当前位置: 仪器信息网 > 行业主题 > >

小鼠抗体

仪器信息网小鼠抗体专题为您整合小鼠抗体相关的最新文章,在小鼠抗体专题,您不仅可以免费浏览小鼠抗体的资讯, 同时您还可以浏览小鼠抗体的相关资料、解决方案,参与社区小鼠抗体话题讨论。

小鼠抗体相关的资讯

  • 流式抗体选购常识,科研人必看!
    由于在流式细胞实验过程中,荧光抗体对单细胞悬液的标记效果直接影响实验的数据质量。因此,需要考虑各种影响流式抗体品质及检测效果的因素,例如抗体特异性、荧光素信号强弱、荧光素标记方式、同型对照等。流式抗体的选择:1 流式抗体本身也是抗体,所以选择流式抗体一定要满足抗体选择蕞基本的条件:目标蛋白特异性,反应种属以及应用实验。2 流式抗体荧光标记的方式包括直接标记和间接标记两种。在流式实验过程中,尽量减少实验工序和过程,以保证实验的真实和准确性。因此在条件允许的范围内,建议尽量用直接标记的抗体进行实验而不去做间接标记。3 流式抗体荧光标记的选择:如果实验中检测单一指标:不同荧光标记在不同的仪器上强度不同。FACS Calibur仪器为例:PE >APC >PE-Cy5 >PerCP >FITC >PerCP-Cy5.5,通常来说,PE蕞强,适用于弱表达抗原。FITC强度较弱,适用于强表达抗原,使用范围比较广。用户需根据检测的目标蛋白进行具体选择。如果同时检测多个指标:确认流式细胞仪能检测多少个通道:流式抗体每个通道只能选择1种荧光素。各个通道之间的荧光素可以随意搭配。如:实验者同时检测三个指标,可以在图1中绿色、黄色和红色三个通道中各选一个适当的荧光素标记,FITC、PE和PE-cy5。切忌所有指标选择同一个通道的荧光标记,以防止荧光的重叠和相互干扰,影响蕞后结果。因此,流式细胞仪的通道越多,同一份样本能同时做的表面/胞内标志就越多。常用荧光标记包括FITC, PE, PEcy5, PEcy5.5, APC等。同型对照的选择:流式细胞实验和其他抗体相关实验有点不同的就是需要选择同型对照。同型对照,是用于消除由于抗体非特异性结合到细胞表面而产生的背景染色,相当于实验的阴性对照。同型对照选择与标记抗体同种属来源,同亚型,同荧光标记的抗体。比如:抗人的CD3的PE标记的抗体,小鼠的IgG2a。同型对照选择PE标记的小鼠的IgG2a。流式抗体使用注意事项:1、建议实验细胞的数量和抗体的比例要适当。细胞过量或抗体过量都可能使实验结果受影响,因此需要优化试验条件。注:不同的流式技术对抗体的需求量有较大差异,例如传统流式细胞术 (采用鞘液流系统)需要1×106个细胞为起始上样量,抗体用量为10μl,而微流式细胞术 则只需5×105个细胞,抗体用量减少到5μl。2、直标的流式抗体应该4℃避光保存,不要冷冻。3、尽量选择经实验验证的流式抗体,以保证实验结果。
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • 重组抗体的产生及优势有哪些?
    1890年冯˙贝林(von behring)发现了抗白喉毒素血清,发明了人工被动免疫,并提出了抗原和抗体的概念,在后续漫长的抗体研究中,人类相继发展出三代抗体制备技术:①第一代抗体:以抗原免疫高等脊椎动物制备的多克隆抗体;②第二代抗体:由杂交瘤技术产生的只针对某一种特定抗原决定簇的单克隆抗体;③第三代抗体:应用分子克隆技术、基因突变技术改造某种抗体的基因编码序列,生产出的性能更优越的抗体,也称为基因工程抗体或重组抗体。单抗的出现及其显着的优越性(特异性高、蛋白类天然产物等特性)使其在疾病的研究、诊断和治疗中得到广泛应用,但也受到人体的强烈排斥。第三代抗体的产生在一定程度上解决了由于鼠单抗的异源性导致的排斥反应。从最初的人-鼠嵌合抗体将人源化比例升到60~70%,到通过cdr嫁接技术产生的人源化比例更高的人源化抗体,再到由噬菌体展示技术获得的全人抗体,技术的发展不断提高着抗体的质量及人类对抗疾病的能力。除此之外,基因工程除了可获得全长抗体,还可获得抗体片段——小分子抗体,例如单链抗体、fab片段等。这些小分子抗体由于其独特的分子量小、组织渗透性强等特点,也被广泛应用于临床诊断及治疗。下面小编带大家看看这些重组抗体是怎么产生的:1.人-鼠嵌合抗体。用人抗体恒定区基因与小鼠单抗抗体可变区基因组合表达,形成人-鼠嵌合抗体,人源区域占比在60-70%。2.人源化抗体。因为嵌合抗体仍然有较大比例的鼠源性区域,在临床实践中仍会产生比较强烈的排斥反应。为了进一步降低鼠源性区域,产生了cdr嫁接技术(cdr grafting),该技术仅仅保留了鼠源单抗的可变区cdr区域,其他区域是人源的,得到的人源化抗体的人源化比例可高达80-90%。此处科普下cdr区域,它是抗体互补决定区(complementary determining regions,cdrs),是与抗原分子上的表位氨基酸相互作用的区域,也称高变区(hypervariable region,hvr)。后续科学家们又发展出表面重塑技术,即对鼠源抗体的可变区进行表面残基的修饰处理,以降低其免疫原性。3.全人抗体。人源化抗体虽然显着降低了异体排斥反应,然而并未完全消除,其潜在的安全隐患使得科学家不断进行探索。近年来人们将核糖体展示技术、噬菌体展示技术应用于抗体药物的研发,使得制备全人抗体成为可能。噬菌体抗体库筛选是利用噬菌体展示技术,将编码抗体可变区的基因片段与噬菌体表面蛋白的编码基因融合(插入信号肽与衣壳蛋白基因间),以融合蛋白的形式呈现在噬菌体的表面,利用特定蛋白/抗原进行筛选获得高亲和力可变区的抗体片段。当使用人源的免疫细胞(或组织)得到的人抗体可变区基因片段构建噬菌体库,然后利用特定抗原进行展示库的筛选,即可获得针对某抗原的人源抗体片段及对应基因序列,最后通过体外蛋白表达及筛选可得到包含人抗体重链和轻链的特异性全人抗体。4.小分子抗体通常我们所说的抗体是全长抗体,包括了轻链和重链全长,全长抗体分子分子量在150~196kda之间。这么大的分子量在实际运用中常遇到组织渗透性差、易降解等问题,为解决这些问题,科学家开发出分子量小、结合力强的抗体片段,如单链抗体、fab抗体等。4.1 单链抗体(single chain variable fragment,scfv)由抗体的重链可变区与轻链可变区连接而成,分子量仅全长抗体的1/6,具有很好的组织穿透性,在临床治疗中得到很好的应用。单链抗体由于保持了全长抗体轻链和重链的可变区,其抗原结合位点没有变化因此仍具有良好的结合特异性。另外,单链抗体的多肽接头可根据需要设计为其他位点如金属螯合位点、连接药物位点等,在临床应用中是一种强有力的工具。4.2 fab片段(antigen binding fragment,抗原结合片段)保留了抗原结合区域,分子量是抗体全长的1/3,具有较好的组织渗透性,同时因为其没有fc段故免疫原性低,常用作导向药物载体及显影等。4.3 多价抗体是能结合多个抗原的抗体,是联合基因工程技术和化学偶联技术制备的一种新型抗体。目前关注较多的“双特异性抗体”,能结合两种不同的抗原,在肿瘤免疫治疗中具有显着的优势。例如,能结合肿瘤细胞表面抗原和杀伤性t细胞表面抗原的双特异性单抗,可以促使这两种细胞彼此靠近,利于杀伤性t细胞杀伤肿瘤细胞,起到促进治疗的作用。
  • Flag标签蛋白检测抗体实验应用说明
    Flag标签蛋白检测抗体  远慕生物提供可用于WB,IF,IP应用的Flag抗体,特异性检测Flag标签融合蛋白,Flag标签抗体可识别在细胞内表达的Flag标记重组蛋白,包括Flag位于氨基末端、中段以及羧基末端的重组蛋白。  Flag标签系统利用一个短的亲水性八氨基酸肽( DYKDDDDK)融合到目标蛋白。Flag标签可位于蛋白质的C端或N端,该系统已广泛应用于细菌、酵母和哺乳动物细胞等多种细胞类型,相应的Flag标签抗体也被广泛应用。由于Flag标签系统的纯化条件是非变性的,因此可以纯化所有有活性的融合蛋白。Flag标签可以通过加入肠激酶处理去除,肠激酶专一识别该肽序列C末端的5个氨基酸残基。Flag抗体可以用于检测和Flag标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测Flag融合表达蛋白等。  由于Flag标签蛋白检测抗体亲水特性,Flag标签往往位于融合蛋白的表面上,因此比较容易被抗体接近并识别。不同的Flag标签抗体与Flag标签 有不同的识别和结合特性。  Fig. 1. Flag标签蛋白IP实验,IP (1:200) - WB (1:5,000):未转染的293细胞裂解液(lane A), 转染了Flag标签蛋白的293细胞转染裂解液 (lane B), 使用小鼠IgG作为阴性对照免疫沉淀293细胞裂解液(lane C),使用Flag单克隆抗体(1B10)IP转染后的293细胞裂解液(lane D), 293细胞裂解液 中仅加入Protein G Beads (lane E).  Fig. 2. 使用Flag标签单克 隆抗体,通过免疫荧光实验(1:2000),分析转染的Flag 重组蛋白在293细胞中的定 位,二抗为IFKine? Red 驴抗 小鼠,蓝色为DAPI染色的细 胞核。
  • 与T细胞结合的抗体衍生物靶向修复用于精准免疫治疗
    2019年11月26日,刊登在Nature communication上的研究报告指出,一种与T淋巴细胞结合的抗体衍生物,重新定向T淋巴细胞以溶解肿瘤细胞。T细胞的免疫疗法正在改变当前癌症治疗的前景。但是,缺乏合适的靶抗原,将这些策略限制在极少的肿瘤类型上。在这里,本文报道了一种T细胞结合抗体衍生物,该衍生物分为两个互补的半部分,并针对抗原组合而不是单个分子。现在,每半个部分都是半抗体,包含与抗CD3抗体的可变轻链(VL)或可变重链(VH)融合的抗原特异性单链可变片段(scFv)。当两个半抗体同时在单个细胞上结合各自的抗原时,它们会对齐并重组原始CD3结合位点以与T 细胞结合。本文表明,通过这种方法,T淋巴细胞可专门消除双重抗原阳性细胞,同时保留单个阳性癌旁细胞。这使不适合当前免疫疗法的精确靶向治疗成为可能。抗癌单克隆抗体代表了现代药物治疗中增长最快的领域之一。在临床前和临床研究中目前列出的数百种治疗性抗体和抗体衍生物中,有一些脱颖而出,其重点是将细胞毒性T淋巴细胞重新靶向恶性细胞。其中,最先进的是将嵌合抗原受体(CARs)转染到T细胞和双特异性T细胞结合抗体(BiTE),两者均使用单特异性单链可变片段(scFv)作为靶向装置。总的来说,这些抗体衍生物所针对的靶分子是存在于恶性细胞及其未转化的对应物上的分化抗原,它们的结合常常引起严重的,甚至致命的不良事件。由于适用于基于抗体疗法的真正的肿瘤特异性抗原很少见,因此本文在这里研究一种组合方法,该方法可以解决由某些类型的白血病或淋巴瘤,实体癌和其他来源的癌干细胞异常表达的抗原组合。此外,鉴于结合T细胞疗法的临床有效性,本文以双重抗原限制的方式重定向T淋巴细胞以裂解肿瘤细胞。半抗体消除体内已建立的肿瘤为了测试半抗体的潜在治疗适用性,对免疫缺陷的NOD/SCIDγ(NSG)小鼠进行了体内免疫接种。在第1天接种萤光素酶基因标记的THP-1肿瘤细胞。在第1、22和28天,尾静脉接种HLA-A2阴性的CD4和CD8供体T淋巴细胞。在第7天植入肿瘤细胞后,每天皮下分别注射:盐水、单个半抗体、两个半抗体的组合及这是双特异性T细胞结合抗体(BiTE)对照。直到第39天。为了研究半抗体是否可以相互发现以实现靶标功能互补,将构建体彼此分开注射在较远的位置,一个在颈部,另一个在后肢上。尽管所有接受盐水或单个半抗体的小鼠疾病发展迅速,并在53天内达到了安乐死的标准,但用两个半抗体对或BiTE对照治疗的小鼠却排斥了已建立的肿瘤(下图a)。接受半抗体对或BiTE对照的小鼠的总生存期显著延长。上图:体内高精度靶向癌细胞a.通过IVIS Lumina XR实时生物发光成像,每周评估一次荧光素酶基因标记的THP-1肿瘤细胞的生长b.每天监测生存期,直到第110天半体技术的组合性质为特异性治疗开辟了新的领域。它可能选择性消除不适合当前免疫疗法的人类癌症,并且与旨在增强对靶标亲和力的其他双重或三重抗原特异性策略大不相同。尚不清楚半抗体是否会诱导细胞因子释放综合征,这是双特异性T细胞结合抗体(BiTEs)或针对抗原(例如CD19)的CAR-T细胞的主要缺陷。在这种情况下,甚至用半抗体处理单个靶分子也是合理的,以便将T细胞活化专门限制在肿瘤部位,同时减少血管内T细胞活化和全身细胞因子分泌。 综上所述,本文研究的半体技术将成为用于组合高精度免疫靶向以消除恶性细胞及其他恶性肿瘤的通用平台。
  • 小动物活体影像仪助力抗体药物靶向&联合治疗研究
    p    strong 01 抗肿瘤药物活体水平药效学评价 /strong /p p   Avastin/Bevacizumab通过特异性结合并阻断VEGF(血管内皮生长因子)抑制肿瘤血管生成,是世界上第一个抗肿瘤血管生成的抗体类药物。Palbociclib(帕博西尼)是针对 CDK4/6 激酶靶点的高选择性小分子抑制剂,辉瑞公司于2015年获得Palbociclib与诺华Letrozole(来曲唑)联合治疗ER+/HER2- 绝经后晚期乳腺癌的FDA药物上市审批。Docetaxel(多西他赛)为紫杉醇类传统化疗药物。 /p p   在2009年Clin Cancer Res杂志发表的文章中,辉瑞肿瘤生物部研发团队就利用IVIS小动物光学成像技术平台,将荧光素酶标记MDA-MB-435 乳腺癌细胞移植入小鼠肾包膜下,建立肾包膜肿瘤疾病活体水平动物药效学评价模型,通过观测给药后光学信号随时间的变化情况,进而评价Palbociclib (PD-991)、Avastin 和 Docetaxel三种不同药物,特定的给药途径、时间、剂量等给药策略对于肿瘤的治疗效果。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/dbd4cf41-f7bb-40ed-86ba-6666a45320cf.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   相对于触诊、肿瘤体积测量等传统方法,利用高灵敏度的生物发光成像技术进行药物评价,可以更灵敏的发现残余病灶点或尽早发现肿瘤的复发,从而更准确的对药 物治疗效果进行判定。并且利用生物发光成像技术进行药效评价的另一独特优势在于,可以明确判断药物是否有效杀死肿瘤活细胞。这是由于生物发光的原理是基于活细胞环境的酶促反应,因此,能够发光的细胞必定是具有活性的,从而避免了传统体积测定方法造成肿瘤体积无变化、内部已出现细胞死亡的检测陷阱。 /p p   针对人类顽疾癌症的治疗,多靶点联合治疗是当前的一个新思路,而小分子药物和生物大分子治疗的联合应用带来的治疗改善,给攻克癌症治疗难题也带来了新曙光。而高灵敏度的生物发光成像技术平台,以其非侵入性、快速、高效、高灵敏度等特点,也为多靶点联合治疗开启了新篇章。 /p p    strong 02 免疫检验点抗体药物联合治疗研究 /strong /p p   Michael Lim等人在2017年Clinical Cancer Research杂志上的文章中,首次使用PD-1阻断抗体、TIM-3阻断抗体和传统放疗(stereotacticradiosurgery, SRS) 三种方式联合,在小鼠神经胶质瘤模型上,评价不同组合联合治疗的效果,如下图数据所示,使用三种 /p p   方式联合治疗能显著提高小鼠的生存时间,并且通过IVIS成像系统检测发现,第14天以后治疗组已检测不到GL261-luc2细胞的生物发光信号。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/019afff7-e279-40b5-8c7f-1f30623e10de.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p   Ronald Blasberg等人在2016年Molecular Therapy: Oncolytics杂志上发表的文章中,使用PD-1/PD-L1阻断抗体,联合靶向PSMA的人CAR-T细胞,对小鼠前列腺癌模型(Myc-CaP:psma(+))的治疗效果。如下图中结果所示,阻断PD-1/PD-L1,使得hPSMA-CAR-Tcell免疫治疗效果增强,但是治疗反应仅仅是在短期内,表示可能存在其他的免疫调节机制,限制了CAR-T细胞靶向、功能和在hPSMA阳性肿瘤的汇集。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/99b2eeeb-6c1e-48e6-a671-eb9a9b332be7.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p    strong 03 荧光标记抗体药物靶向分布及代谢研究 /strong /p p   通过近红外荧光探针直接标记单抗药物,经尾静脉注射后,利用小动物活体成像检测荧光信号,而实时追踪抗体药物在体内分布、肿瘤靶向性及代谢情况。 /p p   利用近红外荧光探针直接标记抗体药物Herceptin/Trastuzumab,将XenoFluor 750-Herceptin通过尾静脉注射到HER2/neu阳性的小鼠模型体内。给药前21天使用人源前列腺癌PC-3M-luc细胞株,在免疫缺陷小鼠体内进行细胞原位移植造模,并同时用Spectrum检测生物发光信号,判断肿瘤生长状况。 /p p   XenoFluor 750-Herceptin不同剂量给药后,使用Spectrum连续检测荧光信号72h,可直观看到药物实时分布且靶向肿瘤的情况,并通过软件定量分析 /p p   肿瘤区域的荧光信号后,得到Herceptin的代谢曲线。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5542361d-205d-469e-a29a-3bf0d2758091.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p   Takuo Suzuki等人在2015年 mAbs杂志上发表的文章中,使用一种更先进的基于FRET的方法,分别标记Trastuzumab和Cetuximab,通过小动物活性成像平台检测完整抗体实时分布及抗体被降解的情况。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/c4861b20-13a9-4035-88e1-c515eaecc01b.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p   以上这种FRET模型非常适合对抗体完整性、生物分布及稳定性的评价,且对Fc区域介导的ADCC效应及改造机制和抗体偶联药物设计(Antibody-Drug Conjugates, ADC)提供重要有效信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/d6daf28b-db0b-421c-89ad-e49cafece935.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/9f1c32a3-dbfd-486a-9cb0-a8a850330df0.jpg" title=" 7.jpg" alt=" 7.jpg" / /p
  • Nature子刊|清华团队发现新冠病毒纳米抗体,对XBB等保持活性
    新冠疫情暴发以来,全球范围内已研发出多款针对SARS-CoV-2的中和抗体药物,通过严格的随机双盲对照临床试验,美国食品药品监督管理局已经授权多款治疗COVID-19的中和抗体药物的紧急使用。我国国家药品监督管理局也批准了由清华大学、深圳市第三人民医院和腾盛华创共同研发的Amubarvimab与Romlusevimab抗体鸡尾酒疗法,用于治疗轻型和普通型且伴有进展为重型高风险因素的成人和青少年,并在当前的临床救治过程中发挥着积极的作用。但随着COVID-19在全球范围内的大流行,新的变异株不断出现,尤其是传播性较原始株显著增强的Omicron多种突变株,对人民的健康和正常生活造成了很大影响。变异株在刺突蛋白(S)上所产生的重要突变位点导致疫苗和中和抗体活性降低或消失,对新一代疫苗和抗体药物的研发提出了更高和更迫切的要求。纳米抗体来自骆驼科等动物体内的重链抗体,是重链抗体中最小的完整功能结构。纳米抗体具有体积小、特异性强、稳定性强、易生产、穿透力强、免疫原性低等多种优势,使其更加容易识别常规抗体无法识别的抗体表位,加大了抗体的覆盖空间和结合能力,为新一代抗体药物的研发提供了更广阔和更独特的选择,具有广泛的临床应用前景。2022年12月27日,清华大学医学院张林琦教授、生命科学学院王新泉教授研究团队在《自然通讯》(Nature Communications)期刊在线发表题为“针对新冠病毒奥密克戎变异株及多种冠状病毒具有广谱中和能力和保护能力的纳米抗体”(Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses)研究论文。该研究从免疫羊驼体内分离鉴定纳米抗体,对SARS-CoV-2多种变异株、SARS-CoV-1和其他主要sarbecovirus病毒具有广谱高效中和活性。其中代表性抗体3-2A2-4识别受体结合域RBD(Receptor binding domain)蛋白上高度保守的表位,保护K18-hACE2转基因小鼠免受Omicron和Delta活病毒感染,并对目前国内外出现的多种突变株BF.7,BQ.1.1和XBB等仍保持高效的中和活性,为研发新一代SARS-CoV-2纳米抗体药物提供了理想的候选。研究人员使用新冠病毒S蛋白和编码S蛋白的黑猩猩腺病毒载体疫苗等免疫羊驼,发现羊驼不仅产生了针对SARS-CoV-2病毒的中和抗体,而且产生了针对SARS-CoV-1病毒的中和抗体。通过酵母展示文库技术,研究者从免疫羊驼体内分离获得593个对SARS-CoV-2病毒具有结合能力的纳米抗体,其中124个对SARS-CoV-2病毒具中和能力,91个对SARS-CoV-1病毒具有交叉中和能力。研究人员挑选了其中32个具有高效交叉中和能力的纳米抗体开展了全面和深入的评估。通过表位竞争试验,这32个抗体被分为3组,其中第2和第3组中的大部分纳米抗体对14种SARS-CoV-2变异株(包括多种Omicron变异株)和5种sarbecovirus病毒保持了广谱中和能力。后续的初步实验结果显示,第3组的抗体对于最新出现的新冠病毒变异株BF.7、BQ.1和XBB等均保持活性。图1.鉴定获得的纳米抗体对SARS-CoV-2变异株和其他sarbecovirus具有广谱中和活性研究人员在具有较好广谱中和活性的前3组抗体中各选了一株代表性抗体,解析了与SARS-CoV-2或SARS-CoV-1RBD蛋白的高分辨率晶体结构,阐明其结合表位的分子结构和抗病毒机制。第3组的代表抗体3-2A2-4结合位点独特,位于RBD核心区的outer face和inner face交界底部,识别的表位氨基酸大多高度保守。其CDR3上F102和F103深入到了RBD N343糖链下的一个高度保守的疏水口袋中,形成了疏水相互作用,奠定了其广谱中和活性的结构基础。进一步的蛋白酶K、细胞染色实验与电镜结构解析表明该抗体结合SARS-CoV-2RBD后可将其固定在down的空间构象,影响S蛋白结合受体ACE2,从而阻碍病毒侵染细胞。图2. 3-2A2-4与SARS-CoV-2原始株RBD的结构解析为进一步研究纳米抗体3-2A2-4的体内保护效果,研究者利用K18-ACE2转基因小鼠模型进行了纳米抗体的预防保护实验。攻毒前一天通过腹腔注射10 mg/kg的3-2A2-4纳米抗体,24小时后通过鼻腔攻毒SARS-CoV-2 Omicron BA.1和Delta活病毒,对小鼠进行存活率和体重检测等。结果显示,3-2A2-4纳米抗体可以有效预防Omicron和Delta活病毒感染,防止和降低肺部组织感染,保护肺组织免于结构损伤和炎症反应,展示了优异的体内保护能力。图3.3-2A2-4在小鼠体内的预防保护综上,该研究从免疫羊驼体内分离获得上百个具有强中和能力的纳米抗体,并从中筛选出对目前所有SARS-CoV-2变异株(包括Omicron各亚株)以及5种其他sarbecovirus病毒具有强中和能力的纳米抗体。通过抗体抗原复合物晶体结构的解析,在受体结合域RBD蛋白表面发现多个高度保守的广谱中和表位,系统阐释了广谱中和能力的作用机制,确定了高度保守的抗原位点。其中,代表抗体3-2A2-4在K18-hACE2转基因小鼠模型中展示了对Omicron株和Delta株活病毒的预防保护能力,为研发下一代SARS-CoV-2纳米抗体药物提供了优秀的候选。论文链接:https://www.nature.com/articles/s41467-022-35642-2
  • 基于质谱的内源性抗体从头测序的展望
    大家好,本周为大家分享一篇发表在mAbs上的综述,A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies1,通讯作者是来自荷兰乌得勒支大学Bijvoet生物分子研究中心的Albert J.R. Heck。  据估计,人体可以产生的抗体理论序列超过1015种,这些序列是独一无二但又高度相似的,这使得它们的表征和测序非常复杂。抗体的结构从功能上分为Fab段和Fc段,其中Fab负责与抗原结合,具有高度变异性,这种突变主要集中在Fab段的互补决定区(CDR),阐明这部分的序列对抗体的发现非常重要。 图1展示了用于抗体序列分析的三种组学策略。Bottom-up(BU)是最流行的测序方法,可以通过数据库匹配或完全的从头测序实现对抗体的序列分析,但主要用于高度纯化的重组抗体。第二种策略是通过将基于MS的技术与基因组学/转录组学相结合,例如全基因组测序或 BCR 测序,通过B细胞测序生成个性化序列数据库,将BU MS数据靶向该数据库搜索,是一个部分从头测序的流程。第三种策略是结合几种基于MS的de novo方法,如Top-down(TD)和Middle-down(MD),旨在直接从临床样本中确定选定抗体克隆的完整序列,而无需其他组学数据的帮助。  图1 基于MS的抗体测序的三种策略  通过BU方法进行的从头测序需要高度的序列覆盖,理想情况下,抗体中的每个序列位置都由多个重叠的肽段支持。通过缩短酶的孵育时间、微波辅助水解,或使用具有协同序列特异性的多种酶,可以产生较长的肽段或较多的重叠序列。图2所示的工作使用总共9种蛋白酶(包括特异性和非特异性)成功地从头测序抗 FLAG-M2小鼠mAb全长。通过覆盖整个CDR的高分肽获得了高置信度的CDR序列,所选择的6条肽段来自5种不同蛋白酶的消化。  图2 单克隆抗体Anti-FLAG M2的测序。  对于抗体这种具有高度变异性的蛋白质,通常无法获得完整和准确的序列数据库来进行匹配。相反,可以使用来自基因组或转录组实验的同源序列。抗体种编码每个区域的基因可作为种系序列获得,基于序列对齐或序列标签提取的容错片段匹配算法可以使用同源数据库对实验确定的序列进行评分。同源序列数据库还可以作为种系模板来辅助从头测序肽段的组装。  TD/MD策略虽存在对分子量较大蛋白的电离效率低、分辨率低等限制,但近年该领域的一些进展也报告了相对较高的序列覆盖率。Shaw 等人报道了使用现代仪器将完整的 mAb 在非变性状态下片段化(图3)。通过在单个串联 MS 实验中结合 ECD 和 HCD,获得了曲妥珠单抗 42% 的轻链序列覆盖率和 20% 的重链序列覆盖率。产生的碎片谱不仅包含多电荷主链碎片产物,还包含链间二硫键断裂产生的完整轻链。  图3 轻链 (a) 和重链 (b) 片段图显示了曲妥珠单抗上 ECD 和 HCD 组合产生的序列覆盖率。二硫键用虚线表示,CDR3 区域以黄色高亮显示。(c)为完整曲妥珠单抗的 25+ 电荷态的相应碎片谱,插图显示了轻链的 9+ 电荷态和各种碎片离子。红色和蓝色碎片离子标签分别对应轻链和重链。星号表示质量选择的母离子。  将抗体测序拓展到内源性抗体存在许多挑战。首先,血浆中单个克隆的中位浓度约为 1 µg/mL,比 mAb 低几个数量级,并且单个克隆的分离极具挑战性,使测序过程进一步复杂化 因为大多数软件工具专为组装单个抗体而设计,当数据代表几个相似的 Ig 序列时可能导致分析失败。此外,在复杂的内源性多克隆抗体混合物中,由于来自恒定区的序列信息被放大并抑制CDR的信号,因此通常无法检测到CDR区的关键序列。使用多组学方法,例如通过使用来自同一供体的基因组学或转录组学数据补充 BU MS 数据,可以绕过从头测序的一些具有挑战性的方面。  Guthals等人报道了一个例子,使用糖蛋白B抗原从患者的血清中纯化抗体后,进行了完整质量和BU MS分析(图4c)。通过半自动软件PolyExtend用完整质量来检索抗体混合物中最丰富的物种的平均质量,并以此来约束BU MS数据导出的序列结果。在最近的一项研究中,Bondt等人从败血症患者的血清中制备IgG1的Fab亚基,成功地在不经过抗原特异性捕获的条件下,通过MD/BU结合和ETD活化的MS方法,在一个供体的血清中直接对一个高丰度的抗体克隆进行从头测序(图4d)。首先,从IMGT数据库中选择高度匹配的轻链和重链种系模板。然后用采集的从头测序数据来迭代和改进这些模板,产生最终的成熟序列。值得注意的是,确定的序列包含的突变比BCR测序研究报告的突变率所预期的要多,这表明蛋白质水平测序和基因水平测序之间存在潜在的差异。  图4  尽管从抗体混合物中重新组装序列仍然是艰巨的任务,但一些研究团队最近已经设法获得了令人兴奋的数据。随着现有方法的众多进步,很可能只需把这些碎片拼凑在一起,创建一个基于MS的方法,以更常规地用于抗体发现。所有近期发表的这些策略概念的验证为更高效的下一代方法铺平了道路。
