包围形成气泡。表面活性剂富集于气液界面,以它的疏水基伸向气泡内,它的亲水基指向溶液,形成单分子层膜。这种膜的形成降低了界面的张力而使气泡处于较稳定的热力学状态。当气泡在溶液中上浮到液面并逸出时,泡膜已形成双分子膜了。倘若再加入另一类表面活性剂,部分替代原气泡膜中起泡剂分子,从而改变膜层分子间引力,使膜强度降低,泡沫的稳定性下降,可达到消泡的目的。洗涤作用从固体表面除掉污渍的过程为洗涤。洗涤作用主要是基于表面活性剂降低界面的表面张力而产生的综合效应。污物在洗涤剂(即表面活性剂)溶液中浸泡一定时间后,由于表面活性剂明显降低了水的表面张力,故使油污易被湿润。表面活性剂夹带着水润湿并渗透到污物表面,使污物与洗涤剂溶液中的成分相溶,经揉洗及搅拌等机械作用,污物随之乳化、分散和增溶进入洗涤液中,部分还随着产生的泡沫浮上液面,经清水反复漂洗便达到去污的目的。

  • 戴安应用文献之-AN119半导体刻蚀酸中阴离子型氟化物表面活性剂的测定

    特殊行业应用实例: 全氟化表面活性剂在半导体酸蚀刻溶液中起润湿剂的作用。酸蚀刻剂能够在二氧化硅材质上雕刻出细的划痕。在半导体的制作中,如果酸蚀刻剂的润湿性不好可能有气泡生成,这些气泡会附着在刻蚀表面,影响信号。可以通过增加少量的表面活性剂减少气泡的形成,从而提高溶液的润湿性。下载链接:http://www.instrument.com.cn/netshow/SH100244/paperDetail.asp?ID=12249

  • 陶瓷墨水的稳定性与表面张力的关系

    绝大部分陶瓷企业反映,陶瓷墨水在运用过程中经常出现拉线、发色效果差等问题,这与陶瓷墨水的稳定性有极大关系。陶瓷墨水拉线经常在大面积深色喷墨打印时出现,其与喷头本身有很大的联系,但本质上还是因为墨水体系不稳定,着色剂轻易团聚、沉降,堵塞喷头或者残余油墨粘附在喷头上。可通过选择结晶度高、中位粒径小、粒度分布窄的色料,选择合适的分散系统与合适的分散剂等方法来解决此问题。  此外,陶瓷墨水的稳定性还牵涉到墨滴与坯体结合的问题。在实际生产中存在墨滴在坯体上润湿性不好以及墨滴在坯体上过度扩散的问题。润湿性不好可以添加恰当的分散剂,从而降低墨水体系的表面张力,使得陶瓷墨水中非极性的有机物能够与极性的陶瓷坯体形成润湿。至于墨水在坯上过度扩散,可能是由于墨水的表面张力过小,亦可通过控制分散剂的添加量的方法来解决。http://image.keyan.cc/data/bcs/2014/1222/w127h2685408_1419211939_188.jpg  陶瓷喷墨技术  因此,选择适合的分散剂/润湿剂以及控制其添加量显得极其重要。  一般说来,分散剂的性能和体系的润湿剂含量与其表面张力的大小有紧密的联系。所以,通常以测量分散剂的表面张力来确定分散剂的性能和体系的润湿剂含量,从而量化得出分散剂/润湿剂的性能与添加量。  表面张力的测量一般分为传统的拉环/拉板法与新兴的最大气泡法。传统的拉环/拉板法是以往较为常用的测试方法,但因其有清洗麻烦、寿命短和易受客观条件影响的弊端,特别是不能反应墨水的动态表面张力已被逐渐淘汰。而新兴的最大气泡法表面张力仪测量喷墨的动态表面张力,得出动态部份的数据与墨水的性能有密切相关, 而且操作简便、测量快捷准确、使用寿命长和不易受客观条件影响等优点,现已被陶瓷墨水行业广泛接受与认可。  德国SITA公司研发的表面张力仪是基于起泡压力法原理,和对比所提及的测试方法,它提供一个简便、实惠、可靠应用的方法。因为动态表面张力可以提供给你一个与动态时间和速度相关的数据,一边在打印质量上作出结论。http://image.keyan.cc/data/bcs/2014/1222/w140h2685408_1419211966_226.jpg  动态表面张力仪可以用于检测测量分散剂的表面张力,提高墨水的稳定性  如果需要,动态表面张力仪在选择一个长的气泡寿命时间时,也可以提供准静态的表面张力值。  同时动态表面张力仪还可作为与优质(竞争对手)产品的差异对比、选择性价比高的分散剂、进出产品质量控制、与客户沟通解决问题的有力工具。

