当前位置: 仪器信息网 > 行业主题 > >

小体积蛋白质样品

仪器信息网小体积蛋白质样品专题为您整合小体积蛋白质样品相关的最新文章,在小体积蛋白质样品专题,您不仅可以免费浏览小体积蛋白质样品的资讯, 同时您还可以浏览小体积蛋白质样品的相关资料、解决方案,参与社区小体积蛋白质样品话题讨论。

小体积蛋白质样品相关的论坛

  • 蛋白质组,蛋白质组学及研究技术路线

    基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。蛋白质组学的研究内容包括:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。Science,Vol.293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。

  • 【原创大赛】分子伴侣与蛋白质折叠

    【原创大赛】分子伴侣与蛋白质折叠

    摘要:本文介绍了分子伴侣的基本概念,以及分子伴侣的几种主要类型;简要说明了蛋白质折叠的概念及特点;在此基础上,进一步阐述了分子伴侣的功能,并以GroEL和GroES为例简述了分子伴侣在蛋白质折叠过程中的作用机理。最后介绍了分子伴侣概念的延伸,及其研究意义和展望。关键词:分子伴侣 蛋白质折叠 折叠病 20世纪60年代,人们就发现了由于组成蛋白质的氨基酸错误可以导致分子病,后来人们发现,即使一级结构正常,蛋白质的二级结构乃至立体结构异常也可导致疾病,即蛋白质折叠病,如疯牛病、老年性痴呆、囊性纤维性炎等。蛋白质折叠病的发现激励人们去寻找蛋白质折叠的分子机理,近年来研究中发现,分子伴侣在在蛋白质折叠中起重要作用。1分子伴侣简介1.1分子伴侣的基本概念分子伴侣(Molecular Chaperone),也有人翻译为“分子伴娘”。1978年,Laskey等首先用“分子伴侣”描述核质素(nucleoplasmin)在核小体组装过程中的作用。1987年,Ellis将凡能促进蛋白质折叠和组装的蛋白质统称为分子伴侣。随后,Ellis等又提出了分子伴侣的基本概念:在蛋白质折叠和组装过程中,分子伴侣防止多肽链内或链间因疏水键等相互作用表面瞬间暴露而形成错误结构,并且还可以破坏已经形成的错误结构。分子伴侣本身不是折叠或组装产物的一部分。1.2分子伴侣的几个例子Nucleoplasmins:体内的一系列过程,如DNA复制,RNA转录与剪接,核小体或核糖体的装配,都涉及到带正电的蛋白质与带负电的核酸之间较强的离子键的相互作用。实验发现,这些过程都与Nucleoplasmin相类似的蛋白质的参与。Charperonin(Cpn):是指在细菌、线粒体、质体中发现的一类序列同源的Charperonins,该家族具有独特的双层7-9元环状结构的寡聚蛋白(Hemminngwen;cheng 1998),它们的作用是促进体内正常条件以及应急反应下的蛋白质折叠,这一过程需要ATP提供能量。Cpns包括细菌的GroEL、叶绿体的Rubisco亚基结合蛋白(RuSBP)与线粒体的热休克蛋白Hsp60。Stress-70家族:该家族首先在热休克反应中发现,并研究多年,近些年来,发现Stress-70也在蛋白质的折叠与装配过程中起作用,因而受到广泛关注。参与这些作用的Stress-70的成员有:E. coli的DnaK、酵母细胞质的Ssa1p和Ssa2p、内质网的Kar2p和线粒体的Ssc1p。哺乳动物细胞质的Hsp70蛋白和Prp73多肽识别蛋白、内质网的Bip。这些蛋白可被细胞内未折叠蛋白质的增多而诱导并识别靶分子,在其他热休克蛋白或细胞因子的参与下,水解ATP调节蛋白的构象或折叠状态。Stress-90家族:分子量在90ku左右,包括大肠杆菌胞

  • 蛋白质公式

    知道凯氏定氮法测定蛋白质含量的计算公式中,有个V3是吸取消化液的体积,这个体积是在什么时候添加的,怎么添加的。如果看到请帮忙解答一下,谢谢了

  • 蛋白质纯化及复性

    蛋白质纯化及复性 重组蛋白在大肠杆菌(E. coli)高效表达时,往往以不溶的、无活性的蛋白聚集体,即包涵体(inclusion body)的形式存在于细胞内。必须从细胞内分离出包涵体,采用高浓度变性剂(如7.0mol/L盐酸胍、8.0mol/L脲)溶解包涵体,然后除去变性剂或降低变性剂的浓度,使包涵体蛋白得以复性,最后再用色谱法使目标蛋白质得到纯化。其中包涵体蛋白的复性和纯化是整个过程中的核心。 目前重组蛋白生产中普遍存在的问题是:(1)复性效率低。传统的复性方法稀释法和透析法。稀释复性法对样品几十倍,甚至上百倍的稀释会使样品的体积急剧增大,给后续的分离纯化带来很大的困难,而且复性过程中需要较大的复性容器。透析法耗时较长,而且要多次更换透析溶液。这两种方法的共同缺点是蛋白质在复性过程中会发生聚集而产生大量沉淀,复性效率低,通常蛋白质的活性回收率只有5~20%,而且复性后的蛋白质溶液中含有大量的杂蛋白,需要进行进一步的分离纯化。(2)工艺路线烦琐,生产周期长。在传统的重组蛋白质分离纯化工艺中,大多采用经典的软凝胶分离介质,由于这种介质的颗粒较大,分离效率较差,因此常常需要采用多种不同模式的色谱操作联用对目标蛋白质进行纯化,才能得到纯度符合一定标准的目标蛋白质。另外,这种色谱介质的耐压性很差,只能在流速较低的情况下进行操作,分离纯化时间较长。分离纯化步骤多和分离时间长使得蛋白质的质量回收率和活性回收率很低。而且在传统的重组蛋白质生产工艺中,蛋白质的复性和纯化是生产过程中两个独立的单元操作,也在很大程度上制约着生产效率。(3)生产成本高,设备投资大。由于复性和分离纯化分别单独进行,而且分离纯化步骤多,每一步都需要有与之配套的设备,致使设备投资大,生产成本高。随着生产规模的增加,这种弊端会愈来愈严重。 1991年耿信笃教授首先将高效疏水相互作用色谱(HPHIC)用于变性蛋白的复性,很好的解决了上述问题,现已成功用于重组人干扰素-g(rhIFN-g)、重组人干扰素-a(rhIFN-a)、人粒细胞集落刺激因子(rhG-CSF)、重组人胰岛素原(proinsulin)、重组牛朊病毒(prion)等重组蛋白以及溶菌酶和核搪核酸酶等标准模型蛋白的复性与同时纯化中。目前,排阻色谱法、离子交换色谱法和亲合色谱法也已用于蛋白质的复性和同时纯化中。与传统的稀释法及透析法比较,用色谱法进行蛋白复性的优点是:①在进样后可很快除去变性剂;②由于色谱固定相对变性蛋白质的吸附,可明显地减少、甚至完全消除复性过程中蛋白质聚集体和沉淀的产生,从而提高蛋白质复性的质量和活性回收率;③在蛋白质复性的同时可使目标蛋白质与杂蛋白分离以达到纯化的目的,使复性和纯化同时进行;④便于回收变性剂,以降低废水处理成本。简言之,色谱法复性可以提高蛋白质的活性和质量回收率,将蛋白复性和纯化集成在一步操作完成,缩短了操作步骤和生产时间,减少了设备投资,使生产成本大大降低,已经引起了全世界范围内许多生化研究者和重组蛋白药物生产厂家的关注。由于高效液相色谱(HPLC)分离效率高,往往在一步操作中便可得到纯度符合要求的蛋白质,而且分离速度快,在应用方面具有更大的优势。

