当前位置: 仪器信息网 > 行业主题 > >

新型制备方法

仪器信息网新型制备方法专题为您整合新型制备方法相关的最新文章,在新型制备方法专题,您不仅可以免费浏览新型制备方法的资讯, 同时您还可以浏览新型制备方法的相关资料、解决方案,参与社区新型制备方法话题讨论。

新型制备方法相关的资讯

  • 新型制备色谱技术搭载石墨烯研究 更具未来市场
    如今,气相制备色谱主要用于石油化工产品和挥发性天然产物的色谱纯样品制备领域发挥着重要作用。在化学化工医药等广泛采用的层析法以及薄层色谱就是最为典型的制备色谱,换言之,将分析色谱的进样量增大,同时得出大量的所需物质(馏分)的过程就是制备色谱。 石墨烯是石墨中剥离出的单层碳原子厚度的一种结构。据刘剑洪教授介绍,目前市面上比较主流的石墨烯制备方法主要有两种。其一是化学气相沉淀CVD法,主要利用的是化学反应冷却沉积的方式来沉积石墨烯。由于化学反应可控性不强,沉积所形成的石墨微片层数不稳定,其制备的石墨微片很难达到石墨烯的结构要求。第二种方法是氧化还原法,强氧化剂使石墨多层结构中,层与层之间的链接分开,从而得到石墨烯。这种方法市场认可,但是不能准确分离石墨层,并且化学反应会破坏石墨烯结构,产出的石墨微片很难达到市场化要求。 近年来,随着色谱技术的进步和发展,一种全新的制备色谱技术——高速逆流色谱(HSCCC)得到更广泛地应用。由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段。 相对于传统的固—液柱色谱技术,高速逆流色谱具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。HSCCC技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域,特别在天然产物行业中已被认为是一种有效的新型分离技术;适合于中小分子类物质的分离纯化。 我国是继美国、日本之后最早开展逆流色谱应用的国家,俄罗斯、法国、英国、瑞士等国也都开展了此项研究。美国FDA及世界卫生组织(WHO)都引用此项技术作为抗生素成分的分离检定,90年代以来,高速逆流色谱被广泛地应用于天然药物成分的分离制备和分析检定中。 同时工业4.0时代到来,科学技术发展更加变得广泛,新型制备色谱技术将因工业制造业更加精细化发展变得更加具有市场前景。
  • 新型低毒的近红外Ag2S量子点制备成功
    试想一下在医院进行常规查体时的情景:首先,喝下一种含有被称为“量子点”的纳米颗粒液体,接着医生会让你慢慢走过一个通道,这时激光束对全身进行扫描。在通道的另一端,计算机自动生成三维图像。根据这些图像,医生会告诉你在你的体内有无肿瘤细胞以及肿瘤细胞的精确定位。这些好像是只有在《特种部队》或《阿凡达》这样的科幻电影中才能见到,但是请不要吃惊,这或许就是你在不久的将来可以享受的“量子点”荧光成像检测技术。   到目前为止,活体荧光成像技术主要有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。相比较而言,量子点作为一种新型的纳米荧光探针,具有激发光谱宽、荧光发射光谱窄、荧光光谱可调、量子产率高、光化学稳定性高和不易分解等诸多优点。   由于不同波长的组织穿透力不同,血红蛋白、脂肪和水对近红外波长的吸收保持在一个比较低的水平。因此,对活体成像而言,选择激发和发射光谱位于近红外光区的荧光标记方法,将有利于活体的光学成像,特别是深层组织的荧光成像(Nature Method, 2005, 2: 12 Science, 2009, 324: 804)。因此,低生物毒性的近红外量子点对于活体荧光成像具有非常重要的意义。   最近,中科院苏州纳米技术与纳米仿生研究所王强斌课题组在国际上首次通过以二乙基二硫代氨基甲酸银(Ag(DDTC))为原料制备出了尺寸均匀的、大小为10 nm左右的单分散性Ag2S近红外量子点。相比较目前的含有铅、镉或汞等元素的近红外量子点,Ag2S量子点具有毒性较低的优点。光谱研究结果表明该Ag2S量子点在785 nm的激发条件下,在1058 nm附近出现一个半峰宽仅为21 nm左右的荧光光谱。鉴于该Ag2S量子点的发现对于活体深层组织荧光成像技术具有重要的意义,本研究成果近日发表在著名杂志Journal of the American Chemical Society。   该项研究工作得到了国家自然基金, 中国科学院-国家外国专家局创新团队国际合作伙伴计划以及苏州科技局的支持。
  • 岛津用于合成化学新型HPLC制备系统问世
    最适于功能性分子材料、手性化合物分离精制 岛津针对有机功能性分子材料及手性化合物的合成化学用途,推出了新型HPLC(高效液相色谱)制备系统及其专用软件。通过使用HPLC进行制备精制,可以使在有机合成领域广泛应用的开放色谱柱的制备精制流程更加效率化。此外,通过反复把样品导入分离色谱柱,提高了循环制备性能,从而实现了在大幅度改善分离效果的同时进行制备精制。现在,岛津制备液相产品线已同时拥有LC-6AD循环半制备系统和LC-20AP循环大量制备系统,可广泛对应从半制备到试验室规模的大量制备。 此外,岛津还推出了循环制备专用软件Recycle-Assis。该软件是和京都大学工学研究科的有机合成化学研究室合作,听取了从合成研究的研究者的意见之后,按照用户需求开发的。使用该软件,无需进行复杂设定即可轻松完成循环制备。本制备系统,可应用于功能性聚合物、有机电子等有机材料的合成化合物及手性化合物的高分离精制。<开发背景> 在以功能性分子、有机电子为首的新有机材料的开发和实际应用进程中,由于应用开放色谱柱的传统制备精制不适于合成过程中的中间流程及最终流程的分离精制自动化,因此研究者越来越重视应用HPLC进行制备精制。此外,反复导入样品的循环制备方法,既能更加有效的分离宝贵的合成样品,又能削减分离色谱柱和流动相成本,因此,适合用于大学合成研究室研究用途的分离精制。在循环制备备受关注的同时,为方便HPLC使用经验并不丰富的合成研究者,还推出了可实现简单操作的软件系统。本系统,可对应分析规模的研讨、普通的制备精制到循环制备精制。同时,还通过专用的循环制备精制软件为用户提供直观的、操作简便的循环制备操作环境。本产品特长如下:(1) 可对应从分析、普通制备直至循环制备的整个制备精制流程 LC-6AD循环半制备系统及LC-20AP循环大量制备系统,可对应从分析规模条件研讨、到样品的制备精制、循环制备精制的整个流程。利用自动进样系统自动注入样品和馏分收集器丰富多彩的分割参数,可使制备精制流程更加有效,并且还能把宝贵的合成材料的目标化合物准确的分割出来。此外,小型的系统设计,在循环制备时既可有效控制色谱柱扩散、提高分离效果,又可有效节省装置设置场所。(2) 通过循环分离同时实现高分离精制和成本降低 作为提高制备精制分离效果的手段之一,常会把多根色谱柱串联以达到延长色谱柱长度的目的。但制备用色谱柱成本非常高,并且色谱柱通常都有耐压限制,所以,可串联色谱柱的根数有限。而循环制备可利用一根色谱柱反复多次的导入样品。这样既能达成高分离的效果,又能控制色谱柱的成本。并且还无需担心耐压的问题。此外,在制备分离中,由于流动相能循环利用,因此,还可降低溶剂的使用量。通过循环制备,可对构造类似体、合成不纯物、手性异性体等用普通方法很难分离的化合物进行分离精制。(3) 通过专用软件Recycle-Assist可提供简单直观的循环制备操作环境 专用软件Recycle-Assis是和京都大学工学研究科的有机合成化学研究室合作,采纳了实际从事合成研究的研究者的意见之后,以提供更加简单的循环制备操作环境为理念而开发的软件。通过视觉性的用户操作界面,可实现简单直观的循环制备操作。另外,还能通过简单操作追踪从循环制备条件研讨到精制的整个工作流程。无需学习复杂操作,即使是HPLC的使用经验并不丰富的合成化学者也能轻松进行循环制备。既可进行边看谱图边设定循环时机的手动循环制备,又可进行预先设定条件的自动循环制备。并且,手动和自动之间还可以轻松转换。 LC-6AD循环半制备系统及LC-20AP循环大量制备系统,可应用于以功能性分子、有机电子等广泛的有机合成化合物的分离精制。有望广泛应用于大学的化学系研究室及化工企业。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 应用 | 新型亲水抗菌硅橡胶口腔印模材料的制备及性能研究