  • 单克隆抗体药物的发展趋势以及未来的挑战
    p   随着引领第二次生物医药产品浪潮的“单克隆抗体”的出现,抗体研发的一切正在慢慢改变。在抗体工程药物中,肿瘤抗体药物更是异军突起,独占一半天下,单克隆抗体药物以其独特的作用机制及高效性,在抗恶性肿瘤的治疗中发挥了不可估量的重要作用。目前,单克隆抗体已广泛应用于肿瘤的临床治疗,本文主要从抗体药物的发展、面临的挑战以及如何解决等方面进行了详细的分析。 /p p strong   抗体药物的前世今生 /strong /p p   和各种重大革命性技术的发展一样,抗体的研究也是经历了漫长岁月。直到Kohler和Milstein在1975年创建了淋巴细胞的杂交瘤技术并获得了专一识别抗原位并与之特异结合的单克隆抗体,才受到了相关领域学者们的高度重视。两位科学家因此被授予1984年的诺贝尔生理学或医学奖。 /p p   然而,由于通过杂交瘤技术制备的单克隆抗体是鼠源性的,应用于人体不可避免地引起人抗鼠抗体(HAMA)反应,限制了单克隆抗体的临床应用。 /p p   为了克服这种缺陷,20世纪80年代中期研究者们寻求以基因工程技术对鼠源性单克隆抗体进行改造,尝试对其人源化处理。如将鼠源抗体可变区与人抗体恒定区拼接而形成嵌合抗体或将鼠抗体可变区的互补决定区(CDR区)与人的抗体的互补决定区互换构成人源化抗体等。 /p p   以上抗体技术的建立,基本解决了抗体药物异源性的问题,促进了抗体药物的广泛应用。迄今美国FDA已经批准上市了几十种治疗性抗体药物,抗体产业增长迅猛,产生了巨大的社会效益和经济效益。目前国内外处于临床前、临床研究的各类生物技术药物中也以抗体类制品最多,其中则以抗肿瘤抗体药物最多。 /p p   这其中除了单抗之外,新型抗体的开发也各施所长,其中包括双特异性抗体以及抗体偶联药物(ADC)。就开发热点而言,当然要数PD-1/PD-L1单抗、ADC药物、以及双特异性抗体了。目前,全球抗体药物产业已经步入了强劲发展的时代,与此同时,抗体技术的发展也面临着诸多挑战。无论是在抗体靶标和新抗体基因发现,还是在新抗体药物的研发和产品种类等方面,很多问题都亟待解决。在此,小编做了详细的总结。主要分为以下几个方面。 /p p strong   筛选肿瘤治疗新靶点 /strong /p p   与传统的小分子药物相比,抗体的靶点数量相对要少的很多。这主要首先由于抗体本身的性质。一般来说,抗体分子的分子量较大,结构复杂,绝大多数抗体只能对位于细胞膜表面及分泌出来的分子发挥作用,而对于细胞内的分子则很难产生功效。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/3fbc9274-4de1-4a6d-acf5-dc8ffbcad09f.jpg" / /p p style=" text-align: center " strong 针对不同靶标的抗体 /strong /p p   目前,在已经批准的抗体药物中仅有27个靶标。其中7个靶标分别有两个或两个以上的抗体药物,共计18个。其中5个靶标(TNF、CD20、VEGF、HER2、EGFR)所对应的抗体药物多数为重磅炸弹药物,共计10个。在2014-2017新上市的抗体中,几个特殊靶点已引发重大波澜,诸如CTLA-4、PD-1/PD-L1等都成了重磅炸弹的诞生地。其中以PD-1/PD-L1为靶点的抗体作为肿瘤免疫治疗中的先锋队更是各个公司追逐的热点。 /p p   多家国际巨头公司已在该领域做了充足的准备,包括辉瑞,安进,赛诺菲,再生元、罗氏、诺华、礼来、阿斯利康等。该靶点也必然引起新一轮的腥风血雨。但总体来说,抗体靶标十分有限,所以说,在研发的候选抗体药物中,新靶点和新适应证抗体是药物研发团队首要追求的目标 其次是老靶点的深度开发。 /p p strong   降低抗体的免疫原性 /strong /p p   最早通过杂交瘤技术制备的鼠源性单克隆抗体,应用于人体会不可避免地引起人抗鼠抗体(HAMA)反应。随着基因工程技术的发展,研究人员开始对鼠源性单克隆抗体进行改造,尝试对其人源化处理以解决单克隆抗体的这种缺陷。可分为嵌合抗体、人源化抗体或完全人抗体。试图通过增加其可变区序列与人胚系基因的同源性来降低它们的预期免疫原性。 /p p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/d4eabd2b-11a8-492c-b317-7b62d2129725.jpg" / /p p style=" text-align: center " strong 鼠源性到完全人源化抗体 /strong /p p   嵌合抗体成功的例子包括罗氏公司的抗 CD20 抗体Rituxan,其用于治疗B 淋巴瘤。它的抗淋巴瘤作用主要来自于补体作用、ADCC作用和诱导肿瘤细胞凋亡。因为人鼠嵌合抗体仅仅消除了鼠源单抗的部分异源性,未经改造的可变区的鼠源序列依然可以诱导人体产生HAMA反应,因此对鼠源抗体可变区的进一步进行人源化改造是必然趋势。 /p p   通过研究大量小鼠抗体可变区序列,截取可变区中与抗原直接接触的序列与人抗体可变区的框架区嫁接,经过亲和力重塑,可在极大程度上保持亲本抗体的特异性和亲和力,同时在人鼠嵌合抗体的基础上进一步消除免疫原性和毒副作用。人源化抗体成功的例子包括罗氏的Herceptin,其用于治疗HER-2过度表达的转移性乳腺癌。 /p p   不容置疑,完全人源化抗体绝对是最理想抗体,其可以达到完全避免鼠源性单抗的种种缺点。目前主要通过抗体库技术以及转基因小鼠技术等方法来进行生产。 /p p strong   新型抗体药物 /strong /p p   抗体偶联药物(ADC)、双特异性抗体以及PD-1/PD-L1单抗绝对算的上是抗体圈的明星产品了。 /p p   ADC由单克隆抗体与有治疗作用的小分子药物两部分构成,借助抗体实现化学药物对肿瘤组织的靶向递送。ADC 在血液中稳定性高,药物分子不会脱落,因而毒副作用较小,但对肿瘤细胞的抑制作用远远高于裸抗体。这种设计策略既可提高抗体药物的杀伤能力,又提高小分子化学药物的治疗窗。 /p p style=" text-align: center " img title=" 003.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/c110a3a2-3d90-4c38-ab72-7b6cdd3ecafa.jpg" / /p p style=" text-align: center " strong 双特异性抗体 /strong /p p   传统抗体药物通过封闭单一信号通路抑制肿瘤生长,临床上易出现抗体药物的耐药性。所以双特异性抗体(BsAb)应运而生,其通过基因工程手段将两个分别靶向不同抗原的抗体片段组合在一起,具有两种抗原结合位点,可以发挥协同作用,进而提高治疗效果。这种结构设计能有效地改善抗体药物在体内的药物代谢动力学过程,增强临床治疗效果。然而,设计出疗效好、稳定性高且利于生产的BsAb仍需深入研究。 /p p   除了ADC和BsAb之外,肿瘤免疫治疗抗体药物也是火的不行。近几年,针对免疫检验点的PD-1/PD-L1单抗治疗不断在癌症治疗中取得突破性进展,尤其在黑色素瘤、肺癌、肾癌及膀胱癌等多种肿瘤的治疗中显示出很好的疗效,初步实现了利用免疫方法治疗肿瘤的梦想。 /p p strong   抗体组技术和抗体组药物 /strong /p p   抗体组技术是在基因组学和蛋白组学基础上,结合杂交瘤技术及基因工程抗体技术,经过抗体靶标高通量筛选、建立大规模抗体库,最终走向应用。相比传统的单克隆抗体技术相比,抗体库技术,具有库容量大、可筛选种类多、更易获得针对特定抗原表位的高活性单克隆抗体等无以替代的优势。同时抗体库技术在筛选过程中,更为省时、省力、高效、经济。 /p p style=" text-align: center " img title=" 004.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/7cd75911-64ed-4a38-aa94-c1179ab902e0.jpg" / /p p style=" text-align: center " strong 抗体库技术 /strong /p p   目前抗体库根据其宿主免疫状态来说,主要分为天然库和免疫库两大类。天然库从理论上来说可以筛选获得可与任何抗原特异结合的的抗体,同时人抗体库可以直接产生全人的抗体V区基因,避免了后续的繁琐的人源化过程,但这些天然抗体基因缺乏体内的重排与突变过程,因而很难获得高亲和的抗体,所筛选的抗体往往需要进一步的亲和力成熟改造,而且同时筛选背景较高,针对特定抗原的抗体丰度低。 /p p   相比较而言,免疫库中则含有大量针对该特定抗原的抗体,其筛选背景大大降低,并且这些抗体基因经过在宿主体内的成熟过程,往往具理想的亲和力。 /p p   小鼠目前依然是最容易进行免疫和其后续进行基因工程操作的动物品种,然而通过小鼠抗体库获得的依然是鼠抗体V区基因,想使其安全用于临床,还必须进行后续的人源化改造。近两年发展的全人抗体的转基因小鼠技术,使得我们可以通过转有全套人抗体基因的转基因小鼠来制备人的免疫抗体库,并从中直接筛选具有治疗价值全人的抗体V区基因,无需人源化的改造。 /p p strong   国内抗体药物产业如何突破瓶颈 /strong /p p   在全球抗体药物产业强劲发展的浪潮中,国内抗体药物产业也已经实现了从基础研究到产业化的跨越,抗体的产品逐渐增多,市场逐渐扩大。尽管我国抗体药物产业近年来发展迅速,但国产抗体药物的技术水平及市场占有率与国际先进水平仍有较大差距。 /p p   中国抗体药物上市以及原始创新产品开发都面临着严重不足的问题。无论是已上市销售的还是正在注册研究的抗体药物,国内企业在抗体靶标和新抗体基因发现、新抗体药物创制、产品种类等诸多方面都亟待提升。 /p p style=" text-align: center " img title=" 005.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/35b205bb-cafe-410d-88f4-0541881c8198.jpg" / /p p style=" text-align: center " strong Custom mAb /strong /p p   要实现抗体药物产业发展的突破,应该结合抗体药物相关的产学研医用现状资源禀赋及医疗服务的需求,选定未来重点发展领域及其对应的产品方向,重点支持和引导相关领域目标性抗体药物产品的开发。加强研发平台建设、提升抗体药物自主研发、CRO、CMO及产业化水平,达到与欧美先进国家同步,打破国外医药巨头对我国抗体药物的市场垄断,增强我国在国际抗体药物领域的综合竞争优势。 /p
  • 了解一下,新型冠状病毒(COVID)抗体的稳定性
    Anti-COVID-CocktailsAbout two SARS-CoV-2-neutralising monoclonl antibody cocktails for the prevention or therapy of COVID-19新冠病毒抗体混合物关于预防或治疗COVID-19的两种sars-cov-2中和单克隆抗体混合物。单克隆抗体是具有免疫活性的蛋白质,能特异性地针对抗原产生免疫反应。关于单克隆抗体 自1975年发表单克隆抗体以来,单克隆抗体的使用一直在增加。尽管最早的小鼠药物制剂(从小鼠中提取)没有今天完全人源化的单克隆抗体具有相同的功效,但单克隆抗体的作用机制已经为它们提供了光明的前景。 单抗的工作原理是识别和发现细胞上的特定蛋白质,即抗原。通过与这些抗原结合,一些单克隆抗体可以靶向不健康的细胞并触发免疫反应来对抗疾病。抗体混合——一种强大的COVID-19治疗方法 今年3月,著名的德国联邦疫苗和生物医学研究所保罗-埃利希研究所(Paul Ehrlich Institute)报告了两种SARS-CoV-2中和单克隆抗体混合物,它们有可能用于COVID-19的预防或治疗。 Casirivimab/Imdevimab(REGN-COV2)和Bamlanivimab/Etesevimab是靶向SARS-CoV-2刺突蛋白的IgG1单克隆抗体,有效地抑制了人类ACE2受体与病毒的相互作用! 这种非常有前途的方法目前正处于欧洲药物管理局(CHMP和EMA)的滚动审查过程中。抗体稳定性——质量控制的关键标志 但这和布鲁克有什么关系?如上所述,这些鸡尾酒使用两种原料药来提高效力。然而,如果多种治疗药物组合在一个单一的配方中,即共同配方,则必须保证单个药物的质量和安全性。为此,需要进行广泛的测试。 近年来,布鲁克CONFOCHECK FT-IR系统已成为抗体研究和质量控制的决定性工具。一些出版物使用该系统评估抗体稳定性和配方中的分解过程。一些描述了在开发生物仿制药和验证批与批的一致性中使用FT-IR高阶结构验证。另一些则描述了使用FT-IR的高阶结构开发生物仿制药和验证批次间的质量符合性。这种方法的核心是利用强大的红外光谱技术来表征蛋白质的二级结构。我们将在以下视频中解释FT-IR用于蛋白质分析的用法。 如您想了解更多关于FT-IR和蛋白质分析的知识,请联系我们(400热线:400-777-2600)了解更多!
  • 促肾上腺皮质激素ACTH(18-39)抗体现货促销
    【详细说明】:促肾上腺皮质激素ACTH(18-39)抗体【浓 度】:1mg/1ml 抗体来源【宿 主】:兔源、鼠源、其他 克隆:单克隆抗体、多克隆抗体【适 用】:Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Sheep, Monkey, others。 抗体类型:一抗 研究领域:细胞生物、神经生物学等 【性 状】:促肾上腺皮质激素ACTH(18-39)抗体冻干粉或液体【相关标记】:FITC、Gold 、HRP、PE PE-Cy3、PE-CY5、PE-CY5.5 、PE-CY7 、RBITC 、 Alexa Fluor 350、Alexa Fluor 488 、 Alexa Fluor 555 、Alexa Fluor 647、AP 、APC 、Biotin 、Cy3 、Cy5 、Cy5.5 、Cy7 。【储 存 液】: Preservative: 15mM Sodium Azide, Constituents: 1% BSA, 0.01M PBS, pH 7.4 or PBS with 0.1% sodium azide and 50% glycerol pH 7.3. -20oC, Avoid freeze / thaw cycles.【产品应用】 :Immunohistochemistry (IHC), Flow Cytometry (FACS) , Western Blotting (WB) , ELISA , Immunohistochemistry , Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)) , Immunoprecipitation (IP) , Immunocytochemistry (ICC) ,Immunofluorescence (IF)等。促肾上腺皮质激素ACTH(18-39)抗体ADCY8 腺苷酸环化酶8抗体 (1)IgG :血清中含量最高,因此是最重要的抗感染分子,包括抗菌、抗病毒、抗毒素等。 IgG 还能激活补体,结合并增强巨噬细胞的吞噬功能(调理作用和 ADCC 效应),穿过胎盘,保护胎儿及新生婴儿免受感染。 (2)IgA :分单体和双体两种。前者存在血清中,后者存在于黏膜表面及分泌液中,是黏膜局部抗感染的重要因素。(3)IgM :是分子量最大,体内受感染后最早产生的抗体,具有很强的激活补体和调理作用,因此是重要的抗感染因子,且常用于诊断早期感染。  (4)IgD :主要存在于成熟 B 细胞表面,是 B 细胞识别抗原的受体。 (5)IgE :血清中含量最少的抗体,某些过敏性体质的人血清中可检测到,参与介导 I 型超敏反应和抗寄生虫感染。促肾上腺皮质激素ACTH(18-39)抗体现货促销中,为您推荐相关优质检测抗体:Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Lgr5/GPR49 肠上皮干细胞蛋白抗体 Anti-LH (Mouse Anti-Human Luteinizing Hormone Monoclonal Antibody) 鼠抗人促黄体生成素抗体 Anti-L-HDC (L-Histidine decarboxylase) L-组氨酸脱羧酶抗体 hu, mo, rat, bov, dog, pig, chi Anti-LHRH/GNRH (luteinizing hormone-releasing hormone) 黄体激素释放激素抗体/促性腺激素释放激素抗体 Anti-LIF (leukemia inhibitory factor) 白血病抑制因子抗体 Anti-Lingo-1 Nogo受体作用蛋白抗体 Anti-Livin (Inhibitors of apoptosis proterins Livin) 一种新的凋亡抑制蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 Anti-LN (laminin) 层粘连蛋白抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-LRP/MVP (Lung resistance related protein) 肺耐药相关蛋白抗体 Anti-LRRK2 (Leucine-rich repeat kinase 2) 帕金森氏病致病基因/神经系统新功能基因抗体 Anti-Lumbrokinase 抗蚯蚓纤溶酶抗体/抗蚓激酶抗体 Anti-Lysozyme 溶菌酶抗体 anti-LYVE-1(lymphalic vessel endotheilial hyaluronan receptor 1) 淋巴管内皮透明质酸受体抗体 Anti-M2-PK ( pyruvate Kinase M2) 丙酮酸激酶-M2抗体 Anti-M2-PK (pyruvate Kinase M2) 丙酮酸激酶-M2(小鼠来源抗体) Anti-Integrin αM/CD11b (Mac-1/CR3A)(Integrin-alpha2) 巨噬细胞表面分子/整合素-α2抗体 Anti-ChRM1 (muscarinic acetylcholine receptor) 毒蕈碱型乙酰胆碱受体M1抗体 Anti-MADCAM-1(-Mucosal addressin cellular adhesion molecule-1) 粘膜选址素抗体 Anti-MAG-a/b (Myelin associated glycoprotein L / S -MAG ) 髓鞘相关糖蛋白a/b抗体 Anti-MAG-a/L-MAG (Myelin associated glycoprotein) 髓鞘相关糖蛋白-a抗体 Anti-MAGE-1/HLA-A1 protein (melanoma antigen family A member 1) 黑素瘤抗原-1抗体 Anti-MAPKK1 (MAP kinase kinase 1) 丝裂原活化蛋白激酶激酶1 Anti-MAPKK2 (MAP kinase kinase 2) 丝裂原活化蛋白激酶激酶2抗体 Anti-Maspin (mammary serine protease inhibitor) 抑癌基因抗体 Anti-Matriptase 蛋白裂解酶(一种新的癌基因)抗体 Anti-MBP (Myelin Basic Protein, MBP) 髓鞘碱性蛋白抗体 Anti-MCP-1 (monocyte chemotactic protein1) 巨噬细胞趋化蛋白-1抗体 Anti-M-CSF (Macrophage Colony Stimulating Factors) 巨噬细胞克隆刺激因子抗体 Anti-MDM2 (urine double minute 2) 双微体2癌基因抗体 Anti-Megsin/SER—PINB7 丝氨酸(或半胱氨酸)蛋白酶抑制剂B7抗体 Anti-Melan-A/MART-1 黑色素瘤相关抗原/黑色素-A抗体 Anti-Metal ion transporter 拟南介金属离子转运蛋白抗体 Anti-Mfn1 (Mitofusin1) 线粒体融合蛋白1抗体 Anti-MGMT (O6-methylguanine-DNA methyltransferase) O6甲基鸟嘌呤DNA甲基转移酶抗体 anti-MT(metallothionein) 金属基质硫蛋白抗体 anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(NT) 层粘连蛋白受体1抗体(N端) anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(CT) 层粘连蛋白受体1抗体(C端) Anti-MICA(MHC class I polypeptide-related sequence A) 一种细胞应激分子抗体 Anti-Midnolin isoform Protein 1 中脑核仁蛋白1抗体 Anti-Midnolin isoform Protein 2 中脑核仁蛋白2抗体 Anti-MIF (Macrophage Migration Inhibitory Factor) 巨噬细胞移动抑制因子抗体 Anti-MIP-1α (macrophage inflammatory protein 1α) 巨噬细胞炎症因子1α抗体 Anti-MIP-1β (macrophage inflammatory protein 1β) 巨噬细胞炎症因子1β 抗体 Anti-MMP-1(matrix metalloproteinases-1) 基质金属蛋白酶-1抗体 Anti-MMP-1(matrix metalloproteinases-1)anti-Mouse 基质金属蛋白酶-1抗体(小鼠) Anti-MMP-13 (Matrix metalloproteinase 13) 基质金属蛋白酶13抗体 Anti-MMP-14(Matrix metalloproteinase-14) 基质金属蛋白酶-14抗体 Anti-MMP-2(Collagenase IV /Gelatinase A/Metallo proteinase-2) 基质金属蛋白酶-2抗体 Anti-MMP-3(matrix metalloproteinase-3/Transin-1/SL-1/Stromelysin-1 precursor) 基质金属蛋白酶-3抗体 Anti-MMP-7(Matrilysin/matrix metalloproteinases-7) 基质金属蛋白酶-7抗体 Anti-MMP-9(matrix metalloproteinase 9) 基质金属蛋白酶-9抗体 Anti-β-2-MG 鼠抗人β2微球蛋白抗体(单抗) Anti-Mo anti-KLH 小鼠抗血蓝蛋白抗体 Anti-MOG (myelin oligo-dendrocyte glycoprotein-MOG) 髓鞘少树突胶质细胞糖蛋白抗体 Anti-Mouse anti-human HAS 鼠抗人血清白蛋白单克隆抗体 Anti-Mouse IgA 兔抗小鼠IgA抗体 Anti-MPO (myeloperoxidase) 髓过氧化物酶抗体 Anti-MRP1(Multidrug Resistanec-Associated Protein 1) 多药耐药相关蛋白1抗体 Anti-MRP2 (multidrug resistance-associated protein2) 多药耐药相关蛋白2抗体 Anti-MRP3(Multidrug Resistanec-Associated Protein 3) 多药耐药相关蛋白3抗体 Anti-MrpL28 (mitochondrial ribosomal protein L28) 线粒体核糖体蛋白L28抗体 Anti-MSH-2 (MutS homolog 2) 错配修复蛋白2抗体 anti-MLH1(Mutl homolog l gene) 错配修复蛋白1抗体 Anti-MSLN (mesothelin) 间皮素抗体 anti-MUC5AC/Mucin 5AC(Gastric Mucin M1) 胃粘液素抗体 Anti-MTR-1A (Melatonin receptor-1A) 褪黑素受体/松果体素受体抗体 Anti-mucin-1/Muc-1/CD227 antigen (Epithelial Membrane Antigen ) 粘蛋白-1/上皮膜抗原抗体 Anti-MyD88 (myeloid differential protein-88) 髓样分化蛋白抗体 Anti-Myelin P0 protein( peripheral myelin prothein Zero MPZ MPP) 外周髓磷脂P0蛋白/P0蛋白抗体 Anti-Myosin (Smooth Muscle) 鼠抗人心肌肌凝蛋白(平滑肌) 单抗 Anti-N-AChR α4 (Nicotinic-Acetylcholine receptor α4) 烟碱型乙酰胆碱受体α4抗体 Anti-N-AChR α7 (Nicotinic-Acetylcholine receptor α7) 烟碱型乙酰胆碱受体α7抗体 Anti-Nanog 胚胎干细胞关键蛋白抗体 anti-Natrexone 抗纳曲酮抗体IgG Anti-NAP1 (nucleosome assembly protein 1) 核小体组装蛋白1抗体 Anti-N-cadherin N-钙粘附分子抗体 Anti-N-coR1 (Nuclear receptor co-repressor 1) 核受体辅助抑制因子抗体 Anti-Nephrin Protein 肾病蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Neurobeachin protein (AKAP550) 蛋白激酶锚定蛋白/激酶固定蛋白抗体 Anti-Neurocan 神经粘蛋白抗体 Anti-Neurofascin-155 神经束蛋白-155 Anti-NF-H(Neurofilament triplet H) 高分子量神经丝蛋白抗体 Anti-NFKBp65(p65 NF-kappa B p65NFKB) 细胞核因子/k基因结合核因子抗体 Anti-NF-L(Neurofilament triplet L) 低分子量神经丝蛋白抗体 Anti-NF-M (Neurofilament triplet M) 中分子量神经丝蛋白抗体 Anti-NF-κBp50(p50 NF-kappa B p50NFKB) 细胞核因子50/κ基因结合核因子50抗体 Anti-NGF-R/p75NTR/CD271(p75 Neurotrophin R) 神经生长因子受体抗体 Anti-NGF-β 神经生长因子-β抗体 anti-NGN3(neurogenin 3 Neurog3) 神经元素3抗体 Anti-NGX6 (nasopharyngeal carcinoma/NPC associated gene 6) 鼻咽癌细胞相关基因6抗体 Anti-NHE1(Na+/H+ Exchanger) 钠氢通道蛋白抗体 Anti-NIK(NF-kappaB-Inducing Kinase) NFkB诱导的激酶抗体 Anti-NIS(Na+/I-symporter) 钠碘转运体蛋白抗体 Anti-NK-1/SuRCtance P Receptor (Neurokinin receptor1 Tachykinin receptor1) P物质受体抗体
  • 抗体药物分会场预告:电荷异质性表征/非临床安全性评价/CMC效率...