  • 【分享】表面张力与界面张力仪的区别

    [b]表面张力[/b]是指液体与气体间的[b]界面张力[/b],界面张力通常是指液液间的[b]界面张力[/b]。如果使用白金环法测试表面张力和界面张力,那么差别不大。这时主要考虑的是最大受力值,取得后,再乘以F修正因子即可。在测试界面张力值,可以把上界面视为表面张力测试时的空气。同理,如果是经典白金板法(吊板法),白金板浸入后,拉升,取得最大值再乘以相应修正因子。那么界面张力测试和表面张力测试是一样的。 但最为关键的是白金板法的其他应用,事实上,这种白金板法的前提假设是被测物与白金板的接触角值为零接触角值。但是,真实情况是,在液气固(白金片)时,即测试表面张力值时,这种假设存在的,除非液体对白金片自憎;而液液固(界面张力时),这种假设95%是不存在的,此时有接触角值存在。所以,在界面张力测试时,这种白金板法是不一样的。 因而,这些仪器严格意义上是根本不可能测试得到[b]界面张力[/b]值的。你可以用乙醚与水的界面张力值是判断。且看他们的操作手册,在里面应用时,错误百出,解释不清,操作是完全不对的。真正在测试界面张力时,如果是白金板法,通常需要考虑如下几个修正:1、预润湿功能,在界面张力时,下相液体的润湿性会降低;2、零位修正,在此时,原白金板的浮力修正系数会略有调整;3、接触角修正;4、浮力修正;5、密度修正。北京中仪远大科技有限公司 ---------[b]接触角张力仪总代理[/b] 电话:010-51261971

  • 【求助】云母表面电性

    一般来说,云母表面带负电,用AFM扫描时,在针尖与样品台间加偏压,云母是绝缘的,针尖的正负对云母表面的电性会有影响吗?

  • 求教“表面张力小的液体”

    我在测浮力的实验时,发现用水的表面张力过大,对于式样表面的小孔无法润湿,造成结果偏离。哪位朋友如有好的建议,请发表发表!

  • 阴离子表面活性剂简介!

    阴离子表面活性剂 英文化学术语: An-ionic surfactant. 表面活性剂的一类。在水中解离后,生成憎水性阴离子。如脂肪醇硫酸钠在水分子的包围下,即解离为ROSO2-O-和Na+两部分,带负电荷的ROSO2-O-,具有表面活性。 阴离子表面活性剂分为羧酸盐、硫酸酯盐、磺酸盐和磷酸酯盐四大类,具有较好的去污、发泡、分散、乳化、润湿等特性。广泛用作洗涤剂、起泡剂、润湿剂、乳化剂和分散剂。产量占表面活性剂的首位。不可与阳离子表面活性剂一同使用,在水溶液中生成沉淀而失去效力。

