当前位置: 仪器信息网 > 行业主题 > >

新型多肽药物

仪器信息网新型多肽药物专题为您整合新型多肽药物相关的最新文章,在新型多肽药物专题,您不仅可以免费浏览新型多肽药物的资讯, 同时您还可以浏览新型多肽药物的相关资料、解决方案,参与社区新型多肽药物话题讨论。

新型多肽药物相关的论坛

  • 南开大学在药物传输载体研究中获重要进展 新型水凝胶能包裹和缓释各类药物

    最新发现与创新 中国科技网讯 南开大学药物化学生物学国家重点实验室在药物传输载体研究方面取得重要进展,其研究成果“基于蛋白—多肽特异性结合的小分子水凝胶”,近日发表在《德国应用化学》上。 据课题组介绍,药物传输是实现药物疗效不可或缺的重要环节。利用现代生物化学技术开发的新型多肽/蛋白质、抗体、疫苗及基因等新型药物在环境及人体内极易失活和降解,从而导致生物利用度低。而先进的药物载体和传输技术是提高药物的生物利用度、增加药物疗效、降低其毒副作用和改善病人耐受性的主要手段。从20世纪90年代开始,外表类似果冻的小分子水凝胶作为一种新颖的生物材料,在药物传输方面展现了良好的应用前景。如何在温和条件下制备水凝胶用于药物传输,一直是科学家力求达到的目标。 南开大学杨志谋、龙加福教授课题组结合各自在相应研究领域的积累,提出利用蛋白质和多肽特异性结合的特点制备新型蛋白—多肽杂化水凝胶。该体系利用蛋白—多肽的特异性结合来增强多肽自组装纤维之间的结合力,从而形成三维网络结构以及形成性质更为优异的水凝胶。他们针对抗肿瘤药物、多肽/蛋白质药物及基因药物,重点以嵌段共聚物、超分子化合物、小分子凝胶及高分子水凝胶等材料为基础,研发出生物相容性高的可注射局部药物传输系统。该类新型药物传输系统由蛋白质和多肽组成,生物相容度高。 同时,该类水凝胶能包裹各类药物,可局部注射于病灶,起到局部长期缓释药物的效果,提高病人耐受性,减轻毒副作用。(通讯员 周兴龙 韦承金 记者 冯国梧) 《科技日报》(2012-7-15 一版)

  • 多肽类药物种类

    多肽类药物种类

    [font=宋体][size=10.5000pt]常见的多肽类药物种类[/size][/font][font=宋体][size=10.5000pt]多肽药物是一种可以用于疾病的预防、治疗和诊断的多肽类生物药物,其制备方法主要有化学多肽合成、分离纯化法和基因工程法等,其中化学多肽合成是多肽药物的主要制备方式。虽然多肽类药物可以通过从生物体内分离纯化获得,但是天然存在的多肽分子含量少,无法完全满足临床应用的需求。化学多肽合成方法是通过氨基酸逐步缩合的化学反应来实现,一般是从羧基端向氨基端,重复逐个添加氨基酸的过程。【[font=宋体]详情请咨询国肽生物[/font]】[/size][/font][font=宋体][size=10.5000pt]多肽类药物主要包括多肽疫苗、抗肿瘤多肽、抗病毒多肽、多肽导向药物、细胞因子模拟肽、抗菌性活性肽、诊断用多肽以及其他药用小肽等。多肽药物与一般的有机小分子药物相比,具有生物活性强、用药剂量小、毒副作用低和疗效显著等突出特点,然而其半衰期一般较短、不稳定,在体内容易被快速降解。[/size][/font][font=宋体][size=10.5000pt]与蛋白类大分子药物相比,除了多肽疫苗外,多肽类药物免疫原性相对较小,用药剂量少,单位活性更高,易于合成、改造和优化,产品纯度高,质量可控,能够迅速确定药用价值。[/size][/font][font=宋体][size=10.5000pt]1[font=宋体]、多肽疫苗[/font][/size][/font][font=宋体][size=10.5000pt]多肽疫苗是按照病原体抗原基因中已知或预测的某段抗原表位的氨基酸序列,通过化学多肽合成技术制备的疫苗。多肽疫苗是目前疫苗研究的重要方向,已经针对了艾滋病病毒和丙肝病毒的多肽疫苗进行了研发。传统疫苗一般由两种方式制备,一种为能诱发免疫力却不致病的减毒疫苗,例如黄热病、脊髓灰质炎和麻疹疫苗或卡介苗;另一种为灭活疫苗,例如百日咳杆菌、狂犬病毒、伤寒杆菌。[/size][/font][font=宋体][size=10.5000pt]多肽疫苗由于完全是合成的,不存在毒力回升或灭活不全的问题。特别是一些还不能通过体外培养方式获得足够量的抗原的微生物病原体。有些虽能进行体外培养,但这些病原体有潜在致病性和免疫病理作用等涉及安全性与有效性的问题。多肽作为体内引起效应细胞免疫应答形成的免疫原,将成为一种新型的疫苗。[/size][/font][font=宋体][size=10.5000pt]2[font=宋体]、抗肿瘤多肽[/font][/size][/font][font=宋体][size=10.5000pt]多肽类药物凭借其靶向性、安全性、特异性,使其在抗肿瘤药物的研制中受到关注,不同的多肽药物具有多种不同的作用机制。其可抑制肿瘤细胞增殖、促进肿瘤细胞凋亡达到直接抗肿瘤作用,也可以通过增强和激发机体对肿瘤细胞的免疫应答、抑制肿瘤血管生成等达到间接的抗肿瘤作用。而且其作用机制的多样性和特异性,也可以实现多肽改造和融合,实现多肽的高效、靶向、特异的抗肿瘤作用。[/size][/font][font=宋体][size=10.5000pt]3[font=宋体]、多肽导向药物[/font][/size][/font][font=宋体][size=10.5000pt][font=宋体]将具有结合能力的多肽与细胞毒素或细胞因子等进行融合,将其导向至病变部位,发[/font] [font=宋体]挥治疗作用,同时减少毒副反应。已知很多毒素(如绿脓杆菌外毒素),细胞因子(如白细胞介素系列)等有较强的肿瘤细胞毒性,但在人类长期或大量使用量时也可损伤正常细胞。将能和肿瘤细胞特异结合的多肽与这些活性因子进行融合,则可将这些活性因子特异性地集中在肿瘤部位,可大大降低毒素、细胞因子的使用浓度,降低其副作用。[/font][/size][/font][font=宋体][size=10.5000pt]4[font=宋体]、细胞因子模拟肽[/font][/size][/font][font=宋体][size=10.5000pt][font=宋体]指从肽库中筛选获得能够与细胞因子受体特异性结合,同时具有细胞因子活性的多肽。这些模拟肽的序列一般与细胞因子的氨基酸序列不同。能刺激造血的细胞因子如红细胞生成素[/font](EPO)[font=宋体]和血小板生成素[/font][font=Calibri](TPO)[/font][font=宋体]等通过与其受体的特异性结合来调控造血细胞的自我更新、增殖、分化、成熟及程序性死亡。近年来利用噬菌体展示文库等技术业已筛选出类似于细胞因子活性的模拟肽类和非肽类小分子,经体外和动物试验证实它们具有类似于细胞因子的刺激造血生物学功能。这为进一步探讨细胞因子的作用机制、筛选出理想的模拟其它细胞因子功能的小分子肽[/font][font=Calibri]/[/font][font=宋体]非肽类药物奠定了坚实基础。[/font][/size][/font][font=宋体][size=10.5000pt]5[font=宋体]、抗菌性活性肽[/font][/size][/font][font=宋体][size=10.5000pt]从昆虫、动物体内筛选获得的具有抗菌活性的多肽分子,目前已经筛选获得上百种。抗菌肽具有抗菌谱广、热稳定性强、分子量小及免疫原性小等特点,其杀菌机制独特,病原菌不易产生耐药性,有望开发成新一代肽类抗生素。但部分抗菌肽具有空间结构不稳定、溶血活性等特点,限制了临床应用。因此设计或改造天然抗菌肽,提高抗菌活性的基础上消除其溶血活性,促进抗菌肽在医药上的应用,有望开发成新型抗菌药物,为解决病原菌对传统抗生素日益增强的耐药性问题提供新的途径。[/size][/font][font=宋体][size=10.5000pt]6[font=宋体]、诊断用多肽[/font][/size][/font][font=宋体][size=10.5000pt]通过从致病体或肽库中筛选获得的多肽,用作诊断试剂,检测体内是否存在病原微生物、寄生虫等的抗体。包括对肝炎病毒、艾滋病病毒、类风湿疾病等抗体的检测。多肽在诊断试剂中最主要的用途是用作抗原检测病毒、细胞、支原体、螺旋体等微生物和囊虫、锥虫等寄生虫的抗体。多肽抗原比天然微生物或寄生虫蛋白抗原的特异性强,且易于制备,因此装配的检测试剂,其检测抗体的假阴性率和本底反应都很低,易于临床应用。[/size][/font][font=宋体][size=10.5000pt]常见的多肽类药物种类主要有以上几种,目前来自动物组织提取的多肽药物将逐步被淘汰,化学多肽合成和基因重组方式将在很长一段时间内成为互为补充的多肽药物生产方式。在化学多肽合成类药物快速成长之际,基因重组表达制备多肽药物也引起业内关注。与化学多肽合成相比,基因重组方式更适于长肽的制备;而且随着技术的进步,以基因重组方式生产多肽药物的成本也在不断降低。[/size][/font][font=宋体][size=10.5000pt][img=,690,177]https://ng1.17img.cn/bbsfiles/images/2020/07/202007021610504262_3029_3531468_3.jpg!w690x177.jpg[/img][/size][/font][font=宋体][size=10.5000pt]国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物[/size][/font]

