当前位置: 仪器信息网 > 行业主题 > >

形成过程

仪器信息网形成过程专题为您整合形成过程相关的最新文章,在形成过程专题,您不仅可以免费浏览形成过程的资讯, 同时您还可以浏览形成过程的相关资料、解决方案,参与社区形成过程话题讨论。

形成过程相关的论坛

  • ICP炬形成过程

    ICP炬形成过程如下:1)Tesla线圈----高频交变电流----交变感应磁场;2)火花----氩气----气体电离----少量电荷----互相碰撞----雪崩现象----大量载流子;3)数百安极高感应电流(涡电流,Eddy current)----瞬间加热----到10000K----等离子体----内管通入氩气形成环状结构样品通道----样品蒸发、原子化、激发。

  • 形成ICP炬焰的过程

    作为仪器分析者,针对ICP炬焰的形成,我们需要简单了解其过程,这样可以针对异常情况进行判断,其步骤主要分成如下,首先是要通入所谓的等离子体气和辅助气,这是外管和内管的气体,其次感应线圈接入高频电源,最后感应线圈的尖端放电使整个炬室中的氩气局部电离成导体,从而产生感应电流,感应电流加热进一步形成所谓的火焰,这就是我们通过观测窗看到的点火后稳定的现状,相信大家通过这一个过程,可以了解炬焰形成原理了!

  • 实验室建立质量管理体系的质量形成过程

    [font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][color=#105792]实验室是专门从事检验测试工作的实体。实验室工作的最终成果是检测报告。检测报[/color][/size][/font][font=&][size=15px][color=#333333]告就是实验室的产品,同样有一个质量形成过程。为了确保检测数据的准确可靠,以确保[/color][/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][color=#105792]检测报告的质量,就必须明确它的质量形成过程和过程的各个阶段可能影响检测报告质量的各项因素。从而对这些因素采取相应的措施,加以管理和控制,使其过程处于受控状态,以保证最终产品——检测报告的质量。由于生产组织的性质不同,产品特性不同,实验室的工作任务不同,因而,其质量形成过程也不尽相同。在建立质量管理体系时,应根据本实验室的工作特点,进行分析研究,以明确其质量形成过程及涉及的要素。比较典型的质量形成过程,大体上包括以下各阶段。(1)明确检测依据。接受某项检测任务,首先要明确检测依据的技术标准和技术规范,熟悉和正确掌握它的技术要求和检测条件。必要时,在完全理解检测依据的基础上,编制便于操作的具体的检测程序和方法。以防止在掌握检测依据上出现偏差,保证具体操作上的一致性,避免发生质量问题。(2)样品的抽取。为了使抽取的样品具有代表性,且真实完整,应制定合理的随机抽样方案,明确抽样、封样、记录、取送方式等各项质量要求或严格按检验规程规定进行抽样工作。(3)样品的管理和试样的制备。为了保证样品的完好,不污染、不损坏、不变质,符合检测技术要求,应编制样品的交接、保管、使用、处置的质量控制措施。需要制备试样时,还应制定制备程序和方法,对制样的工具、模具等也应进行质量控制。(4)外部供应的物品。对检测工作需用的从外部购进的材料、药品、试剂、器件等物品。应有明确的质量要求和进行验收的质量控制措施。(5)环境条件。应有满足符合技术要求的工作环境,并有必要的监控环境技术参数的技术措施。(6)检测操作。检验人员要依据技术标准和检验规范规定的方法,正确、规范的进行检测操作,及时准确的记录和采集检测数据。(7)计算和数据处理。依据检验规范的有关规定,对检测数值进行正确的计算和数据处理,并经过校对验证,以确保结果正确无误。(8)检测报告的编制和审定。检测报告的内容应完整,填写应规范、正确、清晰、判定准确,并严格执行校核、审批程序。分析检测质量形成过程,准确的找出可能影响检测工作质量的各项因素,使其持续的处于受控状态。这是建立质量管理体系的一项基本要求。一个完善的实验室质量管理体系,应能实现纠正和预防质量问题的发生,即使一旦出现质量问题也能及时发现,迅速予以纠正和改进。[/color][/size][/font]