  • 【原创】EP6.0蛋白质翻译

    再传些上来[em09510][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=183555]蛋白质.doc[/url]方法3这个方法(通常称为布拉德福德法)是基于当蛋白质与酸性蓝90燃料结合时在波长470nm-595nm之间有一个吸收峰。酸性蓝90燃料很容易与蛋白质中的精氨酸和赖氨酸的残基结合导致对于不同蛋白质试验具有特异的反应。因此作为参考物的蛋白质必须测定的蛋白质相同。有相对较少的干扰物,但是最好避免试验样品中的洗涤剂和两性电解质。强碱性样品可能会干扰酸性试剂。使用标准蒸馏水来配置此方法中用到的缓冲液和试剂。试验溶液.将待测蛋白质的参考物质溶解在描述的缓冲溶液中配制成浓度在标准曲线范围内的溶液。参考溶液.用描述的缓冲溶液溶解待测蛋白质的参考物质。用相同的缓冲溶液来稀释这个蛋白质溶液制的不少于5个参考溶液,溶液的蛋白质浓度在一个合适的范围内均匀分布在0.1mg/ml和1mg/ml之间。空白.用使用的缓冲溶液来制备测试溶液和参考溶液。酸性蓝90试剂.溶解0.10g酸性蓝90标准试剂在50ml标准酒精溶液中。加入100ml磷酸标准溶液,用标准蒸馏水稀释至1000ml,混匀。过滤此溶液,室温条件下储存在棕色瓶中。储存期间,燃料发生缓慢的沉淀。使用前过滤试剂。步骤.每个测试溶液和空白的参比溶液取0.100ml,加5ml酸性蓝90试剂。倒转混匀。防止发泡,发泡会导致重复性较差。测定标准溶液和待测溶液595nm处的吸光度(2.5.25),把空白作为补偿液体。不要使用石英(二氧化硅)分光光度计比色皿,因为石英会和这些染料结合。计算.吸光度与蛋白质浓度的关系是非线性的;然而,假如,制备标准曲线的浓度范围足够小,后者将接近线性。以标准溶液的吸光度对蛋白质的浓度作图,再线性回归得到标准曲线。从标准曲线和待测溶液的吸光度来计算得到待测溶液的蛋白质浓度。方法4这个方法(通常被称为喹啉酸法或者BCA法)这个基于蛋白质与铜离子反应生成亚铜离子。喹啉酸试剂用于检测亚铜离子。很少物质会干扰这个反应。当存在干扰物质的影响时可以通过稀释来最小化干扰,但必须使得待测的蛋白质的浓度足够精确测量。或者,在方法2中给出的蛋白质凝结的的程序可能被用于去除干扰物质。因为不同的蛋白质种类可能给出不同的颜色反应强度,参考蛋白质和待测蛋白质必须相同。使用蒸馏水R来制备此法中用到的所有缓冲溶液和试剂。测试溶液.用描述的缓冲溶液溶解适宜数量的待测物质制得浓度在参考溶液浓度范围内的溶液。参考溶液.用描述的缓冲溶液溶解蛋白质的参考物质。用同一缓冲稀释部分该溶液制得不少于5个参考溶液,制的的溶液蛋白质浓度均匀分布在10μg/ml-1200μg/ml之间的合适的范围内。空白.使用缓冲溶液来制备测试溶液和参比溶液。BCA试剂.溶解10g的二钠试剂R,20g碳酸钠一水合物R,1.6g酒石酸钠R,4g氢氧化钠R,和9.5g碳酸氢钠R在蒸馏水(R)中。如果有必要,用氢氧化钠溶液R或者碳酸氢钠溶液R调节pH至11.25,用蒸馏水R稀释至1000ml,混匀。步骤.分别将0.1ml的参比溶液,待测溶液,和空白溶液与铜-BCA试剂混合。在37℃条件下反应30min,注意时间,允许混合物冷却至室温。在反应中点60min内,562nm处用石英比色杯测定参考物质和待测物质的吸光度(2.2.25),用空白溶液作为补偿溶液。待溶液冷却至室温后,颜色强度逐渐加深。计算.吸光度对蛋白质的浓度的关系不是线性的。然而,假如,制备标准曲线的浓度范围足够小,后者将接近线性。以参比溶液的吸光度对蛋白质的浓度作图,再线性回归得到标准曲线。从标准曲线和待测溶液的吸光度来计算得到待测溶液的蛋白质浓度。方法5这个方法(通过常称为缩二脲法)基于铜离子与蛋白质在碱性溶液中的反应而引起的545nm处的吸光度的变化。这个试验在IgG与白蛋白之间差异不大。氢氧化钠和缩二脲试剂的加入作为一个联合试剂,在氢氧化钠加入后不充分的混合,或者在氢氧化钠溶液的加入和缩二脲试剂的加入之间额外的时间将会使得IgG样品比白蛋白样品较高的反应。三氯酸原理用于减小干扰物质,也可以用于测定待测溶液中蛋白质的含量,在浓度小于500μg/ml的情况下。使用蒸馏水R来制备所有此试验中用到的缓冲溶液和试剂。待测溶液.用9g/l的氯化钠溶液R溶解适宜数量的待测物质制的浓度在参比溶液浓度范围内的溶液。参比溶液. 用9g/l的氯化钠溶液R溶解待测蛋白质的参比物质。用9g/l的氯化钠溶液R稀释部分此溶液制的不少于3个参比溶液,这一列溶液的蛋白质浓度均匀分布在0.5mg/ml-10mg/ml之间的适宜范围内。空白.使用9g/l的氯化钠溶液R。缩二脲试剂.用10ml的蒸馏水溶解3.46g的硫酸铜,冷却(溶液A)。用80ml的热蒸馏水溶解34.6g的柠檬酸钠R20.0g的无水碳酸钠R。冷却(溶液B)。混合溶液A和溶液B,用蒸馏水R稀释至200ml假如试剂发生浑浊或者包含任何沉淀,不要使用此试剂。步骤.在一个待测溶液中加入等体积的60g/l的氢氧化钠R,混合。立刻加入相当于0.4倍体积待测溶液的缩二脲试剂,迅速混匀。在15℃-25℃的条件下放置不少于15min。90min内加入缩二脲试剂,在最大吸收波长545nm处测定参比溶液和待测溶液的吸光度(2.2.25),用空白溶液作为补偿液体。在蛋白质浓度计算中,任何产生混浊或者沉淀的溶液都是不被接受的。计算.吸光度对蛋白质浓度的关系接近线性在参比溶液指定的蛋白质浓度范围内。以参比溶液的吸光度对蛋白质浓度作图,利用线性回归做标准曲线。计算标准曲线的相关系数,一个好的系统产生的标准曲线的相关系数不少于0.99.从标准曲线和待测溶液的吸光度来测定待测溶液中的蛋白质浓度。干扰物质.为了家少干扰物质的影响,蛋白质可以按以下步骤进行沉淀:加入0.1倍体积的500g/l三氯酸溶液R到1倍体积待测样品溶液中,取走上清液,用较小体积的0.5M的氢氧化钠溶解沉淀。用制得的溶液来制备待测溶液。方法6荧光法是基于o-邻苯二醛对蛋白质的化学衍生反应。它与蛋白质的伯胺基发生反应(N-末端氨基酸和θ-氨基的赖氨酸残基)此法的灵敏度可以通过在加o-邻苯二醛之前按水解蛋白质来增加。水解可以使组成氨基酸的α-氨基可以和邻苯二醛试剂反应。此法需要非常少量的蛋白质。伯胺,例如三(羟甲基)氨基甲烷和氨基酸缓冲溶液,与邻苯二醛反应的必须避免或者替换。高浓度的氨水与邻苯二醛反应。氨与邻苯二醛反应产生的荧光不稳定。自动化程序的使用来标准化这个程序可以增加测试的准确性和精密度。待测溶液.用9g/l氯化钠溶液R溶解适宜数量待测物质制的浓度在参比溶液浓度范围内的溶液。在加邻苯二醛试剂之前调节8-10.5。参比溶液.溶解蛋白质的参比溶液杂9g/l的氯化钠溶液R中。用9g/l氯化钠溶液R稀释部分此溶液制的不少于5个参比溶液,参比溶液蛋白质浓度均匀分布在10μg/ml和200μg/ml之间的适宜范围内。在加邻苯二醛试剂之前调节8-10.5。空白溶液. 用9g/l氯化钠溶液R。硼酸盐缓冲液.用蒸馏水R溶解61.83g的硼酸R,用氢氧化钾R调节pH10.4,用蒸馏水稀释至1000ml,混匀。邻苯二醛储备溶液.用1.5ml的甲醇溶解1.20g的邻苯二醛试剂R,加入100ml的硼酸缓冲溶液,混匀。加0.6ml300g/l 十二烷基醚聚乙二醇23溶液R,混匀。室温下储存,3星期内使用。邻苯二醛试剂.在5ml的邻苯二醛储存溶液中加入15μl的2-巯基乙醇R。至少在使用前30min内植被。24h内使用。步骤.将0.1ml的邻苯二醛试剂与10μl待测溶液和每个参比溶液混合,室温摁下放置15min。加入0.5M的氢氧化钠3ml混匀。在激发波长340nm和发射波长440和455nm处测得参比溶液和待测溶液的荧光强度(2.2.21)。因为照射荧光强度降低,对一个给定的样品的荧光强度只测定一次。计算.荧光强度与蛋白质浓度的关系是线性的。用参比溶液的荧光强度对蛋白质浓度作图,线性回归得到标准曲线,根据待测溶液的荧光强度得到待测溶液的浓度。