  • 比表面积测试篇-流动法

    比表面积测试篇-流动法

    [b]一、定义:[/b]比表面积是指单位质量物料所具有的总面积。单位是m2/g.通常指的是固体材料的比表面积,例如粉末,纤维,颗粒,片状,块状等材料。比表面积还有另一种定义:面积/体积。[b]释文:[/b]比表面积是指单位质量物料所具有的总面积。分外表面积、内表面积两类。国标单位m2/g。理想的非孔性物料只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)棉、硅藻土等。测定方法有容积吸附法、重量吸附法、流动吸附法、透气法、气体附着法等。比表面积是评价催化剂、吸附剂及其他多孔物质如石棉、矿棉、硅藻土及粘土类矿物工业利用的重要指标之一。石棉比表面积的大小,对它的热学性质、吸附能力、化学稳定性、开棉程度等均有明显的影响。[b]测量:[/b]固体有一定的几何外形,借通常的仪器和计算可求得其表面积。但粉末或多孔性物质表面积的测定较困难,它们不仅具有不规则的外表面,还有复杂的内表面。通常称1g固体所占有的总表面积为该物质的比表面积S (specific surface area,m2/g)。多孔物比表面积的测量,无论在科研还是工业生产中都具有十分重要的意义。一般比表面积大、活性大的多孔物,吸附能力强。测定比表面积方法有气体吸附法和溶液吸附法两类。粉尘粒子愈细,比表面积愈大。细粒子常常表现出显著的物理和化学活动性,如氧化、溶解、蒸发、吸附、催化以及生理效应等都能因细粒子比表面大而被加速。有些粉尘的爆炸危险性和毒性随粒度的减小而增加,原因即在于此。粉尘的润湿性和粘附性也与其比表面积相关联。[font=&][color=#333333]方法提要:[/color][/font][font=&][color=#333333]比表面积测试方法主要分连续流动法[/color][/font][font=&][color=#333333](即动态法)和[/color][/font][font=&][color=#333333]静态容量法[/color][/font][font=&][color=#333333]。[/color][/font][font=&][color=#333333]动态法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量。[/color][/font]主要参考标准有以下:1、GB/T 13390-2008 金属粉末比表面积的测定 氮吸附法;2、GB/T 19587-2017 气体吸附BET法测定固态物质比表面积。涉及仪器大概照片:[img=,311,367]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311917592208_2413_1614854_3.png!w311x367.jpg[/img][align=center]=======================================================================[/align]二、测试步骤: ①打开仪器,预热,让仪器处于稳定状态。②称量样品:先称取洁净的U形管,然后装取一定量的样品,记录样品质量M。[img=,434,388]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311920230803_2337_1614854_3.png!w434x388.jpg[/img]③安装U形管:安装前确保样品平铺于U形管底部,确认插紧即可。④放置液氮罐:使用专用的杜瓦瓶盛装液氮至距离瓶口1-2cm处,并将其置于升降托盘上。[img=,505,483]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311924498658_8845_1614854_3.jpg!w505x483.jpg[/img]⑤输入信息:打开测试软件,设置信息主要包括标准样品的信息和待测样品的信息,多个样品是依次输入对应的名称、重量等。⑥开始测试:确认信息无误后,点击开始测试,仪器自动测试,自动生成测试结果。⑦记录结果。⑧将液氮回收至大的液氮罐中,拆下U形管,用空的U形管替换样品罐,关闭仪器,关闭气体。[align=center]=======================================================================[/align][b]三、注意事项:[/b] 1、测试比表会使用到氮气、氦气或者是混合气,不管是什么气体,气体的分压设置好之后,后期建议分压阀不要随意动,每次只开总压阀,确认分压有无异常即可;2、因U形管比较长,称量时建议用一个烧杯放在天平中央,去皮开始称重;3、粉末样品盛装完毕后,检查U形管的管壁是否有粉末挂壁的现象,有的话,需要清理;4、盛装的质量要合适,即质量与样品比表面积的乘积在仪器最佳检出区间;5、有些设备不是卡扣式,安装U形管时需要拧紧螺帽,需要平衡U形管的位置,以免造成密封不良或者损坏U形管;6、盛装液氮时需戴上防冻手套,防护眼镜,液氮温度极低,溅到皮肤上会带来较大伤害;7、因气体流动法是一种对比法,标准物质的准确性直接影响了样品的测试结果的准确性,需要定期确认标物的可靠性,建议每天质控;8、环境温度对设备的热敏元件有影响,因此,确保环境温度处于20-28℃,并处于相对稳定的状态。[table=100%][tr][td]GB/T 13390-2008[/td][/tr][/table]

  • 为什么样品有的样品不处理的时候比表面很大,处理后反而变小?