  • 请教多肽高手,D、L型多肽药物的液相分析方法

    请教多肽高手,D、L型多肽药物的液相分析方法,目前正在做一个多肽药物,其中多肽药物的编号最后一个氨基酸的L型的是我们需要的东西,它的D型是杂质(其他的氨基酸都一样),编号最后一个氨基酸是His,在液相分析有关物质时,这两个物质的分离度一直都不是很好,用过一些柱子,也用过三氟乙酸体系和缓冲盐体系,都不是很理想,不知道有没那位高手做过类似的分离,请不吝赐教。

  • 合成多肽药物药学研究技术指导原则-研读(三)

    合成多肽药物药学研究技术指导原则-研读(三)

    [align=center][b][img=,600,336]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121439522763_1873_932_3.jpg!w690x387.jpg[/img][/b][/align][b]质量研究与质量标准质量研究[/b]🔥 原料药的质量研究合成多肽原料药的质量研究除参考一般化学药物的研究思路进行常规项目的研究外,还应根据合成多肽的结构特征、制备工艺特点和生物学特点等进行针对性的研究,研究项目一般包括:外观性状、理化常数、鉴别、氨基酸组成分析、水分、反离子含量、纯度、有机溶剂和反应试剂残留量、生物学安全性检查、含量和/或活性效价测定等。检测方法研究和验证的基本思路和要求与已颁布的相关技术指导原则相一致。对于合成多肽药物,除常规项目外,理化常数一般需要关注其比旋度、等电点(pI)、溶解性(主要为水和缓冲液中)等。一般而言,多肽药物的常规检查项目与其它化学药物相同。此外,与多肽药物的结构及合成特点相关的一些检查项目,例如氨基酸组成分析、反离子(例如三氟醋酸或醋酸根)含量、反应试剂残留量(例如从树脂上裂解多肽使用了氢氟酸,需要检查氟化物残留量)等,则需要在原料药质量研究中予以重视。相关肽检查(或称有关物质检查)是反映多肽化学纯度的重要指标之一,根据多肽的理化性质、分子大小,可选择合适的色谱、电泳等方法进行。短肽可参考一般化学药品有关物质检查的研究思路选用适宜的方法;长肽的有关物质检查方法除常见的RP-HPLC外,还可考虑使用高效离子交换色谱(HPIEC)、毛细管电泳技术等,非解离条件下的高效分子排阻色谱(HPSEC)、聚丙烯酰胺凝胶电泳(PAGE)以及激光散射粒度测定等技术可用于聚合体/低聚体的检查。有关物质检查的方法学验证应能证明所采用的方法可以有效分离目标多肽与工艺杂质(例如缺失肽等)、降解产物(例如二硫键交换或氧化产物等)、聚合物等。一般应考察两种以上不同原理的方法,高效液相色谱法至少应包括一种梯度洗脱方法,并采用多肽粗品和强制降解试验等对方法的专属性等进行考察、对比,此外还应注意研究多波长检测的结果并选择合适的检测波长等。合成多肽因结构特征不同于通常的小分子化学药品,纯度检查有时难以从根本上有效控制产品安全性,需要进行必要的生物学安全性检查(如过敏试验、降压物质、升压物质、异常毒性等)以全面控制产品质量、保证安全性。此外,根据产品具体情况,对于长肽,有时尚需进行免疫原性或抗原活性等生物特性的研究。含量测定是评价多肽质量的重要指标之一,理化方法测定其含量时称为“含量测定”,生物学方法或酶化学方法测定其效价时称为“效价测定”。对于短肽,理化方法测得的含量可以反映其有效程度时,首选简单、通用的含量测定方法;对于具有一定空间结构才能发挥其活性的多肽,需进行生物学方法或酶化学方法测定药物活性(效价)的研究,包括含量与活性的关系、相应的方法学验证等。🔥 制剂的质量研究合成多肽制剂的质量研究基本思路和要求可参照《化学药物质量标准建立的规范化过程技术指导原则》、《化学药物制剂研究基本技术指导原则》等相关内容,根据合成多肽的具体特点,在原料药质量研究的基础上,结合剂型特点、处方工艺以及临床使用特点,重点研究所用辅料和制剂工艺对产品质量的影响、制剂辅料和制剂产生的降解产物对检测方法的影响以及与剂型相关的质量要素。研究项目一般亦应包括性状、鉴别、检查(安全性、均一性、纯度要求与有效性指标等)、含量或效价测定等几个方面。[b]质量标准[/b]合成多肽药物质量标准的制订原则、要求与《化学药物质量标准建立的规范化过程技术指导原则》是一致的。即,在系统的质量控制研究基础上,充分考虑药品安全、有效、质量可控的要求,以及生产、流通和使用等环节的影响,确定能够揭示、控制药物内在品质的检测项目、分析方法和限度要求,如原料药质量标准应包括氨基酸组成、等电点、中长肽的肽图等。合理可行的质量标准应能有效控制产品质量以保证临床用药的安全性和有效性,并有效地控制药品批间质量的一致性。相关质控项目的限度确定也应参考相关的指导原则,例如对于有关物质检查限度的确定可以参考《化学药物杂质研究的技术指导原则》、仿制品种同时还可参考《化学药品仿制研究技术指导原则》等的原则性要求,并结合产品本身的特性及临床使用情况,视具体情况而定。随着药物研发进程的深入,研究数据积累的不断丰富、方法学研究的完善和药物研究技术的不断发展,质量标准在不同研究阶段需要不断修订和完善。[b]稳定性研究[/b]合成多肽药物稳定性研究的基本原则应遵循《化学药物稳定性研究技术指导原则》的一般性要求。与一般化学药物相比,多肽药物的稳定性较差。引起多肽药物不稳定的原因主要有水解、氧化、外消旋化、二硫键的断裂及重排、β消除、凝聚、沉淀、吸附等。