当前位置: 仪器信息网 > 行业主题 > >

香精制备工艺

仪器信息网香精制备工艺专题为您整合香精制备工艺相关的最新文章,在香精制备工艺专题,您不仅可以免费浏览香精制备工艺的资讯, 同时您还可以浏览香精制备工艺的相关资料、解决方案,参与社区香精制备工艺话题讨论。

香精制备工艺相关的论坛

  • 生物技术制备天然牛奶香精的研究

    奶香是人们最为熟悉和喜爱的香气之一,但由于奶制品加工过程中香味成分难免遭受破坏,乳制品的奶香需要补充,因此奶制品加香技术一直为人们所关注。现有先进生物制备技术,以无水奶油为基料,通过微生物发酵制得发酵底料,再添加 1%脂肪酶在温度 50℃条件下酶解 3h,制得牛奶香精基料,最后经科学配比加入 2%天然香兰素、1.5%天然丁位癸内酯及 1%天然丁位十二内酯,上述条件下制得的天然牛奶香精香气纯正自然,圆润饱满,可应用于各种各类食品加工或作为生产食品香精和食品配料的原料。通过不同菌种和酶的使用以及反应条件的变化,还可开发各种风味的天然奶味香精。

  • 原料药制备工艺变更研究需要考虑的问题

    原料药制备工艺变更研究需要考虑的问题一、原料药制备工艺在药品生产和研发的地位以及与药品其他方面研究的关系 (1)地位 原料药是药品的主要组成部分,原料药的制备是药品生产的重要环节,是药品研究和生产的基础。 原料药的制备工艺可以给药物的质量研究提供信息。制备工艺可以给质量研究提供杂质信息,质量研究必须基于制备工艺进行,根据制备工艺引入的杂质情况,进行方法专属性的研究,这样的方法才能有效地检出杂质,质量标准也必须根据工艺中可能引入的杂质情况,制订相应的控制项目和限度,质量标准才能有效的控制产品的质量。 原料药的制备工艺反映了药物研发水平。有实力、科研水平高的企业,会采用先进技术或试剂,不断的提高工艺水平,降低产品成本、提高收率,提高产品的质量,增加产品的竞争力,反之,采用落后工艺的生产企业会逐步的被市场淘汰,因此,原料药制备工艺水平反映了生产企业的技术水平。 (2)关联关系 由于原料药的制备工艺与药品研究的基础,原料药的工艺变更不仅仅是简单的变化,和药物研究的其他方面有必然的联系,因此当原料药的制备工艺发生变更必须考虑其他方面的情况。 结构研究 制备工艺的不同或变更可能引起化合物的结构发生变化,同时会引起异构体的异构化或比例的变化,也会引起原料药的结晶溶剂(种类、数量)发生变化。 质量研究和质量标准 不同的工艺可以使产品的杂质水平发生变化,或产生新的杂质、或使产品的杂质增加,这些方面的变化会影响产品的质量,也可以使杂质检查的方法发生变化。质量标准也需要调整考察的项目和限度,质量标准也会发生变化。 稳定性研究 由于不同的工艺会产生不同的杂质,或使产品的晶型、结晶水或结晶溶剂等发生变化,这些变化会引起药物稳定性的变化。 药物的安全性和有效性 由于制备工艺的变化使得产品的杂质含量增加,或产生了新的杂质,可能会使产品产生新的毒副作用,或使药效降低,因此当质量降低时应考虑产品的安全性和有效性的问题。 所以说,原料药的制备在药品的生产和研究中处于非常重要的地位,是基础,如果原料药的制备工艺发生变化,也就是基础发生变化,那么药品的其他方面也需要进行相应的研究和变化,以适应这种变更。 二、原料药制备工艺变更的目的 一个药物特别是原料药批准生产后并非一成不变的,出于各种目的其制备工艺、质量标准、产品的有效期和包装材料等均有可能发生变化,就原料药的制备工艺来说基于以下的目的和原因需要不断的进行优化。 (1)保证产品质量的需要 产品工业化生产后,为保证产品质量的稳定或提高产品的质量,需要对生产工艺进行不断的优化调整,以达到保证产品质量的目的。 (2)工业化的需要 原料药批准生产后,由于扩大生产的需要,所用有机溶剂、试剂的规格会发生变化,所用的设备需要根据生产的需要进行调整,对于苛刻的工艺条件需要调整,工艺会发生变更。 (3)利润的需要 一个产品批准生产后,随着竞争产品的增加,需要降低成本,提高收率,增加利润,增强产品竞争力,因此需要变更生产工艺,采用价廉的试剂或溶剂,或缩短工艺路线等手段,但是这些变化是在不降低产品的质量基础上进行的。 (4)环保和劳保的需要 随着国家对环境保护和劳动者健康要求的体高,需要避免使用有毒、污染环境的溶剂或试剂,避免使用危险的操作,减少污染环境的排放物,也需要变更生产工艺。 (5)专利保护的需要 一方面要避免专利侵权,另一方面随着科学的发展新技术、新试剂的应用,也需要变更工艺,提高收率、降低成本,同时也需要申报专利保护自己的创新路线,增加产品的竞争力。 所以说,对于原料药出于各种目的其制备工艺会发生变更,由于原料药制备工艺的地位以及与其他方面的重要关系决定了如果工艺发生了变更,可能会引起产品的质量问题,从而会因起产品的安全性或有效性方面的担忧,因此需要对药物研究其他方面进行考虑以确定是否需要进行相应的变更研究。

