当前位置: 仪器信息网 > 行业主题 > >

小分子药物筛选

仪器信息网小分子药物筛选专题为您整合小分子药物筛选相关的最新文章,在小分子药物筛选专题,您不仅可以免费浏览小分子药物筛选的资讯, 同时您还可以浏览小分子药物筛选的相关资料、解决方案,参与社区小分子药物筛选话题讨论。

小分子药物筛选相关的论坛

  • 药物高通量筛选技术

    简单介绍一下关于药物高通量筛选技术的知识一.概念高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整个体系运转的技术体系。二. 高通量筛选技术体系的组成1. 化合物样品库化合物样品主要有人工合成和从天然产物中分离纯化两个来源。其中,人工合成又可分为常规化学合成和组合化学合成两种方法。2.自动化的操作系统自动化操作系统利用计算机通过操作软件控制整个实验过程。操作软件采用实物图像代表实验用具,简洁明了的图示代表机器的动作。自动化操作系统的工作能力取决于系统的组分,根据需要可配置加样、冲洗、温解、离心等设备以进行相应的工作。3.高灵敏度的检测系统检测系统一般采用液闪计数器、化学发光检测计数器、宽谱带分光光度仪、荧光光度仪等。4.数据库管理系统数据库管理系统承担4个方面的功能: 样品库的管理功能;生物活性信息的管理功能; 对高通量药物筛选的服务功能; 药物设计与药物发现功能。三. 高通量筛选模型常用的筛选模型都在分子水平和细胞水平,观察的是药物与分子靶点的相互作用,能够直接认识药物的基本作用机制。1. 分子水平的药物筛选模型:受体筛选模型;酶筛选模型;离子通道筛选模型1.1受体筛选模型:指受体与放射性配体结合模型。以受体为作用靶的筛选方法,包括检测功能反应、第二信使生成和标记配体与受体相互作用等不同类型。1.2酶筛选模型:观察药物对酶活性的影响。根据酶的特点,酶的反应底物,产物都可以作为检测指标,并由此确定反应速度。典型的酶筛选包括1) 适当缓冲液中孵化;(2)控制反应速度,如:温度,缓冲液的pH值和酶的浓度等;(3)单时间点数器, 需测量产物的增加和底物的减少。1.3离子通道筛选模型: (1)贝类动物毒素的高通量筛选,其作用靶为Na+通道上的蛤蚌毒素结合位点,用放射性配体进行竞争性结合试验考察受试样品。(2)用酵母双杂交的方法高通量筛选干扰N型钙通道β3亚单位与α1β亚单位相互作用的小分子,寻找新型钙通道拮抗剂。2.细胞水平药物筛选模型观察被筛样品对细胞的作用,但不能反映药物作用的具体途径和靶标,仅反映药物对细胞生长等过程的综合作用。包括: 内皮细胞激活; 细胞凋亡; 抗肿瘤活性; 转录调控检测; 信号转导通路; 细菌蛋白分泌; 细菌生长。四.问题及展望高通量筛选技术与传统的药物筛选方法相比有以下几个优点:反应体积小;自动化;灵敏快速检测;高度特异性。但是,高通量筛选作为药物筛选的一种方法,并不是一种万能的手段,特别是在中药研究方面,其局限性也是十分明显的。首先,高通量筛选所采用的主要是分子、细胞水平的体外实验模型,因此任何模型都不可能充分反映药物的全面药理作用;其次,用于高通量筛选的模型是有限的和不断发展的,要建立反映机体全部生理机能或药物对整个机体作用的理想模型,也是不现实的。但我们应该相信,随着对高通量筛选研究的不断深入,随着对筛选模型的评价标准、新的药物作用靶点的发现以及筛选模型的新颖性和实用性的统一,高通量筛选技术必将在未来的药物研究中发挥越来越重要的作用。

  • DNA编码分子库药物筛选

    DNA编码化合物库(DNA Encoded compound Library,简称DEL)合成与筛选的概念是美国Scripps 研究院的Sydney Brenner(2002年诺贝尔生理学及医学奖获得者)和 Richard Lerner(时任 Scripps 研究所所长)于1992年提出并申请了发明专利。具体地,组合化学的优势是可以快速地产生巨大数量的化合物汇合体,但在筛选过程中无法得知起作用的化合物信息。如果将一个具体的化合物与一段独特序列的DNA在分子水平连接(即对小分子化合物进行DNA编码),在筛选完成后,通过高通量DNA测序仪对筛选出小分子独特的DNA序列进行识别,从而解决由组合化学产生的巨型化合物库无法用于筛选的问题。中文名 DAN编码分子库药物筛选技术背景:药物筛选包括传统高通量药物筛选和DNA编码分子库药物筛选等,分子库是药物靶点筛选的起点和支撑。DNA编码分子库药物筛选技术在近5-7年内逐渐发展起来,已经成为创新药研发中的一种较为成熟的新兴前沿技术,并走出大学实验室,得到各大药物公司的广泛接受,在实际创新药研发中起着越来越重要的作用。已经在香港大学化学系李笑宇教授课题组完成了深入的研究工作,并取得了良好的成果。该技术的基本路线、参数已经成熟,不再需要进行验证研究,可以直接用于实际的药物筛选。李笑宇课题组曾经和拜耳、默克等世界知名药企进行过合作,并将该DNA编码分子库方法应用于实际的药物研发中,针对一些重要的恶性肿瘤的药物靶点,成功地筛选出了一系列高活性的药物候选化合物。这些实际应用充分验证了该技术的可行性、适用性和成熟性。取得发明专利。技术优势:(在李笑宇教授与拜耳的合作中已得到验证):1、大幅提高成功概率 2、大幅降低研发成本 3、大幅缩短研发周期主要工艺范畴为这些领域所包含的化学合成工艺、蛋白质表达与表征、DNA的固相自动合成与纯化、细胞间操作工艺,以及一些DNA测序的样品处理工艺等。本项目的各个技术环节均已经较为成熟,在多年中和各个大型制药企业的合作中已经得到了充分的验证。下一步将在实践中,进一步将技术细节、工艺流程等方面标准化、自动化,以提高分子库合成与筛选的效率。技术对比:传统高通量药物筛选:分子库数量有限,主要筛选中心:5-6 百万化合物  二十年以上的积累 价格非常昂贵,分子库的维护极为复杂。筛选周期长 (6-12个月/靶点); 高通量筛选在新药研发中需求巨大,但是在实际应用中却存在巨大的壁垒。DAN编码分子库药物筛选:超高通量 (千万~千亿级),分子库可以随时构建:百万级/月; 价格适中,分子库的维护极为简单:一个 -80°C 冰箱; 筛选周期短:1 天/靶点; 低门槛:无需任何特殊仪器设备。市场概括:DNA编码分子库的报道:国际DNA-encoded化学库研讨会每两年在瑞士举行一次 。第四届在2014年召开时,仅有英国葛兰素史克、瑞士罗氏、丹麦vipergen、丹麦Nuevolution、美国百时美施贵宝、瑞士Philochem、美国辉瑞、美国X-CHEM等大公司参加 。第五届将于2016年8月26日召开,国际知名公司:强生、辉瑞制药、诺华、赛诺菲、罗氏、默沙东、葛兰素史克、拜耳、 安进、阿斯利康、礼来、雅培、艾伯维、美敦力、百时美施贵宝、梯瓦、利洁时、武田、百特、吉利德、默克雪兰诺、赛默飞世尔科技、诺和诺德、柯惠医疗等均已报名参加同类公司对比:1.葛兰素史克 (GSK) :GSK在约10年前收购美国波士顿的Praecis公司的DNA编码分子库技术平台之后,一直致力于将本技术在药物研发中的应用。GSK在本领域的的技术为传统的组合化学的split-mix-split方法与酶连标记相结合。他们的分子库的特点为数目极大,为几十亿量级。分子库所筛选的靶点也种类繁多,涵盖了基本上所有的疾病类型。然而,GSK多年以来分子库虽然化合物数目巨大,但是化学结构上只有一种类型:三嗪类杂环化合物。因此较大的限制了GSK分子库的应用。2.Ensemble Therapeutics: 该公司与2002年开始运行,在美国波士顿,由哈佛大学的David Liu教授所创立。Ensemble使用DNA模板控制技术来合成分子库,主要集中在大环多肽分子库,数目并不大,每一个库大约5万个化合物,至今构建了大约几十万个大环多肽。Ensemble和罗氏、辉瑞、GSK、施贵宝都有过或是正在有药物研发合作。但是Ensemble公开的信息不多,所进行的药物筛选基本集中在癌症靶点。3.X-Chem: 同样位于美国波士顿。X-hem的分子库合成技术与GSK类似,但采取化学连接而不是酶连来进行分子库中的编码。X-Chem的分子库的数目更大,据报道已经达到了上万亿个化合物的级别。然而,从公开的数据来看,X-Chem分子库的化合物仍然集中在易合成的肽类、杂环,或是两者结合的结构类型。X-Chem和多个大型药企都有筛选的合作。4.DiCE Molecule: 位于美国加州,由斯坦福大型的Pehr Harbury教授刚刚创立。DiCE的技术主要在于将DNA编码分子库和微流控、自动化结合起来。由于该公司刚刚成立,信息非常少。从Harbury教授发表的论文来看,分子库基本上都是多肽,化合物数量在几十万左右。5.Vipergen:位于丹麦哥本哈根。该公司利用DNA分子自组装来合成分子库的技术。虽然该公司成立了近10年,但是公开信息也较少。大部分分子库也是多肽类化合物,并和若干大药企建立了筛选合作。6.NuEvolution:同样位于丹麦哥本哈根,发展历史和Vipergen非常类似。即基于一种专利技术,进行分子库的合成,同大药企进行合作。NuEvolution也是做大型分子库的公司,分子库数量在几十亿量级。7.Philochem:位于瑞士苏黎世,为瑞士联邦理工学院Dario Neri教授创立。Philochem在本领域中比较特殊,他们用DNA编码分子库做fragment-based drug discovery,即基于碎片的药物发现。Philochem公开的信息也较少,从文献和专利来看,他们研究的方向非常的集中,主要在1-2个癌症靶点上,并且很少和大药企进行合作。2015年药物筛选市场份额 国内:70~105亿人民币 国际:80~120亿美元基于DNA编码分子库的药物筛选占有药物筛选市场的10%左右,预计保持100%的平均年复合增长率。

  • 【分享】药物筛选的基础知识

    【分享】药物筛选的基础知识

    [font=Times New Roman][size=4][b]药物筛选[/b]是现代[color=#ba0000]药物开发[/color]流程中检验和获取具有特定生理活性化合物的一个步骤,系指通过规范化的实验手段从大量化合物或者新化合物中选择对某一特定作用靶点具有较高活性的化合物的过程。药物筛选的过程从本质上讲就是对化合物进行[color=#ba0000]药理活性[/color][color=#002bb8]实验[/color]的过程,随着药物开发技术的发展,对新化合物的生理活性实验从早期的验证性实验,逐渐转变为筛选性实验,即所谓的药物筛选。作为筛选,需要对不同化合物的生理活性做横向比较,因此药物筛选的实验方案需具有标准化和定量化的特点。随着[color=#002bb8]组合化学[/color]和[color=#002bb8]计算化学[/color]的发展,人们开始有能力在短时间内大规模合成和分离多种化合物,因而在现代新药开发流程中药物筛选逐渐成为发现先导化合物的主要途径之一。[/size][/font][align=center][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006171011_225210_1623423_3.jpg[/img][/align]