  • “食品中蛋白质的测定”有关问题的求助。

    背景:1、某乳制品执行GB 25191,按GB5009.5第一法测定其蛋白质含量。2、GB12591中,蛋白质含量要求为:≥ 2.3g/100g。3、该乳制品的营养成分表中注明:蛋白质含量:4.8g/125ml。现有以下问题:1、实验该如何取样?按重量称取样品,还是按体积取样?2、检验结果如何报出?单位为g/100g,还是g/125 ml?请各位前辈不吝赐教,谢谢!

  • 蛋白质与多肽蛋白质粉

    蛋白质与多肽蛋白质粉 人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。 蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄蛋白质RNL(g/d) 初生—6个月 1.5-3 1岁 35 3岁 45 5岁 55 7岁 60 9岁 65 10-16岁 75-85 成年女性 65 成年男性 75 妊娠 +15 乳母 +20 根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。 上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状 单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。 现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。三、优质蛋白质和劣质蛋白质的区别。 要弄清楚何为优质蛋白质?何为劣质蛋白质?我们要引入什么是必需氨基酸的概念。营养生理学家、生化学家发现构成人体蛋白质的氨基酸共有21种,而这些氨基酸中其中有4种是可以由体内含碳和含氮底物自己合成的,被称为非必需氨基酸,还有10个必需的氨基酸,是人类机体无法制造需要从饮食中摄取的,另有7个是介于这两者之间的被称为条件必需氨基酸。表2. 必需、条件必需和非必需氨基酸 必需氨基酸条件必需氨基酸 非必需氨基酸 亮氨酸牛黄酸 丙氨酸 异亮氨酸酪氨酸 谷氨酸 缬氨酸甘氨酸 天冬氨酸 赖氨酸丝氨酸 天冬酰胺 苯丙氨酸(酪氨酸)脯氨酸 蛋氨酸(半胱氨酸)谷氨酰酸 苏氨酸 胱氨酸 色氨酸 组氨酸 精氨酸 虽然蛋白质广泛存在于许多动物性和植物性食物中,但是必需氨基酸的构成异差很大,WHO把“蛋白质其组成恰好符合人体需要”的蛋白质称为理想蛋白质,在自然界这种理想的蛋白质普遍认为是鸡蛋蛋白,因此就把鸡蛋蛋白作为衡量蛋白质优劣的参照蛋白,科学家把它作为一把尺子来衡量各种蛋白质,并制定出标准,以4种必需氨基酸为最低限来决定其优劣,即色氨酸、苏氨酸、赖氨酸或者蛋氨酸(半胱氨酸)。 通过比较科学发现,肉、鱼、蛋、牛奶、乳酪含有优质蛋白,大豆、花生、豌豆也含有较多的高质量蛋白。进一步研究发现它们都不够完美,因而要求大家对优质的动物性蛋白和植物性蛋白进行了科学搭配才是最完美的全价蛋白质(complete protein)。表3. 部分高质量蛋白

  • 蛋白质对人体的作用

    蛋白质的摄入量要占总蛋白的50%以上。具体到一天,即一个鸡蛋、一杯250毫升的牛奶(或酸奶)、3~4两肉,再来点豆腐、豆皮等豆制品。不同来质蛋白质的摄入量要占总蛋白的50%以上。具体到一天,即一个鸡蛋、一杯250毫升的牛奶(或酸奶)、3~4两肉,再来点豆腐、豆皮等豆制品。不同来源的蛋白质一起吃,可以发挥蛋白质的互补作用,促进消化吸收。源的蛋白质一起吃,可以发挥蛋白质的互补作用,促进消化吸收。

  • 蛋白质的各种简易检测方法

    (一)蛋白质的盐析 取1.5mL蛋白质溶液,加入等体积饱和硫酸铵溶液(浓度为50%饱和),微微摇动试管,使溶液混合均匀后,静置数分钟,球蛋白即析出呈絮状沉淀(如无沉淀可再加少许饱和硫酸铵),用滤纸滤取上清液,滤液中再加入固体硫酸铵粉末至不再溶解,析出的即为清蛋白,再加水稀释,观察沉淀是否溶解。 (二)蛋白质的沉淀 1.用重金属盐沉淀蛋白质 取三支试管,各加1mL蛋白质溶液,分别各加3滴6%醋酸铅溶液、3滴2%硫酸铜溶液和3滴1%硝酸银溶液,观察蛋白质沉淀的析出。 2.用有机酸沉淀蛋白质 取二支试管,各加1mL蛋白质溶液,并加5%醋酸溶液使之呈酸性(该沉淀反应最好在弱酸中进行)。然后分别滴加饱和苦味酸、饱鞣酸溶液,直至沉淀产生为止。 用10%三氯醋酸溶液、3%磺柳酸溶液进行类似实验(用量同前),观察现象。

  • 蛋白质化学与蛋白质组学(推荐)

    蛋白质化学与蛋白质组学夏其昌 曾嵘 等编著2004年4月出版ISBN 7-03-012401-4/Q.133116开,平装,580页定价: 75.00元 本书系统论述了蛋白质化学基础理论和实验技巧,也反映了蛋白质组学研究的最新成果。内容包括:蛋白质的表征,蛋白质的组成分析和序列测定,与此相关的实验方法,包括各种色谱、电泳、质谱技术等,以及应用在蛋白质表征研究和基因工程产品的质检方面的实际范例。在蛋白质组学领域介绍了基本概念、样品制备、双向凝胶电泳的图像分析和定量分析、质谱等常规方法,并介绍了国际上最新的多维技术在研究中的应用;同时充分体现了生物信息学在蛋白质组研究中的重要性。 本书可作为生物学、医学、化学专业大学生,研究生和教学人员的参考书,也是从事生物化学、分子生物学、医学等领域中分离分析工作人员的参考书。

  • 购买蛋白质样品

    我用安捷伦6520分析蛋白质样品,现在急需购买胰岛素和细胞色素C,哪位大侠知道哪里可以买到么?