  • 【分享】发酵过程泡沫的形成与控制

    发酵过程起泡的利弊:气体分散、增加气液接触面积,但过多的泡沫是有害的 一、泡沫形成的基本理论 泡沫的定义:一般来说:泡沫是气体在液体中的粗分散体,属于气液非均相体系 美国道康宁公司对泡沫这样定义:体积密度接近气体,而不接近液体的“气/液”分散体。 (一)泡沫形成的原因 1、气液接触 因为泡沫是气体在液体中的粗分散体,产生泡沫的首要条件是气体和液体发生接触。而且只有气体与液体连续、充分地接触才会产生过量的泡沫。气液接触大致有以下两类情况: (1)气体从外部进入液体,如搅拌液体时混入气体 (2)气体从液体内部产生。气体从液体内部产生时,形成的泡沫一般气泡较小、较稳定。 2、含助泡剂 在未加助泡剂,但并不纯净的水中产生的泡沫,其寿命在0.5秒之内,只能瞬间存在。摇荡纯溶剂不起泡,如蒸馏水,只有摇荡某种溶液才会起泡。 在纯净的气体、纯净的液体之外,必须存在第三种物质,才能产生气泡。对纯净液体来说,这第三种物质是助泡剂。当形成气泡时,液体中出现气液界面,这些助泡剂就会形成定向吸附层。与液体亲和性弱的一端朝着气泡内部,与液体亲和性强的一端伸向液相,这样的定向吸附层起到稳定泡沫的作用。 3、起泡速度高于破泡速度 起泡的难易,取决于液体的成分及所经受的条件;破泡的难易取决于气泡和泡破灭后形成的液滴在表面自由能上的差别;同时还取决于泡沫破裂过程进行得多快这一速度因素。 高起泡的液体,产生的泡沫不一定稳定。体系的起泡程度是起泡难易和泡沫稳定性两个因素的综合效果。 泡沫产生速度小于泡沫破灭速度,则泡沫不断减少,最终呈不起泡状态;泡沫产生速度等于泡沫破灭速度,则泡沫数量将维持在某一平衡状态;泡沫产生速度高于泡沫破灭速度,泡沫量将不断增加。 4、发酵过程泡沫产生的原因 (1)通气搅拌的强烈程度 通气大、搅拌强烈可使泡沫增多,因此在发酵前期由于培养基营养成分消耗少,培养基成分丰富,易起泡。应先开小通气量,再逐步加大。搅拌转速也如此。也可在基础料中加入消泡剂。 (2)培养基配比与原料组成 培养基营养丰富,黏度大,产生泡沫多而持久,前期难开搅拌。 例:在50L罐中投料10L,成分为淀粉水解糖、豆饼水解液、玉米浆等,搅拌900 rpm,通气,泡沫生成量为培养基的2倍。如培养基适当稀一些,接种量大一些,生长速度快些,前期就容易开搅拌。 (3)菌种、种子质量和接种量 菌种质量好,生长速度快,可溶性氮源较快被利用,泡沫产生几率也就少。菌种生长慢的可以加大接种量 (4)灭菌质量 培养基灭菌质量不好,糖氮被破坏,抑制微生物生长,使种子菌丝自溶,产生大量泡沫,加消泡剂也无效。 (二)起泡的危害 1、降低生产能力 在发酵罐中,为了容纳泡沫,防止溢出而降低装量 2、引起原料浪费 如果设备容积不能留有容纳泡沫的余地,气泡会引起原料流失,造成浪费。 3、影响菌的呼吸 如果气泡稳定,不破碎,那么随着微生物的呼吸,气泡中充满二氧化碳,而且又不能与空气中氧进行交换,这样就影响了菌的呼吸。 4、引起染菌 由于泡沫增多而引起逃液,于是在排气管中粘上培养基,就会长菌。随着时间延长,杂菌会长入发酵罐而造成染菌。大量泡沫由罐顶进一步渗到轴封,轴封处的润滑油可起点消泡作用,从轴封处落下的泡沫往往引起杂菌污染。 (三)泡沫的性质 泡沫体系有独特的性质,研究泡沫的性质,是解决消泡问题的基础。 1、气泡间液膜的性质 泡沫中气泡间的间距很小,仅以一薄层液膜相隔,研究液膜的性质很有代表意义,又因为,只有含有助泡的表面活性剂,才能形成稳定的泡沫,所以应当首先研究表面活性剂与液膜的关系 表面活性剂示意图 如图所示,表面活性剂是由疏水基与亲水基构成的化合物,在水中,表面活性剂的分子不停地转动在以下两种情况下泡沫才能比较稳定,停留时间比较长: 第一种情况 表面活性剂的亲水基留在水相,疏水基伸到气相中,形成定向吸附层 第二种情况 表面活性剂的疏水基在水相中互相靠在一起,减少疏水基与水的接触,形成“胶束”。 溶液中当表面活性剂的浓度低于临界胶束浓度时,以第一种情况为主;表面活性剂浓度高于临界胶束浓度时出现第二种情况。在泡沫不断增加时,表面活性剂会从胶束中不断转移到新产生的气液界面上 表面活性剂为什么会定向排列在表面? 在液相中因为水分子之间的吸引力大于水对表面活性剂的吸引力,表面活性剂的疏水部分被水分子之间的吸引力挤出溶液,到达气液界面。这就是表面活性剂易于在泡沫上形成定向吸附层的原因。 2、泡沫是热力学不稳定体系 热力学第二定律指出:自发过程,总是从自由能较高的状态向自由能较低的状态变化。起泡过程中自由能变化如下: △G=γ△A △G——自由能的变化 △A——表面积的变化 γ——比表面能 起泡时,液体表面积增加,△A为正值,因而△G为正值,也就是说,起泡过程不是自发过程。另一方面,泡沫的气液界面非常大,例如:半径1cm厚0.001cm的一个气泡,内外两面的气液界面达25cm2;可是,当其破灭为一个液滴后,表面积只有0.2cm2,相差上百倍。显然,液体起泡后,表面自由能比无泡状态高得多。泡沫破灭、合并的过程中,△A是一个绝对值很大的负数,也就是说泡沫破灭、合并的过程,自由能减小的数值很大。因此泡沫的热力学不稳定体系,终归会变成具有较小表面积的无泡状态。 3、泡沫体系的三阶段变化 即使外观看来平静、比较稳定的泡沫体系,泡沫液也在不断地下落、蒸发,不断进行着下述三阶段的变化 (1)气泡大小分布的变化 液膜包裹的一个气泡,就像一个吹鼓了的气球。由于气球膜有收缩力,所以气球中压力大于气球外的压力;同样气泡膜有表面张力,气泡中压力大于气泡外的压力。气泡大小的再分布,就是由气泡膜内气体的压力变化引起的。气泡中气体压力的大小,依赖气泡膜的曲率半径 由定量观点看,气泡内外压差 △P= 由该式可知:压差△P与气泡半径成反比。若气泡膜的表面张力均相同,则小气泡中的压力比大气泡中的压力大。因此当相邻气泡大小不同时,气泡会不断地由小气泡高压区,经过吸附、溶解、解析,扩散到大气泡低压区。于是小气泡进一步变小,大气泡进一步变大。即使相邻气泡曲率半径最初差别不大,也会由于△P的不同,气体的扩散,泡径差别逐渐增大,直至小泡完全并入大泡。结果气泡数目减少,平均泡径增大,气泡大小分别发生变化 (2)气泡液膜变薄 取一杯泡沫,放置一段时间,就会在杯底部出现一些液体,而逐渐形成液相及液面上的泡沫相这样具有界面的两层。底部出现的液体一部分是泡沫破灭形成的,一部分是气泡膜变薄,排出液体形成的。 泡沫生成初期,泡沫液还比较厚,以后因蒸发排液而变薄,泡沫液会受重力的影响向下排液,泡沫液随时间延续而变薄。 (3)泡沫破灭 泡沫由于排液,液量过少,表面张力降低,液膜会急剧变薄,最后液膜会变得十分脆弱,以至分子的热运动都可以引起气泡破裂。因此只要泡沫液变薄到一定程度,泡沫即瞬间破灭。 泡沫层内部的小气泡破灭后,虽一时还不能导致气液分离,只是合并成大气泡,但排液过程使泡膜液量大幅度减少,使合并成的大气泡快速地破灭,最后泡沫体系崩溃,气液分离。

  • ICP光谱议中等离子体焰的形成过程及原理

    ICP光谱议中等离子体焰的形成过程及原理ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰. 电感耦合高频等离子(ICP)光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27-50 MHz,最大输出功率通常是2-4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1-2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。  ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。  焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达10000K,电子密度很高,由于黑体辐射、离子复合等产生很强的连续背景辐射。试样气溶胶通过这一区域时被预热、挥发溶剂和蒸发溶质,因此,这一区域又称为预热区。  内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。温度约为6000-8000K,是分析物原子化、激发、电离与辐射的主要区域。光谱分析就在该区域内进行,因此,该区域又称为测光区。  尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。

