当前位置: 仪器信息网 > 行业主题 > >

盐碱胁迫适应

仪器信息网盐碱胁迫适应专题为您整合盐碱胁迫适应相关的最新文章,在盐碱胁迫适应专题,您不仅可以免费浏览盐碱胁迫适应的资讯, 同时您还可以浏览盐碱胁迫适应的相关资料、解决方案,参与社区盐碱胁迫适应话题讨论。

盐碱胁迫适应相关的资讯

  • NanoTemper用户之声 | 探访中国农业大学-植物应答盐碱胁迫的分子机制
    引 言2023年,NanoTemper正式开通了用户之声系列活动,目的是为了分享更多用户的实际应用案例和心得体会,希望能帮助到更多的研究者解决问题。在生命科学领域,微量热泳动(MST)技术已被广泛及高度应用到各项行业,而Monolith分子互作检测仪凭借其优异表现,不断助力科研人员在CNS上发表优质的重磅文献近百篇。本期,我们采访到了来自中国农业大学的杨永青副教授,针对他们的植物应答盐碱胁迫的分子机制这个研究方向进行了深入采访。如果您在分子互作方面同样遇到一些问题,不妨试试MST技术,希望带给大家给多的启发和帮助。来自用户的反馈 NanoTemper 用户介绍 中国农业大学姓名:杨永青 副教授在用仪器:Monolith分子互作检测仪Q1用户背景介绍杨永青副教授从2001-2006年在北京林业大学读博士。2006-2010年在北京生命科学研究所做博士后,2010年进入中国农业大学工作。主持和参与国家自然科学基金重点项目,面上项目,国际合作项目,国家科技部973项目和农业部转基因专项等。获得授权专利4项。在Mol Plant,Nat Commun,Plant Cell,New Phytol和JIPB等高水平学术期刊上发表SCI论文30余篇。Q2请介绍一下您的研究内容我们长期从事植物应答盐碱胁迫的分子机制。盐碱胁迫会引起离子胁迫和渗透胁迫。离子胁迫是影响植物产量的主要因素。植物通过SOS途径将细胞内盐离子外排出去,SOS蛋白的转运依赖于质子ATPase建立的质子梯度,但具体如何调控机制不清楚。因此,我们主要研究的方向是植物应答盐碱胁迫下离子平衡调控的具体机制,并取得了突破性进展。我从2013年左右了解到Monolith,大概统计了一下,近几年发表的文章中,至少有7篇用到了MST技术进行互作研究。在进行抗盐碱机制研究中,会涉及到质子泵,离子运输和信号传递等,进行的互作检测的分子类型也很丰富,包括蛋白质与蛋白质,蛋白质和有机小分子,蛋白与无机离子等,这些互作都可以在Monolith上完成快速检测。Q3请问Monolith分子互作检测仪如何满足您的研究需求?在盐碱胁迫的机制研究中,会涉及到很多类型的分子,如蛋白和蛋白,蛋白和小分子,甚至是蛋白和无机离子的互作,都可以使用MST技术完成检测,而且MST的样品用量少,可以大大减少实验时蛋白提取的工作量。比如说在进行Ca2+蛋白传感器SCaBP3蛋白参与碱胁迫响应的分子机制文章投稿时,The plant cell的reviewer提出需要证明SCaBP3与质膜H+-ATPase AHA2的互作,并且推荐ITC的方法。我们在进行ITC检测尝试时发现,该方法需要大量的蛋白,但每次蛋白的提取量为1-2mg,只可以做1-2次ITC实验,且无法进行重复。而MST方法检测的蛋白用量少,进行一次MST实验,仅需要18ng AHA2和200μg SCaBP3,节约大量样本和时间成本,因此我们采用了MST完成了该组互作实验,并顺利发表文章。使用MST检测SCaBP3和AHA2 C的互作https://doi.org/10.1105/tpc.18.00568Q4您认为Monolith分子互作检测仪有哪些优点?分子互作检测方法对蛋白用量非常少,比如在进行蛋白SCAB和磷脂分子PI3P的Kd检测2时,MST实验仅需要10nM, 160μL的SCAB-蛋白,也就是130ng。这组研究同时进行了PLO(Protein-lipid overlay assay)实验,但该实验流程较为复杂:需要1小时进行干膜,1小时进行SCAB蛋白孵育, 然后通过进行2小时的免疫印迹的方法检测,操作熟练的情况也需要4小时。但每次MST检测也只要15min,这项研究中涉及到两组,也就是检测只需要30min即可完成。因此,MST这种方法极大的提高了实验效率。MST检测SCAB1与磷脂分子PI3P的亲和力https://doi.org/10.1093/plcell/koab264Q5您对NanoTemper售后服务的印象?NanoTemper技术团队一直能与我们进行快速地交流,及时解答问题。每年都会有线上和线下不同专题的培训活动,能够让实验室一届届学生快速掌握MST的实验流程,迅速开展相关实验,我们十分满意。
  • 干货分享:酶标仪在植物对逆境胁迫应答中应用
    干货分享:酶标仪在植物对逆境胁迫应答中应用植物生长在开放的自然环境下,不可避免的被迫遭受和应对各种各样恶劣的生存环境,如干旱、盐害、低温、高温和病虫害等,这些不良环境统称为植物逆境或植物胁迫。随着全球环境的日益恶化,各种逆境胁迫因子对植物正常生长和发育的影响日趋严重,也是造成粮食作物和其它经济作物产量和品质下降的主要原因,成为制约现代农业发展的重要因素。植物为了适应各种胁迫环境,经过漫长的进化过程,产生了一系列对抗环境变化的能力,即抗性。植物抗性是绝大多数植物响应环境胁迫的普遍方式,植物抗性可以帮助植物提高对逆境的适应能力,但它是有一定限度的,如果逆境变化过强超出了植物的耐受范围,逆境胁迫会导致植物直接进入衰老和死亡。因此,植物对逆境胁迫的反应一直是植物科学领域的研究前沿。图1:植物与病原互作中的免疫反应人们已经发展出很多检测手段来探索和揭示植物免疫机制和植物抗逆机制,包括高通量测序技术、显微成像技术、色谱-质谱联用技术等,其中酶标仪检测技术作为一种高通量微孔板检测技术,且操作简便的方法,在生物医学、药物研发、农业和微生物学等领域得到了广泛应用。MolecularDevice公司的酶标仪产品可为植物抗逆领域的科学研究提供可行和简便的实验方案。针对钙信号检测,ROS信号检测,定量检测及动态曲线检测,MD都有相对应的完善的解决方案。Flexstation3可以用来检测钙信号,标配5大检测功能并内置自动移液系统,Flex快速动态监测模式,时间间隔最低达到毫秒级,轻松追踪从诱发到衰减完整的钙信号。使用SoftMaxPro软件的PeakPro分析功能,可对钙瞬变和钙振荡的信号进行峰频率、峰宽度、峰数目、峰上升时间及衰减时间等多个峰值属性进行分析。针对ROS信号检测,我们推荐多功能检测酶标仪,如SpectaMaxi3x和SpectaMaxiD系列,这几款仪器都可以配置自动双注射器,既能进行比色法和荧光强度测定,又能进行快速发光反应检测。针对定量检测,SoftMaxPro软件内置21种曲线拟合方式,可用于多种酶活分析和荧光定量分析。针对动态曲线检测,SoftMaxPro软件预置多种动力学参数,可一键输出最大速率、斜率、最大/最小时间和曲线下面积等分析。
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • Resonon | Resonon Pika L在干旱胁迫下小麦叶绿素快速无损评价方面的应用
    小麦作为人类重要的粮食来源之一,你对它的印象是什么?是夜来南风起,小麦覆陇黄的生机景象,还是大麦干枯小麦黄,妇女行泣夫走藏的悲切画面?风吹麦浪的一片金黄往往让人神往,然而随着全球气候的变化,干旱逐渐开始威胁小麦的生长及产量,各地小麦纷纷减产,继而引起价格的上涨。久旱麦粒细,终久不成穗......如今,小麦在干旱环境下的生存和适应能力备受关注。叶绿素作为植物生长的基本生化过程之一,与干旱适应性之间的关系引发了广泛的研究兴趣。下面这篇论文聚焦干旱胁迫下小麦的叶绿素含量,通过研究一种新型的监测方法,有望提高对小麦叶绿素含量评估的准确性,对推动粮食安全与生态环境的平衡发展具有重要意义。Resonon Pika L在干旱胁迫下小麦叶绿素快速无损评价方面的应用研究背景小麦是对全球粮食安全至关重要的主要粮食作物。然而,小麦作物遭受着许多非生物胁迫,包括低温、干旱、高温和干热风,这强烈影响其生长、发育和生产力。干旱是世界范围内最严重的非生物胁迫之一,可显著降低小麦的分蘖数、每穗粒数和千粒重。2021年,美国和巴西都遭受了历史性的严重干旱,这使全球粮食价格上涨至近十年来的最高水平。因此,有效监测小麦生长过程中干旱胁迫的影响对提高产量、品种和粮食安全至关重要。叶绿素是植物光合作用的基础,直接决定植物净初级生产力和碳收支,叶绿素含量可以反映植物的生长状况。而干旱胁迫会降低作物的叶绿素含量,破坏光合机制,抑制其生长,最终降低产量。干旱胁迫下作物叶绿素含量的变化程度与抗旱性密切相关,因此,监测小麦叶绿素含量可为小麦的光合作用和抗旱性提供关键信息。传统的叶绿素含量测定方法包括分光光度法和使用手持式叶绿素含量仪,这些方法使得叶片破坏程度大、效率低,不利于大规模测定小麦叶绿素含量。而与传统方法相比,高光谱成像技术可以快速、无损、高效地测定植物叶绿素含量。此外,高光谱图像包含丰富的光谱信息,可用于精确的农业研究和建立复杂的数学模型。近年来,高光谱成像技术在植物监测中的应用发展迅速,广泛的研究主要集中在开发基于光谱指数的模型来估计叶绿素含量。然而,少量的敏感波段并不能充分代表所有的高光谱信息。此外,大多数研究使用的小麦品种较少,忽略了多品种间的异质性。因此,以往模型对其他系统的适用性受到限制,该模型对大规模叶绿素含量和抗旱性的评估无效。研究过程基于此,在本研究中,来自中国西北农林科技大学的一组研究团队以中国阳岭区(108◦ 4 0 E,108◦ 160E,34◦ 160N)为研究区,对新作物品种进行试验。2021年10月21日,在一个钢架棚内共种植335个小麦品种(共2010个叶片样品),并将它们置于不同的土壤含水量条件下,采用土壤钻探法测量0.5m深度的土壤含水量。再在每个品种中采集了6个新鲜的旗叶样本,在实验室内利用Resonon Pika L 高光谱成像系统采集小麦叶片的高光谱图像数据,同时利用SPAD-502 Plus叶绿素计测定小麦旗叶的SPAD值(反映叶绿素含量)。对高光谱图像进行平滑处理(使用Savitzky-Golay滤波器)、一阶导数处理。分析控制和干旱胁迫下小麦灌浆期旗叶的高光谱特征及其与SPAD值的相关关系,用逐次投影算法(SPA)识别特征波段,最后采用机器学习方法构建了四种回归模型,包括简单线性回归(SLR)、最小绝对收缩和选择算子回归(LASSO)、岭回归(RR)和随机森林回归(RFR)模型,并检验模型效果,以确定快速叶绿素含量估计模型的准确性,最终建立一种快速、无损、准确、广泛适用的方法来评估小麦叶绿素含量、光合作用和抗旱性。不同土壤含水量条件下小麦叶片的高光谱曲线和单波段高光谱图像(对照处理CK和干旱胁迫DS条件下)。叶片高光谱与SPAD值的相关性分析及拟合结果。(A,B)光谱反射率和一阶导数与SPAD值的相关性;(C,D)基于549 nm光谱反射率和735 nm光谱一阶导数的简单线性回归(SLR)分析;(E,F)基于549 nm处反射率和735 nm处一阶导数的SPAD预测值和实测值的拟合结果。结果基于不同数据集和模型的SPAD预测值和实测值的比较。(A-C)全波段高光谱反射率的LASSO、RR和RFR模型;(D-F)全波段高光谱一阶导数的LASSO、RR和RFR模型。基于全波段高光谱反射率模型,对不同土壤含水量条件下小麦叶片SPAD预测值和实测值的拟合结果。(A-C)控制条件下的LASSO回归、RR和RFR模型;(D-F)干旱胁迫条件下的LASSO回归、RR和RFR模型。(A,B)由549 nm反射率和735 nm一阶导数估计的叶片水平上的SPAD值图。基于光谱和图像特征数据集的RFR模型结果。结论本研究利用不同土壤含水量条件下大规模小麦品种的高光谱图像分析,确定了叶片叶绿素含量快速估算模型的准确性。对叶绿素含量估计最敏感的波段在可见波段(400-780nm),相关分析表明,最佳波段位于541、549、708和735 nm附近,549 nm处的高光谱反射率和735 nm处的一阶导数与SPAD值的相关性最强。SPA结果表明,在536、596和674 nm处的波段是估计SPAD值的最佳波段,在756和778 nm处的一阶导数对估算相对叶绿素含量最有用。结合光谱特征和图像特征可以提高干旱胁迫小麦SPAD值的估算精度(RFR模型最优性能:R2 = 0.61,RMSE = 4.439,RE = 7.35%)。总之,本研究建立的模型可以有效地评价小麦叶绿素含量,并为了解光合作用和抗旱性提供依据;本研究建立的技术方法具有巨大潜力,可为小麦及其他作物的高通量表型分析和遗传育种提供参考。
  • 振动胁迫下双孢蘑菇高光谱成像品质检测
    双孢蘑菇属于呼吸跃变型,采后极易变软腐烂,通常采后常温下双孢蘑菇1~3 d就会出现失水、开伞或者褐变,冷藏可贮藏5~10 d,因此其货架期较短。此外,双孢蘑菇具有薄且多孔的表皮结构同时又缺乏保护组织,属于典型的机械损伤或瘀伤高敏感性作物。在流通过程中要经历长时间的振动胁迫,导致双孢蘑菇产生不同程度的机械损伤。严重的外部损伤可通过机器视觉技术等手段进行检测。沈阳农业大学信息与电气工程学院的姜凤利和食品学院的孙炳新*等以双孢蘑菇为研究对象,采集室温条件下不同振动胁迫时间的新鲜蘑菇高光谱信息,融合光谱和纹理特征,结合化学计量学方法,对双孢蘑菇的早期机械损伤进行快速预测和判别。1、双孢蘑菇色泽分析从表1可以看出,随着振动时间的延长,蘑菇菌盖的亮度L值逐渐下降,颜色值a、b愈加发黄、发红,体现出双孢蘑菇的颜色值随着振动时间的变化而变化。与蘑菇亮度L变化趋势相反,褐变度持续升高,这可能是因为振动处理加剧膜脂过氧化作用,细胞膜透性升高,导致细胞膜结构破坏,使酚类物质与褐变相关酶广泛接触并反应,从而加剧了褐变的发生。综上所述,说明振动胁迫会加速双孢蘑菇白度值下降和褐变。2、双孢蘑菇光谱特征图3为不同振动时间双孢蘑菇平均光谱曲线,可以看出,原光谱数据在400~450 nm和900~1 000 nm波段范围内存在较大噪声,为了保证后续模型的分类正确率,选择450~900 nm范围内的光谱数据进行后续研究。不同振动时间蘑菇平均反射率光谱曲线显著不同,振动120 s的平均光谱反射率最低,完好无损的最高,表明光谱反射率与L值有关,L值越大,蘑菇表面越明亮,光谱反射率越大,即随着褐变度的增加,双孢蘑菇反射率下降明显。进一步分析,光谱在450~750 nm波段不同损伤程度的双孢蘑菇反射率差异明显。3、光谱数据预处理为了提高光谱数据的信噪比,分别采用SNV、SG以及MSC对原光谱进行处理,原光谱曲线以及3种方法处理后光谱曲线(取3种样本各10个光谱数据)如图4所示。从表2可以看出,经过不同预处理方法后,分类模型的效果有很大差异,其中SG预处理后的建模效果最好,训练集和测试集分类正确率分别达到91.11%和84.44%,因此后续研究均采用SG平滑方法处理实验数据。4、特征提取特征波长提取采用SPA提取特征波长个数与RMSECV对应关系如图5a所示,可见选择的特征波长个数为5时,RMSECV值最小为0.191。最终提取出的5个特征波长依次为465、495、512、540、616 nm,如图5b所示。特征波长主要集中在500~650 nm之间,主要是由于该波段范围对应可见光谱的黄色及黄绿色,振动胁迫导致双孢蘑菇表面颜色逐渐变黄,因此随着褐变度增加光谱反射率呈下降趋势。从图6可以看出,CARS在第59次采样时,获得的变量子集建立的PLS模型RMSECV最小,因此,该子集定为关键变量子集,共包含8个变量。提取的特征波长依次为451、475、484、492、518、545、655、798 nm。与SPA相似,CARS提取的特征波长主要集中在500~650 nm附近范围内,除此之外,798 nm波段主要与蘑菇水分含量有关,由于蘑菇受振动胁迫时间较短,因此水分变化并不明显。纹理特征提取如图7所示,因此本研究采用500 nm波段下的灰度图作为特征图像进行感兴趣区域提取。从180个双孢蘑菇样本灰度图中提取240×240大小感兴趣区域图像作为纹理图像,根据纹理特征参数提取方法提取纹理特征值。5、损伤识别模型基于光谱特征的判别模型从表3可以看出,3种识别模型对完好无损、振动60 s、振动120 s的双孢蘑菇识别效果存在较大差异。从3种模型的检测结果看,在训练集和测试集中,SPA提取特征波长效果均优于CARS,可能是由于CARS特征提取算法选择的波长与双孢蘑菇振动损伤相关性较小,而SPA对于消除原始光谱中的冗余信息效果更为突出。此外,SPA-PLS-DA分类识别率最高,训练集和测试集的平均识别率分别为93.33%和91.11%,SPA-BP模型识别率次之,训练集和测试集平均识别率分别为91.11%和88.89%,可能是因为BP神经网络在训练时神经元反向传递学习过程中,易陷入局部最优解。ELM识别模型分类效果差于PLS-DA和BP,训练集和测试集平均识别率分别为82.96%和71.11%,原因可能是ELM模型权重和偏置在后续训练中不进行更新,使其陷入局部最小值,无法获得最优解。基于纹理特征的判别模型从表4可知,与光谱特征判别模型一致,基于纹理特征判别模型的准确率高低依次为PLS-DA、BP和ELM。PLS-DA识别模型在训练集和测试集中,完好无损双孢蘑菇识别正确率均在90%以上,振动60 s类型、振动120 s类型双孢蘑菇识别正确率均低于90%;BP判别模型的分类效果不理想,训练集和测试集中,3 类双孢蘑菇识别正确率均在90%以下,尤其是测试集中,振动60 s双孢蘑菇识别正确率为53.33%。ELM判别模型平均分类正确率最低,训练集和测试集中仅有振动120 s类型双孢蘑菇识别正确率在80%以上。以上建模结果表明单从外部纹理特征建模并不能准确表达蘑菇的内部信息,识别效果不理想。基于光谱-纹理特征融合的判别模型从表5可以看出,训练集的3种不同损伤程度的双孢蘑菇识别正确率均为97.78%,测试集的完好无损类型和振动120 s类型的双孢蘑菇识别正确率为100%,振动60 s类型识别正确率为86.67%,总体识别率为95.56%。从图8可以看出,测试集的振动60 s出现了识别错误的情况,振动60 s被识别成振动120 s和完好无损类型各1个,识别错误的原因可能是振动60 s类型的部分样本与之相邻两类样本的纹理特征差异较小,且光谱特征区分不够明显,导致测试集发生误判的情况。结 论分析并比较SG、MSC和SNV作为高光谱数据预处理方法的建模效果,确定SG为预处理最佳方法。将处理后的数据采用SPA、CARS方法提取特征波长。基于特征波长下的光谱数据以及全波段光谱数据建立PLS-DA、BP神经网络以及ELM分类模型,最终确定SPA-PLS-DA模型分类效果最好,训练集和测试集总体识别率分别为93.33%、91.11%。利用灰度共生矩阵提取500 nm波段下双孢蘑菇纹理特征参数16个,基于特征值建立双孢蘑菇图像信息的PLS-DA、BP神经网络以及ELM分类模型,通过分析实验结果,确定PLS-DA为最佳分类模型,其中训练集和测试集总体识别率分别为88.89%、86.67%。相比光谱建模效果稍差。融合光谱特征和图像特征,建立PLS-DA双孢蘑菇分类模型,训练集和测试集总体识别率分别为97.78%和95.56%。预测效果优于单一信息建立的判别模型。结果表明,采用光谱-图像融合信息建模可以提高双孢蘑菇损伤程度检测精度。
  • 监测前沿交流 | 高风险的微污染物——多重人为胁迫增加了大型城市淡水生态系统的风险