    为促进我国生物医药产业持续快速发展,仪器信息网将于2023年3月29日-2023年3月31日举办第四届“生物制药研发及质量控制” 网络大会,内容覆盖抗体/蛋白药物、细胞与基因治疗、多肽药物、核酸药物/mRNA疫苗,涉及生物药开发、质量控制、制剂的分析表征以及自动化等创新技术在生物制药领域的应用。抗体药物是现代生物医药产业的主力军,是生物医药产业增长最快的细分领域。我国抗体药物产业起步晚,抗体药发展水平相较于国际还有较大差距。近几年,国内抗体药物市场得到了快速的发展,但在抗体结构设计、新药临床前研究与安全评价、工艺和质量稳定性等方面仍存在诸多挑战。本次生物制药大会特别设置抗体/蛋白药物会场,邀请到14位来自生物制药企业和仪器技术企业的行业专家,报告内容涉及抗体和蛋白药电荷异质性的分析表征、分子模拟和人工智能研究抗体/蛋白药物研发的应用、高分辨质谱在ADC及抗体药研发质量分析中的应用、生物药的非临床安全性评价、提高生物药CMC效率,点击下方图片即可免费报名。点击图片免费报名报告嘉宾(部分)详情如下:潘利强 院长助理/研究员 浙江大学药学院报告:定向进化西妥昔单抗克服EGFR胞外区耐药点突变 报名占位潘利强博士,浙江大学药学院院长助理、百人计划研究员,博士生导师。兼任浙江大学附属第一医院院长助理(2020-2021,双专计划)、兼聘教授。国家高层次青年人才、浙江省海外高层次引进人才、浙江省钱江人才等;入选 2021 年《麻省理工科技评论》“35 岁以下科技创新 35 人”亚太区(Asia Pacific)榜单。 现为浙江省药学会理事、生物制药专委会副主任委员等,以及 Signal Transduction and Targeted Therapy、Frontiers in Pharmacology等国际知名期刊编委、专刊副主编等。十多年来专注于抗肿瘤生物药物研究,在Cell、Nature communications等国际知名期刊上发表SCI论文20余篇,授权创新生物药中国发明专利9项、国际专利8项,其中10项专利已转让。谢红伟 产品开发部副总裁 信达生物制药集团报告题目:抗体和蛋白药电荷异质性的分析表征 报名占位 谢红伟,现为信达生物产品开发部副总裁。都柏林大学博士,生物药分析表征和抗体产品开发专家,在美国和中国从事药物分析和蛋白药开发表征20多年。对QbD生物药研发和单抗、双抗、ADC产品关键质量属性CQA分析和质量控制有一定造诣。参加过多个单抗产品的上市(NDA/BLA/MAA)申报和超过30个抗体产品的临床(IND/IMPD)申报,在mAbs和Analytical Chemistry等国内外专业杂志发表学术论文50多篇,应邀在国内外行业会议口头报告50多次.刘翠华 SVP百奥泰生物制药股份有限公司报告:如何提高生物技术药物CMC的效率? 报名占位刘翠华博士现任百奥泰生物制药股份有限公司的高级副总裁,负责产品管线CMC相关技术开发工作。刘博士有20余年的美中生物制药工业经验,先后在美国的Pfizer和前Momenta现J&J,和中国的百迈博、华海、康宁杰瑞、海普瑞任职,作用从技术带领的首席科学家到高级执行管理。她富有国际环境下的研发体系建设和项目管理经验,为多家生物医药业务和管理做了国际化战略策划。她带领管理了50余个复杂生化混合物和生物制品的CMC从早期到产业化不同阶段的开发,其中多个产品成功获得在欧美/中国上市许可。共发表30余篇国际论文和15余项专利。获加拿大西安大略大学生物物理化学博士和美国麻州大学Amherst分校遗传结构生物学博士后。马步勇 教授 上海交通大学药学院报告:分子模拟和人工智能研究抗体/蛋白药物研发的应用 报名占位国家二级教授,分子生物学博士、药理学博士后,黑龙江省“龙江学者”特聘教授、黑龙江省“头雁计划”成员、日本新瀉大学客座教授、黑龙江省杰出青年基金获得者、黑龙江省“五四青年”奖章获得者、黑龙江省政府特殊津贴专家。中国生物化学与分子生物学会常务理事、生物化学与分子生物学技术委员会副秘书长、核糖核酸专业委员会理事、中国生物化学与分子生物学会教学工作委员会常务理事。黑龙江省遗传改变模式动物重点实验室主任,哈尔滨医科大学转基因动物与转基因动物制药中心主任。l 师从2009年诺贝尔奖候选人山本雅之教授;近30年分子生物学、遗传改变模式动物及生物制药研发经验;l 15年打造基因编辑、转染色体及抗体研发技术平台与团队,开发30余种有自主知识产权的转基因小鼠;l 国内首例微小RNA转基因小鼠、国际首例微小RNA敲减小鼠模型;l 国内首批成果利用CRISPR技术在体基因编辑;l 利用“转染色体全人源抗体小鼠”进行创新型抗体研发,已建立多条产品研发管线,成药性数据获业内广泛认可。高旭 教授 哈尔滨医科大学报告:基于转染色体小鼠平台的全人源抗体研发 报名占位国家二级教授,分子生物学博士、药理学博士后,黑龙江省“龙江学者”特聘教授、黑龙江省“头雁计划”成员、日本新瀉大学客座教授、黑龙江省杰出青年基金获得者、黑龙江省“五四青年”奖章获得者、黑龙江省政府特殊津贴专家。中国生物化学与分子生物学会常务理事、生物化学与分子生物学技术委员会副秘书长、核糖核酸专业委员会理事、中国生物化学与分子生物学会教学工作委员会常务理事。黑龙江省遗传改变模式动物重点实验室主任,哈尔滨医科大学转基因动物与转基因动物制药中心主任。l 师从2009年诺贝尔奖候选人山本雅之教授;近30年分子生物学、遗传改变模式动物及生物制药研发经验;l 15年打造基因编辑、转染色体及抗体研发技术平台与团队,开发30余种有自主知识产权的转基因小鼠;l 国内首例微小RNA转基因小鼠、国际首例微小RNA敲减小鼠模型;l 国内首批成果利用CRISPR技术在体基因编辑;l 利用“转染色体全人源抗体小鼠”进行创新型抗体研发,已建立多条产品研发管线,成药性数据获业内广泛认可。胡怀忠 转化医学与临床研究高级副总裁 成都维瑾柏鳌生物医药科技有限公司报告:免疫毒素蛋白开发和临床研究 报名占位胡怀忠教授在医药领域拥有26年药物发现、早期开发和临床转化经验,完成了120名项毒理学GLP研究,3个项目获得FDA批准上市:创建了多种针对肿瘤、自身免疫性疾病和器官移植等动物模型,结合临床前药理学和生物标志物结果制定药物临床开发策略,科学合理地指导临床开发和剂量扩展设计。历任科文斯毒理学家和临床前开发总监,在北京康辰药业研究院院长,荷兰Utrecht大学免疫学博士,华西医科大学医学博士, 美国NIH博士后研究员 ,美国认证毒理学家。贺全仁 高级副总裁/药理学与毒理学 艾博生物科技有限公司报告:生物药的非临床安全性评价 报名占位贺全仁 博士在多家安评中心和国内外新药研发企业负责非临床新药研发工作,是美国毒理学理事会认证的毒理学家(Diplomate, American Board of Toxicology, DABT)。加入艾博生物之前任复宏汉霖研发项目管理与毒理学部副总经理,负责支持新药临床试验和新药上市申请的非临床研究和项目管理。曾任天境生物临床前研究副总裁;昭衍新药研究中心机构副主任和国际毒理部主任;苏州药明康德新药开发有限公司毒理学高级主任和项目负责人。在美国曾任Biothera公司药理学和毒理学主任,CyDex毒理学和医学事务主任。贺博士有丰富的包括小分子、大分子的新药非临床安全性评价以及与美国FDA、欧盟、韩国和中国药品监管部门沟通经验。为其所服务的公司和客户成功申报了数十个IND/NDA项目。王云鹏 GPC&光散射高级专家、产品经理 东曹(上海)生物科技有限公司报告:东曹多角度光散射检测器LenS3在生物大分子表征中的应用 报名占位 王云鹏,毕业于复旦大学高分子科学系,博士学位。现为东曹(上海)生物科技有限公司GPC&光散射高级专家、产品经理,专注于聚合物的分析与表征。薄涛 市场总监 艾易尔斯 (AES )生物科技有限公司报告:全柱成像毛细管等点聚焦技术 (icIEF)表征蛋白电荷异质性的最近进展:质谱联用、馏分制备和高分辨分离 报名占位薄涛于2003年在北京大学化学与分子工程学院获得分析化学博士学位,在2003-2007年在芬兰、加拿大和比利时做色谱与质谱的研究工作。2007年回国后长期致力于仪器分析的技术支持和市场推广,现任艾易尔斯 (AES )生物科技有限公司市场总监。刘达潍 自动化应用专家 贝克曼库尔特生命科学报告:自动化时代下的抗体药物研发方案 报名占位就职于贝克曼库尔特生命科学市场部,主要从事于自动化整合系统以及移液工作站等产品线的应用以及市场工作。在多家头部生命科学仪器公司工作期间,曾参与搭建国内多套千万级生命科学自动化整合项目,覆盖生物药,IVD以及NGS等多个应用领域,有着丰富的高通量设备整合经验。致力于为制药,医疗及生物技术等领域客户提供优质可靠的自动化解决方案。闫凌 大分子应用团队高级应用工程师 赛默飞生命科学质谱应用团队报告:高分辨质谱在ADC及抗体药研发质量分析中的应用 报名占位 博士,毕业于复旦大学分析化学专业,期间主要进行蛋白质组学的相关研究,博士毕业后开始进行生物制药行业的技术支持,在生物分析领域有近十四年的科研及应用与技术支持经验。陈凌声 应用工程师 SCIEX报告:多重碎裂质谱ZenoTOF ™ 7600系统在生物药表征中的应用 报名占位北京蛋白质组研究中心、广西大学联合培养博士。目前担任SCIEX中国应用支持中心应用工程师,主要负责蛋白质组学及生物制药等相关领域的应用支持工作。点击报名:https://www.instrument.com.cn/webinar/meetings/biopharma2023/扫码进入会议交流群
  • ​Nat Bio Eng封面文章 | 傅阳心团队开发新型双特异性抗体—通过靶向树突状细胞上的PD-L1来重新激活肿瘤特异性T细胞
    双特异性T细胞衔接器(bispecific T-cell engager,BiTE)是一种能够同时结合肿瘤相关抗原(tumor associate antigen, TAA)和 CD3 复合物的抗体类抗肿瘤药物。传统的技术是通过靶向TAA 来实现肿瘤内T细胞上CD3信号通路的再激活,从而达到杀伤肿瘤细胞的效果【1-3】。自上世纪90年代起,针对双特异性抗体疗法的设计和改进已经有了近30年的研究。然而,目前为止只有安进公司(Amgen)的Blinatumomab (针对CD19 的 BiTE) 被FDA 批准用于治疗复发或难治性急性淋巴细胞白血病 (acute lymphoblastic leukemia, ALL)【4,5】。以细胞因子风暴(cytokine storm)为主的副作用限制了其他针对实体瘤的BiTE所进行的临床测试。仅在2021年,安进公司就暂停了4种 BiTE的一期临床试验, 所涉及的抗原包括FLT3, BCMA, CD33和EGFRVIII。除了严重的副作用之外,半衰期短,TAA特异性低以及抑制性肿瘤微环境都是限制BiTE在体内发挥抗肿瘤效应的重要因素。因此,提升双特异性抗体的有效性并降低其副作用能够极大的促进该疗法在临床的广泛应用。图1 正在以单药形式进行临床测试的双特异性抗体2021年11月1日,美国德克萨斯大学西南医学中心傅阳心团队在Nature Biomedical Engineering杂志上发表了题为Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells的文章。该研究构建了靶向免疫检验点PD-L1 和CD3ε的双特异性抗体 (PD-L1xCD3)。在多种小鼠肿瘤模型上,PD-L1xCD3比传统的TAA靶向性双特异性抗体(ErbxCD3)展现出了更强的抗肿瘤效果。利用多种条件性敲除小鼠表明,PD-L1xCD3在体内主要结合树突状细胞(dendriticcells, DCs)表达的PD-L1而并非肿瘤细胞或巨噬细胞表达的PD-L1,进而重新激活了肿瘤内部的抗原特异性CD8 T 细胞免疫反应来达到治疗肿瘤的效果。进一步的机制研究表明,PD-L1xCD3与DC上PD-L1的结合,促进了共刺激分子B7和CD28之间的相互作用,从而避免T细胞发生激活诱导的细胞死亡(activation-induced cell death),进而实现肿瘤内T 细胞长效激活的效果。研究团队首先在体外验证了制备的PD-L1xCD3能够同时结合PD-L1和CD3ε,并能够以PD-L1依赖的方式刺激T细胞活化并分泌IFNγ,杀伤肿瘤细胞。体内实验进一步表明PD-L1xCD3能够在MC38模型上产生良好的抗肿瘤效果并优于anti-PD-L1和anti-CD3的联合治疗,从而表明PD-L1xCD3具有其独特的作用机制。通过细胞过继转移和删除实验表明,PD-L1xCD3能够诱导抗原特异性CD8 T细胞反应并产生免疫记忆,而这一现象依赖于肿瘤内预存的CD8 T 细胞。为了研究PD-L1xCD3是否比传统的TAAxCD3具有更强的抗肿瘤效果,作者们制备了靶向TAA的ErbxCD3双特异性抗体,并通过体外实验证明其具有与PDL1xCD3相似的亲和力,激活T细胞能力和肿瘤细胞杀伤能力。然而体内实验却表明,在相同剂量下PD-L1xCD3比ErbxCD3展现出了更强的抗肿瘤效果,并且这一现象在TC1,B16F10,TuBo等多种模型上均得到了验证,提示靶向免疫检验点PD-L1的双特异性抗体比靶向TAA具有更好的激活T细胞能力。为了进一步探究产生这种区别的本质原因,作者们首先通过在不同的细胞上敲除了PD-L1来探寻哪种细胞表达的PD-L1对于PD-L1xCD3在体内的抗肿瘤效果是必须的。出乎意料的是,尽管肿瘤细胞本身是最主要的PD-L1阳性的细胞,但敲除肿瘤细胞上的PD-L1并没有影响PD-L1xCD3的治疗效果。与之相反,敲除宿主细胞上的PD-L1却彻底废除了PD-L1xCD3的治疗效果。通过条件性PD-L1敲除小鼠实验表明,树突状细胞而并非巨噬细胞表达的PD-L1起到了至关重要的作用。作者进一步利用Batf3敲除小鼠确认树突状细胞亚群(cDC1)对于PD-L1xCD3的治疗效果是不可或缺的。前期研究表明,anti-PD-(L)1 治疗能够通过增强B7-1(CD80) 与CD28的相互作用来达到激活T 细胞的效果6, 7。由此,研究人员提出了PD-L1xCD3治疗是通过增强共刺激信号来发挥作用的假设。结果也表明,用抗体阻断CD80/86后,PD-L1xCD3的治疗效果消失同时抗原特异性T细胞反应也大大减弱。通过体外共培养实验证明,PD-L1xCD3能够通过增强共刺激信号的方式促进IL-2的分泌,避免T细胞因过度激活导致的凋亡,从而实现肿瘤内T细胞的长效激活。传统BiTE的设计理念是通过单链抗体(ScFv)衔接T细胞与肿瘤细胞,促使T细胞活化并直接进行肿瘤细胞杀伤。然而,在肿瘤微环境里T细胞的数量和质量都非常有限。而肿瘤细胞不仅数量“占优”并且能够通过激活抑制性信号通路(如PD-L1/PD-1)来逃逸杀伤。与此同时,由于肿瘤细胞本身并不表达共刺激分子,其激活T细胞的效果非常有限。面对数倍于己的“敌军”,T细胞在反复杀伤的过程中很容易产生耗竭而败下阵来。与之相反,作为新型双特异性抗体,PD-L1xCD3能够将T细胞与树突状细胞衔接在一起,从而为其激活提供充足的条件(共刺激分子)。通过与树突状细胞的相互作用,T细胞不仅得到了有效的激活并且能够通过IL-2实现自我扩增。最终实现T细胞的持续性激活并获得持久的抗肿瘤免疫反应。图二:PD-L1xCD3的作用机理综上所述,该研究为新一代双特异性抗体设计提供了思路。证明了PD-L1xCD3 具有优于传统BiTE的如下特点:1)靶向肿瘤组织降低毒性;2)阻断PD-L1/PD-1相互作用,解除T细胞抑制;3)靶向DC细胞为T细胞激活提供共刺激信号,从而促进IL-2介导的T细胞存活。据悉,该论文已被选为Nature Biomedical Engineering 杂志11月份的封面故事。该研究的通讯作者是美国德克萨斯大学西南医学中心的乔健博士和傅阳心教授。刘龙超博士为论文的第一作者。原文链接:https://www.nature.com/articles/s41551-021-00800-2
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 转化医学系列|人源化模式小鼠在肿瘤免疫药物研究中的应用
    肿瘤免疫疗法是当前肿瘤治疗领域中最具前景的研究方向之一,已发展成为继手术、化疗和放疗之后的第四种肿瘤治疗模式。肿瘤免疫学治疗的方法种类繁多,目前各大医药研发企业的关注焦点主要包括:免疫检查点抗体药物,CAR-T疗法,溶瘤病毒等等,但新型的免疫疗法如何进行可靠有效的临床前效果评估,是推进肿瘤免疫疗法的一关键节点。百奥赛图自主研发了一系列免疫检查点人源化小鼠,为免疫检查点抗体药物筛选提供了可靠的体内药效模型,此外基于重度免疫缺陷B-NDG小鼠建立的免疫系统人源化小鼠模型也为药物验证提供了更多的选择。本期转化医学系列webinar邀请到的是百奥赛图药理药效事业部总监郭雅南博士,郭博士将给大家介绍:1. 免疫检查点抗体单用或联用在体内药效筛选的策略2. 利用免疫重建小鼠和B-hCD3e人源化小鼠进行双特异性抗体的体内药效评估与毒性检测3. 利用重度免疫缺陷小鼠B-NDG小鼠对CAR-T药物进行体内药效评估与毒性检测转化医学系列网络讲座第五期讲座题目:人源化模式小鼠在肿瘤免疫药物研究中的应用讲座时间:7月25日下午14:00-15:00主讲人:郭雅南 博士(百奥赛图)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)即刻报名扫描下方二维码主讲人简介郭雅南 博士百奥赛图 药理药效事业部总监清华大学生物科学与技术系本科;美国罗切斯特大学神经生物学/药理学博士学位;2009-2013年,在哈佛大学医学院伯明翰妇女医院转化医学系从事博士后研究工作;2014年回国,担任百奥赛图基因生物技术有限公司研发部副总监。拥有10多年癌症生物学和神经生物学的研究经验,现担任药理药效事业部总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间高内涵筛选助力个性化癌症医疗8月小分子激酶抑制剂研究最新进展9/19/2019使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 密理博:买抗体巧选妙配 “惊喜”鼠不尽
    密理博(Millipore)作为生命科学领域的策略性供应商,为答谢中国地区的广大用户的关爱,共同推进生命科学的发展,即日起至2008年6月30日推出“买抗体第二支四折”的活动。参加者均可获赠绒毛公仔一个,并有机会通过幸运抽奖获得ViewSonic数码相框。 具体活动细则如下: 按中国地区目录价格选购任意二支抗体,其中价格较低的一支可享受4折优惠。 此优惠不得与其他促销同时享受。 双重惊喜“鼠”于您 惊喜一:均可获赠毛绒公仔一个 惊喜二:优惠期间会通过抽奖诞生3位幸运者,将分别获赠ViewSonic数码相框一个。 具体参与办法: 1.参加抗体优惠活动 2.登陆http://www.millipore.com/reply/form/antibodypomotion, 在线填写问卷小调查。 3.在收到所购产品的当月月底之前将发票复印件或送货单寄往密理博中国有限公司市场部,并注明您的网络注册名。 时尚大奖等你来拿! 密理博(NYSE:MIL)是生命科学的领导者,为生物科学研究和生物制药生产提供最前沿的科学技术、工具和服务。作为一个策略性合作伙伴,我们与客户携手面对世界上最严峻的人类健康问题的挑战。从科研到开发再到生产,我们的科学技术和创新的解决方案帮助客户攻克他们面临的最复杂的难题以尽快达成目标。密理博公司是普尔500成分股之一,在全球有6100多名员工,遍布47个国家。详细信息,请致电密理博技术服务热线:1-800-548-7853或951-676-8080,也可以浏览密理博官方网站:www.millipore.com。 密理博中国有限公司对此次活动享有最终解释权。 screen.width-300)this.width=screen.width-300"
  • 行研报告:抗体药行业研究报告
    p style=" text-align: center " span style=" color: rgb(89, 89, 89) " strong 目录 /strong br/ /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) "    strong 1 抗体概述 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   1.1 抗体 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   1.2 抗体的制备过程 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2 抗体药概述及市场分析 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.1 抗体药概述及发展历程 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.2 抗体药的分类 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2 抗体药概述及市场分析 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.3 抗体药作用机制 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.4 抗体药物的核心技术 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.5 抗体药物的技术发展趋势 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.6 抗体药物的应用进展 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   2.7 抗体药与化学药相比的优势 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   3 国际抗体药分析 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   3.1 国际抗体药市场发展 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   3.2 国际抗体药技术发展 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4 国内抗体药分析 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4.1 国内抗体药市场布局 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4 国内抗体药分析 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4.2 政策有利我国抗体药发展 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4.3 国内抗体药研究情况 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4.4 国内抗体药研发企业概况 /strong /span /p p style=" text-align: left " span style=" color: rgb(89, 89, 89) " strong   4.5 国内抗体药产业投资分布 br/ br/ /strong /span strong style=" text-align: center " 一、抗体概述  br/ /strong strong style=" text-align: center " 1.抗体 /strong /p p   抗体(antibody)指的是由抗原刺激后由免疫细胞产生的能与抗原发生特异性反应的免疫球蛋白,典型的抗体结构由两条重链(H 链)和两条轻链(L 链)构成,每条链又分为稳定区(C 区)和可变区(V 区), 其中可变区的多样性决定了抗体的多样性与特异性,使得抗体具有结合特定抗原的能力。比较不同特异性抗体的VL和VH的氨基酸顺序显示,变异仅集中在其中少数区域的氨基酸上(15%~20%),称为超变区。(hypervariable)超变区是抗体的抗原结合位,与抗原决定簇的结构互补,故又称为互补决定区(complementarity-determining regions,CDRs) 。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/25de6df2-9266-4c9c-a549-9d2f67756128.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 426" height=" 199" style=" width: 426px height: 199px " / /p p   抗原以异源蛋白居多,通常情况下免疫系统能够识别抗原上面的多个位点,针对不同的位点会特异性的产生针对该位点的抗体来结合抗原,由此产生的抗体集合我们称之为多克隆抗体。多克隆抗体由多种针对不同抗原的抗体组成,因而特异性差,使用时容易出现交叉免疫反应,故治疗范围较小,仅限于免疫学检测、被动免疫治疗和紧急预防。鉴于多抗的种种不足,医疗工作者便开始试想能够筛选制备出由单细胞增殖产生的,针对某一特定抗原决定簇的抗体,这样可以大幅提高抗体的特异性,减少交叉免疫副作用,拓展治疗范围, 这类具有高度均一性抗体就被称为单克隆抗体(monoclonal antibody,简称单抗或 mab)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/a02af7bf-79f2-4a29-ac42-bfc1678adab5.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 图1. 单抗和多抗 /p p style=" text-align: center " 资料来源: 渤海证券研究所 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/7c4cda66-5941-49c6-8a3e-de4b33dc5fca.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " 图2. 抗体产生过程 /p p style=" text-align: center " 资料来源: 长江证券研究所 /p p    strong 单克隆抗体具有以下三个特点: /strong /p p   特异性: 单抗只针对含有特定抗原的病灶细胞(如肿瘤细胞),因而专一性强、副作用较小 /p p   特效性: 单抗主要被用于肿瘤和自体免疫疾病(如类风湿)等发病率较高、对人类健康影响较大的复杂疾病,现存疗法(如放化疗、激素疗法)副作用强,效果有限。单抗的问世使其自然而然的成为了此类疾病的特效药 /p p   改造潜力大: 单抗药物具有很强的改造潜力,在单抗或单抗片段上?“加挂”放化疗药物可以使药物?精确“制导”到达病灶,大幅减少了用药量和副作用。 /p p    strong 目前,单克隆抗体在医学上的应用主要有以下三类: /strong /p p   诊断试剂:主要用于检测淋巴细胞表面分子,鉴别淋巴细胞 鉴定病原体,准确诊断传染病 肿瘤诊断和分型 测定体内激素含量等 /p p   医学科研:主要用于纯化抗原 分析抗原结构和抗原决定簇分子功能等 /p p   单抗药物: 包括多个小类,细胞表面分子单抗用于移植排斥反应的防治 细胞因子单抗用于自身免疫性疾病的治疗 抗肿瘤单抗用于肿瘤治疗。 /p p   在上述用途中, 单抗药物无疑是最为重要、市场最大的应用领域。 相对于多抗和传统化学药物,单抗药物具有多方面的优势,这些特点使得单抗被广泛的应用于抗肿瘤、自体免疫疾病治疗、抗器官移植排异、抗感染等临床治疗领域。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0e2ac6b1-1771-402d-b854-0e4b278cf34c.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " 表1. 单抗与多抗、传统化学药物对比 /p p style=" text-align: center " 资料来源:兴业证券研究所 /p p strong 2.抗体的制备过程 /strong /p p   由于单一的 B 淋巴细胞克隆是比较活跃的细胞,它们往往因为自身活跃的基因表达状 态,而比较容易凋亡,因此单独获得 B 淋巴细胞以后也很难大批量的获取单抗。但 Georeges Kohler 和 Cesar Milstein 发明的“单克隆杂交瘤技术”解决了这个难题:他们将B细胞克隆和骨髓瘤细胞进行细胞融合,如此形成的杂交细胞具有肿瘤细胞不死的性质而大大延长了B细胞表达单克隆抗体的能力,使得单克隆抗体的运用成为可能。 /p p   在细胞体外培养技术尚未成熟前,科研人员将融合细胞注入小鼠体内,生产肿瘤,进而 产生大量腹水,单抗主要集中在腹水中,人们收集小鼠的腹水,然后提纯得到单抗。但是该方法的缺点非常明显,就是无法大规模的生产。