  • 高效!用散射浊度仪实现自动化的药物溶解度筛选

    高效!用散射浊度仪实现自动化的药物溶解度筛选

    在药物开发过程早期进行ADMET(吸收、分布、代谢、排泄和毒性)评估的能力在当今的药物发现环境中是至关重要的。这意味着需要进行高通量分析,以尽早发现潜在的ADMET问题,从而减少损耗。溶解度是药物的关键特性之一,对分析方法开发、药物生物利用度、吸收和毒性研究,以及药物剂量和药物配方都有重要影响。低溶解度化合物的开发难度更大,获得可再现的ADMET筛选数据也更费时费力。因此,在药物开发的后期阶段进行成本更高的检测之前,研究人员需要一种快速、经济高效的解决方案来确定溶解度。[align=left][b]药物溶解度研究[/b][/align]药物溶解度研究旨在评估药物在不同条件下,在各种溶剂或缓冲液中的溶解度。通常需要测量药物在特定温度或pH值下可溶解的量。溶解度通常表示为药物在溶剂中的最大溶解浓度,也称为饱和浓度。药物溶解度测定在药物发现过程中的不同阶段都至关重要。在早期化学筛选的所有标准中,不理想的溶解度是最不利的性质之一,溶解度低的分子具有很高的失败风险。因此,在药物发现过程中要尽早进行溶解度测定。低溶解度不仅会阻碍新药活性的测试,还可能引发其他不良后果,包括影响其他检测、隐藏其他不良特性,以及对药物动力学和动态性质的潜在影响。总之,这可能会导致药物开发时间大大延迟,或者在尝试改良之前就出现失败。常见的平衡溶解度测定的方法是在恒温条件下将药物和靶标一起振荡至少24小时并测量溶液中的药物浓度(摇瓶法;图 2)。最终浓度通常通过高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法测定,整个过程耗时较长,且通量较低。[b]散射比浊法节省时间并提高通量[/b]散射比浊法是一种快速、可扩展、灵敏且精确的颗粒物质浓度测定方法,有利于药物溶解度研究。另外,这还是一种无损技术,可用于动力学分析,只需制备很少的样品,且可以适应高通量微孔板格式。[url=https://www.bmglabtech.cn/]BMG LABTECH[/url]的NEPHELOstar [i]Plus[/i]是一种专用的微孔板散射浊度仪,可通过测量前向散射光来检测液体样品中的不溶性颗粒。这种方法基于对样品中不溶性颗粒散射光强度的检测。NEPHELOstar [i]Plus[/i]的高强度光源是波长为635 nm的激光。激光穿过样品孔,进入Ulbricht球散射光检测器。如果光线没有被颗粒偏转,会直接穿过球体,不会产生信号。如果样品中存在不溶颗粒,散射光会在球体内部反射,被光电二极管检测到。Ulbricht球可收集散射角度高达 80 度的光线。[align=left][b]结论[/b]散射比浊法是一种快速、可靠、低成本的溶解度筛选方法,可利用384孔板进行高通量筛选。使用NEPHELOstar [i]Plus[/i] 在384孔板中进行全自动动力学溶解度筛选,可在75分钟内分析24种化合物,批间差异率为5%。在提交的化合物中,其中约有90%的化合物,其动力学溶解度可通过此方法得出并排序。[/align]

  • 微生物所在抗结核药物筛选方面取得新进展

    被称为“白色瘟疫”的结核病是经呼吸道传播的慢性传染病,主要发生在肺部,是一种国际性的重要传染病。近年来,由于人口的增长及流动性增加、结核杆菌耐多药性(MDR-TB)和广泛耐药(XDR-TB)的出现、HIV/AIDS的感染和传播等原因,使得已经十分严重的结核病更是“雪上加霜”,结核病已经重新成为威胁整个世界安全与健康最为严重的流行病之一。 张立新课题组在盖茨基金-全球抗结核联盟、Genzyme制药公司和中国科学院知识创新工程重要方向项目的支持下,对我国海洋微生物中具有抗结核分枝杆菌活性成分进行了系统的研究,发现了许多具有新作用机制的抗结核化合物。由于野生结核分枝杆菌毒株H37Rv生长缓慢,影响了高通量筛选的效率,课题组构建了针对对数生长期卡介苗(BCG,牛结核分枝杆菌的减毒株)的高通量筛选模型,可直接读取荧光判断细菌生长情况,大大缩短测试所需要的时间。 依托于实验室已经建立的菌株库和天然产物粗提物库,通过高通量筛选,研究人员获得一系列具有良好的抗结核分枝杆菌活性的粗提物,对这些活性菌株进行放大发酵、活性追踪分离,获得了一系列具有良好活性的成分。这些研究成果已申请专利,相关文章陆续发表在Organic Letters,Journal of Natural Products等国际天然产物杂志上。 其中,通过与澳大利亚昆士兰大学Robert Capon教授合作,从一株海洋真菌中发现了4个新的活性化合物,其中1个独特的二聚化合物具有最强的抗BCG活性最小抑菌浓度为6.25µg/mL,而对测试的其他微生物菌株的最小抑菌浓度都大于100µg/mL。其生物活性的选择性和由独特结构骨架带来潜在的全新作用机制备受关注,该项研究成果近期发表在Organic Letters(OL)杂志上(图1)。 课题组与美国Broad Institute合作研究建立了结核分枝杆菌全细胞筛选模型,从课题组的天然产物库中成功筛选和鉴定了两个小分子抑制剂,并通过化学生物学手段揭示其作用靶点与细胞壁形成相关,研究成果发表在ACS Chemical Biology杂志上(图2)。论文在线发表不足一月,已经进入该期刊Most viewed article。 结核分枝杆菌枝菌酸的生物合成途径一直是很重要的抗结核药物靶标,苯并咪唑化合物(左)的作用于结核分枝杆菌枝菌酸的生物合成途径,其靶点为枝菌酸的转运蛋白MmpL3(分枝杆菌膜蛋白3);硝基三唑化合物(右)的靶点为癸异戊烯磷酰基-β-D-核糖2'-差向异构酶(DprE1),抑制该酶的活性可以影响细胞壁阿拉伯聚糖的合成,从而促进细胞裂解和结核杆菌的死亡。 课题组的科研人员还在其他杂志上发表了具有新结构的抗结核化合物。课题组还受Natural Product Reports杂志邀请,对抗TB活性成分研究进行了总结和综述。http://www.cas.cn/ky/kyjz/201210/W020121018505338373571.jpghttp://www.cas.cn/ky/kyjz/201210/W020121018505338371569.jpg

  • 想了解血液中药物小分子高灵敏度LC/MS分析的诀窍吗?

    随着生活水平的提高,人们的关注重心已经从温饱问题转移到更高的追求:精神水平的提升和个人生命的长度。增加人类寿命,势必要克服各种各样疾病的困扰。现代医学的研究重心在于尽早发现和精准治疗,表现为生命体中生物标记物(Biomarker)的浓度水平和治疗药物的代谢过程等研究。目前,医院临床实验室中的特定诊断通常使用免疫检测和分子检测手段,交叉反应和干扰较为严重;作为替代手段,LC/MS基于色谱和质量选择性对化合物进行分离,灵敏度更高;可有效监控治疗药物,节省时间和成本。 影响LC/MS实验结果的因素较多,在保证系统运行基础上,如何保证高灵敏度的实验结果呢?详情请点击:[url]http://www.instrument.com.cn/netshow/sh101341/news_233727.htm[/url]

  • 手性药物拆分技术的研究进展

    自然 界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上。美国 FDA 在1992年发布了手性药物指导原则,该原则要求各医药 企业 今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的 ,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和领域。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年,100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已经增长到730亿美元;2002年总销售额更是达到1720亿美元,2010年可望超过2500亿美元。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。  目前获得单一手性化合物的方法有3种:①手性源合成法:以手性物质为原料合成其他手性化合物。②不对称催化合成法:是在催化剂或酶的作用下合成得到单一对映体化合物的方法。③外消旋体拆分法:是在拆分剂的作用下,利用物理化学或生物方法将外消旋体拆分成两个对映体。外消旋体拆分法作为一种经典的分离方法,在此显示出其 省时的优势,在工业生产上得到广泛的应用。目前,外消旋体拆分法可分为结晶拆分、化学拆分、生物拆分、色谱拆分、膜拆分和手性萃取拆分等方法。本文作者根据国内外相关 文献 报道,对外消旋体的几种拆分方法进行了综述。   1 经典结晶法  用结晶的方式进行外消旋体的分离,是手性化合物拆分中最常用也是最主要的方法。传统的拆分法过于繁琐,而结晶法实际上是机械分离法的改进。经典的接种结晶法是在一个热的外消旋体混合物的饱和溶液中,加入适量的某一对映体的晶种进行诱晶,适当冷却,这一对映体由于过饱和从外消旋混合物中析出,分别加入两种对映体晶种,就可以得到两种对映异构体。如 L-甲基多巴的生产即采用此法。对于不生成外消旋混合物的化合物,可通过手性酸、碱等拆分试剂将其转化成非对映异构体盐后,再进行反复结晶。如 D-苯基甘氨酸的 Amdeno 制备法即是用樟脑磺酸盐作拆分剂进行结晶,年产量上千吨。接种结晶法工艺简单,经济又方便,但通常只能间歇生产,一次收率较低。   2 化学拆分法  化学拆分法是广泛使用的一种方法。根据手性试剂与外消旋体反应所得生成物不同可分为以下几种。  2.1 经典拆分法  如果外消旋体分子含有如羧基、氨基、羟基或者双键等活性基团,可让其与某一光学活性试剂(拆分剂)进行反应,生成两种非对映异构体的盐或其它复合物,再利用它们物理性质(如溶解度)和化学性质的不同将两者分开,最后把拆分剂从中分离出去,便可得到单一对映体。拆分成功的关键是选择合适的拆分剂。适用于这类光学拆分方法的外消旋体有酸、碱、醇、酚、醛、酮、酰胺及氨基酸等。其过程如下式(1)所示:  (DL)-A+(D)-B→(D)-A·(D)-B+(L)-A·(D)-B(1)  这种经典的方法运用广泛,但其也有明显的局限性,比如拆分剂和溶剂的选择较为盲目;拆分剂价格昂贵;收率和e.e.值不高等。近年来,随着主-客体化学的深入研究,开发出了包结拆分和组合拆分等新型手性拆分技术,在一定程度上弥补了经典成盐拆分法的不足。  2.2 组合拆分  组合拆分(combinatorial resolution) 是近年来报道的一种新方法,它的原理是采用一组同一结构类型的手性衍生物拆分剂家族(resolving agent family) 代替单一的手性拆分剂进行外消旋化合物的拆分。这些拆分剂家族往往是以常用的手性拆分剂为原料,经结构修饰得到的衍生物。也可以是含有不同取代基的某一类结构类型的化合物。Wynberg 设计了一系列芳香环取代的衍生物组成不同的拆分剂家族,首次将该方法应用于化学拆分中。经过实验验证,酒石酸类衍生物的拆分剂家族 T 和TA(1),可用于碱性化合物的拆分,α-苯乙胺类拆分剂家族PE-I,PE-II 和PE-III(图2),通常用于酸性化合物的拆分。  实际操作时将拆分底物与拆分剂家族以 1∶1 的形式,于同一溶剂中进行拆分。这种组合拆分方法和前述的经典拆分方法比较,具有结晶速度快,收率高,纯度高等特点。  2.3 包结拆分  包结拆分是由日本化学家 Toda 教授发明的,其原理是利用非共价键体系,如氢键和分子间的次级作用,使外消旋体的一个对映异构体与手性拆分剂发生包结,形成稳定的超分子配合物,再通过结晶方法将两个对映体分开。由于主体和客体分子不发生化学反应,只存在分子间作用力,所以很容易通过柱层析、溶剂交换和逐级蒸馏等与客体分离,然后再循环利用。因此,包结拆分具有操作简单、成本低廉、易于规模生产,具有很高的工业价值。Toda 等还采用氯化 N-苄基辛可尼定作为包结主体,在甲醇中首次成功地拆分了外消旋的联二萘酚,光学纯度(e.e.值)达到100%。邓金根等用光学纯联二萘酚类化合物和酒石酸衍生物等手性化合物作为包结主体,选择性地与某种构型的奥美拉唑形成包结络合物,并以结晶形式出现,而另一种对映体则留在溶剂中,然后用层析的方法将包结主体和奥美拉唑分离,可制得两种对映体。其中具有药效作用的 S-奥美拉唑总收率可达88%,e.e.值为100%。过程如图3所示。  2.4 动力学拆  分经典动力学拆分的原理在于两个对映体与某一手性试剂的作用, 中间体是一对非对映异构体,反应速度一般存在差异。利用它们反应的动力学差异,从而达到拆分的目的。通过经典动力学得到的光学纯产物的最大产率为50%,多数情况下,有一个异构体是没用的,这将浪费一半的原料。因此,为了克服以上缺点,人们开始采用动态动力学拆分方法,就是在拆分过程中伴随着底物的现场消旋化,从而使那一半没用的对映体转化为消旋体继续拆分。理论上产率可达到100%,这在工业应用上将具有重大的意义。   3 生物拆分法  酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。反应产物的e.e.值可达100%。随着酶固定化、多相反应器等新技术的日趋成熟,越来越多的酶已用于外消旋体的拆分。徐刚等通过对不同来源酶的筛选,找到了 Novozym 435和 Alcaligenes sp两种选择性较好的酶,有效拆分制备了(S)-2-氯-1-(2-噻吩)-乙醇,产率为48.6%,e.e.值为98.5%。酶催化立体选择性强、反应条件温和、操作简便、副反应少、产率高、成本低,且不会造成污染,这些都使得用酶拆分外消旋体成为理想的选择。酶法拆分外消旋体在实验室制备和工业生产中都已取得长足的进步,但是仍然有其局限性。比如菌种筛选困难、酶制剂不易保存、产物后处理量大,以及通常只能得到一种对映体等缺点。尽管如此,利用微生物进行手性药物的合成及对映体的拆分仍是当前研究热点。   4 色谱拆分法  色谱法是目前手性药物分析和分离中应用最广最有效的方法之一。主要应用分为两类:分析级水平和制备级水平。用于分析领域的色谱拆分法包括气相色谱(GC)、高效液相色谱(HPLC)、超临界流体色谱(supercritical fluid chromatography,SFC)、毛细管电泳(CE)等。在制备领域中,高效液相色谱的应用较为广泛。另外,在工业化生产中比较成熟、比较前沿的是模拟移动床(simulated moving bed,SMB)技术。  4.1 高效液相色谱  高效液相色谱法在手性药物拆分中的应用是最广泛的,是药物质量控制、立体选择性的药 和毒理学研究的重要手段。 HPLC 分离药物对映体的方法可分为间接法和直接法。前者又称为手性试剂衍生化法,后者又可分为手性固定相法(CSP)和手性流动相添加剂法(CMPA)。间接法是利用手性药物对映体混合物在预处理中进行柱前衍生化,形成一对非对映异构体,根据其理化性质上的差异,使用非手性柱得以分离。该法分离效果好,分离条件简便,一般的非手性柱可满足要求,但需要高纯度的衍生试剂,操作比较麻烦。直接拆分法中的 CMPA 法是在流动相中加入手性添加剂,利用非手性固定相 HPLC 进行拆分;而 CSP法发展异常迅速,目前已开发的商品化手性固定相有多糖类、蛋白类、环湖精类、冠醚类等,其中多糖类衍生物手性识别能力强,方法也较成熟。直接法可用 Dalglsh 于1952年提出的着名的“三点作用原理”来解释:药物一个对映体先与手性固定相或流动相的添加剂间发生分子间的三点作用,同时另一对映体则发生二点作用,前者形成的分子复合物较后者稳定,用 HPLC 法依次使其对映体分离。郭娜等采用羟丙基-β-环糊精为手性流动相添加剂,拆分了奥昔布宁对映体,分离度为 1.54,检测限为 1.0 ng。HPLC 法用于对映体药物的拆分,具有多种途径,各具特色,可