  • 原料药制备工艺变更研究需要考虑的问题

    一、原料药制备工艺在药品生产和研发的地位以及与药品其他方面研究的关系二、原料药制备工艺变更的目的 三、原料药工艺的变更研究需要考虑的方面1.基本思路 2.原料药制备工艺变更的几种情况3.对工艺变更研究和评价的主要方面四、变更研究中需注意以下问题总结普通会员消耗1分,认证会员消耗0分下载http://www.instrument.com.cn/download/shtml/034760.shtml

  • 【原创】求助中压制备液相在罗汉果甜苷提取工艺的应用

    求助中压制备液相在罗汉果甜苷提取工艺的应用 我想通过中低压制备提取罗汉果中的罗汉果甜苷,现在在找适合的方法,用填C18 还是氨基填料?据说是用氨基填料更好。两种填料在分离提取罗汉果甜苷各有什么特性?如果成行,用什么规格的填料更好?要求纯度能达到百分之98以上的纯度。

  • 【分享】高纯度醋酸甲酯精制新工艺

    高纯度醋酸甲酯精制新工艺醋酸甲酯是一种无色的易燃液体,具有芳香气味,能与大多数有机溶剂混溶,广泛用作工业溶剂。它可用于油漆涂料中,还用于人造革及香料的制造以及用作油脂的萃取剂。高纯度醋酸甲酯是用途广泛的重要有机原料,可用于合成醋酸、醋酐、丙烯酸甲酯、醋酸乙烯和乙酰胺等。醋酸甲酯羰基化制醋酐是目前制醋酐工艺中最经济的,这种工艺与传统的烯酮法、乙酰氧化法相比,在降低能耗和减少环境污染等方面有显著的优越性,它摆脱了对石油原料的依赖,是C1化学大型工业化技术开发的重大突破。中国有多家生产醋酸甲酯的厂家,在聚酯生产过程中也副产大量醋酸甲酯,但用各种工艺制造的醋酸甲酯产物中,都存在着未反应的原料及副产物,主要为甲醇和水。醋酸甲酯与甲醇或水会形成具有低恒沸点的混合物,用普通精馏法无法分离,获得高纯度的醋酸甲酯较困难。本文提出了高纯度醋酸甲酯精制的新方案,用盐效分离和精馏相结合的工艺来提纯醋酸甲酯,以聚乙烯醇(PVA)生产中经二塔处理后的醇解废液为原料,其中醋酸甲酯的含量约为93%(质量分数,下同),水含量约为6%,还有微量甲醇。采用无水氯化钙作为盐析剂,先将部分水和甲醇从醋酸甲酯中分离出来,将得到的母液再进行精馏提纯,从而得到高纯度的醋酸甲酯。1 实验部分1.1 试剂与仪器醋酸甲酯原料,石家庄化纤厂提供。CS501型超级恒温水浴,上海锦屏仪器仪表有限公司提供;D-7401型电动搅拌器,天津市华兴科学仪器厂提供。实验精馏塔为高1000mm、内径为22mm的玻璃精馏柱,内装直径为3mm的不锈钢θ环高效填料,塔体外面有电加热保温层,保温层外套加热带。1.2 分析方法采用北京东西电子技术研究所生产的GC4000A型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],进行样品定性和定量分析。用相对保留时间进行定性测定,以醋酸乙酯作为内标物,采用内标法进行定量分析。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析条件:载气为氢气,柱压为0.24MPa;GDX103填充柱,柱长为6m;汽化室温度为180℃,柱箱温度为180℃,热导池温度为160℃。1.3 实验方法称取一定质量的醋酸甲酯原料,放入反应器中,按配比加入一定量的盐,在45℃恒温水浴下通过搅拌使盐溶解,并充分混合10min,静止20min以上,使物系达到平衡。分相,对有机相取样,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析其组成。将盐效分离后的有机相称重,倒入蒸馏烧瓶中,加入少量沸石,通冷却水,打开塔釜加热电源,接通塔体加热带电源,待塔釜物料沸腾后,全回流操作10~2min。调节回流比,观察塔顶温度变化,并取样分析。当塔顶温度达到57.8℃时,停止加热,从塔釜分离出产品。2 实验结果2.1 盐的选择在考察无机盐的盐效应时,所选用的盐析剂应该具备以下特点:1)在水中的溶解度应尽可能大;2)价格便宜,无毒、无害且易于回收。为此选择了氯化钠、氯化钙、碳酸钾几种常见的在水中溶解度较大的无机盐进行了比较。初始水相中,在盐的质量分数接近各自溶解度的条件下,获得了在几种不同的盐作用下醋酸甲酯-甲醇-水体系的分离效果。结果表明:氯化钙的分离效果最好。2.2 氯化钙加入量的影响3 结论盐效分离和精馏相结合精制出高纯度醋酸甲酯的工艺是可行的,控制一定的回流比,分离后的醋酸甲酯纯度可达到99.8%以上,能够满足工业需求实验表明,加入氯化钙后,物系产生明显的盐效应,氯化钙的加入量影响分离效果。2.3 回流比的影响回流比影响塔顶馏出物的最终组成,并且影响醋酸甲酯的收率。中国心