    研究背景硅橡胶口腔印模材料已成为口腔固定修复临床中首选的印模材料。但硅橡胶为主链由硅氧饱和键构成的聚硅氧烷化合物,为强疏水性物质,影响印模材料对口腔软硬组织的细节再现性。聚醚改性硅油是一类性能优良的非离子型表面活性剂,在其分子结构中,既存在亲水性的聚醚链段,又存在可以与有机硅材料实现良好共混的聚二甲基硅氧烷链段。本文结合使用了亲水性聚醚改性硅油及新型纳米抗菌无机填料,制备出兼具亲水及抗菌性能的新型多功能硅橡胶口腔印模材料,探讨相关性能。材料与方法硅橡胶口腔印模材料的基本配方具体见表1。表 1 硅橡胶口腔印模材料基本配方润湿性测试:按1∶1 比例称取硅橡胶基质组分与催化组分,将二者混合均匀后,置于涂有脱模剂的聚四氟乙烯模具中(90 mm×90 mm×2 mm),室温下加压聚合,待硅橡胶固化后脱模。选择表面平整光滑、无任何缺陷的部分裁切为正方形试样(30 mm×30 mm×2 mm),每种材料制备3个试样。对照组按照厂家操作要求,同样制备上述试样。用75%乙醇溶液将试样表面清洗干净,备用。测试仪器为KRÜ SS DSA100S接触角测量仪。将待测硅橡胶试样平整放于水平样品台上,采用座滴法测量各试样的静态接触角。液滴体积设为2.0 μL,液滴出水速度设为2.67 μL/s。设液滴释放至试样表面与其接触的时刻为t=0,记录此时接触角大小,并在t=60 s、t=120 s 时刻记录接触角大小,以观察静态接触角随时间的变化。为防止偶然误差,在每个试样的不同位置测量3次取均值。DSA100接触角测试仪结果与讨论润湿性测试结果:各组静态接触角测试结果见图1。在相同时间节点下, 各组接触角之间差异无统计学意义(P0.05);而在不同时间节点,同一组别的接触角随时间延长逐渐减小,均在0~ 60 s内有明显下降(P 0.05)。图 3 各组静态接触角测试结果Fig 3 Results of contact angle test in each group硅橡胶属于疏水性印模材料,其表面润湿性较差,这主要由于其网状结构骨架为饱和硅氧键,且支链为非极性的烷基或烷氧基。这不仅会在取模时影响印模材料对预备体、牙龈等软硬组织的细节再现性,还会使灌注的石膏模型上产生孔隙、气泡,影响最终修复体的精确度与准确性。为了克服这一问题,通常采用表面改性或本体改性的方法对硅橡胶进行润湿性改善。表面改性主要包括等离子体表面处理、表面接枝改性及表面涂层改性等,但由于其需要特殊设备及额外工序处理,并且不能解决在取模时印模材料与牙体组织之间的润湿问题,因此本体改性的方式更加受到广泛关注。本体改性即通过共混法向材料中加入某些亲水物质,使材料本身具有一定的亲水性。聚醚改性硅油是一类性能优良的非离 子型表面活性剂,在其分子结构中,既存在亲水性的聚醚链段,又存在可以与有机硅材料实现良好共混的聚二甲基硅氧烷链段。经过实验研究,确定加入6%的聚醚改性硅油可在不影响硅橡胶力学性能的同时,获得良好的亲水性,而且润湿性测试结果也与本研究使用的商品化亲水硅橡胶无显著差异。本研究还发现,在不同时间节点,各组的接触角随时间延长而逐渐减小,均在0~60 s内有明显下降 (P0.05),这主要是由于硅橡胶材料中的亲水性表面活性成分逐渐析出所致。本文有删减,详细信息请参考原文:张雪娇,李健新,蒋凤,等.新型亲水抗菌硅橡胶口腔印模材料的制备及性能研究[J].华西口腔医学杂志,2022,40(05):541-548.
  • 岛津大力赞助上海CPSA 推介新型蛋白质样品制备平台
    日前,在上海淳大万丽酒店隆重举行的为期3天的第三届化学和药物结构分析上海研讨会(CPSA Shanghai 2012) 以&ldquo 从基准到决策-从基础到应用&rdquo 为主题,旨在为东西方的药物研发领域的科学家们建立一个交流、互动的平台。来自北美、欧洲和亚太地区生物制药领域的著名学者,全球知名制药厂家和CRO企业代表共计300余人与会。 CPSA是关于药物开发和分析的国际学术会议,科学家们和制药工业企业组织共聚一堂,分享药物领域的新发明、新应用以及实践经验,探讨对药物研发新技术、新方向、新政策的看法,以实现药物研发前沿科学与制药工业之间对接。岛津公司极为重视对中国制药工业的发展和加强中国与世界的联系方面起到积极推动作用的CPSA,大力赞助了本次年会。在会议期间,岛津资深专家Robert E. Buco 为本次年会带来了一场精彩的岛津Perfinity Workstation的报告会。 Robert E. Buco 介绍Perfinity Workstation Perfinity Workstation是岛津公司和Perfinity公司联合推出新型蛋白质样品制备自动化平台。 Perfinity Workstation 在大批量分析测试中关键是分析前期的样品分离,Perfinity公司将其自动化控制和色谱柱工艺技术集成到日本岛津仪器。该综合而成的Perfinity分析平台中,多层色谱柱设备可实现蛋白质的自动化分离和大批量分析样品的制备,为液相色谱-质谱分析提供更高的效率。Perfinity公司的五个最优色谱柱与岛津公司的硬件配件完整联合,大大提升了Perfinity分析平台的优异性能。其中,每一个色谱柱执行大批量样品制备过程的一小部分,包括亲和选择,缓冲交换,分离,脱盐淡化和反相分离。这些步骤的自动化集成,使用户能够在短短的10分钟内实现由血清样品分离得到液相色谱-质谱分析所需的肽。这个自动化解决方案大大减少了实验室的分析设备,并可进行大批量的蛋白质样品测试分析。 该新型的Perfinity分析平台把对抗体的选择性和色谱的分辨能力完美结合。在线完成缓冲交换和脱盐淡化。减少样品的处理时间,使得用户可以快速完成各种条件下的分析测试。Perfinity分析平台的样品分离方法的最大优点是用户无需固定抗体。这样,科研人员可以直接把抗体添加到样品中。由此可消除抗体固定操作步骤,进一步减少用户分析的操作失误的可能,使得Perfinity工作平台下的液相色谱-质谱分析更加准确、可靠。 该平台应用领域广泛,包括化学分析,蛋白质纯化,药物检测和生物应用开发。例如,在化学分析领域,平台所构建的方法的核心步骤,可很大程度上减少所需的最优化草案。 Robert E. Buco 的精彩报告,引起与会专家、用户的高度关注,对Perfinity Workstation新型蛋白质样品制备自动化平台显示出极大兴趣和期待。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 岛津推出新型半制备系统送液单元LC-20AR
    近日,岛津公司的新型半制备系统送液单元LC-20AR在中国市场上市。 LC-20AR流速范围为0.001-20mL/min,是专为内径为10-20mm的半制备规格色谱柱开发的半制备系统送液单元,同时,其也可用于传统的3-8mm内径色谱柱。LC-20AR送液单元的主要部件采用与当前最先进的Prominence/Nexera系列相同的控制系统,体型紧凑,同时又保持了传统LC-6AD半制备送液单元的输送机制 — 这是目前使用最为广泛、也最具竞争力的送液机制。此外,该送液单元采用高精确度的电机控制算法,降低了脉动;新增的VP功能便于维护和验证,操作也更为简单。采用闭合回路再循环分离方法,在同一根色谱柱上(而非更长的柱)重复循环分离样品,从而提高分离度,如涉及多种流动相限制的体积排阻色谱。此外,LC-20AR可安装特有的循环制备组件,以减少柱外色谱扩散从而提高循环效率。本产品兼容Recycle-Assist循环制备辅助软件,操作简单,即使经验欠缺的用户也可轻松的使用循环制备功能。 半制备系统配置例(送液单元为LC-20AR ) LC-20AR半制备系统送液单元的特征 1.送液流速范围大,涵盖半微量分析到半制备送液流速范围大,可在0.001-20.00mL/min 的范围内选择。由于采用了独特的并联双柱塞循环泵驱动方式,即使是低流速时也能确保较低脉动和稳定的流量。 2. 循环制备功能通过安装一套选配的循环组件和循环阀,可实现闭合环路循环制备分离。经过优化设计的泵头容积极小,可减少柱外扩散效应并提高循环效率。 3.设计连续性、用户友好度提升Purge支持流动相的快速排出,VP 功能可协助验证并使维护方便简单,设备使用起来更加方便。专为Prominence 系列重新设计,高度比之前的LC-6AD低20mm,与Prominence系列控制面板相同,在系统中配置时保持一致的外观。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 新品发布 I 新型NGS文库制备试剂盒让科研更高效
    珀金埃尔默公司日前发布三款新型文库制备试剂盒(仅供研究使用(RUO)):NEXTFLEX® Small RNA-Seq Kit v4、NEXTFLEX® Rapid XP V2 DNA-Seq Kit、PG-Seq™ Rapid Kit v2。NEXTFLEX Small RNA-Seq kit V4建库试剂盒以纯化的miRNA或低至1ng总RNA为起始样品,可获得无需凝胶纯化的文库制备,且非常杰出的miRNA发现率。NEXTFLEX Small RNA-Seq Kit v4建库试剂盒经过优化,使用便捷,易于在自动液体处理平台上实现自动化,由于无需凝胶纯化步骤,即便低起始量具有挑战的样品(如血清)也没问题。该试剂盒可在6小时内获得用于测序的 small RNA文库,借助独特的dual-index barcodes,单次运行可混合384个样品。NEXTFLEX Rapid XP V2 DNA-Seq建库试剂盒内含专利的NEXTFLEX® 浓度均一化磁珠,针对文库池中所有DNA样品,可获得一致地质量和测序簇密度,不需要定量和混样操作,每96个样品最多可缩短至3小时。PG-Seq快速试剂盒 v2可用于分析胚胎切片来源的皮克级DNA(单个/多个细胞或低模板DNA),用于植入前遗传学研究,全基因组覆盖率更高、准确性更好。该试剂盒允许96个样品同时检测,包含细胞裂解、全基因组扩增和indexing所需的所有试剂,以及用于自动调用异倍性和拷贝数变异的PG-Find™ 分析软件。珀金埃尔默公司专业诊断事业部总经理Arvind Kothandaraman介绍:最近发布的产品证明了我们一直致力于消除样品制备中限制科学发现速度的瓶颈。该新型试剂盒可解决当今NGS文库制备最迫切的技术痛点和操作痛点。针对各种文库制备应用,珀金埃尔默可提供完整解决方案,包括核酸提取、自动化NGS建库工作站、单细胞RNA测序、文库制备试剂以及核酸质控。✦✦如需了解更多信息,请扫描下方二维码