  • 多肽类药物种类

    多肽类药物种类

    [font=宋体][size=10.5000pt]常见的多肽类药物种类[/size][/font][font=宋体][size=10.5000pt]多肽药物是一种可以用于疾病的预防、治疗和诊断的多肽类生物药物,其制备方法主要有化学多肽合成、分离纯化法和基因工程法等,其中化学多肽合成是多肽药物的主要制备方式。虽然多肽类药物可以通过从生物体内分离纯化获得,但是天然存在的多肽分子含量少,无法完全满足临床应用的需求。化学多肽合成方法是通过氨基酸逐步缩合的化学反应来实现,一般是从羧基端向氨基端,重复逐个添加氨基酸的过程。【[font=宋体]详情请咨询国肽生物[/font]】[/size][/font][font=宋体][size=10.5000pt]多肽类药物主要包括多肽疫苗、抗肿瘤多肽、抗病毒多肽、多肽导向药物、细胞因子模拟肽、抗菌性活性肽、诊断用多肽以及其他药用小肽等。多肽药物与一般的有机小分子药物相比,具有生物活性强、用药剂量小、毒副作用低和疗效显著等突出特点,然而其半衰期一般较短、不稳定,在体内容易被快速降解。[/size][/font][font=宋体][size=10.5000pt]与蛋白类大分子药物相比,除了多肽疫苗外,多肽类药物免疫原性相对较小,用药剂量少,单位活性更高,易于合成、改造和优化,产品纯度高,质量可控,能够迅速确定药用价值。[/size][/font][font=宋体][size=10.5000pt]1[font=宋体]、多肽疫苗[/font][/size][/font][font=宋体][size=10.5000pt]多肽疫苗是按照病原体抗原基因中已知或预测的某段抗原表位的氨基酸序列,通过化学多肽合成技术制备的疫苗。多肽疫苗是目前疫苗研究的重要方向,已经针对了艾滋病病毒和丙肝病毒的多肽疫苗进行了研发。传统疫苗一般由两种方式制备,一种为能诱发免疫力却不致病的减毒疫苗,例如黄热病、脊髓灰质炎和麻疹疫苗或卡介苗;另一种为灭活疫苗,例如百日咳杆菌、狂犬病毒、伤寒杆菌。[/size][/font][font=宋体][size=10.5000pt]多肽疫苗由于完全是合成的,不存在毒力回升或灭活不全的问题。特别是一些还不能通过体外培养方式获得足够量的抗原的微生物病原体。有些虽能进行体外培养,但这些病原体有潜在致病性和免疫病理作用等涉及安全性与有效性的问题。多肽作为体内引起效应细胞免疫应答形成的免疫原,将成为一种新型的疫苗。[/size][/font][font=宋体][size=10.5000pt]2[font=宋体]、抗肿瘤多肽[/font][/size][/font][font=宋体][size=10.5000pt]多肽类药物凭借其靶向性、安全性、特异性,使其在抗肿瘤药物的研制中受到关注,不同的多肽药物具有多种不同的作用机制。其可抑制肿瘤细胞增殖、促进肿瘤细胞凋亡达到直接抗肿瘤作用,也可以通过增强和激发机体对肿瘤细胞的免疫应答、抑制肿瘤血管生成等达到间接的抗肿瘤作用。而且其作用机制的多样性和特异性,也可以实现多肽改造和融合,实现多肽的高效、靶向、特异的抗肿瘤作用。[/size][/font][font=宋体][size=10.5000pt]3[font=宋体]、多肽导向药物[/font][/size][/font][font=宋体][size=10.5000pt][font=宋体]将具有结合能力的多肽与细胞毒素或细胞因子等进行融合,将其导向至病变部位,发[/font] [font=宋体]挥治疗作用,同时减少毒副反应。已知很多毒素(如绿脓杆菌外毒素),细胞因子(如白细胞介素系列)等有较强的肿瘤细胞毒性,但在人类长期或大量使用量时也可损伤正常细胞。将能和肿瘤细胞特异结合的多肽与这些活性因子进行融合,则可将这些活性因子特异性地集中在肿瘤部位,可大大降低毒素、细胞因子的使用浓度,降低其副作用。[/font][/size][/font][font=宋体][size=10.5000pt]4[font=宋体]、细胞因子模拟肽[/font][/size][/font][font=宋体][size=10.5000pt][font=宋体]指从肽库中筛选获得能够与细胞因子受体特异性结合,同时具有细胞因子活性的多肽。这些模拟肽的序列一般与细胞因子的氨基酸序列不同。能刺激造血的细胞因子如红细胞生成素[/font](EPO)[font=宋体]和血小板生成素[/font][font=Calibri](TPO)[/font][font=宋体]等通过与其受体的特异性结合来调控造血细胞的自我更新、增殖、分化、成熟及程序性死亡。近年来利用噬菌体展示文库等技术业已筛选出类似于细胞因子活性的模拟肽类和非肽类小分子,经体外和动物试验证实它们具有类似于细胞因子的刺激造血生物学功能。这为进一步探讨细胞因子的作用机制、筛选出理想的模拟其它细胞因子功能的小分子肽[/font][font=Calibri]/[/font][font=宋体]非肽类药物奠定了坚实基础。[/font][/size][/font][font=宋体][size=10.5000pt]5[font=宋体]、抗菌性活性肽[/font][/size][/font][font=宋体][size=10.5000pt]从昆虫、动物体内筛选获得的具有抗菌活性的多肽分子,目前已经筛选获得上百种。抗菌肽具有抗菌谱广、热稳定性强、分子量小及免疫原性小等特点,其杀菌机制独特,病原菌不易产生耐药性,有望开发成新一代肽类抗生素。但部分抗菌肽具有空间结构不稳定、溶血活性等特点,限制了临床应用。因此设计或改造天然抗菌肽,提高抗菌活性的基础上消除其溶血活性,促进抗菌肽在医药上的应用,有望开发成新型抗菌药物,为解决病原菌对传统抗生素日益增强的耐药性问题提供新的途径。[/size][/font][font=宋体][size=10.5000pt]6[font=宋体]、诊断用多肽[/font][/size][/font][font=宋体][size=10.5000pt]通过从致病体或肽库中筛选获得的多肽,用作诊断试剂,检测体内是否存在病原微生物、寄生虫等的抗体。包括对肝炎病毒、艾滋病病毒、类风湿疾病等抗体的检测。多肽在诊断试剂中最主要的用途是用作抗原检测病毒、细胞、支原体、螺旋体等微生物和囊虫、锥虫等寄生虫的抗体。多肽抗原比天然微生物或寄生虫蛋白抗原的特异性强,且易于制备,因此装配的检测试剂,其检测抗体的假阴性率和本底反应都很低,易于临床应用。[/size][/font][font=宋体][size=10.5000pt]常见的多肽类药物种类主要有以上几种,目前来自动物组织提取的多肽药物将逐步被淘汰,化学多肽合成和基因重组方式将在很长一段时间内成为互为补充的多肽药物生产方式。在化学多肽合成类药物快速成长之际,基因重组表达制备多肽药物也引起业内关注。与化学多肽合成相比,基因重组方式更适于长肽的制备;而且随着技术的进步,以基因重组方式生产多肽药物的成本也在不断降低。[/size][/font][font=宋体][size=10.5000pt][img=,690,177]https://ng1.17img.cn/bbsfiles/images/2020/07/202007021610504262_3029_3531468_3.jpg!w690x177.jpg[/img][/size][/font][font=宋体][size=10.5000pt]国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物[/size][/font]