  • 【分享】凝胶层析法测定蛋白质分子量

    一、实验目的1. 了解凝胶层析的原理及其应用。2. 通过测定蛋白质分子量的训练,初步掌握凝胶层析技术。二、实验原理凝胶层析又称排阻层析,凝胶过滤,渗透层析或分子筛层析等。它广泛地应用于分离、提纯、浓缩生物大分子及脱盐、去热源等,而测定蛋白质的分子量也是它的重要应用之一。凝胶是一种具有立体网状结构且呈多孔的不溶性珠状颗粒物质。用它来分离物质,主要是根据多孔凝胶对不同半径的蛋白质分子(近于球形)具有不同的排阻效应实现的。亦即它是根据分子大小这一物理性质进行分离纯化的。分离原理参见“理论部分的凝胶层析一节”。对于某种型号的凝胶,一些大分子不能进入凝胶颗粒内部而完全被排阻在外,只能沿着颗粒间的缝隙流出柱外;而一些小分子不被排阻,可自由扩散,渗透进入凝胶内部的筛孔,尔后又被流出的洗脱液带走。分子越小,进入凝胶内部越深,所走的路程越多,故小分子最后流出柱外,而大分子先从柱中流出。一些中等大小的分子介于大分子与小分子之间,只能进入一部分凝胶较大的孔隙,亦即部分排阻,因此这些分子从柱中流出的顺序也介于大、小分子之间。这样样品经过凝胶层析后,分子便按照从大到小的顺序依次流出,达到分离的目的。凝胶层析分离原理示意动画。对于任何一种被分离的化合物在凝胶层析柱中被排阻的范围均在0~100%之间,其被排阻的程度可以用有效分配系数Kav(分离化合物在内水和外水体积中的比例关系)表示,Kav值的大小和凝胶柱床的总体积(Vt)、外水体积(V0)以及分离物本身的洗脱体积(Ve)有关:Kav = (Ve-V0)/(Vt-V0) ----------- (1)在限定的层析条件下,Vt和V0都是恒定值,而Ve是随着分离物分子量的变化而改变。分子量大,Ve值小,Kav值也小。反之,分子量小Ve值大,Kav值大。有关凝胶层析柱中凝胶自身(基质)体积(Vg)、外水体积(V0)、内水体积(Vi)及柱床总体积(Vt)的参见示意图。凝胶层析柱中的几种层析峰。有效分配系数Kav是判断分离效果的一个重要参数,同时也是测定蛋白质分子量的一个依据。在相同层析条件下,被分离物质Kav值差异越大,分离效果越好。反之,分离效果差或根本不能分开。在实际的实验中,我们可以实测出Vt、V0及Ve的值,从而计算出Kav的大小。对于某一特定型号的凝胶,在一定的分子量范围内,Kav与logMw (Mw表示物质的分子量) 成线性关系:Kav =-b logMw + C --------- (2)其中 b,C为常数。同样可以得到:Ve =-b'logMw + C' --------- (3)其中 b', C'为常数。即 Ve 与 logMw 也成线性关系。我们可以通过在一凝胶柱上分离多种已知分子量的蛋白质后,并根据上述的线性关系绘出标准曲线,然后用同一凝胶柱测出其它未知蛋白的分子量。三、器材与试剂(一)器材1. 玻璃层析柱((20mm×60cm)2. 恒流泵(或下口恒压贮液瓶)3. 自动部分收集器4. 紫外分光光度计5. 100ml试剂瓶6. 1000ml量筒7. 250ml烧杯8. 50ml、100ml烧杯9. 10ml(或5ml)刻度试管(二)试剂1. 标准蛋白(1)牛血清白蛋白:Mw=67,000(上海生化所)(2)鸡卵清清蛋白:Mw=45,000(美国SIGMA公司)(3)胰凝乳蛋白酶原A:Mw=24,000(美国SIGMA公司)(4)溶菌酶:Mw =14,3002. 未知蛋白质样品:由实验室准备3. 0.025M KCl-0.1M HAC(乙酸)(洗脱液1000ml)4. 蓝色葡聚糖-2000

  • 了解人体中的蛋白质

    蛋白质在身体内无法储存,进食后数小时就会消耗完毕,因此一日三餐均衡摄取蛋白质,才能让肌肉保持最佳状态。早餐可以选用奶制品、蛋类、豆制品等;午餐和晚餐可以吃畜禽肉类、鱼虾类、豆制品等。蛋白质在身体内无法储存,进食后数小时就会消耗完毕,因此一日三餐均衡摄取蛋白质,才能让肌肉保持最佳状态。早餐可以选用奶制品、蛋类、豆制品等;午餐和晚餐可以吃畜禽肉类、鱼虾类、豆制品等。

  • 【分享】蛋白质提取

    介绍了不同几种来源蛋白质的提取方法以及在提取过程中的注意事项.对做蛋白研究的很有用..1.植物组织蛋白质提取方法2.植物组织蛋白质提取方法 3.组织:肠黏膜 4.lysis solution5.植物材料:水稻苗,叶鞘,根6.蛋白质样品制备7.植物根中蛋白质的抽取8.SDS extraction followed by acetone precipitation9.材料:细菌蛋白10.线粒体蛋白的提取 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=120198]蛋白质提取[/url]

  • 蛋白质浓缩、干燥及贮存

    一、样品的浓缩生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:1. 减压加温蒸发浓缩通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。2. 空气流动蒸发浓缩 空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋 内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。3. 冰冻法 生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液 用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。4. 吸收法 通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。5. 超滤法 超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵 压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。Diaflo 超滤膜的分子量截留值http://img.dxycdn.com/trademd/upload/userfiles/image/2013/10/A1381571714_small.jpg 用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。二、干燥生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。三、贮存生物大分子的稳定性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点。样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定。

  • 【实战宝典】普通C18柱能否用来分离蛋白质?

    [b][font=宋体]问题描述:现有一个分子量[/font]7[font=宋体]万左右的蛋白,普通的[/font]C[sub]18[/sub][font=宋体]色谱柱(非蛋白专用柱)能否用于分析此样品?[/font][font=宋体]解答:[/font][/b][font=宋体]([/font]1[font=宋体])采用分析型[/font]C[sub]18[/sub][font=宋体]液相色谱柱分离蛋白质样品时,蛋白质分子量不能太大,否则容易造成色谱柱堵塞,压力增加。[/font][font=宋体]([/font]2[font=宋体])采用反相硅胶色谱柱分离蛋白质样品,通常[/font]60?[font=宋体]的硅胶柱,蛋白质分子量一般最大只能到[/font]2000[font=宋体];[/font]100?[font=宋体]的硅胶柱,蛋白质分子量能到[/font]5000~7000[font=宋体];[/font]300?[font=宋体]的硅胶柱,蛋白质分子量能到[/font]20000~30000[font=宋体];再大分子的蛋白,就不能用反相硅胶柱来分离了。[/font][font=宋体]([/font]3[font=宋体])分离分子量较大的蛋白质时,建议使用蛋白质专用柱或使用体积排阻色谱(凝胶色谱,[/font]GPC[font=宋体])进行分析。[/font][font='微软雅黑','sans-serif'][color=black][back=white]领取更多《实战宝典》请进:[url]http://instrument-vip.mikecrm.com/2bbmrpI[/url][/back][/color][/font][font='微软雅黑','sans-serif'][color=black][back=white] [/back][/color][/font]

  • 【转帖】生命所需——蛋白质和多肽蛋白质粉!