  • 安捷伦推出新型快速制备纯化系统
    2011 年 3 月 15日,北京 — 安捷伦科技公司(纽约证交所:A) 今日推出了 Agilent 971-FP Flash LC纯化系统,这是一款为药物化学工程师量身打造的个人快速制备纯化色谱仪,能够对新合成的化合物进行快速、简单以及可靠的纯化。   该仪器具有新的软件界面,操作简单方便,且易于跟踪样品。“Guide Me”向导简化了系统设置,还免去了大量繁琐的方法开发设置。“Six-Clicks”触摸屏对话框进一步提高了分离的便利性,以前繁琐的步骤如今变得简单便捷。化学工程师通过该新系统能够利用薄层色谱结果来优化快速制备的分离方法,甚至还可以在运行过程当中进行更改,进一步缩短方法开发的时间。   Agilent 971-FP 快速制备纯化系统的设计, 旨在短短几分钟内从几十克目标化合物中以最大回收率和纯度获得毫克级样品。仪器的若干特征的设计都是为了确保珍贵样品的回收率。   脉冲式氙灯比标准紫外检测器的预热时间减少了大约十分钟,从而提高了效率。独特的气泡探测器能够降低溶剂灌注时间,进一步加快分析速度。   安捷伦液相分离事业部市场经理 Helmut Schulenberg-Schell 说:“我们非常高兴能够为药物化学工程师提供与分析液相色谱和气相色谱相同水平的质量和售后支持的Flash LC色谱。今后,我们用于药物发现的产品系列里又增加了一名优秀成员。”   有关 Agilent 971-FP 快速制备纯化系统(Flash LC)的更多信息,请访问 www.agilent.com/chem/flash:cn 。   关于安捷伦科技公司   安捷伦科技公司(NYSE : A)是世界领先的测量仪器公司,同时也是化学分析、生命科学、电子测量和通讯领域的技术引领者。公司现有 18500 名员工,为超过 100 个国家的客户提供服务。安捷伦科技公司在2010财年的净收入为54亿美元。有关安捷伦科技公司的更多资讯请访问公司官网www.agilent.com.cn。
  • 清华团队开发基于电喷雾电离技术的冷冻电镜样品制备方法
    生物大分子的三维结构可以直观地揭示其生物学功能、细胞内进程以及探索其在疾病中发挥作用的方式。冷冻电镜(cryo-electron microscopy,cryo-EM)单颗粒分析技术通过对生物大分子的直接成像进行高分辨率结构测定,已成为结构生物学的重要研究手段。冷冻电镜单颗粒分析技术需要对生物大分子溶液的冷冻样品采集大量电子显微数据,以进行三维结构解析,因此高质量的冷冻样品制备在其中起着至关重要的作用。良好的制样方法需要能够简便地、可控地制备出接近理想状态的生物大分子冷冻样品。诺贝尔化学奖获得者雅克杜博切特(Jacques Dubochet)等人于1984年发明了冷冻样品制备的滤纸夹置法(Pipet-blot-plunge),至今仍然是冷冻电镜样品制备的主要手段。在这种传统的制样方法中,研究人员难以精确控制样品冰层厚度和大分子颗粒分布,导致冷冻样品的均一性和可重复性较差。越来越多的证据表明,在样品被冷冻之前的瞬间,生物大分子会吸附在超薄的液体层的气液界面(Air-water interface, AWI)上,导致生物大分子的颗粒结构损伤、变性或产生优势取向,减低了高分辨率冷冻电镜结构分析的效率和成功性。如何获取可重复的高质量的生物大分子冷冻样品仍然是冷冻电镜技术应用中的一个难题。图1. ESI-cryoPrep方法设计和仪器装置示意图4月25日,清华大学生命科学学院王宏伟课题组和精密仪器系欧阳证、周晓煜课题组在《自然方法学》(Nature Methods)在线发表了题为“电喷雾辅助的冷冻电镜样品制备方法用以减轻界面吸附效应”(Electrospray-assisted cryo-EM sample preparation to mitigate interfacial effects)的研究论文。研究采用非变性质谱(Native mass spectrometry, native MS)中广泛使用的电喷雾电离(Electrospray ionization, ESI)技术,设计并搭建了一种新型冷冻样品制备装置ESI-cryoPrep(图1),成功实现了无需滤纸夹吸的冷冻样品制备,并获得了多种生物大分子近原子分辨率的三维结构。研究表明,ESI-cryoPrep可以有效地将生物大分子颗粒完整嵌入无定形态薄层冰中,避免其吸附在空气-水、固体-水界面上,并对该装置制备生物大分子冷冻样品过程中的界面模型进行了机理阐释。ESI-cryoPrep以“软”电离技术ESI为基础,通过向蛋白溶液施加高电压形成大量带电的蛋白液滴,可以有效地减少蛋白的变性与碎裂。在电场的驱动下,带电液滴飞向电镜载网的过程中伴随着去溶剂化的进行;液滴表面的电荷密度激增至瑞利极限导致库仑裂变形成带电的次级液滴;这一过程循环往复直至液滴最终沉积在电镜载网上;收集到带电液滴的电镜载网被插入液氮冷却的液态乙烷中即可实现对液滴的快速冷冻。该过程完全省却了滤纸的夹吸,避免了滤纸材料对液体和生物大分子的影响。因为液滴表面的小分子离子形成了双电层效应,生物大分子与液体的界面被隔绝开,从而避免了生物大分子吸附到气液或固液界面上,更好地保持了生物大分子的天然结构。该研究首次对ESI液滴中的生物大分子的天然结构(Native structures)进行了直接测定,指导获得ESI的“软着陆”电离参数进行冷冻制样与非变性质谱分析。该工作是冷冻电镜与质谱技术的交叉融合,共同致力于解答生物大分子结构解析与分析的科学问题。研究团队在搭建的设备上,经过多次摸索确定了制备高质量冷冻样品的相关参数。这些参数既能满足保存高比例完整结构生物大分子颗粒的需求,又能促进带电液滴在附着电镜载网表面的扩展和浸润。研究团队运用优化的ESI-cryoPrep装置制备了五种生物大分子的高质量冷冻样品,获得了与目标生物大分子尺寸相对应的理想冰层厚度,并实现了全部测试样品70Sribosome、20Sproteasome、apo-ferritin、ACE2和streptavidin的高分辨率三维结构解析,分辨率分别为2.7[gf]c5[/gf]、2.0[gf]c5[/gf]、2.1[gf]c5[/gf]、3.3[gf]c5[/gf]和1.9[gf]c5[/gf]。研究团队对冷冻电镜数据进行了深入的挖掘与分析,发现与预期假设一致的结果。ESI-cryoPrep可以有效地将生物大分子颗粒完整嵌入无定形态冰的薄层中间,抑制目标生物大分子在空气-水或石墨烯-水界面的吸附(图2),从而避免蛋白质颗粒的结构损伤或者优势取向问题。研究工作提出了电荷残留模型,阐明了电喷雾电离产生的液滴表面的电荷不均匀分布保护蛋白质颗粒免于界面吸附的作用和机制。这种学科交叉的研究成果不仅将为冷冻电镜样品制备提供应用价值,还将对冷冻电镜技术和非变性质谱领域的交叉和发展产生积极影响,为更多创新应用开辟新的可能性。自主研发的高质量冷冻电镜样品制备装置,一方面可以缩短结构解析的漫长探索过程,更高效地获得高分辨三维结构,分析其作用机理;另一方面也提升了原创研发具有自主知识产权和高精尖技术的能力,减少对国外相关仪器和设备的依赖。图2.ESI-cryoPrep方法制备的冷冻样品中蛋白质颗粒在断层成像中的代表性空间分布清华大学生命科学学院2017级博士生杨梓和精密仪器系2018级博士生范菁津(已毕业)为该论文共同第一作者,清华大学生命科学学院教授王宏伟,精密仪器系教授欧阳证和副教授周晓煜为论文共同通讯作者。清华大学生命科学学院王家副研究员和范潇博士等为课题的启动和推进作出重要贡献。研究得到国家自然科学基金、腾讯基金会等的资助,并得到清华大学冷冻电镜中心和计算中心的技术支持。
  • 铁的金相样品制备方法之避免腐蚀坑的出现
    实验室的制备方法有很多种,不同材料制备的方法也迥然不同。今天可脉小编想要分享给大家的是,实验室铁的制备方法以及如何防止在制备过程中腐蚀坑的出现,详情如下:材料:电工纯铁要求:抛光后镜面,表面无划痕;500X观察方法编号:铁-防止腐蚀坑的出现制备方法切割:CRE-10-1535砂轮切割片镶嵌:热压镶嵌使用EpoPowder G环氧树脂;冷镶嵌使用AcryQuick丙烯酸树脂和固化剂磨抛:手动磨抛机Qpol-M1;自动磨抛机METPOL-A注意事项1. 铁易被腐蚀,用水基的抛光液和冷却液会出现腐蚀坑,改用油基的抛光液和冷却润滑液。2. 如果样品切割的表面质量好,则只用一道金相砂纸。3. 结束后,立即用无水酒精冲洗、吹干。4. 每一步结束时都要好好清洗试样、手、夹具、抛光盘、抛光机底盘,防止颗粒沾染。 了解其他样品制备方法的更多详细信息,请联系可脉检测的应用工程师,共同探讨解决方案,可脉检测南京实验室提供技术支持!