  • 【分享】单分子方法研究抗癌药物顺铂与DNA的作用取得新进展

    顺铂(cisplatin)是临床上广泛应用的一种抗癌药物,对多种恶性肿瘤(如膀胱癌、前列腺癌、睾丸癌、肺癌、头颈部癌、乳腺癌、卵巢癌、恶性淋巴瘤等)有治疗作用。它含有一个铂原子、两个氯原子和两个氨分子,是一种无机络合物,结构非常简单。但它的抗癌作用机制还没有被完全研究清楚。通常认为顺铂是通过与癌细胞中的DNA结合,形成链内、链间连结,影响DNA的功能,干扰DNA复制、转录等,从而消灭肿瘤。 我们利用原子力显微镜(AFM)和磁镊研究了抗癌药物顺铂对单个DNA分子结构的影响。发现在低浓度顺铂作用下,DNA变得比自然状态下更为柔软,DNA的驻留长度(persistence length)从大约52纳米急剧减小为大约15纳米。在高浓度顺铂情况下,我们发现了DNA的成环和凝聚现象。根据实验结果,我们提出顺铂导致的DNA凝聚现象是分层次进行的:第一步,顺铂双臂加合物(di-adduct)导致DNA局部弯折形变;第二步,通过较远的交联形成DNA微环(大小约20纳米);第三步,通过更远的交联形成大的DNA聚集体;最后,DNA分子凝聚成紧密的小球团。从第二步开始,顺铂单臂加合物(mono-adduct)起重要作用。(见下图)。基于AFM成像和单分子拉伸两方面的实验结果,我们提出一个顺铂导致的DNA变软(softening)-成环(looping)-缩短(shortening)-凝聚(condensing)模型(简写为SLSC模型)来解释观察到的DNA凝聚过程。我们认为通过远程交联使DNA形成小环结构是铂类抗癌药物作用的重要特征。我们揭示的药物导致的单分子DNA成环及凝聚现象也许是顺铂抗癌的一个关键要素。该研究工作是中科院物理所软物质物理实验室完成的,部分结果已发表于近期的《核酸研究》(Nucleic Acids Research 37(2009)1400-1410),作者为侯锡苗、张兴华、魏孔吉、季超、窦硕星、王渭池、李明、王鹏业*(*通讯作者: pywang@aphy.iphy.ac.cn)。该项研究得到了国家自然科学基金、中科院创新工程和国家重点基础研究发展计划的资助。

  • 药物靶蛋白鉴定方法

    [font='times new roman'][size=14px]药物靶蛋白鉴定方法[/size][/font][font='times new roman'][size=14px]非蛋白质组学鉴定方法[/size][/font][font='times new roman'][size=14px]非蛋白质组学的传统药物靶蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的迁徙分析等方法,通常耗时、耗力且不适合进行高流通量的筛选。目前,所使用的技术包括:第一,蛋白鉴定的图象分析,利用产生的表观分子量的网格来估计蛋白的分子量,未被修饰的小蛋白错误率大约[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]30%[/size][/font][font='times new roman'][size=14px],而翻译后修饰蛋白错误率更高,故需联合其他技术完成鉴定;第二,微量测序,首先使经凝胶分离的蛋白直接印迹在[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]PVDF [/size][/font][font='times new roman'][size=14px]膜,经过一系列操作后将其置于测序仪中进行蛋白质鉴定,但该方法仍然存在一些缺点,如由于酸性水解或者部分降解而产生氨基酸的变异,故应联合其他的蛋白质属性进行鉴定。[/size][/font][font='times new roman'][size=14px]化学蛋白质组学方法[/size][/font][font='times new roman'][size=14px]化学蛋白质组学方法一般先将小分子化合物通过与蛋白质溶液反应,使化学探针或小分子化合物与固相联接,得到被修饰的固相微球,然后利用合适的分离技术将这些蛋白质纯化,结合[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] [/size][/font][font='times new roman'][size=14px]分析,得到靶蛋白的信息。[/size][/font][font='宋体']亲和色谱法[/font][font='times new roman'][size=14px]亲和色谱法是化学蛋白质组学策略中较为经典的方法之一,它主要应用于研究蛋[/size][/font][font='times new roman'][size=14px]白质与生物活性小分子或蛋白质与蛋白质的相互作用[/size][/font][font='times new roman'][sup][size=14px][17][/size][/sup][/font][font='times new roman'][size=14px]。该方法通过官能团将配体结合在固相基质中,然后与蛋白质孵育,此时与配体结合的蛋白会留在基质上,最后通[/size][/font][font='times new roman'][size=14px]过变性或与自由配体竞争将结合蛋白洗脱下来,再通过凝胶电泳或者[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]进行分[/size][/font][font='times new roman'][size=14px]析。该方法的缺陷在于所研究分子衍生物活性不确定、材料配体结合力差异性以及非特异性吸附都将会干扰研究结果。[/size][/font][font='宋体']基于活性的化学蛋白质组学技术[/font][font='times new roman'][size=14px]基于活性的化学蛋白质组学技术([/size][/font][font='times new roman'][size=14px]ABPP[/size][/font][font='times new roman'][size=14px])是广泛使用的技术之一。[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]是由美国的[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]Cravatt[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]课题组在[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]2002 [/size][/font][font='times new roman'][size=14px]年首次提出,最早用于酶谱分析,之后被应用于药物靶蛋白筛选。[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]技术的关键是合成同时带有反应基团和标记物的[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]探针,可进一步与待测的蛋白质发生相互反应。药物靶点筛选领域设计的[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]探针通常包括三[/size][/font][align=center][font='times new roman'][size=14px]3[/size][/font][/align][align=center][/align][font='times new roman'][size=14px]个功能部分:反应基团、连接基团和报告基团。与二维凝胶电泳法([/size][/font][font='times new roman'][size=14px]2-DE[/size][/font][font='times new roman'][size=14px])、同位素编码亲和标签([/size][/font][font='times new roman'][size=14px]ICAT[/size][/font][font='times new roman'][size=14px])等技术相比,[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]技术着重研究蛋白质的表达和功能,[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]可从天然蛋白质组样品中直接筛选出与小分子特异性结合的蛋白质,从而能更直接快速地明确小分子和蛋白质之间的相互作用,确定小分子的作用靶点,这对于筛选具有低亲和力的靶蛋白极为有利。另外,根据富集和鉴定策略的不同,[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]技术可分为竞争性标记方法和生物正交的探针模拟物标记方法。[/size][/font][font='times new roman'][size=14px]1.%2.%3 [/size][/font][font='times new roman'][size=14px]非化学修饰的蛋白质组学方法[/size][/font][font='times new roman'][size=14px]1.1.%3.%4 [/size][/font][font='times new roman'][size=14px]细胞热位移测定[/size][/font][font='times new roman'][size=14px]在过去[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]20 [/size][/font][font='times new roman'][size=14px]年中,热位移分析([/size][/font][font='times new roman'][size=14px]TSA[/size][/font][font='times new roman'][size=14px])已成为最广泛使用的无修饰药物靶点发现方法之一。这种方法简单直接,但探针无法区分不同的蛋白质,因此[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]TSA [/size][/font][font='times new roman'][size=14px]仅适用于纯化蛋白质的实验。为了规避这个问题,[/size][/font][font='times new roman'][size=14px]Molina [/size][/font][font='times new roman'][size=14px]等人开发了一种概念上相似的技术,称为[/size][/font][font='times new roman'][size=14px]细胞热位移测定[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]C[/size][/font][font='times new roman'][size=14px]ETSA[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px],用于直接研究细胞环境中的药物[/size][/font][font='times new roman'][size=14px]-[/size][/font][font='times new roman'][size=14px]靶标相互作用。如图[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]A[/size][/font][font='times new roman'][size=14px])所示,细胞裂解物或完整细胞的多个等分试样首先用药物或载体处理,加热到不同的温度并冷却,然后通过离心分离出可溶性部分。随着温度的升高,蛋白质逐渐展开以暴露疏水核,导致蛋白质在高温下沉淀。蛋白质越稳定,蛋白质对热诱导沉淀的抵抗力越高,因此,可以测定可溶性蛋白质随温度变化的稳定性曲线。例如,该[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/antifolate][font='times new roman'][size=14px]方法通过叶酸[/size][/font][/url][font='times new roman'][size=14px]抗癌药物[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/methotrexate][font='times new roman'][size=14px]甲氨蝶呤[/size][/font][/url][font='times new roman'][size=14px]与[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/dihydrofolates][font='times new roman'][size=14px]二氢叶酸[/size][/font][/url][font='times new roman'][size=14px]还原酶的结合、雷替曲塞与胸苷酸合成酶的结合进行了药物靶标的验证。[/size][/font][font='times new roman'][size=14px]CETSA[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]是一种允许研究活细胞中药物靶点的方法。[/size][/font][font='times new roman'][size=14px]CETSA[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]结合小分子库可用于筛选潜在抑制剂、评估靶标参与效率和监测靶标特异性。此外,[/size][/font][font='times new roman'][size=14px]CETSA[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]还可用于筛选[/size][/font][font='times new roman'][size=14px]新药和表型化合物的靶点,解决脱靶蛋白、结合机制、药物疗效和完整细胞耐药性等[/size][/font][font='times new roman'][size=14px]问题。[/size][/font][font='times new roman'][size=14px]1.2.%3.%4 [/size][/font][font='times new roman'][size=14px]热蛋白组学分析[/size][/font][font='times new roman'][size=14px]热蛋白组学分析([/size][/font][font='times new roman'][size=14px]TPP[/size][/font][font='times new roman'][size=14px])首先将蛋白在有或无活性小分子情况下孵育,并加热到不同的温度以诱导蛋白变性,剩余的可溶性蛋白用缓冲液提取。如图所示,在每个温度下,可溶性蛋白通过高分辨质谱进行量化,画出变性曲线,进一步测[/size][/font][align=center][font='times new roman'][size=14px]4[/size][/font][/align][align=center][/align][font='times new roman'][size=14px]定热稳定性和识别配体引起的变化。其中,[/size][/font][font='times new roman'][size=14px]50% [/size][/font][font='times new roman'][size=14px]蛋白发生聚沉时的温度为[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]Tm[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]melting temp[/size][/font][font='times new roman'][size=14px]e[/size][/font][font='times new roman'][size=14px]r[/size][/font][font='times new roman'][size=14px]a[/size][/font][font='times new roman'][size=14px]tur[/size][/font][font='times new roman'][size=14px]e[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px],通过对比加药前后[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]T[/size][/font][font='times new roman'][size=14px]m[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]的变化,确定活性分子的靶蛋白。[/size][/font][font='times new roman'][size=14px]TPP[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]可以[/size][/font][font='times new roman'][size=14px]通过定量[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]MS [/size][/font][font='times new roman'][size=14px]分析,在蛋白质组水平评估活细胞中活性分子与蛋白结合的情况。[/size][/font][font='times new roman'][size=14px]图[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]A[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px]细胞热位移测定和[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]B[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px]热蛋白组学分析简要工作流程[/size][/font][font='times new roman'][size=14px][14][/size][/font][font='times new roman'][size=14px]药物亲和反应的靶点稳定性技术[/size][/font][font='times new roman'][size=14px]药物亲和反应的靶点稳定性技术([/size][/font][font='times new roman'][size=14px]DARTS[/size][/font][font='times new roman'][size=14px])是一种鉴定药物靶标的新方法。药物[/size][/font][font='times new roman'][size=14px]与靶蛋白结合后,靶蛋白对蛋白酶的敏感性降低,与对照组相比,药物结合蛋白更不[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/protein-hydrolysis][font='times new roman'][size=14px]易水解[/size][/font][/url][font='times new roman'][size=14px]。这种差异可通过蛋白凝胶电泳和质谱等技术对差异蛋白进行鉴定,可以确定[/size][/font][font='times new roman'][size=14px]药物直接作用的靶点蛋白[/size][/font][font='times new roman'][size=14px],最大优势是不需要对药物进行任何化学修饰,即可以确定药物的直接结合蛋白。[/size][/font][font='times new roman'][size=14px]DARTS[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]在天然小分子靶点的鉴定中发挥了重要的作用,例如[/size][/font][font='times new roman'][size=14px]对[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]ecumicin[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]、白藜芦醇[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]resveratrol [/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]等多种天然产物蛋白靶点的鉴定[/size][/font][font='times new roman'][sup][size=14px]。但[/size][/sup][/font][font='times new roman'][size=14px]DARTS[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]也存在局限性,例如细胞裂解液中的低丰度蛋白的鉴定和非特异性结合会导致[/size][/font][font='times new roman'][size=14px]蛋白对蛋白酶的敏感性升高增加。利用这一特性,研究者还开发了药物亲和力响应靶稳定性的方法用于药物靶点筛选。[/size][/font]