  • 挤压法制备微胶囊的原理及优缺点

    [font=微软雅黑][size=10.5000pt]挤压法是一种比较新的微胶囊技术,其处理过程可以采用高温或低温方式,低温方式适用于各种风味物质、香料、维生素和色素等热敏性物质的包埋,其微胶囊化产品的稳定性明显好于采用其他微胶囊技术制得的产品,延长了诸如桔油这种易氧化的风味料的货架期。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]由于挤压法采用亲水性玻璃态基质为壁材,空气扩散进入的速度非常慢,因而能阻隔氧化对芯材的作用[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5000pt]喷雾干燥法制备的香精油微胶囊货架期一般为一年,而挤压法制备的香精油微胶囊货架期较长,甚至可达五年。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]挤压法经过不断的发展,载量由[/font]8%增加40%左右。具有良好的两亲性质的疏水性改性淀粉作为壁材取代普通淀粉,不仅可将载量提高到40%,而且具有较长的货架期。[/size][/font][font=微软雅黑][size=10.5000pt]尽管挤压工艺比喷雾干燥工艺要昂贵一些,但其良好的阻氧性弥补了不足,使其应用成本降低。[/size][/font]

  • 羧甲基壳聚糖的制备工艺研究

    【序号】:6【作者】: 丁振中1张超1曾哲灵【题名】:羧甲基壳聚糖的制备工艺研究【期刊】:当代化工研究. 【年、卷、期、起止页码】:2017(04)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iAEhECQAQ9aTiC5BjCgn0RkFnCMgT--3xSKLJ7TgeL85qJ-W7AXK2rIpUr_nb_c3g&uniplatform=NZKPT

  • 关于咸味香精的检测

    最近接触了咸味香精,对其检测有许多疑问,希望跟大家讨论学习,谢谢!1.咸味香精许多以色拉油等油类做溶剂,我通常采用SPME进样,有没有其他前处理方式可以借鉴?2.反应型咸味香精有许多同分异构体和反应中间体,怎么判断哪些是呈香成分,哪些是杂质?3.经常碰到含量不低且纯度高的峰型,在谱库里检索匹配度不高,请教下有没咸味香精较齐全的谱库推荐?4.有没有检测咸味香精相关文献可以参考?以下是我搜索到的几篇资料,跟大家一起分享有一个PPT是 《高新技术在咸味香精制备中的应用探讨》这里上传不了, 在百度文库可以下载

  • 【原创大赛】动态轴向压缩制备柱填装工艺研究

    【原创大赛】动态轴向压缩制备柱填装工艺研究

    动态轴向压缩柱:简称DAC(Dynamic Axial Compression),可自行装柱、维持柱压、自行卸柱,兼有色谱柱和装柱机的功能,其原理是通过活塞的上下运动来装柱、维持柱压和卸柱,活塞周边配备了特殊设计的密封圈能容许活塞上下自由滑动,同时又能保持较高的密封压。活塞运动和压力维持靠的是稳定均匀的液压。图示如下:http://ng1.17img.cn/bbsfiles/images/2015/09/201509171309_566404_2307604_3.jpg下面介绍一下DAC-50mm和DAC-150mm的填装工艺(经过N次测试得出)DAC-50填装工艺:1、用乙醇超声清洗上部活塞筛板和下端筛板,用乙醇等溶剂冲洗DAC柱管,也可用活塞辅助擦除。2、清洗并安装柱底,务必卡好并锁紧链条。http://ng1.17img.cn/bbsfiles/images/2015/09/201509171312_566405_2307604_3.jpg3、安装好活塞http://ng1.17img.cn/bbsfiles/images/2015/09/201509171314_566407_2307604_3.jpg4、检测柱内是否漏气(液体):从柱子上方加入300mL乙醇,向下压柱活塞,打开上端管路,排除柱管上方所有空气后(恰能排出液体),关闭气源开关,堵住上端管路,再次打开气源开关,向下给以压力,调节调压阀,使油压表最终压力达到150bar(填料为10μm,为高机械耐压填料,可达到150bar),并锁住调压阀,10min后观察,若能保持压力降低在3bar以内,则认为该柱体的密封性较好,可排出乙醇。http://ng1.17img.cn/bbsfiles/images/2015/09/201509171316_566409_2307604_3.jpg5、填料处理:首先要清洗填料,将1L乙醇加入到350g的填料(10μm,C18)中,用棒子搅匀,得到填料匀浆,在进行抽滤,待除去乙醇后,取出填料,摊开放置于通风厨中,该溶剂乙醇可重复使用。然后匀浆填料,将干燥后的350g填料与800mL乙醇混合,搅拌,超声,直至匀浆均匀。将匀浆液用漏斗导入柱管。http://ng1.17img.cn/bbsfiles/images/2015/09/201509171317_566411_2307604_3.jpg6、压缩活塞:匀浆液导入柱管后,向下压活塞,并打开上端活塞处的管路,待柱管上端空气排尽后,关闭气压阀,并堵住上端管路,打开柱底下端管路,继续向下施压,使匀浆液中乙醇得以排出。7、试验测试:做个杂质制备的实验测试,杂质A和杂质B均为制备目标物。DAC-50制备上样2.0g样品结果如下:http://ng1.17img.cn/bbsfiles/images/2015/09/201509171319_566412_2307604_3.png(DAC-50制备图谱)http://ng1.17img.cn/bbsfiles/images/2015/09/201509171320_566413_2307604_3.png(分析图谱)画外音:这次制备放大至DAC-50的结果,分离及柱效稍差,原因可能为DAC装填地柱效差,或者样品上样量过高。DAC-150动态轴向压缩柱填装:具体工艺与DAC-50类似,只是填料装填量为3kg。将洗好并干燥后的3kg填料与5L乙醇混合,搅拌,超声,直至匀浆均匀,进行填装。下图为装好后的DAC-150连上输液泵及紫外检测器,正在测试的图片:http://ng1.17img.cn/bbsfiles/images/2015/09/201509171322_566414_2307604_3.jpg试验测试:依然是上面那个杂质制备的测试,这次上样量可是20g哦。http://ng1.17img.cn/bbsfiles/images/2015/09/201509171323_566415_2307604_3.png(DAC-150制备图谱)填装结果,DAC-150的柱效明显要比DAC-50高,这与填装过程各步骤的控制有关。最后附上一张DAC-150柱床的照片:(肿么样,很惊讶吧,3公斤的填料出来就变这样了)http://ng1.17img.cn/bbsfiles/images/2015/09/201509171324_566416_2307604_3.jpg总结:1、选择填料的粒径要比上筛板和下筛板的孔径大3μm以上,防止填料流失。2、筛板一定要清洗干净,不然会非常影响柱效的。3、在填料耐压范围内,装填压力(油压表示数)越高,装柱柱效越高。一般填料粒径越小,机械强度越高,耐压越高。4、根据填料粒径的不同(或者密度不同),选择不同的匀浆用溶剂,一般粒径越大的填料需要的匀浆溶剂粘度越高。5、仪器在使用过程一定要保持水平、平稳状态,防止柱床受压不均匀。根据需要选择装填柱长长度,一般100-250mm长,柱长太长会导致柱床不稳定。