    原因一:处理后比表面变小,可能是样品在处理过程中温度过高局部发生相变而损失了部分表面结构而造成;这点可能性最大,也最常见;原因二:有可能就是样品经过处理后化学结构发生变化,表面能降低,吸附能力减弱,也就是破坏了材料的化学性能;原因三:样品表面吸附杂质气体后相对不吸附时对氮气分子的吸附能力强,也就是杂质气体有助于吸附氮气分子;这点比较少见。

  • 【求助】表面活性剂国标+行标计11个(GB/T 5327-2008、GB/T 5178-2008等)

    所需标准如下,希望高手分享。GB/T 5178-2008 表面活性剂 工业直链烷基苯磺酸钠平均相对分子质量的测定 气液色谱法GB/T 5327-2008 表面活性剂 术语GB/T 5553-2007 表面活性剂 防水剂 防水力测定法GB/T 7463-2008 表面活性剂 钙皂分散力的测定 酸量滴定法(改进Schoenfeldt法)GB/T 9291-2008 表面活性剂 高温条件下分散染料染聚酯织物时匀染剂的抑染作用测试法GB/T 11275-2007 表面活性剂 含水量的测定GB/T 11983-2008 表面活性剂 润湿力的测定 浸没法GB/T 11988-2008 表面活性剂 工业烷烃磺酸盐 烷烃单磺酸盐平均相对分子质量及含量的测定GB/T 11989-2008 阴离子表面活性剂 石油醚溶解物含量的测定HG/T 3507-2008 木质素磺酸钠分散剂HG/T 2563-2008 壬基酚聚氧乙烯醚