  • 芯联集成“键合结构及其制备方法”专利公布
    天眼查显示,芯联集成电路制造股份有限公司“键合结构及其制备方法”专利公布,申请公布日为2024年7月23日,申请公布号为CN118380407A。背景技术晶圆级键合是半导体制造技术中重要的一个工艺步骤,共晶晶圆键合技术是使两表面间的键合能(Bonding Energy)达到一定强度和密封性,而使这两晶圆片结为一体。晶圆级键合主要的作用是机械保护和一定的气体氛围或真空度要求下的密封,为了保证机械强度和密封性,一般密封环占用了大量的芯片面积,尤其是考虑到键合的对准偏差,密封环还要增加面积,图1示意出现有技术中常见的一种密封环的结构,该密封环包括第一键合层100、第二键合层200和位于两侧的阻挡件300,考虑到键合的对准偏差,第二键合层200比第一键合层100单侧宽10um,密封环单侧宽度达到120μm,如图2中所示,密封环两侧宽度之和为240μm,而芯片宽度为1mm,由此两侧的密封环占据了芯片约25%的尺寸,密封环会导致单个晶圆上的芯片数目减小,不利于降低成本。发明内容本发明提供一种键合结构及其制备方法,所述键合结构包括:第一晶圆和第二晶圆;所述第一晶圆具有环形凹槽,所述第二晶圆具有环形凸起部,所述环形凹槽具有V型纵截面,所述环形凸起部具有三角状纵截面,所述三角状纵截面的顶角角度与所述V型纵截面的夹角相等;所述环形凹槽的表面覆盖有第一键合层,所述环形凸起部的表面覆盖有第二键合层,所述环形凸起部部分嵌入所述环形凹槽内,使得所述第一键合层和所述第二键合层彼此相键合。本发明所形成的键合结构,键合层不必为了减小对准偏差而增加尺寸,从而密封环可采用更小尺寸的设计。
  • 百灵威预祝2009国际新型材料及制备展圆满成功
    由复旦大学、澳大利亚Wollongong大学主办的2009年g际新型材料及制备展于2009年10月18-21日,在上海复旦大学隆重召开。 本次g际大会云集了众多海内外新型纳米材料、新型聚合物材料、新型陶瓷材料和新型能源材料方面专家、有名高校教授、跨g企业dj研究员,共同探讨新型材料发展方向,为该l域研究者提供y个良好的交流平台。 百灵威作为精细化学品专业供应商之y,将参与此次会议,向广大客户推荐高纯无机金属、有机金属、纳米材料、MOCVD& ALD & CVD用挥发性前体、OLED发光材料等材料化学l域产品;格氏试剂、c干溶剂、杂环化合物、卟啉、硼酸硼酯、离子液体、离子对试剂、高纯溶剂等常用试剂&hellip &hellip 会上我们还为您准备了专业资料,我们将在复旦大学新闻学院培训中心(复宣酒店4楼)A002号展位敬候您的光临! 展位图:
  • 珀金埃尔默推出新型NGS文库制备试剂盒 加速研究进程
    珀金埃尔默公司日前发布三款新型NGS文库制备试剂盒(仅供科研使用):NEXTFLEX® Small RNA-Seq Kit v4、NEXTFLEX® Rapid XP V2 DNA-Seq Kit、PG-Seq™ Rapid Kit v2,这些全新升级的试剂盒可大幅提升操作便捷,加速科研进程。NEXTFLEX Small RNA Seq kit V4建库试剂盒以纯化的miRNA或低至1ng总RNA为起始样品,可获得无需凝胶纯化的文库制备和杰出的miRNA发现率。经过优化,试剂盒使用便捷,易于在自动液体处理平台上实现自动化,由于无需凝胶纯化步骤,即便是针对具有挑战的低起始量样品(如血清)也没问题。该试剂盒可在6小时内获得用于测序的 small RNA文库,借助独特的dual-index barcodes,单次运行可混合384个样品。NEXTFLEX Rapid XP V2 DNA-Seq 建库试剂盒内含NEXTFLEX® 浓度均一化磁珠专利技术,针对文库池中所有DNA样品,可获得一致的质量和测序簇密度,不需要定量和混样操作,每96个样品最多可缩短至3小时。PG-Seq 快速试剂盒 v2可用于分析胚胎切片来源的皮克级DNA(单个/多个细胞或低模板DNA),用于植入前遗传学研究,全基因组覆盖率更高、准确性更好。该试剂盒允许96个样品同时检测,包含细胞裂解、全基因组扩增和indexing 所需的所有试剂,以及用于自动调用异倍性和拷贝数变异的PG-Find™ 分析软件。珀金埃尔默公司专业诊断事业部总经理Arvind Kothandaraman介绍:“我们一直致力于消除样品制备中限制科学发现速度的瓶颈,这些新品让我们又迈进了一步,它们解决了当今NGS文库制备最迫切的一些技术和操作痛点。”针对各种文库制备应用,珀金埃尔默可提供完整解决方案,包括核酸提取、自动化NGS建库工作站、单细胞RNA测序、文库制备试剂以及核酸质控。如需了解更多信息,请访问此网页。
  • 仪器情报,科学家制备表征新兴高性能多晶薄膜!