  • 影响药物疗效的因素

    皮肤给药。  (2)药物的理化性质。 药物的吸收不决定于其在胃肠道的总浓度,而是取决于可吸收的,即非解离的药物浓度,也就是取决于药物的pka值与吸收部位的ph值。同时,药物脂溶性愈大 则愈易吸收;溶解速率愈大愈吸收得快。对难溶性固体药物而言,其粉末愈细,粒径愈小,比表面积愈大,溶解速度愈快,药物吸收速度也愈快,吸收量愈多,药效 就愈好。  (3)赋形剂。制备药剂时,往往要用某些赋形剂,他们不仅影响到生产工艺及制剂的外观性质,如:硬度、粘度、光 泽、颜色、味道等方面,而且会改变制剂的溶出速率、生物利用度,从而影响制剂的疗效。例如:乳糖是一种比较理想的常用赋形剂,用于睾丸酮片,有加速吸收的 作用;而用于异烟肼片,其疗效完全被乳糖阻碍  药物相互作用对疗效的影响  药物的相 互作用系指一种药物的作用,被同时应用的另一种药物所改变。近年来,临床上联合应用多种药物治疗某患者的一种疾病的现象日益增多。这些药物同时服用后,由 于药物间相互作用,有的产生协同作用,增强疗效;但也有的产生拮抗作用,使疗效降低,甚至会产生毒性,带来毒副反应。例如:咖啡因与麦角胺合用时,溶解度 加大,吸收增加,疗效提高。又如,洋地黄与氯噻嗪、氯噻酮、喹噻酮、利尿酸、速尿等高效利尿药合用治疗心脏性水肿时,往往造成血钾过低,增加心脏对洋地黄 的敏感性,引起中毒反应。

  • [推荐]:核磁共振技术与新药安全性评价(药物代谢组学与代谢物组学)

    1.前言 随着科学与技术的发展,新药研发的速度正在日益加快,使得新药安全性评价工作的压力也变得越来越大。在新药研究开发过程中,因为安全性问题而被淘汰的候选药物占相当大的比例。一旦潜在的药物分子通过了初步的生物学筛选过程,就应该尽量减少这些候选药物分子在产品研发过程中的流失,以免造成巨大的资金和时间的浪费。因此,人们努力寻找新的分析方法,以便从功效和安全性两方面使得先导化合物的筛选更有效,从而尽可能地减少这种浪费。目前的生物分析手段主要利用基因组和蛋白质组方法,分别从基因水平和细胞蛋白质表达水平上测量生物体系对药物的反应。这两种方法都较昂贵,且劳动强度较大,然而却可能是研究在不同水平上对生物异源物质的生物应答的有力工具。但是,基因组学和蛋白质组学都不能提供可以了解生物体中整体细胞功能的信息,因为两者都忽略了整体器官中动态的代谢状态。因此,Nicholson等人提出了一种基于核磁共振的新方法,叫做metabonomics,我们暂且称之为代谢组学,以便与由代谢物组(metabolome)衍生而来的metabolomics相区别。Metabolomics研究的是一个细胞或细胞类型中所有的小分子成分,而metabonomics则是通过分析生物体液和组织来对完整的生物体(而不是单个细胞)中随时间改变的代谢物进行检测、确定、定量和分类;然后将这些***代谢轨迹与病生理过程中的生物学事件关联起。从药物研究和毒理学评价的角度来看,基因组学方法是观察给药后基因表达的改变,主要采用基因芯片技术。然而,基因调节/表达与系统的整体功能之间的关系在目前还很不清楚,主要是因为决大部分DNA是非编码的,而编码蛋白质的基因不能孤立地发挥作用,而是需要与其邻近的基因和非编码DNA一起才能发挥其功能。正式由于这个原因,人们才发展了蛋白质组学。蛋白质组学方法可以对由给药或其它病生理过程引起的细胞蛋白质组成变化进行半定量的测量。蛋白质组方法所采用的技术主要包括双向凝胶电泳和质谱技术。与基因组方法相比,蛋白质组方法较慢,且劳动强度较大。需要强调的是,虽然这些方法能够在很大程度上揭示毒理学机理,并且给出与疾病相关的新的生物标记物,却很难将这些发现与经典的毒理学指标相关联。原因很简单,因为目前的技术和方法不能对给药后反应的整个进程进行测量,也不能对生物整体的应答进行测量。因此需要发展一种新的方法来实时给出多器官生物整体的在体信息。基于NMR的代谢组学(metabonomics)方法可以满足这样的要求。2.Metabonomics在药物毒理学研究中的应用 代谢组学的目的是要扩展和补充由基因组学和蛋白质组学方法得到的对生物异源物质应答的信息。其任务是定量测量生物体对病生理刺激或基因改变的动态多参数代谢反应,是研究药物毒性和基因功能的技术平台。这个概念是根据Nicholson小组近二十年来利用1H NMR技术研究生物体液、细胞和组织中多组分代谢组成的工作而提出的。在这些研究中,还利用了模式识别,专家系统和相关的生物信息学工具。在许多情况下,药物通过与遗传物质直接作用而产生毒性,或通过诱导系统合成与药物代谢有关的酶,从而产生有毒的产物。在这种情况下,用基因组和蛋白质组学方法来评价毒性是有用的。然而,在生物异源物质有可能只在药理学水平上产生作用,因而可能不会影响基因的调节和表达。再者,显著的毒理学效应可能与基因的改变和蛋白质的合成完全不相关。因此,在许多情况下,从基因组和蛋白质组角度考虑到的反应可能不能预测药物毒性。但是,所有的由药物引起的病生理紊乱都会由于直接的化学反应,或通过与控制代谢的酶或核酸相结合而引起内源生化物质在比例、浓度、代谢通量等方面的失调。如果这种变化足够大的话,就会影响整个生物体的功能。生物体液中的代谢物是与细胞和组织中的代谢物处于动态平衡,因此,生物体中由于中毒或代谢损害而引起的细胞功能异常一定会反映在生物体液成分的变化中。要检测血浆、尿液、胆汁等生物基质中的一些具有特殊意义的微量物质,选择合适的分析方法致关重要。高分辨1H NMR波谱就非常适合用来检测生物体液中的成分异常,因为该方法可以同时对所有的代谢物进行定量分析,而且不需要样品前期准备,对任何成分一样灵敏。虽然也可以采用如质谱等其它方法,但对不同成分离子化程度的差别会影响定量和检测的可靠性。NMR方法还可以有效地用来从组织萃取物或细胞悬液中找出异常的代谢物。还可以利用高分辨魔角旋转(HR-MAS)探头来检测完整组织中的代谢物组成。由1H NMR谱检测到的生物体液中的内源性代谢物模式完全依赖于动物体内的毒素的类型。每一种类型的毒物都会在生物体液中产生特征的内源代谢物浓度和模式变化,这种特征给我们提供了毒性作用的机理和毒性位置的信息。右图所示为一系列尿样的1H NMR谱图,是大鼠经不同的毒物处理后得到的。每一张谱图只需几分钟的时间,是非常有效的。可以看出,不同毒素引起的代谢物变化是有特征性的。因为几乎所有的代谢物都有其特征的NMR谱,因而可以作为毒物引起的代谢变化的指纹图谱。利用NMR方法,人们已经成功地发现了许多新的器官特异相关毒性的代谢标记物。作为分析生物化学技术,NMR正是在这种探索性的工作上具有优势。

  • 小分子药物与蛋白紧密结合怎么提取出来

    这个药物只知道分子量,大概200左右,配在溶液里出峰都很正常,配在血浆以后用甲醇,ACN,萃取剂MTBE,乙酸乙酯等,加酸加碱,都提取不出来,一点都没有,怎么才能将药物提取出来呢?

  • 纳米粒子递送药物技术有新进展

    蛋白质“通行证”让纳米粒子通过免疫系统2013年02月25日 来源: 中国科技网 作者: 常丽君 中国科技网 讯人体免疫系统能识别并摧毁外来物。除了细菌、病毒,递送药物的纳米粒子、植入的起搏器和人工关节等也是外来物,同样会引发免疫反应,导致药物失效、排斥或发炎。据物理学家组织网2月21日报道,美国宾夕法尼亚大学科学家开发出一种新方法,给这些治疗设备贴上蛋白质“通行证”,让它们能顺利通过人体的防御系统。相关论文发表在最近的《科学》杂志上。 “身体对入侵的外来物会一视同仁地加以排斥。”论文第一作者、宾夕法尼亚大学分子与细胞生物物理学实验室研究生派尔·罗德里格斯说,这是由身体天然免疫系统所引发的。这一过程涉及多种细胞,如巨噬细胞能发现、吞掉并破坏入侵者;血清蛋白会黏在目标物上,引起巨噬细胞注意,一旦巨噬细胞确定黏住的是外来物就会吞掉它,或发信号召集其他巨噬细胞一起来包围它。 为避免纳米粒子引发天然免疫反应,早期的办法是给它们涂一层高分子的“刷子外衣”,这些“刷子”从纳米粒子中伸出来,阻止各种血清蛋白黏在它表面。但这只能暂缓一时而不能最终解决问题。宾夕法尼亚大学工程与应用科学学院化学与生物分子工程教授丹尼斯·迪斯科和研究小组另辟蹊径:让巨噬细胞相信纳米粒子是“自己人”而放过它们。 早在2008年,迪斯科小组发现人体细胞膜上有一种叫做CD47的蛋白,它能与巨噬细胞受体SIRPa结合。就像巡警检查人们的通行证,CD47蛋白会告诉巨噬细胞是“自己人,别吃我”。随后有其他研究人员破解了CD47和SIRPa的连接结构。 利用这些信息,迪斯科小组绘制出了执行类似CD47蛋白功能所需的最小氨基酸序列,并将这种“小肽”折叠起来作为固体“通行证”。他们用化学方法合成了这种小肽,将其黏附在抗癌药物递送粒子上,然后注射到小鼠体内检验其功效。这些小鼠经过基因改造,其巨噬细胞具有和人类相同的SIRPa受体。 研究人员给小鼠注射了两种纳米粒子:一种携带小肽通行证,另一种没有,然后检测小鼠免疫系统要多久能识别出来。“我们每10分钟抽一次血,检测两种纳米粒子各剩下多少。”罗德里格斯说,“最初注射两种粒子的比例是1∶1,20分钟到30分钟后,有小肽的粒子数是没有小肽的4倍。” “这证明小肽确实抑制了巨噬细胞的反应。我们引起它们之间的互动,然后又克服了它。”迪斯科说。对治疗用的纳米粒子而言,它们只需活到发现目标,不必无限期地留在体内,即使多出半小时时间已能带来很大利益;而对起搏器之类的长久植入体内的设备来说,则需要另外的表面蛋白结合物,让它们能和免疫系统长期和平共处。 研究人员还指出,这些小肽在进入实际应用前,还需进一步研究,将其减少到只有几个氨基酸。这一步很关键,通行证分子越简单,就越容易合成。如果能在一台机器上统一制造,并能方便地修改以适应多种植入物和注射剂,就能粘黏在多种药物递送工具上,也能黏在专门抗体上瞄准癌细胞或其他疾病组织。(常丽君) 《科技日报》 2013-02-25 (二版)