当多肽处于溶液中或高湿下保存时,其降解或聚合的速度会比干燥条件下大为增加。因此,稳定性研究应根据多肽药物稳定性的特点合理选择试验条件、考察项目。加速试验和长期留样试验的试验条件应依据药物对温度、湿度和光照等条件的敏感程度的考察(影响因素试验)基础上选择;考察项目除常规项目(例如原料药的比旋度、有关物质和含量等)外,根据具体情况,可能还需要考察其生物活性的变化。与其他化学药物不同,多肽药物可能具有一定程度的表面活性,有与直接接触药品的包装材料和容器发生吸附等相互作用的可能,从而引起制剂效价、生物活性下降。例如有些多肽分子能够与玻璃表面的硅醇基发生相互作用。因此,在包装材料的选择方面需注意其与多肽药物相互作用的研究,有些情况下可选择特殊处理后的包装容器,如表面经硅烷化处理的容器等。[b]名词解释非天然氨基酸:[/b][color=#717070]除自然界生物体中存在的氨基酸外,其它由人工合成制备的氨基酸。[/color][b]反离子:[/b][color=#717070]和多肽形成离子对的带有相反电荷的离子。[/color][b][b][/b][/b]参考文献1.Guidance for Industry for the Submission ofChemistry,Manufacturing,and Controls Information for Synthetic Peptide Substances,FDA,1994。2.合成多肽专题研讨会会议纪要,药品审评中心,2001。3.多肽药物分析方法研究进展,叶晓霞,俞雄,中国医药工业杂志,2003,34(7)。[b]著 者《合成多肽药物药学研究技术指导原则》课题研究组。[/b]

  • 多肽类药物冲刺“重磅炸弹”新贵

    在重组药物领域,多肽类药物由于其毒性低,特异性高,分子量小等自身独特的优势,其成为患者的最佳选择。另外,随着制造工艺和给药系统的改进,多肽类药物从上世纪70 年代诺华的Lypressin(赖氨加压素)上市起,已经取得了迅猛发展。据全球肽治疗基金会的报告显示,在过去的几十年,进入临床开发的多肽类药物数量不断增加,上世纪90 年代年均为9.7 种,2000~2008 年间增加到16.8种。2000~2008 年间,进入临床研究的多肽最常见适应症是癌症和代谢性疾病(包括糖尿病和肥胖症),分别占18%和17%。而治疗过敏、免疫功能紊乱和心血管疾病的多肽类药物研究有所下降。而据生命科学产业的首席战略与管理咨询公司Bionest Partners 预计,全球多肽类药物市场将会从2003 年的53 亿美元增长到2013 年的115 亿美元,复合年均增长率(CAGR)为8.1%。在全球医药市场上,数种多肽类药物已经取得了商业上的成功,其销量已经达到或者接近“重磅炸弹”级药物的销售水平。新贵 1:醋酸格拉替雷以色列梯瓦制药公司的拳头产品 Copaxone(醋酸格拉替雷)是一种人工合成的肽类制剂,由谷氨酸、丙氨酸、酪氨酸和赖氨酸四种氨基酸组成。Copaxone于1996 年获美国FDA 核准用于治疗多发性硬化症。在具有较多多发性硬化症患者的西方国家中,Copaxone 的疗效与耐受性皆获得十足的肯定。目前国内暂无企业申报格拉替雷或进口。2011 年Copaxone 全球销售额达到36 亿美元。据悉2012 年一季度,该药物创下了9.09 亿美元的销售额。6 月,梯瓦制药公司在发布的年度经济预测中表示,该药物2012 年或将为公司带来高达38 亿美元的收入。不过Copaxone 可观的收益也引来仿制药公司的挑战。近日,梯瓦制药公司宣布,此前公司同包括Momenta 生物制药公司、诺华制药公司山德士分公司、迈兰制药公司以及Natco 生物制药公司数家制药公司之间就Copaxone 的专利权展开了一场法律诉讼案件,日前美国纽约州法院表示梯瓦制药公司胜诉。梯瓦制药公司对于该药物的市场独家销售权有效期将会延至2014年。新贵 2:醋酸亮丙瑞林雅培的 Lupron(醋酸亮丙瑞林),是一种自然产生的促性腺激素释放激素GnRH 或促黄体生成释放激素(LH-RH)的合成九肽类似物。Lupron 适应症较广,包括子宫内膜异位症;伴有月经过多、下腹痛、腰痛及贫血等的子宫肌瘤;绝经前乳腺癌,且雌激素受体阳性患者;前列腺癌;中枢性性早熟症。2011 年,雅培的Lupron 在全球的销售额达到8.1 亿美元。在中国市场,武田药品工业株式会社2000 年起进口销售。2009 年,北京博恩特药业有限公司和上海丽珠制药有限公司上市国产醋酸亮丙瑞林。近两年,国内16 个重点城市样本医院醋酸亮丙瑞林用药快速增长,增长率保持在50%左右,2011 年就达到5730 万元。国内醋酸亮丙瑞林市场份额中,武田药品工业株式会社占据着86.73的市场份额。新贵 3:醋酸戈舍瑞林阿斯利康的诺雷得(醋酸戈舍瑞林)是一种注射用的促黄体生成素释放激素类似物。用于晚期前列腺癌的姑息治疗;以及绝经前及围绝经期晚期乳腺癌、子宫内膜异位和子宫纤维瘤的治疗。2011 年阿斯利康的诺雷得全球销售额达到11 亿美元。在中国市场,前英国捷利康公司从1999 年进行进口销售,阿斯特拉公司和捷利康公司合并为阿斯利康后,继续由阿斯利康进口销售。2007~2011 年,国内16 个重点城市样本医院醋酸戈舍瑞林用药保持着高速增长,虽然2010 年略有放缓,但增长率仍维持在30%以上,2011 年国内16 个重点城市样本医院醋酸戈舍瑞林用药更是达到1.9亿元人民币。