  • 【原创大赛】热稳定化过程中PAN纤维特征结构的形成与演变

    【原创大赛】热稳定化过程中PAN纤维特征结构的形成与演变

    PAN纤维在热稳定化过程中会发生很多化学反应,形成多种不同的化学结构,本实验讨论研究热稳定化过程中各种特征结构的形成过程以及他们的演变规律。为了消除环境中的氧对特征结构形成过程的影响,选择在惰性气氛下对PAN纤维进行热处理。1、热稳定化过程中PAN纤维的特征结构种类http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567647_3043450_3.jpg图1惰性气氛下250℃热处理12h的PAN纤维的核磁谱图http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567648_3043450_3.jpg图2 PAN分子链图1为经惰性气氛下250℃热处理过的PAN纤维的核磁谱图,对核磁谱图进行分缝处理,可以得到各种化学位移上的特征峰,每处特征峰所代表的不同位置的C原子如图中所示。28ppm处特征峰代表CH2,108ppm和115ppm处特征峰代表无氢C原子,136ppm处特征峰代表=CH-,150ppm处特征峰代表-C=N,155ppm处特征峰代表=C-N,164ppm处特征峰代表间位脱氢的-C=N。结合PAN分子链特征(图2),推断出在热稳定化过程中纤维中生成了以下几种化学结构。在热稳定化过程中氰基发生环化反应与相邻氰基连成环,也有可能与相邻氰基较远而不发生环化反应。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567649_3043450_3.jpg 图3热稳定化过程中PAN纤维中形成的化学结构仔细观察这几种化学结构,根据C与N之间的化学键以及周围的化学环境对其进行分类。将(a)(b)(c)三种化学结构归为一类,他们的共同特征是都含有C=C-C=N,因此称这类化学结构为共轭结构;(d)和(e)两种化学结构都含有-C=N且其间位未脱氢,称这两种化学结构为亚胺结构;(f)和(g)两种化学结构的共同特点是都含有=C-N,因此称其为烯胺结构。2、惰性气氛下反应温度的确定http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567650_3043450_3.jpg图4惰性气氛下不同升温速率的PAN纤维DSC曲线表1惰性气氛下不同升温速率的反应起始温度 升温速率(℃/min) 反应起始温度( ℃) 2 170.3 4 177.8 6 185.0 8 192.6 10 196.0 http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567651_3043450_3.jpg图5反应起始温度与升温速率的线性关系图4为PAN纤维在惰性气氛下不同升温速率的DSC曲线,从图中可以看出不同升温速率下的DSC曲线的起始反应温度不同,这样我们表1中不同升温速率下DSC曲线中放热峰的起始反应温度,并以升温速率为横坐标、反应起始温度为纵坐标,得到图5,将图中的五个点进行线性拟合并利用倒推法可以得到,当升温速率为0时,起始反应温度为164.48℃,为了实验操作的方便性,选择170℃作为起始反应温度。 图6为PAN纤维在不同温度下处理相同时间的红外谱图。图中1450cm-1处吸收峰代表亚甲基,该亚甲基与碳氮键相连且亚甲基上面可以发生化学反应的氢较多,因此选择亚甲基作为判断化学反应变化的标志。随着热处理温度的升高,该峰逐渐红移,且逐渐变宽。将图6中的红外谱图进行分峰处理,可以得到图7不同热处理温度下亚甲基特征峰的半高宽变化趋势。图7显示出随着热处理温度的升高,亚甲基的半高宽逐渐变大,由于亚甲基周围的化学环境发生变化导致峰位红移,部分亚甲基周围化学环境变化峰位红移,而部分亚甲基未发生变化峰位未红移。图中亚甲基半高宽变化出现了两个转折点(190℃和230℃),说明PAN纤维中化学结构变化分为三个阶段,因此,我们将各个反应温度定在190℃、210℃、230℃和250℃。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567652_3043450_3.jpg图6不同温度下热处理12h的PAN纤维的红外谱图 http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567653_3043450_3.jpg图7不同热处理温度下红外谱图中CH2的半高宽变化3、惰性气氛下特征结构的形成过程http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567654_3043450_3.jpg图8 PAN原丝与170℃热处理12h的PAN纤维的红外谱图http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567655_3043450_3.jpg图9 170℃和190℃热处理12h的PAN纤维的红外谱图从图8中可以看出,与原丝红外谱图对比经过170℃热处理过的纤维谱图中2240cm-1所代表的氰基伸缩振动峰的强度降低,同时出现了1620cm-1所代表的C=N吸收峰,表明在热处理过程中PAN纤维中的氰基键断裂生成C=N;1450cm-1和1360cm-1两处吸收峰分别为亚甲基和次甲基的吸收峰,从图中可以看出这两处吸收峰峰强逐渐靠近,说明此过程中发生了脱氢反应;同时代表C=C的吸收峰1580cm-1出现,也说明了PAN纤维在低温热处理过程中发生了脱氢反应并生成了碳碳双键。由此我们推测在PAN纤维在170℃热处理温度下,氰基发生反应形成了亚胺结构,亚胺结构又脱氢形成了共轭结构。观察图9可以发现,经190℃热处理过的PAN纤维的红外谱图中出现了代表=C-N 的1150cm-1处振动峰,说明在190℃时PAN纤维中开始形成烯胺结构。亚胺结构与烯胺结构的元素组成相同,有研究者认为它们是互变异构体,在热稳定化过程中两种结构发生了互变反应,为了明晰热稳定化过程中烯胺结构的形成过程以及这两种结构之间的关系,将PAN纤维在190℃热处理不同的时间,将得到的样品进行

  • 美首次观察到超导体中重电子形成过程 有助于解释物质为何具有超导性

    2012年06月29日 来源: 中国科技网 作者: 常丽君 本报讯在 某些超导体中,运动电子的性质极为奇特。它们好像比真空中的自由电子重1000倍,但同时电子运动却是毫无阻力的。据物理学家组织网近日报道,美国普林斯顿大学领导的一项最新研究显示,产生这种现象是由于“量子纠缠”的过程,该过程决定了晶体中运动电子的质量。这一发现有助于人们理解超导性的成因,并有望在提高电网效率、加快计算速度等方面获得应用。相关论文发表在近日出版的《自然》杂志上。 将电子冷却到超低温形成某种固体物质时,这些极轻的粒子就会增加质量,好像变成了重粒。把它们冷却到接近绝对零度时,这种固体就有了超导性。其中的电子尽管很重,却能毫无阻力地流动,不会浪费任何电能。 研究小组还包括洛斯阿拉莫斯国家实验室(LANL)和加州大学欧文分校的科学家,他们利用专门设计的低温扫描隧道显微镜(STM)拍摄晶体中的电子波。晶体经过了处理,表面包含一些原子瑕疵。他们将温度降低到实验需要,观察到了电子波纹,这些波纹围绕着瑕疵之处扩散开来,就像在池塘里投入石头散开的涟漪。 “这是首次获得重电子形成的精确画面。在降低温度时,我们看到晶体中的运动电子演变成了更重的粒子。”领导该研究的普林斯顿大学物理学教授阿里·雅兹达尼说。他们通过直接拍摄的电子波图像,不仅看到了电子质量是怎样增加的,还看到了重电子是由两个纠缠电子构成的复合体。 他们还把实验观察和理论计算数据进行了对比,解释了电子为何会出现这种性质。由于量子纠缠,电子糅合两种截然相反的行为。在晶体中,重电子产生于两个行为相反的电子的纠缠,其中一个被困住绕着一个原子,而另一个在各个原子之间自由地跳跃。 研究人员解释说,量子力学原理控制着微小粒子的行为,形成了量子纠缠,这一过程决定了晶体中运动电子的质量。轻微调整这种纠缠,就能极大地改变材料的性质。而纠缠度是决定重电子形成和进一步冷却时行为表现的关键。调整晶体的成分或结构,就能调整纠缠度和电子重量。如果让电子太重,它们就会被冻成磁化状态,黏在每个原子旁边,以相同的方向自旋。但如果只是轻微调整,让电子获得合适的纠缠数量,这些重电子就会在冷却时变成超导体。“我们的研究证明了,只有当处在‘迟缓’和‘迅速’这两种行为的边界时,才能获得超导性。这是最有利于产生重电子超导性的条件。”雅兹达尼说。 许多磁性材料在它们的成分或晶体结构发生了微妙改变之后,变成了超导体。哈佛大学理论物理学家苏伯·萨奇戴伍说,该实验有助于揭开高温超导的秘密,理解这种磁性和超导性之间的转变,即量子临界点,有助于解释物质为何会具有超导性。(常丽君) 《科技日报》(2012-06-29 二版)