随着细胞体外培养技术的成熟,目前我们可 以将融合细胞在培养基中大规模的培养获取单抗,这也为单抗药物的诞生创造了有利条件。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/72e15082-e36e-4802-b95d-8ed00b5e7049.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " 图2.人工制备单克隆抗体的过程 br/ strong 二 /strong strong 抗体药概述及市场分析 /strong /p p strong 1.抗体药概述及发展历程 /strong /p p   抗体药物是以细胞工程技术和基因工程技术为主体的抗体工程技术制备的药物,具有特异性高、性质均一、可针对特定靶点定向制备等优点,在各种疾病治疗,特别是肿瘤治疗领域的应用前景备受关注。 /p p   第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。 /p p   第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。 /p p   近年来,抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应 ②基因工程抗体的分子量较小,可以部分降低抗体的鼠源性,更有利于穿透血管壁,进入病灶的核心部位 ③根据治疗的需要,制备新型抗体 ④可以采用原核细胞、真核细胞和植物等多种表达形式,大量表达抗体分子,大大降低了生产成本。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/a8d6d77e-a080-418e-9b3e-4d8496afd2d2.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " 资料来源: 中商情报网、 FDA、 长城证券研究所 /p p strong 2.抗体药的分类 /strong /p p   随着基因工程技术的发展,人们开始改变鼠源单抗的结构,使其更接近人源蛋白的构造,从而减轻其在人体内的免疫反应。目前的单抗产品主要可以分为以下四类:鼠源化抗体、嵌合型抗体、人源化抗体以及完全人源化抗体。 /p p   鼠源化抗体顾名思义就是完全分泌自小鼠细胞的抗体,其与人体的兼容性最差,容易引 起较强的免疫反应,目前已经较少使用。 /p p   嵌合型抗体就是把鼠源抗体的活性区域嵌合到人源抗体的稳定区域中,这样鼠源活性区 域仍能够发挥活性,识别目标蛋白。而新抗体 70%以上的区域均为人源抗体的稳定区域, 这样可以大大降低抗体的异源性,使得嵌合抗体的效价更高。此外,嵌合抗体结合目标抗原 以后,其人源保守区域能够被免疫系统识别,达到通过人体免疫来清除抗原的效果。 /p p   人源化抗体是将鼠源抗体基因中的活性片段转接到人源抗体的基因表达框中,这样表达 出来的抗体人源化区域的比例更高,能够达到 90%左右,这样能够进一步提高单抗在人体 内的活性。 /p p   完全人源化抗体是将小鼠体内的目标抗体基因敲出,然后用对应的人源抗体基因代替, 这样产生的抗体与人体内产生的抗体几乎完全一样,效价能能够达到最高。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/77a936c3-daa0-4ca7-9228-5b9c1be1db3a.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " 图4.各种类型单抗的比较 /p p style=" text-align: center " 资料来源:兴业证券研究所 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/844567fb-f131-4eae-9884-d0ca67814338.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " 表2. 四代单抗技术对比 /p p style=" text-align: center " 资料来源: Current Pharmaceutical Biotechnology、Methods、兴业证券研究所 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/47a0ea49-7099-452a-bfef-7dcf560f8249.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " 图5. 1980-2004 年每年进入临床试验的各类型单抗产品数量 /p p style=" text-align: center " 资料来源:长江证券 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/ac26a08d-774d-4731-aab9-0ac57d3b940a.jpg" style=" " title=" 10.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/7b11b88b-0496-453a-a714-b8c3dfc5ff19.jpg" style=" " title=" 11.jpg" / /p p style=" text-align: center " 表1. 美国FDA批准的抗体药物 /p p style=" text-align: center " (Therapeutic monoclonal antibodies approved by the US FDA) /p p style=" text-align: center " strong 二 抗体药概述及市场分析 /strong /p p strong 3.抗体药作用机制 /strong /p p   抗体药物作用机制比较复杂,但一般可归结为以下5类:细胞毒性药物、抑制细胞增殖、调节细胞的激活和相互作用、调节人自身免疫系统、中和抗原。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/758a6ec4-3cea-4369-a2d4-c84bc8b6d16e.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " 图6. 单抗作用原理 /p p style=" text-align: center " 资料来源:生物制药小编 /p p   3.1 抑制细胞的生长和增殖 /p p   某些抗体药物可以通过结合肿瘤细胞增殖的生长因子,阻断生长和增殖过程,可以用来治疗癌症。如西妥昔单抗、Necitumumab、帕尼单抗靶向EGFR,用来治疗头颈癌和非小细胞癌等。帕妥珠单抗、曲妥珠单抗和ado-trastuzumab靶向HER2(EGFR family),用于治疗乳腺癌。VEGF靶点与血管增生有关,癌细胞的增殖需要大量能量,通常伴随血管增生。如阿柏西普、雷莫芦单抗、雷珠单抗、贝伐珠单抗、康柏西普等,可用来治疗癌症和wet-AMD等。 /p p   3.2 细胞毒性 /p p   癌症、自身免疫疾病的一个首要目标就是杀死异常细胞,抗体可以通过各种机制诱导细胞的死亡。ADC药物通过细胞毒素杀死细胞,抗体药物均可以通过ADCC、ADCP、CDC作用杀死细胞。 /p p   3.3 调节人自身免疫系统 /p p   自身免疫疾病从抗体药物的发展中获益巨大,如TNF-α抗体是迄今最为成功的药物靶点。依那西普、英夫利昔单抗、阿达木单抗,都是年销售额80亿美元以上的重磅炸弹药物,阿达木单抗更是继立普妥之后坐稳药王宝座,2015年销售额143亿美元,2016年上半年即销售77亿美元。除了TNF-α,还有多个涉及调节炎症性反应的细胞因子靶点,如IL-1、IL-5、IL-6/L-6R、IL-12、IL-17A、IL-23、BCMA等。 /p p   3.4 调节细胞激活和相互间作用 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/43a45803-bda2-4141-a92f-1c520b452351.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p   如上图A中,T细胞的激活需要2种信号通路的协同作用:抗原呈递细胞(APC)上的MHC与T细胞上的TCR(其中一个亚基为CD3)结合、APC上的CD80/86与T细胞上的CD28结合。FDA历史上第一个抗体药物Muromomab就是靶向CD3的,近年来双特异性抗体的一个核心发展方向也是结合其他靶标与CD3,达到募集T细胞与靶细胞的作用,2014年,FDA批准了双特异性抗体Blincyto(靶向CD19/CD3)。阿巴西普、贝拉西普则靶向CD80/CD86。这些抗体药物的目的都是阻止T细胞的激活,从而治疗自身免疫病或者器官移植后的排斥反应。还可以通过靶向T细胞上其他蛋白(如阿法赛特靶向CD2)、相关炎症调节因子的受体(如巴利昔单抗、达利珠单抗靶向CD25)来阻止T细胞的激活。 /p p   在针对癌症适应症的时候,则需要激活内源免疫系统来杀灭癌细胞。如伊匹单抗靶向CTLA4、纳武单抗和派姆单抗靶向PD-1、阿替珠单抗(Atezolizumab)靶向PD-L1,即所谓的免疫检点抑制剂,通过解除癌细胞对免疫细胞的抑制作用,杀伤癌细胞。 /p p   3.5 中和外源分子 /p p   FDA批准的第一个此类抗体药物是怕利珠单抗,靶向RSV病毒F蛋白。瑞西巴库单抗、obiltoxaximab是FDA批准的另外两个抗毒素抗体,均用于避免炭疽杆菌的感染。2015年,FDA批准了Idarucizumab,用于中和达比加群酯,主要用于逆转达比加群酯的抗凝作用,使得后者的使用更有保险。 /p p strong 4.抗体药物的核心技术 /strong /p p   单抗的研发生产是一个技术密集型流程,大体可分为抗体筛选、抗体表达和抗体纯化三个环节,每个环节都拥有其核心技术,这些核心技术环环相扣,形成了单抗生产企业的核心竞争力。 /p p   4.1 抗体筛选:噬菌体展示技术已成全人源单抗筛选主流 /p p   随着单抗人源化进程的不断深入,以噬菌体展示技术(详见附录)为核心的大规模单抗筛选平台日益受到重视。该技术不仅可以获得全人单抗, 而且不需要细胞融合, 不经过免疫动物, 实验周期短,过程简单,这是人源抗体制备技术的重大突破,目前国际上主流单抗生产企业均使用噬菌体展示技术筛选单抗药物。 /p p   4.2 表达培养技术: 方法、规模、体系和表达量是?四要素 /p p   作为单抗研发生产链条中承上启下的一环,表达培养技术是单抗产量形成和质量控制的关键,而判断企业这方面技术水平高低的指标主要有表达方法、反应器规模、表达体系和表达量这“四要素”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/54f98542-b88e-41a4-adc7-744586fc68c7.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center " 表3. 表达培养技术四要素 /p p style=" text-align: center " 资料来源:兴业证券研究所 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/4e4464a3-7926-4800-abae-e3214e1d5084.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p style=" text-align: center " 图4. 工业化单抗生产流程 /p p style=" text-align: center " 资料来源:兴业证券研究所 /p p   4.3 分离纯化技术 /p p   在得到单抗之后如何有效的从培养液中分离纯化产物是单抗生产最后一道关键环节,工业上一般采用硫酸铵沉淀、离子交换层析、蛋白-Sepharose 亲和层析等方式纯化单抗,由于平均每增加一个纯化步骤产品得率会降低约 13%,因而在保证纯度的同时尽可能提高得率也考验着生产商的技术水平。 /p p   总的来说,一个单抗生产商如果在上游能够通过出色的研发平台筛选出理想的单抗药物 在中游能够高效大规模的进行发酵培养,表达单抗 在下游能够高效、高纯度的分离纯化单抗,那么该公司就拥有了单抗研发生产的核心竞争力。 /p p strong 5. 抗体药物的技术发展趋势 /strong /p p   根据单抗本身的技术特性和近年来的发展情况,我们认为未来单抗技术发展将呈现以下几方面趋势: /p p   单抗全人化: 由于高人源化比例抗体在药效和副作用方面的优势,在过去 20 年中人源和全人单抗比例持续上升(08 年底销售占比分别为 31%和 11%),而鼠源和嵌合单抗比例则不断下降(08 年底占比分别为 10%和 49%),随着全人化单抗筛选技术的成熟,在研的新型单抗药物越发倾向于使用全人抗体技术,我们预计未来 5 年内新问世的单抗药物中全人单抗将占一半以上。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/89c525c7-c5eb-4bf8-b25a-c82ed46b36ba.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p style=" text-align: center " 图5. 人源化比例提高是大势所趋 /p p style=" text-align: center " 资料来源:兴业证券研究所 /p p   抗体多样化: 除了人源化比例的不断提高,单抗研发也在多样性上不断推进。一方面, 单抗的药物靶位逐渐多样化,除了传统的细胞表面抗原(CD 表面抗原,负责多种细胞信号转导,截止 2009 年发现 390 种分子),还包括了常见的细胞因子(如肿瘤坏死因子 TNF,血管内皮生长因子 VEGF,白介素 IL 等),部分研制中的单抗药物甚至可以识别多个抗原表位,具有更好的抗突变功能 另一方面,单抗药物的结构也不再限于完整的单抗分子,而是包括了如 Fab、 scFV 等抗体 V区片断或其复合物,这些片断可以通过原核表达体系快速低成本表达,从而降低了药物成本。 /p p   治疗联合化: 虽然在单抗治疗肿瘤方面单抗具有副作用小、特异性高的特点,但由于中晚期肿瘤病灶巨大,一般单靠单抗并不能完全消除,这就需要使用单抗配合手术的治疗方案,通过手术切除肿瘤主体,再使用单抗治疗剩余病灶或防止病灶转移。除手术外,化学药物和单抗联合治疗方案也日益受到医疗工作者的重视,如实验证实 FOL+FOX4 方案(Avastin+奥沙利铂+亚叶酸钙+氟尿嘧啶)可以延长肿瘤患者生存期 2.5 个月。 /p p strong 6.抗体药物的应用进展 /strong /p p   目前正在进行开发和已经投入市场的抗体药物主要有以下几种用途:1.器官移植排斥反应的逆转 2.肿瘤免疫诊断 3.肿瘤免疫显像 4.肿瘤导向治疗 5.哮喘、牛皮癣、类风湿性关节炎、红斑狼疮、急性心梗、脓毒症、多发性硬化症及其他自身免疫性疾病 6.抗独特型抗体作为分子瘤苗治疗肿瘤 7.多功能抗体(双特异抗体、三特异抗体、抗体细胞因子融合蛋白、抗体酶等)的特殊用途。 /p p   在进行器官移植时,可以采用某些抗体类药物来逆转器官移植引起的排斥反应。如最早批准(1986年)进入美国市场的治疗性抗体类药物——抗CD3单抗即被用于肾、心脏、肝脏移植排斥的逆转。抗体药用于器官移植免疫排斥反应已发展比较完善。 /p p   近年来人们将更多的目光集中在治疗肿瘤的抗体药物开发上。“生物导弹”,即将各种毒素、放射性同位素、化疗药物与识别肿瘤特异抗原或肿瘤相关抗原的抗体偶联后,能够特异杀伤肿瘤细胞的一类药物。这种药物经由静脉注入人体内,药效分子集中作用于肿瘤细胞,既增强疗效又减少对机体的毒副作用。 /p p   抗体药物目前市场占有度较多的领域为抗癌和自身免疫性疾病,其次用于抗感染、心血管疾病、器官移植免疫排斥反应等。从近年来进入临床试验的单克隆抗体的适应症来看,未来一段时期内,肿瘤治疗仍是抗体药应用的主要占比。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dd78be75-1b98-4c90-a646-cd180e697ff7.jpg" title=" 17.png" alt=" 17.png" / /p p style=" text-align: center " 表2. 截止2016年全球上市抗体药物数量 /p p style=" text-align: center " 数据来源:药渡 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9744ba94-12e2-447a-bb2a-7064942b2343.jpg" title=" 18.jpg" alt=" 18.jpg" / /p p style=" text-align: center " 表3. 截止2016年全球上市药物销售额 /p p style=" text-align: center " 数据来源:药渡 /p p   对于后期开发阶段(Ⅲ期临床和BLA)的抗体药物,《MAbs》杂志主编Reichert, J.M自2009年底起连续9年每年推出“Antibodies to watch in ?.year”系列综述,2010年初到2017年初的8年间后期开发阶段抗体数目依序分别为26个、32个、25个、29个、38个、45个、60个和61个(备注:此处61个产品均为首次进入Ⅲ期临床阶段的未上市新产品,而上述IMGT数据库查询结果124个包括了已经上市产品正在进行的Ⅲ期临床适应症扩展)。其中处于Ⅲ期临床阶段的抗体药物数目及其适应症构成如图2,从中可以看出针对非肿瘤适应症类的抗体药物占比有增多趋势,在研抗体药物种类更加多样化。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/d1991550-3f49-4acd-aaa4-22776bd9a226.jpg" title=" 19.jpg" alt=" 19.jpg" / /p p style=" text-align: center " 表2. 2010-2017年初III期临床阶段产品适应症分布 /p p style=" text-align: center " 数据来源:Reichert系列综述 /p p strong 7.抗体药与化学药相比的优势 /strong /p p   相对于小分子药物,单抗产品最大的优点就是“精确”,能够针对特异性的靶点进行治疗,降低副反应的同时增强了功效。以单抗产品使用最为广泛的肿瘤治疗为例。在传统的治疗中,肿瘤患者一般会接受化疗和放疗两种治疗,但是不论哪种方式都会对患者的身体造成极大的伤害。在化疗过程中,患者一般会出现肠胃功能混乱,免疫力降低,造血功能受抑制等副作用 而放疗使患者本身就要受到辐射伤害。究其原因,是因为这两种传统治疗方法都是“广谱”治疗,也就是不论对肿瘤细胞还是正常细胞都会杀伤,这样造成效价较低。而单抗产品能够精确到细胞级别,针对病灶进行治疗,效价较高。 /p p   单抗药物开发更具资金和时间优势。与开发创新化学药物(包括小分子靶向药物)相比,开发单抗药物具有明显的资金和时间优势。开发一种创新型化学药物需要在临床前阶段进行大量的分子筛选和动物试验,有机化学家需要花费大量时间筛选出新的化学分子以发现“引导”化合物或对既有“引导”化合物进行新的修饰,并再次通过动物试验来初步评价药品的安全性以及收集吸收、代谢、排泄等相关生物效应数据,以保证该化合物可以进入人体临床测试阶段即成为“研究用新药”。整个过程一般需要 5-7 年,花费上亿美金。 /p p style=" text-align: center " strong 三 国际抗体药分析 /strong /p p    strong 1.国际抗体药市场发展 /strong /p p   单克隆抗体由于可精确的攻击靶分子,且具有较少的毒副作用而成为人们期望中的理想药物。经过一段曲折的发展历程之后,于二十世纪九十年代进入了一个新的快速成长期。 /p p   随着技术的不断发展,1997 年,全球迎来了首个治疗肿瘤的嵌合单抗药物——Rituxan(美罗华)。Rituxan 是 Genetech 生产的一种用于治疗 B 细胞非霍奇金淋巴瘤(NHL)的单抗药物,通过联合化疗能显著延长患者的生存期,同时作为嵌合单抗,Rituxan 的副作用相对较小,因而其在 B 细胞 NHL 的治疗中得到了广泛应用,加上次年 Remicade(类克)、Herceptin(赫赛汀)等重磅单抗药物的上市,全球单抗产业开始了突飞猛进地发展。 /p p   1997-2015 年全球单抗产业发展迅猛,CAGR高达37.2%。1997年,全球单抗产业市场规模仅约 3.1 亿美元,到 2015年,市场规模已达到916.3亿美元,年均复合增长率高达37.2%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/5d1703a1-d791-4f29-a0a8-7e81a2636685.jpg" title=" 20.jpg" alt=" 20.jpg" / /p p style=" text-align: center " 图7.单抗药物2005-2015年全球总销售额(单位亿美元) /p p style=" text-align: center " 资料来源:长城证券 /p p   1997-2007年是全球单抗产业增长的爆发期,2008年后增速放缓明显,但仍要显著高于全球医药行业的整体增速水平。1997-2007 年是全球单抗产业增长的爆发期,十年CAGR高达 58.6%。2008年以后,全球单抗产业增速放缓明显, 年均复合增长率降至 14.8%,但仍要显著高于全球医药行业约5%的增速水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/4d3d63ce-3654-4f8a-90f8-2927c60c00e3.jpg" title=" 21.jpg" alt=" 21.jpg" / /p p style=" text-align: center " 图8. 1997-2015 年全球单抗产业市场增速与全球医药行业增速对比 /p p   单抗产业现已成为全球生物制品行业中占比最大的子行业。经过多年的高速发展,单抗在全球生物制品行业中的市场占比已由 1997 年 2.5%上升到 2015年的 34.7%,成为全球生物制品行业中市场占比最大的子行业。与此同时,在单抗制品的带动下,生物制品在全球药品市场中的占比也逐年攀升。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/d58ff098-d216-4bdc-9437-a09ca2705332.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-align: center " 图9. 1997-2015 年单抗在全球生物制品行业中的市场占比 /p p strong 2.国际抗体药技术发展 /strong /p p   2.1大型药企优势明显 /p p   单克隆抗体研发的技术壁垒较高,研发周期较长,需要强大的资金和技术支持,因此在 单抗技术方面大型企业具有明显的优势,因此目前国外重磅的单抗产品主要集中在罗氏(基 因泰克),安进、GSK 和强生等公司,这些公司构建了成熟的单抗研发平台,在靶位基因的 筛选,基因的测序,抗体结构的构建,以及工业化生产等一系列流程上有着技术优势。从目 前已经上市销售的品种来看,我们可以发现单抗产品已经由初期的鼠源性和嵌合性产品逐步 转向了人源化和完全人源化产品,大型企业在蛋白结构重组方面也有自己的优势。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/bd44cdeb-6d56-4eae-8dd0-39745c9bcf80.jpg" style=" " title=" 23.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/485f10af-9064-4086-a32e-7d17c68f73fa.jpg" style=" " title=" 24.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/fefdc633-d80d-486c-a013-98cba0bffb3e.jpg" style=" " title=" 25.jpg" / /p p style=" text-align: center " 表2 国外单抗产品列表 /p p    span style=" color: rgb(0, 112, 192) " CTLA4:细胞毒T淋巴细胞蛋白, PD-1:程序性细胞死亡蛋白1 /span /p p span style=" color: rgb(0, 112, 192) "   PD-L1:程序性细胞死亡配体1, PD-L2:程序性细胞死亡配体2 /span /p p span style=" color: rgb(0, 112, 192) "   4-IBB:肿瘤坏死因子受体-9, IDO1:吲哚胺2,3-双加氧酶1 /span /p p span style=" color: rgb(0, 112, 192) "   LAG3:淋巴细胞活化基因蛋白3, KIR:杀伤细胞免疫球蛋白样受体 /span /p p span style=" color: rgb(0, 112, 192) "   OX40:肿瘤坏死因子受体4 /span /p p span style=" color: rgb(0, 112, 192) "   TCR(T Cell Receptor,T细胞受体)、CAR(Chimeric Antigen Receptor,嵌合抗原受体) /span /p p style=" text-align: center " 数据来源:中国医学科学院陈晓光教授 /p p   2.2靶点和适应症 /p p   各大公司在研产品很多,其大的研发趋势是新靶点的发现和新增适应症,近年来看,在研产品还是以肿瘤治疗为主,在原本治疗淋巴癌、乳腺癌的产品基础上,新增了对实体瘤、黑色素瘤、血液肿瘤、霍奇金淋巴瘤等有效的产品。 /p p   适应症的新增,与新靶点的发现紧密相关。过去,是以传统的 CD 系列、IL 系列和 EGFR 靶点为主,近年随着PD-1、PD-L1、PD-L2、OX40等新靶点的发现,研发种类也日趋多样。当然我们也不能忽视同一靶点可以开发不同适应症,一般来说,同一个靶点在人的不同细胞中都存在,并且可能发挥不同的作用,因此充分发掘一个靶点在不同细胞通路中的作用,对于扩大一个单抗产品的适应症有重要的意义。 /p p   IMGT数据库显示目前(2017年2月17日)有针对298个靶标的抗体药物正在进行开发或已经上市,较2016年同期的269个增加了29个靶标。除去前述的已有产品上市的40个靶点,在研的新靶标有258个。仍然是靶向肿瘤和免疫类的两大类疾病占绝大多数。据Reichert“Antibodies to watch in 2017”,2017年或近几年有可能上市的新靶标有32个,可能获批的新适应症约有18种。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/bb4b4356-d39d-46d7-9df9-bcb852abbc84.jpg" title=" 26.jpg" alt=" 26.jpg" / /p p style=" text-align: center " 表2. 近几年可能上市的新靶标和新适应症 /p p style=" text-align: center " 资料来源:IMGT 网站 /p p style=" text-align: center " strong 四 国内抗体药分析 /strong /p p strong 1.国内抗体药市场布局 /strong /p p   目前全球化学制药的创新已经进入瓶颈期,而生物制药的创新则层出不穷,随着新靶点 的发现和现有产品适应症的不断扩大,治疗性单抗产品的应用范围不断拓展。 /p p   我国单抗行业处于高速发展期,2010-2015年 CAGR近50%。我国单抗行业起步较晚,直到 1999 年才上市了第一个国产单抗药物——注射用抗人 T 细胞 CD3 鼠单抗,主要用于器官移植排斥反应。经过十多年的发展,至2015年,我国单抗产业市场规模已达到75亿元,近5年 CAGR 近 50%(2010年国内单抗产业市场规模约10.3亿元),发展迅猛。 /p p   2016-2020 年国内单抗行业 CAGR 达 30%。据中投顾问预测:到 2020 年,我国单抗产业市场规模将达到280亿元,2016-2020 年年均复合增长率达30%,仍远超 Research and Markets预测的未来5年全球单抗产业9.84%的增速水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/8e08f4da-a481-45b0-90df-c0dfbad39ea6.jpg" title=" 27.jpg" alt=" 27.jpg" / /p p style=" text-align: center " 图10. 