  • 用液质联用检测多肽类药物的生物样本有什么好的建议?

    最近在做一些多肽类药物的生物分析,用的是液质联用,AB的4000,但是感觉方法总是不成熟,保留时间总是在漂,内标也不稳定,方法很难重现,样品前处理用的是固相萃取,有没有做过类似多肽化合物的朋友给点建议,怎样的色谱条件比较适合多肽类的检测和分析?

  • 2014多肽药物研发与技术创新研讨会

    多肽作为药物,具有生理活性强、免疫原性低、疗效高等诸多优点,随着生物技术的不断发展,其在人类疾病治疗中的地位也日趋重要,目前已成为国际药学界研究的热点之一。 默克密理博在多肽合成领域已有30年的历史,其品牌Novabiochem?除了满足多肽合成客户对常规产品的需求外,还不断进行创新,每年都会发布最新的研发产品及应用,并且还可以提供个性化定制的高效解决方案。为了增进多肽合成领域的技术创新交流,默克密理博在Novabiochem? 创新30年之际,召开学术研讨会。会议邀请了从事多肽制药领域的多位专家和学者,议题包括:天然、非天然氨基酸及其类似物的合成新方法,多肽、蛋白质的合成新方法,多肽物质分离与分析方法推广应用,多肽合成中因素控制对质量的影响以及多肽纯化和分析的新技术等,针对以上议题,各位专家进行了深入的交流,得到了与会者的一致好评和巨大反响,会议取得了圆满的成功。http://blog.milliporechina.com/editor/upload/image/930F7A5B_BF1453AA.png

  • 新型纳米药物设计有望突破经典

    新型纳米药物设计有望突破经典新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS,109,15431,2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。

  • 网络讲堂:12月19日多肽蛋白等生物大分子药物分析色谱柱的选择

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif多肽蛋白等生物大分子药物分析色谱柱的选择讲座时间:2014年12月19日 10:00主讲人:金琦芸赛默飞世尔公司专业色谱耗材部产品市场经理,在赛默飞一直致力于色谱耗材方面的产品应用支持,在固相萃取,液相,气相色谱柱在制药、食品和环境中的应用,积累有丰富的经验。http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】1、多肽蛋白等生物大分子药物分析色谱柱的选择2、生物大分子药物质量控制要求3、增强核技术色谱柱在多肽分离中的应用4、聚合物技术色谱柱在多肽蛋白分析中的应用 * 我们会在线上的听众中随机抽取5名幸运观众,赠送USB mini 办公/车载加湿器,报名后请记住讲座时间,别错过我们可爱的小礼品~!-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年12月19日 09:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/12625、报名及参会咨询:QQ群—231246773

  • 离子色谱法测定多肽药物中醋酸根残留

    醋酸作为一种重要的原料广泛应用于化工、有机合成、农药、生物医药等行业。在医药行业,醋酸可以作为一种合成原料药,也可以作为一种有机溶媒或者调节pH用。在药品质量控制中,控制有机溶媒的残留是一个重要的环节。有机溶媒的常规的检测方法有[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法、滴定法、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法、分光光度法、比色法等。  [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法分析离子具有快速方便、灵敏度高、结果准确可靠、重复性好等优点,早已成为生物、化学相关领域至关重要的检测分析技术之一。微源检测拥有Dionex ICS5000+[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],可以为客户提供各类物质阴阳离子检测完整解决方案。微源检测建立了药物中醋酸根残留的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法检测方案,并以多肽药物样品作为样本进行了方法考察。  分析条件:  仪器型号:赛默飞Dionex ICS5000+  分离柱:Dionex IonPac AS19 4mm*250mm  保护柱:Dionex IonPac AG18 4mm*50mm  淋洗液:NaHCO3+Na2CO3溶液  检测器:抑制电导检测器  抑制电流:80mA  柱温:30℃  进样器:AS-AP自动进样器  流速:1mL/min  进样量:10μL  多肽药物一般都是采用固相合成的方法制备,其中通常含有一定量的醋酸盐,因此其中醋酸根残留进行考察具有重要意义。检测中,采用醋酸钠作为对照品,对醋酸根的检出限定量限、线性、加标回收率、重复性和精密度等进行了考察。结果显示醋酸根浓度在50~150ppb浓度范围具有良好的线性关系,线性相关系数r=0.9997,精密度实验相对标准偏差RSD=0.2%,加标回收率96.1%~100.57%。各项指标符合可接受标准,该方法适用于多肽类药物中醋酸根残留的分析检测

  • 【实战宝典】液相色谱分析多肽药物时仪器条件如何确定?