    【科学背景】随着材料科学和纳米技术的迅速发展,二维(2D)晶体材料作为一种重要的研究对象,因其独特的结构和性质而引起了科学家的广泛关注。尤其是在柔性电子、光电子以及分离等领域的应用,对于开发具有高强度、韧性和弹性的2D薄膜材料提出了迫切需求。然而,传统的2D晶体材料通常是多晶的,含有许多晶界,这导致其易碎和脆性,严重限制了其在柔性器件中的应用。共价有机框架(COF)作为一种新兴的2D晶体材料引起了人们的关注。COF由有机节点和连接物通过共价键构建而成,具有周期性和多孔结构。然而,现有的COF材料通常以不可加工的粉末形式存在,或者以部分晶化的片状材料或不连续薄膜的形式出现。这些材料存在着脆弱易碎、裂纹沿晶界传播严重等问题,严重限制了它们的应用范围。为了解决这些问题,中山大学郑治坤教授团队提出了使用线性小分子作为牺牲中介来引导2D COF的聚合和结晶的新方法。通过选择亚胺键连接的COF,并利用具有较高反应性的烷基双胺为中介,可以促进COF相邻结晶颗粒在晶界处的纠缠,从而增加薄膜的弹性。此外,选择聚丙烯酸作为聚合物表面活性剂来辅助界面合成,进一步优化了薄膜的制备过程。通过这一研究,研究者们成功地制备出了高度结晶且具有弹性的2D COF薄膜,其力学性能得到了显著改善。【科学图文】在本研究中,为了制备高度结晶且具有弹性的2D COF薄膜,研究人员采取了一系列实验步骤。首先,他们使用了5,10,15,20-四(4-氨基苯基)-21H,23H-卟啉(节点)和2,5-二羟基对苯二甲醛(连接物1)进行反应,形成了2DCOF-1(图1a)。在此过程中,通过在水中添加二乙烯三胺作为中介,以及利用聚丙烯酸在水表面促进节点的积聚和组装,最终得到了具有高度均匀性的2DCOF-1薄膜。傅立叶变换红外和拉曼光谱表明了亚胺键的形成以及节点和连接物的完全消耗。将薄膜沉积到铜网格上后,显微镜观察到除了与镊子接触导致的一个破裂区域外,其他区域均被完全覆盖(图1c)。扫描电子显微镜和原子力显微镜进一步证实了薄膜的结构和均匀性,显示了不同颗粒通过晶界连接而成的结构,晶界呈现出明亮的对比度,而整个薄膜的颗粒和边界形态非常相似。这些结果表明,通过所采取的实验方法,研究人员成功地制备了高度结晶的2DCOF-1薄膜,并且该薄膜具有较高的机械韧性和均一性。图1. 2DCOF-1薄膜的合成方案及形貌。为了了解二维COF薄膜的晶界结构和微观特性,作者首先假设形成了涉及交织结构的晶界,并计算得到了晶胞参数(图2a)。接着,通过广角X射线衍射(GIWAXS)观察到了清晰而多重的反射,表明薄膜具有高结晶度。尤其是在平面方向,反射被很好地索引,并呈现出简单的四方晶格,支持了模拟的交织结构在平面上的周期性。在垂直方向上也观察到了清晰的反射,给出了层间距的信息,进一步证实了交织结构的存在(图2b)。此外,通过缝合畸变校正的高分辨透射电子显微镜(AC-HRTEM)图像,观察到了薄膜的微观结构。图像显示,薄膜由单晶颗粒组成,并通过傅立叶滤波进一步确认了这一结论。这些结果表明,二维COF薄膜具有复杂的晶界结构和高度有序的微观排列,这为其在力学性能和应用方面的研究提供了重要参考(图2c)。图2. 2DCOF-1薄膜的结晶度和晶界结构。作者进行了一系列实验,以探究二维COF薄膜的聚合和结晶过程。首先,通过广角X射线衍射技术监测了反应过程中薄膜的结晶情况。在6小时的反应时间内,观察到了局部结晶的开始信号,但整体呈现无定形状态;而在7小时处,形成了多晶薄膜,反射环明显。随着反应时间的延长,反射的强度逐渐增加,反映了薄膜的整体结晶度逐渐提高。此外,AC-HRTEM提供了微观的图像,显示了不同颗粒重新取向的过程,以及单晶颗粒尺寸的逐渐增大和晶界数量的减少。通过对比实验,发现未使用二乙烯三胺的对照实验中形成了具有层间无序的薄膜,并且薄膜厚度在不同区域间变化较大。而使用其他化合物作为中介的对照实验也证实了交织晶界的形成。这些实验结果揭示了二维COF薄膜的聚合和结晶过程,为理解其形成机制提供了重要线索(图3)。图3. 2D COF-1 薄膜的反应时间依赖性结构分析。图4展示了2DCOF-1薄膜的力学性能。通过在悬浮的薄膜上进行AFM纳米压痕实验,结果显示薄膜具有高韧性和弹性,加载和卸载曲线之间没有明显差异,表明薄膜在铜网上没有滑动。当薄膜被压痕直至破裂时,裂纹迅速扩散并大部分区域反弹回初始位置,表明薄膜存在能量消耗路径,可能是由于交织晶格的来回滑动。与此相反,对照实验显示2DCOF-1-A薄膜遇到严重的裂纹扩展。此外,薄膜的能量损失系数在70%和80%应变时均小于10%,并且在反复加载和卸载周期中保持稳定,表明了薄膜的高稳定性和韧性。通过对六个不同样品的力-位移曲线进行拟合,计算出薄膜的弹性性能和断裂应力,结果显示其平面弹性模量和断裂强度均远高于先前报道的晶体和多孔材料。这些实验结果表明了2DCOF-1薄膜具有优异的力学性能,展示了其作为有机二维COF纯晶膜的潜在应用前景。图4. 2DCOF-1薄膜的机械性能。【科学结论】本研究为克服传统2D晶体脆弱性提供了新思路。通过引入无定形聚合物中常见的交织结构,我们成功地将高强度、高韧性和高弹性引入了亚胺键多晶膜中,实现了这些膜的整体性能的显著提升。这一研究不仅为解决2D晶体材料的脆弱性问题提供了新途径,还揭示了从无定形材料中借鉴结构和性能的潜力。这种方法为多晶材料引入新的特性和应用打开了新的可能性,不仅可以加强现有材料的性能,还有望为新型应用的发展提供有力支持。这一创新将有助于推动材料科学领域的发展,为开发更加功能强大的材料和应用打开了新的前景。参考文献:Yang, Y., Liang, B., Kreie, J. et al. Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature (2024). https://doi.org/10.1038/s41586-024-07505-x
  • 我国发明创新传感器电极制备新方法
    近日,中科院长春应用化学研究所研制的“全氟磺酸离子交换膜电极的制备方法”获国家专利授权。这一发明创新了一种改进的传感器电极制备方法,是研发具有自主知识产权的电化学气体传感器核心技术的一项新突破。   据悉,化学气体传感器以其体积小、检测速度快、准确、便携、可现场直接检测和连续检测等优点,越来越引起国内外专家学者的普遍关注,并成为竞相研发的热点项目之一。而我国电化学气体传感器研发起步较晚,一些核心技术还受制于国外,所需传感器几乎依赖进口。为此,不断强化电化学传感器核心技术的突破,尽快研发出具有我国自主知识产权的电化学气体传感器,成为我国经济建设急需解决的重要课题之一。   长春应化所绿色化学与工程实验室化学传感器组的王玉江研究员等发明设计的“全氟磺酸离子交换膜电极的制备方法”,包括活性物质的涂载、洗涤、全氟磺酸离子交换膜的复合成型三个步骤。其在二氧化硫、一氧化碳等电化学气体传感器的组装上得以实施,证明该方法通过增强敏感电极层催化剂与电解质之间的离子传输速率,从而提高了传感器对目标气体的响应灵敏度 此外,全氟磺酸离子交换膜的复合,克服了传统电极制备过程中因为层与层间物质不相溶而使得结构松散,长时间工作易剥离脱落等缺陷,大大提高了传感器的稳定性和寿命。
  • 沃特世推出全新SFC制备柱,助力纯化方法的放大研究
    全新Torus色谱柱可有效满足分析级到制备级的非手性SFC分离要求 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出四款全新制备型超临界流体色谱(SFC)柱,为Torus™ SFC色谱柱产品系列再添新成员。这四款新的非手性SFC色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。 智能新闻发布(Smart News Release)拥有多媒体功能。如需查看完整新闻稿,请访问:http://www.businesswire.com/news/home/20161219005035/en/ 沃特世全新非手性超临界流体色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。(图片:美国商业资讯)。 圣地亚哥专用药品制药公司及研究机构Dart Neuroscience LLC最近评估了Torus色谱柱对小分子药物化合物的纯化性能。该公司的结构化学副总监Gerard Rosse表示:“全新Torus 2-PIC固定相能够有效避免保留损失,在采用甲醇和0.2%氢氧化铵分析碱性、中性和酸性类药分子时,能带来出色的选择性和优异的峰形。2-PIC色谱柱极具应用前景,有望成为一款通用型SFC固定相。” 沃特世公司消耗品团队副总裁Jeff Mazzeo指出:“两年多前,我们推出了Torus SFC分析柱并取得了不俗的成绩。此后,我们不断拓展Torus SFC色谱柱系列,以期为客户提供更多具有不同分离性能和分离能力的产品。