    第一作者:陈苗通讯作者:金小伟、徐建通讯单位:中国环境监测总站、中国环境科学研究院图片摘要成果简介近日,中国环境监测总站金小伟教授级高工团队与中国环境科学研究院徐建研究员团队合作在环境领域著名学术期刊Journal of Hazardous Materials上发表了题为“Micropollutants but high risks: Human multiple stressors increase risks of freshwater ecosystems at the megacity-scale”的研究论文。该文研究了大型城市(北京市)淡水生态系统中包含农药、PPCPs、非法药物和工业化学品在内的133种微污染物对不同营养级水生生物的生态风险,考查了不同空间尺度土地利用对生态风险的影响,并利用结构方程模型(SEM)分析了多重胁迫对微污染物生态风险的效应,定量了人类活动和气候条件对微污染物风险效应的相对权重。该结果说明淡水生态系统中微污染物的生态风险不可忽略,气候、土地利用、水文条件等因素均会影响微污染物的生态风险,在进行水域管理时必须综合考虑多重胁迫因素。引言人类世以来,淡水生态系统越来越多的受到人类活动的直接或间接影响。气候变化、水文调节、土地利用和化学污染物是威胁河流生态系统结构和功能的主要因素。同时,随着土地利用和城市化的加剧,许多淡水生态系统正面临着生物多样性丧失和功能改变。除土地利用外,水环境中的有机微污染物也因其普遍分布和潜在的生态风险而引起广泛关注,长期接触微污染物会对水生生物和人类健康构成重大风险。在流域尺度的自然环境中,多种复杂的胁迫因素相互作用,对淡水生态系统造成破坏,很难确定其主要驱动因素。已知有机污染物与城市、耕地等人类土地利用有关,然而,以前的研究侧重于定性探索,缺乏对土地利用与多种微污染物暴露模式或生态风险之间的定量研究。以往对流域微污染物的研究主要集中在环境暴露、毒性和潜在生态风险。部分研究侧重于单一类别微污染物或某类污染物与土地利用之间的定性关系,而忽略了土地利用的多尺度影响。先前的研究没有确定土地利用和气候条件对多类型微污染物风险效应的相对权重。本研究主要关注大型城市淡水系统中微污染物的分布模式、生态风险及其受气候和人类活动的影响效应,特别是土地利用的多尺度效应及多重胁迫的影响,以期为流域尺度水域治理和管控提供有效的保护策略。图文导读微污染物的分布特征图1 北京市地表水中13类微污染物的浓度(a,*:P枯水期;c,e.平水期),不同字母表示显著差异(P有机磷酸酯(OPEs)抗病毒药(ANVIs),枯水期平均浓度分别为483、225和150 ngL−1。不同行政区域和河流中微污染物的分布和相对组成不同。南部区域的浓度明显高于北部区域,这与人类活动和污水处理厂分布显著相关。微污染物的生态风险图2 不同类别微污染物对不同营养级水生生物造成风险的比例(a.枯水期,b.平水期)。根据平均浓度(c)和最大浓度(d)确定的优控污染物(TUs1)在平水期,96.7%、100%和100%区域的藻类、无脊椎动物和鱼类受微污染物的慢性影响,这一比例高于枯水期(分别为41.7%、98.3%和100%)。在平水期,8.3%、33.3%和1.7%区域的藻类、无脊椎动物和鱼类处于高风险,而枯水期的比例分别为11.7%、3.3%和0%。有机磷农药(OPPs,杀虫剂)、三嗪类农药(TPs,除草剂)和OPEs占鱼类、藻类和无脊椎动物风险的最大比例,在枯水期分别占47.9%、46.6%和 56.5%。与平水期相比,不同的是拟除虫菊酯对鱼类风险的占比最大(图2a-2b)。这些结果表明,微污染物是威胁水生生物和生态系统的重要因素。根据微污染物的平均浓度,对其生态风险进行排序(图2c-2d)。18种微污染物被确定为优控污染物,其中高风险和中风险分别有7种和11种。TU分别为445.9、300和182.4的λ-氯氟氰菊酯、六嗪酮和磷酸三(2-乙基己基)酯(TEHP)的风险最大,验证了农药和OPEs的潜在风险。此外,敌敌畏、吡虫啉、毒死蜱和三(1-氯-2-丙基)磷酸酯(TCPP)表现出较高的环境风险。该优控清单有助于管理和控制北京市甚至其他类似大型城市地表水中的微污染物。不同空间尺度土地利用对生态风险的影响图3 枯水期(a、b和c)和平水期(d、e和f)河岸带不同尺度(0.1~15km)内耕地、不透水表面和植被地与藻类、无脊椎动物和鱼类生态风险的关系研究了不同空间尺度土地利用对不同营养级水生生物慢性风险的影响(图3)。当河岸带缓冲区分别超过5 km和2 km时,耕地对无脊椎动物和藻类的慢性风险有显著影响(p)(图3b和3c),平水期影响最大的是缓冲区范围分别为1 km、2 km和5 km(图3e)。对于植被地,所有尺度缓冲区的土地利用(宽度为0.1 km的缓冲区除外)对慢性风险表现出显著的负效应(p和3f)。河岸带缓冲区中大于2 km的土地利用类型对三类水生生物的慢性风险有显著影响,表明太宽泛的河岸带缓冲区范围并不能解释当地的污染状况。在规划土地利用策略时,必须考虑最佳河岸带缓冲区,这有利于以较低成本获得理想的生态效益。图4 结构方程模型显示的气候条件和人类土地利用对藻类、无脊椎动物和鱼类慢性风险的直接和间接效应(a)及相应的直接效应、间接效应和总效应系数(b)利用SEM确定了人类土地利用和气候条件对三种不同营养级水生生物生态风险的直接和间接效应(图4,χ2=14.784,df=17,CFI=1,RMSEA=0.000)。人类土地利用对水质参数(WQPs)和新污染物浓度有显著的正效应,尤其是对NH3-N(标准化路径系数β = 0.40, Pβ = 0.87, Pβ=0.91,PP种优控污染物,该清单可能有助于大型城市的微污染物管理和控制。不同空间尺度土地利用对不同营养级水生生物的慢性风险效应不同,其结果对规划土地利用管理和流域生态保护具有重要意义。多重胁迫因素,包括气候条件、污染排放,尤其是人类土地利用,影响着微污染物的生态风险。在控制流域内的微污染物时,有必要同时考虑这些多重因素。然而,气候变化是一个复杂而长期的影响,它与污染物之间的相互作用可能在短期内不明显。未来的研究可以更多地关注微污染物与长期气候变化之间的相互作用。淡水生态系统中多重压力源的相互作用仍然存在很大的不确定性,在以后的研究中应该重视这些相互作用的机制研究。本项目得到了国家自然科学基金委和国家重点研发计划的资助。
  • Wiris Agro机载作物水分胁迫指数成像仪发布
    Workswell与欧洲领先的生命科学研究机构捷克布拉格生命科学大学作物研究所经过多年合作,开发出了世界首款作物水分胁迫指数成像仪WIRIS Agro,它是第一款可用于农业领域精确绘制大面积水分胁迫指数图(CWSI)的机载成像设备。WIRIS Agro成像仪提供了LWIR波段传感器和10倍光学变焦的全高清相机 (1920x1080像素FHD),结合配套的CWSI分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。水分胁迫(water stress)是植物水分散失超过水分吸收,使含水量下降,植物细胞膨压降低,正常代谢失调的现象。土壤水分亏缺是作物水分胁迫最主要的诱因,重度水分亏缺会严重影响作物生长发育从而最终影响作物产量。因此,诊断作物水分亏缺、寻求适度水分胁迫阈值以谋求最高的水分利用效率一直是农田节水灌溉和精准农业研究中的热点问题。目前,作物水分亏缺指标使用最广泛的是Idso等于1981 年提出的作物水分胁迫指数(Crop Water Stress Index ,CWSI),CWSI是基于冠层温度和空气湿度关系,同时综合考虑了植物、土壤、大气等各种作用因素的一项综合性水分胁迫指标,其中冠层温度是可以通过遥感手段获取的基本信息之一。因此,随着目前低空轻小型无人机的大量使用,通过无人机平台高速获取大面积的植物群体CWSI图像数据终于成为可能。作物水分胁迫指数成像仪WIRIS Agro可搭载于多种类型无人机平台(如安洲科技生产的A660多旋翼无人机、AVF-1000/2000固定翼无人机等)快速精准地获取大面积植被的水分胁迫值、热红外图像数据以及高清RGB图,可用于作物产量制图、优化灌溉或控制水分利用管理补救措施等方面,是现代农田节水灌溉、精准农业、遗传育种和植物表型研究的无人机测量利器。通过CWSI图像优化马铃薯田灌溉条件如上图:基于土壤传感器数据的马铃薯田优化灌溉作业,右侧WIRIS Agro成像仪的图像所示,一些区域灌溉饱和,而其他区域灌溉不足,因此需要根据获取的CWSI图像,重新更好地定位土壤传感器。WIRIS Agro机载作物水分胁迫指数成像仪的主要用途及优点:① 状态监测评估,监控水分胁迫:使用彩色CWSI地图表述作物的水分利用问题,并可结合NDVI植被指数对作物的生长状况和产量进行研究评估;② 管理灌溉管理:灌溉系统优化,优化土壤传感器的位置和分布;③ 植物表型:WIRIS Agro成像仪可获取不同的植物物种对水分状况的不同反应,为作物遗传育种和植物表型研究提供基础数据;④ 丰富的接口:WIRIS Agro成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。安洲科技可为用户提供多种机载设备飞行测试服务,欢迎联络!
  • 基于地物光谱应用,干旱胁迫下的水稻反射率表现
    水资源短缺是目前制约农业生产的一个全球性问题,近年来,全球水资源供需矛盾更加突出。对于中国而言,有43%的面积为干旱和半干旱地区,并且中国的水量分布在时间和空间上也存在非常巨大的不均衡性,这使得中国的水资源供需矛盾更加尖锐,是中国农业生产面临的最?大危机之一。自21世纪以来,中国每年都会发生大强度的干旱,受灾面积往往波及数个省,如2010年西南地区发生的大旱灾,有将近5000000hm2的农作物受害,造成190多亿元的经济损失。水稻作为中国第?一大粮食作物,研究不同干旱胁迫对水稻的影响以及研发出抗干旱品种对农业发展尤为重要。在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。地物光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度 利用漫反射参考板对比测量,可获得目标的反射率光谱信息。实验过程及结果本实验旨在理解不同干旱胁迫下水稻基本型的表现,测量了10种在不同干旱威胁水平下导致相对含水量(RWC)不同的水稻的光谱数据,如图1所示。图1该实验显示了不同干旱胁迫下水稻的反射率模式。1) 在水稻含水量(RWC)降低时,由于1400nm和1900nm这两处水吸收特征峰减弱,导致近红外区域反射率增加。2) 对于350-700nm波长区域也有着类似的变化,在叶绿素a和叶绿素b的吸收范围中,反射率随着RWC降低而升高。3) 其次,随着RWC的降低,1400-1925nm波长向较短波长移动,且反射率增加。4) 在810-1350nm的海绵状叶肉中的散射也反映出反射率随RWC降低而增加的相同趋势。5) 最?后,在1100-2500nm波段位置的吸收也是一个强烈的吸收区域,随着RWC降低,叶片枯萎主要通过新鲜叶片中的水,其次是通过如蛋白质、木质素和纤维素的干物质而变得更加明显。结论这项实验的结果表明不同干旱威胁下的水稻的光谱反射率具有明显且规律的特征。因而可根据特征位置的差异建立预测模型,在精?准的模型分析下定量的分析出水稻含水量乃至干旱威胁程度,最终用于开发抗旱水稻品种的研究,为我国的农业生产作出巨大的贡献。
  • 共建盐碱地土壤检测与评价中心 | 实朴检测与国家盐碱地综合利用技术创新中心签署战略合作协议
    3月8日,在全国着力推进盐碱地综合治理和高效利用的关键时期,国家盐碱地综合利用技术创新中心考察了实朴检测(301228)技术(上海)股份有限公司,并举行了战略合作签约仪式,宣布双方将共建盐碱地土壤检测与评价中心。这一战略合作的达成,为未来农业的可持续发展和生态环境保护迈出了坚实的一步。  此次签约仪式在实朴检测上海总部举行,莅临考察的有:国家盐碱地综合利用技术创新中心副主任张建峰、条件平台部部长刘志鑫、条件平台部副部长李林波、条件平台部张浩。实朴检测技术(上海)股份有限公司董事长杨进、上海洁壤环保科技有限公司总经理尹炳奎、实朴检测技术(上海)股份有限公司市场总监李娟、技术经理胡佩雷、研发总监刘绿叶等接待了考察团。  双方领导分别发表了讲话,强调了盐碱地土壤检测与评价中心对于提升我国盐碱地治理水平、推动农业可持续发展的重要意义。双方将围绕盐碱地产能提升与可持续综合利用,针对盐碱地土壤问题识别与诊断、作物适用性、改良材料安全性、长效性评价等问题,按照“精准诊断-核心技术应用-效果评估-长效机制”的总体设计思路,联合开展识别、检测、诊断、验证技术攻关,创建分类分级盐碱地土壤改良技术综合评价体系,为我国构建盐碱地土壤改良科技体系提供技术和数据支撑。  国家盐碱地综合利用技术创新中心副主任张建峰表示,双方签约是落实习近平总书记关于盐碱地综合利用系列讲话精神的重要举措。国家盐碱地中心将进一步整合资源,协助开展标准制定、科研项目申报,与实朴公司共同加快推动盐碱地土壤改良、产能提升领域科技创新发展及示范推广工作。  实朴检测技术(上海)股份有限公司董事长杨进也表示,本次战略合作是公司在土壤检测领域迈出的一大步,实朴检测将充分发挥企业在环境检测领域的技术优势,为盐碱地的科学管理和高效利用提供有力支撑。  国家盐碱地创新中心与实朴检测将共同投入资源,未来在开展盐碱地土壤监测数据动态研究、盐碱地改良技术适用性综合评价应用示范和盐碱地土壤技术赋能与模式输出等方面开展合作。盐碱地土壤检测与评价中心的建立,将进一步提升盐碱地治理的科学化经验和精准化水平。不仅是科技创新与产业应用的强强联合,也是对国家盐碱地治理战略的有力支持。  在未来,随着土壤检测与评价中心的建立和运行,将为实现盐碱地的可持续发展和生态文明建设贡献重要的经验和力量。国家盐碱地中心和实朴检测将继续深化合作,共同推动盐碱地土壤检测与评价技术的创新发展,为我国的环境保护和农业可持续发展做出更大的贡献。
  • 植物重金属创新科研平台成果:曼陀罗镉胁迫研究
    2005年~2020年,NMT已扎根中国15年。2020年,中国NMT销往瑞士苏黎世大学,正式打开欧洲市场。国内科研人员基于自主底层核心技术——NMT非损伤微测技术,建立的“植物重金属独有创新科研平台”,已经取得了近百项研究成果,联盟将持续为您展示此平台成果案例。联盟已开始提供“植物重金属独有创新科研平台”的建立服务,咨询请联系中关村NMT联盟期刊:农业资源与环境学报标题:曼陀罗对镉的吸收及其亚细胞分布研究样品:曼陀罗检测指标:Cd2+作者:河南农业大学资源与环境学院杨素勤、张彪摘 要为研究曼陀罗对重金属镉的耐性机制,以前期筛选的曼陀罗(Datura stramonium L.)为试验材料,通过水培方式探究镉(Cd)胁迫下曼陀罗对Cd的吸收累积特性及其在植株体内的亚细胞分布特征。结果表明:介质中Cd无论低浓度还是高浓度,曼陀罗各部位的Cd含量都表现为根茎叶,但迁移系数差异不显著。曼陀罗根系Cd2+ 流速在不同位置具有显著差异,其中分生区和伸长区的Cd2+ 流速显著大于根冠区和成熟区。当介质中Cd浓度由0.1 mgL-1增至2.5 mgL-1时,细胞壁和细胞液中Cd含量之和所占比例显著增大。研究表明,曼陀罗根系对Cd2+ 的吸收主要集中在分生区和伸长区,当介质中Cd浓度较低时,根系中细胞壁对Cd向上运输的限制及茎叶中细胞液对Cd的区室化起重要的作用 当Cd浓度较高时,根部细胞各组分中细胞液所占比重增加,Cd由根系向上迁移,此时茎叶中细胞壁对Cd的固定作用增强,其可能是曼陀罗耐受高Cd胁迫的机制之一。
  • 2022年盐碱地普查重点范围确定205个县
    5月21日,农田建设管理司采取线上会议形式组织召开全国盐碱地普查工作推进会,河北、内蒙古、吉林、山东、新疆等承担2022年盐碱地普查任务的14个省(区、市),新疆兵团,北大荒集团以及相关耕地质量保护推广体系,中国科学院南京土壤所、东北地理与农业生态所、新疆生态与地理所,中国农业大学,部耕地质量监测保护中心,中国农科院资源区划所等相关技术支撑单位共300多人参会。会议强调,要认真贯彻落实习近平总书记重要指示精神,把全国盐碱地普查作为今年土壤普查的重点工作来抓。开展盐碱地普查,摸清盐碱地“家底”,分析评价盐碱地开发利用潜力,是推进“以种适地”、提升盐碱地综合利用水平的重要基础,对保障国家粮食安全具有重要意义。 会议明确,今年盐碱地普查重点范围确定205个县,包括盐碱耕地、盐碱荒草地等,各地要结合实际尽快编制盐碱地普查实施方案,有序、高效、保质地推进盐碱地普查,年底前基本摸清我国重点区域盐碱地类型、分布、程度、成因以及改造开发利用情况。 会议要求,各地要把盐碱地普查与第三次全国土壤普查其他各项工作结合起来,统筹谋划、统一布局,多途径、多方式解决资金、人员等问题,防止出现盐碱地普查和第三次全国土壤普查“两张皮”以及重复性调查采样等问题。
  • 精选案例汇总 | MST在植物抗逆机制研究上的应用
    MST案例汇总 植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天小编带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用。01高温胁迫_蛋白&蛋白互作Chen, Si‐Ting, et al. "Identification of core subunits of photosystem II as action sites of HSP 21, which is activated by the GUN 5‐mediated retrograde pathway in Arabidopsis." The Plant Journal 89.6 (2017): 1106-1118.前人研究发现位于叶绿体的热休克蛋白21(HSP21)能够保护光系统II复合体 (PSII),使其免受细胞内热和氧化应激,但其作用的分子机制尚不清楚。中科院植物生理生态研究所郭房庆研究团队发现,热应激下拟南芥HSP21被GUN5依赖的逆向信号通路激活,并直接结合其核心亚基D1和D2蛋白来稳定PSII。 组成性表达HSP21可以恢复热胁迫下PSII 的热敏稳定性和gun5突变体的功能缺失,表明HSP21是热胁迫条件下维持类囊体膜系统完整性的关键伴侣蛋白。研究人员借助MST技术直接在接近天然状态下的裂解液中检测了HSP21蛋白与PS II核心亚基D1和D2蛋白之间的亲和力。图注:MST技术检测HSP21和植物裂解液中D1/D2结合植物内某些蛋白较难纯化或者纯化后活性受影响,利用MST技术,可直接在植物裂解液内进行亲和力检测,无需纯化。在本次实验中,作者裂解表达35S::D1-eYFP或35S::D2-eYFP的转基因植物,直接向裂解液中加入梯度稀释的纯化HSP21蛋白,检测得到HSP21与D1/D2的亲和力Kd分别为0.67μM和1.32μM.02低温胁迫_蛋白&离子Ding, Yanglin, et al. "CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis." Science Advances 8.26 (2022): eabn7901.寒冷的环境中会触发植物细胞质Ca2+的激增,导致植物的转录重编程。然而,Ca2+信号是如何被感知和传递到下游的低温信号通路仍然是未知的。中国农业大学杨淑华课题组研究发现,钙依赖性蛋白激酶28 (CPK28)启动了一个磷酸化级联,从而作用于低温诱导Ca2+信号下游的转录重编程。这项研究阐明了一种先前未知的机制,揭示了植物从质膜到细胞核的快速感知和转导低温信号的关键策略。研究中,作者通过MST实验检测到CPK28可直接与Ca2+结合。CPK28 EF-hand位点突变蛋白CPK28EFm与Ca2+亲和力降低了6倍,证明了EF-hand对结合Ca2+非常重要。图示:MST技术检测CPK28/CPK28EFm与Ca2+的亲和力03淹水胁迫_蛋白&离子Lehmann, Julian, et al. "Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis." Current Biology 31.16 (2021): 3575-3585.淹水胁迫导致厌氧菌引发的胞质酸中毒,使植物细胞感知酸性并通过膜去极化传递这种信号的分子机制尚不清晰。德国维尔茨堡大学研究表明,拟南芥根中酸中毒诱导的阴离子流出依赖于阴离子通道AtSLAH3,细胞质子浓度的增加使SLAH3从无功能二聚体转变为活性单体形式,激活了阴离子通道。研究发现硝酸盐对于pH依赖的通道激活至关重要,并通过MST技术研究SLAH3与NO3-的结合。图示:(左) 淹水相关胁迫响应中酸中毒诱导的阴离子通道SLAH3的激活(右) MST技术检测不同PH下SLAH3与NO3-亲和力作者表达SLAH3-GFP融合蛋白作为荧光信号源,无需其他标记。在pH6.5下检测到SLAH3与NO3-相互作用的Kd为120±50 mM。在pH为7.3时,SLAH3仍与NO3-结合,但亲和力降低了60%,表明SLAH3与阴离子的结合依赖于pH。04干旱胁迫_蛋白和磷脂分子Yang, Yongqing, et al. "Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis."The Plant Cell 34.1 (2022): 477-494.为了应对干旱胁迫,植物关闭气孔以减少叶片蒸腾水分的损失。气孔运动受信号分子磷脂酰肌醇三磷酸(PI3P)的调控。然而,这一过程的分子机制尚不清楚。中国农业大学郭岩研究组研究表明,拟南芥气孔关闭过程中,PI3P通过与植物特异性肌动蛋白结合蛋白 (SCAB1) 结合,抑制其寡聚,从而调节气孔关闭期间保卫细胞中F-肌动蛋白稳定性和重排。为了检测SCAB1蛋白是否可与PI3P结合,作者进行MST实验,结果显示二者具有非常强的亲和力,解离常数Kd为4.5±0.09 pmol。为了确定具体结合位点,作者将PI3P motifs RXLR-dEER进行突变,MST结果显示,三重突变蛋白不能与PI3P结合。综合其他实验,最终证明,SCAB1的4个RXLR motifs均具有PI3P结合能力,且至少需要2个RXLR才能与PI3P结合。图示:MST检测SCAB1与PI3P的亲和力