    [b][font=宋体]问题描述:液相色谱分析多肽药物时,采用什么溶剂作为流动相?如何确定检测波长?[/font][font=宋体]解答:[/font][/b][font=宋体]([/font]1[font=宋体])液相色谱法分析化学合成的,结构相似的小分子多肽可采用乙腈和水作为流动相,采用三氟乙酸调节流动相[/font]pH[font=宋体]值;[/font][font=宋体]([/font]2[font=宋体])三氟乙酸是作为离子对试剂存在的,常用于乙腈流动相中(反相色谱),目的是增加色谱峰的对称性。其作用原理为:乙腈中的三氟乙酸通过与疏水键合相及残留的极性表面以多种模式相互作用,从而改善峰形、克服峰的展宽以及拖尾的问题,同时三氟乙酸与蛋白质及多肽表面上的正电荷以及极性基团相结合以减少极性保留,把蛋白质或多肽带回到疏水的反相表面,另外三氟乙酸又以同样的方式,屏蔽了固定相上残留的极性表面。[/font][font=宋体]([/font]3[font=宋体])除了一些特殊蛋白质或多肽,如含铜离子、铁离子等,一般用波长[/font]280nm[font=宋体]或者[/font]210~220nm[font=宋体]检测;前者是蛋白质中特定氨基酸的检测波长,后者是多肽或蛋白质中特有的肽键的主吸收峰波长。[/font][font=宋体]([/font]4[font=宋体])作为药物分析,包括药物的含量分析、活性分析、以及杂质分析等。如果用液相分析多肽药物的杂质时,用正相色谱比其他色谱更方便、更有效、更准确,可优先选用正相色谱。[/font][font='微软雅黑','sans-serif'][color=black][back=white]领取更多《实战宝典》请进:[url]http://instrument-vip.mikecrm.com/2bbmrpI[/url][/back][/color][/font][font='微软雅黑','sans-serif'][color=black][back=white] [/back][/color][/font]

  • 新型纳米药物递送车兼具双重抗癌功效

    集促进机体免疫与中和癌细胞分泌物两种抗癌策略于一身新型纳米药物递送车兼具双重抗癌功效2012年07月17日 来源: 中国科技网 作者: 常丽君 中国科技网讯 据物理学家组织网7月15日报道,美国耶鲁大学研究人员开发出一种新型纳米药物递送车,能长时间释放两种不同的药物,同时促进机体免疫并中和癌细胞分泌物。小鼠实验证明其能延缓肿瘤生长,减轻症状,使生存率大大提高。相关论文发表在《自然·材料》杂志上。 癌细胞会分泌多种化学物质扰乱免疫系统,突破身体防御屏障。在抗癌策略中,有些是中和癌细胞“化工厂”,有些是促进机体免疫反应,将二者结合在一起的鲜少成功。而新型递送车是一种可降解的中空纳米小球,称为纳米脂凝胶(NLGs),其中含有两种药物:能中和癌细胞分泌物TGF-β(转化生长因子-β)的抑制剂,以及召集免疫反应的IL-2(白细胞介素-2)。小球会在肿瘤区脉管系统堆积起来,随着球外壳和内骨架的慢慢分解,持续节制地放出药物。 IL-2是大的亲水蛋白,而TGF-β抑制剂是小的憎水分子。研究人员先用一种生物适应性可降解材料造出载体骨架,其中灌注TGF-β抑制剂分子,再将其浸入含IL-2的溶液,IL-2就会被吸入骨架中,这一过程称为远程装载。外壳用一种经美国食品和药物管理局(FDA)许可的生物降解合成脂制成,既足够坚固携带药物进入体内,又能受控地降解释放出药物。 该研究领导者、耶鲁大学工程教授泰瑞克·法密说:“癌瘤及其微环境可看成是一座城堡及护城河。护城河是癌瘤的防御系统,其中就包括TGF-β。我们的策略是用TGF-β抑制剂‘吸干’护城河,同时释放IL-2促进肿瘤周围免疫反应。IL-2是一种细胞激素,能告诉防御细胞出了问题,可看作是一种引进增援策略。它们通过吸干的护城河进入城堡,发信号让更多援军进来。”实验中召集的援军就是机体的反入侵部队T细胞。 该研究目标是初期黑色素瘤和已扩展到肺部的黑色素瘤,尚未对初期肺癌进行评估。“黑色素瘤是采用免疫疗法的固体肿瘤典型。”论文合著者、现纽约圣彼得癌症中心医学肿瘤专科医生斯蒂芬·瑞辛斯基说,“目前,治疗转移性黑色素瘤的一个问题是,用药过程中难以控制自身免疫。NLGs递送系统可同时作为IL-2管制器和中和TGF-β的免疫调节器,有望在抗癌的同时避免自身免疫。” 研究人员指出,NLGs技术结合了先锋和召集后援双重策略,能瞄准正确目标长时间释放药物,安全执行双重治疗。最关键的是,它在设计上能装载各种形状和大小的药物分子,对那些适合免疫、放射、化学和手术疗法的癌症均显出光明前景,尤其是对转移性癌症,最终有望成为多种抗癌药物的递送系统。(常丽君) 《科技日报》(2012-07-17 二版)

  • MRM3模式在多肽药物生物分析中的应用解决方案

    随着制药企业对生物治疗药物的日益重视,在药物研究中使用LCMS定量分析蛋白和多肽药物已经引起越来越多研究者的兴趣。艾塞那肽是一种治疗性多肽,目前已被批准用于治疗I型和II型糖尿病。艾塞那肽可增强胰腺β细胞分泌葡萄糖依赖性胰岛素,以调节糖代谢和胰岛素分泌。近年来,血浆中艾塞那肽的浓度测定主要通过配体实验来完成,例如利用酶标免疫测定法进行艾塞那肽的 药代动力学研究。但是,由于某些具有相似理化性质的化合物的存在,致使酶标免疫测定法缺乏足够的特异 性和选择性,导致采用该方法分析将面临一定的风险。基于以上原因,采用AB SCIEX QTRAP® 5500系统的 MRM3模式确保分析血浆中多肽药物时能够达到更高的选择性。实验方法样品制备:提取人血浆中的艾塞那肽,用氮气吹干,复溶。在所有的操作步骤中,pH值及有机相都要严格控制。串联质谱技术在药物高通量筛选和生物分析中的应用液相色谱条件:UHPLC采用ShimadzuUFLC LC-20ACXR;反相色谱柱为C-18 2.0 x30mm,5μ;流速为 0.6mL/min;进样体积为5 μL;流动相A为含0.1%甲酸的水溶液,流动相B为含0.1%甲酸的甲醇溶液;梯度5分钟,流动相B浓度从2%升至95%。质谱条件:使用AB SCIEXQTRAP® 5500系统中的MRM3扫描模式进行LC/MS分析。开启离子阱的动态填充时间(DFT)功能,在10,000Da/s的扫描速度下进行MS3扫描。总周期时间为0.17s。采用质荷比 838→396→202进行MRM3分析。QTRAP® 5500系统进行MRM3分析原理展示在图2中。图1. 艾塞那肽结构。艾塞那肽是由39个氨基酸组成的多肽(MW =4186.6 Da),是糖代谢和胰岛素分泌的调节剂。图2. MRM3定量分析工作原理。首先在Q1四极杆中选择母离子,然后在Q2碰撞池中碎裂,其子离子在线性离子阱中富集并分离,接着通过激发产生第二级碎片,然后将第二级产物离子扫描至检测器。实验结果在增强全扫描模式(EMS)下,选择多电荷母离子5+838.3作为前体离子(母离子,图3,上左图)。当前体离子碎裂后,选择m/z 396.

