当前位置: 仪器信息网 > 行业主题 > >

小鼠粪样代谢产物

仪器信息网小鼠粪样代谢产物专题为您整合小鼠粪样代谢产物相关的最新文章,在小鼠粪样代谢产物专题,您不仅可以免费浏览小鼠粪样代谢产物的资讯, 同时您还可以浏览小鼠粪样代谢产物的相关资料、解决方案,参与社区小鼠粪样代谢产物话题讨论。

小鼠粪样代谢产物相关的论坛

  • 【金秋计划】健脾调肝饮通过调节肠道微生物群和粪便代谢减少小鼠肥胖

    [b][size=15px][color=#595959]健脾调肝饮(JPTGY)[/color][/size][/b][size=15px][color=#595959]具有[b]疏肝、理气、健脾、化痰[/b]的功效,长期临床实践发现其可[b]有效治疗肥胖[/b]。前期研究发现,JPTGY对肥胖患者的减肥效果令人满意,显著降低了患者的总胆固醇和甘油三酯水平,没有任何副作用。然而,由于中药制剂具有多途径和多靶点的特点,JPTGY治疗肥胖症的[b]机制尚不充分[/b]。[/color][/size] [size=15px][color=#595959]该研究旨在采用[b]高脂饮食(HFD)诱导的肥胖小鼠[/b]模型来评估[b]健脾调肝饮(JPTGY)的作用与肠道微生物群和粪便代谢变化之间的关系[/b]。[/color][/size] [align=center] [/align] [size=15px][color=#595959]通过HFD诱导C57BL/6小鼠建立肥胖动物模型。采用[b]脂质代谢的血清生化指标[/b]评价JPTGY在肥胖小鼠中的药效学。[/color][/size] [size=15px][color=#595959]通过16s rDNA基因序列结合基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])的[b]非靶向粪便代谢组学技术[/b],对对照组、HFD组和JPTGY暴露肥胖组的[b]粪便样本中的细菌群落和代谢产物[/b]进行了研究。[/color][/size] [align=center] [/align] [size=15px][color=#595959]JPTGY显著降低总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白(HDL-C)。[/color][/size] [b][size=15px][color=#595959]JPTGY可以上调粪便微生物群的丰度和多样性[/color][/size][/b][size=15px][color=#595959],其特征是蛋白质细菌门较高。一致地,在属水平上,补充JPTGY诱导毛螺菌科NK4A136组、大肠杆菌、Turicibacter、梭状芽胞杆菌1和拟杆菌的富集,它们与14种关键的粪便代谢产物密切相关,对JPTGY治疗有反应。[/color][/size] [size=15px][color=#595959]代谢组学进一步分析表明,JPTGY对肥胖的治疗作用涉及亚油酸(LA)代谢途径、α-亚麻酸(ALA)代谢途径,甘油磷脂代谢途径、花生四烯酸(AA)代谢途径和嘧啶代谢途径,这暗示了JPTGY治疗肥胖的潜在机制。[/color][/size][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font][size=15px][color=#595959][/color][/size][color=#3573b9]结论[/color][b][size=15px][color=#595959][/color][/size][/b][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]肥胖表型与肠道菌群和粪便代谢的联系揭示了JPTGY治疗高脂血症和肥胖的潜在因果关系[/color][/size][/b][size=15px][color=#595959]。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size]

  • 【极限体验】Ultimate C18柱分析黄酮代谢产物在大鼠尿液中的降解(6月份)

    【极限体验】Ultimate C18柱分析黄酮代谢产物在大鼠尿液中的降解(6月份)

    前言 药物代谢(drug metabolism)是研究药物在生物体内的吸收、分布、生物转化和排泄等过程的特点和规律的一门科学,即药物分子被机体吸收后,在机体作用下发生的化学结构转化。也是药物研发产业链中的重要环节,贯穿药物研究过程的始终。本实验涉及黄酮类成分在大鼠体内代谢的研究,大鼠灌胃给予药物,累积24h尿液,尿液经处理,运用各种色谱手段,分离得到目标代谢产物。在此过程中有一关键的因素时刻威胁着我们,即代谢产物的降解,因此要设法保证代谢产物的稳定,如低温保存样品,调节尿液的酸碱性,等等。 本实验利用Ultimate XB-C18对两个重要的代谢产物在尿液中的稳定性进行简单的考察。1.Chemical and reagents 甲醇(色谱纯,天津大茂),水(哇哈哈纯净水,杭州),三氟乙酸(TFA, Dikma, USA),其它试剂均为分析纯。2.animals Wista大鼠(220-250g,SPF级,由本校动物实验中心提供)3.HPLC analysis of two important metabolites Waters 高效液相色谱系统,由Waters Model 600 controller液相色谱,Millennium 32 工作站,Model Delta 600 泵,以及Waters 996 DAD检测器组成。 色谱柱:Ultimate XB-C18柱(5μm, 4.6x250mm) 流动相:A通道:甲醇,B通道:水(0.05%TFA)=(20:80, v/v) 流 速:1mL/min 柱 温:35℃ 检测波长:190-400nm扫描 进样量:20μL3.Sample preparation 代谢产物M1和M2之前已制备分离得到,各取1mg,混合溶于2mL水中(M1和M2水溶性很强,也可溶于甲醇),取20μL进样分析;剩余部分置于250mL锥形瓶中,加入新鲜收集的大鼠尿液10mL,室温放置24h,之后该混合溶液,过ODS亲水柱,先用水洗脱,弃去,再用甲醇洗脱,收集甲醇洗脱溶液,45℃浓缩并定容至2mL。取20μL进样分析。4.Results and discussionhttp://ng1.17img.cn/bbsfiles/images/2011/07/201107010000_302457_2160661_3.jpg图1. M1与M2纯品混合色谱图http://ng1.17img.cn/bbsfiles/images/2011/06/201106302310_302433_2160661_3.jpg图2. M1与M2纯品混合色谱图(局部放大图10-20min)http://ng1.17img.cn/bbsfiles/images/2011/06/201106302310_302434_2160661_3.jpg图3. M1与M2在尿液中放置24h后色谱图http://ng1.17img.cn/bbsfiles/images/2011/06/201106302310_302435_2160661_3.jpg图4. M1与M2在尿液中放置24h后色谱图(局部放大图20-30min)5.conclusion 1. M1与M2在尿液中放置24h后发生了降解,在保留时间为25分钟左右,出现2个降解产物,其紫外吸收与M1和M2分别对应相似,M1紫外吸收(~271nm, ~310nm), M2紫外吸收(~273nm, ~343nm)。 2. 降解产物可能为M1与M2水解产物,因为M1与M2为极性较大的代谢产物,推测可能为葡萄糖醛酸或硫酸结合产物,其降解过程可能为水解脱掉葡萄糖醛酸基或硫酸基。 3. 这样的结果提示我们,在研究黄酮类成分的代谢过程中要注意样品的保存,在收集到尿液后要快速处理,或者在收集的过程中就进行预防,所采用的方法文献报道有加入乙醇或加酸调pH至5左右,可以防止该类代谢产物的降解。Acknowledgement感谢月旭公司提供Ultimate XB-C18柱。