  • 探秘逆境植物实验室
    这是一个特殊的实验室,它的四周由玻璃制成,看起来好像是一间巨大的温室,里面摆放着各色植物,有的植物因为长期未浇水,已经变得枯萎,有的植物则被特意种植在盐碱土壤中,还有的植物则被放置在具有重金属污染的土壤中。它们所有的生长繁殖都被记录下来,进行科学研究。   这就是逆境植物实验室,用来观察植物的抗逆性,并且进行各种转基因实验。近日,记者来到了山东师范大学生命科学学院,对山东省逆境植物重点实验室进行了探访。   狗尾巴草  进入温室   在山师大生命科学学院楼前的空地上,记者见到了已经建成一年之久的“山东省逆境植物重点实验室”,据生命科学学院正在读博士的侯蕾同学介绍,这只是逆境植物实验室的一部分而已。   记者走进这间实验室发现,里面摆满了各种植物,有的植物因为缺水,叶梢已经开始发黄枯萎,还有的培养皿中带有一些白色的结晶颗粒。   “这些都是实验室要用的植物,”侯蕾向记者解释说,为了研究植物的抗逆性,实验室会专门针对不同的植物进行模拟生态繁殖。比如说有的植物会种植在富含盐碱的土壤中,有的植物则要种植在干旱的土壤中。更让记者惊讶的是,在温室的一角,记者居然发现了大量的狗尾巴草,而它们则是实验室进行抗逆实验的一部分。“我们给予这些狗尾巴草各种恶劣的环境,观察它们对恶劣的环境所产生的应变反应。”   除了进行模拟自然条件下恶劣的生长环境外,实验室的工作人员跟教授们还在进行着各种尝试,比如通过各种特殊的灯光模拟紫外线对植物进行光照,考察植物的反应 或者是可以降低或提升温度,观察植物的生长变化等等。“事实上所谓的逆境实验室,就是给植物极其恶劣的生存环境,逼迫促使它们在生长中对这些环境产生应对能力。”侯蕾告诉记者说,对于植物来说,当它们遭遇到严酷的逆境时,往往会产生一些意想不到的突变:“不可能每一株植物都会产生基因的突变,但是总会有一小部分的植物能够适应突变的环境,生存下去。”如果用通俗的话说,就是人为的促进植物进行进化。   未来用海水种植水稻?   那么逆境植物实验室将为科学家们提供什么样的帮助呢?或许我们可以从山师大的博士生导师张慧所描述的场景里窥得一二。   “我们都知道现在地球的淡水资源在减少,那么将来淡水不够用了怎么办?我们可以用海水来灌溉农田。”张慧向记者描述了这样一种情况:在未来的数年间,我国沿海各省将会在海边修建大量的水利工程,蔚蓝色的海水被引入内陆地区,经过河道或者专用的管道,然后送到水稻田中进行大面积的灌溉。   这些生活在蔚蓝色海水中的水稻,像普通的水稻一样生长,发芽,最后结果,然后被收割机收割,最终送上我们的餐桌 而困扰我们的干旱和沙漠也得到了有效的治理,一株株特殊的植物开始在干旱的沙漠中快速生长,原本漫天的黄沙变成了绿洲 原本惧怕低温的农作物开始在北方不断的生长发育,威胁到我们身体的重金属污染也因为一些特殊植物的出现而被分解消化。   “这么说可能大家觉得是在痴人说梦,但是对于我们这些研究植物抗逆性的专家来说,这个梦想已经距离现实越来越近了。”张慧肯定的告诉记者说。   喝盐水长大的满天星   张慧为何会如此确信海水种植水稻不是梦想呢?记者在逆境植物实验室中找到了答案。   在实验室的温室中,一种特殊的植物被大量培育,其土壤中含有大量的盐分,经过仔细观察记者发现,这些植物的表面都有着层层的白色颗粒,“这些白色的东西就是土壤中的盐分。”张慧告诉记者说,这种植物叫做补血草(即俗称的满天星)。与其他植物不同,补血草本身具有一种分泌盐分的能力,“这就好比我们人类,剧烈运动时,我们的汗腺会排出大量的汗水,补血草本身也具有这种类似汗腺的东西。”当实验室的工作人员用含盐量高的水去灌溉补血草时,它们会把盐分通过根茎吸收,然后通过叶子表面的“汗腺”把其中的盐分排出体外,从而得以继续生存。   如今,张慧正带领着自己的学生培育大量的补血草,然后在显微镜下将补血草叶面的“汗腺”分离出来进行观察,“为什么补血草会有这种汗腺,而其他植物没有呢?我们可以通过DNA的对比,发现其汗腺出现的原因,然后尝试着去把这种DNA镶嵌到水稻中去,让水稻也具有排泄盐分的能力。”   张慧告诉记者说,世界上已经有很多科学家在研究类似的问题,“大家都在尝试着使用海水去灌溉植物,因为在未来淡水资源会越来越珍贵,所以如何利用海水是一个很重要的课题。”   “在不同的环境下,植物会表现出各种抗逆性,比如说抗旱、抗盐碱、抗低温或者抗高温等等,这些都是植物的抗逆性。”张慧告诉记者说,我国一直很重视农业发展,因此在研究植物的抗逆性上投入了很大的资金:“希望我们通过植物的逆境实验,能够培育出抗旱、抗盐碱、抗低温或者是抗高温之类的植物,来改变生态环境,加大农业的发展力度。”   可以分解重金属的植物   “除了可以培育出抗旱、抗盐碱、抗低温高温的植物外,我们还可以利用植物的抗逆性来分解重金属污染。”张慧告诉记者说,由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染。   “比如说蔬菜,前一段时间就有新闻报道说某些地方的蔬菜重金属污染超标,但是某些植物对于重金属有分解作用。”张慧告诉记者说,在一些富含重金属的矿山附近,往往会生长着一些植物,这些植物对于重金属污染已经有了分解能力:“我们可以通过模拟矿山或使用重金属污染的土壤培育一些植物,然后观察它们对重金属的抗逆性,根据它们的变化来选择出可以分解重金属的物种进行研究,然后培育出可以分解重金属或者是抵抗重金属的植物。”   名词解释   植物抗逆性  到底咋回事?   “任何一种植物,都具有抗逆性。”山东师范大学博士生导师张慧告诉记者说,所谓的植物抗逆性,是指植物所具有的抵抗不利环境的某些性状。“举个简单的例子,仙人掌可以在极度缺水的沙漠中存活,海南的红树林可以长期生活在海水中等等,这都是植物所具备的抗逆性。”   张慧告诉记者说,在遥远的远古时期有很多的植物,当地壳因为运动而发生改变时,这些植物的生存环境也发生了剧烈变化:有的时候因为大陆的抬升,造成了气候的湿润和温度的降低,有时候地面的凹陷,导致了河水海水的倒灌,在环境的剧烈变化下,大批的植物因为无法适应突变的环境而死去,但是也有少数植物,虽然其生理活动遭到了重创,但是却顽强的活了下来。   周围生存环境的剧变依然在延续,这些顽强生存下来的植物开始逐渐的适应这些环境,于是它们继续开始繁殖,其体内的基因也开始逐渐变化,最后直至完全适应了现有的生存环境。“一些植物可以采取不同的方式去抵抗各种胁迫因子,这就是植物的抗逆性。”张慧告诉记者说,正是因为植物具有这种抗逆性,才能够不断的适应环境,经过数千万年的不断进化,形成了如今我们所看到的各种植物。   “当然,正因为植物具有抗逆性,它们的其他方面就会减弱,比如说仙人掌,虽然耐旱耐高温,但是生长缓慢。”从事植物抗逆性基因研究多年的张慧不由得感慨造物主的神奇:“这就好像人一样,你的某一方面突出的同时,另一方面可能就会弱化,所以说我们这个世界没有全能型人才就是这个原因。”
  • 美国环保署修改烟碱类农药标识规定
    据美国环保署(EPA)消息,2013年8月15日美国环护署发布最新农药标识规定,对农药添加蜜蜂保护标识,禁止在蜜蜂栖息地使用某些烟碱类农药(吡虫啉,呋虫胺,噻虫胺,噻虫嗪)。   蜂群衰竭失调(CCD)导致的蜜蜂传粉能力下降已经成为美国的重要环境问题,对美国自然生态环境及作物生产产生影响。2013年5月,美国农业部与EPA共同发布关于蜜蜂健康的科学报告,表示蜜蜂健康受栖息地减少、寄生虫、致病菌、遗传多样性缺失、蜂群养殖管理不足、营养不良、农药暴露多方面影响。EPA蜜蜂保护战略计划包括1)推进机构科学研究,开展农药对蜜蜂健康风险评估 2)开发风险管理工具,减少蜜蜂潜在风险 3)加强与公众、政府组织、非政府组织的合作交流三方面的目标。   2013年8月16日,美国环境保护组织食品安全中心(CFS)表示,EPA承认蜜蜂保护过程中需要严格的烟碱类农药标签规定的行为"令人鼓舞",但新标签规定仍未能有效保护蜜蜂健康。CFS认为,在缺乏烟碱类农药对蜜蜂等传粉动物影响的研究数据的前提下,EPA无法完成关于烟碱类农药对蜜蜂的风险评估,在烟碱类农药完整风险评估完成前应禁止烟碱类农药的使用。   原文链接:http://www.centerforfoodsafety.org/press-releases/2455/epa-admits-safety-labels-fail-to-protect-pollinators-vital-to-food-supply
  • ​Science | 肿瘤抑制因子选择性失活驱动因素:适应性免疫系统
    肿瘤的发生是一个复杂的适应过程,涉及许多细胞功能的改变,包括细胞分化状态、端粒维持、细胞增殖控制、对营养状态改变的适应、血管生成能力的进化、细胞死亡的避免以及对蛋白质毒性和基因组胁迫的适应等等,这些改变被称为肿瘤的生长生存适应(Growth and survival adaptation,GSA)。在肿瘤发生过程中,肿瘤会通过破坏参与抗原处理和呈递的基因或上调抑制性免疫检查点基因来逃避免疫系统。目前已经通过多种方式鉴定发现了肿瘤中的驱动基因,但是这些肿瘤驱动基因是如何发挥作用的还不得而知。为了揭开这一问题的答案,美国霍华德休斯研究所Stephen J. Elledge研究组在Science发文,题为The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation,揭开了肿瘤中肿瘤抑制因子的选择性失活所依赖的主要驱动因素是适应性免疫系统这一机制。肿瘤驱动基因的鉴定主要包括两种方式,其一是通过遗传和生化的方式分析病毒致癌基因或由病毒插入激活的基因【1,2】,其二是通过鉴定家族性癌症综合征以及其他零星发生的癌症鉴定反复出现的突变【3,4】,更为现代的技术对这些基因的分析会通过转座子、RNA干扰、CRISPR基因编辑技术、cDNA过表达以及高通量测序等检定这些基因潜在的肿瘤发生驱动能力。一直以来,肿瘤的生长生存适应基因的系统功能分析一直是癌症研究的焦点,但是目前的一些遗传筛选主要是在体外培养系统之中,这些二维的体外培养系统能够揭示与肿瘤细胞增殖和生存相关的一些基因,但是对于更为复杂的肿瘤微环境中不同细胞类型以及它们之间的相互作用是无法进行揭示的。除了与肿瘤生长和适应相关的基因促使肿瘤的发生和发展之外,肿瘤燎原之火想要进攻机体还需要克服另外一个障碍那就是免疫系统。肿瘤会想办法逃过免疫系统的威胁,造成免疫监视的适应(Immune surveillance adaptation,ISA)。为了对免疫调控基因进行检测,作者们构建了一个CRISPR文库,可以靶向7500个已知或者潜在的药物靶点基因。首先,作者们使用小鼠乳腺肿瘤模型进行文库转染,在选择细胞群体倍增后或者是皮下肿瘤移植到野生型或者是严重联合免疫缺陷型小鼠之中(图1)。通过该筛选,作者们筛到了一些生长调节相关的基因比如Pten,同时也鉴定发现了一些与抗原呈递以及免疫信号通路相关的因子比如B2m、Jak1等。除此之外,作者们还发现了一些熟悉的肿瘤抑制因子在适应性免疫系统存在的情况下出现富集,这引起了作者们的研究兴趣。图1 筛选免疫调控因子的工作流程图为了排除细胞种类特异性的效应,作者们又用相似的方式对结肠肿瘤细胞中进行了鉴定,随后作者们将目标集中在Gna13、Cul3以及Hdac2这三个因子之上,因为在CT26和4T1筛选中这些基因在野生型小鼠中观察到更强的表型以及它们在调节肿瘤细胞对适应性免疫系统的应答中可能存在一些未知的作用。进一步的,为了验证这些基因的作用,作者们对这些基因进行了敲除,这些基因敲除后对于肿瘤的体外增殖生长能力没有显著的影响,但是会在适应性免疫系统存在的情况下出现肿瘤的生长优势(图2),因此Gna13、Hdac2和Cul3会对适应性免疫系统存在的情况下特异性肿瘤抑制,该结果说明肿瘤细胞与免疫系统之间存在一定的相互作用。图2 Gna13基因敲除后只在适应性免疫系统存在的情况下出现肿瘤生长优势为了提高该结果对于药物靶点的指导性,作者们对一些人类肿瘤中已知突变的肿瘤抑制因子进行系统性CRISPR文库筛选。作者们对前500个预测的肿瘤抑制因子每个设计了10个sgRNAs,在三个不同的肿瘤细胞品系中进行转染,然后将肿瘤细胞移植到野生型或者适应免疫缺陷型小鼠中。当肿瘤长到目的大小时,作者们对其中的sgRNA丰度进行分析,筛选到的结果发现比如B2m或者Hdac2等肿瘤抑制因子会以一种适应性免疫系统特异性的方式促进肿瘤的生长。另外,作者们还鉴定发现了一个编码粘多糖降解相关的酶Gusb【5】,在转入Gusb的sgRNAs后只在野生型小鼠中出现阳性选择性生长,说明Gusb在调节肿瘤对适应性免疫系统中起着非常重要的作用。但是这肿瘤抑制因子是如何在适应性免疫系统特异性中的发挥作用的呢?GNA13的突变先前被报道发现发生在散发性癌症中,既可以作为癌基因又可以作为抑癌基因发挥功能,最常发生在淋巴瘤、子宫内膜肿瘤、膀胱肿瘤和肝癌中【6】。在适应性免疫系统存在的情况下,作者们发现GNA13可以作为肿瘤抑制因子发挥作用,但是具体的机制并不清楚。为此,作者们在结肠肿瘤细胞系中的构建了GNA13敲除品系,然后将这些细胞作为皮下肿瘤植入WT小鼠或在体外培养,并使用RNA-seq进行转录组分析。通过该分析,作者们发现GNA13的缺失会导致Ccl2表达的提高,进而导致CCL2分泌的增加。先前的研究表明CCL2是髓系细胞的招募因子。在敲低CCL2的情况下对肿瘤的生长并没有显著的影响,但是得在GNA13敲除的背景下敲低CCL2则会显著地削弱肿瘤的生长。另外,作者们发现过表达CCL2足以促进结肠癌肿瘤细胞的生长。因此,GNA13的肿瘤抑制功能是通过负调控CCL2的表达实现的。总的来说,该工作发现在肿瘤发生过程中,相对于严重联合免疫缺陷小鼠,适应性免疫系统中存在肿瘤抑制基因缺失的显著富集,并且这一机制是以癌症和组织特异性的方式实现的。该工作说明肿瘤中抑制因子的选择性失活所依赖的主要驱动因素是适应性免疫系统,为肿瘤的治疗以及肿瘤学的研究提供了新的见解。原文链接:https://science.org/doi/10.1126/science.abg5784
  • 辽宁省印发《关于做好第三次全国土壤普查的通知》:抓好试点和盐碱地普查
    为深入贯彻落实《国务院关于开展第三次全国土壤普查的通知》(国发〔2022〕4号)要求和全国土壤普查动员部署电视电话会议精神,切实做好第三次全国土壤普查工作,辽宁省人民政府印发《关于做好第三次全国土壤普查的通知》(以下简称《通知》)。《通知》提出要准确把握普查工作要求,认真对照国家明确的普查对象与内容、时间安排、工作要求等,抓紧组织开展普查工作。具体时间安排如下:(一)科学编制实施方案。按照“2022年开展试点、2023—2024年全面开展、2025年完成总结报告”的总体进度安排,科学制定实施方案,合理制定时间表、路线图,明确责任分工。(二)强化技术服务支撑。加强专业技术人员配置,组织专家、科研人员为普查工作提供技术指导与支持,有计划地开展技术培训、业务练兵,提高土壤普查人员队伍专业素养,确保普查工作符合“专业化、标准化、规范化”要求。(三)严格普查质量控制。建立普查工作质量管理体系和普查数据质量追溯机制,层层压实责任。各级普查机构及其工作人员必须严格按要求普查数据,确保数据真实、准确、完整,并按要求报送普查数据。任何地区、部门(单位)和个人都不得虚报、瞒报、拒报、迟报,不得弄虚作假和篡改普查数据。(四)抓好试点和盐碱地普查。沈阳苏家屯区、大连瓦房店市2个试点地区普查工作任务以及全省盐碱地普查工作要按照2022年底前全面完成的要求,统筹当前疫情防控实际,积极创新工作机制,为全省普查工作提供经验。辽宁省第三次全国土壤普查领导小组人员名单  组 长:王明玉  副省长  副组长:孙繁柏  省政府副秘书长      陈 健  省农业农村厅厅长      刘兴伟  省自然资源厅厅长  成 员:王 鹏  省发展改革委副主任      杨 枫  省财政厅副厅长      吕雪峰  省生态环境厅副厅长      王福东  省水利厅副厅长      冀登义  省农业农村厅副厅长      江永平  省统计局副局长      姜生伟  省林草局副局长      马越红  中科院沈阳分院副院长      孙占祥  省农科院副院长      马殿荣  沈阳农业大学副校长  领导小组办公室主任由省农业农村厅副厅长冀登义兼任。
  • 文献分享丨最新研究发现土壤有机碳分解热适应的调控机制