2010-2020 年我国单抗产业市场规模及预测 /p p style=" text-align: center " 数据来源:长江证券 /p p   肿瘤治疗的巨大需求推动我国抗体药市场发展。国内单抗药物主要应用于抗肿瘤领域。不同于国际市场,目前国内上市单抗药物主要应用于抗肿瘤领域,相应市场占比超过70%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f803e304-6545-4b7c-aad1-f877c3c88540.jpg" title=" 28.png" alt=" 28.png" / /p p style=" text-align: center " 图11. 当前我国单抗药物主要应用疾病领域 /p p style=" text-align: center " 资料来源:长江证券 /p p   我国恶性肿瘤患病人数不断增加,市场规模持续扩大。受人口老龄化、环境污染等因素影响,我国恶性肿瘤发病率逐年上升,患病人数持续增长。2015 年,我国抗肿瘤药物市场规模已接近1000亿元, 2020年则有望突破2000亿元,市场空间巨大。 /p p style=" text-align: center " strong 四 国内抗体药分析 /strong /p p strong 2. 政策有利我国抗体行业发展 /strong /p p   2.1 产业政策 /p p   作为生物产业的重点发展方向之一,政府近年来出台了一系列政策来鼓励和支持我国单抗产业的发展。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/aefd999e-106b-435a-8046-b3955a76c20d.jpg" style=" " title=" 29.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/16b2311a-e78f-41c9-9a75-48a15b5e1a8b.jpg" style=" " title=" 30.jpg" / /p p style=" text-align: center " 表3.近年我国政府出台的鼓励抗体行业发展的相关政策 /p p style=" text-align: center " 数据来源:政府网站,渤海证券研究所 /p p   2.2医保政策 /p p   越来越多的单抗药物进入到地方医保目录。单抗药物价格通常较高,因而暂时未能进入到国家医保目录,但随着其治疗效果不断被认可,越来越多的单抗药物被增补到地方医保目录。随着人社部在时隔七年之后再次对基本医保药品目录展开调整,不排除有重磅级单抗药物进入到国家医保目录的可能。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9cd91990-a4c7-46cd-89d9-a5f5c0baf50f.jpg" style=" " title=" 31.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/726ee7a1-e1d4-48d3-8f73-2077b4674d2a.jpg" style=" " title=" 32.png" / /p p style=" text-align: center" br/ /p p style=" text-align: center " 表4. 部分进入我国地方医保的单抗药物 /p p style=" text-align: center " 数据来源:药智网、药源网 /p p   药品审评审批政策:新药审评时间长阻碍了我国创新药的发展。长时间以来,我国新药审评耗时冗长,2014 年我国1.1和3.1类新药从申请临床到上市获批平均耗时63个月,远远 长于同期美国新药的平均审评时间(约 10 个月)。新药审评时间长不仅降低了我国药企对创新药研发的热情,也使得我国在全球创新药的竞争中逐渐处于劣势。药品审评审批制度改革将加快我国单抗行业发展。2015年8月,国务院发布《改革药品医疗器械审评审批制度的意见》,明确将加快创新药的审评审批,对创新药实行特殊审评审批制度,单抗药物作为创新药的一员,必将受益于此次药审改革,得到快速发展。 /p p strong 3. 国内抗体药研发概况 /strong /p p   至2017年2月17日,目前我国共有82家研制单位正在CDE进行171个抗体药物的注册研究,较去年同期增加企业11家,新增抗体32个。年度新增企业数屡创新高,2016年高达17家 加之以前进行过临床注册或已有产品获批但现无注册申报的6家企业,国内涉及抗体药物研制的单位共计88家。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/cdbc4590-5e6c-4fa9-b390-28a61845ce46.jpg" title=" 33.jpg" alt=" 33.jpg" / /p p style=" text-align: center " 表2. 各企业申报抗体数 /p p style=" text-align: center " 资料来源:生物制品圈 /p p   在这171个抗体药中,生产注册的仅有4个【上海百迈博的抗TNFα嵌和(CXSS1200005),中信国健的抗CD20嵌和(CXSS1100021)、抗HER2人源化(CXSS0700053,CXSS1100005),山东新时代的TNFαR-Fc融合蛋白(CXSS1000005) 不计数武汉生物制品研究所已终止的抗出血热鼠单抗(CXSS0800002)】。近5年无新申报生产注册的产品,且随着我国生物类似药原则的出台、标准的提高及与国际接轨,之前BLA申报的抗体的审评结局尚不得知。统计CDE“药物临床试验登记与信息公示平台”中登记的抗体药物信息,至今有30家国内本土企业的共计43个抗体药物处于各临床研究阶段。 /p p   在前述申报的171个产品中,以“1类新药”申报的有48个,占比28%。然而许多产品虽然以1类新药申报但国外已经有了相同或相似产品上市,非真正意义上的“国内外尚无产品上市”的1类新药。因可获得的产品确切信息有限,粗略估判国内申报的产品中的85%可归类为抗体类似药或抗体仿创药。其中仅抢仿7大热门“重磅炸弹”抗体的申报数就高达91个,Bevacizumab、Adalimumab、Rituximab、Trastuzumab、Cetuximab、Etanercept、Infliximab的抢仿厂家数分别为23家、21家、15家、10家、9家、8家和5家,合计起来的总占比虽然有降低趋势,但仍达到了注册抗体的一半以上(91/171=53%),如果这些抗体类似药都能够顺利进入市场,可以预见未来市场竞争态势将会异常惨烈。 /p p   就开发热点而言,国内企业已有了抗PD-1单抗、ADC药物、去岩澡糖化抗CD20抗体、抗PD-L1抗体、抗PCSK-9抗体、双特异性抗体的申报。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/cd122f45-5c13-421c-9b56-7ade8b17f5f3.jpg" title=" 34.jpg" alt=" 34.jpg" / /p p style=" text-align: center " 表5. 国内企业关于热点抗体的申报情况 /p p style=" text-align: center " 数据来源:生物制品圈 /p p   综上可见,全球抗体药物产业强劲发展,中国抗体药物上市及原始创新产品开发严重不足。无论是已上市销售的还是正在注册研究的抗体药物,国内企业在抗体靶标和新抗体基因发现、新抗体药物创制、产品种类等诸多方面,都与欧美日等发达国家有较大的差距。如火如荼的抗体类似药开发,对于解决国内抗体药物临床需求迫切、药物可及性差等问题意义重大。但国内在研抗体同质化较为严重,需提升我国创新抗体药物的开发及产业转化能力。 /p p strong 4.国内抗体药研发企业概况 /strong /p p   目前我国已形成以北京、上海、西安、武汉等为中心的产业基地,但我国企业研发能力相对薄弱,国产单抗药物主要为仿制药,在国内单抗市场,进口药仍占主导,国内企业市场份额仅占15%。但随着国家政策大力支持国产药品、进口药品专利到期增加等利好因素的叠加,国内抗体药物行业迎来发展机遇。 /p p   目前,在中国上市的抗体药物共有 23 个,其中,13 个是进口药,中国人开发生产的抗体只有10个,并且4个鼠源的抗体已无销售。2016年,中国抗体市场规模为 13.8 亿美元,其中,83% 的市场份额被进口抗体药物垄断。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/703fffda-96a9-458c-b9f7-a03aeda42bbe.jpg" style=" " title=" 36.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9e50230c-0e8f-4249-84c2-7eab670dc623.jpg" style=" " title=" 37.png" / /p p style=" text-align: center" br/ /p p style=" text-align: center " 表4. 国内已上市抗体药 /p p style=" text-align: center " 资料来源:长江证券 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/ed00826f-82ab-485f-80c1-619b30179f3d.jpg" title=" 38.jpg" style=" text-align: center white-space: normal " / /p p style=" text-align: center " 表2. 国内抗体药研发现状 /p p style=" text-align: center " 数据来源:医药时间 /p p   近几年,中国创新生物药的发展取得了一些令人瞩目的成绩,我国第一个具有全球知识产权的单克隆抗体类药物康柏西普直通(专利持有人为成都康弘生物科技有限公司)美国 FDA 临床 III 期。我国在PD-1、PD-L1方面的研究不断取得突破,已成功报批的药企就有7家:君实生物(我国首个PD-1单抗获批)、恒瑞(2016年2月PD-1单抗获批临床)、百济神州、嘉和(2016年4月PD-1单抗临床申请获受理)、信达生物、思路迪(我国首个PD-L1单抗新药)、誉衡。同时,国内药企与国外企业抗体药物合作不断增加,如药明康德和阿斯利康、恒瑞和Incyte、信达和礼来、广东的中山康方等等。 /p p   目前国内抗体药研发实力较强的公司包括,传统优势药企,如复星、恒瑞、齐鲁、海正等,以及创业型企业,如信达、康宁杰瑞、百济神州等。还有一些科研院所。目前申报抗体品种数大于5家以上的企业有齐鲁制药、海正药业、复宏汉霖、上海恒瑞、深圳龙瑞等9家企业。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/bdac5972-2b9e-4c8f-a40e-66704f3fa056.jpg" title=" 39.jpg" alt=" 39.jpg" / /p p style=" text-align: center " 表2. 国内治疗性抗体申报情况 /p p style=" text-align: center " 数据来源:火石创造 /p p strong 抗体研发企业大概可以分为以下几类: /strong /p p   1、以中信国健、百泰为代表,国内最早拥有上市抗体药物产品的生物药物企业,有研发、生产、营销的完整产业链。但在产业剧烈变革的时代,也面临诸多挑战。 /p p   2、 以海正药业、康弘药业为代表,本身已经具有一定规模的中药、化药企业,最早一批重金布局抗体药物领域的企业。海正在研产品线丰富,但上市产品安百诺营销压力大,后续面临新一批抗体药物研发企业的激烈竞争。康弘的郎沐虽上市较晚,但头顶首个获得 WHO INN 的光环,占据了地利人和,获得了初步成功,后续仍有 KH903、KH906 等pipeline 储备。但俞德超走后,生物药长远如何布局,还要再看。 /p p   3、以齐鲁制药、嘉和生物、复宏汉霖为代表,资本充足,起步较晚,以符合国际标准的高质量生物类似药为突破点来破局。但这类企业也最多,竞争也最为激烈。包括正大天晴、华海药业等一大批企业。 /p p   4、以恒瑞医药、百济神州等为代表,研发水平着眼国际水准,靠自主创新达到核心竞争力。这里面又分为两类,一类是已经拥有雄厚资本的恒瑞药业,立志于成为国际一流的创新推动型药企,一类是百济神州这种研发型企业,通过资本市场以及合作开发方式,来获得前期研发需要的资本。这也是欧美通行的研发模式。 /p p   5、不得不提的还有国内的生物药物 CRO/CMO 产业,这类企业在整个抗体药物发展过程中将发挥巨大作用,甚至影响产业格局。 /p p strong 5.国内抗体药产业投资分布 /strong /p p   投资简介 /p p   抗体产业的热度也吸引了众多的资本介入,从2012年到2017年上半年抗体药物企业共披露融资次数47次,涉及融资金额达130亿元。从披露投融资情况看,从2015年开始,抗体产业不管是从融资次数还是融资金额上都有大幅提升,产业热度居高不下,融资次数和融资金均以A轮和B轮居多,提示我国抗体产业仍处于上升阶段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f2b8cdb0-1393-448f-a7ca-628f75a59255.jpg" title=" 40.jpg" alt=" 40.jpg" / /p p style=" text-align: center " 表2. 近5年国内抗体药物企业披露投融资金额及笔数 /p p   以高领资本、元禾原点、毓承资本、礼来亚洲基金、启明创投为代表的投资机构为抗体领域的繁荣提供了资本支持。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/42f7de45-55d4-4b8a-9ebd-ba7cd0417afe.jpg" title=" 41.png" alt=" 41.png" / /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 表2. 资本主要投资项目 br/ strong 投资风险 /strong /p p   对于生物创新药来说,由于其开发的复杂性,众多国内企业选择合作开发模式以共担风险。由于生物医药专利的复杂性、抗体领域靶点和技术的易重叠性,抗体药物专利问题愈发突出与明显, BMS和默沙东的PD1专利大战、安进/赛诺菲关于PCSK9表位的专利之争更是为国内企业在抗体领域专利布局敲响警钟。 /p
  • 肿瘤治疗之双特异性抗体—结构、优势、制备、研究现状
    p span style=" color: rgb(0, 112, 192) " strong 1、双特性抗体简介 /strong /span br/ /p p style=" text-align: justify text-indent: 2em " 双特异性抗体(BsAb)又称双功能抗体,可同时识别和结合两种不同的抗原和表位,并阻断两种不同的信号通路以发挥其作用。根据不同结构可将双特异性抗体结构主要有2大类:含Fc片段的双特异性抗体(IgG-like双特异性抗体)与不含Fc片段的双特异性抗体(non-IgG-like双特异性抗体)。 /p p style=" text-indent: 2em " strong IgG-like双特异性抗体 /strong :IgG样BsAb有Fc部分,具有Fc介导的效应功能,如抗体依赖性细胞介导的细胞毒作用(ADCC)、补体依赖的细胞毒作用(CDC)和抗体依赖的细胞介导的细胞吞噬作用(ADCP)。分子量相对较大,其Fc部分有助于抗体后期的纯化并提高其溶解性、稳定性。IgG样BsAb相对分子量较大,且Fc部分与受体FcRn结合,增加了抗体血清半衰期。此类抗体结构主要包括Triomabs/quadroma、DVD-Ig(dual variable domain Ig)、CrossMAb、Two-in-one IgG、scFv2-Fc。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/cd9bb872-271d-45cb-afbc-35f7cba5588c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " 双特异性抗体(BsAb)又称双功能抗体,可同时识别和结合两种不同的抗原和表位,并阻断两种不同的信号通路以发挥其作用。根据不同结构可将双特异性抗体结构主要有2大类:含Fc片段的双特异性抗体(IgG-like双特异性抗体)与不含Fc片段的双特异性抗体(non-IgG-like双特异性抗体)。 /p p style=" text-align: justify text-indent: 2em " strong non-IgG-like双特异性抗体: /strong 非IgG样BsAb缺乏Fc片段,仅通过抗原结合力发挥治疗作用,具有较低的免疫原性、易于生产、分子量小等特点。因相对分子量较小,其在肿瘤组织的渗透性较高,因此具有更强的治疗效果。这些BsAb有诸多形式,主要包括TandAb(tandem diabody)、scFv-HSA-scFv、BiTE(bi-specific T-cell engager)、DART(dual affinity retargeting)、Nanobody。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9acc75b7-4909-447c-adaf-5781ed723f89.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p span style=" color: rgb(0, 112, 192) " strong 2、双特异性抗体的临床优势 /strong /span /p p style=" text-align: justify text-indent: 2em " BsAb与普通抗体相比增加了一个特异性抗原结合位点,在治疗方面表现出了以下优势: /p p style=" text-align: justify text-indent: 2em " strong √ 介导免疫细胞对肿瘤的杀伤 /strong :双特异性抗体的一个重要作用机制是介导免疫细胞杀伤,双特异性抗体有两条抗原结合臂,其中一条与靶抗原结合,另一条与效应细胞上的标记抗原结合,后者可以激活效应细胞,使其靶向杀伤肿瘤细胞。目前已经批准上市的2个双特异性抗体产品都属于这个类别,Trion Pharma公司开发的catumaxomab能够靶向肿瘤表面抗原EpCAM和T细胞表面受体CD3,而Micromet公司和Amgen公司开发的Blinatumomab可以同时结合CD19和CD3。两者都是通过激活并召集杀伤性T细胞,从而达到治疗肿瘤的目的; /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f2b9023b-cc8d-488f-92f5-4a2013fa0fd8.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " strong √& nbsp 双靶点信号阻断,发挥独特的或重叠的功能,有效防止耐药: /strong 同时结合双靶点,阻断双信号通路是双特异性抗体的另一个重要作用机制。受体络氨酸激酶(receptor tyrosine kinase,RTKs)是最大的一类酶联受体,在细胞增殖过程中发挥重要的调节作用,如Her家族等。RTKs在肿瘤细胞表面异常高表达,导致肿瘤细胞恶性增生,因此也是肿瘤治疗的重要靶点。针对RTKs的单靶点单克隆抗体已在肿瘤治疗中得到广泛应用,但是,肿瘤细胞可以通过转换信号通路或通过HER家族成员自身或不同成员之间的同源或异源二聚体激活细胞内信号进行免疫逃逸。因此采用双特异性抗体药物同时阻断两个或多个RTKs或其配体,可以减少肿瘤细胞逃逸,提高治疗效果; /p p style=" text-align: justify text-indent: 2em " strong √& nbsp 具备更强特异性、靶向性和降低脱靶毒性: /strong 利用双特异性抗体两个抗原结合臂可以结合不同抗原的特点,两个抗原结合臂分别结合癌细胞表面2种抗原,可以有效增强抗体对癌细胞的结合特异性和靶向性,降低脱靶等副作用; br/ /p p style=" text-align: justify text-indent: 2em " strong √& nbsp 有效降低治疗成本: /strong 以BiTE为例,与传统抗体相比在组织渗透率、杀伤肿瘤细胞效率、脱靶率和临床适应症等指标方面都具有较强的竞争力,临床优势显著。特别在使用剂量方面,由于其治疗效果可以达到普通抗体的100-1000倍,使用剂量最低可将为原来的1/2000,显著降低药物治疗成本。相对于组合疗法,双特异性抗体的成本也远远低于两个单药联合治疗。 br/ /p p style=" text-align: justify text-indent: 2em " 双特异性抗体的制备主要有双杂交瘤细胞法,化学偶联,重组基因制备等方法。重组DNA技术是目前制备BsAb使用最多的技术。 /p p span style=" color: rgb(0, 112, 192) " strong 3、双特异性抗体的制备方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 双特异性抗体的制备主要有双杂交瘤细胞法,化学偶联,重组基因制备等方法。重组DNA技术是目前制备BsAb使用最多的技术。 /p p style=" text-align: justify text-indent: 2em " strong √& nbsp 化学偶联法: /strong 该方法最早出现于上世纪80年代,其原理是通过化学偶联剂(如邻苯二马来酰亚胺、N-琥珀酰-3-(2-吡啶二硫基)丙酸盐、二硫代酰基苯甲酸等)将两个完整IgG或两个F(ab)2抗体片段偶联成一种BsAb,这种方法快速简便,但是容易破坏抗原结合部位从而影响抗体活性,同时交联剂本身的安全性和致癌性不确定; /p p style=" text-align: justify text-indent: 2em " strong √& nbsp 双杂交瘤融合法: /strong 通过细胞融合的方法将2株不同的杂交瘤细胞融合成双杂交瘤细胞株,然后通过常规的杂交瘤筛选法克隆靶细胞。由于双杂交瘤的遗传背景来源于亲代的两种杂交瘤细胞,它必然要产生2种重链和2种轻链分子,而这些轻重链的随机组合配对方式才能产生所需的BsAb.利用双杂交瘤方法制备双特异性抗体随机性较大,效率低,但是BsAb生物活性较好,抗体结构比较稳定。利用Konck-in-hole技术可以有效解决异源抗体抗体重链正确配对的难题。制备方法是将一个抗体的重链CH3区366位体积较小的苏氨酸突变为体积较大的络氨酸,形成突出的“杵”型结构;将另一个抗体重链CH3区407位较大的络氨酸残基突变成较小的苏氨酸,形成凹陷的“臼”型结构;利用“杵臼”结构的空间位阻效应实现两种不同抗体重链间的正确装配。化学偶联法和双杂交瘤融合法生产出的双特异性抗体为鼠源性,具有较强的免疫原性,且产量低纯度差,在临床应用上有很大的制约; br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1c866bc3-af96-4ab1-919d-6adc354c4247.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " strong √& nbsp 基因工程: /strong 利用基因工程技术制备双特异性抗体是目前最常用的制备方法,其制备原理为利用基因工程技术对传统抗体进行基因工程方面的改造,从而形成多种形式的双特性抗体。 br/ /p p style=" text-align: justify " span style=" color: rgb(0, 112, 192) " strong 4、双特性抗体在肿瘤治疗中的研发现状 /strong /span /p p style=" text-align: justify " strong Catumaxomab /strong /p p style=" text-align: justify text-indent: 2em " Catumaxomab(Removab,Trion)于2009年正式获得EMA批准在欧洲上市,用于治疗恶性腹水(腹腔转移癌晚期患者常见的一种并发症),成为全球第一个上市的双特异性抗体。在II / III期研究中,腹膜内catumaxomab改善了无穿刺存活率和下次腹腔穿刺的中位时间,减少了腹水的体征和症状,并显示出改善OS的趋势。 最常见的不良反应是发热,恶心,呕吐和腹痛。目前正在进行的临床试验包括卵巢癌、胃癌和上皮癌。Catumaxomab是一个分子量在150kDa三功能的抗体,由一个靶向肿瘤EpCAM的小鼠IgG2a和一个靶向CD3ε的大鼠IgG2b构成,同时还能通过Fcγ受体激活单核细胞、巨噬细胞、星状细胞以及NK细胞。由于小鼠和大鼠的轻重链之间很少发生错配,通过quadroma(hybrid-hybridoma)的方式,将分别表达小鼠和大鼠抗体的杂交瘤进行二次融合,从而得到同事分泌Triomab双特异性抗体以及小鼠和大鼠单克隆抗体的杂交瘤细胞株。然后在通过亲和力纯化的方式、分别去除小鼠和大鼠单克隆抗体。虽然Catumaxomab是第一个批准上市的双特异性抗体,但同时也具有非常明显的局限性,主要体现在Triomab抗体复杂的生产工艺以及异源抗体比较容易产生的免疫原性问题。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/e30a7448-be1a-4ee1-a003-2d0a8e910074.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p strong Blinatumomab(博纳吐单抗) /strong /p p style=" text-align: justify text-indent: 2em " Blinatumomab于2014年12月4日获得美国FDA批准,用于治疗费氏染色体阴性的前体B细胞急性淋巴细胞白血病。Blinatumomab由Micromet公司(后被Amgen公司收购)开发,是利用DNA重组技术制备的一种双特异性的单链抗体BiTE,通过一条多肽链把靶向肿瘤细胞和T细胞表面抗原的两种单克隆抗体的可变区连接起来,Blinatumomab选择性地靶向B细胞表面抗原CD19,同时特异性地结合T细胞表面抗原CD3从而激活T细胞。因为主要由两条单链抗体连接而成,BiTE的分子量较小(55-60kDa),容易渗透肿瘤组织。同时BiTE缺乏Fc段因而免疫源性较低。临床试验已经证明Blinatumomab即便在很低的使用剂量下,依然可以有效召集T细胞并清除肿瘤,显着改善复发或难治性B细胞前体ALL患者的中位OS。 其常见的不良反应包括发热,头痛,发热性中性粒细胞减少和外周性水肿。但是由于没有Fc片段,BiTE抗体分子的体内半衰期很短,试剂使用的时候需要额外配备连续输液装置。2017年Blinatumomab全球销售达1.75亿美元(2014年300万美元、2015年0.77亿美元、2016年1.15亿美元)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/25849992-832f-4ea8-8403-4b0326c9455a.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p strong 其他在研双特异性抗体 /strong /p p style=" text-align: justify text-indent: 2em " 目前有多个双特异性抗体正在开展用于治疗肿瘤的临床试验,其结构中多包含CD3抗原结合位点(用于募集T细胞到肿瘤细胞附近),另一个结合位点包括CD19,CD20,CD33,CD123,HER2,CEA,神经节苷脂GD2,PSMA,gpA33等等。另外,还有一些双特异性抗体为:HER2 + HER3, IL1α+IL1β,IL13+IL17, IL17A/IL17F和CD30+CD16A。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/65a7606a-7037-4841-bb6c-51b9ddccfe40.