  • 【转帖】玉米为新型抗HIV药物提供了新策略

    玉米为新型抗HIV药物提供了新策略 中国科学家从玉米中获得一种能够选择性地杀伤HIV感染细胞的蛋白酶突变体,为研发新型抗HIV药物提供了新思路和新策略。这是今天从此间的中国科学院昆明动物研究所传出的消息。毗邻东南亚多国的云南省一度是中国毒品和艾滋病的重灾区。消息称,中国科学院昆明动物研究所郑永唐研究员学科组与香港中文大学邵鹏柱教授学科组合作完成了这一研究课题。郑永唐研究员从事免疫学、病毒学和抗HIV药物等研究20余年,尤其在抗HIV药物、AIDS灵长类动物模型、病毒限制因子等研究方面积累丰富的经验。他称,“HIV病毒存在潜藏机制,可以长期潜伏在细胞中而逃逸宿主免疫系统的攻击,目前已上市的抗HIV药物均不能选择性地杀伤感染细胞而根除病毒,研究具有选择性地杀伤HIV感染细胞而保护正常细胞不受伤害的抗HIV药物极为重要。”经过多年合作,内地与香港科学家对玉米核糖体失活蛋白的内部失活结构域进行一系列的结构修饰和改造,获得了能识别并激活HIV蛋白酶特异的玉米核糖体失活蛋白突变体。细胞水平实验的研究表明,此种突变体对未感染细胞毒性低,但突变体进入HIV感染细胞后,则可被细胞内的HIV蛋白酶识别并切割去除失活结构域转变成为活性蛋白,从而选择性地杀伤HIV感染细胞。研究结果还表明,因为此种突变体能够高效率地进入感染细胞,因此对HIV-1感染细胞的杀伤力更强;突变体也可以被HIV蛋白酶耐药株的蛋白酶识别并激活,因此突变体对HIV蛋白酶耐药株感染细胞也有很好的选择杀伤性。郑永唐表示,该研究成果为研发特异性靶向HIV感染细胞的新型抗HIV药物提供了新思路和新策略。“研究成果已经在国际著名学术期刊Nucleic Acids Research 发表并申请国家专利。”郑透露,此次研究获得了香港研究资助局、中国国家科技部973项目、国家重大科技专项、中国科学院等项目资助。

  • 国家纳米中心等提出的新型纳米药物设计有望突破经典理论

    中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS, 109, 15431, 2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。http://www.cas.cn/ky/kyjz/201211/W020121123539967315650.jpg 图:新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。

  • 美开发出以线粒体为标靶的新型抗疟药物

    可杀死处于所有阶段的疟原虫 新华社华盛顿3月21日电(记者任海军)美国研究人员日前报告说,他们开发出一种新型抗疟疾药物,在动物实验中,其效果强于临床抗疟药,且不易产生耐药性。 这种新药名为ELQ-300。在动物实验中,它能以疟原虫的线粒体为标靶发挥作用,杀死处于所有阶段的寄生虫。疟原虫体内线粒体的主要功能是制造DNA所需的构建模块,而新药能阻断这一过程。 研究人员还发现,新药治疗实验鼠的效果强于临床抗疟药阿托伐醌。仅需阿托伐醌剂量的十分之一,新药便可保护实验鼠免受蚊虫传播的疟原虫感染。此外,研究发现很难筛选出对新药产生耐药性的疟原虫,这意味着新药如果用于人类,可以在临床上应用较长时间。 相关研究报告发表在美国最新一期《科学转化医学》杂志上。领导研究的俄勒冈卫生科学大学教授迈克尔·里斯科表示,这一药物“具有阻止疟疾传播的潜力”,但在用于人类临床试验前还需接受严格的安全测试。 疟疾是由疟原虫引起的疾病,如不治疗,疟疾可能中断对重要器官的供血,从而威胁生命。在世界很多地区,疟原虫已经对一些抗疟药产生耐药性。据统计,全球每年约有近百万人死于疟疾,其中大部分分布在撒哈拉以南非洲地区。

  • 【分享】治疗前列腺癌的新型药物degarelix将在美国上市

    [center]治疗前列腺癌的新型药物degarelix将在美国上市[/center] 据悉,FDA已批准美国Ferring制药公司出品的前列腺癌治疗新药degarelix,,该药为注射剂,属促性腺激素释放激素受体拮抗剂,主要用于晚期前列腺癌患者。 这种新型药物的商品名目前还处在FDA的审批阶段,一旦它的商品名最后通过批准,Ferring公司将立即在美国市场推出该药。 此前,欧洲人用医疗产品委员会也已同意degarelix在欧洲上市。目前,该药也正在等待全球其他主要药品市场的销售批准。 Ferring相关负责人称,degarelix的最初研发地点位于圣地亚哥,后由Ferring在美国及欧洲的公司开发。该药在关键的III期临床实验中获得的数据显示,它起效快,并且在长期抑制睾丸激素和前列腺特异抗原方面的效果非常显著。 信息来源:中国医药123网

  • [讨论]:多肽类药物的质谱分析

    随着生化学科的发展,肽类药物必然要越来越受到大家的重视,但肽类的质谱分析却是比较难的,大家都来谈谈肽类药物质谱分析的经验。我有个同学在坐一个肽类化合物,代谢物从分析液相接出来,质谱直接进样,却没有响应,大家说如何提高它的响应呢?

  • 过程工程所开发出新型难溶性抗肿瘤药物靶向给药系统

    多数抗肿瘤药物因其本身的难溶性而无法实现有效的靶向递送,进而严重影响其在临床方面的应用。紫杉醇(Paclitaxel, PTX)是目前临床上应用较为广泛的难溶性抗肿瘤药物之一,其对肺癌、卵巢癌、乳腺癌等均具有很好的治疗作用。为了解决其难溶问题,现用临床注射制剂(Taxol®)是将其溶解于聚氧乙烯蓖麻油和无水乙醇的混合溶媒后再行给药。然而,该制剂因缺乏靶向性,对其他正常组织产生明显的毒副作用;而且添加的聚氧乙烯蓖麻油在体内降解时会释放组胺,引起严重的过敏反应。因此,开发方便安全的靶向给药系统对PTX的临床应用有重要的研究意义。 近日,中科院过程工程研究所马光辉研究员领导的团队开发出了一种新型的难溶性抗肿瘤药物的纳米靶向给药系统(如图所示)。首先,利用O/W/O复乳液法并结合程序升温法,成功地将PTX以纳米晶形式原位装载于亲水性材料羧化壳聚糖纳米球中,并结合快速膜乳化技术实现了纳米球粒径的均一性。在此基础上,研究人员利用纳米球表面的羧基,引入具有隐形效果的聚乙二醇(PEG)链和靶向肿瘤细胞的RGD肽,最终制得兼具隐形和靶向能力的纳米给药系统。 后续的体外细胞及体内荷瘤小鼠模型实验表明,该制剂能够有效延长药物在体内的循环周期,改善纳米球对肿瘤细胞的亲和能力,提高药物生物利用度。另外,与传统的注射制剂相比,该制剂还具有很低的毒副作用。 上述研究工作已发表在Molecular Pharmceutics(2012, 9, 1736-1747)上,审稿人认为这是一项有趣的工作,方法新颖。该研究工作受到973项目(2009CB930300)和国家自然科学基金(20820102036, 21161160555)的资助。http://www.cas.cn/ky/kyjz/201207/W020120720343496926834.jpg PTX靶向纳米给药系统示意图