  • 【第三届原创参赛】代谢产物分离与纯化的心得体会(大鼠篇)

    【第三届原创参赛】代谢产物分离与纯化的心得体会(大鼠篇)

    维权声明:本文为qweaxi原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。代谢产物的分离与纯化心得体会(大鼠篇)代谢的概念 什么叫代谢,在这就不解释啦,大家应该都知道,我们主要做两个方面:大鼠与人。这个原创里面,讨论的是大鼠代谢产物的分离与纯化。大鼠的介绍 大鼠我们用过的有两种(SPF级)SD大鼠和wistar大鼠,这两只大鼠的区别: SD大鼠: 生长快,繁育性能好,大多用于安全性试验及营养与生长发育有关的研究。 该品系对性激素敏感,对呼吸道疾病有较强的抵抗力。广泛用于药理、毒理、药效及GLP实验。 Wistar大鼠 :其被毛呈白色,特征为头部较宽、耳朵较长、尾的长度小于身长。Wistar大鼠性情温顺,性周期稳定,早熟多产,平均每窝产自10只左右,生长发育快,乳腺癌发病率很低,对传染病抵抗力强。 个人觉得SD大鼠挺暴躁,很容易咬人的,Wistar大鼠比较好哦,乖乖鼠。大鼠喂养 这个问题很关键,饲料控制不好,大鼠会超重地:一天喂2次,水应该给足,要不然会发生惨案的,垫料要3天换一次,要不然,会被熏坏的,消毒必须的,要不然出血热就会光顾你们实验室的,记得去年就在我们这发生啦,封楼2周呢,当时,我们爽坏啦,有时间玩嘛。给药前准备 第一:大鼠禁食12小时,期间给以0.4%的盐水,为什么禁食呢,让其胃里的饲料代谢完,要不然对以后的分离工作有影响。 第二:给药剂量药换算好,要不然没有根据,发文章会有问题的。大鼠给药 这个比较讲究,我们常用的方法是灌胃和腹腔给药,腹腔给药简单,扎一针就好啦,灌胃挺有讲究的,本人不才,学了半天才会,牺牲在我手中的大鼠有5只多,那叫一个惨啊。警告大家,在不会灌胃的情况下,千万别自以为是,要不然。。。尿液富集 有些时候怕样品不稳定,发生变化(代谢产物在尿液中不稳定,个人经验),有三招来防止: 第一招:在收集瓶中加无水乙醇,个人觉得效果很好。 第二招:在收集瓶里加酸,PH=4为好。 第三招;冰水浴,个人觉得那个麻烦,但也有点效果。尿液储存 放在冰箱里,冷藏,不易降解滴。尿液处理 不同的样品处理不一样,我们这做过黄酮,生物碱之类的化合物,据我了解,这个生物碱不好做,黄酮挺好做的,我个人觉得有两种方法:大孔和萃取。大孔树脂,我们这用得D1O1比较多,本人首次用AB-8,觉得不错的,我热衷于大孔。萃取:必须加酸调节PH3,要不然萃不出来的。样品的分离与纯化 呵呵,代谢产物分离。个人经验:进行大孔柱色谱以后,可以考虑进行凝胶柱色谱,内源性物质一般可以除去,非常好的方法,我记得凝胶下来我就分到一个纯的,哈哈,真爽啊。 由于代谢物极性过大,最好不用硅胶来分,要不然,死吸附严重,样品就这样浪费啦,呵呵,用ODS分离,最好。 最后补充,做代谢的,最好有液质联用,盲分容易浪费时间,浪费经费。下图为凝胶分的纯品http://ng1.17img.cn/bbsfiles/images/2010/09/201009252351_246992_2160429_3.jpg

  • 69.6 LC-MSn鉴定大鼠体内SIPI的代谢产物

    69.6 LC-MSn鉴定大鼠体内SIPI的代谢产物

    作者:http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif张鹏 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif仇峰 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif魏广力 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif刘昌孝 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif钟大放 Author:ZHANG Peng QIU Feng WEI Guang-li LIU Chang-xiao ZHONG Da-fang 作者单位:沈阳药科大学药物代谢与药物动力学实验室,沈阳,110016 沈阳药科大学药物代谢与药物动力学实验室,沈阳,110016;天津药物研究院,天津药代动力学与药效动力学省部共建国家重点实验室,天津,300193 天津药物研究院,天津药代动力学与药效动力学省部共建国家重点实验室,天津,300193 沈阳药科大学药物代谢与药物动力学实验室,沈阳,110016;中国科学院上海药物研究所,上海,201203摘要: 目的 考察SIPI在大鼠体内的代谢转化.方法 采用液相色谱-质谱(LC-MSn)联用技术,检测在单剂量静脉注射给予SIPI后大鼠尿,粪及胆汁中的SIPI及代谢物.色谱柱为Diamonsil C18柱;流动相为甲醇-水-甲酸(40∶60∶0.5),流速为0.5mL·min-1;质谱仪离子源为电喷雾离子源(ESI),正离子方式检测.代谢物经LC-MSn方法分离和分析,通过质谱和色谱行为推测其结构.结果 在大鼠尿样中共检测到8种代谢物,在大鼠粪样中共检测到4种代谢物,在大鼠胆汁样品中共检测到3种代谢物.结论 SIPI在大鼠体内广泛代谢,形成多种代谢产物.http://ng1.17img.cn/bbsfiles/images/2012/08/201208271754_386607_2379123_3.jpg

  • 离子阱质谱定性鉴识代谢产物有何设定?

    离子阱质谱进行代谢产物的定性鉴识,在已经优化了色谱条件的情况下,质谱设定有没有什么特别的规定?问1:口服给药较高的剂量大鼠,收集尿液进行定性鉴识,采用固相萃取浓缩10倍,才可以检测到,浓缩5倍,2倍,检测的代谢产物较少,因此想知道在仪器设定上有什么特别的要求没有?就是质谱参数这一块,怎么能够提高检测灵敏度?问2:3级质谱扫描的结果往往都不好,很多的3级质谱都没有结果,也就是现在除了浓度特别高的以外,大多数的都是只有2级质谱的结果。请问是不是参数设定上有问题?因为实验对象是代谢产物,所以浓度低,但是也有在文献中看到别人尿液稀释后进样也有测定出结果的,因此想问问,代谢产物鉴识,离子阱质谱有什么特别的设定要求?