  • 【原创大赛】预氧化过程中PAN纤维径向结构的形成机制

    【原创大赛】预氧化过程中PAN纤维径向结构的形成机制

    在预氧化过程中,很多研究者认为环境中的氧很难进入到纤维内部是一种物理阻隔。但是从化学角度看,环化反应是氧化反应的前提条件,PAN纤维中生成的环化结构是发生氧化反应的基础,且从物理方面来看氧气分子是极小的,由此推测纤维表层阻碍氧进入芯部是一种化学阻隔,而非物理阻隔。选取两种不同的样品,为了使两种纤维样品的烯胺结构含量不同,将PAN原丝进行预处理,由于在惰性气氛热处理时PAN纤维中烯胺结构含量在从210℃开始迅速增加,1#和2#样品预处理条件分别为在惰性气氛下190℃和230℃热处理12h,再将预处理过的PAN纤维进行相同条件的空气气氛下的热处理,温度为230℃,时间为1h。将两种纤维样品进行核磁测试,可以得到图1。将得到的核磁谱图进行分峰处理,可得出,两种样品核磁谱图中特征峰的相对含量。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241759_567715_3043450_3.jpg图11#和2#样品的核磁谱图表1 1#和2#样品中155ppm和176ppm处特征峰相对含量 1# 2# W155/% 15.48 19.05 W176/% 3.91 4.87 表1中列出了1#和2#样品中代表烯胺结构的155ppm处特征峰的相对含量分别为15.48%和19.05%,代表氧化反应程度的176ppm出特征峰相对含量分别为3.91%和4.87%。1#样品中烯胺结构含量相对较低,相应的其氧化程度也较2#样品低。将两种样品进行包埋,利用切片机进行切片,并在光学显微镜下观察两种样品径向结构的差异。图2为两种样品的径向结构照片。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241759_567716_3043450_3.jpg图2 1#和2#样品的径向结构照片对比两个样品的径向结构照片,可以发现两种纤维都出现了芯部预氧化程度较低的情况,1#纤维的径向结构较均匀,2#纤维出现明显的“皮”“芯”分层现象。这与前面的推测相吻合,由此从化学结构角度提出预氧化过程中PAN纤维径向结构的形成机理。预氧化过程中,氰基发生反应形成亚胺结构的同时,亚胺结构向烯胺结构转变,且在氧气的促进作用下转变的越多;由于与其他结构相比烯胺结构容易被氧化,纤维表层的烯胺结构不断与氧发生反应,导致扩散到纤维内部的氧较少,从而形成内部预氧化程度较低的不均匀的径向结构。

  • ICP光谱仪中等离子体焰的形成过程及原理

    ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 电感耦合高频等离子(ICP)光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。 ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27~50 MHz,最大输出功率通常是2~4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1~2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。  ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。  焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达10000K,电子密度很高,由于黑体辐射、离子复合等产生很强的连续背景辐射。试样气溶胶通过这一区域时被预热、挥发溶剂和蒸发溶质,因此,这一区域又称为预热区。  内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。温度约为6000~8000K,是分析物原子化、激发、电离与辐射的主要区域。光谱分析就在该区域内进行,因此,该区域又称为测光区。  尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。

  • 【资料】土壤基础知识--土壤的形成

    土壤是怎么形成的 1,土壤的由来地球作为一个天体出现于宇宙,据说距今约45亿年.可是在那时候既无空气也无水分,当然也没有生物,所以也没有我们现在看到的土壤。利用太阳能形成自身的原始生物,出现在地球的时间,据推测距今约二十亿年,所以地球上土壤的发生,估计也在这个时期。 土壤与此种原始生物同时出现于地球上以后,就不停息地继续生存变化着,直至现在。相应地,虽然和地球几乎同时出现于宇宙的月球,距今已几十亿年了,但仍旧停留在原始的岩石状态,而没有我们在地球上所看到的土壤。这是由于月球上既无空气也无水分,因而也没有生物。因此,要形成土壤,生物是必要的不可缺少的。 也有一个时期认为土壤是岩石破碎后所生成的最终产物,土壤是静止不变的物质。然而,由 于参与了生物活动,土壤实际上继续不断地变化着,今后也将变化,它是活动的物质。特别对于耕作土壤,一方面由于作物的根引起化学变化,一方面由于施用有机物和化学肥料,而引起惊人的变化。当仔细观察土壤时,就可以发现土壤有千差万别的姿态。2,生物活动过程最初,地壳由大块坚硬的固态岩石组成。后来,这些岩石的外层缓慢地碎裂成越来越小的碎片。最终形成了石头、卵石和沙砾。它们置于空气中,经常处于适宜的湿气里,受到适宜的太阳能的作用,起初苔藓类生物滋生进来,苔藓能分解岩石,当苔藓死后,躯体变为粉末状,这种粉末中包含它们从岩石中吸收的矿物质,经过多年堆积,变成了最初的土壤。 于是不久,一些高等植物在上面依次发展起来。随着高等植物的生长,在地面以下,由于植物根的活动和腐植质逐渐增加,而形成了土壤,因而地下岩层逐渐变为土层。上述土壤形成的过程长的达几亿年,最快的也有几百万年的周期。3,地球运动过程从地球整体成土过程来看,土壤要经过不断地产生、消失和再产生的反复过程。地表部分的土壤不断地被剥蚀而搬运入海,但由于岩石从下方上升,所以陆地的容积自从陆地在地球上形成以来,古今变动不大。沧海良田,环境变迁。通过几百万年至几亿年的周期,土壤一面在地表显露出来,一面深入到地壳以内。我们通常遇到的冲积土和洪积土就是这种运动模式的产物。 冲积土和洪积土是已出现的土经过搬运和堆积而形成的。这些土中仍含有岩石和矿物质的碎片和细粒。为了形成土壤,必须在上面生长植物,植物的作用是不可缺少的 。 这就是说,土壤的形成是巨大地球运动中的一环,如果没有生物的作用, 就既不能形成土壤,也不能继续生存和变化。