  • 小分子药物-DSC测定谱图解读困惑(热焓值差异较大)

    [font=微软雅黑][color=#444444]本实验室新和成了三个样品(同一种药物),结晶工艺略有差异,测了DSC,同样的升温程序,均只有一个凸起的DSC峰,峰值处结果如下:[/color][/font][font=微软雅黑][color=#444444]第一个:186.2℃,2.59mW/mg [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]上的纯度99.43%;水分和溶剂残留之和0.25%;[/color][/font]第二个:187.2℃,2.698mW/mg [color=#444444][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]上的纯度99.99%;[font=微软雅黑][color=#444444]水分和溶剂残留之和0.14%;[/color][/font][/color]第三个:186.9℃,2.914mW/mg [color=#444444][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]上的纯度99.82%;[font=微软雅黑][color=#444444]水分和溶剂残留之和0.22%;[/color][/font][/color][font=微软雅黑][color=#444444]请问:以上数据能说明何问题?重点是后面的2.59到2.914mW/mg这三个数据差异是否有点大?是否涉及到药物的不同晶型?或者常见的有哪些原因回引起后面的单位质量吸热值差异?[/color][/font]

  • 基于特定靶点的中药活性成分筛选策略

    [align=left][size=15px]白芍(Radix paeoniae alba,RPA)具有抗炎作用,已被报道可以抑制细胞增殖和促炎细胞因子(TNF-α、IL-1等)的产生。然而,目前对RPΑ的抗炎机制以及其药理作用的潜在活性成分和直接结合的靶蛋白知之甚少。由于TNF-α通过肿瘤坏死因子受体1(TNF-R1)信号通路在炎症反应中发挥作用,对RPΑ中与TNF-R1结合的活性成分进行确认有助于理解RPΑ抗炎作用。[/size][size=15px]基于表面等离子体共振(SPR)的中药主要活性成分筛选策略,以中药白芍为例,确定了其中能够特异性结合TNF-R1进而发挥抗炎作用的化合物。[/size][size=15px]表面等离子体共振(SPR)是药物发现中的经典工具,可以同时提供分子相互作用的动力学和平衡特性,而UPLC-QTOF/MS是对中药成分进行定性和定量分析的有力工具,SPR与UPLC-QTOF/MS系统相结合可以筛选与特定蛋白直接结合的活性成分。[/size][/align] [size=15px][b][font=等线]1、[/font][/b][/size][size=15px][b][font=等线]建立[/font][/b][/size][size=15px][b][font=等线]TNF-R1结合的小分子筛选系统[/font][/b][/size][b][font=&][/font][/b] [size=15px][/size][size=15px]研究首先将TNF-R1蛋白固定在CM5传感器芯片上,同时分别以TNF-a和Tetracycline(四环素)为阳参和阴参,注入SPR系统中发现,TNF-a能够与TNF-R1蛋白结合而Tetracycline不能(图1A)。同样的,将TNF-a固定在CM5芯片上,将TNF-R1和Tetracycline注入SPR系统中同样发现,TNF-R1能够与TNF-a结合而Tetracycline不能(图1B)。表明该系统可以特异性检测与TNF-R1结合的小分子。[/size][align=left] [/align] [size=15px][b][font=等线]2、[/font][/b][/size][size=15px][b][font=等线]筛选白芍中与[/font][/b][/size][size=15px][b][font=等线]TNF-R1结合的小分子[/font][/b][/size][b][font=&][/font][/b] [size=15px][/size][size=15px]将干燥的白芍(RPA)根部磨成粉后取1g采用10ml 80%的甲醇提取,收集上清液4 ℃备用。将一系列不同稀释比例(0、1:1000、1:500和1:250)的RPA提取物注入TNF-R1芯片60秒,然后解离120秒,回收和鉴定TNF-R1结合的化合物,回收溶液用氮气浓缩并在 UPLC-QTOF/MS系统上鉴定,芍药苷和丹皮酚被认为是潜在的活性成分(图2A-2D)。随后使用芍药苷和丹皮酚标准品确认了保留时间(图2E、2F),结果表明芍药苷和丹皮酚是RPA的TNF-R1结合成分。[/size][align=left] [/align] [size=15px][b][font=等线]3、验证白芍中与TNF-R1结合的小分子[/font][/b][/size][b][font=&][/font][/b] [size=15px][/size][size=15px]为了进一步证实芍药苷和丹皮酚直接与TNF-R1直接结合,研究通过SPR测定确定了它们的亲和力常数,发现芍药苷的亲和常数[i][/i]为4.9 μM(图3A、3B),丹皮酚的亲和常数为11.8 μM(图3C、3D),结果证实RPA中的芍药苷和丹皮酚可以直接与TNF-R1结合。[/size][align=left][size=15px][b][font=&]4[/font][font=等线]、白芍中与[/font][font=&]TNF-R1[/font][font=等线]结合的小分子的功能验证[/font][/b][/size][size=15px]作者最后采用细胞活力和凋亡分析通常用于评估两种小分子的的抗炎作用。结果显示TNF-α和Act-D对L929细胞产生近70%的细胞毒性,而芍药苷和丹皮酚以剂量依赖性方式抑制细胞毒性[/size][size=15px]此外,研究发现经TNF-a和Act-D处理后,细胞凋亡水平显著升高至60.02%,20 mM芍药苷的诱导率为22.31%,丹皮酚治疗组也有类似的抑制作用(图7)。细胞活力和凋亡结果表明,这两种生物活性候选物干扰了TNF-a的生物活性,可能在RPA的抗炎活性中发挥重要作用。[/size][/align]

  • 生物芯片技术在药物R&D中的应用

    生物芯片技术在药物R&D中的应用(上)( 邓沱,宁志强,周玉祥,程京 )摘自“生物引擎”   1946年世界上第一台电子数字计算机ENIAC在美国Pennsylvania大学问世。在随后的50年里,以美国的硅谷为摇篮,计算机技术不断飞速发展,给我们的生活带来了巨大的变革。无独有偶,1991年又是在美国硅谷,Affymax公司开始了生物芯片的研制,他们将芯片光刻技术与光化学合成技术相结合制作了寡核苷酸阵列芯片。近年来,以DNA芯片为代表的生物芯片技术,得到了迅猛发展,已有多种不同功用的生物芯片问世。目前生物芯片技术已应用于分子生物学、疾病的预防、诊断和治疗、新药开发、生物武器的研制、司法鉴定、环境污染监测和食品卫生监督等诸多领域,已成为各国学术界和工业界所瞩目并研究的一个热点。 生物芯片的概念源自于计算机芯片,狭义的生物芯片即微阵列芯片,主要包括cDNA微阵列、寡核苷酸微阵列、蛋白质微阵列和小分子化合物微阵列。分析的基本单位是在一定尺寸的基片(如硅片、玻璃、塑料等)表面以点阵方式固定的一系列可寻址的识别分子,点阵中每一个点都可以视为一个传感器的探头。芯片表面固定的分子在一定的条件下与被检测物进行反应,其结果利用化学荧光法、酶标法、同位素法或电化学法显示,再用扫描仪等仪器记录,最后通过专门的计算机软件进行分析。广义的生物芯片是指能对生物成分或生物分子进行快速并行处理和分析的厘米见方的固体薄型器件,其主要种类有微阵列芯片、过滤分离芯片、介电电泳分离芯片、生化反应芯片和毛细管电泳芯片等。 随着二十一世纪的到来,制药公司正面临着一次严峻的市场挑战。这些公司为了保持或增强在市场上的竞争力,不得不寻求发展新的药物开发技术以提高药物发现的速度,缩短新药上市的时间,减少药物开发的成本。近年来生物芯片技术的飞速发展,引起了制药业的极大兴趣,使得生物芯片技术在药物研究与开发领域得到越来越广泛的应用,已逐渐渗入到药物研发过程中的各个步骤。本文将主要讨论生物芯片技术在药物靶点发现与药物作用机制研究、超高通量药物筛选、毒理学研究、药物基因组学研究以及药物分析中的应用。一、 生物芯片在药物靶点发现与药物作用机制研究中的应用 药物靶点发现与药物作用机制研究是生物芯片技术在药物研发中应用最为广泛的一个领域。在药物靶点发现和药物作用机制研究中所使用的生物芯片主要是指DNA芯片。在DNA芯片的表面,以微阵列的方式固定有寡核苷酸或cDNA。使用DNA芯片可以对研究者感兴趣的基因或生物体整个基因组的基因表达进行测定。在当代药物开发过程中发现和选择合适的药物靶点是药物开发的第一步,也是药物筛选及药物定向合成的关键因素之一。人体是一个复杂的网络系统,疾病的发生和发展必然牵涉到网络中的诸多环节。当今严重威胁人类健康的心脑血管疾病、恶性肿瘤、老年性痴呆症和一些代谢紊乱疾病都是多因素作用的结果,往往不能归结于单一因素的变化。应用一些基因寻找策略如DD-PCR等虽然为发现新的功能基因提供了一些线索,但还是有相当的局限性。而DNA芯片可以从疾病及药物2个角度对生物体的多个参量同时进行研究以发掘药物靶点并同时获取大量其他相关信息。因此可以说,在这种情况下,任何一元化的分析方法均不及DNA芯片这种集成化的分析手段更具有优势。 DNA芯片在药物靶点发现与药物作用机制研究中的应用具体表现在以下几个方面。(一) 比较正常不同组织细胞中基因的表达模式 基因的表达模式给它的功能提供了间接的信息。例如只在肾脏中表达的基因就不大可能与精神分裂症有关。一些药物的靶点是在整个身体中分布广泛的蛋白质,这类药物的副作用往往比较大。而选择只在特异组织中才表达的蛋白作为药物筛选的靶点,可以减少药物对整体产生的副作用,因而更引起人们的关注。例如骨质疏松症(osteoporosis)与破骨细胞(osteoclasts)的功能有关,破骨细胞可以破坏并吸收骨质,当骨质的形成与破坏出现不平衡的时候,就会导致骨质疏松症。如果破骨细胞的功能得到抑制,那么就可以控制骨质疏松症的发生和发展。利用已有的人类EST序列和DNA芯片技术,可以容易地得到只在破骨细胞中进行表达的基因如cathepsink基因,它编码半胱氨酸蛋白酶。以cathepsink基因作为靶标,筛选对它有抑制作用的药物,就有可能得到治疗骨质疏松症的药物。但是这种方法也有其局限性,它只能得到mRNA水平的表达谱,另外组织一般由多种细胞组成,而要将这些细胞分离很困难。(二) 研究正常组织与病理组织基因表达差异 正常组织在病变的过程中,往往伴随着基因表达模式的变化。基因表达水平的升高或降低,可能是病变的原因,也可能是病变的结果。若基因表达的变化是病变的原因,则以此基因为靶点的药物就可能逆转病变;若基因表达的变化是病变的结果,则以此基因为靶点的药物就可能减轻病变的症状。DNA芯片技术可以在病理组织与正常组织之间一次比较成千上万个基因的表达变化,找出病理组织中表达异常的基因。Heller等人提取正常及诱发病变的巨噬细胞、软骨细胞系、原代软骨细胞和滑膜细胞的mRNA,用包含细胞因子、趋化因子、DNA结合蛋白及基质降解金属蛋白酶等几大类基因的cDNA芯片进行筛选,发现了数种变化明显的基因。其中除了有已知与类风湿关节炎有关的TNF、IL-1、IL-6、IL-8、G-CSF、RANTES、VCAM的基因外,还有编码基质金属弹性蛋白酶HME、IL-3、ICE、趋化因子Groα等的基因。而以前认为金属弹性蛋白酶只存在于肺泡巨噬细胞和胎盘细胞中。弹性蛋白酶可以破坏胶原纤维及组织基底膜层,它在类风湿关节炎病理组织中的出现,为治疗该病提供了新的药物靶点。 利用DNA芯片来寻找疾病相关基因的策略尤其适用于病因复杂的情况。例如,恶性肿瘤的发生常常是多基因共同作用的结果,DNA芯片技术在肿瘤细胞基因表达模式及肿瘤相关基因发掘中具有重要的作用。Wang等人将一些看家基因、细胞因子及受体基因、细胞分裂相关基因及其他一些癌基因共5766个基因的cDNA探针固定在芯片上,对正常卵巢组织及卵巢癌组织的mRNA进行分析,发现两者之间30%基因表达相差两倍以上,9%相差3倍以上,其中上调较为明显的有CD9、上皮糖蛋白(epithelial glycoprotein)、p27及HE蛋白激酶抑制物等。这些结果不仅进一步证实了以前用其他方法获得的结果,还提供了一些新的信息。再如,Kapp等人用包含950个DNA探针的DNA芯片分析比较霍奇金病细胞系L428及KMH2与EB病毒永生化的B淋巴细胞系LGL-GK的基因表达谱,发现霍奇金病源的细胞系中白细胞介素-13(IL-13)及白细胞介素-5(IL-5)表达异常增高;用IL-13抗体处理霍奇金病源的细胞系可显著抑制其增殖。此发现提示,IL-13可能以自分泌形式促进霍奇金病相关细胞增殖。IL-13及其信号转导途径可能成为霍奇金病治疗及药物筛选的新靶点。(三) 建立模式生物细胞中的基因表达模型 采用模式生物细胞进行试验,条件容易控制,对模式生物基因表达的研究将启发人们发现和确认新的药物作用靶点。目前,已有多种模式生物(如酵母)的基因组计划已经完成。 酿酒酵母(saccharomyces cerevisiae)就是一种可用来进行药物筛选的较为理想的模式生物。它是真核生物而且基因组已全部测序,细胞繁殖快,易于培养,与哺乳动物细胞有许多共同的生化机制。现在已经发现,在酵母细