  • 【金秋计划】中药附子对肾阳虚小鼠的急性毒性作用因代谢差异而加重

    [size=15px][color=#595959]正确使用有毒药物是中医的特点之一。最新公布的《古代经典名方中药复方制剂简化注册审批[/color][/size][b][size=15px][color=#595959]管理[/color][/size][/b][size=15px][color=#595959]规定》取消了对有毒中药的使用限制,表明有毒中药在临床实践中的使用是不可替代的。目前对这些药物的毒性评价通常遵循现代药物毒性评价体系,然而,[b]中药毒性反应[/b]的发生不仅与药物本身的性质有关,而且与人体的状态有关。中医的使用遵循辨证论治的原则,因此有必要将不同的“证”或“病”状态与中药的毒性结合起来,形成可靠的毒性评价体系。[/color][/size] [b][size=15px][color=#595959]附子[/color][/size][/b][size=15px][color=#595959]是乌头的子根,在临床应用中,附子对胸闷心痛、四肢冰冷、脉弱等疾病有奇效。因此,它被认为是治疗与[b]阳虚[/b]和寒凝疼痛相关的各种证候的关键草药。但在临床实践中,附子的用量经常超过药典规定的用量,其毒副作用极大地限制了其临床应用。该研究探讨附子对[b]肾阳虚证候模型[/b]的毒性作用,并试图揭示其潜在机制。[/color][/size][size=15px][color=#595959][/color][/size] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]首先,通过肌肉注射氢化可的松25 mg/kg / d,连续10天建立肾阳虚证小鼠模型。然后探讨附子对正常小鼠和肾阳虚模型小鼠的[b]急性毒性[/b]。最后,通过血浆代谢物浓度和肝脏[b]CYP3A4[/b]酶活性分析,揭示附子在不同体质个体中产生不同药理学和毒理学效应的可能机制。[/color][/size][size=15px][color=#595959][/color][/size] [align=center] [/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]附子(138 g/kg)对肾阳虚小鼠有严重的毒性作用,80%的小鼠死亡,而对[b]正常小鼠无致死毒性[/b]。说明附子对肾阳虚小鼠的毒性大于正常小鼠。肾阳虚小鼠肝脏CYP3A4酶活性较对照组降低20%,导致附子中毒性二酯二萜生物碱代谢减慢。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][size=15px][color=#595959][font=&][/font][font=&][/font][/color][/size][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959]综上所述,该研究表明,[b]不同证候个体代谢酶活性的变化导致了中药的不同毒性作用[/b],强调了在中医临床应用中[b]考虑个体体质证候的重要性[/b],以及对中药特定证候动物模型进行[b]安全性评价和剂量预测的重要性[/b]。[/color][/size][size=15px][color=#595959][/color][/size]

  • 【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm,1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)质谱条件结果分析:通过比较大鼠灌胃盐酸芬戈莫德溶液后收集的尿液样品、空白尿液样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的尿液中共鉴定出了8个代谢产物(如下图)所有代谢产物的高分辨质谱数据的准确度均小于1PPm。通过比较大鼠灌胃盐酸芬戈莫德溶液后收集的胆汁样品、空白胆汁样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的胆汁中共推测出了4个代谢产物(如下图)。所有代谢产物的高分辨质谱数据的准确度均小于1PPm。结果与讨论:经过对于给药后大鼠尿液及胆汁样品分析,初步推测盐酸芬戈莫德在大鼠体内的代谢产物有8种。

  • 【原创大赛】高效液相色谱法分析苯并芘大鼠肝脏线粒体的代谢产物

    【原创大赛】高效液相色谱法分析苯并芘大鼠肝脏线粒体的代谢产物

    高效液相色谱法分析苯并芘大鼠肝脏线粒体的代谢产物 本实验建立了一种用高效液相色谱法分析苯并芘及其在大鼠肝脏线粒体中的六种代谢产物的分析方法。使用乙腈、水梯度洗脱作为流动相,紫外探测器分析得到苯并芘的羟基化代谢产物以及苯并芘酮,包括3-羟基苯并芘、9-羟基苯并芘、苯并芘4,5-二氢二醇、苯并芘-7,8-二氢二醇、9,10-二羟基-9,10-二氢苯并芘、苯并芘二酮。其中苯并芘二酮含量最低。该实验结果对于推断细胞CYP1A1酶在体内体外模型中对于苯并芘增毒和解毒作用奠定了重要的基础。 前言:苯并芘是苯与芘稠合而成的一类多环芳烃,苯并芘和其他多环芳烃主要是有机物的不完全燃烧或热解生成,并且在环境中普遍存在。除了污染空气的吸入,摄入的主要途径有吸烟和饮食以及一些职业的摄入如煤、焦炭、沥青的燃烧以及煤焦油的使用。苯并芘能够导致细胞毒性、致畸致突变的毒性以及致癌的毒性。动物实验长期暴露于苯并芘中可导致动物的皮肤、胃、肺组织的癌变。苯并芘在作用于DNA之前需要代谢活化,这也是苯并芘发挥毒性很重要的代谢步骤。细胞色素P450(CYP)酶和环氧化物酶是主要的苯并芘的活化酶,首先CYP酶将苯并芘氧化为环氧化物然后在环氧化物水解酶的作用下生成二氢二醇,CYP同工酶将其进一步的活化为活性成分苯并芘-7,8 - 二氢二醇-9,10 - 环氧化物(BPDE),其可作用于DNA,其优先在鸟嘌呤残基上形成加合物,该加合物是BPDE在体内体外试验中于DNA主要的加合物。在CYP酶中,CYP1A1和B1认为是BaP代谢活化中重要的酶,但是CYP1A1在体内排毒的作用较大于其活化BaP的作用。为了解释这些发现,BaP的体内体外代谢与解毒作用应该进一步进行评价,定性和定量分析BaP在CYP同工酶和环氧化物酶下的所有代谢产物,以及这些致癌物与DNA加成物的评价也很有必要。本实验优选色谱条件使得BaP在大鼠肝脏线粒体内的代谢产物能够很好的分离以及通过紫外检测器灵敏的检测。苯并芘在生物体内的代谢步骤:http://ng1.17img.cn/bbsfiles/images/2014/09/201409291248_516273_2360169_3.jpg材料和方法试剂甲醇(色谱级)乙腈(色谱级),苯并芘 ,NADP+,葡萄糖-6-磷酸,二喹啉甲酸,葡萄糖-6-磷酸脱氢酶微粒体的制备微粒体来自于10只SD大鼠的肝脏,预先用苏丹I处理。微粒体蛋白质浓度通过二辛可宁酸蛋白质测定法测定,牛血清蛋白作对照。CYP同工酶的含量通过示差光谱测定。孵化体系:用于研究BaP代谢的孵化体系包含有100mM磷酸钠缓冲液(pH7.4),NADPH生成体系(1毫NADP+,10mL D-葡萄糖-6 - 磷酸,1U/mL的D-葡萄糖-6-磷酸脱氢酶),0.5mg的微粒体蛋白质,50μM的BaP(溶于5μl甲醇),总体积为500微升。通过加入50μl的NADPH生成体系来启动反应的发生。孵育体系通过未加入酶体系或无NADPH生成体系或无的BaP来控制。孵化在敞开的试管中进行(37℃),20分钟后,取5μl 1mM的非那西丁乙醇溶液加入作为内标物。BaP的代谢物用乙酸乙酯(2×1毫升)萃取两次,并蒸发至干。将样品溶解在25μl的甲醇,通过HPLC分离。BaP代谢物的HPLC分析:安捷伦液相1200高效液相色谱仪配紫外可见检测器,色谱柱为diamonsil 4.6﹡150﹡5u色谱条件:所用的色谱条件如下表: 时间流动相A(乙腈)流动相B(水)流速00%100%0.6ml/min3530%70%4060%40%4580%20%50100%0%我们还对代谢产物进行了质谱