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达18篇。 今天与大家分享的文章是东北林业大学林学院周旭辉教授团队首次从底物消耗与微生物适应角度,揭示了土壤有机碳分解热适应的调控机制的研究论文。在该研究中,采用了PRI-8800作为关键设备之一,我们来具体了解一下吧~ 长期以来,学界普遍认为气候变暖加速土壤有机碳分解,进而使得地球平均温度上升,形成正反馈效应。而近期的一些长期增温实验发现土壤有机碳分解速率可能会随着增温时间呈逐渐下降趋势,表现出热适应现象。当前,针对土壤有机碳分解的热适应调控机制,国内外生态学家仍存在较大争议,其根本难点在于无法有效区分底物消耗与微生物适应在土壤碳分解中的相对贡献。为了解决这一难题,何杨辉等研究人员依托长期野外增温实验平台,巧妙地使用土壤微生物灭菌-接种方法区分底物与微生物的调控作用,研究结果表明土壤底物可利用性是调控土壤有机碳分解热适应的主要因素。这一重要发现将增进人们对土壤有机碳分解热适应性的理解,为准确预测陆地土壤碳-气候反馈提供重要的科学依据。 土壤有机碳分解热适应潜在调控机制 值得注意的是,在实验过程中,研究团队通过PRI-8800连续变温培养和高频土壤呼吸在线测量的优势,克服了恒温培养模式土壤微生物对特定培养温度的适应性和底物消化不均的难题,加速研究进程并获得可靠的研究结果。 研究成果“Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability”为题,在线发表于国际顶级生态学期刊Global Change Biology(IF=13.211),何杨辉教授为论文的第一作者,周旭辉教授为论文通讯作者。相关论文信息:He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022.全文链接:https://doi.org/10.1111/gcb.16523 UPGRADED! 土壤有机质是陆地生态系统最大的碳库,在全球变暖背景下,土壤有机质分解对温度变化的响应很大程度影响着陆地生态系统对全球气候变化反馈效应。气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖已成为目前科学家主要关注的内容之一。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。 01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matterdecomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.16.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.18.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022. 如果您对我们的产品或本期内容有任何问题,欢迎致电垂询:地址:北京市海淀区瀚河园路自在香山98-1号楼电话:010-51651246 88121891邮箱:support@pri-eco.com
  • 宁波材料所在盐适应海洋传感凝胶方面取得进展
    传感技术是现代信息产业的支柱之一。由软材料构建的柔性传感器件可作为传统硬质传感器件的重要补充,在可穿戴传感、智慧医疗、软机器人、人机交互等领域具有重要的应用价值。得益于离子导电凝胶材料良好的生物相容性、力学匹配性和类生物导电机制,离子导电凝胶被认为是最有发展潜力的柔性传感材料之一,在运动感知、健康监测、通讯交流等领域得到广泛研究。然而,由于凝胶网络本征的亲水特点,传统离子导电凝胶传感材料在水环境中缺乏稳定性,无法应用于包括海洋在内的各类水环境中。而海洋与陆地一样,是人类的重要活动空间,尤其是随着海洋开发战略的推进,发展海洋传感材料成为迫切的需求。因此,解决离子导电凝胶材料的海洋稳定性问题,发展适用于海洋环境的高性能凝胶传感器件对于海洋活动具有重要意义。近年来,中国科学院宁波材料技术与工程研究所智能高分子材料团队研究员陈涛和博士魏俊杰,致力于离子导电凝胶基智能传感材料的研究,并利用疏水界面对水分子和导电离子的扩散屏障功能实现了导电凝胶材料的水下多功能传感应用。然而,含盐海水的高导电性会对离子凝胶传感器的传感性能产生明显的抑制作用,导致离子导电凝胶的海洋传感性能存在不足。对此,该团队近期在疏水界面结构的基础上,进一步利用质子导电机制和盐诱导解离效应设计了在海水环境中具有盐适应能力的离子液体凝胶材料,实现了海洋传感应用。如图所示,该工作合成了一种同时含有亲水链段(接枝有磺酸基团-SO3-和季铵根基团-N(CH3)3+)和疏水链段的聚合物Proton Conductive Material(简称PCM),并将其引入到由疏水单体(MMA)和疏水离子液体([BMIm]PF6)构建的耐水性离子导电凝胶中。聚合物PCM中的疏水链段可以使其在疏水凝胶中具有良好的相容性,而亲水链段中的两性离子基团可促进离子液体发生解离,提高凝胶中的自由离子含量。此外,-SO3-与[BMIm]+的静电作用为质子提供了迁移通道,在离子导电凝胶中形成了特殊的质子导电机制,进一步提高了凝胶的导电性,为改善其在高导电性海水中的传感性能奠定了基础。[BMIm]+-Cl-的作用强度高于Na+-Cl-和[BMIm]+-PF6-的作用强度,因此海水中的盐能够对凝胶中的离子液体产生诱导解离作用,使凝胶的导电性随着盐含量的增大而提高,即导电能力的盐适应性增强。这种盐适应导电增强能力使得凝胶传感器的传感灵敏度不会因为高盐含量海水的高导电性而受到削弱,反而展现出远超空气环境和纯水环境的传感性能。基于这种特性,该盐适应离子导电凝胶被应用于潜水人员的呼吸监测、运动感知、海下信息通讯以及海洋机器人的动作识别等海洋传感领域,展现出良好的传感性能。这一盐适应凝胶传感材料初步满足了海洋应变传感需求,为未来进一步构建高灵敏、多模式海洋传感材料提供了设计思路。相关研究成果以Salt-Adaptively Conductive Ionogel Sensor for Marine Sensing为题,发表在Small(DOI:10.1002/smll.202305848)上。研究工作得到国家自然科学基金、中国博士后科学基金、宁波市重点研发计划和宁波市自然科学基金等的支持。导电凝胶的盐适应结构与海洋传感应用
  • 重磅!2023年度中国科学十大进展发布
    2024年2月29日,国家自然科学基金委员会发布2023年度中国科学十大进展,以下10项重大科学进展入选:1. 人工智能大模型为精准天气预报带来新突破2. 揭示人类基因组暗物质驱动衰老的机制3. 发现大脑“有形”生物钟的存在及其节律调控机制4. 农作物耐盐碱机制解析及应用5. 新方法实现单碱基到超大片段 DNA 精准操纵6. 揭示人类细胞 DNA 复制起始新机制7. “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子8. 玻色编码纠错延长量子比特寿命9. 揭示光感受调节血糖代谢机制10. 发现锂硫电池界面电荷存储聚集反应新机制,时长06:30“中国科学十大进展”遴选活动旨在宣传我国重大基础研究科学进展,激励广大科技工作者的科学热情,开展基础研究科学普及,促进公众了解、关心和支持基础研究,在全社会营造浓厚的科学氛围。自2005年启动以来,已成功举办18届。“中国科学十大进展”遴选活动坚持由第三方推荐的原则,并由基础研究领域的高水平专家学者广泛参与投票,确保遴选结果的公正性和代表性。历年入选进展较为全面地记录了我国基础科学研究的重要成果,得到了社会各界广泛关注,已成为盘点我国基础研究领域年度重大科学成果的品牌活动。2023年度第19届“中国科学十大进展”遴选活动由国家自然科学基金委员会主办,国家自然科学基金委员会高技术研究发展中心(基础研究管理中心)和科学传播与成果转化中心承办,《中国基础科学》《科技导报》《中国科学院院刊》《中国科学基金》《科学通报》协办,分为推荐、初选、终选、审议4个环节。《中国基础科学》等推荐了2022年12月1日至2023年11月30日期间正式发表的600多项科学研究成果,由近100位相关学科领域专家从中遴选出30项成果,在此基础上邀请了包括中国科学院院士、中国工程院院士在内的2100多位基础研究领域高水平专家对30项成果进行投票,评选出10项重大科学研究成果,经国家自然科学基金委员会咨询委员会审议,最终确定了入选2023年度“中国科学十大进展”的成果名单。2023年度中国科学十大进展简介1 人工智能大模型为精准天气预报带来新突破盘古气象大模型的三维神经网络结构天气预报是国际科学前沿问题,具有重大的社会价值。现有数值天气预报范式源于20世纪50年代,即通过超算平台的大规模计算来求解大气运动偏微分方程组,实现对未来天气的预报。近些年使用该传统方法提升预报水平面临越来越大的挑战。华为云计算技术有限公司田奇、毕恺峰、谢凌曦等基于人工智能技术,提出了一种适配地球坐标系统的三维神经网络,能够有效处理天气数据中的复杂过程,并通过层次化时域聚合策略来有效减少迭代误差,成功实现了精准的中期天气预报。在1979-2017年全球天气再分析数据上训练后,构建了盘古气象大模型。该模型能够预报7天内的地表层和13个高空层的温度、气压、湿度、风速等气象要素,并将全球最先进的欧洲中长期天气预报中心(ECMWF)集成预报系统的预报时效提高了0.6天左右,在热带气旋的路径预报误差相较于ECMWF预报系统降低了25%。该模型仅需10秒即可完成全球7天重要气象要素的预报,计算速度较数值方法提升1万倍以上。该研究展示了人工智能和大数据在解决天气预报问题上的突破。2023年度中国科学十大进展2 揭示人类基因组暗物质驱动衰老的机制古病毒复活开启衰老的潘多拉魔盒人类基因组是生命活动的“密码本”,它控制器官再生和机体稳态,亦影响器官退行及衰老相关疾病的发生。在该密码本中,素有“暗物质”之称的非编码序列约占98%,其中约8%为内源性逆转录病毒元件,为数百万年前古病毒整合到人类基因组中的遗迹。古病毒序列在衰老过程中的作用及其机制是尚未开拓的科学疆域。中国科学院动物研究所刘光慧、曲静和中国科学院北京基因组研究所张维绮等利用多学科交叉手段,揭示人类基因组中沉睡的古病毒“化石”在细胞衰老过程中,可因表观遗传失稳等因素被再度唤醒、进而包装形成病毒样颗粒并驱动细胞和器官衰老的重要现象。并据此提出古病毒复活介导衰老程序性及传染性的理论以及阻断古病毒复活或扩散以实现延缓衰老的多维干预策略。通过对人类基因组中蛋白编码区域的“逆老”基因进行系统排查,发现可重启人类干细胞、运动神经元和心肌细胞活力,逆转关节软骨、脊髓及心脏衰老的新型分子靶标,并构建一系列针对器官退行的创新干预体系。以上发现为衰老生物学和老年医学研究建立了新的理论框架,为衰老及老年慢病的科学干预和积极应对人口老龄化奠定了有益的基础。2023年度中国科学十大进展3 发现大脑“有形”生物钟的存在及其节律调控机制初级纤毛——生物钟的“有形”指针昼夜节律紊乱与睡眠障碍、精神抑郁相关,严重时可导致肿瘤、糖尿病等重大疾病的发生和发展。由于缺乏对生物节律调节机制的认识,当前国际上尚未研发出针对节律紊乱性疾病的有效治疗药物。军事科学院军事医学研究院生物医学分析中心李慧艳、张学敏等发现大脑视交叉上核(SCN)神经元的初级纤毛,这一细胞“天线”样结构,每24小时伸缩一次,犹如生物钟的指针,初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。因此,SCN神经元的初级纤毛可能作为机体中的“中央生物钟”的结构基础,参与生物钟内稳态的维持,而靶向SCN初级纤毛的Shh信号通路可能是治疗与昼夜节律紊乱相关的人类疾病的潜在治疗策略。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义。2023年度中国科学十大进展4 农作物耐盐碱机制解析及应用利用AT1成果培育的甜高粱在宁夏平罗盐碱地生长情况土壤盐碱化又称土壤盐渍化,是指土壤中积聚盐分形成盐碱土的过程。我国有近15亿亩盐碱地,其中高pH的苏打盐碱地约占60%。据估计,约5亿亩盐碱地具有开发利用潜能。长期以来,我们对植物耐盐碱性的机制认识尚有不足,阻碍了耐盐碱作物的培育和盐碱地的开发利用。中国科学院遗传与发育生物学研究所谢旗、中国农业大学于菲菲、华中农业大学欧阳亦聃等研究团队合作利用起源于非洲萨赫勒高盐碱地的高粱自然群体材料定位克隆到一个与耐碱性显著相关的主效基因AT1,并揭示了AT1在碱胁迫条件下调控水通道蛋白磷酸化水平来促进植物细胞中H2O2的外排从而赋予植物高耐盐碱性的机制。在盐碱地进行大田实验发现,基于耐盐碱等位基因AT1改良的作物耐盐碱能力显著提高,其中水稻、高粱和谷子等粮食作物均有效增产20%~30%。该研究为综合利用盐碱地和保障粮食安全提供了新思路。2023年度中国科学十大进展5 新方法实现单碱基到超大片段DNA精准操纵单碱基编辑到大尺度DNA精准操纵基因组编辑在生物学和医学领域具有广阔的应用前景。然而,基因组编辑在编辑精度、DNA操控尺度和灵活性等方面仍有较大的限制。中国科学院遗传与发育生物学研究所高彩霞团队联合北京齐禾生科生物科技有限公司赵天萌团队利用人工智能辅助的大规模蛋白结构预测方法对基因组编辑新酶进行发掘。他们建立了基于三级结构的全新蛋白聚类分析方法,鉴定出多个全新脱氨酶家族成员,并开发了一系列适用于多样化应用场景的新型碱基编辑工具,解决了利用单个AAV进行递送和大豆高效碱基编辑的难题。为突破植物大尺度DNA精准操纵的瓶颈,他们整合优化引导编辑系统与位点特异性重组酶,开发了植物大片段DNA精准定点插入技术PrimeRoot,可实现对10 Kb以上大片段DNA的高效定点整合。此外,他们通过对基因上游开放阅读框的从头设计与理性改造,开发了精细下调靶蛋白表达的全新技术体系,并创制了产量相关性状呈梯度变化的系列水稻新种质,为作物性状精细改良提供了新方法。以上研究通过开展基因组编辑元件挖掘方法和技术体系创新,实现了对基因组的精准操纵,为作物改良和基因治疗提供了重要支撑。2023年度中国科学十大进展6 揭示人类细胞DNA复制起始新机制人体MCM2-7双六聚体(MCM-DH)冷冻电镜结构及DNA复制起始调控步骤DNA复制起始的精准调控是维持人类基因组稳定、抑制遗传疾病和癌症发生的关键生命过程之一。6个MCM基因编码的MCM2-7蛋白的双六聚体(DH)在成千上万个复制原点的组装是解开双链DNA和启动复制的必经过程。但是MCM-DH在染色体上具体的组装和作用机制尚不清楚。香港大学翟元梁、香港科技大学党尚宇、戴碧瓘等解析了人类MCM-DH复合物(hMCM-DH)的2.59-Å高分辨率冷冻电镜结构。在该结构中,hMCM-DH可直接降低DNA双链的稳定性,将位于两个六聚体结合处的DNA双链解开,并拉伸产生初始的开口结构(IOS)。IOS在基因组中成簇且广泛地分布于无转录活性的基因间区,并与偶发的DNA复制起始区域高度重合。干扰IOS会抑制hMCM-DH的形成,进而抑制相应DNA复制的启动。该研究不仅揭示了人类MCM-DH组装及初始DNA解旋以促进复制起始的新机制,也为开发以DNA复制为靶标的抗癌药物提供了重要基础。2023年度中国科学十大进展7 “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子拉索观测到的伽马暴GRB 221009A高能光子爆发的全过程伽马射线暴是宇宙大爆炸之后最剧烈的天体爆炸现象,万亿电子伏特(TeV)以上辐射观测对揭示其爆炸过程、辐射机制和探索新物理前沿都具有重要意义。2022年10月9日史上最亮的伽马射线暴GRB 221009A爆发信号飞越24亿光年的时空抵达地球。由中国科学院高能物理研究所曹臻领导的高海拔宇宙线观测站(简称“拉索”,英文LHAASO)国际合作组凭借拉索前所未有的高灵敏度和大视场优势,在国际上首次完整记录了伽马射线暴万亿电子伏特以上高能光子爆发的全过程,包括高能光子亮度在早期的快速增强过程,以及后期亮度突然快速减弱,由此确定此伽马射线暴的极端相对论喷流具有迄今已知最小的张角,揭开了此伽马射线暴成为史上最亮的秘密。拉索还精确测量了该伽马射线暴亮度随光子能量的变化,发现其亮度随能量变化的规律保持稳定,观测能谱延伸至十万亿电子伏特以上,超出了理论预期,挑战了伽马射线暴余辉辐射的标准模型。2023年度中国科学十大进展8 玻色编码纠错延长量子比特寿命量子纠错过程目前超导量子比特的错误率离实用化还相差十多个数量级,需要进行量子纠错以构建错误率更低的逻辑量子线路。量子纠错旨在充分利用无限维希尔伯特空间的冗余度来保护逻辑量子比特免受噪声的干扰。通过对错误的实时探测和纠正,逻辑量子比特的相干寿命将得以延长。然而,传统的量子纠错过程通常会不可避免地引入新的错误,使得量子纠错面临“越纠越错”的尴尬局面。如何使编码保护的逻辑量子比特的寿命超过体系中最佳物理量子比特,超越盈亏平衡点,是衡量量子纠错是否有效的关键判据。南方科技大学俞大鹏、徐源,福州大学郑仕标,清华大学孙麓岩等展示了一种基于超导电路量子电动力学架构的量子纠错方法,其核心技术是将逻辑量子比特二项式编码在一个与辅助超导比特色散耦合的微波谐振腔的离散光子数态中,其编码子空间与错误子空间严格正交。通过在辅助比特上施加截断频率梳脉冲,可高保真度地重复读取错误症状,并通过实时反馈控制反复纠正错误,从而有效延长逻辑量子比特的相干寿命,并超越盈亏平衡点达16%,实现了量子纠错正增益。该研究展示了量子纠错的优越性,表明了硬件高效的离散变量编码在容错量子计算中的潜力。2023年度中国科学十大进展9 揭示光感受调节血糖代谢机制“眼-脑-棕色脂肪轴”介导光调节血糖代谢神经机制2023年度中国科学十大进展10 发现锂硫电池界面电荷存储聚集反应新机制电化学原位透射电子显微镜技术研究锂硫电池界面反应
  • 2023年度中国科学十大进展发布
    2024年2月29日,国家自然科学基金委员会发布2023年度中国科学十大进展,以下10项重大科学进展入选:1. 人工智能大模型为精准天气预报带来新突破2. 揭示人类基因组暗物质驱动衰老的机制3. 发现大脑“有形”生物钟的存在及其节律调控机制4. 农作物耐盐碱机制解析及应用5. 新方法实现单碱基到超大片段 DNA 精准操纵6. 揭示人类细胞 DNA 复制起始新机制7. “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子8. 玻色编码纠错延长量子比特寿命9. 揭示光感受调节血糖代谢机制10. 发现锂硫电池界面电荷存储聚集反应新机制1 人工智能大模型为精准天气预报带来新突破盘古气象大模型的三维神经网络结构天气预报是国际科学前沿问题,具有重大的社会价值。现有数值天气预报范式源于20世纪50年代,即通过超算平台的大规模计算来求解大气运动偏微分方程组,实现对未来天气的预报。近些年使用该传统方法提升预报水平面临越来越大的挑战。华为云计算技术有限公司田奇、毕恺峰、谢凌曦等基于人工智能技术,提出了一种适配地球坐标系统的三维神经网络,能够有效处理天气数据中的复杂过程,并通过层次化时域聚合策略来有效减少迭代误差,成功实现了精准的中期天气预报。在1979-2017年全球天气再分析数据上训练后,构建了盘古气象大模型。该模型能够预报7天内的地表层和13个高空层的温度、气压、湿度、风速等气象要素,并将全球最先进的欧洲中长期天气预报中心(ECMWF)集成预报系统的预报时效提高了0.6天左右,在热带气旋的路径预报误差相较于ECMWF预报系统降低了25%。该模型仅需10秒即可完成全球7天重要气象要素的预报,计算速度较数值方法提升1万倍以上。该研究展示了人工智能和大数据在解决天气预报问题上的突破。2 揭示人类基因组暗物质驱动衰老的机制古病毒复活开启衰老的潘多拉魔盒人类基因组是生命活动的“密码本”,它控制器官再生和机体稳态,亦影响器官退行及衰老相关疾病的发生。在该密码本中,素有“暗物质”之称的非编码序列约占98%,其中约8%为内源性逆转录病毒元件,为数百万年前古病毒整合到人类基因组中的遗迹。古病毒序列在衰老过程中的作用及其机制是尚未开拓的科学疆域。中国科学院动物研究所刘光慧、曲静和中国科学院北京基因组研究所张维绮等利用多学科交叉手段,揭示人类基因组中沉睡的古病毒“化石”在细胞衰老过程中,可因表观遗传失稳等因素被再度唤醒、进而包装形成病毒样颗粒并驱动细胞和器官衰老的重要现象。并据此提出古病毒复活介导衰老程序性及传染性的理论以及阻断古病毒复活或扩散以实现延缓衰老的多维干预策略。通过对人类基因组中蛋白编码区域的“逆老”基因进行系统排查,发现可重启人类干细胞、运动神经元和心肌细胞活力,逆转关节软骨、脊髓及心脏衰老的新型分子靶标,并构建一系列针对器官退行的创新干预体系。以上发现为衰老生物学和老年医学研究建立了新的理论框架,为衰老及老年慢病的科学干预和积极应对人口老龄化奠定了有益的基础。