  • 【转帖】药物代谢动力学(影响药物代谢的因素)

    [size=4](一)药物代谢的遗传多态性[/size][size=4]由于肝脏药酶系特别是P450的遗传多态性,以致造成药物代谢的个体差异,这影响了药物的药理作用、不良反应和致癌的易感性等。对某些药代谢的缺陷者称为:弱代谢者(poor metabolizer)或PM-表型1,而强代谢者(extensive metabolizer)称为EM-表型。在第一相中的药物代谢多态性以异喹胍和乙妥英为例,分别为P450UD6和P4502C的变异。对异喹胍的羟化作用有遗传性缺陷的个体,在应用β-受体拮抗剂、三环类抗郁剂、某些膜抑制抗心律紊乱药、抗高血压药和钙离子拮抗剂等,由于药物代谢的异常,使药效增强、时间延长,容易发生不良反应。在第二相反应的药物代谢多态性,以异烟肼和磺胺二甲嘧啶为例,可区分为乙酰化快型和慢型两种,慢型乙酰化个体长期服用肼苯达嗪和普鲁卡因酰胺后可产生红斑狼疮综合征,服异烟肼后易发生周围神经病变(表2-4)。P4501A1,P4501A2是芳香碳氢化合物羟化酶,激活某些致癌原,其遗传变异与某些癌的易患性有关。[/size][align=center][size=4]表2-4 遗传多态性与药物代谢[/size][/align][table][tr][td=1,1,126][size=4]代谢途径[/size][/td][td=1,1,158][size=4]药物举例[/size][/td][td=1,1,142][size=4]人群中的频率(%)[/size][/td][td=1,1,142][size=4]酶[/size][/td][/tr][tr][td=1,1,126][size=4]C-氧化[/size][/td][td=1,1,158][size=4]异喹胍,金雀花碱,右旋甲吗喃,阿片类[/size][/td][td=1,1,142][size=4]白种人5-10[/size][/td][td=1,1,142][size=4]CYP4502D6[/size][/td][/tr][tr][td=1,1,126][size=4]C-氧化[/size][/td][td=1,1,158][size=4]β-肾上腺受体拮抗剂,乙妥英,甲苯巴比士[/size][/td][td=1,1,142][size=4]白种人4[/size][/td][td=1,1,142][size=4]CYP4502C[/size][/td][/tr][tr][td=1,1,126][size=4]乙酰化[/size][/td][td=1,1,158][size=4]环已巴比土,异烟肼,磺胺二甲嘧啶,咖啡因[/size][/td][td=1,1,142][size=4]日本人10[/size][/td][td=1,1,142][size=4]N-乙酰基转移酶白种人30-70[/size][/td][/tr][/table]

  • 动物所发现皮肤真菌防御素是一种新型抗感染药物

    耐药性金黄色葡萄球菌和铜绿假单胞菌是两种严重影响人类健康的传染性病原微生物。传统抗生素的滥用导致了这些细菌耐药性的增强,从而增加了治疗成本和健康风险。因此,发展新型特效的抗生素药物已迫在眉睫。作为天然免疫效应分子的抗微生物肽为这一挑战带来了新的契机。与传统抗生素相比,抗微生物防御素具有独特的抗菌机理,能够有效延缓细菌耐药性的产生。 中科院动物所研究员朱顺义领导的动物天然免疫研究组以皮肤真菌犬小孢子菌为对象,利用生物信息学和实验生物学方法鉴定了一个新型的真菌来源的防御素(命名为孢子霉素),具有广阔的临床应用前景。 研究发现,合成的孢子霉素具有典型的半胱氨酸稳定的alpha-螺旋和beta-片层空间结构。在微摩尔浓度下能够有效抑制铜绿假单胞菌和多种耐药性金黄色葡萄球菌临床分离株的生长。杀菌动力学试验表明,孢子霉素比万古霉素具有更快的杀菌速率。细胞膜透化测定和电子显微镜观察发现孢子霉素对细菌细胞膜没有影响,但是能够导致菌体内蛋白质样颗粒的沉积。孢子霉素对哺乳动物缺乏毒性且具有极高的血清稳定性。小鼠腹膜炎模型证实该肽能够有效治愈耐甲氧西林金黄色葡萄球菌临床分离株以及铜绿假单孢菌造成的致死性腹腔感染。 研究首次表明皮肤真菌为一种新的抗感染药物资源,为治疗耐药性细菌引起的感染带来了新的希望。这项成果已在PNAS上发表。 文章链接