  • 【原创大赛】姜黄素对β-淀粉样蛋白致小鼠空间学习记忆障碍的改善作用

    【原创大赛】姜黄素对β-淀粉样蛋白致小鼠空间学习记忆障碍的改善作用

    姜黄素对β-淀粉样蛋白致小鼠空间学习记忆障碍的改善作用阿尔茨海默病(Alzheimer’s disease,AD)是一种常见的慢性进行性精神功能衰退性疾病。近年来,研究发现AD患者大脑中的主要成分β-淀粉样蛋白(Aβ)明显增多,Aβ可能是该病发病机制的起始因素和关键环节。 姜黄素为二苯庚烷类化合物具有较明显的抗炎、抗菌、降血脂、抗老年痴呆,但其是否可以对抗Aβ引起的神经毒性未见报道。本文通过研究其对Aβ引起的记忆障碍模型小鼠的保护作用],为临床可能应用姜黄素治疗老年性痴呆症提供依据。 本题为探讨姜黄素对β[font=Times New Roman]-[font=宋体]淀粉样蛋白[font=Times New Roman]25-35[font=宋体]致小鼠空间学习记忆障碍的改善作用。方法采用侧脑室一次性注射[font=Times New Roman]β-[font=宋体]淀粉样蛋白4μl[font=宋体]导致小鼠空间学习记忆障碍模型,采用隐藏平台获得实验和空间搜索实验,观察姜黄素[font=Times New Roman]J(5、2、1 mg·kg-1[font=宋体])对空间学习记忆障碍模型小鼠的保护作用。结果显示姜黄素各个剂量组均能明显改善β-淀粉样蛋白致小鼠空间学习记忆障碍,能明显缩短寻找站台潜伏期和游泳路径。材料与方法1 材料与仪器1.1 [font=楷体_GB2312]动物 雄性昆明种小鼠,上海实验动物中心提供。1.2 药品和试剂[font='Times

  • 乙烯菌核利、咪鲜胺及其代谢产物的检测

    乙烯菌核利判定,2763中规定,残留物:乙烯菌核利及其所有含3,5-二氯苯胺部分的代谢产物之和,以乙烯菌核利表示。请问各位,其所有含3,5-二氯苯胺部分的代谢产物是什么?有单独标样吗?检测时得同时走乙烯菌核利和其所有含3,5-二氯苯胺部分的代谢产物两种标样吗?谢谢

  • 【极限体验】Ultimate XB-C18柱系列体验之结合型代谢产物的鉴定

    【极限体验】Ultimate XB-C18柱系列体验之结合型代谢产物的鉴定

    前言 代谢产物的鉴定在药物代谢研究过程中意义重大,如何准确地鉴定代谢产物的结构一直是广大药物代谢研究工作者致力攻克的难题。代谢产物的鉴定之所以难主要有以下几点原因:1.代谢产物在生物样品(血浆、尿液、胆汁、粪便等)中浓度极低。2.代谢产物容易受生物样品中内源性物质的干扰。3.代谢产物的不稳定性。4.仪器的灵敏度不够,等等。目前鉴定代谢产物的方式多为通过HPLC与质谱检测器进行联用推测代谢产物的结构,但该方法存在缺陷,如对同分异构体束手无策等。本实验前期通过专业的分离技术,得到某代谢产物M1,为重要的Ⅱ相代谢产物,该代谢产物因为量少(6mg)无法完全通过核磁鉴定,本文通过核磁给出的结构信息结合酶水解巧妙地鉴定了该代谢产物的结构,涉及保密,只给出有差别的部分结构信息。http://ng1.17img.cn/bbsfiles/images/2011/12/201112280311_341823_2160661_3.jpg1.试剂 色谱甲醇(Fisher),去离子水(Eyela Still Ace, SA-2100 E1, 日本),三氟乙酸(TFA,Dima),β葡萄糖苷酶(Sigma)。2.液相色谱条件 Shimadzu HPLC system, 由LC-10ATVP 泵, SPD-10AVP 紫外检测器, 以及CTO-10ASVP 柱温箱组成, 工作站为浙江大学N3000工作站。 色谱柱:Ultimate XB-C18柱(5μm, 4.6x250mm) 流动相:A通道:甲醇,B通道:水(0.05% TFA) 流 速:A通道0.500mL/min;B通道0.500mL/min 柱 温:30℃ 检测波长:275nm 进样量:20μL3.样品准备 对照品溶液的配置:取各纯品0.5mg,加入1mL50%甲醇水溶液,涡旋1mL,微孔滤膜过滤。水解过程:取代谢产物M1 0.5mg,溶于1mL水中,加入适量葡萄糖水解酶,37℃孵育2h,加入2mL的乙酸乙酯萃取,萃取2次,合并萃取液,45℃减压浓缩至干,用1mL50%甲醇水溶液溶解,进样分析。 4.结果与讨论http://ng1.17img.cn/bbsfiles/images/2011/12/201112280325_341830_2160661_3.jpg图1.代谢产物M1水解前的分析图谱(tR=8.951min)http://ng1.17img.cn/bbsfiles/images/2011/12/201112280315_341825_2160661_3.jpg图2.代谢产物M1水解后的分析图谱(tR=8.958min为剩余的未水解的M1,tR=14.720min为水解产物)http://ng1.17img.cn/bbsfiles/images/2011/12/201112280325_341831_2160661_3.jpg图3.已知化合物C1的分析图谱http://ng1.17img.cn/bbsfiles/images/2011/12/201112280325_341832_2160661_3.jpg图4.已知化合物C2的分析图谱http://ng1.17img.cn/bbsfiles/images/2011/12/201112280326_341833_2160661_3.jpg图5.水解产物与C1和C2合并进样分析图谱1.代谢产物M1只有6mg,理论上核磁是可以鉴定的,但基于一些原因,核磁谱图结果不理想,只能通过别的方法鉴定。但是从图1来看,代谢产物M1的纯度是很高的,如果用面积归一化法来计算的话,其含量至少在95%以上,但作者在此给大家透露点信息,代谢产物不同于植物中的化学成分,即使在色谱图上显示单一的色谱峰,但绝对纯度不一定很高,往往有未知的内源性成分如影子一样伴随着它,作者推测这可能是核磁图谱测试不理想的原因之一。2.机缘巧合的是,代谢产物M1两种水解产物均作为已知化合物被作者分离得到,并准确鉴定,因此剩余的实验就显得顺理成章。3.化合物C1和C2在结构上很相似,仅仅是葡萄糖醛酸基的位置不同,因此其表现在色谱行为上的差别也很小,如图5所示,二者没有达到基线分离。4.从各分析图谱可以看出,相同化合物的保留时间重现性非常高,且峰形之正太有目共睹,体现了Ultimate XB-C18柱的优越性能,保证了代谢产物结果鉴定的准确性。具体参数如:理论塔板数、分离度、对称因子等在此不一一列举。5.在整个分析过程中系统压力为19.4MPa左右,波动不超过0.2,换算为PSI也仅为2800左右,在流动相比例为50%的情况下,如此低的压力给测试者营造了“轻松的”实验氛围,避免了系统压力高产生的漏液报警的烦恼。6.一句话小结:本实验运用酶水解结合HPLC分析,成功鉴定了代谢产物M1的结构。