  • 铝灰制备聚合氯化铝工艺研究

    铝灰制备聚合氯化铝工艺研究

    [align=center][font=黑体]铝灰制备聚合氯化铝工艺研究[/font][/align][align=left][b][font=黑体]摘要[/font][/b][font=黑体]:[/font][font=黑体]铝灰作为电解铝行业生产加工过程中的重要固体废弃物,产生巨大,铝灰在存储、处理方面带来很多环境问题,因此铝灰无害化、资源化处理迫在眉睫。本文介绍了以铝灰为原料,采用酸溶法制备聚合氯化铝的工艺研究,通过对不同处理方法产生的铝灰进行试验,完善各项工艺参数的调整和验证,达到实验室条件下制备聚合氯化铝净水剂的最佳条件,从而探索出适合制备聚合氯化铝产品的前期处理方法及后期工艺技术。[/font][/align][b][font=黑体]关键词[/font][/b][font=黑体]:铝灰;氧化铝;变废为宝;聚合氯化铝;净水剂[/font][b][font=黑体]中图分类号:TQ314.2 文献编识码:B [/font][/b][align=left][b][font=黑体]前言[/font][/b][font=宋体]随着我国工业的发展以及科技的进步,人们在生活中对铝产品的需求量日益增加,而在铝生产加工过程中产生一种附加产物——铝灰,铝灰中含有大量具有经济价值的氧化铝、金属铝、氮化铝,是一种可再生的资源,但其本身也是含有一定量有毒金属元素的危废,已经列入《国家危险废弃物名录》,传统的填埋处理方式不仅会对环境造成极大的污染和破坏[sup][1][/sup],同时也造成了资源[sup][2][/sup]的浪费。我司是一个集电解铝、铝精深加工为一体的大型企业,每年会产生大量的铝灰,因此将铝灰“变废为宝”成为一个新的课题,也是为公司寻找新的利润增长点的一个方向,是资源最大化的必走之路,同时也符合“科学发展观”、“建设绿色环保生态工厂”的积极性倡导。[/font][font=宋体]由于全球环境的污染,人们的环保意识不断提高,污水处理以及饮用水的净化现在已经是一个全球共同关注的课题。中国作为一个发展中国家,上世纪以来工业发展迅猛,某种程度上忽略了对生态的影响,饮用水的质量通常得不到保障;在发达国家,由于长期使用化学净水剂,残留在水中的化学物质通过日积月累,可能对人体健康造成一些潜移默化的伤害,同时净水之后的残渣无法很好地处理,也造成了不容忽视的环境问题。聚合氯化铝是一种新型净水材料,是目前国内外广泛使用的无机高分子絮凝剂,具有用量少、产生污泥少、除浊效果好、对出水pH值影响小等优点。[/font][font=宋体]巩义周边分布较多化工企业,化工企业在生产过程中,会产生大量废酸,废盐酸是其中一种,对化工企业而言没有大的附加价值,且废酸处理成本较大,废盐酸易挥发且具有强烈腐蚀性,如果处理不当容易对周边环境造成污染和破坏,也会对周边居民的身体健康状况造成影响。我司可以较低价格购进废酸,用来与本公司铝加工过程中产生的铝灰反应制备净水剂,利用铝灰中的铝、硅等元素在水[/font][font=宋体]中可形成大量带电胶团的性质,制备聚合氯化铝絮凝剂[sup][3-4][/sup],从而实现将铝灰无害化、资源化处理[sup][5][/sup]。同时也解决了铝灰和废酸带来的生态环保等社会问题,体现我司在环境保护、建设绿色生态园林企业的社会担当。[/font][font=宋体]聚合氯化铝(PolyaluminumChoride,PAC)是一种无机高分子含有不同量羟基的多核高效混凝剂,是一种介于AlCl[sub]3[/sub]和Al(OH)[sub]3[/sub]之间的水溶性无机高分子聚合物,其分子通式为[Al[sub]2[/sub](OH)[sub]n[/sub] Cl[sub]6-n[/sub]x (H[sub]2[/sub]O)] [/font][sub][font=宋体]m[/font][/sub][font=宋体],其中m代表聚合程度,n代表聚合氯化铝氯化铝的中性程度。具有分子结构大、吸附能力强、凝聚力强、形成絮体大等优点[sup][6][/sup],对管道无腐蚀性,净水效果明显,能够有效去除水中有色物质及重金属离子,广泛应用于饮用水、污水处理等领域[sup][7][/sup]。[/font][font=宋体]制备聚合氯化铝原料按来源可以分为:含铝矿石(如铝土矿)、工业含铝废料(如铝灰)、含铝化工产品及中间体(如结晶氢氧化铝)。合成方法根据原料的不同又可以分为:金属铝法、活性氢氧化铝法、氧化铝法、氯化铝法等。按照生产工艺又分为:酸溶法、碱溶法、中合法。本文主要以火法、湿法处理后的铝灰为原料,采用酸溶法,开展实验,探索出何种铝灰处理工艺适合做聚氯化铝产品[sup][8][/sup]。[/font][/align][align=left][font=宋体][b][font=黑体]1 [/font][font=黑体]实验材料与方法[/font][/b][font=黑体]1.1[/font][font=黑体]主要原料与仪器设备[/font][font=宋体]1.1.1[/font][font=宋体]铝灰:我司铝灰来源为电解铝灰、铝加工1、8系铝灰、3系铝灰、5系铝灰、再生铝铝灰。本文采用三种不同的铝灰展开试验,1#经火法处理后的再生氧化铝铝灰、2#经湿法处理后的高铝料铝灰、3#未经处理的二次铝灰。[/font][font=宋体]1.1.2 [/font][font=宋体]主要设备:电子天平(AL204梅特勒-托利多(上海)有限公司);恒温磁力搅拌器(78HW-1江苏金坛市金城国胜实验仪器厂);抽滤装置(GG-17抽滤瓶1000ml);电热恒温鼓风干燥箱(DHG-9070A型上海一恒科学仪器有限公司)。[/font][font=黑体]1.2[/font][font=黑体]实验方法[/font][/font][/align][align=left][font=宋体][font=黑体][font=华文宋体]1.2.1 [/font][font=宋体]聚合氯化铝制备工艺[/font][font=宋体]聚合氯化铝在制备方法上,有不同的合成路径,按照同一种制备原料——铝灰渣和废盐酸的生产工艺,反应后的混合物可经长时间恒温熟化,从而提高产品的氧化铝浓度和盐基度,也可通过添加铝酸钙的生产工艺提高产品聚氯化铝的氧化铝浓度和盐基度,本文采用第二种生产工艺展开探究。[/font][font=宋体]分别称取1#、2#、3#样品40g,置于500ml烧杯中,一定量的废盐酸和水,置于恒温磁力搅拌器[/font][font=宋体]上于一定温度下反应若干小时,反应完全后冷却,使用抽滤装置进行抽滤,将上清液与残渣分离,残渣用来与青石粉制备偏铝酸钙,将制成的偏铝酸钙加入第一步分离的上清液中,继续恒温反应若干小时后,使用抽滤装置进行抽滤,将上清液与残渣分离,上清液即为PAC液体,将上清液至于电热恒温鼓风干燥箱中进行干燥,得到聚合氯化铝固体产品。其工艺流程图如图1所示:[/font][/font][/font][/align][align=center][font=宋体][font=黑体][font=宋体][img=,690,214]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011537089487_9751_3237657_3.png!w690x214.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=楷体]图1 制备聚合氯化铝工艺流程图[/font][/font][/font][/align][align=left][font=黑体][font=楷体][font=宋体]1.2.2 [/font][font=宋体]偏铝酸钙的制备工艺[/font][font=宋体]将一次过滤后的含水量约50%一次滤渣与青石粉按照6∶4的比例搅拌混匀,于1300℃高温煅烧2h,自然冷却后,研磨成粉。[/font][font=黑体]1.3 [/font][font=黑体]试验原理[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]本实验选用了三种不同的铝灰, 1#经高温处理的再生氧化铝铝灰、2#经处理后的高铝料铝灰、3#未经处理的二次铝灰。