    人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄 蛋白质RNL(g/d)初生—6个月 1.5-31岁 353岁 455岁 557岁 609岁 6510-16岁 75-85成年女性 65成年男性 75妊娠 +15乳母 +20根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。

  • 蛋白质提取方法-------列举10种方法

    一、植物组织蛋白质提取方法(summer)1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4 小时)。3、用离心机离心8000rpm40min4℃或11100rpm20min4℃4、提取上清夜,样品制备完成。蛋白质提取液:300ml1、1Mtris-HCl(PH8) 45ml2、甘油(Glycerol)75ml3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g这种方法针对SDS-PAGE,垂直板电泳!二、植物组织蛋白质提取方法 (summer)三氯醋酸—丙酮沉淀法1、在液氮中研磨叶片2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1 小时),然后真空干燥沉淀,备用。4、上样前加入裂解液,室温放置30 分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm以上1小时或更长时间以没有沉淀为标准),可临时保存在4℃待用。5、用Brandford法定量蛋白,然后可分装放入-80℃备用。药品:提取液:含10%TCA 和0.07%的β-巯基乙醇的丙酮裂解液:2.7g 尿素0.2gCHAPS 溶于3ml 灭菌的去离子水中(终体积为5ml),使用前再加入1M 的DTT65ul/ml。这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少!三、组织:肠黏膜 (newinbio)目的:WESTERN BLOT检测凋亡相关蛋白的表达应用TRIPURE 提取蛋白质步骤:含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量)倒转混匀,置室温10min离心:12000 g,10min,4度,弃上清加入0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE 用量)振荡,置室温20min离心: 7500g,5 min,4 度,弃上清重复0.3M盐酸胍/95%乙醇步2 次沉淀中加入100%乙醇 2ml充分振荡混匀,置室温20 min离心: 7500g,5min,4度,弃上清吹干沉淀1%SDS溶解沉淀离心:10000g,10min,4度取上清-20 度保存(或可直接用于WESTERN BLOT)存在的问题:加入1%SDS 后沉淀不溶解,还是很大的一块,4 度离心后又多了白色沉定,SDS 结晶?测浓度,含量才1mg/ml左右。解决:提蛋白试剂盒,另外组织大小适中,要碎,立即加2X BUFFER,然后煮5-10分钟,效果很好的。四、lysis solution:(yog)Protein extraction buffer (Camiolo buffer):100 ml= (0.075M Potassium Acetate) 0.736g(0.3M) NaCl 1.753g(0.1M) L-arginine basic salt 1.742g(0.01M) EDTA-HCl 0.292g(0.25%) Triton X-100 250. ulup to 100 ml with dH20. pH 7.4. Then 0.2 um filter.1. Freeze tissue in liquid nitrogen.2. Rinse in PBS then mince.3. Add 1 ml Camiolo extraction buffer per 100 mg of tissue.4. Homogenize for 1 minute at 4\'C.5. Spin at 3,000. rpm/15 minutes/4\'C.6. Remove supernatant and save in another tube.7. If necessary, dialize the supernatant against PBS with50mM/L Tris-HCl pH 7.4.五、植物材料:水稻苗,叶鞘,根(ynibcas)1、200 毫克样品置于冰上磨碎2、加lysis buffer,离心,10000rpm,4度,5min 取上清3、重复离心5minlysis buffer:urea np-40 ampholine 2-me pvp-40

  • 蛋白质的提取和纯化--选择材料及预处理

    纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。浓缩、干燥及保存一、样品的浓缩生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:1. 减压加温蒸发浓缩通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。2. 空气流动蒸发浓缩 空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。3. 冰冻法 生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。4. 吸收法 通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。5. 超滤法 超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。二、干燥生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。三、贮存生物大分子的稳定性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点。1. 样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。2. 一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。3. 贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定。

  • 蛋白质的2D NOESY 图谱对样品有怎样的要求

    想通过做分子量为24K Da的蛋白质二维NOESY图谱来看蛋白质的二级和三级结构,不知道 可否?可以的话需要对样品进行怎样的处理?只做这个可以知道蛋白质的三级结构吗?谢谢大家指教。

  • 质谱技术在蛋白质组研究中的分析方法

    2003年人类基因组精细图绘制完成,是人类科学史上一个里程碑式的事件。后基因组时代的研究重点自然落在了蛋白质头上。为啥?因为中心法则告诉我们,基因的产物——蛋白质,是生命活动的最终执行者。与基因组类比,研究生物体内全套蛋白质的科学,就是蛋白质组学。基因组计划完成的同年,人类蛋白质组计划启动,令人激动的是,2014年人类蛋白质组的草图也完成了。而蛋白质组学能够飞速发展的最大功臣非质谱莫属。质谱的应用范围非常广泛,但这里只讨论蛋白质组学中的质谱。简单地说,质谱法(mass spectrometry)就是对肽段离子的重量(质荷比,m/z)进行测量的分析方法。样品经质谱仪(mass spectrometer)检测得到质谱图(mass spectrum),通过对质谱图的分析就可以对样品中的蛋白进行鉴定、定量。亲,图1的这种典型的蛋白质组学流程都很熟悉吧。蛋白首先都要被特异性的酶(通常为Trypsin)切割为肽段,再进行后续分析,这在蛋白质组学中被称为“自下而上”的研究策略(Bottom-up proteomics)。我们平时见到的质谱分析基本都是这种类型。提到蛋白质组,即会联想到一系列高大上的名词,iTRAQ、SWATH、SILAC、Shotgun、Label-free等等。很多概念容易弄混淆,下面我们就来理理清楚。图1. 典型的蛋白质组学流程大体上,质谱研究蛋白主要是鉴定和定量。通过二级质谱图(MS2或者MS/MS)进行数据库搜索匹配鉴定蛋白。通过各种标记或非标记的手段对不同样品中的蛋白进行比较就是定量。蛋白定量比较是质谱最重要的用途,图2是对定量方法的一个简单总结。非标定量(Label-free)不需要标记,不同样品分别处理、分别进质谱检测;优点是处理简单、无需标记、价格便宜、可以比较很多组样品,缺点是对操作步骤、LC、质谱稳定性要求严格。SILAC是在细胞培养基中加入稳定同位素标记的氨基酸,在代谢水平标记蛋白,一级质谱图进行定量,可以做到三组样品混合后进行比较,定量准确,但是不能标记组织样本,养细胞成本也较贵。双甲基化标记是通过化学反应的办法在肽段水平进行标记,一级质谱定量,也可以三组对比,标记试剂都比较便宜,而且可以标记任何来源的样品。iTRAQ和TMT是商品化的试剂盒,肽段水平标记,二级质谱定量;分别可以做到最多8组和10组样品间蛋白质组的比较。图2. 质谱定量方法以上这几个是一家的,还有几个名词是属于另外一家,比如Shotgun (DDA)、SWATH/DIA、SRM (MRM)、MRMHR/PRM。质谱进行数据采集的方式大致分为三种:鸟枪法(Shotgun)、选择反应监控(SRM)和全景式的SWATH/DIA。下面对照图3再来简单介绍一下。图3. 质谱扫描方式DDA、IDA、Shotgun和鸟枪法说的是相同的东西,意思是质谱在每个循环的中从一级里挑选丰度高的TopN个肽段去打碎做二级扫描,得到的结果通过与已知数据库中的理论蛋白进行匹配。DDA简单有效,分析流程比较成熟,也是目前质谱分析的主流方式。DDA也有其固有的缺陷,即具有一定的随机性,偏向于检测丰度较高的肽段,而抑制了低丰度肽段的检测。靶向策略被称为质谱领域的Western blot。质谱只去采集目标肽段大小的离子信息,因而提高了灵敏度和特异性。这种方法用来研究感兴趣的特定蛋白,定量准确,但是通量很有限。SWATH/DIA这种全景式的数据采集方式在最近几年突然火了起来,被认为在不远的未来可能会取代DDA的主流位置。该方法采取的策略是将扫描范围内的所有肽段按照质荷比分为若干个窗口,再对每个窗口里所有的肽段一起打碎,采二级,数据分析时通过抽提蛋白的子离子信息进行定量。SWATH/DIA解决了DDA中随机性选择肽段的缺陷,所以重复性更好,定量的准确性基本达到了SRM的水平,而且可以实现大规模定量。借用听来的一个比喻来说明:DDA就像机关枪扫射,数量多、体积大的目标命中的概率要大一些。靶向扫描(SRM或PRM)就像精准狙击,排除干扰,目标明确,每一枪直指目标,但是难以大规模消灭敌人。SWATH/DIA就是地毯式轰炸,只要暴露在我方攻击范围内的敌人,不管三七二十一,全部炸完。图4. 定量方法与采集方式结合如果将上述的定量方法(图2)和质谱数据采集方式(图3)结合起来,就得到了现在基于质谱的蛋白质组学研究的各种策略(图4)。再打个比方,保证吃货们一听就懂:鸡、鱼、肉、蛋、蔬菜要通过炒锅、烤箱、高压锅、微波炉等烹调之后才能变为美食,填饱肚子。同样的,各种定量方法(非标的和标记的)处理的样品,要通过质谱各种采集方式变为电脑中的数据,才能分析并从中得到蛋白的信息。本次的介绍就先到这里了,如果其中有什么问题,欢迎您批评和建议,我们会努力变得更好;如果需要跟我们进行技术交流和讨论,欢迎大家联系武汉金开瑞。后续我们还会继续推出对质谱技术各方面进行解析的文章,敬请期待。ReferencesA draft map of the human proteome. Nature 509: 575–581 (2014)Mass-spectrometry-based draft of the human proteome. Nature 509: 582–587 (2014)A review: Annu. Rev. Biochem. 80: 273–99 (2011)SILAC: Molecular & Cellular Proteomics 1: 376-386 (2002)iTRAQ: Molecular & Cellular Proteomics 343: 91–99 (2010)SRM: Nature Methods 9: 555–566 (2012)SWATH: Molecular & Cellular Proteomics 11: 1–17 (2012)