对于采用Torus 1.7 μm色谱柱实现了标准化的实验室而言,现在可以直接放大分离方法,轻松开展更大规模的化合物纯化。而对于利用正相液相色谱法进行分析的人员,该系列色谱柱将推动其深入探索SFC的诸多优势,譬如优异的稳定性、更长的色谱柱使用寿命、更快的分离速度、更低的溶剂处置成本,以及更加环保的实验室。” Torus色谱柱适用于从分析级到制备级的所有非手性分离专用于制备级SFC分离的Torus色谱柱将赋予研究人员强大的分离能力,以全面满足其加速方法开发、将分析级非手性分离放大为制备级分离的需求。这些色谱柱以全新的专利键合填料为基础,提供四种不同的固定相,具有选择性广、稳定性高、重现性好等特点,可确保日间和批次间的分析一致性。Torus 1.7和5 μm色谱柱有四种填料可供选择:2-氨甲基吡啶(PIC)、二乙胺(DEA)、高密度二醇(DIOL)和1-氨基蒽(1-AA),并提供多种内径和柱长规格,且与Waters SFC 100系统及其它市售制备型SFC仪器搭配销售。 更多信息:www.waters.com/torus 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司已开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 芯联集成“半导体器件的制备方法及半导体器件”专利获授权
    天眼查显示,芯联集成电路制造股份有限公司近日取得一项名为“半导体器件的制备方法及半导体器件”的专利,授权公告号为CN118073206B,授权公告日为2024年7月23日,申请日为2024年4月22日。背景技术半导体器件中的金属氧化物半导体(Metal Oxide Semiconductor,MOS)器件,因具有开关速度快、损耗小、可靠性高等优点,在诸如电源控制和驱动电路等领域得到越来越广泛的应用。例如,金属氧化物半导体器件中的横向扩散金属氧化物半导体(LaterallyDiffused Metal Oxide Semiconductor,LDMOS)器件,具有耐高压,大电流驱动能力以及低功耗的优点,而且容易与互补金属氧化物半导体器件工艺兼容,因此常用于射频功率电路和电源控制电路,以满足耐高压以及实现功率控制等方面的要求。功率集成电路高电压、大电流的特点常常要求金属氧化物半导体器件具有高击穿电压和低比导通电阻。场板技术是一种广泛应用的用于提高金属氧化物半导体器件的击穿电压的技术,但是目前结合场板技术的金属氧化物半导体器件的制作工艺较为复杂。因此如何在较好地提升金属氧化物半导体器件的击穿电压的同时,简化制作工艺是目前亟需解决的问题。发明内容本申请实施例涉及一种半导体器件的制备方法及半导体器件,属于半导体技术领域。半导体器件的制备方法包括:提供半导体材料层,半导体材料层中包括第一器件区,第一器件区中包括漂移区和体区;在部分漂移区的表面形成场氧化层;形成从场氧化层的表面延伸至漂移区的内部的至少一个第一沟槽;形成覆盖第一沟槽的内壁的第一介质层;在部分体区的表面形成栅介质层;形成填充于第一沟槽并延伸至部分场氧化层和栅介质层的表面的导电层;其中,位于第一沟槽中的导电层构成第一场板;位于第一场板和场氧化层的表面的导电层构成第二场板;位于栅介质层的表面的导电层构成栅电极层。如此,在有效提升器件击穿电压的同时使得器件的制备工艺较为简化。
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 粤芯半导体“半导体结构及其制备方法”专利公布
    天眼查显示,粤芯半导体技术股份有限公司“半导体结构及其制备方法”专利公布,申请公布日为2024年7月23日,申请公布号为CN118380405A。背景技术模拟电路中常见的噪声类型包括电阻热噪声、KT/C噪声、MOS管热噪声和闪烁噪声。其中,闪烁噪声形成后的原因是在硅晶体与氧化层的界面处出现了许多悬挂键,当电荷载流子流过这里的时候一部分会被俘获后又释放,使电流产生了不规则的起伏。传统工艺对MOS器件的闪烁噪声优化效果不理想。发明内容本申请涉及一种半导体结构及其制备方法,包括:提供初始半导体结构;所述初始半导体结构包括衬底以及位于所述衬底上的栅极结构,其中,所述衬底包括漂移区,所述栅极结构覆盖部分所述漂移区;于所述衬底内形成沟道区,所述沟道区包括第一离子注入区和第二离子注入区;所述第一离子注入区的离子注入类型与所述第二离子注入区的离子注入类型相反;所述栅极结构覆盖至少部分所述沟道区;于所述漂移区内形成漏区;于所述第二离子注入区内形成源区。在形成沟道区时增加了一道第一离子注入工序,可以避免表面沟道产生,减少导通饱和时载流子被硅晶体与氧化层的截面捕获而导致电流无规则起伏的现象发生,降低了闪烁噪声。
  • 芯聚能“碳化硅MOSFET器件及其制备方法”专利公布
    天眼查显示,广东芯聚能半导体有限公司“碳化硅MOSFET器件及其制备方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263326A。背景技术半导体是导电性介于良导电体与绝缘体之间的一种材料,半导体器件是利用半导体材料的特殊电特性来完成特定功能的电子器件,例如碳化硅MOSFET(Metal-Oxide-Semiconductor Field-EffectTransistor,金氧半场效晶体管)器件,可用来产生、接收、变换和放大信号,以及进行能量转换。相关技术中,由于碳化硅MOSFET器件自身结构特点,碳化硅MOSFET器件必然存在寄生电容,例如寄生的栅漏电容Cgd,该电容会导致米勒平台的产生,米勒平台会使碳化硅MOSFET器件在开通和关断的过程中损耗增大,导致碳化硅MOSFET器件在工作过程中不能快速地实现开关,影响碳化硅MOSFET器件性能。发明内容本申请涉及一种碳化硅MOSFET器件及其制备方法,碳化硅MOSFET器件包括衬底、第一掺杂区、栅极沟槽、控制栅结构和分裂栅结构,第一掺杂区设置于衬底内;栅极沟槽设置于第一掺杂区内,且从衬底的正面开口并沿衬底的厚度方向延伸,栅极沟槽包括第一子沟槽和第二子沟槽,第二子沟槽位于第一子沟槽背离衬底的正面的一侧;控制栅结构设置于第一子沟槽内,控制栅结构包括控制栅导电层和控制栅介质层,控制栅介质层位于控制栅导电层与第一子沟槽的槽壁之间;分裂栅结构设置于第二子沟槽内,分裂栅结构包括分裂栅导电层和分裂栅介质层,分裂栅介质层包覆分裂栅导电层;控制栅介质层的介电常数和分裂栅介质层的介电常数不同。
  • 天狼芯“半导体结构及其制备方法”专利获授权
    天眼查显示,深圳天狼芯半导体有限公司近日取得一项名为“半导体结构及其制备方法”的专利,授权公告号为CN118198137B,授权公告日为2024年7月23日,申请日为2024年5月16日。背景技术具备沟槽(Trench)结构的金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种垂直结构器件,是在传统平面结构MOSFET的基础上发展而来的,相比于传统平面结构的MOSFETT,沟槽结构的MOSFET在基底内形成沟槽,沟槽增大了器件的连接面积,进而可以并联更多的元胞,从而降低导通电阻,实现更大电流的导通和更快的开关速度。然而,在沟槽结构的MOSFET中,当器件处于反偏状态时,电场会集中在沟槽的拐角处,集中的电场会导致沟槽内的碰撞电离率升高,在器件长时间工作下,高的碰撞电离率会引发沟槽内栅极氧化层的缺陷问题,进而降低半导体结构的可靠性和电性。发明内容本申请涉及一种半导体结构及其制备方法。该半导体结构包括:基底结构;栅极结构;源极结构;源极场板结构,其中,栅极结构和源极场板结构分别位于源极结构相对的两侧;源极场板结构包括第一阶梯式介质结构、第二阶梯式介质结构、阶梯式场板和场板源电极,第二阶梯式介质结构至少部分和漂移区接触,第二阶梯式介质结构位于第一阶梯式介质结构与阶梯式场板之间,场板源电极位于阶梯式场板远离衬底一侧的上表面。通过将栅极结构和源极场板结构分别设置于源极结构相对的两侧,当器件处于反偏状态时,第二阶梯式介质结构可以调制栅极沟槽内的电场分布,解决了栅极沟槽内因电场集中导致的碰撞电离率升高,进而造成栅极氧化层缺陷的问题。
  • 清纯半导体“半导体功率器件及其制备方法”专利公布