  • 【原创大赛】人体及大鼠对淫羊藿苷片的代谢分析

    【原创大赛】人体及大鼠对淫羊藿苷片的代谢分析

    人体及大鼠对淫羊藿苷片的代谢分析 淫羊藿苷为中药淫羊藿的提取物,淫羊藿苷现代药理实验研究表明:淫羊藿能增加心脑血管血流量、促进造血功能、免疫功能及骨代谢 ,具有抗衰老、抗肿瘤等功效。 本试验旨在探讨淫羊藿苷在人体内的代谢情况,为药学研究的重要组成部分,希望能够阐明其在体内的作用机制,为临床合理用药提供科学依据,并为系统的药代动力学研究提供参考。材料与方法:淫羊藿干片(自制)、乙腈(色谱纯)、去离子水(自制)、三氟乙酸、旋转蒸发仪、沃特斯液相配DAD检测器。色谱条件:色谱柱:菲罗门色谱柱(4.6mm×250mm, 5μm)流动相:A:水(0.05%TFA)B:乙腈-水(50:50,V/V 0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_524999_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525000_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525001_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525002_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525003_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525004_2165260_3.jpg结果与讨论:1、大鼠及人体对于淫羊藿干片的代谢产物基本一致,只是各产物含量方面有所差异。2、本次试验的分析方法适用于淫羊藿苷片代谢产物的分析研究,准确,操作简便。3、三氟乙酸的运用可有效改善峰型,在考察中由于乙酸和磷酸盐缓冲液。

  • 微生物已经产生大量的代谢产物,这样的肉就不能吃

    不能吃变质的肉,肉变质有以下几个表现:颜色变深。新鲜的肉表面有光泽,颜色均匀。新鲜猪肉呈红色或淡红色,脂肪洁白;牛羊肉颜色鲜红,脂肪大多颜色发黄;禽肉皮肤为淡黄色或白色,肉色白里泛红。随着贮藏时间的延长,由于肌红蛋白被氧化,肉色会逐渐变成红褐色。颜色越深,可食性越低。而当肉表面变成灰色或灰绿色,甚至出现白色或黑色斑点时,说明微生物已经产生大量的代谢产物,这样的肉就不能吃。表面发黏。新鲜的肉外表微干或湿润,切面稍潮湿,用手摸有油质感,但不发黏;而肉变质以后,由于微生物大量滋生,会产生黏性代谢产物,造成肉表面发黏,甚至出现拉丝。肉类表面发黏是腐败开始的标志。弹性变差。新鲜的肉质地紧密且富有弹性,用手指按压凹陷后会立即复原。贮藏越久,肉里面的蛋白质、脂肪会逐渐被酶分解,肌纤维被破坏,所以肉会失去原有的弹性,手指压后的凹陷不仅不能完全复原,甚至会留有痕迹。有异味。新鲜肉具有正常的肉味,而变质的肉由于蛋白质、脂肪、碳水化合物被微生物分解,会产生各种胺类、吲哚、酸类、酮类等物质,因而有明显的腐臭味。此外,新鲜的肉煮熟后肉汤透明,汤表面聚集大量油滴。而变质肉中的蛋白质被微生物分解,会产生很多低级代谢产物散落在汤里,造成肉汤浑浊,并且汤面几乎无油滴。

  • 喹乙醇残留检测代谢产物的原理及标准中存在的瑕疵

    喹乙醇(N-羟乙基-3-甲基-2-喹啉酰胺-1,4-二氧化物)是一种化学合成抗菌促生长剂。1965年由德国拜尔公司等首先发现它对动物具有促生长作用。由于喹乙醇有中度至明显的蓄积毒性,对大多数动物有明显的致畸作用,对人也有潜在的三致性,即致畸形,致突变,致癌。因此喹乙醇在美国和欧盟都被禁止用作饲料添加剂。《中国兽药典》(2010版)也有明确规定,喹乙醇被禁止用于家禽及水产养殖。农业部在2001年第168号公告中就作了严格规定:只能用于体重低于35千克的猪。由于喹乙醇曾经的广泛使用和较大危害性,对其进行残留监控十分必要。喹乙醇本身不稳定,在动物体内能够在短时间内代谢,其在动物体内有十多种代谢产物,其中3-甲基喹噁啉-2-羧酸(MQCA)是主要代谢物,在体内相对稳定。因此,在检测饲料时,可检测喹乙醇原形物,但在检测食品及动物产品(肉、肝脏、水产品等)时应检测喹乙醇代谢产物。目前喹乙醇及其代谢产物的液相色谱及液相色谱-质谱检测标准主要有:1.饲料类GB/T8381.7-2009 饲料中喹乙醇的测定 高效液相色谱法DB43/T 891-2014 饲料中喹乙醇、氰乙基-(2-亚甲基肼喹噁啉基)-N,N-二氧化物(喹赛多)、卡巴氧的测定 液相色谱-串联质谱法(暂无文本)农业部2086号公告-5-2014 饲料中卡巴氧、乙酰甲喹、喹烯酮和喹乙醇的测定 液相色谱-串联质谱法2.食品及动物产品GB/T 20746-2006 牛、猪的肝脏和肌肉中卡巴氧和喹乙醇及代谢物残留量的测定 液相色谱-串联质谱法GB/T 20797-2006 肉与肉制品中喹乙醇残留量的测定GB/T 22984-2008 牛奶和奶粉中卡巴氧和喹乙醇代谢物残留量的测定 液相色谱-串联质谱法SC/T 3019-2004 水产品中喹乙醇残留量的测定 液相色谱法SN/T 0197-2014 出口动物源性食品中喹乙醇代谢物残留量的测定 液相色谱-质谱/质谱法(暂无文本)农业部1077号公告-5-2008 水产品中喹乙醇代谢物残留量的测定 高效液相色谱法从上述标准可以看出,大部分食品及动物产品标准检测喹乙醇代谢物(MQCA)。但少数标准如GB/T 20797-2006、SC/T 3019-2004在动物产品及水产品中检测喹乙醇原形物,存在瑕疵,显得不是非常严谨。