氮化铝遇水后,发生水解反应,放出氨气:[/font][/font][/font][/align][align=left][font=宋体]AlN+3H[sub]2[/sub]O=Al(OH)[sub]3[/sub]+NH[sub]3[/sub] (1)[/font][/align][align=left][font=宋体]水洗滤渣在盐酸溶液中的溶出反应如下:[/font][/align][align=left][font=宋体]2Al+6HCl=2AlCl[sub]3[/sub]+3H[sub]2[/sub] (2)[/font][/align][align=left][font=宋体]Al[sub]2[/sub]O[sub]3[/sub]+6HCl=2AlCl[sub]3[/sub]+3H[sub]2[/sub]O (3)[/font][/align][align=left][font=宋体]Al(OH)[sub]3[/sub]+3HCl=AlCl[sub]3[/sub]+3H[sub]2[/sub]O (4)[/font][/align][align=left][font=宋体](2-n/4)AlCl[sub]3[/sub]+n/2H[sub]2[/sub]O+n/8Ca(AlO[sub]2[/sub])[sub]2[/sub]→Al[sub]2[/sub](OH)nCl[sub]6-n[/sub]+n/8CaCl[sub]2[/sub] (5)[/font][/align][font=黑体]1.4 [/font][font=黑体]分析方法[/font][font=宋体]本实验中液体或固体聚合氯化铝中氧化铝含量及盐基度的测定均采用GB/T 22627-2014分析标准进行。[/font][align=left][font=宋体][font=黑体]2[font='Times New Roman'] [/font][/font][font=黑体]实验过程及分析[/font][font=黑体]2.1 [/font][font=黑体]单因素优选实验[/font][font=宋体]2.1.1 [/font][font=宋体]原料配比的确定[/font][font=宋体]在反应温度为85℃,熟化聚合温度为70℃,反应时间为2h,熟化聚合时间为2h的条件下,综合试验了不同的原料配比,对PAC性能的影响结果如图2所示。[/font][font=宋体]由图2可见,随盐酸加入量的增多,产品中氧化铝质量分数随之增加,这是由于酸溶阶段主要是铝灰中的单质铝和氧化铝与废盐酸发生反应,当废盐酸的加入量增加时,有利于反应的正向进行;单一从理论上出发,盐酸用量在一定范围内越大,铝灰中单质铝与氧化铝的溶出率越高。但从实际生产而言,盐酸加入量越大,可能造成不能完全反应,浪费了生产成本,且盐酸是挥发性酸,高温下挥发的酸形成酸雾,会对实验工作环境造成危害,同时对现场操作人员的健康造成不利的影响。另外一方面,随着加入废盐酸的量的增多,H[sup]+[/sup]浓度会越大,游离酸越多,产品的盐基度逐渐下降;盐酸加入量过少时,产品浑浊,液渣分离操作难度大。因此选[font=宋体]择最佳的原料配比是尤为重要的,经过实验数据的对比,选定原料配比铝灰、盐酸、水的最佳配比为20∶60∶80。[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=,469,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011540049329_4319_3237657_3.png!w469x283.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=center][font=楷体]图2 原料配比对PAC性能的影响[/font][/align][font=楷体]m[/font][font=楷体](铝灰g)∶V1(盐酸ml)∶V2(水ml) 1 20∶30∶80 [/font][font=楷体]2 20∶40∶80 3 20∶50∶80 4 20∶60∶80 [/font][font=楷体]5 20∶70∶80[/font][font=宋体]2[/font][font=宋体].1.2 [/font][font=宋体]反应温度的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20[/font][font=宋体]∶6[/font][font=宋体]0[/font][font=宋体]∶8[/font][font=宋体]0[/font][font=宋体]条件下,反应时间为[/font][font=宋体]2h,[/font][font=宋体]熟化温度[/font][font=宋体]70[/font][font=宋体]℃,[/font][font=宋体][font=宋体]熟化聚合时间为[/font]2h[/font][font=宋体][font=宋体],单一调控反应温度进行实验,研究的反应温度对[/font]P[/font][font=宋体]AC[/font][font=宋体][font=宋体]的性能指标的影响,结果如图[/font]3所示:[/font] [align=center][img]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml5444\wps3.jpg[/img][font=华文宋体] [img=,465,278]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532246174_1801_3237657_3.png!w465x278.jpg[/img][/font][/align][align=center][font=楷体]图[/font][font=楷体]3 [/font][font=楷体]反应温度[/font][font=楷体][font=楷体]对[/font]PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]3可见,随着反应温度的升高,产品中氧化铝质量分数和盐基度均随之上升,但结合实验的其他现象,反应温度超过90℃后,盐酸和水挥发较快,造成反应物损失,产品质量明显减少,[/font][font=宋体][font=宋体]产品[/font]P[/font][font=宋体]AC[/font][font=宋体]的性能将下降,也就是铝在水解过程中将会转化成更高聚合度的形态,[/font][font=宋体][font=宋体]且产品呈现粘性浑浊液体状态,难以将固液有效分离。综合考虑,本阶段反应温度以[/font]85℃为最佳反应温度。[/font][font=宋体]2[/font][font=宋体].1.3 [/font][font=宋体]反应时间的确定[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应温度为85℃,熟化聚合时间为2h,[/font][font=宋体]熟化温度[/font][font=宋体]70℃,单一调控[/font][font=宋体]反应时间[/font][font=宋体]进行试验,[/font][font=宋体]研究反应时间的长短对[/font][font=宋体]PAC的性能指标的影响,结果如图4所示:[/font][align=center][img=,466,282]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532386484_1319_3237657_3.png!w466x282.jpg[/img][/align][align=center][font=楷体]图[/font][font=楷体]4 反应时间对PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]4可以看出,反[/font][font=宋体]应[/font][font=宋体]初期,盐酸浓度大,反应物充分,铝灰与盐酸反应速率较快,聚合氯化铝的氧化铝质量分数和盐基度呈正向增加趋势,此时,反应物浓度大,推动反应正向进行,反应速率快,随着反应的进行,反应物盐酸被不断[/font][font=宋体]地[/font][font=宋体][font=宋体]消耗,其浓度降低,反应产物浓度增加,抑制了正向进行速率,当反应时间达到[/font]2h时,反应物几乎最大程度被消耗完,盐基度也到达了最高。