  • 【质谱比较】无机质谱与有机质谱的离子体形成区别

    质谱分析的前提就是离子,而样品的离子体形成,就决定了仪器离子源的构造,本期主题:质谱的离子体形成讨论内容:1、ICPMS离子体的形成过程2、GCMS离子体的形成过程3、LCMS离子体的形成过程4、3种质谱离子体的形成有啥主要区别?还是过程有区别,最终目的一致?5、各种仪器对离子体形成都有哪些构造呢?筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 白点的检测、形成原因与预防

    白点的检测、形成原因与预防摘 要:论述了白点的检测方法、形成原因与预防办法,为白点的正确判定提供了依据,并为生产中预防白点产生提供参考。关键词:白点 低倍缺陷 宏观断口 光谱分析 超声波探伤白点是钢材的低倍缺陷。由于白点特征的多样性,单凭低倍检验还难以给出非常准确的定性判定。要给出准确的判定必须结合低倍酸浸、宏观断口、超声波探伤、化学成分、或微观金相等的综合分析。白点的存在严重破坏钢材或结构件的机械性能,破坏钢材的连续性,使钢材易于脆断,对钢材的危害性极大。白点是不允许存在的低倍缺陷,生产中我们要采取有力的措施加以预防。1 白点的检验低倍酸浸检验 按国标GB226-1991检验方法进行酸浸后,肉眼观察,白点的特征为距试样表面一定距离处或近中心部位分布的锯齿形细长裂纹,呈放射状的同心圆或不规则形状。宏观断口检验 在低倍检验的基础上,在裂纹处,进行纵向断口检验,断口上多呈圆形或椭圆形的银白色斑点。斑点内的组织为颗粒状,有的呈鸭嘴形裂口,白点的尺寸变化大,多分布在偏析区内。光谱分析 在前两项检验的基础上,于裂纹处制取光谱试样(直径5mm),进行光谱分析,在裂纹处激发,然后与标样对比分析,测定氢含量,一般钢材要求氢小于4ppm,但因白点是在由高温向低温冷却的过程中形成的,在这个过程中,氢已经得到一定程度的释放,此时可在低倍酸浸试样未出现裂纹处取一光谱试样进行对比分析,可以看出氢含量的差异。显微金相分析 在裂纹处取一金相样,按国标GB13289-1991制取试样,抛光后于显微镜下观察,白点具有的微观特点为穿晶分布,因其是在高温冷却过程中的低温下形成,热应力大,故形成锯齿形的特征,并且在裂纹附近无氧化脱碳的现象出现,也会发现裂纹的出现与钢中的夹杂物无任何直接关联。超声波探伤分析 白点的缺陷波形与其它缺陷的波形有较大的差异,白点的缺陷波形最大特征是尖锐、底波少。2 白点的形成原因白点是由于钢中氢含量过多和内应力共同作用造成的。钢从奥氏体→面心立方→体心立方冷却转变的过程中,体心立方较面心立方溶解更少量的氢,有实验证明:从1650℃冷却至409℃时,氢含量下降至原有的1/80,所以,氢在低温时能造成大的压力。材质的影响 相同的含氢量,不同材质却有着不同表现,有些材质对白点敏感,就很容易出现白点,而有些就不易出现。对白点敏感的合金钢有铬钢、铬钼钢、锰钢、锰钼钢、铬锰钢、铬锰钼钢、铬镍钼钢、铬镍钨钢等,所以,这些合金钢在冶炼过程中,更应注意减少氢的含量。分布区域 随钢温的降低,氢在钢中溶解度减小,当冷速加快时,柱状晶内的氢来不及扩散至大气中,聚积在钢的显微孔隙中并结合成分子态,更使其扩散困难,形成巨大的局部压力,达到钢的破断强度以上,从而使钢产生内部断裂,即我们说的白点。因而,白点多分布于柱状晶及以内区域。应力 由于树枝状组织的晶轴与晶枝间因成分不均匀性,不同的组织转变产物引起组织应力,变形应力与热应力也起一定作用,同时有人提出应力引起白点不能解释碳化物与莱氏体钢对白点的不敏感性。可见,白点不是应力单独作用的结果。温度 白点形成的温度区间为250℃~100℃之间,而氢扩散系数最大区间为650℃~300℃,故在300℃以下来不及扩散的氢就存在于钢中而引起应力,从而为形成白点创造了必要的条件。3 为防止白点的产生应采取的措施白点是由于钢中的氢从固溶体中析出而引起的内应力作用的结果,如能在锻轧后进行缓冷,可以避免白点的出现,但应肯定氢是形成白点的主要因素。防止白点的产生应采取的措施如下:1) 冶炼操作时做到高温氧化,沸腾良好,严格控制脱氧量,确保去氢和减少夹杂。2) 原材料必须干燥或烘烤红热,使用少锈优质的废钢,保证浇注系统干燥。3) 条件允许的情况下,采用炉外精炼或真空处理。4) 对热加工后的钢材进行缓冷,退火处理,有条件的进行锻后防白点等温退火处理。4 结语对白点的定性判定常常是检验工作者较为棘手的工作,但掌握了以上的检验基础,就可以正确地对白点进行判定,从而对钢材或工件的质量做出准确的评价。 本文摘自 一重技术 2005年第3期

  • 大气科学之大气污染==酸雨形成原因

    人类活动造成的酸雨成分中,以硫酸为最多,一般约占60%一65%,硝酸次之,约30%,盐酸约5%,此外还有有机酸约2%左右。硫酸主要是因为燃烧矿物燃料释放的二氧化硫,其中最大的排放源是发电厂、钢铁厂、冶炼厂等,还有家家户户的小煤炉。目前全世界人为释放的二氧化硫每年约1.6亿吨。硝酸是由氮氧化物形成的。氮氧化物气体主要是在高温燃烧的情况下产生的。例如,汽车发动机燃烧室中,以及矿物燃料在高温燃烧时都会放出氮氧化物。氯化氢的人工源除了使用氯化氢的工厂以外,焚烧垃圾(塑料制品中有大量的氯)和矿物燃料燃烧时也都会释放这种气体。人类活动造成的二氧化硫和氮氧化物与自然源相比数量上虽然大体相当(即各占约50%左右),但是因为自然界自我清洁能力有限。这好比一个人吃饭,肚量再大,让他多吃一倍的饭,也是会把肚子撑坏的。硫氧化物和氮氧化物在大气中形成酸雨的过程是十分复杂的大气化学和大气物理过程。如果形成酸性物质时没有云雨,则酸性物质会以重力沉降等形式逐渐降落在地面上,这叫做干性沉降,以区别于酸雨、酸雪等湿性沉降。干性沉降物在地面遇水时复合成酸。酸云和酸雾中的酸性,由于没有得到直径大得多的雨滴的稀释,因此它们的酸性要比酸雨强得多。高山区由于经常有云雾缭绕,因此酸雨区高山上森林受害最重,常首先成片死亡。