  • 拟除虫菊酯代谢产物

    拟除虫菊酯的代谢产物3PBA(3-苯氧基苯甲酸)能用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]检测吗,可用的检测方法有哪些

  • 【极限体验】Ultimate XB C18柱分析某黄酮成分胆汁中的代谢产物

    【极限体验】Ultimate XB C18柱分析某黄酮成分胆汁中的代谢产物

    前言 药物代谢(drug metabolism)是研究药物在生物体内的吸收、分布、生物转化和排泄等过程的特点和规律的一门科学,即药物分子被机体吸收后,在机体作用下发生的化学结构转化。也是药物研发产业链中的重要环节,贯穿药物研究过程的始终。排泄是药物代谢研究过程中的一个重要环节,本实验涉及的是某黄酮成分在大鼠体内排泄的研究。1.Chemical and reagents 甲醇(色谱纯,天津大茂),水(哇哈哈纯净水,杭州),三氟乙酸(TFA, Dikma, USA),其它试剂均为分析纯。2.animals Wista大鼠(220-250g,SPF级,由本校动物实验中心提供)3.HPLC analysis of two important metabolites Waters 高效液相色谱系统,由Waters Model 600 controller液相色谱,Millennium 32 工作站,Model Delta 600 泵,以及Waters 996 DAD检测器组成。 色谱柱:Ultimate XB-C18柱(5μm, 4.6x250mm) 流动相:A通道:甲醇,B通道:水(0.05%TFA) 梯度洗脱,具体流程未透露 流 速:1mL/min 柱 温:30℃ 检测波长:190-400nm扫描 进样量:20μL3.Sample preparation 大鼠灌胃给予该成分,剂量为30mg/200g,15min后用20%的乌拉坦溶液腹腔注射麻醉,行胆汁插管手术,缝合伤口,用规格为15mL的离心管收集12h内的胆汁,收集的胆汁过ODS,水洗脱,之后用甲醇洗脱,甲醇洗脱部分定溶到某体积,取一定体积过0.45μm微孔滤膜,HPLC分析,相同条件下与尿液中的代谢产物进行对照,确定该成分经大鼠灌胃后胆汁中排泄的代谢产物。4.Results and discussionhttp://ng1.17img.cn/bbsfiles/images/2011/10/201110042336_321120_2160661_3.jpgFig. 1. The HPLC chromatogram of blank bile.http://ng1.17img.cn/bbsfiles/images/2011/10/201110042337_321121_2160661_3.jpgFig. 2. The HPLC chromatogram of bile sample(12h).http://ng1.17img.cn/bbsfiles/images/2011/10/201110042338_321122_2160661_3.jpgFig. 3. The HPLC chromatogram of urine sample.讨论1. 首先要说明的是此部分实验是之前实验的续集,所以之前的实验请参考我以前发的体验贴,图3给出的是尿液中代谢产物的色谱图,从图中我们可以很明确地看到8个代谢产物的色谱峰,这8个色谱峰已经通过各种柱色谱手段分离得到,且结构已经用1D NMR和2D NMR以及MS等谱学手段进行了鉴定。讨论2. 图1和图2 分别为胆汁空白和样品色谱图,从该结果可知,有5种主要的代谢产物(M1 M2 M5 M6和M7)以及少量的M8经胆汁排泄,主要是通过保留时间,和紫外吸收进行了指认。讨论3. 此外我们还发现,尿液中大量存在的代谢产物M3不经胆汁排泄。讨论4. 通过对该成分在大鼠尿液中的代谢和胆汁排泄研究,我们可以得出这样的结果,尿液的内源性成分多为极性较大成分,多集中在保留时间靠前的范围,而胆汁中的内源性物质极性较小,如图2中50min左右的成分。讨论5.该实验尚未发表,因此代谢产物的结构不便透露,待发表之后,具体的结果会和广大息友进行交流。讨论6.最后也是最重要的,Ultimate XB C18柱对该类代谢产物表现了良好的保留能力和分离性能,代谢产物因为其结构中会结合亲水基团,如硫酸基,葡萄糖醛酸基等使其极性增加,易于从体内排出,因此这些成分往往表现了比较差的色谱行为,如强酸性导致的拖尾现象,因此需要在流动相中加入酸或者其它试剂进行调节,本实验流动相均为甲醇:水(含0.05%TFA),在此条件下,这些代谢产物在Ultimate XB C18柱上表现了良好的色谱行为。

  • 《CAPCELL CORE ADME S2.7对代谢产物的分析》

    今天,资娃将为大家带来日本总部实验室新近推出的数据——LC Café espresso之《CAPCELL CORE ADMES2.7对代谢产物的分析》。在这篇资料中,我们以对乙酰氨基酚的代谢产物作为样品,对资生堂的两款核壳型色谱柱CAPCELL CORE ADME S2.7和CAPCELLCORE C18 S2.7的溶出行为进行了比较。不论是酸性还是中性流动相条件下,CAPCELL CORE ADME S2.7色谱柱都能得到更强保留与更大分离度(这是CAPCELL CORE ADME S2.7色谱柱的特长)。通过对葡萄糖醛酸结合体的分析,对CAPCELL CORE ADME S2.7色谱柱在酸性流动相条件下具有的特征性溶出行为进行了阐述。在酸性流动相条件下,由于葡萄糖醛酸受到酸抑制,羧基的解离受到抑制,向分子态进行过渡,因此CAPCELL CORE ADME S2.7色谱柱的高表面极性的影响更强,对葡萄糖醛酸的保留也更强,因此得到了与CAPCELL CORE C18 S2.7相迥异的溶出模式(硫酸结合体和葡萄糖醛酸结合体的出峰位置发生了翻转)。而在中性流动相条件下,虽然CAPCELL CORE ADME S2.7色谱柱对葡萄糖醛酸结合体的保留同样有所增强(这是CAPCELL CORE ADME S2.7色谱柱的特长),但比在酸性流动相条件下对保留增强的程度较小,这让我们重新认识到解离平衡在色谱柱保留行为中的重要作用。在酸性⇔中性流动相条件下,CAPCELLCORE ADME S2.7色谱柱对于具有羧基的化合物会得到不同的分离模式。接下来对于硫酸结合体的溶出行为进行说明:在酸性和中性条件下,硫酸结合体的解离平衡没有较大差异,因此即使是在酸性条件下,也没有得到像葡萄糖醛酸结合体一样具有明显差异的保留行为,而只是显示出了从CAPCELL CORE C18 S2.7变更为CAPCELL CORE ADME S2.7时正常的保留增强。

  • 液质检测硝基呋喃类代谢产物

    请问下,哪位老师用LC-MS/MS检测硝基呋喃类代谢产物,我们购买的呋喃西林标准品证书标识分子量为111.53,而标准GB/T21311-2007中母离子为209,我进了一针标样,没有209的目标峰,是怎么回事?