  • 【原创】蛋白质提取与纯化技术

    纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法   亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。细胞的破碎1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS

  • 【资料】什么是蛋白质

    蛋白质的英文名词来源于希腊文,其含义是“第一”和“基本的”。反映了蛋白质是生命活动中最基本的和最重要的物质。蛋白质由碳、氢、氧、氮4种主要元素组成,有的蛋白质还含有硫、磷等其他元素。如血红蛋白含有铁、甲状腺球蛋白含有碘等。蛋白质的基本结构单位是氨基酸。氨基酸的特点是在分子一端含有氮和氢元素组成的化学基团——氨基。动物不能合成氨基,只有植物有利用硝酸盐合成氨基的能力。所以在动物饲养中,要依靠含有氨基酸、蛋白质的饲料,使家畜、家畜等生产蛋白质(净肉)。 蛋白质由一长串氨基酸链组成。一般都很长,如血红蛋白是由580个氨基酸组成。但氨基酸种类只有20种,在蛋白质中按严格的顺序排列,构成多种多样的生物专一性的蛋白质。由于人体不能合成氨基酸,只能从食物中获得蛋白质,并在肠内将蛋白质分解成各种氨基酸,这些氨基酸被吸收后,重新合成人体的特殊蛋白质。合成蛋白质的主要器官是肝脏。 从蛋白质这个名字看,好像蛋白质来源离不开蛋。其实动物、植物以及其他生物体都含有蛋白质。虽然最常党见的蛋白质——蛋清是白色的。但并非所有蛋白质都是白色的。血液上的血红蛋白是红色的,绿色植物的叶绿蛋白是绿色的。 同碳水化物和脂肪相比,蛋白质的两个代谢特点,一是它主要在代谢中发挥作用,而不是分解后为人体提供能量;二是蛋白质代谢的起点和终点都是蛋白质,即起点是人体的异蛋白质(如鱼的蛋白质,鸡肉蛋白质等),而终点则成了人体特有的蛋白质。蛋白质由氨基酸组成,是另一种重要的供能物质,每克蛋白质提供4卡路里的热量。但蛋白质的更主要的作用是生长发育和新陈代谢。过量的摄入蛋白质会增加肾脏的负担。因此蛋白的摄入要根据营养状况、生长发育要求达到供求平衡。通常蛋白摄入所产生的热量约占总热量的20%左右为宜。

  • 奶粉蛋白质检测仪检测样品处理简单吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]奶粉蛋白质检测仪检测样品处理简单吗,奶粉蛋白质检测仪的样品处理相对简单。奶粉蛋白质快速检测仪具有简单、快速、准确的优点,用于快速检测奶粉中的蛋白质含量。它采用进口超高亮发光二极管作为光路系统,内置工作曲线,无需配制标准溶液,只需使用配套试剂进行零点校准,即可实现样品的快速定量测定。同时,该仪器提供齐全的专用前处理设备及耗材,配备专用预制试剂,缩短试剂配制时间,操作使用方便。总的来说,奶粉蛋白质检测仪简化了传统检测方法中复杂的样品处理步骤,使得样品处理变得相对简单和快速。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405161010150026_3092_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 蛋白质浓度测定的各种方法及原理