  • 【转帖】高分子表面活性剂在铝封闭液中的应用

    高分子表面活性剂在铝封闭液中的应用 -------------------------------------------------------------------------------- 发布时间: 2007-10-15 12:12:09 浏览次数: 13 1 前言  各种铝材制品在加工生产中,为了达到防腐装饰的目的,常常需要进行阳极氧化和封闭后处理。经过封闭的氧化膜,才能大大提高耐蚀性和其它性能。目前国内外铝材生产使用的封闭方法较多,如沸水法、铬酸盐法、Ni-Co系法、低温Ni-F系法等。传统的沸水法以其无污染的优点一直被广泛使用。但该法很容易出现封闭氧化膜起粉霜现象,影响氧化膜的外观质量和漆层与基材结合力。批量生产时,常采用无机酸浸洗或在封闭液中直接加入防粉剂这2种防粉措施。添加防粉剂方法省工省时,不破坏氧化膜的质量,防粉效果好,已在多种封闭液中使用。防粉剂一般是高分子表面活性剂。  本文针对铝材氧化膜封闭起粉霜现象进行试验,选出性能适宜的表面活性剂作防粉剂,确定去离子水沸水法防粉封闭工艺,并用于生产。  2 封闭与防粉机理  2.1 封闭机理  多孔层的阳极氧化膜具有较高的化学活性,容易被环境污染引起基体腐蚀。沸水法封闭氧化膜时,发生热封孔反应为:  Al2O3+H2O→2AlOOH(Al2O3H2O)氧化膜发生水化作用,即氧化铝与水反应生成稳定的晶型水合化合物,体积膨胀,封闭了膜孔,使氧化膜失去活性,提高了氧化膜的耐蚀性[1]。起粉是封闭过程中产生的一种副反应。通常水越纯净,封闭质量越优,越易产生粉霜。自来水中含有大量的Ca2+,Mg2+等离子,使封闭氧化膜耐蚀性较差。去离子水封闭氧化膜耐蚀性提高,起粉现象却较为严重。关于粉霜的形成有几方面的原因:①去离子水较纯净,在氧化膜表面的润湿性较差,而且温度较高,容易造成在氧化膜表面生成大量的水合物。②封闭液中带进了有害杂质离子。③膜孔中溶解出的Al3+扩散到膜表面发生水化反应,形成网状粉霜[2]。总之,粉霜主要是由于氧化膜表面的氧化铝水合物所致。因此,要想除去粉霜必须阻止或减缓膜表面的水化反应。  2.2 表面活性剂的性质及作用  表面活性剂也称界面活性剂,是在低浓度下大幅度降低溶液界面张力的有机化合物。分子中同时含有亲水的极性基团(如羟基、羧基、硫酸基、氨基和醚键等)和憎水的非极性基团(如各种C-H链等),按其结构分为阴离子型、阳离子型、非离子型和两性型4种。溶液中的表面活性剂通过极性基和非极性基在界面的吸附,定向排列形成界面膜,降低了溶液的表面张力,表现出较强的界面活性。随着表面活性剂浓度的增加,所形成的胶束界面膜更加致密,表面张力逐渐达到最小值,此时表面活性剂的浓度为胶束临界浓度。胶束的形成增大了难溶物在溶液中的溶解度,从这方面来说表面活性剂也具有增溶性。  由于表面活性剂具有的界面活性,胶束化及增溶性,在溶液中常表现出润湿、乳化、发泡、分散和渗透等作用。在封闭液中作防粉剂主要是利用其易在氧化膜表面上吸附,并形成界面吸附膜,有效地阻止或减缓了氧化膜表面的水化反应,防止了粉霜的形成。其次利用表面活性剂的润湿渗透性,促进封闭液向膜孔内部的渗透,加速孔内的水化反应,增强封闭效果。此外表面活性剂还兼有抑雾、絮凝和去污的作用。  2.3 表面活性剂的选择  表面活性剂的使用首先应遵循一般的选择原则:①吸附强度要适当,即亲疏平衡值HLB和非极性烃基分子量适中。②加入量适当。③稳定性好,寿命长。④毒性小、COD、BOD值要小。生产中多采用阴离子型表面活性剂(YS)和非离子型表面活性剂(FS),二者的性质比较见表1[3]:表1 非离子型、阴离子型表面活性剂性能比较 ────────────────────────── 润湿性 发泡性 水洗性 CMC 可溶性 与金属反应 ────────────────────────── YS  好   大   差  大   小    有 FS  差   小   好  小   大    无 ──────────────────────────   YS性能较适宜,价格便宜,过去使用较多。FS的亲水基团在水溶液中不发生离解,呈分子状,所以稳定性高,不易受强电解质、无机盐、酸、碱的影响。FS还在多方面优于YS,且随着表面活性剂工业的迅速发展,新型、多功能、低成本的FS应用越来越普遍[4]。去离子水热封闭无有害物污染,所以防粉剂也必须具有无毒、稳定的基本性能,以保证该法的优点。首先选出亲水性良好的阴离子型和非离子型的表面活性剂:YS1和FS1进行试验。发现二者均有一定的防粉效果。根据以上选择原则、性能对比,确定选用FS1作为防粉剂,它是含醚键的非离子型表面活性剂,HLB值在14以上,界面活性高,润湿性好,稳定性高,低泡,无毒,CMC值小,在低浓度下具有很好的表面活性,既能使封闭氧化膜达到优质水平,又能保证封闭液无有害物污染。  2.4 FS1浓度的确定  以12号硬铝型材为试样,采用生产线上常规预处理后,进行硫酸阳极氧化,膜厚10 ~20μm。然后在去离子水封闭试验槽中封闭,温度93℃,时间25min,封闭液中加入不同浓度的FS1,封闭氧化膜外观见表2:  表2 FS1浓度与氧化膜外观  当FS1浓度低于0.04ml/L时,仍有起粉现象,防粉效果不明显;当浓度大于0.25ml/L时,虽然防粉效果较好,但封闭液中出现大量泡沫,造成氧化膜表面产生斑痕,难以洗掉。表面活性剂的浓度为CMC时,界面张力最低,所以用量多在CMC的附近范围[5]。  2.5 去离子水防粉热封闭工艺:  去离子水中加入:  FS1:0.06~0.18ml/L PH:5~6(HAC或稀H2SO4调整) 温度:90~96℃ 时间:20 ~28min  3 封闭质量检验  3.1 目视检查  氧化膜外观要求无粉霜、无斑痕。  3.2 耐蚀性检验  点滴溶液:HCl25ml,K2Cr2O7 3g,蒸馏水75ml。点滴实验在氧化膜封闭处理3小时内进行。从点滴液滴在氧化膜表面开始到滴液中的Cr6+被还原成Cr3+,液滴颜色由橙变为绿色止,所需时间为耐蚀时间。16℃时,板材耐蚀时间超过22min。盐雾试验按规定经336 小时连续盐雾腐蚀,氧化膜未出现白色或灰黑色腐蚀点。两相检验均符合航标要求。  4 结论 本试验选出的FS1作防粉剂及防粉热封闭工艺,经过生产实践证明:封闭氧化膜耐蚀性好,防粉效果好,槽液稳定,无有害物污染。 资讯来源: 高分子表面活性剂在铝封闭液中的应用 发布人: 全球电镀网