  • 【原创大赛】一种简便测定小鼠耗氧量的实验方法

    【原创大赛】一种简便测定小鼠耗氧量的实验方法

    [align=center]一种简便测定小鼠耗氧量的实验方法[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]安评中心:苏敏[/align][b] 1引言[/b]小鼠在密闭的缺氧瓶内不断消耗氧气,而产生CO[sub]2[/sub],CO[sub]2[/sub]被缺氧瓶中的钠石灰所吸收,瓶内氧分压逐渐降低而产生负压,缺氧瓶与水减压计接通,由于负压吸引将水柱内侧液面上升。及时由滴定管中滴入一定水,使水减压计恢复至原先的压力水平,保持小鼠处于常压状态下,记录所滴入装置中的水容积,以此表示在一定时间内,小鼠吸取的O[sub]2[/sub]的容积。黄芪是经典的补气药,具有利尿,强壮,降压,提高机体免疫功能等作用。本实验通过黄芪降低耗氧量的实验研究,介绍了小鼠整体耗氧量的测定的装置。[b]2材料与方法[/b]2.1材料动物:小鼠,体重18~22g,雌雄均有。器材:小鼠氧耗量装置(125ml缺氧瓶,200ml具塞广口瓶和微量滴定管,水减压计),秒表。药品及试剂:黄芪水煎液(2g/ml),普萘洛尔,钠石灰,凡士林。2.2方法2.2.1分组及给药选取体重18~22g健康小鼠48只,雌雄兼用,分别称重,编号,按体重和性别均分为4组: 生理盐水组,黄芪水煎液组,普萘洛尔组。生理盐水组小鼠每只腹腔注射等容量的生理盐水,黄芪水煎液组每只腹腔注射黄芪水煎液3g/kg,每只皮下注射ISP20mg/kg 普萘洛尔组,每只皮下注射普萘洛尔30 mg/kg。2.2.2测定方法 在室温25℃条件下,将微量滴定管及通气管插入200ml具塞广口瓶内;125ml缺氧瓶内,插上水减压计;用导管将缺氧瓶与广口瓶相接,如图1所示。20~45分钟后,测定小鼠5分钟内的耗氧量。将小鼠放入缺氧瓶内,盖好盖子,关闭与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通的地方(空气入口处和滴定管活塞,水减压计开口处),通入空气,此时水减压计的压力即为常压状态下的压强。立即停止通气,此时开始记录时间,当小鼠呼出的CO[sub]2[/sub],被钠石灰吸收时,装置内的气体容积减少,水减压计压力降低,及时从滴定管加水至装置中,使水减压计恢复至常压状态下压强。由滴定管放入装置中的水容积,即代表5分钟内该小鼠吸取O[sub]2[/sub]的容积,可以毫升表示,从而判断药物有无降低机体的氧耗量作用。 [align=center][img=,690,512]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011428075958_3362_2904018_3.png!w690x512.jpg[/img] [/align][align=center]图1 氧耗量测定装置[/align][align=center]1.缺氧瓶2.水减压计3.滴定管4.广口瓶[/align][b]3结果[/b]普萘洛尔和黄芪水煎液组耗氧率显著降低,黄芪组的耗氧量降低幅度稍弱于普萘洛尔组。[b] 表1 黄芪水煎液对小鼠整体耗氧量的影响([/b][img=,14,18]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wpsF5F9.tmp.png[/img][b]±ѕ , n=10)[/b][table][tr][td][align=center][b]组别[/b][/align][/td][td][align=center][b]剂量(mg/kg)[/b][/align][/td][td][align=center][b]5分钟累积耗氧量(ml/只)[/b][/align][/td][/tr][tr][td][align=center]生理盐水[/align][/td][td][align=center]10[/align][/td][td][align=center]5.43±0.33[/align][/td][/tr][tr][td][align=center]普萘洛尔组[/align][/td][td][align=center]30[/align][/td][td][align=center]3.2±0.55[sup]**[/sup][/align][/td][/tr][tr][td][align=center]黄芪水煎液[/align][/td][td][align=center]3000[/align][/td][td][align=center]4.25±0.42[sup]**[/sup][/align][/td][/tr][/table]与生理盐水组比较:[sup]*[/sup][i]P[/i]0.05,[sup]**[/sup][i]P[/i]0.01[b]4讨论[/b]本文介绍一种在缺氧实验及抗心肌缺氧药物筛选中简易的方法,所用装置使用方便,耗资少。测定装置各接口处应密封无漏气,可涂少许凡士林于口密封。实验测氧耗量时,计时应准确。动物体重、室温、玻瓶容积等因素对实验结果有一定影响,实验中应加以控制。当小鼠耗氧量较多时,由于水比重小,水很容易通过虹吸现象进入缺氧瓶内,影响实验的进行。因此,连接缺氧瓶与广口瓶的导管不应离液面太近。应及时补充滴入水。由于钠石灰吸收CO[sub]2[/sub]会饱和,每测定1只小鼠要换钠石灰,否则影响实验结果准确性。小鼠整体氧耗量测定还可用小鼠放在密封小瓶内,通过连接测氧仪测定氧耗量。各组实验在一个时间段内进行。也可以用测氧仪来测耗氧量。[align=left][b]参考文献[/b]陈奇.中药药理研究方法学.北京:人民卫生出版社,2006:782.[/align]

  • 【讨论】兽药代谢产物为三聚氰胺

    不知道有没有人注意过这条新闻,环丙氨嗪在动物体内代谢产物是三聚氰胺。谁知道评价结果?环丙氨嗪再评价会议在京召开作者:未知 动物用药来源:农业部兽药评审中心 点击数:20 更新时间:2008-10-14[关键词]:环丙氨嗪健康网讯:  根据农业部兽医局的指示,我处于2008年10月9日组织部分评审专家在中监所召开了兽用化学药品环丙氨嗪再评价会议,会议对环丙氨嗪的使用及其在动物植物中的相关代谢与残留进行了评价。                          二〇〇八年十月十三日

  • 关于中药体内代谢产物的质谱解析

    抱歉这两天打扰大家了。问题:我知道质谱的解析,需要把你的化合物导入到仪器的软件里,然后进行比对。药物代谢,进入体内的不仅有药物原型,还有代谢产物。我的问题是,这些代谢产物,是不是要自己事先预测好,计算好,然后一并导入软件?(例如:小檗碱是C20H18NO4,它的葡糖醛酸化结构是C26H26NO10,我不紧要把小檗碱导入,还要把后者分子式一并导入数据库,对吗?)还有一个问题:质谱的解析,主要是数字的加减和核对,这样理解对吗?