3 发现大脑“有形”生物钟的存在及其节律调控机制初级纤毛——生物钟的“有形”指针昼夜节律紊乱与睡眠障碍、精神抑郁相关,严重时可导致肿瘤、糖尿病等重大疾病的发生和发展。由于缺乏对生物节律调节机制的认识,当前国际上尚未研发出针对节律紊乱性疾病的有效治疗药物。军事科学院军事医学研究院生物医学分析中心李慧艳、张学敏等发现大脑视交叉上核(SCN)神经元的初级纤毛,这一细胞“天线”样结构,每24小时伸缩一次,犹如生物钟的指针,初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。因此,SCN神经元的初级纤毛可能作为机体中的“中央生物钟”的结构基础,参与生物钟内稳态的维持,而靶向SCN初级纤毛的Shh信号通路可能是治疗与昼夜节律紊乱相关的人类疾病的潜在治疗策略。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义。4 农作物耐盐碱机制解析及应用利用AT1成果培育的甜高粱在宁夏平罗盐碱地生长情况土壤盐碱化又称土壤盐渍化,是指土壤中积聚盐分形成盐碱土的过程。我国有近15亿亩盐碱地,其中高pH的苏打盐碱地约占60%。据估计,约5亿亩盐碱地具有开发利用潜能。长期以来,我们对植物耐盐碱性的机制认识尚有不足,阻碍了耐盐碱作物的培育和盐碱地的开发利用。中国科学院遗传与发育生物学研究所谢旗、中国农业大学于菲菲、华中农业大学欧阳亦聃等研究团队合作利用起源于非洲萨赫勒高盐碱地的高粱自然群体材料定位克隆到一个与耐碱性显著相关的主效基因AT1,并揭示了AT1在碱胁迫条件下调控水通道蛋白磷酸化水平来促进植物细胞中H2O2的外排从而赋予植物高耐盐碱性的机制。在盐碱地进行大田实验发现,基于耐盐碱等位基因AT1改良的作物耐盐碱能力显著提高,其中水稻、高粱和谷子等粮食作物均有效增产20%~30%。该研究为综合利用盐碱地和保障粮食安全提供了新思路。5 新方法实现单碱基到超大片段DNA精准操纵单碱基编辑到大尺度DNA精准操纵基因组编辑在生物学和医学领域具有广阔的应用前景。然而,基因组编辑在编辑精度、DNA操控尺度和灵活性等方面仍有较大的限制。中国科学院遗传与发育生物学研究所高彩霞团队联合北京齐禾生科生物科技有限公司赵天萌团队利用人工智能辅助的大规模蛋白结构预测方法对基因组编辑新酶进行发掘。他们建立了基于三级结构的全新蛋白聚类分析方法,鉴定出多个全新脱氨酶家族成员,并开发了一系列适用于多样化应用场景的新型碱基编辑工具,解决了利用单个AAV进行递送和大豆高效碱基编辑的难题。为突破植物大尺度DNA精准操纵的瓶颈,他们整合优化引导编辑系统与位点特异性重组酶,开发了植物大片段DNA精准定点插入技术PrimeRoot,可实现对10 Kb以上大片段DNA的高效定点整合。此外,他们通过对基因上游开放阅读框的从头设计与理性改造,开发了精细下调靶蛋白表达的全新技术体系,并创制了产量相关性状呈梯度变化的系列水稻新种质,为作物性状精细改良提供了新方法。以上研究通过开展基因组编辑元件挖掘方法和技术体系创新,实现了对基因组的精准操纵,为作物改良和基因治疗提供了重要支撑。6 揭示人类细胞DNA复制起始新机制人体MCM2-7双六聚体(MCM-DH)冷冻电镜结构及DNA复制起始调控步骤DNA复制起始的精准调控是维持人类基因组稳定、抑制遗传疾病和癌症发生的关键生命过程之一。6个MCM基因编码的MCM2-7蛋白的双六聚体(DH)在成千上万个复制原点的组装是解开双链DNA和启动复制的必经过程。但是MCM-DH在染色体上具体的组装和作用机制尚不清楚。香港大学翟元梁、香港科技大学党尚宇、戴碧瓘等解析了人类MCM-DH复合物(hMCM-DH)的2.59-Å高分辨率冷冻电镜结构。在该结构中,hMCM-DH可直接降低DNA双链的稳定性,将位于两个六聚体结合处的DNA双链解开,并拉伸产生初始的开口结构(IOS)。IOS在基因组中成簇且广泛地分布于无转录活性的基因间区,并与偶发的DNA复制起始区域高度重合。干扰IOS会抑制hMCM-DH的形成,进而抑制相应DNA复制的启动。该研究不仅揭示了人类MCM-DH组装及初始DNA解旋以促进复制起始的新机制,也为开发以DNA复制为靶标的抗癌药物提供了重要基础。7 “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子拉索观测到的伽马暴GRB 221009A高能光子爆发的全过程伽马射线暴是宇宙大爆炸之后最剧烈的天体爆炸现象,万亿电子伏特(TeV)以上辐射观测对揭示其爆炸过程、辐射机制和探索新物理前沿都具有重要意义。2022年10月9日史上最亮的伽马射线暴GRB 221009A爆发信号飞越24亿光年的时空抵达地球。由中国科学院高能物理研究所曹臻领导的高海拔宇宙线观测站(简称“拉索”,英文LHAASO)国际合作组凭借拉索前所未有的高灵敏度和大视场优势,在国际上首次完整记录了伽马射线暴万亿电子伏特以上高能光子爆发的全过程,包括高能光子亮度在早期的快速增强过程,以及后期亮度突然快速减弱,由此确定此伽马射线暴的极端相对论喷流具有迄今已知最小的张角,揭开了此伽马射线暴成为史上最亮的秘密。拉索还精确测量了该伽马射线暴亮度随光子能量的变化,发现其亮度随能量变化的规律保持稳定,观测能谱延伸至十万亿电子伏特以上,超出了理论预期,挑战了伽马射线暴余辉辐射的标准模型。8 玻色编码纠错延长量子比特寿命量子纠错过程目前超导量子比特的错误率离实用化还相差十多个数量级,需要进行量子纠错以构建错误率更低的逻辑量子线路。量子纠错旨在充分利用无限维希尔伯特空间的冗余度来保护逻辑量子比特免受噪声的干扰。通过对错误的实时探测和纠正,逻辑量子比特的相干寿命将得以延长。然而,传统的量子纠错过程通常会不可避免地引入新的错误,使得量子纠错面临“越纠越错”的尴尬局面。如何使编码保护的逻辑量子比特的寿命超过体系中最佳物理量子比特,超越盈亏平衡点,是衡量量子纠错是否有效的关键判据。南方科技大学俞大鹏、徐源,福州大学郑仕标,清华大学孙麓岩等展示了一种基于超导电路量子电动力学架构的量子纠错方法,其核心技术是将逻辑量子比特二项式编码在一个与辅助超导比特色散耦合的微波谐振腔的离散光子数态中,其编码子空间与错误子空间严格正交。通过在辅助比特上施加截断频率梳脉冲,可高保真度地重复读取错误症状,并通过实时反馈控制反复纠正错误,从而有效延长逻辑量子比特的相干寿命,并超越盈亏平衡点达16%,实现了量子纠错正增益。该研究展示了量子纠错的优越性,表明了硬件高效的离散变量编码在容错量子计算中的潜力。9 揭示光感受调节血糖代谢机制“眼-脑-棕色脂肪轴”介导光调节血糖代谢神经机制光是生命最重要的外部环境因素之一,可调节一系列重要生理与病理过程。公共卫生研究表明,人造光是代谢紊乱的高危因素,例如夜间光污染会显著增加糖尿病等代谢性疾病风险。然而,光对血糖代谢调节的生物学机制不明。中国科学技术大学薛天等揭示了光调控生物(小鼠和人)血糖代谢的神经机制。在动物模型上发现光信号被眼内的视网膜固有光敏神经节细胞(ipRGCs)接收后,通过下丘脑视上核AVP神经元、脑干孤束核GABA抑制性神经元,经交感神经最终到达棕色脂肪组织。光通过这一多级神经环路抑制棕色脂肪的交感神经活动,降低脂肪组织消耗血糖引起的产热,导致机体血糖代谢能力下降。更为重要的是发现在人体上同样存在类似的光感受调节血糖代谢的机制,蓝光污染显著降低人体消耗血糖的能力。该研究发现全新的“眼-脑-外周脂肪轴”介导光对血糖代谢产热的调节机制,为防治光污染导致的糖代谢紊乱相关疾病提供了理论依据与潜在的干预靶点。10 发现锂硫电池界面电荷存储聚集反应新机制电化学原位透射电子显微镜技术研究锂硫电池界面反应锂硫电池具有极高的能量密度(理论值:2600 Wh kg-1)和较低的成本,然而受限于传统原位表征工具的时空分辨率及锂硫体系的不稳定性和环境敏感性等因素,在原子/纳米尺度上对锂硫电池界面反应的理解尚不深入。厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高时空分辨电化学原位液相透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。发现电池活性材料表面分子聚集成为分子团进行反应,电荷转移可以首先存储在聚集分子团中,分子团得到电子但不会发生转化,直到获得足够电子后瞬时结晶转化。而没有活性的材料表面遵循经典的单分子反应途径,多硫化锂分子逐步转化为Li2S。模拟计算表明,活性中心与多硫化锂之间的静电作用促进了Li+和多硫分子的聚集,证实分子聚集体中的电荷可以自由转移。近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示了电化学界面反应存在第三种“电荷存储聚集反应”机制,加深了对多硫化物演变及其对电池表界面反应动力学影响的认识,为下一代锂硫电池设计提供指导。
  • 最新!2023年度“中国科学十大进展”发布
    2月29日,国家自然科学基金委员会发布了2023年度“中国科学十大进展”。2023年度“中国科学十大进展”主要分布在生命科学和医学、人工智能、量子、天文、化学能源等科学领域。2023年度“中国科学十大进展”分别为:• 人工智能大模型为精准天气预报带来新突破• 揭示人类基因组暗物质驱动衰老的机制• 发现大脑“有形”生物钟的存在及其节律调控机制• 农作物耐盐碱机制解析及应用• 新方法实现单碱基到超大片段DNA精准操纵• 揭示人类细胞DNA复制起始新机制• “拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子• 玻色编码纠错延长量子比特寿命• 揭示光感受调节血糖代谢机制• 发现锂硫电池界面电荷存储聚集反应新机制1、人工智能大模型为精准天气预报带来新突破天气预报是国家重大战略需求,也是国际科学前沿问题。华为云计算技术有限公司田奇团队在天气预报领域取得了新突破。基于人工智能方法,他们构建了一个三维深度神经网络模型,称为盘古气象大模型。其主要技术贡献有三点。一是采用了三维神经网络结构,更好地建模复杂的气象过程。二是采用地球位置编码技术,提升训练过程的精度和效率。三是训练具有不同预测时效的多个模型,减少迭代误差、节约推理时间。盘古气象大模型在某些气象要素的预报精度上超越了传统数值方法,且推理效率提高了上万倍。在全球高分辨率再分析数据上,盘古气象大模型在温度、气压、湿度、风速等重要天气要素上,都取得了更准确的预测结果,将全球最先进的欧洲气象中心集成预报系统的预报时效提高了0.6天左右。盘古气象大模型也可用于极端天气预报。在2023年汛期,盘古气象大模型成功预测了玛娃、泰利、杜苏芮、苏拉等影响我国的强台风路径。2、揭示人类基因组暗物质驱动衰老的机制在人类基因组中,“暗物质”——非编码序列占据了98%,其中有约8%是内源性逆转录病毒元件,它是数百万年前古病毒入侵并整合到人类基因组中的残留物,通常情况下处于沉默状态。然而,随着年龄的增长,这些沉睡的古病毒“化石”的封印是否会被揭开,进而加速我们身体的衰老进程尚不得而知。中国科学院动物研究所刘光慧研究员带领研究团队,通过搭建生理性和病理性衰老研究体系,结合高通量、高灵敏性和多维度的多学科交叉技术,揭示在衰老过程中,表观遗传“封印”的松动将导致原本沉寂的古病毒元件被重新激活,并进一步驱动衰老的“程序化”和“传染性”。这项工作提出了古病毒的“复活”驱动衰老及相关疾病的新理论,为理解衰老的内在机制和发展衰老干预策略提供了新依据,为科学评估和预警衰老、防治衰老相关疾病以及积极应对人口老龄化提供新思路。3、发现大脑“有形”生物钟的存在及其节律调控机制生物钟的准确性和稳定性与健康息息相关。由于缺乏对生物节律调节机制的认识,当前国际上尚未能研究出基于生物节律的有效治疗药物。大脑的视交叉上核(SCN)是生物钟的指挥中枢,但SCN如何维持机体内部节律稳定性,从而抵御外界环境的干扰,尚不清楚。军事医学研究院李慧艳研究员和张学敏研究员通过合作研究发现了大脑“有形”生物钟的存在。他们发现大脑生物钟中枢SCN神经元长有“天线”样的初级纤毛,每24小时伸缩一次,如同生物钟的指针,通过它可实现对机体生物钟的调控。大脑SCN区域具有大约2万个神经元。神奇的是,这2万个神经元始终保持着“同频共振”,维系着生物钟的稳定性,但机理始终是个谜团。他们发现初级纤毛可能通过调控SCN区神经元的“同频共振”调节节律,其机制与Shh信号通路密切相关。该“有形”生物钟的发现,对于理解生物钟的构造以及分子层面与细胞层面生物钟的联系具有重要意义,为节律调控新药研发开辟了新的路径。4、农作物耐盐碱机制解析及应用我国有15亿亩盐碱地未被有效利用,通过培育耐盐碱农作物,可提高盐渍化土地产能,将为我国粮食安全提供有效保障。尽管学术界对于植物耐盐性有较深入认知,但对植物耐碱胁迫的认识严重不足,这阻碍了耐盐碱作物的培育。盐碱地资料图。图片来源:视觉中国中国科学院遗传与发育生物学研究所谢旗领衔的8家单位科研团队联合攻关,在粮食作物耐盐碱领域取得重要突破。通过对耐盐碱差异大的高粱资源全基因组大数据进行关联分析,研究团队发现一个主效耐碱相关基因AT1,编码G蛋白亚基。不同的AT1基因突变型在调控这一过程中发挥决定作用,为作物耐碱理论研究提供了新视角。研究还发现在水稻、玉米及小作物谷子等主要粮食作物中AT1调控机制也是类似的,为主要作物的耐盐碱分子育种奠定了理论基础。在取得理论突破的基础上,团队对高粱进行耐盐碱育种改良。在宁夏平罗盐碱地进行的田间实验表明,AT1基因的利用能够使高粱籽粒产量和全株生物量增加。AT1基因还可用于改善主要禾本科作物水稻、小麦、小米和玉米等的耐盐碱性。5、新方法实现单碱基到超大片段DNA精准操纵基因组编辑是生命科学领域的颠覆性技术,将对医疗和农业等领域的发展产生重要影响。但是,精准基因组编辑技术的底层专利目前被国外垄断,我国亟待创制具有自主产权的新技术。另外,大片段DNA的精准操纵技术研发刚刚起步,将是全球基因组编辑技术竞争的制高点。中国科学院遗传与发育生物学研究所高彩霞团队与北京齐禾生科生物科技有限公司的赵天萌团队合作,实现了基因组编辑在方法建立、技术研发和工具应用的多层次创新。研究团队首次运用人工智能辅助的结构预测建立了蛋白聚类新方法,率先将基于结构分类的理念引入工具酶挖掘领域,并基于此开发了系列具有重要应用价值的新型碱基编辑器和我国完全拥有自主产权的、首个在细胞核和细胞器中均可实现精准碱基编辑的新型工具CyDENT。此外,研究团队开发了首个植物大片段DNA精准定点插入技术,为高效作物育种和植物合成生物学奠定了技术基础。研究团队还利用基因组编辑实现了作物性状的精准调控。该成果有望进一步拓宽基因组编辑的育种应用,助力作物种质创新。6、揭示人类细胞DNA复制起始新机制DNA复制从染色体上多个地方开始,这些地方被称为复制起始位点。复制起始过程分两步:一是在起始点上组装MCM双六聚体。二是激活MCM双六聚体,成为复制体,启动复制。如果这个过程出现问题,会导致严重的疾病,比如癌症、早衰和侏儒症等。为了深入了解人体细胞DNA复制是如何开始的,该项工作解析了人体内的MCM双六聚体复合物的冷冻电镜结构。在这个结构中,复制起点DNA,被固定在MCM的中央通道里,形成一个初始开口结构。形成该结构,DNA双链需要被拉伸和解开。该研究还发现,如果初始的开口结构被破坏,那么所有的MCM-DH就无法稳定地结合在DNA上,导致DNA复制完全被抑制,就像是复印机坏了,无法开始复印文件一样。这一发现对癌症治疗有重要的应用价值。因为癌症细胞在生长过程中必须进行DNA复制。在不影响正常细胞运作的情况下,通过阻止癌细胞在DNA上组装MCM双六聚体,将会是一种全新的、有效的、而且非常精准的抗癌疗法,为抗癌药物的研发开辟了新的道路。7、“拉索”发现史上最亮伽马暴的极窄喷流和十万亿电子伏特光子伽马射线暴(简称伽马暴)是天空中突然发生的短暂伽马射线爆发现象。近些年,一些望远镜发现了伽马暴在万亿电子伏特能段随时间下降的余辉,但早期起始阶段一直未被探测到。我国高海拔宇宙线观测站“拉索”(LHAASO)首次记录了伽马暴万亿电子伏特光子爆发的全过程,探测到早期的上升阶段,由此推断喷流具有极高的相对论洛伦兹因子。“拉索”还看到了GRB 221009A(史上最亮伽马暴,起源于24亿光年外的大质量恒星死亡瞬间)的余辉在700秒左右出现了快速下降,这一光变拐折现象被认为是观测者看到了喷流的边缘所致。从光变拐折的时间得到喷流的半张角仅有0.8度。这是迄今发现最窄的伽马暴喷流,意味着它实际上是一个典型结构化喷流的核心。我国高海拔宇宙线观测站“拉索”。图片来源:中国科学院高能物理研究所“拉索”还精确测量了高能伽马射线的能谱,呈现单一的幂律,延伸至十万亿电子伏特以上。这是伽马暴观测到的迄今最高能量的光子。在余辉标准模型下,高能余辉辐射起源于相对论电子的逆康普顿散射,理论预期这样的能谱在高能段会逐渐变软。但“拉索”的观测没有发现能谱变软现象,这对伽马暴余辉标准模型提出了挑战,意味着十万亿电子伏特光子可能产生于更复杂的粒子加速过程或者存在新的辐射机制。8、玻色编码纠错延长量子比特寿命理论上,量子计算机具有超越经典计算机的算力,但受噪声干扰后容易出现量子退相干,导致错误率比经典计算机至少高十多个量级。量子纠错是解决该问题的重要途径,通过量子编码使得一个被保护的逻辑量子比特的相干寿命,超过量子电路中最好的物理比特的相干寿命。此时,意味着纠错过程超越了量子纠缠的盈亏平衡点,这是构建逻辑量子比特的必要条件。但量子态具有不可克隆性,量子计算机无法通过备份来纠正错误,量子纠错过程会引入新的错误,造成误差累积,甚至出现越纠越错的局面。南方科技大学和深圳国际量子研究院的俞大鹏院士与徐源研究团队,联合福州大学郑仕标、清华大学孙麓岩等团队依据玻色编码量子纠错方案,开发了基于频率梳控制的低错误率宇称探测技术,大幅延长逻辑量子比特的相干寿命,超盈亏平衡点达16%,实现了量子纠错增益。该成果是通往容错量子计算道路上的一项重要成果。9、揭示光感受调节血糖代谢机制国内外多项公共卫生调查研究显示,夜间过多光暴露显著增加罹患糖尿病、肥胖等代谢疾病风险。然而,光是否以及如何调节机体的血糖代谢,是尚未解决的重要科学问题。中国科学技术大学薛天研究团队发现光暴露显著降低小鼠的血糖代谢能力。哺乳动物感光主要依赖视网膜上的视锥、视杆细胞和对蓝光敏感的自感光神经节细胞(简称ipRGC)。利用基因工程手段,研究团队发现光降低血糖代谢由ipRGC感光独立介导。进一步研究发现光信号经由视网膜ipRGC,至下丘脑视上核、室旁核,进而到达脑干孤束核和中缝苍白核,最后通过交感神经连接到外周棕色脂肪组织,并最终确定了光降低血糖代谢的原因,是光经由这条通路抑制棕色脂肪组织消耗血糖的产热。进一步研究表明,光同样可利用该机制降低人体的血糖代谢能力。这项研究发现了全新的“眼-脑-外周棕色脂肪”通路,回答了长久以来未知的光调节血糖代谢的生物学机理,拓展了光感受调控生命过程的新功能。这项工作发现的感光细胞、神经环路和外周靶器官,为防治光污染导致的糖代谢紊乱提供了理论依据与潜在的干预策略。10、发现锂硫电池界面电荷存储聚集反应新机制锂硫电池具有极高的能量密度和较低的成本,然而,锂硫电池的广泛应用还未能实现。因为它在充放电过程中,电池性能会快速下降。受限于传统原位显微研究技术的时空分辨率低及锂硫体系不稳定等因素,人们对其内部发生的化学反应过程尚不清楚,无法针对性解决问题。厦门大学廖洪钢、孙世刚和北京化工大学陈建峰等开发高分辨电化学原位透射电镜技术,耦合真实电解液环境和外加电场,实现对锂硫电池界面反应原子尺度动态实时观测和研究。近百年来,电化学界面反应通常被认为仅存在“内球反应”和“外球反应”单分子途径。该研究揭示出电化学界面反应存在第三种“电荷存储聚集反应”机制,加深了对多硫化物演变及其对电池表界面反应动力学影响的认识,为下一代锂硫电池设计提供指导。
  • SPECIM IQ | 开创性小型手持智能型高光谱相机如何精准进行植物表型鉴定和病害检测?