    天眼查显示,清纯半导体(宁波)有限公司“半导体功率器件及其制备方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263325A。背景技术功率半导体器件是电力电子装置中电能转换与电路控制的核心元器件,随着近年来新能源汽车、光伏、轨道交通、智能电网等产业的发展,市场对功率器件的需求迅速升温。第三代半导体SiC材料在禁带宽度、导热性能、临界击穿场强、电子饱和漂移速度上的优势明显,符合未来电力电子系统小型轻量化、高效一体化、安全可靠化的发展趋势。随着平面型SiC MOSFET技术的不断迭代,其元胞尺寸的缩减能力逐渐趋近极限,相较而言,沟槽型SiC MOSFET从结构上更小的元胞尺寸、更高的沟道密度等天然优势,注定是下一代SiC功率器件的发展趋势。对于沟槽型SiC MOSFET而言,反向阻断状态下,其底部栅氧的电场集中是制约其性能及可靠性的关键问题。发明内容本发明提供一种半导体功率器件及其制备方法,半导体功率器件包括:半导体衬底层;位于所述半导体衬底层一侧的漂移层;位于所述漂移层中的栅极结构;阱区,分别位于所述栅极结构两侧的漂移层中;在所述漂移层中围绕所述栅极结构的底面和部分侧壁的保护单元;所述保护单元包括:第一掺杂保护层,位于所述栅极结构部分底部的漂移层中;第二掺杂保护层,位于所述栅极结构的部分侧壁和部分底部的漂移层中,所述第一掺杂保护层的导电类型和所述阱区的导电类型相同且和所述第二掺杂保护层的导电类型相反,所述第二掺杂保护层的掺杂浓度大于所述漂移层的掺杂浓度,所述第二掺杂保护层和所述第一掺杂保护层构成PN结。提高了对栅介质层的保护。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 青岛能源所开发出稳定制氢离子传导膜的新型制备技术
    与可再生能源电解水制氢技术相比,通过提纯工业副产氢获取燃料氢气是现阶段更廉价的制氢方式。金属氧化物构成的氧离子传导膜具有对氧100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在致密氧离子传导膜的两侧,可实现低纯氢气燃烧反应,进而驱动膜另一侧水分解,直接获得不含一氧化碳的氢气,用于氢燃料电池。   然而,氧离子传导膜通常暴露在含H2、CO2、H2S、H2O、CH4等气氛中,因而常见含钴或铁的膜材料面临抗还原腐蚀性能差的问题。因此,亟需开发适用于副产氢提纯的氧离子传导膜,为分布式氢能的发展提供技术支撑。   在前期氧离子传导膜材料开发基础的上(Angew.Chem.Int.Ed. 2021,60,5204-5208;Chem.Mater. 2019,31,7487-7492;AIChE J. 2019,65,e16740),近日,中国科学院青岛生物能源与过程研究所膜分离与催化研究组研究员江河清提出界面反应-自组装技术在陶瓷氧化物膜表面构筑一层超薄氧离子传导致密膜,形成多层结构陶瓷膜,用于稳定高效地提纯工业副产氢,制取不含CO的氢气。   与传统制膜工艺对比,研究利用该技术原位构筑的氧离子传导膜非常薄(~1 μm),致密并且牢固地粘附在支撑层上,从而既可显著降低氧离子传输阻力,又能避免薄膜分层或剥离,保持多层结构陶瓷膜的完整性。另外,该过程只需一步热处理,有望降低多层结构陶瓷膜的制备成本。该方法适用于十余种不同的陶瓷体系,具有较好的普适性,其中氧离子传导薄膜包含Ce0.9Gd0.1O2-δ、Y0.08Zr0.92O2-δ、Ce0.9Pr0.1O2-δ、Ce0.9Sm0.1O2-δ等。科研人员将开发的具超薄氧离子传导膜的多层结构陶瓷膜作为膜反应器进行工业副产氢提纯,在H2、CH4、CO2、H2S、H2O气氛下连续稳定运行超过1000个小时,展现出优异的稳定性和制氢性能。   该研究开发出的高性能氧离子传导膜有望为工业副产氢提纯、固体氧化物燃料电池/电解池及氧传感器等提供技术支撑,并为制备其他具功能薄层的高性能多层结构陶瓷提供新策略。近期,相关研究成果发表在《德国应用化学》上,并已申请一项中国发明专利和一项国际专利。   研究工作得到国家重点研发计划、国家自然科学基金、中科院国际合作局对外合作重点项目、中科院青年创新促进会等的支持。界面反应-自组装技术制备多层结构氧离子传导膜
  • 安徽理工大学张雷教授团队制备出新型多孔纳米笼型氧反应器
    作者:王敏 来源:中国科学报安徽理工大学材料科学与工程学院教授张雷团队制备出了一类新型的多孔纳米笼型反应器,并证明这种材料可以用于可充电锌空气电池的空气阴极。相关研究成果近日发表于《化学工程杂志》。新型多孔纳米笼型氧催化反应器示意图 安徽理工大学供图锌空气电池具有高理论能量密度、高安全性、低成本等优点,是一种极具发展前景的储能技术。目前锌空气一次电池已被广泛应用于助听器、路灯等电子设备中,锌空气二次电池因不可充电的致命缺陷严重限制了其进一步商业化应用。“随着新能源发电、新能源汽车产业发展,研究人员开始研发锌空气二次电池。但用于该电池的催化剂一般是贵金属催化剂。贵金属资源有限,成本高,开采困难,并且其催化性能单一、催化稳定性低,催化效率迟迟不能突破。”张雷向《中国科学报》介绍,开发出高效稳定的双功能氧催化剂替代传统的贵金属催化剂,对于锌空气二次电池的产业化至关重要。以自然界的石榴作为催化剂设计蓝本是个很好的创意,每一粒石榴果实都可以理解为一个催化活性位点,大量果实的集成丰富了催化所需要的活性位点,有助于高效的催化反应。“但这些活性位点往往被深埋于体相,导致活性位点的实际利用率极低,这就像石榴果实被包裹于果皮内,难以与外界的各种反应物质充分接触,这造成催化剂的催化活性难以完全发挥。”张雷说。此次研究中,张雷等提出了一种新的活性调控策略,通过将双功能活性中心装填于多孔碳纳米笼中,利用独特的孔洞设计加速电催化反应中的传质和传荷过程,实现了催化活性的大幅度提升。这种方法类似于在石榴表皮上构筑大量的孔,这些孔让大量的石榴果实与外界的反应物质充分接触,增大反应面积,加快物质的传输效率。张雷说:“这项研究可为下一代可逆能源转化系统中多功能电催化剂的设计和发展提供新的思路。”审稿人认为,“这一成果不仅克服了传统的电催化剂只对其中一个半反应具有出色的催化活性,而对另一个半反应往往催化活性一般的弊端,更为从微/纳米尺度上认识催化活性位点的组成、空间分布、界面电荷转移以及传质/传荷通道等与催化活性和稳定性之间的关联机制,提供了一个有效策略和理想的催化剂模型。”论文相关信息:https://doi.org/10.1016/j.cej.2022.137210
  • TCL华星“光刻机及电路基板的制备方法”专利公布
    国知局消息显示,TCL华星光电技术有限公司“光刻机及电路基板的制备方法”专利公布,申请公布日为6月15日,申请公布号为CN116243564A。图片来源:国知局专利摘要显示,本申请实施例公开了一种光刻机,本申请实施例的光刻机采用在掩模板设置位(第二设置位)的出光侧设置投影透镜组,投影透镜组包括第一透镜单元和第二透镜单元,所述第一透镜单元对入射光线的收敛角度大于所述第二透镜单元对所述入射光线的收敛角度。采用投影透镜组对掩模板上的图案进行光线收敛,进而在基板上形成比掩模板上的图案更小的图案,进而达到采用常规掩模板实现精密制程的效果。另外,本实施例采用第一透镜单元用于形成集成电路,第二透镜单元用于形成非集成电路,提高了制程的工作效率以及制程的适应性。据悉,本申请实施例提供一种光刻机,可以减低掩模板的制作难度,同时可以实现更精密的集成电路制作。
  • 科研人员研发出减少有机溶剂使用量制备格氏试剂的方法
    日本北海道大学创成研究机构化学反应创成研究据点(WPI-ICReDD)、北海道大学工学研究院等机构的科研人员共同组成的研究团队研发出几乎不使用有机溶剂便可简便制备格林尼亚试剂(Grignard reagent,简称“格氏试剂”)的方法。研究成果于近期发表于《Nature Communications》期刊,题为:“Mechanochemical Synthesis of Magnesium-based Carbon Nucleophiles in Air and Their Use in Organic Synthesis”。  格氏试剂作为有机合成中重要的试剂被广泛使用,制备通常需要在无水无氧的反应容器中进行,需使用高纯度的有机溶剂,并且要严格控制温度,不仅制备过程繁琐,有机溶剂还会产生废弃物和毒性。  为探索更为简便、高效的制备方法,科研人员通过球磨机左右震动和机械搅拌,只需添加少量的有机溶剂便可在短时间内简便、高效地制备格氏试剂。此种制备方法能将有机溶剂的使用量降低至原使用量的十分之一左右,无需使用高价高纯度的有机溶剂,并且,制备方法不易受到反应容器中水分和氧气的影响,可用于多种有机合成反应。  此项研究成果有效控制了格氏试剂制备过程中有害有机溶剂的使用量,不仅可以减少化学制品对环境的不良影响,还有助于降低化学制品的生产成本。   原文链接:  https://www.jst.go.jp/pr/announce/20211118-2/index.html  注:本文摘编自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 科研人员提出孔径小于10纳米的固态纳米孔制备新方法