因此,综合考虑反应的能耗、时间成本等因素,[/font][font=宋体]本阶段[/font][font=宋体][font=宋体]最佳反应时间为[/font]2h。 [/font][font=宋体]2[/font][font=宋体].1.4 [/font][font=宋体]聚合温度的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应时间为2h,[/font][font=宋体][font=宋体]反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,[/font][font=宋体][font=宋体]熟化聚合时间为[/font]2h[/font][font=宋体][font=宋体],单一调控熟化聚合温度进行试验,[/font][font=宋体]研究熟化聚合温度对[/font][/font][font=宋体]PAC的性能指标的影响,结果如图5所示:[/font][align=center][img]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml5444\wps5.jpg[/img][font=华文宋体] [img=,465,278]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532486665_6908_3237657_3.png!w465x278.jpg[/img][/font][/align][align=center][font=楷体]图[/font][font=楷体]5 [/font][font=楷体]聚合温度对[/font][font=楷体]PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]5可以看出,随着熟化聚合温度的升高,产品聚合氯化铝中氧化铝质量分数与盐基度等参数呈现明显的先上升后下降的趋势,聚合温度过低,反应不充分,聚合程度低;聚合温度过高会破坏聚合态结构,导致部分聚合物分解,熟化聚合温度达到70℃时,产品聚合氯化铝中氧化铝含量和盐基度达到最高值,综合考虑,确定聚合温度70℃为[/font][font=宋体]本[/font][font=宋体]阶段最佳反应条件。[/font][font=宋体]2[/font][font=宋体].1.5 [/font][font=宋体]聚合时间的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应温度为85℃,[/font][font=宋体][font=宋体]反应时间[/font]2[/font][font=宋体]h[/font][font=宋体],[/font][font=宋体]熟化[/font][font=宋体]聚合[/font][font=宋体][font=宋体]温度[/font]70℃,[/font][font=宋体]单一调控熟化聚合时间变量,研究熟化聚合时间对[/font][font=宋体]PAC的性能指标的影响,结果如图6所示:[/font][font=宋体][font=宋体]由图[/font]6可以看出,随着聚合熟化时间的延长,产品中氧化铝含量和盐基度均呈上升趋势,当聚合时间达到2[/font][font=宋体]h[/font][font=宋体][font=宋体]后,产品氧化铝含量和盐基度指标均到达预期值,继续延长熟化聚合时间产品指标增幅不大,出于生产效率和成本的综合考虑,熟化聚合时间[/font]2[/font][font=宋体]h[/font][font=宋体]为本阶段最佳反应条件。[/font][align=center][img=,466,281]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011533076037_6078_3237657_3.png!w466x281.jpg[/img][/align][align=center][font=楷体]图[/font][font=楷体]6 聚合[/font][font=楷体]时间[/font][font=楷体][font=楷体]对[/font]PAC性能的影响[/font][/align][font=黑体]2.1 [/font][font=黑体]经过不同处理方式的铝灰试验结果[/font][font=宋体]在选择最佳试验原料配比和试验条件下,原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80[/font][font=宋体][font=宋体],反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,反应时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],熟化聚合温度[/font]7[/font][font=宋体]0[/font][font=宋体]℃,熟化聚合时间2[/font][font=宋体]h[/font][font=宋体],将三种铝灰进行原料中氧化铝含量的分析测定和同种工艺制备聚合氯化铝[/font][font=宋体],与国标《水处理剂聚氯化铝》对比,产品均达到国标要求[/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][font=宋体]结果数据汇总如表[/font]1、表2:[/font][font=楷体][/font][align=center][font=楷体][font=楷体]表[/font]1[/font][font=楷体] [/font][font=楷体]三种不同原料实验数据对比[/font][/align][font=楷体][/font][table][tr][td=1,2][font=楷体]样品名称[/font][/td][td=4,1][font=楷体]氧化铝质量分数/[/font][font=楷体]%[/font][/td][td=1,2][font=楷体] [/font][font=楷体]可溶度/[/font][font=楷体]%[/font][/td][td=1,2][font=楷体] [/font][font=楷体]浸出率/[/font][font=楷体]%[/font][/td][/tr][tr][td][font=楷体]原料[/font][/td][td][font=楷体]P[/font][font=楷体]AC[/font][font=楷体]固体[/font][/td][td][font=楷体]滤渣[/font][/td][td][font=楷体]铝酸钙[/font][/td][/tr][tr][td][font=楷体]1[/font][font=楷体]#[/font][/td][td][font=楷体]6[/font][font=楷体]8.33[/font][/td][td][font=楷体]8[/font][font=楷体].5[/font][/td][td][font=楷体]6[/font][font=楷体]3.37[/font][/td][td][font=楷体]5[/font][font=楷体]7.78[/font][/td][td][font=楷体]6[/font][font=楷体].75[/font][/td][td][font=楷体]4[/font][font=楷体].8[/font][/td][/tr][tr][td][font=楷体]2[/font][font=楷体]#[/font][/td][td][font=楷体]6[/font][font=楷体]9.86[/font][/td][td][font=楷体]2[/font][font=楷体]1.03[/font][/td][td][font=楷体]5[/font][font=楷体]9.26[/font][/td][td][font=楷体]5[/font][font=楷体]9.26[/font][/td][td][font=楷体]3[/font][font=楷体]1.99[/font][/td][td][font=楷体]4[/font][font=楷体]9.17[/font][/td][/tr][tr][td][font=楷体]3[/font][font=楷体]#[/font][/td][td][font=楷体]7[/font][font=楷体]8.2[/font][/td][td][font=楷体]2[/font][font=楷体]0.76[/font][/td][td][font=楷体]4[/font][font=楷体]7.37[/font][/td][td][font=楷体]5[/font][font=楷体]9.83[/font][/td][td][font=楷体]5[/font][font=楷体]2.00[/font][/td][td][font=楷体]5[/font][font=楷体]4.00[/font][/td][/tr][/table][font=楷体][/font][font=楷体][/font][align=center][font=楷体][font=楷体]表[/font]2[/font][font=楷体] [/font][font=楷体][font=楷体]产品与国标[/font]GB/T 