    导读 高光谱成像传感器是近几年研究用于监测不同环境中农作物和植被的有效工具。植物的生理学,形态学或生物化学信息可以通过非接触的方式以及不同尺度下评估。例如,利用高光谱传感器用于植物表型分析或农业中的生理胁迫研究。截至目前,市面上有各种非成像和成像高光谱传感器可供选择,这些仪器进行测量的过程相当复杂。因此,现代化检测及研究中对易于用户操作的高光谱传感器的需求日益增加。芬兰新发布的一款新型小型手持式智能型高光谱相机——SPECIM IQ,就是基于用户的现代化便携操作而设计的。SPECIM IQ的机身小巧轻便,只有1.3kg,实现轻松手持操作;同时在相机中直接集成了操作控制系统,通过相机自带的触摸屏就可实时实现基本数据的采集和分析过程(如预处理和分类例程),实现智能化操作。便携手持、现场实时快速检测、全自动智能分析、高质量数据,相信 SPECIM IQ 如此多的现代化特征会让您的高光谱研究更加得心应手!以下我们将SPECIM IQ采集的高光谱数据与已经十分成熟高光谱成像仪技术SPECIM V10E 进行定性对比,发现SPECIM IQ便携手持的设计并未影响到相机的数据准确性,一致地获得了高质量高光谱数据。同时,手持智能型SPECIM IQ还可以实现对植物表型的鉴定以及病害研究检测等,在植物科学研究及其他领域具有无限可能。1、手持智能型高光谱相机SPECIM IQ与SPECIM V10E的定性对比 通过与性能的SPECIM V10E相机对比,我们评估了新型SPECIM IQ的成像质量。SPECIM V10E在推扫式高光谱相机领域是一款具有代表性且广受好评的产品,与SPECIM IQ具有相同的光谱范围(400-1000nm)。在实验过程中,通过采用4倍的光谱合并,达到与SPECIM IQ相似的光谱采集,共有211个波段,每行数据具有1600个像素。研究人员利用两款设备分别在室内(卤素灯光源)和室外(自然光光源)对具有不同颜色的样本:纸片和聚乙烯胶片,进行了高光谱数据采集和对比。 图1 智能型高光谱相机SPECIM IQ(207mm*91mm*74mm) 经过对比,得到如图2所示结果。对相同样本,两款设备采集的光谱形状高度重合:实验室的平均值是0.009,室外平均值为0.043。SPECIM IQ和SPECIM V10E的平均标准偏差分别为室内(0.017和0.021)和室外相同(0.029和0.029),但SPECIM IQ更为均,SPECIM V10E在光谱边界处具有更高的噪声水平(400 -450nm和400-450nm)900-1000nm,见图2)。研究表明,除了925-970nm范围内的大气水汽吸收带之外,周围光谱的原始信号较弱,导致反射信号的快速增加。 图2 平均光谱包含绿色纸片(A)和紫色聚乙烯片(B)的标准差,C表示室内测试的不同颜色的样本 图3 室外数据的光谱对比(A-D):绿色纸片、暗黄色纸片、紫色聚乙烯胶片以及蓝色聚乙烯胶片 2、手持智能型高光谱相机SPECIM IQ对拟南芥的生理胁迫研究 通过植被指数可评估不同状态下植被的生理结构和功能特性,包括生物量、冠层结构、叶面积指数、叶绿素含量以及植物冠层的光利用效率等。研究人员利用SPECIM IQ对拟南芥的两个变种在胁迫状态下的生理状态分别进行了研究。由于缺乏PsbS蛋白质和紫黄质脱环氧化酶,拟南芥的变种样本对光能量利用能力减弱(非光化学淬灭),但在室温条件下可正常发育,在高光照条件下,突变体可能受光损伤,这些都是肉眼无法察觉的。利用SPECIM IQ对18个样本进行数据采集,并对所采集的数据进行植被指数计算,在此基础上,对样本的叶绿素含量和类胡萝卜素转化的敏感程度进行了评估(图4)。 图4 在非胁迫适应(NSA)和胁迫适应(SA)拟南芥野生型(Col-0)和PQ缺陷突变体(npq1和npq4)之间观察到的差异。 左侧面板显示选定感兴趣区域的假彩色图像(A) NDVI(C) REIP(E) 和由SPECIM IQ采集数据计算的PRI(G)。 右侧面板显示计算出的平均值和标准差(B) NDVI(D) REIP(F) 和PRI(H)从三个单的植物随机分布在成像框架,不同的字母表示基于LSD的显着差异(a = 0.05)。 研究表明,SPECIM IQ可用于拟南芥中叶绿素(NDVI)和叶黄素(PRI)的含量的检测,并能评估植株样本的状态。通过验证具有代表性的植被指数,可为其它植被指数的评估计算提供样例,并为在植被研究领域获得更多生理信息奠定了基础。 3、手持智能型高光谱相机SPECIM IQ对大麦白粉病的研究 高光谱成像作为非接触式的测量传感器,在植物疾病严重程度与宿主植物对特定植物病原体的易感性的评估方面有很大的应用。本研究利用SPECIM IQ评估了不同大麦品种在冠层尺度上的白粉病严重程度,并对品种Milford和Tocada进行了4个和7个不同的白粉病易感性等的比较。研究准确地检测了两个品种的白粉病症状,并通过高光谱成像结合数据分析方法评估品种的不同疾病严重程度。研究人员利用SPECIM IQ对在温室中培养的360个大麦植物样本(稳定的漫射光条件下培养)进行检测,并使用的白色参考板(见图5)和SPECIM IQ的内置功能对高光谱数据进行归一化。研究人员利用SPECIM IQ Studio的光谱角匹配方法(SAM)进行感染检测并与支持向量机分类(SVM)方法进行对比,检测到上部叶中具有类似病状的区域。 图5 使用光谱角匹配(SAM)和支持向量机(SVM)对白粉病进行分类,图像左侧包含白色参考面板研究表明,大麦白粉病的样本检测到的疾病症状分别为所有植物像素的25.8%和4.4%,而健康部分只有2.0%和2.2%。现有的错误分类主要是白色参考边界处(看起来像叶面上的白色菌丝体)混合像素的影响。为了消除这种系统偏差,通过减去错误分类像素量来确定疾病严重程度,预测分析的品种的2.2%至23.7%的强烈差异。因此,SPECIM IQ可用来测量评估复杂冠层的疾病严重性,控制光源照明条件保证高信号质量,此项研究也证明SPECIM IQ空间分辨率足以确定大麦叶片上的单一症状。4、总结 手持智能型SPECIM IQ相机在植物生理和病害检测中具有巨大潜力。通过SPECIM IQ与SPECIM V10E室内和室外环境中对不同材质色卡辐射测量评估,得到两者的光谱特性高度一致性。根据植被指数分析得到的结果表明手持智能型SPECIM IQ在植物研究和表型分型策略的背景下的应用潜力:对于白粉病的评估,表明SPECIM IQ具有足够的测量能力,并且与SVM相结合,在量化中对视觉评估的高度一致性。作为新智能型的高光谱相机设备,手持式SPECIM IQ除具有高精度的数据质量外,其设备本身具有高紧凑性、可移动性强和快速集成处理能力,为科技新领域的应用创造了有利条件。手持智能型SPECIM IQ的发布让高光谱传感器技术以实验室设备的质量水平传输到温室和现场,而无需任何载体平台或控制和存储设备,因此,该款设备的诞生无疑可以支持各个场景下的不同应用,并推动现代高光谱技术在更多领域的发展和影响。 相关产品及其链接1、手持智能型高光谱相机SPECIM IQ:http://www.instrument.com.cn/netshow/C282348.htm 2、芬兰SPECIM高光谱航空遥感成像系统:http://www.instrument.com.cn/netshow/C160539.htm 3、芬兰SPECIM 工业高光谱相机FX系列:http://www.instrument.com.cn/netshow/C265811.htm
  • 新烟碱类物质“噻虫胺和噻虫嗪”在欧盟的最大残留限量降低
    关于噻虫胺和噻虫嗪 噻虫胺和噻虫嗪属于新烟碱类农药活性物质。早在2005年,欧盟就以良好农业规范(GAPs)为基础,设定了噻虫胺和噻虫嗪的最大残留限量。后由于对蜜蜂等授粉昆虫的不利影响,自2018年起二者就被欧盟禁止在室外使用。因此,噻虫胺和噻虫嗪的批准已分别于2019年1月31日和2019年4月30日到期,现处于禁用状态。 降低最大残留限量 近几年,授粉昆虫的减少越来越受到全世界的关注,该问题已经影响到了全球生物多样性和环境的可持续发展,并且严重威胁农业生产力和粮食安全。联合国粮食及农业组织(FAO)呼吁采取行动,解决授粉昆虫减少的现状,以实现全球粮食生产的可持续发展。此外,所有含有噻虫胺和/或噻虫嗪的植物保护产品在欧盟的授权已被撤销。 因此,根据欧盟法规Regulation (EC) No 396/2005附件II第17条和第14(1)(a)条的规定,可以合理删除相应的MRLs。在征求了实验室和欧盟贸易伙伴的意见下,欧盟做出决定,将噻虫胺和噻虫嗪的最大残留限量降低至检测限(LOD)。 部分常见食品的最大残留限量(mg/kg):食品类别噻虫胺噻虫嗪水果0.01*0.01*块根类蔬菜0.01*0.01*草本植物及食用花卉0.02*0.02*豆类蔬菜0.01*0.01*油籽0.01*0.01*茶叶及咖啡豆0.05*0.05*动物来源的大宗商品0.02*0.02* *表示检测能力的下限(LOD) 为了保证产品的正常销售和顺利进口,欧盟给予了两季的过渡期:该规定将于2026年3月适用于欧盟生产及进口的产品。
  • 广东省环境科学学会公开征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见
    各分支机构、各会员单位和有关单位:由广东省生态环境监测中心、华南师范大学等单位共同提出并主持编制的《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》三项团体标准已编制完成并形成征求意见稿。根据《团体标准管理规定》(国标委联〔2019〕1号)《广东省环境科学学会标准管理办法(试行)》要求,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家提出宝贵建议和意见,并于2024年9月20日前以邮件的形式将《广东省环境科学学会标准意见反馈表》反馈至邮箱gdhjxh@126.com,逾期未回复视为无意见。该标准的征求意见稿已登载在全国团体标准信息平台(网址为:http://www.ttbz.org.cn/)和广东省环境科学学会网站(网址为:https://www.gdses.org.cn/)。 联系人:陈诚 严辉联系电话:020-83224979邮箱:gdhjxh@126.com 附件:1.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)2.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明3.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)4.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明5.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)6.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明7.广东省环境科学学会标准征求意见反馈表 广东省环境科学学会2024年8月19日关于征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见的函.pdf附件1:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件2:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件3:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件4:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件5:《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件6:《水质 15种酚类内分泌干扰物的测定固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件7:广东省环境科学学会标准征求意见反馈表.doc
  • 春种一颗粟,秋收万颗子| 盘古定量助力种质资源基因组学研究
    了解种质资源种质资源,也称为遗传资源或基因资源,指的是那些对人类具有实际或潜在利用价值的遗传材料。如农作物遗传改良和品种改良的种子、种苗和组织等植物资源,品种优良的动物资源都属于种质资源的范围。种质资源保护我国幅员辽阔,种质资源极其丰富,位居世界首列。作物、畜禽、水产、农业微生物等农业种质资源是新品种选育的基础,遗传信息由上一代传给下一代的载体,种质资源是人类生存不可或缺的重要资源之一。因此,我国一直致力于采取多维度措施,保护和开发种质资源,实现农业现代化。2024年1月1日,农业部一号文件 《关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴工作的实施意见》提出“种业振兴行动”,其内容包含如下:1.强化种质资源保护利用,筛选挖掘大豆、玉米等优异种质和基因资源,推进育种创新攻关。2.生物育种产业化提速,加快选育推广高油高产大豆、短生育期油菜、耐盐碱作物等生产急需的自主优良品种。种质资源学和基因组学 生物种质资源的保护通常离不开现代科技基础设施,包括种子库、植物离体库、DNA库、微生物库和动物种质资源库,现代分子检测方法可以为种质资源建立先进的植物基因组学和种子生物学实验研究平台。定量PCR(Quantitative Polymerase Chain Reaction)在种质资源研究中有着广泛的应用,定量PCR在这一领域的应用主要包括以下几个方面:1、基因型鉴定:定量PCR可以用于快速、准确地鉴定种质资源中的基因型。通过PCR反应检测目标基因的存在与否以及其表达水平,可以帮助研究人员确定种质资源中所含有的有用基因型,为后续的遗传改良工作提供重要信息。2、基因表达分析:定量PCR可以定量检测种质资源中特定基因的表达水平。通过比较不同种质资源或不同处理条件下目标基因的表达情况,可以揭示基因在生长发育过程中的调控机制,为选择优良基因型提供依据。3、遗传改良:荧光实时定量PCR技术可以用于分子育种。通过分析动植物的基因组序列和遗传特征,可以预测它们的生长、繁殖等性状,帮助养殖者选择优良的个体进行繁殖和培育4、遗传多样性评估:定量PCR可以用于评估种质资源的遗传多样性。通过分析种质资源中多个基因座的遗传变异情况,可以确定种质资源的遗传背景和多样性水平,为种质资源的保护和合理利用提供科学依据。5、抗性鉴定:定量PCR可以用于检测种质资源中对病虫害等胁迫因子的抗性。通过PCR反应检测与抗性相关的基因或标记物,可以筛选出具有抗性特点的种质资源,为抗性育种提供候选材料。艾普拜为科研用户开发了国际标准级qPCR系统——盘古快速定量PCR系统,遵循国际MIQE原则,性能出众,非常适合种质资源研究。&bull 升温速度可达8.5℃/s,一次快速完成96孔检测并出具结果,产物得率高,特异性好&bull 温控精度±0.1℃满足敏感样品对扩增温度的严苛要求,保证阳性靶标的正常扩增&bull 支持12列温度梯度功能,便于快速优化扩增所需条件&bull 光波导顶部检测,无边缘效应和光程差,无需校准&bull 6色检测通道,支持各种常用荧光标记,兼容各种商业化qPCR试剂盒&bull 具备基因表达和基因分型强大的软件功能,适合SNP/KASP等等位基因分型总的来说,定量PCR在种质资源研究中的应用可以帮助研究人员更全面、深入地了解种质资源的遗传特征、基因表达情况以及抗性等重要信息,为农作物遗传改良和种质资源的合理利用提供技术支持。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 中科院自适应光学重点实验室与南美天文研究中心签署战略合作协议
    p   3月19日上午, 中科院光电所副所长饶长辉研究员和中科院南美天文研究中心主任王仲研究员分别代表中科院自适应光学重点实验室和中科院南美天文研究中心签署了双方战略合作协议, 旨在进一步加强双方在天文观测大科学项目研究、天文观测科研仪器研发、天文台筹建工作等方面的合作,同时积极开拓各方发展契机,服务国家需求。 /p p   中科院南美天文研究中心是中科院在海外的独立研究机构,总部位于智利。该中心旨在通过与智利大学及智利国家科委的合作,搭建以智利为中心,辐射南美其他国家的长期、稳固、互利合作的天文科技平台,推动我国天文事业的长期发展。中心与自适应光学重点实验室将基于智利拥有的国际先进望远镜观测平台、大规模数值模拟研究以及光电天文仪器设备和技术方面的优势,合作开展最前沿的天文观测和天文技术方法研究,促进天文观测装置的发展,培养我国的天文研究人才。 /p p style=" text-align: center "    img style=" width: 450px height: 300px " title=" " alt=" " src=" http://www.ioe.cas.cn/xwdt/ttxw/201803/W020180327618377930452.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p br/ /p
  • 北京市2023年度面上及青年科学基金资助项目发布,食品领域29项!