  • 新型丙肝药物将批准上市

    数十年来,丙型肝炎病毒(HCV)感染者都不得不忍受令人饱受折磨的治疗方案,其中包括注射干扰素药物,它可以引起严重恶心及抑郁症。随着几种高效口服抗病*药物即将获得批准,以及更多药物的出现,研究人员说根除全世界的感染现在成为了一个现实的目标。不同于以往的HCV治疗采用干扰素和其他药物来寻求增强免疫系统,最新的一组口服药物可以干扰病毒的复制及蛋白质合成能力。美国食品和药物管理局(FDA)董事会已于上周提议批准两种这样的药物:由强生(Johnson & Johnson)公司生成的simeprevir,以及吉利德科学公司(Gilead Sciences)的sofosbuvir获得上市。将两种药物任一种与利巴韦林(ribavirin)组合,治疗清除了大约80%感染者的丙肝病毒。 “这是在人类历史上第一次,我们治愈了一种病毒疾病,”埃默里大学药理学家Raymond Schinazi说。来自不同药物组合试验的结果将在本周发布。一项名为COSMOS的II期研究在197名对干扰素无反应或是有晚期肝纤维化的HCV患者中,测试了sofosbuvir与simeprevir的组合。在治疗12周后,药物完全清除了超过90%参与者体内的病毒。 另一项由日本广岛大学Kazuaki Chayama医生领导的研究,采用美国百时美施贵宝公司(Bristol-Myers Squibb)的两种新药daclatasvir和asunaprevir的组合对220人进行了治疗。这种鸡尾酒治愈了85%的参与者。百时美施贵宝公司全球医疗研究人员的领导者Eric Hughes说,计划2014年呈送这些药物获取FDA批准。尽管这些结果令人鼓舞,然而将来自多个药物公司的药物组合开展更大的研究看起来不大可能。Medivir药物公司研发副总裁Charlotte Edenius说,吉利德科学公司与强生公司没有打算合作开展一项III期实验。同样,百时美施贵宝公司的发言人也说,公司没有计划与吉利德科学公司协作,针对sofosbuvir–daclatasvir联合治疗开展更大的试验,尽管今年早些时候完成的一项II期实验显示两种药物配对治愈了所有41名参与者。即便没有III期实验或是FDA批准这种做法,约翰霍普金斯大学的丙肝研究人员David Thomas期望,一些医生能够开始为某些难治病例给予这样的“标签外使用”(off-label)组合处方。他认为,临床试验中令人印象深刻的治愈率表明了,强效药物组合能够至少在理论上根除全球的HCV。这种病毒没有动物储存宿主,意味着它不会隐匿于其他的动物,除了通过血液它不易在人群间传播。提高对输血血液供应品的筛查,以及更好的患者筛查技术使得过去15年来传播率大大下降。耐药病毒株的出现可能是一个障碍,但由于最新的组合抗病*药物非常的强效,它们有可能不常发生。 宾夕法尼亚大学肝病学家Rajender Reddy看到了第二重障碍:需要它们的人们如何得到这种的治疗。全球有大约1.7亿人携带丙肝病毒,其中许多人负担不起这些药物。药物公司也缺少动力来降低成本,不同于HIV抗病毒治疗需要患者终HC治疗只需12周。 鉴别HCV携带者也是一个挑战,因为大多数人都不知道他们患有这种疾病,直到他们发展为严重的肝硬化或肝癌——在感染后这一过程有时要经历数十年。洛克菲勒大学病毒学家Charles Rice说,对老年人和吸毒者等高危人群进行强制筛查是根除努力的一个重要组成部分。即便是最有效的口服药物也不能引起持久的抗病毒免疫反应,人们可以再次感染。这就是为什么仍在继续寻找一种预防性的HCV疫苗,最有希望的一批当前进入到了II期临床试验阶段。“即便我们拥有我们所需的所有药物,让疾病消失将还需要几十年的时间,这仍是一个悬而未决的问题,”Rice说。

  • 多肽合成/多肽厂家/多肽合成实验室/多肽合成价格/多肽合成哪家公司

    合肥国肽生物科技有限公司(简称:国肽生物TM)成立于2014年,是一家专业从事多肽产品的研发、生产和销售以及多肽技术转让的国家级高新技术企业。BP公司成立之初,便成功收购了国内几家多肽、抗体公司,是目前国内最大的专业多肽合成、抗体制备、蛋白表达的规模型生产企业。  国肽生物专长于荧光标记肽、同位素标记肽、人工胰岛素、药物肽、化妆品肽、长肽困难肽等产品的合成与研发,致力于学术水平的科研提升,搭建学术交流平台,促进前沿、专业的学术知识推广,推动多肽在生物医学材料等领域的研究与应用。公司产品广泛应用于药物研发,抗体的制备(包括单抗与双抗),荧光分子探针的构建以及细胞透膜研究、活体成像、新型材料研发和质谱分析等研究领域;目前我们已经与军科院、天津药物研究所、中科院物理研究所等研究机构,清华、北大、复旦等高校,以及国外著名药企建立了长期友好的合作交流关系。  国肽生物以科技创新为动力,提升企业核心竞争力。公司拥有一支由行业内领军人才组成的研发创新团队,硕士研发人员占企业员工总数的15%以上,同时公司还邀请国内外顶级生物医学科学家担任科学顾问。公司成立首年,通过多肽生产设施的精细改良、多肽研发工艺的自主创新,突破了多肽产品快速化、规模化生产技术瓶颈,获得了7项实用新型专利和2项发明专利。  国肽生物公司配备了一流的多肽合成、纯化、冻干、质量检测与分析等精密仪器,从美国、日本等国引进了[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]、超高压液相色谱、紫外分光光度计等专用设备,以多肽合成与研发为核心,搭建起全产业链产品分析检测平台,为广大客户提供专业可靠的多肽及相关产品理化性质分析,纯度分析,质谱分析,CHN元素含量分析,红外,紫外光谱分析等分析检测服务。  国肽生物的创立,源自于公司对多肽行业未来发展的认同,公司秉承“质量第一,服务至上”的经营理念,带着行业责任感与使命感,立志于在全球范围内树立一个民族品牌,重新引领肽行业的健康、快速发展。

  • “生物药物评价及检测技术”主题网络研讨会(2020)

    “生物药物评价及检测技术”主题网络研讨会(2020)

    [font=微软雅黑] [/font][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2020/08/202008241851267732_1187_2507958_3.jpg!w690x151.jpg[/img][font=微软雅黑][font=微软雅黑]近年来,生物技术药物占比大幅提升,化学品生物制造的渗透率显著提高。生物制药已然成为目前我国着力发展的战略新兴产业。生物技术药物多数为蛋白质或者多肽及其修饰物,分子量相对较大结构复杂,具有多样性和可变性。生物技术药物的结构特性容易受到各种理化因素的影响,且分离提纯工艺复杂。因此生物技术药物检测、评价及质量控制显得尤为重要。[/font][/font][font=微软雅黑]2020年09月09日,仪器信息网将举行“生物药物评价及检测技术”网络研讨会。会议将邀请生物制药领域的专家及技术人员,为大家介绍生物药物评价及最新检测技术。[/font][font=微软雅黑][font=微软雅黑]会议时间:[/font]2020年9月9日9:00-18:00[/font][font=微软雅黑][font=微软雅黑]会议安排:[/font][/font][img=,690,341]https://ng1.17img.cn/bbsfiles/images/2020/08/202008241851437657_9367_2507958_3.jpg!w690x341.jpg[/img][img=,690,261]https://ng1.17img.cn/bbsfiles/images/2020/08/202008241851544138_5221_2507958_3.jpg!w690x261.jpg[/img][font=微软雅黑][font=微软雅黑]报名地址:[url=https://www.instrument.com.cn/webinar/meetings/YoloBiodrugTest2020]点击打开链接[/url][/font][/font][font=微软雅黑][font=微软雅黑]欢迎报名参加![/font][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制