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 部分终止临床的双特异性抗体: /strong 在进入临床用于治疗肿瘤的双特异性抗体中,共有8个临床试验被终止。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/214002fa-5ac5-4e25-a649-06403b0bcffd.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p span style=" color: rgb(0, 112, 192) " strong 5、国内双特异性抗体研发企业 /strong /span /p p style=" text-indent: 2em " span style=" text-align: justify " 据不完全统计,国内目前从事双特异性抗体研发的企业共有19家,其中上市公司3家,分别为珠海丽珠、江苏恒瑞、浙江海正药业,非上市公司16家,分别为武汉友芝友(石药占股40%)、武汉中美华世通、苏州康宁 /span span style=" text-align: justify " 杰瑞、苏州信达、苏州天演药业、苏州博生吉(安科生物占股20%)、上海君实生物、上海复宏汉霖(复星医药子公司)、上海岸迈生物、上海健能隆(合肥亿帆子公司)、上海宜明昂科、北京康众生物、北京天广实、深圳本康生物、中山康方生物、杭州特瑞思。 /span br/ /p p style=" text-align: justify " strong 武汉友芝友: /strong 友芝友是一家专门从事生物医药自主创新研发的高科技企业。从团队上讲,友芝友是一个由院士领衔,制药巨头研发高管参与的国际化背景团队。CDE的数据显示,友芝友自主开发的“注射用重组抗HER2和CD3人源化双特异性抗体”(M802)和“注射用重组抗EpCAM和CD3人鼠嵌合双特异性抗体”(M701),分别于2017年9月29日和2018年3月6日获得临床批件。 /p p style=" text-align: justify " strong 武汉中美华世通: /strong 中美华世通成立于2009年,由“国家千人计划”专家张发明博士回国创立。其子公司杭州翰思生物致力于肿瘤免疫领域生物大分子的研发及产业化,自主研发的PD-1目前已在进入国内二期临床。临床前品种围绕PD-1布局多个双特异性抗体,包括PD-1/CD47,PD-1/IL-10,PD-1/VEGF,CD47/VEGF等等,其中PD-1/CD47(HX009)目前已完成中试,正在猴子体内进行长毒试验,预计明年中获得临床批件。 br/ /p p strong style=" text-align: justify " 苏州康宁杰瑞: /strong span style=" text-align: justify " CRIB(Charge Repulsion Improved Bispecific)是康宁杰瑞自主研发的双特异性抗体平台,基于完整的抗体框架结构,通过有针对性的调整不同Fc链之间的电荷网络分布,大大增加异二聚体形成的几率的同时,阻碍同二聚体的形成,从而达到构建双特异性抗体分子的目的。目前康宁杰瑞的研发的“注射用重 /span span style=" text-align: justify " 组人源化抗HER2双特异性抗体”已于2018年4月10号获得临床批件,另外还有多个双特异抗体处于临床前研究。 /span br/ /p p strong style=" text-align: justify " 苏州信达生物: /strong span style=" text-align: justify " 信达生物制药致力于做国内最好、国际一流的高端生物制药公司。在双特异性抗体领域,信达生物与岸迈生物、礼来达成合作协 /span span style=" text-align: justify " 议,获得岸迈生物的FIT-Ig平台技术的全球权益,开发包括IBI302在内的双靶点单克隆抗体注射液。IBI302可用于治疗多种眼底黄斑疾病和实体瘤,通过同时阻断疾病发生和发展过程中的两个靶点,达到标本兼治的效果,显著优于现有治疗水平。 /span br/ /p p strong style=" text-align: justify " 苏州天演药业: /strong span style=" text-align: justify " 天演药业成立于2012年,致力于开发新一代治疗性和诊断用抗体技术的生物制药公司。公司的药物筛选平台“动态高精度抗体技术”突破了生物抗体药物研发面临的两大瓶颈:如何扩展治疗性抗体的靶向空间和如何提高抗体药物开发的成药性。目前,天演药业已经建立了高质量的、多样性达千亿的可开发性抗体库,能精准地设计 /span span style=" text-align: justify " 、构建及筛选治疗性抗体,并能生成针对不同靶点的单特异性与双特异性抗体,包括传统上难以生成抗体的复杂靶点的但特异性及双特异型抗体产品线。 /span br/ /p p strong style=" text-align: justify " 苏州博生吉: /strong span style=" text-align: justify " 博生吉医药以肿瘤细胞免疫治疗技术与产品为主要发展目标、以临床技术服务为主要业务的高科技企业。博生吉以细胞疗法为主,但在双特 /span span style=" text-align: justify " 异性抗体方面也崭露头角,公司研发的针对多发性骨髓瘤的CD3/CD138 BiTE在细胞水平上展现了骨髓瘤细胞的杀伤作用。 /span br/ /p p strong style=" text-align: justify " 上海君实生物: /strong span style=" text-align: justify " 君实生物是一家以开发治疗性抗体为主的研发型高科技公司,专注于创新单克隆抗体药物和其他治疗性蛋白药物的研发与产业化,已搭 /span span style=" text-align: justify " 建国内一流创新人源化抗体药物产品研究开发技术平台。该平台涵盖分子抗体药物筛选、高产稳定CHO细胞株的构建及治疗性抗体分析检测在内的多个核心技术。公司旗下目前在研的双特异型抗体候选药物主要有两款:创新性人源化JS005双特异抗体注射液、创新型人源化JS003双特异抗体注射剂。 /span br/ /p p strong style=" text-align: justify " 上海复宏汉霖: /strong span style=" text-align: justify " 复宏汉霖由复星医药与美国科学家团队于2009年12月合资组建,公司主要致力于应用前沿技术进行单克隆抗体生物类似 /span span style=" text-align: justify " 药、生物改良药以及创新单抗的研发及产业化。目前,复宏汉霖有14个单抗药物处于在研阶段,其中双特异性抗体药物两个(HLX31、HLX32)。 /span br/ /p p strong 上海岸迈生物: /strong 岸迈生物成立于2016年,主要关注肿瘤领域的双特异性抗体研发。岸迈生物的核心技术是双特异性抗体研发平台FIT-lg,FIT-Ig是一项新型的构建双特异性抗体的技术平台,保留了单克隆抗体的主要基本结构元素及生物学特性,同时可以结合及抑制两种不同的致病因子(靶源),并且该项技术已经通过了对产品的可药性和产业化规模生产的验证。目前公司正全力将现有产品向临床推进,预计第一个产品将于2018年进入临床试验阶段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/34f5b2cf-de66-47c6-b113-b1ea83dfd5f5.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: justify " strong 上海健能隆: /strong 健能隆医药建立了免疫抗体技术平台ITabTM(Immunotherapy Antibodies),启动了一系列双特异性抗体药物的开发,用于多种实体瘤和血液肿瘤的免疫治疗。利用该技术凭条设计合成的双特异性抗体分子具有独特的结构特征,可在真核细胞中表达,易于大规模生产。 /p p strong style=" text-align: justify " 上海宜明昂科: /strong span style=" text-align: justify " 宜明昂科生物医药技术(上海)有限公司创立于2015年6月, 致力于肿瘤的免疫治疗产品的开发研究,在研产品包括针对免疫调节靶 /span span style=" text-align: justify " 点的单克隆抗体、经过武装的靶点特异性NK细胞以及双特性性抗体。公司针对CD47靶点的单抗已于2018年9月1日获得NMPA临床试验研究受理。 /span br/ /p p strong style=" text-align: justify " 北京康众生物: /strong span style=" text-align: justify " 康众生物的肿瘤T细胞生物治疗技术平台,基于其独创的羊驼纳米抗体快速分离技术,用于重点研发纳米抗体双特异性抗体(nano /span span style=" text-align: justify " BiTE)。BiTE(Bispecific T-cell engager)技术是采用DNA重组技术将识别T细胞的CD3抗体与其它抗体的重链和轻链可变区通过连接肽连接形成单一的双特异性抗体,这种抗体能够介导T细胞和靶细胞之间形成溶细胞行免疫连接,有效杀伤肿瘤细胞。 /span br/ /p p strong style=" text-align: justify " 北京天广实: /strong span style=" text-align: justify " 是一家处于临床阶段的生物制药公司,具备国内领先的单抗药物研发和产业化技术能力并形成了完善的技术体系。根据CDE的数据显示,公司的“注射用重组人源化双功能单克隆抗体MBS301(HER2-D2/D4) /span span style=" text-align: justify " ”已于2018年8月27日获得临床批件。 /span br/ /p p strong style=" text-align: justify " 深圳本康生物: /strong span style=" text-align: justify " 成立于2015年,主要从事生物制药和细胞治疗创新工具和技术解决方案的开发。公司技术团队中不乏出自安进、拜耳这些巨头公司的研发人才,依托公司在蛋白质工程领域多年的研究经验,公司储备了大量有望改造和提升细胞治疗技术的工具,涵盖双特异性抗体药物开发、细胞培养方案及基于磁珠的细胞分离技术以及细胞检测等诸多方面。目前一共有5个双特异性抗体药物,其中有三个正在展开临床试验,除了一项是在美国申报以外,其他两项试验尚未公布申报地点。 /span br/ /p p strong style=" text-align: justify " 中山康方生物: /strong span style=" text-align: justify " AK-104是中山康方生物医药开发的一种双特异性抗体,同时靶向于CTLA-4和PD-1。CTLA-4和PD-1是在肿瘤浸润淋巴T细胞上共表达的免疫检查点蛋白,康方研发的AK104能同时阻断这两个通路。AK-104目前已在澳大利亚启动了临床一期试验,用于治疗晚期实体瘤。中山康方生物医药已于2017年11月向CFDA药品审评中心递交了该药的新药临床试验(IND)申请。 /span br/ /p p strong style=" text-align: justify " 杭州特瑞思: /strong span style=" text-align: justify " 特瑞思是由国家“千人计划”专家吴幼玲博士领导的海外归国精英联合浙江民营企业家创立的,是一家集研发、中试放大和商业化生产、销售为一体的创新生物制药企业。公司拥有丰富的产品管线,其中2个双特异性抗体处于临床前研究,分别是TRS008(治疗非小细胞肺癌、尿路上皮癌)、TRS009(治疗肺癌、黑色素瘤、膀胱癌,消化道肿瘤)。TRS008是特瑞思于2018年4月与上海岸迈生物合作引进的品种,浙江特瑞思该药的中国市场开发权益,岸迈生物将保留该项目除中国以外的全球商业权益。 /span br/ /p p span style=" color: rgb(0, 112, 192) " strong 6、结语 /strong /span /p p style=" text-align: justify " 双特异性抗体是抗体药物领域最新的一个概念,被视为治疗肿瘤的第二代抗体疗法。国内虽然有多家企业布局双特抗体领域,但多处于临床前研发状态,进入临床阶段仅有武汉友芝友、苏州康宁杰瑞、北京天广实等几家企业。作为一种前瞻技术,其在产业化面临诸多挑战,如解决错配和纯化,改善下游工艺不稳定,保证双抗的稳定性和平衡两个抗体的表达量等。随着技术的进步,相信未来可以利用更多更好的策略来优化各种双特异性抗体,使其具有更强大的疗效和更低的副作用,为肿瘤患者带去福音。 /p p span style=" color: rgb(0, 112, 192) " strong 7、参考文献 /strong /span /p p span style=" color: rgb(84, 141, 212) " 曾静,双特异性抗体在肿瘤免疫治疗中的研究进展 /span /p p span style=" color: rgb(84, 141, 212) " 袁庆云,双特异性抗体药物在抗肿瘤治疗中的应用 /span /p p span style=" color: rgb(84, 141, 212) " 闫莉萍,双特异性抗体药物非临床研究的考虑要点 /span /p p span style=" color: rgb(84, 141, 212) " 郭婷婷,双特异性抗体药物的研究进展 /span /p p span style=" color: rgb(84, 141, 212) " 吴丹青,双特异性抗体技术及其临床应用进展 /span /p p span style=" color: rgb(84, 141, 212) " 黎晓维,双特异性抗体的结构设计及其装配工艺研究进展 /span /p p span style=" color: rgb(84, 141, 212) " 房世娣,双特异性抗体的结构及应用研究进展 /span /p p span style=" color: rgb(84, 141, 212) " Recent advances of bispecific antibodies in solid tumors /span /p p span style=" color: rgb(84, 141, 212) " Bispecific antibody based therapeutics:Strengths and challenges /span /p p span style=" color: rgb(84, 141, 212) " Bispecific antibodies:design, therapy, perspectives /span /p p span style=" color: rgb(84, 141, 212) " Bispecific antibodies for cancer therapy:A review /span /p p span style=" color: rgb(84, 141, 212) " Bispecific antibodies and their applications /span /p
  • 新品上市|东曹推出流穿型疏水填料新品,显著提升抗体多聚体去除率
    东曹生命科学(Tosoh Bioscience)是全球知名的色谱分离解决方案供应商,近日发布了一款新型疏水层析填料——TOYOPEARL Phenyl FT-750F,此款填料专为在流穿模式下纯化抗体而开发,即使在低盐浓度洗脱条件下也能有效去除抗体中的多聚体。Phenyl FT-750F的产品特点:超大孔径(>100 nm):有效吸附如多聚体类的大分子杂质强疏水性:即使在低盐浓度下也能实现流穿分离上样量:50-100 g/L resin优异的回收率>95%对于疏水性较弱的样品,也可以采用吸附洗脱模式Phenyl FT-750F的分离选择性:下图所示为Phenyl FT-750F与TOYOPEARL疏水填料家族的其他产品有着不同的分离选择性。抗体吸附力:Phenyl-650M<Butyl-650M<Phenyl FT-750F<Hexyl-650C。图1 Phenyl FT-750F与其他TOYOPEARL疏水填料的分离选择性比较(单克隆抗体)Phenyl FT-750F的流穿模式下抗体的纯化效果:下图是使用Phenyl FT-750F在流穿模式下分离抗体时,在各种上样量及盐浓度条件下均可获得优异的纯度和回收率。可以使用0.15 mol/L NaCl进行洗脱。图2 在不同上样量及盐浓度下纯度与回收率的变化Phenyl FT-750F与市售其他同类HIC填料对比:下表显示了在疏水流穿模式下Phenyl FT-750F分离抗体的得到高纯度、高回收率的单体,优于其他同类市售HIC填料产品。表1 Phenyl FT-750F与市售同类填料产品的比较如需了解本款填料的更多信息,可点击以下链接下载产品介绍资料:https://www.instrument.com.cn/netshow/SH101626/down_1209292.htm
  • 兰兽研近百名师生布病抗体呈阳性
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   近日有网友反映称,中国农科院兰州兽医研究所很多师生在布鲁菌病的检测中,发现抗体呈阳性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 464px " src=" https://img1.17img.cn/17img/images/201912/uepic/420f16b1-9d6e-4724-ba80-e9bce7940aeb.jpg" title=" 报告单.jpg" alt=" 报告单.jpg" width=" 600" height=" 464" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   据了解,早在上个月底,兰州兽研所就已经有疑似病例出现。本月初,陆续有网友反映“兰州兽医研究所”出现疑似布病疫情。小编联络到多位兰兽研的学生,他们表示,确有其事。兰州兽研所承认确有此事,并强调呈阳性并不意味着确诊患病。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    span style=" color: rgb(255, 0, 0) " strong 布鲁菌病属于乙类传染病 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   布鲁菌病简称布病或波浪热,是一种由布鲁菌引起的人畜共患全身性传染病,牛、羊等牲畜为布鲁菌的主要宿主,而人则属于意外宿主。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   人群普遍易感,不过相对的也有好发人群。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   好发人群包括从事与牛、绵羊、山羊、 猪等家畜有关工作的人,如农民、农场工人、动物饲养员、牧民、剪羊毛者、兽医和配种员。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   其感染可分为三个阶段: /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   1.潜伏期:一般l-4 周 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   2.急性期:病程在 6 个月以内 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   3.慢性期:病程超过 6 个月仍未痊愈。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    strong 表现通常为:急性发热、发热、多汗、肌肉及关节疼痛、乏力,严重者可伴有睾丸、肝、脾及淋巴结肿大等症状 慢性期多表现为关节损害或不孕不育等。 /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   在无特异性治疗的情况下,可持续数周或数月,并进展为有严重并发症的慢性失能性疾病。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   由于临床表现无特异性,因此诊断需要实验室检测(细菌分离或特异性抗体检测)来支持。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   因此,它在我国法定传染病中属于乙类传染病,具有较强的职业性。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   乙类传染病也称为严格管理传染病,包括:病毒性肝炎、细菌性和阿米巴痢疾、伤寒和副伤寒、艾滋病、淋病、梅毒、脊髓灰质炎、麻疹、百日咳、白喉、流行性脑脊髓膜炎、猩红热、流行性出血热、狂犬病、钩端螺旋体病、布鲁菌病、炭疽、流行性和地方性斑疹伤寒、流行性乙型脑炎、黑热病、疟疾、登革热等。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   span style=" color: rgb(255, 0, 0) "   strong 布病感染途径 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   布病在人与人之间传染可能性小,同一居室,一起吃饭不会传染,人不是主要传染源,但感染布病等孕妇可以通过血胎屏障而感染胎儿形成先天感染。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/ba437c52-ba77-42a1-9ae5-908ba1d79f4d.jpg" title=" 布鲁菌bing.jpg" alt=" 布鲁菌bing.jpg" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   至于之前报道的北京鼠疫新闻属于甲类传染病也称为强制管理传染病。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   虽然布病不能人传人,但兰州兽研所作为当地研究机构购买实验动物的重要来源,消息一出,让当地研究者也担心自己买的动物是否被感染,这两天纷纷前往医院进行自查。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   希望各位兰兽研甚至在兰州地区近两年接触过实验大小鼠的同学不要抱有侥幸心理,请务必及时去就近的疾控中心或医院做筛查。 /p
  • 赛默飞与博威生物签署战略合作 建立亚太首个抗体药物“智能工厂”
    赛默飞与博威生物签署战略合作 建立亚太首个抗体药物“智能工厂” 2017年4月20日,广州——今日在广州举行的2017 中国(广东)– 美国投资合作交流会上,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与上海博威生物医药有限公司(以下简称:博威生物)双方在广东省委书记胡春华的见证下签署战略性合作协议:双方将在广州国际生物岛(以下简称:生物岛)建立“赛默飞世尔科技—博威生物联合抗体工程技术展示与服务中心”——该中心将配置亚太地区首条世界领先的抗体药物中试级智能工厂平台(SmartFactory),这是赛默飞提供的基于生物制药行业一次性设备平台开发的自动化控制成套解决方案。该中心建成后将提供多种抗体药物合同研发(CRO)和合同生产(CMO)服务。2017年初公布的《十三五生物产业发展规划》中提出推动国内制药企业研发新技术,提升中国在生物制药领域的国际地位,帮助国内外患者改善治疗效果。赛默飞与博威此次携手,将抗体药物中试级智能工厂平台(SmartFactory)——这一“从一块地”到“一瓶药”的世界领先的解决方案落地中国,促进本土生物制药企业(尤其是在合同研发和合同生产领域)在维持产品质量与合规性的同时,大幅提升研发速度并降低研发成本,从而促进全产业的快速发展,最终惠及广大患者。赛默飞世尔科技与上海博威生物医药有限公司签署战略性合作协议此次赛默飞与博威生物的合作落地广州生物岛,还将协助广州逐步形成抗体药物产业生态体系 (Eco-system),促进广东乃至全国的抗体药物产业的健康发展。这也是赛默飞继2016年与广州政府签署全面战略合作协议之后,与广州政府不断加强中美科技合作过程中又一重要里程碑事件。 “赛默飞很高兴此次能与博威生物携手合作,以赛默飞智能工厂的领先方案与精准医学领域的优势,协同博威生物的创新产业化平台,整合高端医疗服务资源,积极推动中国抗体药物及生物制药的发展。”赛默飞中国区总裁江志成先生(Gianluca Pettiti)表示,“赛默飞的合作伙伴遍布广东各个城市,并与广州已建立坚实的合作基础,而在‘生物岛’这一创新‘加速地’上,我们更希望能与本土合作伙伴在生物制药、精准医疗等领域再创佳绩,践行‘根植中国、服务中国’的长期承诺。”博威生物创始人王少雄博士表示:“博威生物将进一步深化在多种抗体药物合同研发(CRO)和合同生产(CMO)服务方面的实力和竞争力,这也与中国政府提升生物服务的远景战略规划一致。我们很高兴与赛默飞进行深度合作,尤其是此次通过引入赛默飞智能工厂平台(SmartFactory),为博威加强在行业的领先地位注入新的智能力量。这一平台的应用不仅可以缩短基地建设耗时,还降低生产成本,提高博威的整体研发制造能力,打造致力于全产业链的生物医药科技公司。” 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额180亿美元,在50个国家拥有约55,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。赛默飞的重要应用领域包括食品安全、生物制药、环境及医疗保健等垂直市场。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约4000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京和苏州运营。我们在全国共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com 上海博威生物医药有限公司 上海博威生物医药有限公司于2014年在上海张江高科技园区成立,是一家致力于大分子药物研发和生产全产业链的生物医药公司。博威(Mab-Venture)的创业和管理团队来自著名的跨国生物制药企业,在大分子药物研发、生物分析和质量研究等领域拥有15~20年以上丰富的工作与管理经验。 发展至今,博威生物已在上海张江国际医学园区内建成了5100平米的研发和中试生产基地,国际医药园区内将包括研发中心和4条中试生产线,为生物大分子药物在研发、临床前及临床的各个阶段,提供全过程的设计和实施。2016年8月25日博威生物获得了由景旭创投领投的2.26亿元人民币的A轮投资。这笔资金正在被用于搭建国内领先的创新抗体药物平台。未来博威生物会持续专注于建立一体化的专业服务平台,内容涵盖抗体药物工艺研发和质量研究、生物分析方法开发和验证、免疫原性研究和方案设计、临床前药理毒理研究、注册申报和咨询服务。同时,加强抗体研发投入,吸引专业技术人才,在生物医药领域进行深入布局。在未来1年保守估计公司会扩展到150人,未来2-3年内,公司将有数个产品逐步完成IND申报,大型的CMO生产基地将落地在华南地区,预计2019年可以投入使用。 赛默飞智能工厂赛默飞智能工厂(SmartFactory)是赛默飞收购的Finesse公司旗下产品,是专门基于生物制药行业一次性设备平台开发的自动化控制成套解决方案。 该工艺过程控制系统的功能包括:批生产自动化控制、数据记录和管理、 超强的工艺设备兼容性的控制硬件和软件系统:使用者可以方便地切换对生物上下游工艺环节中各种类型和品牌设备的使用;此外,利用同一个工艺质量控制软件完成生产管理监控的需求,可降低对于生产人员管理和操作技术培训的成本,也可以有效控制一次性设备耗材的运营成本。从2015年以来,赛默飞智能工厂(SmartFactory)已经在波兰的PolPharma,冰岛的Alvotech多条1000L和2000L GMP SUB的生产线完成调试和通过验证。
  • 流式抗体新时代:阿拉丁多款靶标抗体震撼上市!