  • 【分享】17种常用表面活性剂介绍 汇总

    70℃)为透明液体;2. 泡沫细密丰富;无滑腻感,非常容易冲洗;3. 去污力强,脱脂力低,属常见的温和性表面活性剂;4. 能与其它表面活性剂配伍,并降低其刺激性;5. 耐硬水,生物降解性好,性能价格比高。五、技术指标: 1.外观(25℃): 纯白色细腻膏状体 2.含量 (%): 48.0—50.0 3.Na2SO3(%): ≤0.50 4.PH值(1%水溶液): 5.5—7.0六、用途与用量:1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。2.推荐用量:10—60%。脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;性能价格比高;4.有优良的钙皂分散和抗硬水性能;5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品;6.脱脂力低,去污力适中,极易冲洗且无滑腻感。五、技术指标:1.外观(25℃):无色至浅黄色透明粘稠液体2.活性物 (%): 30.0±2.03.PH值 (1%): 5.5—6.53.色泽(APHA): ≤504.Na2SO3 (%): ≤0.35.泡沫 (mm): ≥150六、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造纸、油墨、纺织等行业。2、推荐用量:在香波中为8-12%,在浴液中用量为10-15%,其它化妆品中为0.5-5%。应用时PH值不应超过7。椰油酸单乙醇酰胺磺基琥珀酸单酯二钠DMSS一、英文名:Disodium Cocoyl Monoethanolamide Sulfosuccinate二、化学名称:椰油酸单乙醇酰胺磺基琥珀酸单酯二钠三、结构式:RCONHCH2CH2OCOCHCH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;稳泡性能优于醇醚型磺基琥珀酸单酯二钠;4.有优良的钙皂分散和抗硬水性能;5.脱脂力低,去污力适中,极易冲洗且无滑腻感。五、技术指标:1.外观(25℃): 微黄色透明液体2.活性物 (%): ≥30.03.PH 值 (%): 5.5—7.04.Na2SO3 (%): ≤0.35.泡 沫 (mm): ≥160六、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造纸、油墨、纺织等行业。2、推荐用量:在香波中为8-12%,在浴液中用量为10-15%,其它化妆品中为0.5-5%。应用时PH值不应超过7。单月桂基磷酸酯MAP一、英文名:Lauryl alcohol phosphate acid ester二、化学名:单月桂基磷酸酯三、化学结构式: ROPO(OH)2 R:为天然月桂醇四、技术指标:1.固含量(%): ≥97.02.磷 酸(%): ≤5.03.外观(25℃): 白色至淡黄色乳脂块状4.PH 值(10/L10%乙醇): ≤3.05.酸价AV1(mgKOH/g): 194.0—204.0酸价AV2(mgKOH/g): 350.0—375.0五、产品特性:1.优良的乳化性和增溶性。对动植物油脂、脂肪酸酯、硅油、矿物油均有优良的乳化能力;2.在低浓度下具有良好的表面活性,显现优良的润湿洗涤性能和协同增效作用;3.无毒、无刺激,类似天然磷脂,与皮肤亲和性好,高效低泡易冲洗;4. 抗静电、抗腐蚀;耐酸、耐碱、耐高温,不耐硬水;6.常与NaOH、KOH、乙醇胺、氨水等中和成盐使用。六、用途与用量:1.用途:广泛用于个人清洁类护理用品中,如泡沫洁面乳、沐浴液、膏霜、乳液等。配制的化妆品膏体细腻亮泽,并对皮肤有润湿、保湿功能。产品易于冲洗,对皮肤柔软不紧绷。2.推荐用量:3—10%

  • 表面活性剂基础知识!