22627-2014对比[/font][/align][font=宋体][/font][table][tr][td][align=center][font=宋体]指标名称[/font][/align][/td][td][align=center][font=宋体]Al2O3/%[/font][/align][/td][td][align=center][font=宋体]水不容物含量/%[/font][/align][/td][td][align=center][font=宋体]PH值(10g/L水溶液)[/font][/align][/td][td][align=center][font=宋体]Fe含量/%[/font][/align][/td][td][align=center][font=宋体]Pb含量/%[/font][/align][/td][td][align=center][font=宋体]As含量/%[/font][/align][/td][/tr][tr][td][align=center][font=宋体]标准要求[/font][/align][/td][td][align=center][font=宋体]≥6[/font][/align][/td][td][align=center][font=宋体]≤0.4[/font][/align][/td][td][align=center][font=宋体]3.5-5.0[/font][/align][/td][td][align=center][font=宋体]≤3.5[/font][/align][/td][td][align=center][font=宋体]≤0.002[/font][/align][/td][td][align=center][font=宋体]≤0.0005[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#1[/font][/align][/td][td][align=center][font=宋体]8.5[/font][/align][/td][td][align=center][font=宋体]0.25[/font][/align][/td][td][align=center][font=宋体]4.1[/font][/align][/td][td][align=center][font=宋体]0.7[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#2[/font][/align][/td][td][align=center][font=宋体]21.03[/font][/align][/td][td][align=center][font=宋体]0.1[/font][/align][/td][td][align=center][font=宋体]4.05[/font][/align][/td][td][align=center][font=宋体]0.72[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#3[/font][/align][/td][td][align=center][font=宋体]20.76[/font][/align][/td][td][align=center][font=宋体]0.1[/font][/align][/td][td][align=center][font=宋体]4.1[/font][/align][/td][td][align=center][font=宋体]0.65[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][/table][font=宋体][/font][font=宋体][font=宋体]由表[/font]1看出,三种原料虽然固有氧化铝含量均很高,但是不同的处理工艺对铝灰中氧化铝的性能造成不同的影响,1[/font][font=宋体]#[/font][font=宋体][font=宋体]铝灰经火法处理后的铝灰在制备聚氯化铝时溶解度、浸出率都很低,产品率低,不适合作为制备聚合氯化铝的原料,[/font]2[/font][font=宋体]#[/font][font=宋体][font=宋体]和[/font]3[/font][font=宋体]#[/font][font=宋体]铝灰通过数据可以看出均适合作为制备聚合氯化铝的原料,但是[/font][font=宋体]3#[/font][font=宋体]铝灰是未经处理的铝灰,若直接进行酸溶反应,反应较为剧烈,具有很大的危险性,也不符合环保要求。必须经过湿法脱氨除氮处理后方可进行下一步的生产。[/font][font=宋体][font=宋体]根据表[/font]2数据显示,我司铝灰实验室制备聚合氯化铝产品各项产品指标均满足国家标准要求[/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体]3 [/font][font=黑体]实验结论[/font][font=宋体]1、[/font][font=等线][font=等线]以铝灰和废盐酸为原料,采用酸溶法制备聚合氯化铝,通过单因素优选实验,得出铝灰和废盐酸反应制备聚合氯化铝的最佳工艺参数为:[/font][font=等线]原料配比[/font][/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80[/font][font=宋体][font=宋体],反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,反应时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],熟化聚合温度[/font]7[/font][font=宋体]0[/font][font=宋体]℃,熟化聚合时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],[/font][font=宋体]在该最佳条件下,采用[/font]2[/font][font=宋体]#[/font][font=宋体][font=宋体]铝灰制备,得到液体[/font]P[/font][font=宋体]AC[/font][font=宋体]氧化铝质量分数[/font][font=宋体]8.09%[/font][font=宋体],盐基度[/font][font=宋体]53.01%[/font][font=宋体]2、[/font][font=宋体]3#[/font][font=宋体][font=宋体]未经处理的二次铝灰,直接进行酸溶反应,由于[/font]A[/font][font=宋体]lN[/font][font=宋体]的水解行为,反应现象剧烈,操作上存在一定的危险性,应经前期湿法脱氨固氮处理后再进行酸溶反应。[/font][font=宋体]3、采用自制偏铝酸钙可高效、经济地调节铝灰及聚合氯化铝的盐基度,节约时间成本,提高生产效率,减少废渣产生。[/font]