    流式抗体的重要性流式抗体是流式细胞术中的关键组成部分,在科研中扮演着重要角色。它们可用于分析细胞表面标记物,帮助科研人员识别不同类型的细胞,分离和纯化细胞群,诊断疾病,以及在免疫学和药物研发中发挥作用。流式抗体为科研人员提供了强大的工具和技术支持,对细胞生物学、免疫学和临床诊断等领域具有重要意义。 阿拉丁流式抗体涵盖多种热销靶标阿拉丁致力于持续推出各种新型靶标流式抗体。高质量阿拉丁生产的流式抗体经过严格的质量控制,具有高特异性、高灵敏性和高再现性的特点,能够帮助您得到可靠的实验结果。采用重组抗体CD20抗体(FITC)进行流式实验结果(黑色代表未标记样品,绿色代表细胞被重组蛋白CD20抗体(FITC)染色)专业支持阿拉丁公司拥有专业的科研团队,能够为客户提供流式抗体选择方面的专业建议和支持。 阿拉丁相关产品 了解更多产品详情可进入阿拉丁官网(https://www.aladdin-e.com),搜索“流式抗体”。
  • 聚焦抗体产业化,共谋抗体治疗药物行业发展
    2013年6月21-22日 广州   2012年全球销售额前10名的药物中,抗体药物占据“半壁江山”,且市场增速势头不减 在中国,乐观估计,到2015年,抗体药物市场规模将达到325亿-650亿元。对抗体药物生产企业而言,机遇和挑战并重。   易贸医药第三届抗体药物高峰会,在两届成功召开的基础上,将于2013年6月21-22日在广州举行。在议题上,本届会议更为专注的讨论抗体治疗药物产业化。从市场概况、前期研发、药物开发、临床试验、生产工艺出发,通过总、分会场的形式,更为细致、深入的探讨抗体治疗药物在发展过程中面临的挑战。   战略合作伙伴:   华南新药创制中心   广东华南新药创制中心(以下简称中心)是在广东省政府主导下,由广东省科技厅等多家政府机构及部分骨干医药企业共同出资,于2008年10月成立的科技类民办非企业机构,坐落于广州科学城。理事单位包括:广东省科学技术厅、广东省财政厅、广东省发展和改革委员会、广东省卫生厅、广东省食品药品监督管理局、广州市科技和信息化局、广州开发区、广州中大控股有限公司、广州华银医药科技有限公司、广州白云山制药股份有限公司、广州药业股份有限公司等   主会场   抗体药物产业发展趋势及项目合作   分会场一   抗体药物临床前与临床研究   分会场二   抗体药物的产业化流程   2013年抗体药物高峰会发言嘉宾:   郭亚军教授   中国人民解放军总医院肿瘤中心主任,第二军医大学肿瘤研究所所长,抗体药物国家工程研究中心和抗体药物国家重点实验室主任   倪健教授   苏州工业园区晨健抗体组药物开发有限公司董事长兼首席科学家,卫生部抗体技术重点实验室学术委员会副主任,被中央六部委(中央组织部、中央宣传部、中央统战部、人事部、教育部、科技部)评为全国留学人员先进个人及留学回国人员成就奖(国家主席胡锦涛等亲切会见)曾任二届美国华人生物医药科技协会会长(2001-2003年),上海市优秀留学回国人才,上海市优秀学科带头人,上海市科学预见专家, 2005年享受国务院政府特殊津贴人员。   周新华博士   嘉和生物药业有限公司首席执行官。国际公认的著名生物制药,特别是单克隆抗体药物专家,是生物医药领域新技术创新的领军人物,是膜层析技术应用于生物医药大规模生产的先驱,单克隆抗体药物工艺病毒验证专家,曾任全球最大生物制药公司Amgen工艺开发总监,首席科学家,现担任北京大学客座教授。他是具有十多年会龄美国制药科学家学会资深会员,目前也是美国化学学会会员和美国华人生物医药协会终身会员。   Dr. Dorothee Ambrosius   Head Global Process Science at Boehringer-Ingelheim。Dr Ambrosius has a broad expertise in biochemistry/protein chemistry and over 15 years of experience in identification and development of novel biopharmaceutical proteins (antibodies and proteins factors) from different sources. She completed her PhD in biology at the RWTH in Aachen and joint Boehringer-Mannheim, biotechnology Research Center in 1989. She held several research management positions at Boehringer-Mannheim and Roche in the area of recombinant protein production.   关于主办方   易贸医药,作为易贸商务旗下独立业务,自2008年开始紧密跟踪,秉承易贸十多年来对于各个行业深入研究,并保持与业内人士紧密联系的优良传统,以专业第三方的角度,定期举办围绕市场热点的行业高端峰会,打造品牌峰会、市场调研、公关路演、商务合作等一系列活动。我们致力于增进国际与国内同行的了解,促进科研与生产企业的沟通,提升政府和产业企业的交流,借助会议的平台,在政府、企业和园区之间建一个信息共享的桥梁。   官方网址:http://antibody.cbichina.com
  • Nat. Commun.| 胡家志课题组与合作者利用Cas9TX在年龄性黄斑病变小鼠模型中成功实现高效安全的基因编辑
    Nat. Commun.| 胡家志课题组与合作者利用Cas9TX在年龄性黄斑病变小鼠模型中成功实现高效安全的基因编辑CRISPR-Cas9是目前领域内最为常用的基因编辑工具,在基础科研领域以及临床应用上都有着广阔的使用前景。然而Cas9在完成靶向位点突变的同时,还会在脱靶位点进行切割,并会造成染色体易位和染色体大片段缺失等染色体结构异常副产物。除此之外,在以腺相关病毒(Adeno-associated virus,AAV)为递送载体的体内基因编辑治疗中,存在着AAV片段高频插入的现象。这些基因编辑中的副产物严重威胁了基因组的稳定性,可能会导致细胞的癌化,为基因编辑的治疗结果带来不确定性。通过抑制Cas9反复切割靶向位点的完美修复产物,胡家志课题组近期发表的Cas9TX可以在CAR- T的改造过程中大幅度降低染色体易位的发生频率(胡家志课题组开发目前最安全的Cas9基因编辑工具变体Cas9TX),但在与临床应用更为密切相关的体内基因编辑场景中,Cas9TX能否有效降低这些副产物的产生仍需要进一步印证。2022年12月22日,北京大学、北大-清华生命科学联合中心胡家志课题组与上海中科院神经所杨辉课题组在Nature Communications上共同发表了题目为Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration的研究论文。在年龄相关性黄斑病变(age-related macular degeneration, AMD)的体内基因编辑治疗模型中,该工作首次定量揭示了CRISPR-Cas9在体内基因编辑过程中染色体易位和腺相关病毒片段插入的发生模式与发生频率,并通过利用该课题组之前开发的Cas9TX变体大幅度减少了这些副产物在体内基因编辑过程中的产生,为CRISPR-Cas9的临床应用提供了重要的指导意义。年龄性黄斑病变是世界范围内导致老年人失明的主要原因之一。其中湿性黄斑病变主要是视网膜后的异常血管增生所导致的。目前以注射拮抗调控血管生成的VEGFA蛋白的小分子或抗体为治疗该疾病的主流手段,但反复注射不但不能保证治疗效率也会对眼部造成局部并发症。近期以CRISPR-Cas9为主的基因编辑技术为治疗该疾病带来了曙光,通过激光照射小鼠眼部造成新生血管入侵视网膜来模拟黄斑病变,研究者们进一步通过Cas9靶向Vegfa,从而一劳永逸地消除新生血管的产生,为治疗该疾病提供了临床的可操作性。利用该课题组开发的全面评估基因编辑工具安全性的高通量测序方法PEM-seq,该工作首先在以双AAV载体包装系统为递送载体的小鼠眼部脉络膜增生编辑模型中(靶向Vegfa位点),发现了体内基因编辑过程中靶向位点和脱靶位点之间,靶向位点和基因组自发产生的DNA双链断裂之间仍然会形成染色体易位(频率接近1%)(图一a)。与此同时,该研究也发现靶向位点上存在着频率高至40%的AAV片段整合(图一b)。更为重要的是,这些副产物在基因编辑后可以在体内稳定存在12周之久,引发了研究者对于这些副产物的担忧(Nucleic Acids Research | 胡家志课题组与合作者追问在体基因编辑的安全性)。随后该工作利用双AAV载体递送Cas9TX靶向小鼠眼部的Vegfa,结果表明Cas9TX不仅能够提高靶向位点的编辑效率,完成对小鼠脉络膜增生模型的治疗,而且还能大幅度消除靶向位点上所产生的染色体易位(图一c),值得一提的是Cas9TX并没有在脱靶位点造成更高的编辑效率。更为重要的是,该工作发现了Cas9TX也可以有效降低AAV片段在靶向位点的整合(图一d),据悉这是领域内首个可以减少AAV片段在基因编辑过程中插入的基因编辑工具,对临床上的应用具有重要的意义。总体而言,该工作不仅表明了Cas9TX可以成功兼容双AAV递送系统用于体内基因编辑,大幅低降低基因编辑过程中的副产物,也说明了DNA损伤修复在体外与体内的相对保守性,以此为出发点进行基因编辑安全性优化的可行性。图一. a. PEM-seq检测在小鼠眼部Vegfa位点Cas9编辑后染色体易位的发生频率。b. PEM-seq检测在小鼠眼部Vegfa位点Cas9编辑后AAV片段插入的频率。c. Cas9TX大幅度降低染色体易位产生的比例。d. Cas9TX大幅度降低AAV片段插入的比例。北京大学、北大-清华生命科学联合中心胡家志研究员和上海中科院神经所杨辉研究员为该论文的共同通讯作者。上海复旦大学附属眼耳鼻喉科医院干眼中心主任洪佳旭医生也为本论文做出了指导。北京大学前沿交叉学院2022届博士研究生尹健行,上海中科院神经所博士后方凯伦,博士后高艳霞为该文章的共同第一作者。北京大学生命科学学院本科生元绍鹏,博士研究生欧丽琼,辛昌昌以及上海辉大公司高级经理吴炜炜与吴伟威研究员对此工作亦有重要贡献。PI简历胡家志北京大学生命科学学院研究员北大-清华生命科学联合中心PI邮箱:hujz(at)pku.edu.cn “ 实验室主页:https://hulab.pku.edu.cn/实验室长期招收对生物信息学和免疫基因组学和感兴趣的研究生和博士后。研究领域:有颌脊椎动物的免疫系统可以有效地抵御病原体的入侵并清除自身的异常细胞,包括癌细胞。其中,适应性免疫系统的淋巴细胞可以产生多样性的抗原受体而特异性识别病原体和异常细胞。淋巴细胞受体包括B细胞受体和T细胞受体,前者的分泌形式即抗体。淋巴细胞介导的获得性免疫在疾病治疗方面具有巨大的应用价值,如单克隆抗体相关药物在肿瘤治疗方面取得了显著成效。本课题组的研究方向集中在免疫基因组学与人类疾病。我们开发了一系列基因组学测序方法用于免疫学方向的研究,可以用于基因编辑工具(以基于细菌免疫系统的CRISPR/Cas为主)的评估、基因组稳定性的检测以及抗体和T细胞受体的测序。我们的研究方向主要集中在:1. 基因编辑工具的安全性评估及改进2. 淋巴细胞的复制与转录及其基因组稳定性维持机制3. 抗体的发育成果过程的系统研究和工程化改造。
  • IPS-MRCT 抗体药物联合中心成立:抗体药物迎来发展新机
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/423d89ef-b2c0-432b-82bf-7282dc2e3167.jpg" title=" 201637164821361.jpg" width=" 500" height=" 427" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 427px " / /p p style=" text-align: center " 中科院上海巴斯德研究所所长唐宏和MRCT首席执行官Dave Tapolczay代表合作双方签署并交换了合作协议。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 抗体类药物开发已经进入成熟阶段。早期主要是解决免疫原性问题,上世纪80年代以前的单抗主要是鼠源抗体,包括免疫原性反应在内的安全性问题使其难以得到临床认同。近年来,全人源抗体技术已经不是难题,最新的抗体药物已经实现全人源化,可完全规避鼠源成分带来的各种安全性风险。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 近日,中国科学院上海巴斯德研究所(IPS)和英国国家医学研究院科技部(MRCT)在上海成立合作共建“IPS-MRCT 抗体药物联合中心”,标志着中国抗体药物研发进入全新的阶段。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 传统的抗体类药物主要针对某些癌细胞特定抗原或针对肿瘤供给血管,如曲妥珠单抗和贝伐珠单抗。新的研究发现抗体类药物也能有一些新的用途,比如免疫检查点抑制剂PD-1类药物可以改变人体对癌细胞的免疫应答,抗体偶联物可以运输细胞毒类药物直达靶点,双特异性T细胞抗体可以将癌细胞和免疫细胞联络在一起,嵌合CD19单抗可以用于CAR-T治疗等等。抗体类药物的发展无疑为抗肿瘤靶向治疗提供了更多强大的武器。抗体类药物在肿瘤领域可谓大放异彩。不过,抗体类药物已不仅仅用于抗肿瘤治疗,其在多种自身免疫疾病、心脑血管疾病、眼科疾病等治疗领域中都显示出卓越的优势。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 中国的抗体类药物创新相比欧美还较为落后,国内抗体药市场绝大部分份额还被外资企业产品占据。中国的抗体药数量较少,技术水平也普遍不高,一些国外不认同的技术或淘汰技术开发的品种尽管在中国获批,但市场并不接受。此外,虽然我国抗体药在研品逐步丰富,但大多数品种依然是癌症或自身免疫疾病用药,新适应症用药还为数不多。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 不过,中国的抗体类药物创新水平正逐步赶上。一是国家新药创制政策对生物药创新日益重视,最新的“十三五”新药创制计划明确对抗体类药物新技术和新靶点创新的支持,包括双特异性抗体、抗体偶联物、PD-1类药物等都将给予重点支持。二是海外归国高水平生物药人才在国内陆续创建的生物药创新企业为国内带来了欧美最新的生物药创新技术,也带来了生物药创新的新理念。三是风投等资本力量与生物药创新的结合日益紧密。包括恒瑞的PD-1类药物SHR1210、康方生物的免疫监测点抑制剂AK-107、信达生物的双特异性抗体Anti-PD-1 Bispecific Antibodies等在研药物的海外市场权益,都以数亿美元的高昂价格转让给跨国企业,中国的创新抗体类药物已逐步得到国外企业的认同。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 最新成立的IPS-MRCT抗体药物联合中心是中国加速创新抗体类药物研发的又一有力证明。抗体药物联合中心将整合IPS和MRCT优势进行创新抗体药物的研发及转化,致力于中国的研究机构和国际以及国内制药公司之间建立转移转化的桥梁,促进中国创新抗体药物的研发与产业化。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 新成立的抗体药物联合中心主任,上海巴斯德所孙兵研究员介绍称:“过去三年中国新药临床申报(IND)中,抗体药物领域大多为仿制药,创新靶点少,未来鼓励创新抗体药物的研发是必然趋势。”他还表示:“中国基础研究发展迅猛,但转化研究的能力有待提升。”这也是IPS选择与MRCT合作的根本目的。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 英国国家医学研究院(MRC)拥有强劲的医药研发实力,造就了29位诺贝尔奖获得者。MRCT是负责MRC科技成果转化的非盈利性组织,在创新靶点抗体药物研发、知识产权保护、科技成果开发和转化等方面具有丰富的经验和独特的运作体系。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 上海巴斯德研究所科研合作处高级主管孟君对《第一财经日报》记者表示:“此次成立的抗体药物中心,是把双方多年来的合作正式化了,而且能够提供一个开放的平台,加强与国内外各大机构的研究合作,并将科研成果尽快产业化。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 中国科学院上海巴斯德研究所是根据中法两国政府间协议,由中国科学院、上海市政府和法国巴斯德研究所三方为应对中国重要传染性疾病而建立的高水平、非盈利性的科研机构。研究所瞄准国家战略需求,定位于重大传染病的基础和应用研究,研究方向主要集中在新生及突发传染性疾病的病毒学、免疫学、疫苗学研究。 /p p br/ /p
  • GE医疗携抗体质量解决方案亮相2014(第四届)抗体药物及新药研发高峰会
    2014年3月10-11日,GE医疗生命科学部出席在厦门日航酒店召开的2014(第四届)抗体药物及新药研发高峰会,并推出抗体药物质量分析与过程控制的整体解决方案。会议期间,GE医疗生命科学部的技术人员与来自抗体药物研究开发、工业生产与质量控制,以及抗体药物临床研究领域的专家和业界相关人士,共同探讨生产质控和临床开发的热点话题,并在当前抗体药物及生物类似药市场蓬勃发展的大气候下,分享抗体药物新趋势,以迎接行业挑战与机遇。 此次,GE医疗生命科学部展示了旗下全面、成熟的整体解决方案,涵盖从抗体研发、生产放大直至产品分析的完整工业流程。随着近年来国内质量法规的日渐升级完善,大量在研新药和仿制药进入临床前和临床阶段,抗体药物的临床安全性评价和生产环节质量控制日益受到重视。尤其对于抗体等生物治疗性药物,其复杂的药物结构和多步的生产流程,更容易导致最终产品在质量、药效甚至安全性方面的差异。因此,采用最先进的技术(State-of-art techniques)对临床阶段的免疫原性进行全面筛查表征,对工艺流程中抗体产品的关键的质量属性(Quality Attributes)进行实时监测和控制的理念逐渐被行业认可和应用。因而在此次峰会上,GE更着重介绍了针对抗体药物质量分析和过程控制的解决方案。 来自GE医疗生命科学部的Biacore产品经理蔡河做了“Biacore技术在抗体药物质量控制与安全性评价环节的应用与进展”的主题报告,详尽地介绍了GE非标记生物物理分析技术,特别是Biacore技术的价值与应用,包括无需标准曲线的抗体活性浓度定量技术(CFCA)、生物活性分析(FcR, C1q)、临床免疫原性、ADA筛查和表征等。尽管众多的研究者和业内专家对包括Biacore在内的GE非标记分析技术在抗体的药物靶点发现与确认、抗体筛选、动力学表征等前期开发领域的标杆应用早有认可,此次还是对其延展的强大的质量分析和安全性评价的技术价值和产品应用表示出了极大的兴趣。另外,随着近几年国内生物类似物(生物仿制药)市场不断加温,GE的非标记生物物理技术也一定会在生物类似药的head-to-head的一致性分析方面发挥不可替代的作用。 本次峰会还对近几年抗体药物研发的新热点,如ADC(抗体-药物偶联物)、双特异性抗体、抗体药物的临床试验等具体策略和问题展开了深入的探讨;在专场访谈中对于抗体研发的合作模式,法规和质量要求,以及如何更有效的开展生物制品的临床试验进行了开放式的讨论。 GE医疗生命科学部作为在抗体和生物制药领域的领先供应商,期望借其抗体研发、生产到分析平台,以及包含企业整体化解决方案在内的先进技术和理念,共同推动国内抗体和生物制药的进步和发展。
  • 科技部征集新冠病毒中和抗体应急项目,要求三个月内完成抗体评价
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 4月28日,科学技术部发布新型冠状病毒中和抗体产品研发应急项目申报指南的通知 span style=" text-indent: 2em " 。 /span span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: left text-indent: 0em " span style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/f2701a01-2920-47da-8e6d-6744997f1d4c.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em text-align: center " /span /p p style=" text-align: justify text-indent: 2em " 中和抗体具备阻断病毒侵染目的细胞的潜力,在新冠病毒肺炎患者治疗过程中,康复期病人血浆治疗取得了较好的疗效,显示出中和抗体在新冠病毒肺炎治疗方面的潜力。单克隆抗体具有作用机制明确、易于大规模生产的优点,是新冠病毒治疗药物研究的重点方向。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 本指南旨在 /strong /span 面向社会广泛征集具有成熟临床前有效性和安全性研究基础、产业化转化成功率高、能快速进入临床研究的抗新冠病毒全人源单克隆中和抗体,包括全抗、抗体片段、双抗、抗体恒定区融合蛋白药物等,加快推动新冠病毒抗体药物临床评价,增强新冠病毒肺炎治疗和预防手段。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 研发目的 /span /strong :开发中和作用高、体内外模型评价充分、产业化 成功率高的抗新冠病毒中和抗体,增强新冠病毒肺炎治疗和预防手段。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 考核指标 /span /strong :抗体人源化程度高、与抗原的结合能力低于10nM、 建立抗体依赖增强作用评价模型、在P3条件下显示新冠活病毒阻断中和活性(EC50)低于10nM。完成申报临床试验所要求的药 学研究、非临床研究(包括一般药理学、药效、药代和安全性评价),以及制定科学规范的临床试验计划和方案。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 时间节点 /span /strong :三个月内完成抗体评价,一年内获得临床受理文号。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 拟支持项目数 /strong /span :不超过5个。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 有关说明 /strong /span :团队具有较好的研究基础和较强的产业化能力, 鼓励产学研合作。 /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 18px " strong 新型冠状病毒中和抗体产品研发应急项目申报指南具体通知如下: /strong /span /p p style=" text-align: justify " 各有关单位: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 根据国务院应对新型冠状病毒肺炎疫情联防联控机制科研攻关工作的总体部署,按照国家重点研发计划“公共安全风险防控与应急技术装备”重点专项组织管理的相关要求,现将新型冠状病毒感染的肺炎疫情防控应急项目申报指南予以发布。请根据指南要求组织项目申报工作。科技部将按照新冠肺炎疫情防控工作的特殊要求,遴选项目择优支持,会同药监局共同组织推进项目实施。有关事项通知如下。 /span /p p style=" text-align: justify text-indent: 2em " strong 一、项目要求 /strong /p p style=" text-align: justify text-indent: 2em " 1. 项目应聚焦新型冠状病毒中和抗体产品研发的应急需求,突出结果导向,明确研究目标和时间节点,集中力量攻关。 /p p style=" text-indent: 2em text-align: justify " 2. 项目研究涉及人体研究的,应按照规定通过伦理审查并签署知情同意书;涉及人类遗传资源采集、保藏、利用、对外提供等,应遵照《中华人民共和国人类遗传资源管理条例》相关规定执行;涉及实验动物和动物实验的,应遵守国家实验动物管理的法律、法规、技术标准及有关规定,使用合格实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。 /p p style=" text-indent: 2em text-align: justify " 3. 项目产生的科学数据应无条件按期递交到科技部指定的平台,对项目各个承担单位乃至今后面向所有的科技工作者和公众开放共享。 /p p style=" text-indent: 2em text-align: justify " strong 二、申报要求 /strong /p p style=" text-align: justify text-indent: 2em " 1. 申报单位根据指南支持方向的研究内容以项目形式组织申报,覆盖相应指南研究方向的全部考核指标,项目下不设课题。项目申报单位推荐1名科研人员作为项目负责人。 /p p style=" text-align: justify text-indent: 2em " 2. 项目牵头申报单位和项目参与单位应为中国大陆境内注册的科研院所、高等学校和企业等,具有独立法人资格。国家机关不得牵头或参与申报。 /p p style=" text-align: justify text-indent: 2em " 3. 