  • 【7月-张家界】2012全国天然药物和中药毒理、药理学交流研讨

    http://ng1.17img.cn/bbsfiles/images/2012/06/201206191413_373327_2546103_3.gif关于举办“ 2012全国天然药物和中药毒理、药理学交流研讨会”的通知各有关单位:天然药物和中药药理学是新兴学科,既遵循中医药理论,又结合现代医药知识,是中西医药结合的产物;是中药学和药理学的分支学科;是沟通中西医、联系中西药、跨越医学和药学、衔接基础与临床的桥梁。为了交流毒理、药理学研究领域的新思路、新技术、新成果,全国医药技术市场协会定于2012年7月22日-24日在张家界市举办“2012全国天然药物和中药毒理、药理学交流研讨会”,届时将邀请有关部门领导和行业专家到会演讲,现将有关事项通知如下:一、会议交流的主要内容1、天然药物、中药药效学、药代动力学和毒理学研究2、天然药物、中药活性成分的体内过程及动态变化规律3、天然药物与中药人体生物利用度和生物等效性研究的设计、实施及研究结果的评价4、天然药物与中药临床前药效学研究技术要求及非临床药效学试验设计 5、天然药物与中药临床药理研究关键技术研究6、天然药物与中药安全性评价研究的实验设计、实施与综合评估7、天然药物与中药有效部位、有效单体药理研究8、化学计量学和代谢学在研究天然药物、中药中的应用9、基于神经内分泌调节网络的中药复方药理研究 10、天然药物与中药神经药理、心血管药理、内分泌药理、免疫药理研究11、天然药物中神经保护活性成分的筛选和神经药理毒理学研究12、天然药物中药毒性成分研究及其配伍13、中药、天然药物长期毒性研究技术指导原则14、中药、天然药物早期毒性评价优化筛选系统的建立与应用二、时间、地点时间:2012年7月22日-24日 (22日全天报到)地点:张家界市(具体开会地点另行通知)三、会议费用 1880元/人(含会议费、餐费、资料费等),住宿统一安排,费用自理。四、论文征集1、本次会议会前将印刷会刊(论文集)作为会议资料,统一为word文档(A4纸),并于2012年7月10日前将电子版论文全文发至信箱。2、论文字数要求不超过6000字,文件格式为word文档。具体内容包括:论文题目、作者姓名、工作单位、通讯地址、邮政编码、电话、论文摘要、关键词、正文、主要参考文献、英文摘等。3、请作者确保论文内容的真实性和客观性,文责自负。附件:参会回执表 二O一二年六月六日注意:不要发联系方式,否则作为广告处理。有需求的版友可以站短联系。

  • 网络讲堂:药物研发和实时荧光检测技术的应用(Molecular Devices)

    网络讲堂:药物研发和实时荧光检测技术的应用(Molecular Devices)

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647598_2507958_3.gif药物研发和实时荧光检测技术的应用时间:2014年9月25日 14:30讲师:董文忠先生,Molecular Devices产品经理 毕业于军事医学科学院毒物药物研究所,曾先后就职于安泰医药生物、新医药北京市技术转移中心、药明康德等药物研发机构。长期从事不同靶点、不同技术平台的药物研发和高通量筛选,拥有丰富的药物开发和筛选经验。现担任Molecular Devices产品经理,负责实时高通量荧光检测分析系统和全自动膜片钳系统的应用技术工作。讲座内容: 药物研发是一个漫长且投资巨大的复杂过程,G蛋白偶联受体和离子通道等一直以来作为最主要的药物作用靶点而倍受青睐,所占市场份额超过一半以上。另外,药物的安全性评测的重要性日渐提升并且开始的阶段也越来越早。如何更好、更快、更有效地完成相应的工作?实时高通量荧光检测技术将是您最佳的选择。钙流、膜电位、pH、hERG通道、氯离子、早期心肌毒性检测、cAMP检测等多种应用定能满足您的需求。尊敬的客户,耽误您宝贵的3分钟时间来填写以下webinar注册信息,对于完成注册并当天全程听会的客户,我们会抽取8位听众送出精美小礼品。感谢大家的关注!-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年9月25日 14:004、报名参会:http://ng1.17img.cn/bbsfiles/images/2014/08/201408011630_508801_2507958_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647598_2507958_3.gif

  • 【分享】药物动力学的计算机模拟 (Pharmacokinetic Modeling & Simulation)

    [size=3][font=Times New Roman]药物动力学(pharmacokinetics)是定量研究药物在生物体内吸收、分布、排泄和代谢随时间变化的过程的一门学科,有时候也称作“药物代谢动力学”,“药代动力学”,“药动学”等名称。药物动力学已经渗放到药物治疗学,临床药理学,分子药理学,生物化学,生物药剂学,分析化学,药剂学,药理学及毒理学等多种科学领域中,它的发展将对药物评价,新药设计,药物剂型改进,临床指导合理用药,以及优化给药方案等具有重大的实用价值。药物动力学与临床药学相结合,产生了临床药物动力学(clinical pharmacokinetics),主要是研究实现临床给药方案个体化,包括给药途径、给药剂量、给药间隔时间等方面的内容。新药研发过程费用昂贵、时间冗长、淘汰率高。平均一个新药的研发需要花费10多亿美元,耗时约10年时间。大约有90%的候选药物在临床期间被淘汰,这是研发过程费用昂贵的主要因素。候选药物淘汰的原因中很大一部分是药物动力学方面引起的,例如口服吸收性差,生物利用度低,半衰期过短等等。传统的新药研发流程中,药物动力学的研究处于研发的中后期。近年来,人们开始在药物研发的早期对药物动力学(吸收、分布、代谢、排泄、药物相互作用)进行研究,以尽早淘汰药动参数不理想的候选药物。所谓的药物虚拟筛选(virtual screening),是指对化合物在其合成之前通过计算机模拟预测其药动学相关的特性而进行筛选。计算机模拟药物动力学为全球各大制药公司应用,并会在药物的研发过程中起到越来越重要的作用。其主要原理是应用化合物的物化性质、相关的体外实验数据以及人体生理学方面的知识,结合数学模型模拟化合物在人体内的吸收、分布、代谢和排泄。该项技术的应用有助于在新药开发过程中对化合物进行高通量筛选(high throughput screening),并能对临床试验的设计进行指导作用,以达到提高药物研发的效率和安全性、降低药物研发成本的目的。[/font][/size]

  • 一个化学小分子药物从发现到上市的成长里程

    一个小分子化学药物从发现到上市需要经历哪些阶段,在每个阶段需要哪些仪器设备分析哪些项目来助其继续向前走,直到上市哪?请业界大牛讲述下一个化学小分子药物的成长里程!小编别的奖励没有,可怜只有50个小分,依然坚定等待答案!请大牛们按照以下格式回复:阶段一:*******分析项目:************相关分析仪器:**************等待中。。。。http://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 【分享】热烈欢送小卢(luxw)暂别药物分析版区

    如题,小卢板油作为一名知名板油,如果我没有记错的话应该是俺大力推荐引进化学药分析版块做版主的吧,真是立竿见影的效果啊,和大家一起迅速提升了化药版的帖子数量和质量——被土豆戏称为劳模版主。 因为勤奋的小卢在担任多版块的版主和专家的同时,不但能圆满完成各个版块任务,还积极开拓新点子推出许多活动,并且积极参加论坛原创大赛。这样的人才,果然、必然被官人挖掘、提升到了采购版区担任主管职务。也必然、果然地辞去了化药版块版主一职,甚至拒绝了土豆邀请其担任化药版块专家http://simg.instrument.com.cn/bbs/images/brow/em09509.gif 在此土豆怀着依依不舍的心情代表化药版块欢送小卢高升,同时希望他能一如既往的关心和支持药物分析版区,特此散分。 为表达俺的悲痛心情,下面3位抢到沙发板凳地砖的板油将不予散分(其实是因为系统故障同一个悬赏一下发了3个所以重复的板油就不再重复颁奖了),散分将从4楼开始依次统计。