    近日,中国科学院近代物理研究所材料研究中心与俄罗斯杜布纳联合核子研究所合作,研发出一种孔径小于10纳米的固态纳米孔制备新技术。相关研究成果发表在《纳米快报》(Nano Letters)上。   高质量固态纳米孔的制备是DNA测序、纳流器件以及纳滤膜等应用的关键技术。当前,在无机薄膜材料中制备固态纳米孔的主流方法是聚焦离子/电子束刻蚀。该方法在制备过程中需实时反馈,更适合于单个纳米孔的制备。因此,探索孔径可调、孔密度可控和无需实时反馈的固态纳米孔快速制备技术具有重要的科学意义。   科研人员基于兰州重离子研究装置(HIRFL),利用快重离子作用于WO3纳米片材料,实现了直接“打孔”的制备方法。同时,科研人员利用分子动力学模拟对物理机理进行解释,发现重离子在材料中的沉积能量会引起材料局域瞬时熔融喷发,以及熔融相的粘度和表面张力大小是决定纳米孔形成的关键因素。   该方法通过改变重离子的电子能损调控孔径大小,改变重离子辐照注量调节孔密度,使得整个制孔过程一步完成,不涉及化学蚀刻,具有一定的普适性和应用潜力。   该工作为重离子束应用于固态纳米孔制备开辟了新途径,并为解释重离子在固体材料中潜径迹形成的微观机理提供了重要的理论依据。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。图:快重离子在WO3纳米片中直接形成纳米孔示例 图/徐丽君 翟鹏飞
  • 复旦大学于敏教授课题组《AJPS》:高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备
    复旦大学于敏教授课题组《AJPS》:高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备抗凝治疗通常被用作心脑血管疾病治疗的首选策略,且此类患者大多需要长期甚至终身服用抗凝药物。直接口服抗凝剂有导致胃肠道出血的风险,尤其是对于有胃肠道疾病如胃肠道溃疡的患者,这种出血是致命的。皮下或静脉注射给药或可规避胃肠道出血的风险,但是注射给药需专业人员辅助,这对长期用药的患者而言极其不便,注射引起的疼痛亦会导致患者用药依从性较差。此外,皮下注射抗凝剂还会导致皮下出血淤青,增加感染风险,给抗凝药物临床应用带来了极大的不便。透皮给药作为一种前瞻性给药策略,可以补充注射和口服给药的局限性 (图1)。图1. 临床抗凝药物给药方式及不良反应微针 (Microneedle,MN) 作为微米级的微创设备,可通过破坏皮肤最外层角质层产生短暂的疏水性毛孔,将治疗药物输送至表皮中,被认为是最有前途的透皮给药系统之一。目前,微针的制备主要通过微模型浇铸法,但是用于微模型制备的方法大多局限于光刻或者化学蚀刻,工艺复杂、周期长且成本高,限制了微针的多样性和个性化发展。高精度 3D 打印是近年来新兴的一种微模型制备方法,由于该法简单高效且成本相对较低,已广泛应用于生物医药的各领域,为微针阵列模型的设计制备提供了新的选择。图2.微针阵列模型的设计与打印 A. 1#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);B.2#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);C.设计模型和打印模型对比 近期,复旦大学代谢分子医学教育部重点实验室于敏教授团队联合复旦大学药学院沈腾老师提出了一种基于 3D 打印技术的微模型制备方法。该团队利用新型超高精度 3D 打印技术 (nano Arch P140,摩方精密) 实现了个性化设计的微针阵列模型的制备,并通过开发一条新的模型复刻工艺成功制备了基于 3D 打印模型的微针模具,最终制备了 r-hirudin 新型微创无痛递药系统。该方法成功解决了以光敏树脂为打印材料的微针阵列表面 PDMS 无法固化导致的模型翻制问题,同时进一步拓展了 3D 打印在微针阵列设计制备领域的应用。利用高精度 3D 打印制备的微针阵列拥有较高的分辨率,打印的微针形貌特征保留完整、尺寸均一,为载药微针的定性与定量分析奠定了基础。相关成果以“Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease” 为题发表在《Asian Journal of Pharmaceutical Sciences》期刊上。 在该研究中,首先利用计算机辅助的模型设计对目标微针阵列进行设计优化,分别按需设计了两款不同参数的微针阵列模型,如图 2A所示,考虑到 3D 打印分辨率的限制,绘制微针长度为 1000 μm,允许微针有 100-200 μm 的长度损失,设置微针形状为五棱锥形,底边长度分别为 150 μm 和 100 μm,将微针有序排列成 10 × 10 的微针阵列 (图 2B)。将设计图纸输出导入 3D 打印软件进行打印,最终获得基于光敏树脂的微针阵列模型。与设计模型相比,微针的高度发生了100-200μm 的损失 ,但在允许范围之内,微针针体形貌保存完整,不同微针个体尺寸均一 (图 2C),提示高精度 3D 打印在微针阵列模型制备方面具有巨大的应用潜力。图3.微针模具及 3DMN 制备流程图 由于以光敏树脂为打印材料的微针阵列模型在用 PDMS 进行模型翻制时在接触表面 PDMS 无法固化,所以选择明胶作为中间过渡材料替代直接使用 PDMS 进行微针模具制备,开发一条新的模型制备工艺(图 3),并通过该路线成功制备了微针制备模具。将该模具应用于r-hirudin 递药系统的制备,通过连续的微模型浇铸并辅以恒温真空制备r-hirudin 荷载的 3DMN。对 3DMN 进行表征分析并在实验动物体内进行微针给药的药效学与药物代谢动力学分析,结果显示 3DMN 给药可以实现快速的透皮药物递送,血药浓度在给药后 0.5 h 达到峰值 (图 4D-F),血液的凝固时间在 3DMN 给药后显著延长 (图 4A-C)。对 3DMN 给药的生物利用度(BA) 进行分析,发现 3DMN 给药相对于皮下注射给药的BA可达50% (图 4G-F)。该结果初步验证了基于高精度 3D 打印的微针阵列模型制备的 3DMN 在介导透皮 r-hirudin 递送中的可行性。 图4. 3DMN 介导的r-hirudin 透皮递送的体内药效学与药物代谢动力学研究 A-C. 血液凝固时间随给药时间的变化;D-F. 血清 r-hirudin 浓度随时间变化曲线;F. 不同给药方式血清药物浓度随时间变化曲线 G. 不同给药方式血清药物浓度参数 进一步研究 3DMN 在血栓性疾病防治中的应用,分别构建肾上腺素/Ⅰ型胶原混合物尾静脉注射诱导的急性肺栓塞动物模型和三氯化铁损伤诱导的肠系膜微动脉血栓动物模型,将载药 3DMN 用于动静脉血栓的预防性治疗,研究发现3DMN 介导的r-hirudin 用药可以显著抑制急性肺栓塞模型小鼠肺部血管栓塞的形成 (图 5C-D),提高小鼠的存活率 (图 5A-B)。此外还观察到,3DMN 介导的 r-hirudin 用药同样可以显著三氯化铁损伤诱导的肠系膜动脉血栓的形成,降低血栓发生率 (图 6)。以上结果进一步说明 3DMN 可用于动静脉血栓的预防性用药,而高精度 3D 打印技术的出现不仅丰富了微针多样性,也为未来临床用药个体微针量身定制提供了基础,具有极大的经济效益与社会效益。图5. 3DMN 在预防急性肺栓塞中的应用A-B. 3DMN 给药对急性肺栓塞小鼠生存率的影响;C. 小鼠肺部组织石蜡切片 HE 染色;D. 小鼠肺部 CT 扫描图图 6. 3DMN 在预防肠系膜微动脉血栓中的应用 A. 血小板在血管损伤部位聚集的体内成像;B. 血栓形成率的统计分析图;C. 血栓形成长度统计分析图官网:https://www.bmftec.cn/links/10
  • 一种重金属检测电极的制备方法获国家发明专利
    一种化学修饰碳糊铋膜电极的制备方法获国家发明专利授权   近日,中科院长春应用化学研究所郏建波等科研人员发明的一项专利“一种化学修饰碳糊铋膜电极的制备方法”获得了国家知识产权局的授权。   重金属是一种很危险的污染物,往往长期积累在生物体内不可降解,在极其微量的情况下也会产生不良后果,因此痕量重金属的定量分析在药物、食品、临床和环境检测等方面都是非常重要的。   该发明将碳粉、修饰剂和疏水性有机溶剂按一定的质量比混合、研磨成均匀的化学修饰碳糊,然后将化学修饰碳糊装入电极管壳内,即得到化学修饰碳糊电极,进一步采用预镀法或者原位镀膜法制得化学修饰碳糊铋膜电极。该发明制备的电极可以方便地实现对自来水、湖水、雪水等样品中重金属铅的电化学测定。该发明制备的电极的电位窗较宽、操作简单,有利于进行铋膜电极上多种重金属的同时测定。该发明制备的化学修饰碳糊铋膜电极的稳定性好、灵敏度很高,对于重金属离子的检测可达0.10 ppb 另外,该电极对样品的预处理要求很低、表面更新容易、制作工艺简单、价格低廉,易于重复和普及使用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制