  • 企业不知道的隐形成本

    企业在发展过程中总会遇到瓶颈,觉得运营成本高涨,却又难以找到成本的所在,我们称之为“隐形成本”。这如同生命体暗藏的疾病,久治不愈,挥之不去,让经营者颇为头疼。如果能找到这些“隐形成本”,无疑如同找到“病原体”,那么下一步的“对症下药”一定就是再次腾飞之时了。如果能总结出企业常常存在的多种“隐形成本”,企业可以由此而进行比照自检。十二种“隐形成本”总结如下:一、会议成本会议是企业解决问题和发布指令的集体活动,但是也是一个高成本的经营活动。因为这个活动往往是很多领导者参与的集体的活动,每过一分钟,意味着与会人员总数的分钟数,而很多企业的管理人员并未掌握开会的技巧,都普遍存在着“会前无准备,会中无主题,会后无执行,与会无必要,时间无控制,发言无边际”的六无现象。二、采购成本曾经有一家企业,在做一个新项目时,项目组每天的运营成本为8万元,可是其在产品上市前夕,采购部门为了采购10万余元的包装,竟然耗费了一周时间,理由是要找价格低廉的供应商以节约采购成本。整个营销团队因此多等待一周时间无法和客户签约。而这种现象其实在很多企业里均存在。一味的追求降低采购的直接成本而忽略了同时并存的“隐形成本”。当然,降低采购直接成本与本文并无冲突,在这里,我们要说的是企业的采购部门,要站在整体经营的角度综合权衡的各项指标,才能真正控制采购的成本支出。三、沟通成本在大多数的企业,你会发现,在与同事之间的沟通过程中,会出现严重失真的现象,或词不达意,或答非所问,或百人百解……这种的现象,说小了,让很多工序成为无效工序,或失去很多重要机会。说大了,有可能因此给企业带来隐患。四、加班成本很多老板总认为,员工在下班后“废寝忘食”的“加班”是一种敬业现象。殊不知,这可能隐含着很高的成本。理由有三:第一,加班的原因并不一定是因为工作任务太重,而是员工的工作效率低下造成的,加班意味着低效率。第二,加班耗费更多的员工精力和体力,严重透支员工的健康,长期下去,会让一些重要员工不能长期发挥其效能,并且有为公司带来负担的隐患,比如有的机械操作员工因为长时间加班而导致疲累,造成事故,而企业要为此付出沉重代价。第三,加班员工并不一定“[/fon

  • 耀变体加热对解析宇宙结构的形成具重要意义

    中国科技网讯 据物理学家组织网5月15日报道,来自德、加、美的联合科研团队发现,宇宙中的漫射气体能够从耀变体处吸收明亮的高能伽马射线放射,并为其强劲加热。这一令人惊讶的结果对于解析宇宙结构的形成具有重要意义。相关研究报告发表在近日出版的《天体物理学杂志》等刊物上。 耀变体是一种密度极高的高变能量源,其被假定为是处于寄主星系中央的超大质量黑洞。虽然可见光和无线电波等辐射穿越宇宙毫无问题,但高能伽马射线却不一样。这种特殊的辐射能够与星系放射出的可见光相互作用,使其变成基本粒子。最初,这些基本粒子会以近光速的速度运动,但随着其因为周围的漫射气体而减速,它们的能量将转化为热量,如同其他的制动过程一样,因此粒子周围的气体能被有效加热。处于平均密度的气体温度将提升10倍,而较稀疏区域的气体温度则可比预想的提高100多倍。 德国海德堡理论研究所(HITS)的科研人员表示,耀变体改写了宇宙的热演化史。在类星体的光谱中,存在着各种各样的“森林线”,它们源自宇宙中发生的密度波动,而“森林”则源于宇宙早期阶段中性氢对紫外线的吸收。额外的加热过程可电离中性氢,同时也意味着对类星体放射的紫外线吸收减少。如果气体变热,“森林线”也会随之拓展,这种效果代表了一个衡量早期宇宙温度的绝佳机会。 科研人员检查了新假设的加热过程,并利用超级计算机详细模拟了宇宙的结构发展。在宇宙进化中,最密集的波动将坍塌形成星系和星系团,漫射的气体则因为过热而无法坍塌,从而促使矮星系的形成趋缓甚至完全被抑制。这也是解决另一星系形成理论难题的关键:为什么我们在银河系附近以及气体密度较低的区域仅能观测到屈指可数的矮星系。 研究负责人、HITS的伏尔克·斯普林吉教授解释说,耀变体的加热过程十分令人兴奋,因为这种单独的效应能同时解决数个有关宇宙结构形成的谜题。下一步,科研团队还计划进一步改进这一模拟模型,以便更深入地了解耀变体的特性及其对当前宇宙的影响和意义。(张巍巍) 《科技日报》(2012-05-17 二版)