    4月7日,北京市自然科学基金委员会发布2023年度北京市自然科学基金面上及青年科学基金资助项目名单,其中,食品领域决定资助29项项目,包括面上项目25项,青年项目4项。食品领域2023年度北京市自然科学基金资助项目名单面上及青年项目 (农业)科学 金额单位(万元)拟资助项目编号拟资助项目名称依托单位申请者职称合作单位金额 面上项目6232001“面筋蛋白AF-多酚”复合物的构建及其对多酚递送的机制解析北京工商大学张慧娟教授206232003大球盖菇生料栽培过程中微生物群落动态与碳代谢机制研究北京农学院张国庆教授206232004 Cer-NLRP3轴在NEB奶牛脂肪组织炎症发展中的作用及柚皮苷调控机制研究北京农学院赵玉超无206232006蔗糖转运蛋白调控小麦光温敏不育系籽粒蔗糖卸载与灌浆的分子机制北京市农林科学院杨卫兵副研206232007新型钙信号蛋白HbCSP1调控盐生植物野大麦耐盐碱性的分子机制研究北京市农林科学院江颖助研206232008基于全基因组水平的香菇交配型基因演化路径分析及应用北京市农林科学院严冬副研206232010糖代谢关键基因TaUGP1-6A调控雄性不育小麦花粉发育的分子机制解析北京市农林科学院刘子涵助研206232011基于杏远缘杂交后代多胚形成的新种质创制研究北京市农林科学院孙浩元研究员206232012牛疱疹病毒1型糖蛋白D的T细胞表位鉴定及其免疫效果评价北京市农林科学院刘文晓高级兽医师206232013非接触式鲟鱼表型高通量测量方法研究北京市农林科学院吝凯助研206232014DNA甲基转移酶基因CaCMT2与CaCMT4调控辣椒果实成熟的作用机理研究中国农业大学孙亮副教授206232016玉米转录因子GRAS32调控根毛生长和铁胁迫响应的分子机制中国农业大学陈立群教授206232017基于单细胞多组学技术研究羊卵泡发育过程中卵母细胞成熟命运的分子决定机制中国农业大学高帅研究员206232019草莓果实品质形成中ABA和IAA信号协同调控机理及其分子操控研究中国农业大学贾文锁教授206232020棉铃虫转录因子HaGATAa和HaGATAb调控雌蛾生殖行为的分子机制中国农业大学刘小侠教授206232021线粒体自噬介导SP/NK1R信号通路对ETEC感染仔猪腹泻的防御作用及机制中国农业大学马云飞副教授206232024德氏乳杆菌调控巨噬细胞分型改善仔猪肠道屏障的机制研究中国农业大学王军军教授206232034基于芽孢乳杆菌诱导的草莓土传病害致病/抑病微生物演替规律及驱动因子研究中国农业科学院植物保护研究所宋兆欣助研206232036粮食中修饰型玉米赤霉烯酮的形成规律及在体内的毒性释放机制研究中国农业科学院原子能利用研究所(农产品加工研究所)杨术鹏副研206232037甘蓝抗霜霉病基因BoDMR的图位克隆及功能分析中国农业科学院蔬菜花卉研究所张扬勇研究员206232038钙敏感受体(CaSR)调控高植物蛋白饲料引起的施氏鲟瓣肠炎症作用机制中国农业科学院饲料研究所梁晓芳副研206232039基于TLR2/NF-κB信号通路研究热灭活棒状乳杆菌激活肠道免疫的机制中国农业科学院饲料研究所徐小轻助研206232040设施温棚常用杀虫剂氟啶虫胺腈对蜜蜂授粉作业影响的机制研究中国农业科学院蜜蜂研究所齐素贞副研206232041脂联素对西伯利亚鲟性腺脂肪化的调控及其分子机制研究中国水产科学研究院任源远助研206232042日本对虾抗WSSV功能基因的挖掘及验证中国水产科学研究院张亚群助研20 青年项目6234044SiFIE2参与谷子品种改良的机制解析北京市农林科学院王海龙无106234046橡胶草×普通蒲公英杂交的分子遗传机理及高产胶基因挖掘中国科学院遗传与发育生物学研究所操银红无106234047超声波修饰马铃薯果胶调控Pickering乳液环境稳定性的作用机理中国农业科学院原子能利用研究所(农产品加工研究所)马梦梅助研106234048马铃薯甲虫聚集行为机制初探中国检验检疫科学研究院李红卫助研10 原文链接:http://kw.beijing.gov.cn/art/2023/4/7/art_736_640606.html
  • 江苏省市场监督管理局发布《江苏省检验检测条例(草案征求意见稿)》
    为进一步推进我省检验检测领域健康有序发展,根据《计量法》《产品质量法》《食品安全法》《大气污染防治法》《道路交通安全法》等法律法规规章以及上级文件精神,我局草拟形成《江苏省检验检测条例(草案征求意见稿)》。现向社会公开征求意见建议,有关单位和个人可以在2024年9月30日前,通过以下两种方式提出意见建议:1.通过信函将意见建议发至南京市鼓楼区草场门大街107号,江苏省市场监督管理局认可检测处,邮编210036,请在信封上注明“《江苏省检验检测条例(草案征求意见稿)》修改意见”字样。2.通过电子邮件将意见建议发至jsscjgrkjc@163.com,邮件主题请注明“《江苏省检验检测条例(草案征求意见稿)》”字样。附件:江苏省市场监督管理局2024年8月30日江苏省检验检测条例(草案征求意见稿)目录第一章 总则第二章 检验检测机构和人员第三章 检验检测活动第四章 监督管理第五章 发展与促进第六章 法律责任第七章 附则第一章 总则第一条【立法目的和立法依据】 为了规范检验检测活动,营造公平竞争的市场环境,促进检验检测高质量发展,根据有关法律、行政法规,结合本省实际,制定本条例。第二条【适用范围】 本省行政区域内依照法律、行政法规规定,需要取得行政许可和应当实施监督管理的检验检测机构,面向社会接受委托从事检验检测活动及其监督管理,适用本条例。第三条【检验检测、检验检测机构的定义】 本条例所称检验检测,是指依据相关标准、技术规范或者约定的方法,利用仪器设备、环境设施等技术条件和专业技能,确定被检对象特性,并出具数据、结果或者报告(以下统称检验检测报告)的活动。本条例所称检验检测机构,是指依法成立,面向社会接受委托从事检验检测活动的专业技术组织。第四条【基本原则】 从事检验检测活动,遵循守法诚信、客观独立、科学准确、公平公正的原则,承担社会责任,促进创新驱动,推动高质量发展。第五条【各级地方人民政府的职责】 县级以上地方人民政府应当加强对检验检测管理工作的领导,将检验检测发展纳入国民经济和社会发展规划,促进产学研测融合,健全扶持、奖励政策,促进检验检测资源整合和社会共享。第六条【各级监督管理部门的职责】 市场监管部门负责本行政区域内检验检测活动监督管理综合工作,指导、协调其他有关部门履行检验检测活动监督管理职责,组织实施本条例。市场监管、公安、司法行政、生态环境、住房与城乡建设、交通运输、水利、农业农村、卫生健康、应急管理、气象、国防动员、通信管理、自然资源、海关等依法对检验检测机构负有资质许可或者行政监督管理职责的部门(以下统称检验检测监督管理部门)按照各自职责,做好检验检测活动的监督管理工作。有关行业领域中涉及的检验检测活动监督管理职责不明确的,由本级人民政府决定。第七条【行业协会的职责】 检验检测相关协会应当加强行业自律和诚信建设,制定行业服务规范和相关标准,规范和引导检验检测行业有序发展。第二章 检验检测机构和人员第八条【基本条件】 检验检测机构应当具备与其从事检验检测活动相适应的人员、工作场所、环境、设备设施和管理体系。法律、行政法规对从事检验检测活动有资质许可规定的,检验检测机构应当依法取得相应资质许可;依法应当取得资质许可但未取得的,不得从事相应的检验检测活动。第九条【检验检测能力保障】 检验检测机构应当采取必要措施,持续具备与其开展检验检测活动相适应的能力。取得资质许可的检验检测机构应当按照规定参加检验检测监督管理部门开展的能力验证,以保证持续符合资质许可条件和要求。能力验证相关检验检测项目结果不合格的检验检测机构,应当在规定期限内完成整改,整改期间不得向社会出具包含该检验检测项目的数据、结果。鼓励检验检测机构参加有关政府部门、国际组织、专业技术评价机构组织开展的检验检测机构能力验证或比对活动。 第十条【信息公开】 检验检测机构应当在办公场所、官方网站或者以其他公开方式对其遵守法定要求、独立公正从业、履行社会责任、严守诚实信用等情况进行自我承诺,公开其取得的资质信息,并对公开内容的真实性、全面性、准确性负责。第十一条【人员基本要求】 检验检测机构不得聘用法律、法规禁止从事检验检测活动的人员。法律、行政法规对检验检测人员的执业资格或者从业要求另有规定的,从其规定。第十二条【公正原则】 检验检测机构及其人员应当独立于其出具的检验检测报告所涉及的利益相关方,不受任何可能干扰其技术判断的因素影响,保证其出具的检验检测报告真实、客观、准确、完整。第十三条【保密义务】 检验检测机构及其人员对其在检验检测活动中知悉的国家秘密、商业秘密和个人信息等负有保密义务。第十四条【责任归属】 检验检测机构及其人员应当对其出具的检验检测报告负责,依法承担民事、行政和刑事法律责任。第十五条【监管配合】 检验检测机构应当配合检验检测监督管理部门开展的监督检查、统计调查等工作。第三章 检验检测活动第十六条【检验检测合同的要求】 检验检测机构接受委托开展检验检测活动,应当与委托人签订检验检测服务合同,约定检验检测项目、标准依据、样品获取及处置方式、报告形式等内容。检验检测机构与委托人约定的检验检测规程或者方法等不得违反国家有关法律法规规定和强制性规定。第十七条【样品管理的要求】 检验检测机构通过采样、抽样等方式获取样品的,应当按照相关标准、技术规范实施,并与委托人约定采样、抽样的具体要求,样品的代表性和真实性由检验检测机构负责。委托人送样检验的,送检样品的代表性和真实性由委托人负责。 检验检测机构和委托人应当对样品的来源、识别信息和基本状态进行确认。检验检测机构应当依据相关标准、技术规范对样品进行保管和处置,确保样品的可追溯性。第十八条【检验检测报告的出具】 检验检测机构及其人员应当按照相关标准、技术规范、规程或者约定的方法进行检验检测,并出具检验检测报告。检验检测机构应当在其检验检测报告上加盖检验检测机构公章或者检验检测专用章,并依法依规使用相关资质标识。第十九条【报告存档的要求】 检验检测机构应当对检验检测活动的原始记录、检验检测报告和电子数据记录建立档案,并至少保存六年。法律、行政法规另有规定的,从其规定。检验检测报告、纸质原始记录和电子储存数据记录应当互为印证,可追溯、可溯源。不得存在下列行为:(1) 检验检测报告、纸质原始数据和电子存储数据记录不一致,不能对应;(2) 所保存的检验检测报告和发放的检验检测报告信息不一致;(三)检验检测报告所载明的时间与存档原始记录的时间相矛盾;(四)其他违反报告存档要求的情形。第二十条【数据安全】 检验检测机构应当建立健全数据安全管理制度,采取相应的技术措施和其他必要措施,保障检验检测活动中获取的相关数据的安全性、完整性和正确性。第二十一条【不得出具不实报告】 检验检测机构及其人员不得出具不实检验检测报告。检测检验活动形成的数据、结果以及相关记录与客观实际不一致,导致检验检测机构出具的检验检测报告错误或者无法复核,存在下列情形之一的,属于不实检验检测报告: (一)样品的采集、标识、分发、流转、制备、保存、处置不符合标准等规定,存在样品污染、混淆、损毁、性状异常改变等情形的;(二)使用未经检定或者校准的仪器、设备、设施的;(三)违反国家有关强制性规定的检验检测规程或者方法的;(四)未按照标准等规定传输、保存原始数据和报告的;(五)违反规定要求,在多个检验检测数据中选择性使用或者不合理修约,对检验检测结果的准确性造成影响的;(六)其他检验检测过程不符合规定的情形。第二十二条【不得出具虚假检验报告】 检验检测机构及其人员不得出具虚假检验检测报告,任何单位和个人不得指使、利诱、胁迫检验检测机构及其人员出具虚假检验检测报告。检验检测机构和其人员故意使检测检验活动形成的数据、结果以及相关记录与客观实际不一致,存在下列情形之一的,属于虚假检验检测报告:(一)未经检验检测的;(二)伪造、变造原始数据、记录,或者未按照标准等规定采用原始数据、记录的;(三)减少、遗漏或者变更标准等规定的应当检验检测的项目,或者改变关键检验检测条件的;(四)调换检验检测样品或者改变其原有状态进行检验检测的;(五)伪造检验检测机构公章或者检验检测专用章,伪造签名或者签发时间的;(六)使用可以实现非法修改、非法自动生成检验检测数据的仪器设备或者软件程序的;(七)违反规定要求,私自比对、串通、虚报能力验证数据、结果的;(八)其他出具虚假检验检测报告的情形。第二十三条【超出许可范围】 依法取得资质许可的检验检测机构不得超出许可能力范围、时间范围、地点范围开展检验检测活动。第二十四条【检验检测报告的公布】 任何单位和个人依法向社会公布检验检测数据、结果,应当保证检验检测数据、结果的真实、完整,不得伪造、变造检验检测数据、结果,不得作误导性的解释和说明。检验检测报告确有错误的,检验检测机构应当及时进行更正,按规定召回,并予以标注或者说明。第四章 监督管理第二十五条【协同监管】 检验检测监督管理部门应当按照职责分工建立健全跨部门监督管理协同机制,综合协调检验检测机构监督管理工作,实现违规线索互联、监管标准互通、处理结果互认。第二十六条【信用分级分类监管】 省级社会信用综合管理部门应当建立检验检测机构信用监管机制,结合风险程度、能力验证及监督检查结果、投诉举报情况等,对检验检测机构开展信用分级分类监管。各级社会信用综合管理部门应当依法归集检验检测机构资质资格、监督检查结果以及行政处罚等信息,根据信用等级采取差异化的监督管理措施。第二十七条【智慧监管】 各级数据管理部门应当加强检验检测信息化建设,完善数据信息收集、处理上报和全过程追溯制度,建立健全风险监测预警机制,实施数据信息共享,强化数据分析和运用,提升检验检测智慧监管水平。第二十八条【监督检查的职权】 检验检测监督管理部门进行监督检查时,可以行使下列职权: (一)进入检验检测机构进行现场检查;(二)向检验检测机构、委托人等有关单位及人员询问、调查有关情况或者验证相关检验检测活动;(三)查阅、复制有关检验检测原始记录、报告、发票、账簿及其他相关资料;(四)根据已经取得的违法嫌疑证据或者投诉举报线索,对涉嫌出具虚假检验检测报告的检验检测机构相关场所、仪器设备实施登记保存或者采取强制措施;(五)法律法规规定的其他职权。第二十九条【政府采购服务排除的情况】 各级国家机关、事业单位、社会团体等因履行职责或者提供公共服务的需要,使用财政性资金进行委托检验检测的,应当按符合法律法规要求的方式进行。对因出具虚假检验检测报告受到处罚的检验检测机构,列入严重违法失信名单,按照失信惩戒措施清单执行联合惩戒。第三十条【能力验证】 省检验检测监督管理部门按照各自职能统筹组织本行业领域的检验检测机构能力验证工作,核查检验检测机构持续符合资质许可的技术能力要求。设区的市检验检测监督管理部门根据监督管理需要制定能力验证计划,报经相关省检验检测监督管理部门同意,组织开展本行政区域内的检验检测能力验证工作。第三十一条【专家管理】 检验检测监督管理部门应当聘请检验检测技术专家,承担资质许可和监督管理工作的专业咨询和技术支持,建立技术专家动态管理机制,建立健全责任追究机制,并提供必要的经费保障。第三十二条【社会监督】 任何单位和个人发现检验检测机构有违反本条例规定的行为,有权向县级以上检验检测监督管理部门举报。接到举报的检验检测监督管理部门应当依法及时调查处理,并为举报人保密。第五章 发展与促进第三十三条【公共服务平台建设】 县级以上地方人民政府发展改革、科学技术、工业和信息化、市场监督管理及其他有关部门应当支持检验检测公共服务平台建设,优化平台布局,为产业创新发展提供质量基础设施一站式服务。第三十四条【资源共享】 县级以上地方人民政府及其有关部门应当支持科研院所、高等学校和企业设立独立的检验检测机构,开放共享检验检测资源。第三十五条【公平竞争】 县级以上地方人民政府及其有关部门应当构建公平竞争的检验检测市场环境,充分发挥市场机制作用,实现资源配置效率最优化和效益最大化,保证各种所有制检验检测机构依法平等使用生产要素、公平参与市场竞争、同等受到法律保护。第三十六条【技术自主创新】 县级以上地方人民政府及其有关部门应当支持检验检测机构联合科研院所、高等学校和企业等加强检验检测领域基础研究、原始创新和仪器设备研制,提升自主创新能力和自主知识产权实力,推动创新成果转化应用。第三十七条【产业协同】县级以上地方人民政府及其有关部门应当推动检验检测机构嵌入全产业链,加强与企业需求对接,健全检验检测服务体系,提升检验检测供给和服务水平。第三十八条【检验检测标准化】 省、设区的市人民政府标准化行政主管部门及有关行政主管部门应当支持检验检测机构牵头或者参与相关领域的标准制(修)订,加强标准宣贯,推动标准实施。鼓励检验检测机构承担或者参加国内外检验检测相关领域标准化组织工作,参与标准验证。第三十九条【人才培养及激励】 县级以上地方人民政府及其有关部门应当支持高等学校、职业学校、教育培训机构等加强与检验检测机构合作,建设教育培训示范基地,开发适应社会需求的教育培训课程,提供专业培训,培养高素质专业人才。人力资源社会保障部门和有关行业主管部门应当将检验检测专业能力、业绩和成果纳入专业技术人员职称评价内容,对在检验检测工作中作出突出贡献的人员,可以按照规定放宽职称申报条件和纳入高层次人才认定范围。第四十条【区域协作】 县级以上地方人民政府及其有关部门应当推进区域检验检测协同发展,加强技术能力、专家选用等领域合作,促进检验检测资源共享、平台共用、结果互认。第四十一条【国际合作】 县级以上地方人民政府及其有关部门应当支持检验检测机构开展国际合作与交流,拓宽合作与交流渠道,加大检验检测服务品牌培育力度,提升机构品牌知名度与贸易便利化水平。第六章 法律责任第四十二条【法律责任适用范围】 对违反本条例规定的行为,法律、行政法规已有处罚规定的,从其规定。第四十三条【未取得资质的处罚】 检验检测机构违反本条例八条第二款规定,未依法取得资质许可擅自从事相应检验检测活动的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,并处五万元以上十万元以下罚款;有违法所得的,没收违法所得。第四十四条【未按规定参加能力验证的处罚】 检验检测机构违反本条例第九条第二款,未按规定参加能力验证的,由县级以上检验检测监督管理部门按照职责分工暂停在相应项目参数上的资质,并责令限期改正;逾期未改正的,处五千元以上二万元以下罚款,并缩减其资质许可项目参数。第四十五条【信息公开的处罚】 检验检测机构违反本条例第十条规定,公开的资质信息不真实、不全面、不准确的,由县级以上检验检测监督管理部门按照职责分工责令限期改正;逾期未改正的,处五千元以上五万以下罚款。第四十六条【违反从业规定的处罚】 检验检测机构违反本条例第十一条规定,聘用法律、行政法规规定禁止从业或者无执业资格的检验检测人员的,由县级以上检验检测监督管理部门按照职责分工责令限期改正;逾期未改正的,处五千元以上三万元以下罚款。第四十七条【拒不配合监督管理的处罚】检验检测机构违反本条例第十五条,拒不配合监督管理工作的,由县级以上检验检测监督管理部门按照职责分工责令改正,并处二万元以上十万元以下罚款;情节严重的,责令停产停业整顿。第四十八条【检验检测报告的处罚】 检验检测机构违反本条例第十八条第二款规定,未按要求使用检验检测机构公章或检验检测专用章的,由县级以上检验检测监督管理部门按照职责分工责令限期改正;逾期未改正的,处五千元以上三万元以下罚款。第四十九条【报告存档的处罚】 检验检测机构违反本条例第十九条第一款规定,未按要求保存检验检测报告及原始记录和电子储存数据记录的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,并处一万元以上十万元以下罚款。第五十条【出具不实报告的处罚】 检检验检测机构违反本条例第二十一条规定,出具不实检验检测报告的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,没收违法所得,并处三万元以上十万元以下罚款,对直接责任人员给予一年的行业禁入。第五十一条【出具虚假报告的处罚】 检验检测机构违反本条例第二十二条规定,出具虚假检验检测报告或者指使、利诱、胁迫检验检测机构及其人员出具虚假检验检测报告的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,没收违法所得,并处十万元以上五十万元以下罚款,给他人造成损失的,依法承担赔偿责任;改正期间不得对外出具检验检测报告;情节严重的,吊销资质许可;对直接责任人员给予一至三年的行业禁入,并处一万元以上五万元以下罚款;构成犯罪的,依法追究刑事责任。第五十二条【超范围出具报告的处罚】 检验检测机构违反本条例第二十三条规定,超范围出具检验检测报告的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,没收违法所得,并处一万元以上十万元以下罚款;情节严重的,吊销资质许可。第五十三条【部门责任】 违反本条例规定,检验检测监督管理部门或者其他有关部门、单位及其工作人员在检验检测监督管理工作中,滥用职权、玩忽职守、徇私舞弊的,依法给予处分;构成犯罪的,依法追究刑事责任。第七章 附则第五十四条【生效日期】 本条例自20XX年X月X日起施行。
  • 39个地方入选深化气候适应型城市建设试点名单!