    [font=宋体][font=宋体]蛋白质浓度测定的各种方法及原理是生物化学和分子生物学实验中的重要环节。蛋白质浓度的准确测定对于研究生物分子相互作用、蛋白质功能和动力学、以及生物样品的分析和鉴定等方面都具有重要的意义。本文将介绍几种常用的蛋白质浓度测定方法及其原理,包括紫外吸收法、微量凯氏定氮法、双缩尿法、[/font][font=Calibri]Lowry [/font][font=宋体]法和考马斯亮蓝法等。通过对这些方法的比较和分析,可以更好地了解它们的优缺点,以便根据实际实验需求选择合适的方法来测定蛋白质浓度。[/font][/font][font=宋体] [/font][font=宋体][b]①紫外吸收法[/b][/font][font=宋体] [/font][font=宋体]检测原理:[/font][font=宋体] [/font][font=宋体][font=宋体]蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共扼双键,使蛋白质具有吸收紫外光的性质。吸收高峰在[/font][font=Calibri]280nm[/font][font=宋体]处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在[/font][font=Calibri]238nm[/font][font=宋体]的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,进行蛋白质含量的测定。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体]优点:简便、灵敏、快速,不消耗样品,测定后仍能回收使用。[/font][font=宋体] [/font][font=宋体]缺点:测定蛋白质含量的准确度较差,干扰物质多。[/font][font=宋体] [/font][font=宋体]干扰物:含有嘌呤、嘧啶、核酸等吸收紫外光的物质。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:[/font][font=Calibri]50~100ug[/font][font=宋体]蛋白含量。[/font][/font][font=宋体] [/font][font=宋体]适用范围:适于用测定与标准蛋白质氨基酸组成相似的蛋白质。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]②微量凯氏定氮法[/b][/font][font=宋体] [/font][font=宋体]凯氏定氮法被国内外视为蛋白质含量的标准检验方法,可作为衡量其他蛋白质含量检测方法准确性的标准。[/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体] [/font][font=宋体]样品与浓硫酸共热,含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。[/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体]优点:通用性强,测定费用低,易实现,仪器简单且测定结果的重复性和重现性好。[/font][font=宋体] [/font][font=宋体]缺点:实验耗时长、灵敏度低。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:[/font][font=Calibri]0.2~1mg[/font][font=宋体]蛋白含量。[/font][/font][font=宋体] [/font][font=宋体]适用范围:凯氏定氮法测的是总蛋白的量,一些非蛋白氮无法检测出。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]③双缩尿法[/b][/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体] [/font][font=宋体][font=宋体]双缩尿([/font][font=Calibri]NH3CONHCONH3[/font][font=宋体])是两个分子经[/font][font=Calibri]180[/font][font=宋体]℃左右加热,放出一个分子氨后得到的产物。在强碱溶液中,双缩尿与[/font][font=Calibri]CuSO4[/font][font=宋体]形成紫色络合物,称为双缩尿反应。凡具有两个酰胺基或两个直接连接的肽链,或能过一个中间碳原子相连的肽键,这类化合物都有双缩尿反应。紫色络合物颜色的深浅与蛋白质浓度成正比,与蛋白质分子量及氨基酸成分无关。[/font][/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体]优点:适合检测总蛋白质的含量,操作简单、测量速度快。[/font][font=宋体] [/font][font=宋体]缺点:标准物质必须使用代表性很强的样品,需使用其他参考方法测出标准物质中的蛋白质总含量,故测定工作费力费时。不宜测定样品种类多、彼此差异大的样品。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:测定蛋白质含量测定范围为[/font][font=Calibri]1-20mg[/font][font=宋体]蛋白质。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]干扰物:硫酸铵、[/font][font=Calibri]Tris[/font][font=宋体]缓冲液和某些氨基酸等。[/font][/font][font=宋体] [/font][font=宋体]适用范围:常用于需要快速,但并不需要十分精确的蛋白质测定。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b][font=宋体]④[/font][font=Calibri]Lowry [/font][font=宋体]法[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]Lowry [/font][font=宋体]法是双缩脲法的发展,结合了双缩脲试剂和酚试剂与蛋白质的反应,是最灵敏的蛋白质测定方法之一,在生物化学领域得到广泛的应用,目前分为基本法和改良简易法,改良简易法可获得与基本法相近的结果。[/font][/font][font=宋体] [/font][font=宋体]基本法实验原理:[/font][font=宋体] [/font][font=宋体][font=宋体]显色原理与双缩尿法相同,但加入了[/font][font=Calibri]Folin-[/font][font=宋体]酚酞试剂,以增加显色量,从而提高检测蛋白质的灵敏度。这两种显色反应产生深兰色的原因是:①在碱性条件下,蛋白质中的肽键与铜结合生成复合物。②[/font][font=Calibri]Folin[/font][font=宋体]一酚试剂中的磷钼酸盐一磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。在一定的条件下,兰色深度与蛋白的量成正比。[/font][/font][font=宋体] [/font][font=宋体]特点:[/font][font=宋体] [/font][font=宋体]优点:灵敏度高。[/font][font=宋体] [/font][font=宋体]缺点:耗费时间长,操作时间需精准控制,标准曲线绘制麻烦,专一性较差,干扰物质比较多。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:可检测的最低蛋白质量达[/font][font=Calibri]5ug[/font][font=宋体]。通常测定范围是[/font][font=Calibri]20~250ug[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]干扰物:酚类、柠檬酸、硫酸铵、[/font][font=Calibri]Tris[/font][font=宋体]缓冲液、甘氨酸、糖类、甘油等。[/font][/font][font=宋体] [/font][font=宋体]适用范围:除蛋白含量测定,也可用于酪氨酸和色氨酸的定量测定。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]⑤考马斯亮蓝法[/b][/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体] [/font][font=宋体][font=宋体]考马斯亮蓝[/font][font=Calibri]G-250[/font][font=宋体]染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置([/font][font=Calibri]max[/font][font=宋体]),由[/font][font=Calibri]465mm[/font][font=宋体]变为[/font][font=Calibri]595nm[/font][font=宋体],溶液的颜色也由棕黑色变为蓝色。经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。在[/font][font=Calibri]595mm[/font][font=宋体]下测定的吸光度值[/font][font=Calibri]A595[/font][font=宋体],与蛋白质浓度成正比。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体][font=宋体]优点:灵敏度比[/font][font=Calibri]Lowry[/font][font=宋体]高约[/font][font=Calibri]4[/font][font=宋体]倍,高效率、检测过程简便、只需要一种试剂,抗干扰能力强。[/font][/font][font=宋体] [/font][font=宋体]缺点:测定误差大,不适用于不同蛋白的检测。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:其最低蛋白质检测量可达[/font][font=Calibri]1ug[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]干扰物:干扰物质少,但去污剂、[/font][font=Calibri]TritonX-100[/font][font=宋体]、十二烷基硫酸钠、[/font][font=Calibri]0.1N[/font][font=宋体]的[/font][font=Calibri]NaOH[/font][font=宋体]会干扰实验测定。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]蛋白质含量测定方法选择[/b][/font][font=宋体] [/font][font=宋体]蛋白质含量测定时,考虑以下因素后选定适用的检测方法。[/font][font=宋体] [/font][font=宋体]①实验对测定所要求的灵敏度和精确度;[/font][font=宋体] [/font][font=宋体]②蛋白质的性质;[/font][font=宋体] [/font][font=宋体]③溶液中存在的干扰物质;[/font][font=宋体] [/font][font=宋体]④测定所要花费的时间。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供多种类型的[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白资源[/b][/url],不仅有重组蛋白服务还有各种大咖讲座,详情可以关注[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font][font=Calibri] [/font]