  • 【分享】土壤形成因素

    土壤形成因素 (1)土壤形成的母质因素  风化作用使岩石破碎,理化性质改变,形成结构疏松的风化壳,其上部可称为土壤母质。如果风化壳保留在原地,形成残积物,便称为残积母质;如果在重力、流水、风力、冰川等作用下风化物质被迁移形成崩积物、冲积物、海积物、湖积物、冰碛物和风积物等,则称为运积母质。成土母质是土壤形成的物质基础和植物矿质养分元素(氮除外)的最初来源。母质代表土壤的初始状态,它在气候与生物的作用下,经过上千年的时间,才逐渐转变成可生长植物的土壤。母质对土壤的物理性状和化学组成均产生重要的作用,这种作用在土壤形成的初期阶段最为显著。随着成土过程进行得愈久,母质与土壤间性质的差别也愈大,尽管如此,土壤中总会保存有母质的某些特征。  首先,成土母质的类型与土壤质地关系密切。不同造岩矿物的抗风化能力差别显著,其由大到小的顺序大致为:石英→白云母→钾长石→黑云母→钠长石→角闪石→辉石→钙长石→橄榄石。因此,发育在基性岩母质上的土壤质地一般较细,含粉砂和粘粒较多,含砂粒较少;发育在石英含量较高的酸性岩母质上的土壤质地一般较粗,即含砂粒较多而含粉砂和粘粒较少。此外,发育在残积物和坡积物上的土壤含石块较多,而在洪积物和冲积物上发育的土壤具有明显的质地分层特征。  其次,土壤的矿物组成和化学组成深受成土母质的影响。不同岩石的矿物组成有明显的差别,使其上发育的土壤的矿物组成也就不同。发育在基性岩母质上的土壤,含角闪石、辉石、黑云母等深色矿物较多;发育在酸性岩母质上的土壤,含石英、正长石和白云母等浅色矿物较多;其他如冰碛物和黄土母质上发育的土壤,含水云母和绿泥石等粘土矿物较多,河流冲积物上发育的土壤亦富含水云母,湖积物上发育的土壤中多蒙脱石和水云母等粘土矿物。从化学组成方面看,基性岩母质上的土壤一般铁、锰、镁、钙含量高于酸性岩母质上的土壤,而硅、钠、钾含量则低于酸性岩母质上的土壤,石灰岩母质上的土壤,钙的含量最高。  (2)土壤形成的气候因素  气候对于土壤形成的影响,表现为直接影响和间接影响两个方面。直接影响指通过土壤与大气之间经常进行的水分和热量交换,对土壤水、热状况和土壤中物理、化学过程的性质与强度的影响。通常温度每增加10℃,化学反应速度平均增加1~2倍;温度从0℃增加到50℃,化合物的解离度增加7倍。在寒冷的气候条件下,一年中土壤冻结达几个月之久,微生物分解作用非常缓慢,使有机质积累起来;而在常年温暖湿润的气候条件下,微生物活动旺盛,全年都能分解有机质,使有机质含量趋于减少。  气候还可以通过影响岩石风化过程以及植被类型等间接地影响土壤的形成和发育。一个显著的例子是,从干燥的荒漠地带或低温的苔原地带到高温多雨的热带雨林地带,随着温度、降水、蒸发以及不同植被生产力的变化,有机残体归还逐渐增多,化学与生物风化逐渐增强,风化壳逐渐加厚 。  (3)土壤形成的生物因素  生物是土壤有机物质的来源和土壤形成过程中最活跃的因素。土壤的本质特征——肥力的产生与生物的作用是密切相关的。在生物作用下从岩石到土壤的形成过程见图9-7。  岩石表面在适宜的日照和湿度条件下滋生出苔薛类生物,它们依靠雨水中溶解的微量岩石矿物质得以生长,同时产生大量分泌物对岩石进行化学、生物风化;随着苔藓类的大量繁殖,生物与岩石之间的相互作用日益加强,岩石表面慢慢地形成了土壤;此后,一些高等植物在年幼的土壤上逐渐发展起来,形成土体的明显分化。  在生物因素中,植物起着最为重要的作用。绿色植物有选择地吸收母质、水体和大气中的养分元素,并通过光合作用制造有机质,然后以枯枝落叶和残体的形式将有机养分归还给地表。不同植被类型的养分归还量与归还形式的差异是导致土壤有机质含量高低的根本原因。例如,森林土壤的有机质含量一般低于草地,这是因为草类根系茂密且集中在近地表的土壤中,向下则根系的集中程度递减,从而为土壤表层提供了大量的有机质,而树木的根系分布很深,直接提供给土壤表层的有机质不多,主要是以落叶的形式将有机质归还到地表。动物除以排泄物、分泌物和残体的形式为土壤提供有机质,并通过啃食和搬运促进有机残体的转化外,有些动物如蚯蚓、白蚁还可通过对土体的搅动,改变土壤结构、孔隙度和土层排列等。微生物在成土过程中的主要功能是有机残体的分解、转化和腐殖质的合成。  (4)土壤形成的地形因素  地形对土壤形成的影响主要是通过引起物质、能量的再分配而间接地作用于土壤的。在山区,由于温度。降水和湿度随着地势升高的垂直变化,形成不同的气候和植被带,导致土壤的组成成分和理化性质均发生显著的垂直地带分化。对美国西南部山区土壤特性的考察发现,土壤有机质含量、总孔隙度和持水量均随海拔高度的升高而增加,而pH值随海拔高度的升高而降低[1]。此外,坡度和坡向也可改变水、热条件和植被状况,从而影响土壤的发育。在陡峭的山坡上,由于重力作用和地表径流的侵蚀力往往加速疏松地表物质的迁移,所以很难发育成深厚的土壤;而在平坦的地形部位,地表疏松物质的侵蚀速率较慢,使成土母质得以在较稳定的气候、生物条件下逐渐发育成深厚的土壤。阳坡由于接受太阳辐射能多于阴坡,温度状况比阴坡好,但水分状况比阴坡差,植被的覆盖度一般是阳坡低于阴坡,从而导致土壤中物理、化学和生物过程的差异。  (5)土壤形成的时间因素  在上述各种成土因素中,母质和地形是比较稳定的影响因素,气候和生物则是比较活跃的影响因素,它们在土壤形成中的作用随着时间的演变而不断变化。因此,土壤是一个经历着不断变化的自然实体,并且它的形成过程是相当缓慢的。在酷热、严寒、干旱和洪涝等极端环境中,以及坚硬岩石上形成的残积母质上,可能需要数千年的时间才能形成土壤发生层,例如在沙丘土中,特别是在林下,典型灰壤的发育需要1000~1500年。但在变化比较缓和的环境条件中,以及利于成土过程进行的疏松成土母质上,土壤剖面的发育要快得多。  土壤发育时间的长短称为土壤年龄。从土壤开始形成时起直到目前为止的年数称为绝对年龄。例如,北半球现存的土壤大多是在第四纪冰川退却后形成和发育的。高纬地区冰碛物上的土壤绝对年龄一般不超过一万年,低纬未受冰川收用地区的土壤绝对年龄可能达到数十万年至百万年,其起源可追溯到第三纪。  由土壤的发育阶段和发育程度所决定的土壤年龄称为相对年龄。在适宜的条件下,成土母质首先在生物的作用下进入幼年土壤发育阶段,这一阶段的特点是土体很薄,有机质在表土积累,化学-生物风化作用与淋溶作用很弱,剖面分化为A层和C层,土壤的性质在很大程度上还保留着母质的特征。随着B层的形成和发育,土壤进入成熟阶段,这一阶段有机质积累旺盛,易风化的矿物质强烈分解,在淀积层中粘粒大量积聚,土壤肥力和自然生产力均达到最高水平。经过相当长的时间以后,成熟土壤出现强烈的剖面分化,出现E层,并使A层和B层的特征发生显著差异,有机质累积过程减弱,矿物质分解进入最后阶段,只有抗风化最强的矿物残留在土体中,淀积层中粘粒积聚形成粘盘,土壤进入老年阶段,这一阶段土壤的肥力和自然生产力都明显降低。  (6)土壤形成的人类因素  在五大自然成土因素之外,人类生产活动对土壤形成的影响亦不容忽视,主要表现在通过改变成土因素作用于土壤的形成与演化。其中以改变地表生物状况的影响最为突出,典型例子是农业生产活动,它以稻、麦、玉米、大豆等一年生草本农作物代替天然植被,这种人工栽培的植物群落结构单一,必须在大量额外的物质、能量输入和人类精心的护理下才能获得高产。因此,人类通过耕耘改变土壤的结构、保水性、通气性;通过灌溉改变土壤的水分、温度状况;通过农作物的收获将本应归还土壤的部分有机质剥夺,改变土壤的养分循环状况;再通过施用化肥和有机肥补充养分的损失,从而改变土壤的营养元素组成、数量和微生物活动等。最终将自然土壤改造成为各种耕作土壤。人类活动对土壤的积极影响是培育出一些肥沃、高产的耕作土壤,如水稻土等;同时由于违反自然成土过程的规律,人类活动也造成了土壤退化如肥力下降、水土流失、盐渍化、沼泽化、荒漠化和土壤污染等消极影响。  成土因素学说的基本观点可概括为:  ①土壤是一种独立的自然体,它是在各种成土因素非常复杂的相互作用下形成的。  ②对于土壤的形成来说,各种成土因素具有同等重要性和相互不可替代性。其中生物起着主导作用。土壤是一定时期内,在一定的气候和地形条件下,活有机体作用于成土母质而形成的。