项目牵头申报单位、项目参与单位以及项目团队成员诚信状况良好,无在惩戒执行期内的科研严重失信行为记录和相关社会领域信用“黑名单”记录。 /p p style=" text-align: justify text-indent: 2em " 4. 项目(课题)负责人应具有高级职称或博士学位,为该项目(课题)主体研究思路的提出者和实际主持研究的科技人员 对项目负责人无限项要求,无年龄等要求,只要有能力、有决心为打赢防疫防控阻击战贡献力量,均可参与申报。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 中央和地方各级国家机关的公务人员(包括行使科技计划管理职能的其他人员)不得申报项目(课题)。 /span /p p & nbsp & nbsp 5. 申报项目受理后,原则上不得更改申报单位和负责人。 /p p style=" text-align: justify text-indent: 2em " strong 三、申报方式 /strong /p p style=" text-align: justify text-indent: 2em " 1. 网上填报。请项目申报单位按要求通过国家科技管理信息系统公共服务平台将项目申报书进行网上填报,提交3000字左右的项目申报书。项目管理专业机构将以网上填报的项目申报书作为后续形式审查、项目评审的依据。项目申报书格式可在国家科技管理信息系统公共服务平台相关专栏下载。 /p p style=" text-align: justify text-indent: 2em " 项目申报单位网上填报申报书的受理时间为:2020年4月28日16:00至2020年5月8日16:00。 /p p style=" text-align: justify text-indent: 2em " 国家科技管理信息系统公共服务平台: /p p style=" text-align: justify text-indent: 2em " http://service.most.gov.cn /p p style=" text-align: justify text-indent: 2em " 技术咨询电话:010-58882999(中继线) /p p style=" text-align: justify text-indent: 2em " 技术咨询邮箱:program@istic.ac.cn /p p style=" text-align: justify text-indent: 2em " 2. 材料报送和业务咨询。请各申报单位于2020年5月8日前(以寄出时间为准),将加盖申报单位公章的申报书(纸质,一式2份),寄送至专业机构。项目申报书须通过国家科技管理信息系统直接生成打印。 /p p style=" text-align: justify text-indent: 2em " 寄送地址:北京市海淀区西四环中路16号4号楼中国生物技术发展中心,邮编:100039 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 咨询电话:010-88225047 /span /p p style=" text-align: right " 科技部& nbsp & nbsp /p p style=" text-align: right " 2020年4月27日 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 附件: /strong /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202004/attachment/ae1d37f0-8d6f-4c4e-b66a-70568356dcde.pdf" title=" 新型冠状病毒中和抗体产品研发应急项目申报指南.pdf" style=" font-size: 12px color: rgb(0, 102, 204) " 新型冠状病毒中和抗体产品研发应急项目申报指南.pdf /a /p
  • 国内抗体类药物八大研发热点
    相比于低水平重复,高水平重复对企业的影响往往更为严重,因为创新药投入更大,研发周期更长。  还记得去年南方所年会上关于“新药高水平重复现象也已经呈现交错的态势”的观点。与业内广泛认同的“低水平重复”不同,“高水平重复”还未得到部分企业的重视,在某些领域(如替尼类)创新药的研发已经出现了扎堆情况。  在一系列利好因素的作用下,国内生物药研发非常活跃,尤以抗体类药物最受关注。相比于替尼类等,国内抗体类药物过热态势还不明显,但我们也看到不少国内优秀企业也开始或准备涉水抗体类药物研发。从靶点上看,国内抗体类药物研发依然集中在TNF-α 、CD20、HER2、VEGF等热门靶点,而对于一些国外研发比较活跃的新靶点,国内还比较滞后。  据笔者统计,截至2016年10月,国内已上市或在研的抗体类药物(不含融合蛋白类药物,排除鼠源单抗)总数达到180个(数据来源于CDE公开数据,在研品种仅包括至少申报临床的品种,不含前期研发品种)。其中,国内企业开发的品种为128个,占71.1% 跨国企业开发的品种为52个。  180个品种中,创新抗体药有85个,其中国内企业开发的品种为35个,占41.2% 生物类似药共95个,除了2个是国外企业的品种,其余均是国产品种。虽然从分布来看,国内单抗类药物仍以生物类似药为主,但创新药的数量已经大幅增长。同时,一定数量生物类似药的开发无疑也是非常节约研发资源的方式,可以降低开发风险。  相比于化药品种,抗体类药物的研发投入巨大,难度也更高。不少国内企业对于抗体类药物开发难度并没有清醒的认识,看到类似凯美纳、朗沐、泰欣生和艾坦这样的品种上市后获益颇丰,就简单认为抗体类药物一旦获批就能轻松获得数亿元的销售额。  比如网上就有大量类似的提法:“某某公司的某产品是全球某畅销品种的相似品种,一旦上市该药销售额有望超过**亿元”。殊不知,这些销售成绩都需要大量的市场推广才有可能实现,加之国内如赫赛汀、美罗华、安维汀和修美乐等品种普遍已有超过10家以上的类似药申请。部分靶点的生物仿制药已经明显过热,一堆产品蜂拥而至,仅在研究阶段的临床基地筛选,病例入组就将让不少企业苦不堪言。  此外,尽管在小试及中试阶段,生物药的开发已经难度不大,但如何在质量和成本可控的情况实现产业化,这一步依然非常漫长。即便是顺利上市,单抗类药物同样会面临激烈的竞争,尤其对于某些目标人群本就有限的品种。  因此,对于抗体类药物的研发,国内企业还需冷静思考,切莫跟风。本文梳理出国内抗体类药物的8个研发热门靶点,对各靶点市场情况和趋势进行精辟分析,为国内抗体类药物研发提供参考和建议。  NO.1 TNF-α 靶点  [已上市/在研品种] 28种  [生物类似药热点] 阿达木单抗(17种)  TNF-α 靶点是单抗取得最为成功业绩的靶点。即便排除TNF-α 融合蛋白药物依那西普,仅抗TNF-α 单抗就有4个重磅炸弹级品种:首个获批的英夫利西单抗,“药王”阿达木单抗,以及新获批的戈利木单抗和赛妥珠单抗。这4个品种2015年全球销售额合计达266亿美元。  不过,相比于TNF-α 单抗在全球大放异彩,其在国内的表现却相当惨淡。根据样本医院销售数据,尽管类克(英夫利西单抗)及修美乐(阿达木单抗)已在国内上市,但两个产品样本医院销售合计仅为1.33亿元,且连续两年销量止步不前。这也提示,短期内国内类风湿关节炎生物制剂还难以获得市场认可。  虽然国内销售不佳,却也无碍TNF-α 单抗成为国内最受关注的单抗研发类别,已上市及在研的单抗达到28个。其中英夫利西单抗、阿达木单抗及各自的生物类似药共有22个。  尤其是英夫利西单抗生物类似药,作为人鼠嵌合单抗,在阿达木单抗上市多年的情况下,国内研发依然活跃。进度最快的上海百迈博制药已经申报生产,值得期待 还在申报临床的几个厂家,则建议进一步评估继续开发的价值。  阿达木单抗类似药仅仅已申报品种就达到17个,更值得注意的是还有不少准备申报临床的企业。目前申报进度最快的是百奥泰生物和信达生物,均已进入Ⅲ期临床 此外,北京绿竹生物、嘉和生物、江苏众合、复宏汉霖和浙江海正都已获得临床批件。  在TNF-α 创新药方面,全人源、抗体小型化以及长效是TNF-α 单抗的主要发展方向。因此,与英夫利西单抗和阿达木单抗相比,杨森长效全人源的戈利木单抗和UCB的长效抗体片段赛妥珠单抗有一些优势,这两个品种在国内研发分别进展到申报生产和Ⅲ期临床。  国内自主创新的一类TNF-α 药物中,目前主要有丽珠的注射用重组人源化TNF-α 单抗,以及三生的人源化抗人TNF-α 单抗注射液(CHO细胞),两个品种目前都在进行临床研究。  NO.2 VEGF靶点  [已上市/在研品种] 26种  [生物类似药热点] 贝伐珠单抗(19种)  与TNF-α 一样,VEGF也是药物获得巨大成功的靶点,贝伐珠单抗的上市及其肿瘤饥饿疗法的提出在当时的影响力不亚于PD-1及其肿瘤免疫疗法。  VEGF单抗除了在肿瘤领域取得巨大成功,也广泛用于眼底新生血管疾病的治疗。包括贝伐珠单抗、雷珠单抗,以及2个VEGF融合蛋白类药物(阿柏西普和康柏西普),都广泛用于包括年龄相关性黄斑病变在内的多种新生血管疾病。VEGF单抗药物治疗眼底疾病的地位甚至高于其治疗肿瘤的地位。2015年,贝伐珠单抗(安维汀)和雷珠单抗(诺适得)的全球销售额分别达70亿美元和36亿美元。    在国内,目前已上市和在研的VEGF单抗达26种。其中,贝伐珠单抗的类似药达19种,信达生物进度最快,已进入Ⅲ期临床,此外还有多个厂家已经获批临床。雷珠单抗由于上市较晚,目前国内类似药获批临床的仅有齐鲁1个品种。  VEGF单抗创新药中,礼来最新在FDA获批的Ramucirumab也已在中国进入Ⅰ期临床,该药在国外已获得包括非小细胞肺癌和胃癌在内的多个适应症。先声的Sevacizumab是其联合开发的VEGF单抗,也在中国开展Ⅰ期临床。  此外,泰康生物正在开展Ⅰ期临床的重组抗VEGF人源化单抗注射液,应该是一个针对眼底疾病的VEGF单抗,该药作为为数不多的针对眼底疾病的创新药,更值得期待。  NO.3 CD20靶点  [已上市/在研品种] 19种  [生物类似药热点] 利妥昔单抗(15种)  CD20靶点单抗主要用于非霍奇金淋巴瘤和淋巴细胞白血病的治疗。全球首个获批的CD20类单抗罗氏的利妥昔单抗(美罗华),2015年全球销售额高达73亿美元。在国内市场,美罗华也是最畅销的抗肿瘤单抗药物,根据PDB样本医院数据,2015年样本医院销售额达到7.93亿元。    在美罗华的刺激下,国内CD20类抗体药物的研发一直非常活跃,目前已上市和在研的CD20单抗共有19个,其中利妥昔单抗及其类似药共有16个。  在利妥昔单抗类似药的研发竞争中,三生国健的速度最快,已经完成临床研究,正在申报上市。此外,复宏汉霖、神州细胞和信达生物已进入Ⅲ期临床,浙江海正已进入Ⅱ期临床,还有6家企业已获得临床批件。  CD20创新药方面,目前国内有3个在研品种。考虑到利妥昔单抗是人鼠嵌合单抗,故降低其免疫原性是一个发展方向。  罗氏的Obinutuzumab是第一个被FDA认定为“突破性治疗”的单抗,与利妥昔单抗一样靶向CD20单抗,但其属于人源化单抗,且通过糖基化修饰其Fc片段增加其对Fcγ 受体的亲和力。GSK的奥法木单抗(Ofatumumab)是全人源的CD20单抗,该药用于CLL同样获得了突破性治疗认定。目前Obinutuzumab和Ofatumumab都在中国开展Ⅲ期临床研究,有望分享美罗华的市场份额。  国内CD20创新药也有了先行者,北京天广实生物的重组人源化单抗MIL62注射液是人源化CD20单抗,该药目前正在申报临床。  NO.4 EGF靶点  [已上市/在研品种] 19种  [生物类似药热点] 西妥昔单抗(11 种)  EGF类单抗主要用于结直肠癌的治疗。第一个获批的EGF类单抗是Imclone的西妥昔单抗(爱必妥),该药2015年全球销售额超过14亿美元。  在国内,除了爱必妥,百泰生物联合开发的尼妥珠单抗(泰欣生)也获批上市,两个品种上市早期都经历了快速增长,不过目前增速有所放缓,2015年两个品种样本医院销售合计达3.4亿元。    爱必妥的成功和泰欣生的上市促进了国内EGF类抗体的研发,目前已上市和在研的EGF类单抗一共有19个,其中西妥昔单抗及其类似药共有12个。在西妥昔单抗类似药研发竞争中,张江生物的速度最快,目前正在Ⅲ期临床阶段,其余大部分处于Ⅰ期临床或获批临床批件阶段。  西妥昔单抗的最大问题同样是免疫原性,该药属于人鼠嵌合单抗,因此EGF类单抗研发也着眼于解决免疫原性问题。帕尼单抗(帕妥木单抗)是安进研发的全人源EGF单抗,单药一度被认为有望替代西妥昔单抗,不过上市后大规模临床研究并未支持其在疗效或安全性上优于西妥昔单抗。目前帕尼单抗国内由贝达安进开发,正在开展Ⅲ期临床研究。除了针对西妥昔单抗的类似药,目前国内还有多个针对其他EGF单抗的类似药。齐鲁和上海津曼特生物的EGF单抗类似药都已获批临床,其中前者可能是帕尼单抗的类似药。  创新药方面,目前国内有4个自主研发品种。神州细胞的重组全人源抗人表皮生长因子受体单抗注射液目前已经进入Ⅰ期临床,而上海赛伦生物和重庆智翔金泰生物各自的重组全人源抗EGFR单抗注射液均已经获得了临床批件,这些品种可能都是采用不同的方式使西妥昔单抗实现全人源。  NO.5 HER2靶点  [已上市/在研品种] 19种  [生物类似药热点] 曲妥珠单抗(10种)  HER2靶点单抗主要用于乳腺癌等HER2高表达的癌症治疗。第一个获批的HER2类单抗是罗氏的曲妥珠单抗(赫赛汀),该药2015年全球销售额达到68亿美元,在国内该药销量同样增速迅猛,样本医院2015年赫赛汀销售额达6.66亿元。对于HER2高表达的乳腺癌、胃癌等疾病,曲妥珠单抗的疗效优越,并已经被国内外指南一致推荐为HER2阳性的乳腺癌等疾病的一线用药。  中国是乳腺癌的高发国,患者众多,故HER2单抗市场巨大。目前已上市和在研的HER2类单抗一共有19个,其中曲妥珠单抗及其类似药共有11个。在曲妥珠单抗类似药研发竞争中,复宏汉霖和嘉和生物的速度最快,目前正在Ⅲ期临床阶段,安徽安科和齐鲁则进入Ⅰ期临床。  尽管曲妥珠单抗已经得到临床认同,但业内还是希望能在HER2药物中有新的突破。帕妥珠单抗是罗氏新获批的HER2单抗,该药尽管同属HER2单抗,但作用靶点与曲妥珠有所区别。  临床研究发现曲妥珠单抗联合帕妥珠单抗的疗效较单用曲妥珠单抗大幅提升。目前帕妥珠单抗正在国内开展Ⅲ期临床。对于帕妥珠单抗,国内不少企业也跃跃欲试,其中齐鲁的帕妥珠单抗类似药获批进入临床,丽珠的重组抗HER2结构域Ⅱ人源化单抗注射液同样定位于HER2的结构域Ⅱ,作为创新药该药已经获批临床。  抗体偶联技术在HER2单抗使用最多,罗氏的Trastuzumab Emtansine(Kadcyla)是第一个在HER2领域获得成功的抗体偶联物,该药利用曲妥珠单抗和微管蛋白类药物DM1,偶联物较曲妥珠单抗的疗效显著提升,该药目前正在国内开展Ⅲ期临床研究。  国内针对HER2的抗体偶联物研发活跃,目前已经有百奥泰生物的注射用重组人源化抗HER2单克隆抗体-美登素偶联物和烟台荣昌的注射用重组人源化抗HER2单抗-MMAE偶联剂获批开展临床研究。  在HER2领域还有一个值得大书特书的国产创新药:武汉友芝友这样一个名不见经传的创新企业正在开发注射用重组抗HER2和CD3人源化双特异性抗体,该药是国内自主研发的首个申报临床的双特异性抗体,从理论上该药可以同时靶向HER2和T细胞,实现靶向免疫。  NO.6 PD-1/PD-L1靶点  [已上市/在研品种] 7种  抗肿瘤无疑是抗体类药物最为关注的领域,而在抗肿瘤领域,以PD-1、PD-L1为代表的抗肿瘤免疫治疗又是其中最闪亮的类别。2014年《Forbes》破例将两个肿瘤免疫药物分别是Opdivo(Nivolumab)和Keytruda(Pembrolizumab)列为该年度最重要的创新药,各大专业医药数据分析公司也纷纷预测两个产品全球销售额将轻松突破50亿美元大关,甚至有望挑战修美乐的药王地位。除了这两个品种,罗氏的Atezolizumab也获批上市,该药是全球首个获批的PD-L1药物。三个药物目前都已进入中国,正在开展Ⅲ期临床研究,都有可能成为首个中国上市的PD-1/PD-L1药物。此外,默克雪兰诺的PD-L1药物Avelumab正在申请临床研究。  PD-1/PD-L1类药物是国内抗体类药物创新的热点,国内在研的自主研发PD-1/PD-L1药物达7个,其中君实生物的重组人源化抗PD-1单抗注射液已经进入了Ⅰ期临床,此外百济神州的PD-1类药物BGB-A317、恒瑞的PD-1类药物SHR-1210和信达生物的PD-1类药物IBI308均获批临床。而基石药业、誉衡和嘉和生物各有1个PD-1/PD-L1类药物申报临床。  NO.7 IL-6靶点  [已上市/在研品种] 7种  IL-6类单抗主要用于类风关等自身免疫疾病。类风关的生物制剂治疗一度被TNF-α 抑制剂垄断,但欧美最新指南普遍将各类生物制剂放到了等同地位,这使得包括IL-6类在内的各种非TNF类药物获得了巨大的市场机会。  IL-6类药物目前最畅销的是罗氏的托珠单抗,该药2015年全球销售额达到15亿美元。在国内,IL-6治疗类风关的理念还有待推广,目前仅有静脉注射也阻碍了托珠单抗的推广。尽管不属于国内抗体类药物研究热点,但目前已上市和在研的IL-6类单抗依然达到7个,其中托珠单抗及其类似药共有4个。  创新药方面,杨森的Sirukumab和Siltuximab(司妥昔单抗)都已申请在中国开展临床研究,其中全人源IL-6单抗Sirukumab已获得临床批件,在免疫原性方面有一定优势。国内IL-6创新药领域目前仅有药明康德的重组全人抗白介素-6单克隆抗体注射液,该药是药明康德和阿斯利康旗下的MedImmune共同研发的产品。  NO.8 RANK靶点  [已上市/在研品种] 6种  核因子-κ B受体活化因子(RANK)及其配体RANKL与破骨细胞的成熟等一系列骨代谢相关信号通路有关。对RANK及其配体RANKL的抑制,可在某些情况下改善骨代谢,减少骨质疏松和骨折等疾病风险。  根据该机制,安进成功开发了针对RANKL的狄诺塞单抗,该药已获批用于恶性肿瘤骨转移(SREs)和骨质增生等4种有巨大市场容量疾病的治疗。狄诺塞单抗尽管上市时间不长,但市场表现优异,2015年其全球年销售额已达30亿美元。  国内RANK单抗均属于狄诺塞单抗及其类似药。安进的原研药目前已经在中国进入Ⅲ期临床。5个类似药中,齐鲁进度最快,已获得临床批件 其他厂家则还处于申报临床阶段。
  • 探索抗体蛋白的奥秘|亲和色谱,抗体药物滴度分析优选
    SHIMSEN Ankylo Protein A在单克隆抗体(单抗)药物的生产过程中,需要测定细胞培养上清液中的单抗滴度或者浓度,以筛选出高产品的单抗药物。岛津最新推出SHIMSEN Ankylo Protein A色谱柱,采用高交联度PS/DVB基质,键合重组Protein A蛋白,适用于单克隆抗体(mAb)和Fc融合蛋白的高速效价分析。极强耐碱性高载样量吸附低、优异的重现性峰形对称优异的重现性良好的重现性吸附低、优异的线性高载样量产品信息SHIMSEN Ankylo Protein A(15μm,2.1x30 mm)货号: 380-01215-74立即询价点击立即查看最新药斯卡排行榜
  • 氢氘交换质谱定位多克隆抗体识别的抗原表位
    大家好,本周为大家介绍的是一篇发表在Analytical chemistry上的文章Epitope Mapping of Polyclonal Antibodies by Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS)1,文章通讯作者是意大利锡耶纳葛兰素史克公司实验室主任Nathalie Norais和丹麦哥本哈根大学药学系教授Kasper Rand。抗体表位定位对理解适应性免疫、研究治疗性抗体和疫苗的作用方式至关重要。对疫苗接种后产生的多克隆抗体群(pAb)的结合特性的深入了解将为疫苗开发提供重要价值,但很少有表位定位方法能耐受pAb样品的复杂性。本文使用氢氘交换质谱(HDX-MS),通过检测存在不同量的pAb时抗原的HDX值变化,绘制了pAb样品识别的表位,并提供了表位与抗体的相互作用信息。因子H结合蛋白(fHbp)是被广泛研究的脑膜炎奈瑟菌抗原之一,在人体中能引发强大的保护性免疫反应。fHbp是27kDa的脂蛋白,N端为一个饼状的β-sheet,C端为一个8股β桶,两端由linker连接。本文的研究对象是fHbp和用fHbp免疫的兔pAb。首先作者进行了被pAb识别的fHbp抗原表位的鉴定。重组fHbp在不孵育和孵育两倍量的pAb下进行了30秒到20分钟的HDX实验,在抗原的多个区域检测到了抗体导致的HDX降低,标记10min后HDX的变化最为显著,因此接下来的HDX-MS实验选择了10 min时间点。随后作者进行了孵育比例的考察以判断结合亲和力,考察了Ag:pAb从1:2、1:5、1:10到1:15,氘代时间为10分钟(图1),可以观察到抗原的3-26、44-72、104-120三个区域的氘代被抗体显著的保护住了,从1:5时开始看出差异,从1:2到1:15,所有肽的平均氘代降低率从3%增加到了16%,104-120的氘代降低率最高。之前的研究表明,fHbp的兔抗中存在与抗原亲和力在1nM及以下的抗体,故氘代保护率随抗体用量增加的原因可能是,在低比例的多克隆抗体中,每种抗体的占比有限,高亲和力的抗体还没达到能与抗原形成1:1复合物的浓度。作者将实验结果与前人研究的fHbp的单克隆抗体结果进行比对,多个氘代减少的区域得到了印证,尤其是104-120区域,残基S112、G116和K117可被认定为抗原表位。同时,抗体之间也存在组合功能,即单个抗体无法发挥的功能会由两到三个抗体协同产生,本实验中使用多克隆抗体研究的优势在于,通过与单克隆抗体研究中氘代降低的区域对照,判断表位抗体间的组合功能和起到免疫效果所需的交叉区域。图1. 不同比例的Ag:pAb对抗原fHbp氘代率的影响。A.颜色由浅到深依次是1:2、1:5、1:10、1:15,正值代表加入抗体后氘代率降低。B.映射到晶体结构上的氘代变化(PDB:3kvd)。C. 15-31、44-71、102-120、209-234区域随抗体加入比例的变化,灰色线为不加抗体时的氘代值,所有氘代是最大氘代值(MX)的相对值,最大氘代值为1:15比例下氘代24h的结果。接着,作者使用VADAR分析研究fHbp的主要表位区。VADAR v1.8算法基于蛋白的X射线结构原子坐标测量fHbp单个残基的表面可及性,将其与HDX结果相结合可进一步描述fHbp的表位区域。可及表面积分数(ASA)超过50%的残基为暴露残基,图2总结了映射到fHbp晶体上的所有暴露的残基,每个识别的表位区域的范围为1992-2509 Å2,作者强调位于表位区的暴露残基不一定都参与表位组成,也可能是间接稳定抗体的结合引起的HDX保护。图2. 结合VADAR和HDX数据的抗原表位区。两个在N端结构域(黑灰、浅绿),两个在C端结构域(浅蓝深蓝、深绿),紫色代表不在HDX鉴定的表位区域内的暴露残基。最后,作者使用了变性剂和盐来评估结合特异性和非特异性相互作用。由于亲和力低的抗体在变性剂存在时可与抗原解离,作者将此策略应用到了HDX实验中,选择1:10结合比例进行HDX,标记缓冲液使用含有或不含有盐(0.5M NaCl)或变性剂(硫氰酸铵AT或尿素),探究这些情况对HDX结果的影响(图3)。在存在0.5M、2M和4M AT的情况下,fHbp的多个区域获得了更多的氘代,N端区域3-26和44-71,以及C端区域176-184显示出氘代增加(相对于不加AT结果),因此作者推断即便在0.5M的浓度水平下AT也能影响fHbp与抗体的结合,2M尿素存在下也是如此。但0.5M尿素和0.5M NaCl的存在没有明显影响fHbp与抗体的结合。因为非结构肽中酰胺氢的交换速率会受到溶剂离子强度、pH值、温度、以及相邻残基侧链的诱导和空间效应的影响,作者额外考察了0.5M尿素和0.5M NaCl是否会影响fHbp酰胺氢自身的交换速率,即在对照条件(PBS缓冲液)和实验条件(加入0.5M尿素或 NaCl)下分别标记5秒和30秒,控制缓冲液的pH相同且控温(在冰浴进行标记)。结果表明实验组序列覆盖率没有降低,相比于对照组,肽的回收率也高达91.8%,三次重复实验可表明0.5M尿素或 NaCl的加入不会对fHbp自身的氘代特性产生任何显著性影响,也不影响fHbp的构象。将0.5M尿素或 NaCl添加到抗原抗体孵育后的氘代实验中,发现fHbp上的所有表位在抗体结合后仍被显著保护,排除了抗体非特异性结合的可能。值得注意的是,在存在尿素或NaCl的情况下,fHbp的表位区域氘代降低变化幅度不同,尤其是在标记30秒时,这说明了不同表位在与抗体互作时的特性不同,例如残基3-26和104-120可能为静电相互作用(被NaCl破坏),残基133-166和209-234可能为氢键作用(被尿素破坏)。图3. 添加剂对抗原结构和抗原-抗体结合的影响。A.在0.5M AT存在下,30秒氘代后fHbp结构中氘代增加的区域(蓝色)。B.抗原-抗体1:10孵育对fHbp氘代的影响。C.49条鉴定肽在30秒氘代时的变化,蓝色为添加0.5 M AT,紫色为添加0.5 M尿素。D. 抗原-抗体1:10孵育后,49条鉴定肽在30秒氘代时的变化,橙色为对照组,蓝色为添加0.5 M NaCl,紫色为添加0.5 M尿素。总结:本文通过监测fHbp与多克隆抗体群pAb孵育后的HDX-MS变化,绘制了fHbp的抗原表位,并使用尿素和NaCl深入了解了抗体群的相对丰度和亲和力,以及潜在的非特异性结合,这种方法可以广泛应用于其他抗原和pAb样品,为免疫学和疫苗设计提供有价值的信息。参考文献:1. Ständer, S. R. Grauslund, L. Scarselli, M. Norais, N. Rand, K., Epitope Mapping of Polyclonal Antibodies by Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS). Analytical Chemistry 2021, 93 (34), 11669-11678.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制