  • 药物基因组学的应用前景

    药物基因组学是上世纪九十年代末发展起来,基于药理学和基因组学,将传统的药物科学与基因、蛋白、单核苷酸多态性等知识结合起来的一门科学。正因为药物基因组学是研究基因序列变异及其对药物不同反应的科学,所以它是研究高效、特效药物的重要途径,通过它为患者或者特定人群寻找合适的药物,药物基因组学强调个体化;因人制宜,有重要的理论意义和广阔的应用前景。一、促进新药研发 由于药物基因组学规模大、手段强、系统性强,开辟了医药工业研究的新领域,可以直接加速新药的发现。首先药品制造商不仅把注意力放在可能引起疾病的基因上,而且对药物效应基因产生了兴趣,这些药物效应基因为新药研究提供依据。由于新一代遗传标记物的大规模发现,以及将其迅速应用于群体,流行病遗传学也可以大大推进多基因遗传病和常见病机理的基础研究。还可以帮助制药厂商在一些与基因和疾病相关的蛋白质、酶和RNA分子等基础上开发新药,这样不仅促进了药物的发现,还有利于开发出针对某一特定疾病的药物,从而增强疗效,并减少对健康细胞的损伤。对于每一个药物来说大约都有10-40%的人没有疗效,又百分之几的或更多的人有副作用。如果制药公司利用药物基因组学理论可以实现预见结果或筛选人群的话,可以大大增加新药的通过率,也可以对未通过药检的新药重新估价,这些药物中一个经常引用的例子是第一个非典型性抗精神活性药氯氮平(clozapine),在氯氮平的使用过程中,由于1%的病人服药后出现严重的粒细胞缺乏症,因而只有当其它药物使用后无效才使用。但是在粒细胞缺乏症的药物效应基因被确定后,极大地改善了氯氮平的使用,除极少数敏感的病人不能服用此药外,对于99%的病人来说,这一药物是一线治疗药物。在新药的临床试验研究中,如果事先知道人群可能对药物反应的话,如代谢酶的基因型,可以减少参试人群,试验的时间表也可以大大缩短。对药物有效或毒性变异的预测试验中,可用于筛选病人。经过药物效应基因突变筛选的受试者,可以加强临床试验的统计学意义,可以用更少的病例数达到所需的统计学意义,这样可以大大节约时间和费用。 二、用药个体化合理用药的核心是个体化用药。药物基因组学通过对患者的基因检测,如对一些疾病相关基因的单核苷酸多态性(SNP)检测,进而对特定药物具敏感性或抵抗性的患病人群的SNP差异检测,指导临床开出适合每个个体的“基因处方”,使患者既能获得最佳治疗效果,又能避免药物不良反应,真正达到“用药个体化”的目的。 医生在疾病的首次治疗过程中,往往需要临床实验来确定适合病人的药物,而药物基因组学则可以通过分析病人的遗传组成来确定最合理的治疗药物。这样就免去了先期用于药物选择的临床过程及由此带来的可能的副作用,并缩短了病热的康复期。更准确的用药剂量 通过基因组分析可以判断药物在体内的作用效果及代谢时间,并以此来确定不同个体的用药剂量,对比依据体重和年龄的方法,其具有更好的治疗效果,降低了过量服药的可能性。一些临床上经常出现的现象,例如两患者诊断相同、一般症状相同、血药浓度相同,但疗效却大相径庭,这些用传统的药代动力学原理是无法解释的。这时应考虑到与药物作用相关的位点(如受体等)是否发生了变异?是什么水平的变异?药物作用的位点的变异可能发生在基因水平,也可能发生在转录、翻译等水平,基因水平的变异相对比较容易鉴定,研究也表明基因的变异与药物效应的差异是更具相关性。研究基因突变与药效关系的药物基因组学正是适应了这一要求,因此药物基因组学在临床合理用药中的应用前景是非常之好的。将基因功能学用于合理用药,利用药物基因组学的技术和方法增加药物的有效性和安全性,减少不良反应,实现个体化、可预测及可预防的医疗,这就称之为临床药物基因组学。药物基因组学应用到合理用药中,弥补了只根据血药浓度进行个体化给药的不足,惟以前无法解释的药效学现象找到了答案,为临床个体化给药开辟了一个新的途径。这样药物基因组学原理为特定人群设计最为有效的药物,不仅提高了药效,缩短了病程,而且减少了毒副反应和成本,真正达到了“物美价廉”的要求。目前,已经有人将药物基因组学知识应用于高血压、哮喘、高血脂、内分泌、肿瘤等的药物治疗中。如原发性高血压是多因素诱发的疾病,对于许多患者,高血压药物的不同药效和耐受性与遗传变异有关。Ferrari发现,一种细胞骨骼蛋白(cytoskeletalprotein)、内收蛋白(adducin)的基因多态性与高血压的发病、对钠敏感性以及对利尿剂的效果相关。因此在抗高血压治疗需要用利尿剂时,可以对患者预先进行基因检测,以确定是否选择使用此药。通过对β2肾上腺素受体的基因多态性及其对β2肾上腺素受体激动剂的敏感性关系的研究,发现β2肾上腺素受体的基因多态性影响β2肾上腺素受体激动剂福莫特罗(formoterol)的脱敏效果,β2肾上腺素受体激动剂改善肺通气的作用对Gly纯合子个体明显比Arg纯合子个体要强,杂合子个体介于两者之间。 载脂蛋白E(APOE)的基因多态性,影响绝经后妇女用雌激素替代疗法(ERT)时的血脂和脂蛋白的浓度。人群中的APOE有3个等位基因:E2、E3、E4,ERT能使具有E2型基因的妇女血中总胆固醇含量大大高于E3、E4型。提示医生在绝经期妇女中使用ERT时,可事先检测患者的APOE基因,对具有E2型基因的妇女在治疗过程中密切监测甘油三酯浓度。如此,通过对不同个体的药物代谢相关酶、转运因子、药物作用靶点的基因多态性的研究,对突变的等位基因进行分离和克隆,在分子诊断水平上建立以聚合酶链反应(PCR)为基础的基因型分析方法,在治疗患者各种疾病前检测其基因型,更精确地选择适当的治疗药物和合适的剂量以减少不良反应的发生,对患者的治疗具有很大的意义。 随着基因分析技术的飞速发展,越来越多的药物效应的个体差异与基因多态性的关系被阐明,药物基因组学将更广泛地指导和优化临床用药。

  • 我们真的需要这么多药物吗?

    电影的诞生始于科技的发明,从默片到有声、从黑白到彩色、从2D到3D、微电影等,都离不开科技的推动。药物的发展轨迹与电影也有些相似,因为技术的进步,药物的发现经历了从研究天然物质发现新药,转向天然物质修饰,到合成化学合成全新化合物,从筛选化合物中得到新药等历程。在药物筛选方面,许多新方法新手段已经改变了传统的药物研究,诸如计算机化学、组合化学、用生物技术高速化合物筛选方法等等,让新药的发现更加便利,新化合物的数量也以爆炸式的方式出现,并且很多大型制药企业都有了自己的化合物数据库。数据显示全球每年制药研发人员需要对数万种化合物进行研究,问题来了,我们真的需要这么多药物吗?

  • 质谱技术在抗体药物分析中的应用

    质谱技术是抗体药物分析最重要的技术手段之一。本文简述了抗体药物的发展和质谱技术的原理。对于质谱技术在抗体药物的分析中应用进行了归类整理,主要分为在一级结构和高级结构分析中的应用。抗体类药物是指含有抗体片段的蛋白类药物,所以在恶性肿瘤、自身免疫性疾病、心血管疾病、感染和器官移植排斥等重大疾病上得到了快速的发展,是当前生物药物领域增长最快的一类药物.1.抗体药物发展新趋势在生物药物领域,抗体药物占据着越来越重要的地位,全球销售排名前10位的药物中有6个为抗体药物,抗体药物按来源分类可以分为:鼠源单克隆抗体、人鼠嵌合抗体、人源化抗体和全人源抗体。目前,批准的单克隆抗体药物中,人源化单抗和全人源单抗数量已占据大多数。1.1 抗体药物偶联物(ADC)抗体药物偶联物(ADC)由单克隆抗体和小分子化合物两部分组成。通过抗体的靶向作用,ADC 的抗体部分和肿瘤细胞表面抗原特异性识别并结合,通过细胞内吞作用,将抗体和小分子化合物一起带进肿瘤细胞内部,释放出小分子化合物。这样既可以降低小分子药物的毒性,同时具有靶向结合的作用。已经上市的两个ADC 是Kadyla 和Adcetris。1.2 双特异性抗体(BsAb)双特异性抗体(BsAb)是含有两种特异性抗原结合位点的人工抗体,能在靶细胞和功能分子(细胞)之间架起桥梁,由于基因工程的发展,目前双特异性抗体已经研发出多种类型,主要类型有三功能双特异性抗体、IgG-scFv、三价双特异性分子、串联单链抗体(串联scFv)、DVD-Ig 等多种形式。2.质谱技术近年来质谱仪性能的显著改进主要基于开发出的两种离子化技术:一种是介质辅助的激光解吸/离子化技术。另一种是电喷雾离子化技术。由于这两种电离技术的出现,使原本只能检测小分子的质谱技术,可以运用于检测生物大分子。在过去质谱技术主要运用于对一级结构和序列的表征,而现在质谱技术越来越多地运用于高级结构的分析,而高级结构对于抗体药物的生物活性至关重要。3.质谱技术在抗体药物一级结构分析中的应用3.1 完整抗体药物精确分子量测定当得到抗体药物时,可以直接通过高分辨率的MALDI-TOF或者ESI-MS进行分子量的检测。通过对于脱糖后分子量的检测,可以对于抗体药物进行初步定性分析,并将可以作为药物常规放行的分析方法。对于脱糖前的抗体药物进行分析,可以得到抗体药物的糖基化类型的信息及糖基化水平的分布,对于快速了解生产工艺与药物质量的关系具有十分重要的意义。3.2 药物抗体偶联比(DAR)对于赖氨酸链接的抗体偶联药物,采用C4色谱柱及联用的质谱对去糖基化样品进行分析,根据偶联不同数目药物分子的质量数增加判断偶联数目。对于质谱测定的结果,不仅可以给出确切的药物抗体偶联比值,更能够给出链接不同个小分子药物的分布情况,及反应过程副产物空链接头的分布情况。3.3 肽图谱分析蛋白被特异酶切后的蛋白酶水解后得到的肽片段质量图谱。由于不同的抗体药物具有不同的氨基酸序列,蛋白质被酶水解后,产生的肽片段也各不相同,肽混合物的质量数具有唯一特征。可以通过LC-ESI-MS进行肽片段的一级质量数的鉴定,也可以通过LC-ESI-MS/MS对于每个肽片段进行进一步确证,提高肽图谱的准确性。3.4 翻译后修饰研究蛋白质的翻译后修饰(PTM)对于抗体药物的生物学功能十分重要。常见的翻译后修饰有:磷酸化、脱酰胺、甲硫氨酸氧化、糖基化修饰、N端焦谷氨酸环化,C端赖氨酸切除等。质谱分析仪检测蛋白和肽片段的分子量偏差,可以实现高灵敏、高通量和高精确地鉴别蛋白质的翻译后修饰的种类。3.5 N端氨基酸序列检测常规N端氨基酸检测用Edman降解法进行检测,但是抗体药物有时候会出现N 端环化的现象,在这种情况下用Edman降解法需要先对抗体进行去封闭处理,而直接使用质谱可以直接测出N端的氨基酸序列,同时可以检测出N端环化的相对比例。4.质谱技术在抗体药物高级结构分析中的应用4.1 氢/氘交换质谱(HDX-MS)常规的质谱只能获得蛋白的一级结构信息。氢/氘交换质谱(HDX-MS)可以进行蛋白质构象,溶液动力学和表位映射进行分析。在能够调查的蛋白质的高阶结构和动态结构技术中,HDX-MS已经证明适合单克隆抗体和单克隆抗体-抗原复合物的构象分析。4.2 离子淌度质谱法(IM-MS)离子淌度是根据蛋白的电荷和形状选择性分离的方法,可以区分相同分子量的蛋白和肽段,可用于检测蛋白的简单高级结构。4.3 高分辨率傅立叶变换离子回旋共振质谱(FTICR-MS)高分辨率傅立叶变换离子回旋共振质谱(FTICR-MS)能够检测最高质量数的质谱仪器,并且有着很高的分辨率。FTICR-MS 是目前被公认为是蛋白质组学研究的有力工具,特别是和完整的蛋白质鉴定和上/下调翻译后修饰(PTM)蛋白质的鉴定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制