    2023年8月,为贯彻落实《国家适应气候变化战略2035》,持续实施《城市适应气候变化行动方案》,积极探索气候适应型城市建设路径和模式,有效提升城市适应气候变化能力,生态环境部、财政部、自然资源部、住房和城乡建设部、交通运输部、水利部、中国气象局、国家疾病预防控制局八大部门联合发布《关于深化气候适应型城市建设试点的通知》。《通知》提到,2017年,我国在全国范围内遴选了28个城市,启动开展气候适应型城市建设试点,为进一步深化气候适应型城市建设试点奠定了基础。基于此,统筹考虑气候风险类型、自然地理特征、城市功能与规模等因素,在全国范围内开展深化气候适应型城市建设试点,积极探索和总结气候适应型城市建设路径和模式,提高城市适应气候变化水平。到2025年,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的试点城市先行先试,气候适应型城市建设纳入试点城市重点工作任务和经济社会发展规划,适应气候变化工作机制基本完善,重点领域适应行动有效开展,气候适应型城市建设经验得到有益探索。到2030年,试点城市扩展到100个左右,气候适应型城市建设试点经验得到有效推广并进一步巩固深化,城市适应气候变化理念广泛普及,城市气候变化风险评估和适应气候变化能力明显提升。到2035年,气候适应型城市建设试点经验得到全面推广,地级及以上城市全面开展气候适应型城市建设。 近日,按照《关于深化气候适应型城市建设试点的通知》(环办气候〔2023〕13号)安排,在城市申报、各省(区、市)推荐基础上,经综合研究,确定北京市门头沟区等39个市(区)为深化气候适应型城市建设试点,现予公布。附:关于深化气候适应型城市建设试点的通知各省、自治区、直辖市及新疆生产建设兵团生态环境厅(局)、财政厅(局)、自然资源主管部门、住房城乡建设厅(委、局)、交通运输厅(局、委)、水利(水务)厅(局)、气象局、疾控主管部门:为贯彻落实《国家适应气候变化战略2035》,持续实施《城市适应气候变化行动方案》,积极探索气候适应型城市建设路径和模式,有效提升城市适应气候变化能力,决定在前期工作基础上进一步深化气候适应型城市建设试点工作。现将有关事项通知如下。一、目的意义气候变化是当今世界以及今后相当长时期内人类共同面临的巨大挑战。气候变化导致的极端天气气候事件和各类缓发不利影响不断加剧,已对世界各国特别是发展中国家经济社会发展和人民生产生活安全造成严重威胁。《巴黎协定》确立了提高适应能力、增强韧性、降低脆弱性的全球适应目标,主动适应气候变化、不断提高气候风险防范和抵御能力已经成为全球共识和必然选择。城市是人类生产生活的主要聚集地,也是各类要素资源和经济社会活动最集中的地方,区域气候变化趋势与城市气候效应叠加,使城市遭受的不利影响和风险更为严重。我国正处于工业化和城镇化快速发展的历史阶段,以防范气候风险为目标建设气候适应型城市,可以最大限度降低气候变化不利影响和风险,提高城市适应气候变化能力,对保障城市安全运行、提高城市竞争力和可持续发展潜力具有重要意义。2017年,我国在全国范围内遴选了28个城市,启动开展气候适应型城市建设试点。各试点城市因地制宜、积极探索,在普及适应理念、创新工作机制、强化重点领域适应行动等方面都取得积极成效并积累了有益经验,为进一步深化气候适应型城市建设试点奠定了基础。但总体来看,气候适应型城市建设仍任重道远,当前仍存在对气候风险认识不足、工作机制尚不完善、资源投入和行动力度亟待加强、适应能力亟待提升等问题,迫切需要进一步深化气候适应型城市建设试点,以进一步探索和总结气候适应型城市建设路径和模式,提高城市适应气候变化水平,并为积极推进全球适应气候变化进程贡献中国智慧和中国方案。二、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大会议精神,深入贯彻习近平生态文明思想,坚持以人民为中心,完整、准确、全面贯彻新发展理念,落实《国家适应气候变化战略2035》,实施《城市适应气候变化行动方案》,以有效防范和降低气候变化不利影响和风险为目标,以完善城市适应气候变化治理体系、加强气候变化影响和风险评估、强化城市重点领域适应气候变化行动、推进城市适应政策创新和能力建设为重点,选择典型城市先行先试,积极推进和深化气候适应型城市建设,为推进城市韧性可持续发展、助力生态文明建设和美丽中国建设做出积极贡献。(二)工作原则坚持风险导向,因地制宜。强化气候风险意识,立足全球和区域气候背景,以积极防范和化解城市面临的主要气候风险为导向,充分发挥试点城市主动性、积极性,结合城市实际,体现城市特色,突出“一城一策”,稳步推进气候适应型城市建设。坚持统筹协调,重点突出。建立健全气候适应型城市建设试点领导协调机制,统筹发力、协同推进,在深入分析评估气候变化不利影响和风险的基础上,明确城市适应气候变化目标任务,突出重点任务、重点举措、重点工程,推动试点城市气候韧性大幅提升。坚持分类指导,探索创新。根据不同地区、规模、城市功能定位、气候风险类型等,对气候适应型城市建设试点进行分类指导,鼓励试点城市先行先试、锐意创新,大胆探索气候适应型城市建设机制和模式,形成可复制、可推广的经验,树立标杆、打造样本。坚持广泛参与,全民共建。全面提升对气候适应型城市建设的认识和重视程度,广泛调动政府部门、企事业单位、社会组织和广大公众参与共建的积极性,引导和整合优势资源,强化适应气候变化支撑保障和能力建设,营造气候适应型城市建设良好氛围。(三)试点目标统筹考虑气候风险类型、自然地理特征、城市功能与规模等因素,在全国范围内开展深化气候适应型城市建设试点,积极探索和总结气候适应型城市建设路径和模式,提高城市适应气候变化水平。到2025年,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的试点城市先行先试,气候适应型城市建设纳入试点城市重点工作任务和经济社会发展规划,适应气候变化工作机制基本完善,重点领域适应行动有效开展,气候适应型城市建设经验得到有益探索。到2030年,试点城市扩展到100个左右,气候适应型城市建设试点经验得到有效推广并进一步巩固深化,城市适应气候变化理念广泛普及,城市气候变化风险评估和适应气候变化能力明显提升。到2035年,气候适应型城市建设试点经验得到全面推广,地级及以上城市全面开展气候适应型城市建设。三、重点任务(一)完善城市适应气候变化治理体系(生态环境部牵头,其他部门参与,指导试点城市开展以下工作)加强气候适应型城市建设协调指导,建立健全由生态环境部门牵头、相关部门积极参与的气候适应型城市建设试点工作领导协调机制。制定气候适应型城市建设试点实施方案,将气候适应型城市建设纳入城市各级各类相关规划和美丽城市建设重点任务。建立健全气候系统观测、影响风险评估、综合适应行动、效果评估反馈的工作体系。建立城市适应气候变化信息共享机制和平台,提升信息化、智能化管理水平。完善适应气候变化相关财政、金融、科技等支撑保障机制和配套政策。建立评估考核机制,开展年度工作成效评估,并纳入生态环境美丽城市评估体系。(二)强化城市气候变化影响和风险评估(生态环境部、中国气象局、自然资源部牵头,其他部门参与,指导试点城市开展以下工作)建设高精度城市气候变化监测、预测和预估基础数据集,开展城市细致气候特征以及热岛、雨岛、干岛、浑浊岛效应的综合分析。探索开展气候变化影响和风险的精细化定量监测与评估、预估及归因分析。建立跨部门气候风险联合会商评估工作机制,强化重点领域、重点工程、重要开发项目气候变化影响和风险评估。加强气候变化影响显著区域的地质灾害综合防控,开展海平面上升耦合极端灾害过程的滨海城市安全综合风险评估。加强气候变化对沿海城市富营养化、海洋酸化和缺氧的影响分析和风险评估。有效衔接常态化气象灾害隐患排查与周期性综合风险普查,开展动态风险评估,绘制城市气候风险地图。(三)加强城市适应气候变化能力建设(生态环境部牵头,其他部门参与,指导试点城市开展以下工作)加强队伍建设,广泛开展适应气候变化知识和业务培训,提高干部队伍业务能力。开展适应气候变化主题宣传活动,利用多种方式推动适应气候变化进机关、进校园、进社区、进企业、进农村,提高公众气候风险防范与适应气候变化理念意识。在国家生态环境科普基地建设中增加气候适应方面相关内容。加强适应气候变化先进技术推广应用,探索提升城市适应能力综合解决方案。充分调动金融机构、企业、社区、社会组织及公众等多元主体适应气候变化积极性,发展壮大志愿者队伍,形成全社会广泛参与的良好氛围。加强适应气候变化国际合作,开展气候适应型城市建设政策、技术、实践经验国际交流,推动建立气候适应型城市友城伙伴关系,提升气候适应型城市建设国际影响力。(四)加强极端天气气候事件风险监测预警和应急管理(中国气象局牵头,其他部门参与,指导试点城市开展以下工作)建设地面自动气象站为主的立体精密、智能协同的城市综合气象观测系统。建立气象灾害及其次生灾害监测与预警预报体系,完善定量化监测指标体系,开展精细化网格预报预测。因地制宜建设早期预警平台和分灾种监测预报预警系统,建立多源资料融合的极端天气气候事件灾情数据库。建立跨部门、跨区域联防联控的常态化管理体系,制定完善极端天气气候事件应急预案,完善应急处置和救灾响应机制。强化专业应急救援装备力量部署,优化完善应急抢险救灾物资储备库布局,加强应急救援联合演练。(五)优化城市适应气候变化空间布局(自然资源部牵头,其他部门参与,指导试点城市开展以下工作)在国土空间规划实施评估中加强气候风险及适应性评估。结合国土空间规划编制实施,在“三区三线”、蓝线绿线等基础上,进一步探索城市适应气候变化的空间策略,优化城市空间布局。融合规划和土地政策,加大城市存量空间盘活力度,统筹城市地上地下空间综合利用。划定海洋灾害防治区,强化沿海城镇海平面上升应对措施。划定洪涝风险控制线,增强城市和区域调蓄空间管控。确定重要基础设施用地控制范围并预留发展空间,完善城镇安全韧性空间和基础设施。以社区为基本单元构筑城市安全防御体系,优化公共卫生等应急空间网络。(六)提升城市基础设施气候韧性(住房城乡建设部牵头,其他部门参与,指导试点城市开展以下工作)建立健全基础设施建档制度,以城市人民政府为实施主体,加快开展城市市政基础设施现状普查,摸清底数、排查风险、找准短板,提出有针对性的基础设施韧性提升措施,纳入市政基础设施建设规划及实施计划。鼓励探索开展城市基础设施压力测试。对城市基础设施安全风险进行源头管控、过程监测、预报预警、应急处置和综合治理。全面提升极端天气气候事件下城市各类基础设施的防灾、减灾、抗灾、应急救灾能力和城市重要基础设施快速恢复能力、关键部位综合防护能力。(七)提升城市水安全保障水平(水利部、住房城乡建设部、生态环境部牵头,其他部门参与,指导试点城市开展以下工作)统筹流域防洪与城市防洪排涝,统筹城市防洪和内涝治理,加快实施城市防洪提升工程,建设和完善源头减排、蓄排结合、排涝除险、超标应急的排水防涝体系,有效应对城市内涝防治标准内的降雨,加强易涝积水点整治,落实海绵城市建设理念。对沿河沿海城市级别、人口规模等保护对象重要性提升或新增防洪防潮任务的城市河段,合理提高防洪安全保障标准和防洪工程标准,以应对极端洪涝、风暴潮灾害。加强城市水源地保护,因地制宜构建城市多水源供水格局,加强供水应急备用水源建设,提高城市供水保证率,有效应对干旱缺水、水污染等供水风险。(八)保障城市交通安全运行(交通运输部、住房城乡建设部牵头,其他部门参与,指导试点城市开展以下工作)强化极端天气气候事件预警与城市综合交通系统应急联动机制,提高停运复运、运营调度和应急管理信息化、智能化水平。完善城市应急通道网络,健全城市道路照明、标识、警示等指示系统,提高穿越城市的高速公路应急抢通和快速修复能力,提升极端天气气候事件下防灾救灾能力。加强风险隐患排查管理,积极防范极端天气气候事件引发次生地质灾害,切实落实港口码头、航道及航道设施防汛防台风措施。提高城市道路耐受气候变化影响的变幅阈值,制定或修订相关建设、管理和养护标准。(九)提升城市生态系统服务功能(自然资源部、住房城乡建设部、生态环境部、水利部牵头,其他部门参与,指导试点城市开展以下工作)实施基于自然的解决方案,构建蓝绿交织、清新明亮的复合生态网络和连续完整、功能健全的城市生态安全屏障,打造与适应气候变化协同融合的城市空间和景观格局。实施城市生态修复工程,加强城市水土保持,严格保护城市山体自然风貌,修复江河、湖泊、湿地等重要生态系统。充分发挥生态系统防潮御浪、固堤护岸等减灾功能,促进生态减灾协同增效。将生物多样性保护要求融入城市规划、建设、治理相关标准和规范,推动生态廊道、通风廊道、城市绿道、景观廊道及基础设施一体布局。鼓励利用街头、社区小微空间,修复、营建基于本土自然的生态环境,畅通城市微生态循环。加强山水林田湖草沙一体化保护修复,完善城市生态系统,提升城市生态碳汇能力,促进城市化地区绿色发展。(十)推进城市气候变化健康适应行动(国家疾控局牵头,其他部门参与,指导试点城市开展以下工作)开展城市气候变化健康风险监测评估,明确本市重点气候敏感传染病、慢性非传染病,实施城市气候变化健康适应行动。建立气候敏感疾病、高温热浪等健康风险预警与干预机制,及时发布预警信号和健康提示。重点关注脆弱人群健康适应能力,厘清脆弱人群特征和时空分布,针对性发布健康保健和防护指南。四、组织实施(一)申报条件试点申报城市一般应为地级及以上城市,同时鼓励国家级新区申报。试点申报城市应高度重视气候适应型城市建设,适应气候变化工作有一定基础,城市面临的气候风险典型突出,试点目标清晰、任务明确、措施合理,组织保障和政策保障有力,能够为气候适应型城市建设试点创造良好条件,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的城市。(二)试点申报申报城市应按照试点工作要求,结合实际填写《气候适应型城市建设试点申报表》,并编制《气候适应型城市建设试点实施方案》,由试点申报城市人民政府提交省级生态环境部门。鼓励2017年公布的28个气候适应型城市建设试点继续申报深化试点,拟继续申报的应填写申报表,更新试点实施方案,并总结提交已开展的试点工作成效和典型经验。试点申报城市应根据实际情况,结合十项重点任务,合理选择确定本地试点建设重点任务及目标。其中,完善城市适应气候变化治理体系、强化城市气候变化影响和风险评估、加强城市适应气候变化能力建设、加强极端天气气候事件风险监测预警和应急管理、优化城市适应气候变化空间布局为必选任务,其他有关领域重点任务可根据城市实际情况选择一项或几项,要突出城市特点和试点效果,避免贪多求全。试点申报城市也可视情增加其他自定任务。(三)试点审核省级生态环境部门要高度重视并牵头做好试点组织申报工作,会同有关部门对申报材料进行初审,形成审核意见,确定推荐意向顺序,于2023年10月9日前报送生态环境部办公厅并抄送财政部、自然资源部、住房城乡建设部、交通运输部、水利部办公厅、中国气象局办公室、国家疾控局综合司,同时通过生态环境公文系统报送电子版材料。生态环境部会同有关部门组织专家对试点申报材料进行评审,视情对试点申报城市开展实地调研,综合考评后确定试点城市名单并向全社会公布。(四)试点建设生态环境部会同相关部门建立气候适应型城市建设试点工作协调机制及专家帮扶机制,统筹考虑试点城市的地域特点及气候风险情况等因素,编制出台相关技术标准、建设指南、评估办法等,探索建立完善促进试点建设的政策体系和激励机制。鼓励并支持试点城市通过美丽城市建设试点、气候投融资试点、生态环境导向的开发模式、适应气候变化国际伙伴关系等推动试点建设。鼓励试点城市协同推进低碳城市、生态文明建设示范区、国家环境保护模范城市、海绵城市建设等各类试点示范工作,充分发挥协同效应。省级生态环境部门要会同相关部门做好试点城市组织协调工作,及时掌握试点情况,推动经验总结交流。试点城市要印发实施气候适应型城市建设方案,认真抓好责任分工和任务落实,确保完成目标任务、取得试点实效。(五)评估验收试点城市应每年年底开展试点建设工作自评估,并于次年1月底前报送自评估报告。生态环境部会同有关部门研究制定气候适应型城市建设试点评估验收办法,定期对试点城市的工作进展和成效开展跟踪评估,并形成《气候适应型城市建设试点案例集》。对气候适应型城市建设试点成效显著、引领作用突出、验收评估结果优秀的通报表扬,推介其先进经验做法;对工作推进不力、实施进度滞后、验收评估结果不合格的取消其试点资格。五、工作要求(一)提高思想认识各地要切实提高对气候适应型城市建设试点工作的认识,积极做好试点申报和组织推荐工作,以城市适应气候变化为突破口,提高气候风险防范和应对能力。试点申报城市要确保试点实施方案切实可行,符合本地实际。省级生态环境主管部门会同有关部门做好审核把关和协调指导工作,确保试点城市申报材料真实准确、科学合理。(二)强化组织实施试点城市要建立健全相关工作机制,加强组织领导,强化支撑保障,加大工作力度,确保试点各项任务有序推进。试点城市可在依法依规的前提下统筹运用相关资金和气候投融资工具,加大对适应气候变化工作的投入力度。鼓励试点城市先行先试、积极探索各类政策创新。(三)加强宣传推广试点城市要利用各种媒体渠道,广泛宣传气候适应型城市建设理念内涵及工作进展,提高公众认知度、扩大社会影响面,为试点工作顺利推进营造良好舆论氛围。要及时梳理总结报送各类好经验、好做法、好案例,生态环境部将搭建试点工作宣传平台,并利用联合国气候变化大会、全国低碳日等各种契机节点推动经验交流和务实合作,讲好中国适应气候变化故事。生态环境部办公厅 财政部办公厅   自然资源部办公厅 住房城乡建设部办公厅  交通运输部办公厅 水利部办公厅   中国气象局办公室 国家疾控局综合司   2023年8月18日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制