  • 【原创大赛】LC-MS对盐酸芬戈莫德大鼠血浆的代谢分析

    【原创大赛】LC-MS对盐酸芬戈莫德大鼠血浆的代谢分析

    LC-MS对盐酸芬戈莫德在大鼠体内的代谢分析 芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。 药物及实验动物: 盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。 色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm,1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/11/201411281531_525077_2217446_3.jpg 质谱条件 Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200;扫描时间0.2s。 给药方案与样品的收集: 血浆样品的收集健康雄性wistar大鼠3只,体重180-220g,1只为空白对照组,2只为给药组(取血时间30min和120min),给药前禁食12h,期间自由饮水。灌胃给药剂量为35 mg/kg,给药体积为1.5mL/只,给药30min和120min后,分别于颈动脉取全血,置于涂有肝素的离心试管中,3500prm离心10min,分离血浆,于-20℃冰箱中保存,直至分析。 血浆样品的预处理 取0.5ml血浆,置于离心管中,加入5倍的乙腈,3500prm离心10min,除去蛋白,取上清液,在40℃,旋转蒸干,用50%甲醇溶解,涡旋,11000prm离心10min,取2μL进行分析。 结果分析 对大鼠灌胃盐酸芬戈莫德溶液后收集的血浆样品用乙腈沉淀蛋白前处理方法处理之后,进行TOF-MS/MS分析,将所得HR-MS,MS2等数据与空白血浆和对照品比较后,在血浆样品中共推测出7个代谢产物。http://ng1.17img.cn/bbsfiles/images/2014/11/201411281532_525078_2217446_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411281532_525079_2217446_3.jpg结果与讨论:1、经过对于给药后大鼠血浆样品分析,初步推测盐酸芬戈莫德在大鼠体内的代谢产物有7种,其结构进一步鉴定中。2、流动相的选择方面进行了优化。流动相的选择主要从溶剂种类和梯度洗脱设置两方面进行优化。分析方法中采用了乙腈作为有机相,原因是乙腈比甲醇具有更大的洗脱强度,从而可以减少色谱峰的展宽,得到较好的峰型,此外,使用乙腈洗脱,其粘度较低,可以减小系统压力。在水相中加入TFA,可以进一步改善化合物的峰型,减少拖尾,此外,TFA的存在还可以提高样品在离子源中的离子化效率,因此,使用乙腈-0.05%TFA水溶液为流动相梯度洗脱,可以使样品分析在 9min之内完成。3、 生物样品中含有许多内源性物质,血浆中含量较高的内源性物质主要是蛋白类成分。蛋白质在测定过程中会形成泡沫,浑浊或沉淀,有时还会与加入的试剂发生反应,从而干扰测定。蛋白还会污染仪器。如果直接进样用液相色谱分析含蛋白的体液样品,蛋白质会逐渐变性沉结在色谱柱上,导致柱效降低,柱压上升,甚至堵塞色谱柱;含有蛋白的样品如果进入离子源,会造成离子源的严重污染和损坏,降低检测的灵敏度,所以血浆样品需进行合理的前处理。常用的生物样品前处理方法有蛋白沉淀法、固相萃取法和液液萃取法。由于待测的代谢产物的极性都比较大,采用液液萃取法(溶剂用乙酸乙酯)对化合物的提取效率差,因此不宜使用。主要比较了蛋白沉淀法和固相萃取法,两种方法均能有效提取待测化合物,经过实验发现,蛋白沉淀法比较好,并且考虑到血浆样品量较少,因此选择蛋白沉淀法。

  • 【分享】如何减少质谱分析中 II相代谢产物 源内裂解

    [size=16px]源内裂解:[/size][font=Arial][size=16px][color=#4a90e2][/color][/size][/font][size=16px]当离子从高压电离源进入质量分析仪的真空区域时,可能发生离解或碎片化事件。某些药物代谢物的源内[back=#f7f8fa]([/back][font=Arial][back=#f7f8fa]CID[/back][/font][back=#f7f8fa])[/back]可能会产生与药物母体离子(目标分析物)相同的碎片离子。因此,将在用于定量药物的相同单反应监测(SRM)转换中检测到代谢物。在母体药物和代谢物之间缺乏足够的色谱分离度的情况下,可能会将代谢物来源中的CID产物离子误解为药物,从而使测定法没有选择性。[/size][size=16px]可以通过源内CID影响母体药物定量的最常见代谢物是:[/size][size=16px][color=#0080ff][b]酰基葡糖醛酸苷,O-和N-连接的葡糖醛酸苷,N-氧化物,硫酸盐结合物和内酯/羟基酸[/b][/color][/size][size=16px]如何控制或减少代谢产物的内源裂解:[/size][font=Arial][size=16px][back=#f7f8fa][/back][/size][/font][list][*][font=等线][size=16px]一般认为ESI应优先于大气压化学电离(APCI),以减少内源CID或化合物的热分解[/size][/font][*][font=等线][size=16px]ESI源的锥孔电压参数与源温度对源内裂解起主要作用[/size][/font][*][font=等线][size=16px]不同的加和离子,+NH4,以及负离子模式(-H),优于正离子模式(+H)[/size][/font][/list][font=等线][/font][size=18px][b][color=#ff0000]解决问题的终极方法,还是需要 裂解峰与待测物峰 色谱分离,其它的只能说是降低源内裂解发生的机率[/color][/b][/size][size=18px][b]文章来源,微信公众号“临床与分析哪些事”。[/b][/size][size=18px][b][color=#ff0000][/color][/b][/size]

  • CAPCELL PAK ADME 对代谢产物分析的有用性~与C18色谱柱溶出行为的比较~

    CAPCELL PAK ADME 对代谢产物分析的有用性~与C18色谱柱溶出行为的比较~

    键和金刚烷基团的ADME色谱柱对于极性化合物能得到良好的保留与分离,对于代谢产物的分析具有优势。如LC Café espresso No.2016005所述,从疏水性及表面极性参数可以对其具有特长的溶出行为进行说明。本次实验以极性化合物别嘌呤醇与黄嘌呤氧化酶反应生成的代谢物别嘌呤二醇,嘌呤体代谢产生的次黄嘌呤、黄嘌呤以及尿酸作为样品(参照图1),分别使用CAPCELL PAK ADME、CAPCELL PAK C18 AQ、CAPCELL PAKC18 MGII以及3种他社杂化型ODS色谱柱(粒径均为5 μm)进行分析,对各色谱柱的溶出行为进行了比较。http://ng1.17img.cn/bbsfiles/images/2016/07/201607210842_601338_2222981_3.jpg分析所得色谱图见图2。分析所用HPLC条件如下:http://ng1.17img.cn/bbsfiles/images/2016/07/201607210842_601339_2222981_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607210842_601340_2222981_3.jpg如图2,各化合物的保留随着各色谱图右侧所示色谱柱表面极性的增加而增强。其中,只有键和金刚烷基团的CAPCELL PAK ADME色谱柱实现了尿酸(峰1)与次黄嘌呤(峰2)间的分离;键和C18基团的色谱柱均无法得到良好分离。进一步,在本次进行比较的色谱柱中,CAPCELL PAK ADME所得理论塔板数(别嘌呤醇:峰5)是最高的,彰显了其对极性化合物优异的分析能力。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制