  • 【分享】雷电是如何形成的?

    【分享】雷电是如何形成的?

    [color=#DC143C]昨天打雷下雨,思考了一下雷电的形成原因。到网上找了点资料和大家分享。[/color]雷电是如何形成的?地球磁场言是偶极型的,近似于把一个磁铁棒放到地球中心,使它的N极大体上对着南极而产生的磁场形状。当然,地球中心并没有磁铁棒,而是通过“等离子体外核”自转产生了地球磁场的(见图1)。这个磁场只跟地球公转不与地球自转。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904171737_144911_1644912_3.jpg[/img]我们知道螺线管通直流电能形成一个磁场偶极型磁场(见图2)。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904171738_144913_1644912_3.jpg[/img]地球的磁场与螺线管通直流电能形成一个磁场偶极型磁场相似。 大家都知道“电生磁,磁生电”。地球自转,当然等离子体外核也要自转。等离子体有许多自由电子。外核的自转也等于自由电子向一个方向旋转(相当于电流),那么在宇宙空间形成磁场是理所当然的。地球自转而地球磁场不自转也证明了这一点。地壳和大气高度不同、自转速度不同、,切割地球磁场磁力线的密度不同所形成的电压等级亦不同,相互放电不可避免。夏季,阳光直射使地面水蒸汽蒸发较多导致大气电阻率下降。很容易引起云层向地面放电。雷电是一种自然放电现象雷电是由雷云(带电的云层)对地面建筑物及大地的自然放电引起的,它会对建筑物或设备产生严重破坏。因此,对雷电的形成过程及其放电条件应有所了解,从而采取适当的措施,保护建筑物不受雷击。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904171739_144914_1644912_3.jpg[/img]

  • 大气奇景及其形成==绚 丽 华 盖

    天空中有一层透光薄云,云中的水滴大小均匀,若是由冰晶组成的云则要求冰晶尺寸均匀。月光或阳光透射云层过程中,受到均匀云滴(水滴或冰晶)的衍射,结果会在月亮或太阳周围紧贴月盘或日盘形成内紫外红的彩环,称为华。

  • 【转帖】揭示大脑听觉形成机制

    揭示大脑听觉形成机制 众所周知,人类能够获得听力是基于选择性地听取一定频率范围的声音。大脑的“听力中心”听觉皮层中的神经元通常聚集在一起对特定频率的声音产生反应。然而科学家们对于复杂的神经元网络准确地对声音做出反应的具体机制仍然不清楚。现在由冷泉港实验室神经科学计划的负责人Anthony Zador教授领导的科研小组朝揭示这一谜底迈进了一步。科学家们试图通过研究听觉皮层中神经元之间的功能联系了解听力形成的机制。最新的论文发表在《自然神经科学》(Nature Neuroscience )网络版上。“我们希望通过这种方式了解听觉皮层产生应答反应的机制,”Zador说。听觉皮层的神经元组织方式不同于大脑视皮层和感觉皮层。在视觉形成过程中,视网膜上的感光受体可直接将信号传递到大脑的视皮质形成二维“视网膜定位”图像。然而在听觉系统,耳蜗内的听觉受体的组成方式则是一维的。靠近耳蜗外缘的受体可识别低频率的声音,而靠近耳蜗内的受体则对高频率的声音比较敏感。耳蜗中这种由低到高不同部分与不同声音频率的一种规则的对应关系称之为“频率拓扑”。耳蜗的频率拓扑特征使得神经元将高低频率的声音以梯度形式传递至听觉皮层形成一维信号。“人类视觉和感觉器官获得是二维信号,而听觉皮层获取的声音则是一维信号。这表明两种皮层定位机制存在功能上的差异。然而现在还没有人能够理解产生差异的具体机制。”Zador说。

  • 液相色谱系统中的气泡都是如何形成的?

    液相色谱系统中如果有气泡真是影响很大,最直接的就是压力不稳,影响到检测的正常进行一般情况在开机的时候都会做一下准备工作,将系统中的气泡排干净,一切准备就绪,气泡彻底排掉,压力也稳定了可是在检测过程中为什么又会出现气泡呢?这个气泡是怎么来的呢?到底是如何形成的呢?可能形成气泡的原因有很多吧?大家都来说一下具体的原因吧也好让我这样的新手能够提前做一些预防措施,谢谢大家!

  • 大气污染==(挽救臭氧层)南极臭氧洞的形成

    大气污染==(挽救臭氧层)南极臭氧洞的形成

    在平流层有四个相互作用的过程形成臭氧洞,即臭氧光化学变化过程、气温变化过程、风输送物质过程和臭氧分解化学催化反应过程。   在平流层中一个氧分子受到太阳强紫外辐射变成两个氧原子:O2+hv→O+O,氧原子与邻近的氧分子反应生成臭氧:O+O2→O3,臭氧受强烈紫外辐射分解成氧分子和一个氧原子或与活泼的氧原子作用形成两个氧分子:O3+hv→O2+O或者O3+O→O2+O2。上述的生成与分解过程维持着微妙又脆弱的平衡。http://ng1.17img.cn/bbsfiles/images/2011/07/201107172056_305372_1978540_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制