    在工业及公共设施洗涤剂中,非离子表面活性剂中不少品种是作为主洗涤剂使用的,大部分品种是作为助剂和助洗剂使用的。(1)脂肪醇聚氧乙烯醚(AEO)性能:AEO 中烷基链长不同,其亲油性不同。EO 数不同则水溶性不同。例如,椰油醇的产品可以作洗涤剂,而C18 醇的产品只能作乳化剂、匀染剂。天然醇比合成醇的产品去污性和乳化性要好,而合成醇的产品相对的水溶性好(奇碳原子的作用)。加入EO 数越多,产品的水溶性越强。EO 数在6 以下时的AEO 为油溶性,超过6 即为水溶性产品。EO 越多,产品的浊点也越低。① 脂肪醇聚氧乙烯(3)醚(AEO3,乳化剂FO 或MOA-3),在25℃时为液态,具有乳化、匀染、渗透等作用。在液体洗涤剂中可以作为辅助成分使用,或单独用作匀染剂、纺织油剂等。② 脂肪醇聚氧乙烯(5)醚(AEO5,润湿剂JFC),使用C7-C9 的合成醇,EO 数为5。在常温下为液体,具有很好的润湿和渗透作用。主要用于纺织印染、造纸等行业,作为匀染剂、渗透剂、润湿剂,工业洗涤的辅助成分。③ 脂肪醇聚氧乙烯(7)醚(AEO7,乳化剂MOA-7),使用C12-C16 的椰子油醇,EO 数为7,浅黄色液体。有良好的润湿性、发泡性、去污力和乳化力。有较高的去脂能力一抗硬水力。可广泛用于各种洗涤剂(如金属清洗剂、纤维用洗涤剂)及其他助剂。④ 脂肪醇聚氧乙烯(9)醚,选用C12-C16 椰子油醇,EO 数为9,是最常用的洗涤剂主成分,具有去污、乳化、去脂、缩绒、润湿作用。广泛用作主洗涤剂。尤其适合洗涤合成纤维等非极性基质及其他硬表面。用于纺织印染工业作脱脂剂、缩绒剂、乳化剂等。⑤ 脂肪醇聚氧乙烯(10)醚(AEO-10),使用C12-C18 脂肪醇,EO 数为10。产品溶于水,具有良好的润湿、乳化、去污、脱脂和耐硬水性能。可用于洗涤剂工业、纺织工业作洗涤剂、润湿剂、纺织油剂成分及农药乳化剂等。⑥ 脂肪醇聚氧乙烯(15)醚(平平加15,AEO-15,OS-15)。产品具有优良的乳化、分散和去污性能。主要用作纺织印染业的匀染剂。也用于工业洗涤剂,如金属加工清洗剂。还用作化妆品、农药、油墨的乳化剂。⑦ 脂肪醇聚氧乙烯(22)醚(AEO-22 匀染剂O):具有优良泡沫、高分散力可防止染色时染料沉淀,也可用作洗涤成分使用。⑧ 油醇聚氧乙烯(5,10)醚(油酰醇醚-5 或-10):产品外观为白或微黄液体至蜡状物。有特殊刺激性气味,EO 越高产品越粘稠。产品具有乳化力、分散力、去污力等。用于特殊场合的洗涤剂、乳化剂等。

  • 为什么有的样品不处理的时候比表面很大,处理后反而变小?

    原因一:处理后比表面变小,可能是样品在处理过程中温度过高局部发生相变而损失了部分表面结构而造成;这点可能性最大,也最常见;原因二:有可能就是样品经过处理后化学结构发生变化,表面能降低,吸附能力减弱,也就是破坏了材料的化学性能;原因三:样品表面吸附杂质气体后相对不吸附时对氮气分子的吸附能力强,也就是杂质气体有助于吸附氮气分子;这点比较少见。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制