  • 蛋白质组学研究的一般工具与方法【含质谱】

    蛋白质组学研究的一般工具与方法随着人类基因组计划取得巨大的成功和许多物种基因组测序的完成,仅仅靠基因组的序列来试图阐明生命现象是远远不够的,因此,研究重心已经开始从揭示生命的所有遗传信息转移到在分子整体水平对功能的研究上,生命科学已实质性地跨入了后基因组时代。   尽管现在已经有多个物种的基因组被测序,但这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组研究中所采用的策略,如微阵列法(microarray)(Wodicka et al., 1997)、基因芯片(gene chips)(Ramsay et al., 1998)、基因表达序列分析(SAGE)(Velculescu et al., 1995)等,都是从细胞中mRNA的角度来考虑的。但事实上,从DNA、mRNA到蛋白质存在三个层次的调控,mRNA自身也存在着贮存、转运和降解等问题,从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。蛋白质复杂的翻译后修饰,蛋白质的亚细胞定位或迁移,蛋白质-蛋白质相互作用则几乎无法从mRNA水平来判断(曾嵘,夏其昌,2002)。新生肽链合成后存在多种加工、修饰过程,蛋白质间也存在类似于mRNA分子内的剪切、拼接,研究证明基本元件“intein”广泛存在于蛋白质中(Perler et al., 1997)。基因与其编码产物蛋白的线性对应关系只存在于新生肽链而不是最终的功能蛋白质中。   蛋白质是生理功能的执行者和生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制;蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究(钱小红,贺福初,2003)。      蛋白质组学研究中常用的技术体系   方法学上,二维凝胶电泳-质谱仍然是目前最流行和可靠的技术平台(Rabilloud et al., 2000)。其一般过程是:细胞或组织样品——样品制备——二维凝胶电泳(2D-PAGE)分离蛋白质——计算机辅助分析2D-PAGE图象——对感兴趣的蛋白质进行酶解——质谱分析——数据库检索——蛋白质鉴定——分析蛋白质在细胞与组织中的表达情况。   2-D PAGE   样品制备   2D-PAGE 的操作流程基本上实现了程序化。但是,样品制备是一个非常关键与复杂的过程。成功的2D-PAGE取决于对样品中蛋白质有效的抽提和它的溶解性。与核酸不同,目前没有一种通用的方法适用于所有的蛋白质,来源不同的蛋白质都受到自身蛋白质制备方法的挑战。   正确的样品制备方法从收集样品开始时就要防止样品的裂解和被蛋白水解酶降解(Rabilloud et al., 2000)。要尽可能溶解更多的蛋白,并且在2D-PAGE过程中保持它的溶解性,阻止蛋白质的人为修饰。在样品制备过程中,各个实验室也通过实验建立了更为可行的方法。目前通过建立分步提取方法可以有效地提取出更多的蛋白质(兰彦等,2001)。另一种对蛋白质采用预分离的方法称为“多间隔电解法(multi-compartment-electrolyser)”,采用这种方法后,分辨率和胶的质量均明显改善(Herbert et al., 2000)。   但是,由于生物样品的多样性和复杂性,目前所采用的样品制备方法具有局限性。其它物质对蛋白质样品制备存在干扰。核酸通过与蛋白质结合,增加样品黏度而干扰等点聚焦(IEF)分离的效果。当然,通过实验探索,采取一些措施可以减轻它的干扰。例如,在样品制备过程中加入非特异性的核酸酶或RNase与DNase的混合物,在等电聚焦时将每个胶条的电流限制在50mA以内通常可以消除其影响。脂类物质的影响可以通过利用有机溶剂的方法将其去除,但是这常常会导致蛋白质的不可逆沉淀。除了蛋白质的降解之外,糖基化是蛋白质的最重要的人工修饰,样品中的尿素在这一过程中起着非常重要的作用。样品中的尿素在降解的过程中会形成能够与蛋白质的氨基反应的氰酸盐,这种结果会导致蛋白质带有更多的正电荷。所以,在2D-PAGE中要用新鲜的尿素溶液,在等电聚焦过程中要控制温度不能太高(Beranova-Giorgianni, 2003)。但是,目前还没有一种简单有效的方法来去除样品中的多糖。   样品分离和分析   样品制备完成后运用IEF和SDS-PAGE电泳对它进行分离,常采用银染和考马斯亮兰染色即可观察到具有许多蛋白质斑点的凝胶图像。等电聚焦电泳与SDS-PAGE的具体操作步骤已经实现了程序化,均有详细操作流程参考,但是由于样品的不同,不同样品的具体条件还需要试验探索。第二相SDS-PAGE运行结束,染色完毕后,利用计算机软件对凝胶图像进行分析,如PD-QUEST软件,LIPS,HERMES,GEMINI等,对凝胶图像上的蛋白质斑点进行匹配,对图像进行数字化处理等分析(贾宇峰等,2001),对感兴趣的蛋白质采用质谱分析。   低丰度蛋白质的检测   低丰度蛋白在蛋白质组学研究中常常是人们非常感兴趣的,因为细胞或组织中的一些生物活性物质,如细胞分泌的一些活性物质,受体等表达量都非常低。按照一般电泳的上样量,这些小分子是根本看不到的,但如果单纯地增加上样量,细胞或组织中的大量表达的蛋白就会将其覆盖,而且上样量过大也会影响电泳结果。所以对这些低丰度的样品可以进行富集,富集的方法可以通过层析,如亲和层析,离子交换层析等方法,还可以通过利用样品等电点性质等方法将pH范围相近的蛋白质富集(Santoni et al., 2000; Beranova-Giorgianni, 2003)。

  • 蛋白质检测仪有什么作用

    云唐蛋白质检测仪是一种用于测定食品、生物样品等中蛋白质含量的仪器设备。它在食品科学、生物学、医学和生化等领域具有重要作用,以下是其主要作用:  食品质量控制: 在食品工业中,蛋白质是食品的主要组分之一,其含量影响着食品的口感、质地、营养价值等。蛋白质检测仪可以用于监测食品样品中的蛋白质含量,确保产品的质量稳定性和一致性。  生物学研究: 在生物学研究中,蛋白质是细胞功能和结构的重要组成部分。蛋白质检测仪可以帮助研究人员测定生物样品(如细胞提取物、血清等)中蛋白质含量,从而深入了解细胞的生物学特性和疾病机制。  医学诊断: 在临床医学中,某些疾病的发展可能会导致血清蛋白质含量的改变。蛋白质检测仪可以用于测定血液和尿液中的蛋白质含量,帮助医生进行疾病诊断和监测。  药物研发: 药物研发过程中,蛋白质的定量分析是评估药物效果的重要环节。蛋白质检测仪可以用于分析药物与蛋白质的相互作用,评估药物对蛋白质的影响。  生化实验: 在生化实验室中,蛋白质检测仪常用于定量测定蛋白质样品,用于分析实验数据和评估实验结果的可靠性。  环境监测: 在环境科学领域,蛋白质检测仪可以用于监测水体、土壤等环境中蛋白质的含量,从而评估环境质量。

  • 蛋白质检测仪是检测什么样品的

    云唐蛋白质检测仪为集成化食品安全快速检测分析设备,广泛应用于液态奶、奶粉等乳品中的蛋白质含量的测定。  测定奶粉中蛋白质含量的过程通常涉及一系列化学反应和分析步骤。以下是一般情况下使用蛋白质检测仪来测定奶粉蛋白质含量的一般操作步骤:  样品准备: 从奶粉中取样,确保样品的代表性。样品量的选择可能因仪器型号和分析方法的要求而有所不同。  样品预处理: 根据仪器要求,可能需要对样品进行预处理。例如,可以使用适当的溶液进行提取、稀释或其他处理,以确保样品的蛋白质能够被准确测定。  仪器准备: 打开蛋白质检测仪,根据仪器的操作手册进行系统的准备和预热,以确保仪器处于合适的工作状态。  校准: 根据仪器的要求,进行校准操作。校准是确保测量结果准确的关键步骤,通常会使用标准溶液进行校准。  装载样品: 将预处理好的样品加入仪器的样品槽中,根据仪器的要求确定每次装样的量。  测定: 根据仪器的指示,启动测定过程。仪器会自动进行反应和测量,然后计算出样品中的蛋白质含量。  结果显示和记录: 测定完成后,仪器会显示蛋白质含量的测定结果。记录结果,可以根据需要打印报告或保存数据。  清洁和维护: 在完成测定后,根据仪器的要求进行清洁和维护,以确保仪器的正常运行和延长使用寿命。  数据分析: 分析测定结果,确保奶粉中的蛋白质含量符合法规要求或产品标准。

  • 蛋白质单晶培养的15种方法

    cn,(n-2)个小试管进行养晶,可能结出单晶。此法之主要缺点在于蛋白质的消耗量大。(3)大量透析法(bulk dialysis):把蛋白质溶液包在半透膜(membrane)内,浸入盛有化学药品的器皿中,半透膜能让小分子进出,却不会让蛋白质等大分子通过,则器皿中沉淀剂、盐类和有机溶液等化学药品会穿过半透膜,与蛋白质起作用,直到膜之内外的浓度梯度(concentration gradient)降到零为止。此法的好处在于,器皿中化学药品之浓度可作连续之调整,ph值的范围也可探讨。坏处是膜之内外浓度差异减少时,平衡速率也随之降低。(4)微量透析法(microdialysis):把半透膜的体积缩小,绑在比钮扣略大的衬架上,架体之凹槽内注入蛋白质溶液,包覆半透膜的体架放入盛有化学药品的器皿,其养晶原理与大量透析法相同,只是使用蛋白质和化学药品的量放得少。注意凹槽内不得留有气泡,否则膜外的化学药品为气泡所阻止而无法透过气泡,渗入膜内的蛋白质溶液。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制