  • 胰岛素制剂的来源和制备工艺

    胰岛素制剂在临床上的应用日趋广泛,其分类和命名方式较为复杂,易导致概念混淆,使用不当,本文针对胰岛素制剂的分类和特点作一概述,以便我们更好地为病人提供药学服务。胰岛素制剂可根据胰岛素来源、制备工艺、作用时间长短等来进行分类。1.根据胰岛素来源胰岛素制剂可分为人胰岛素、猪胰岛素、牛胰岛素。动物胰岛素与人胰岛素的区别在于结构上氨基酸序列的不同,因而动物胰岛素存在一定的免疫原性,可能在人体产生抗体而致过敏反应。另外,动物胰岛素的效价低,由动物胰岛素换用人胰岛素时,剂量应减少15%~20%,否则会增加低血糖风险。2.根据制备工艺2.1 经动物胰腺提取或纯化的猪、牛胰岛素,目前传统的普通结晶的动物胰岛素逐渐被淘汰,取而代之的是单组分或高纯化胰岛素,是指经凝胶过滤处理后的胰岛素,再用离子交换色谱进行纯化,以进一步降低胰岛素原的含量并去除部分杂质。2.2 半合成人胰岛素:以猪胰岛素为原料进行修饰得到的人胰岛素。2.3 生物合成人胰岛素:用重组DNA技术生产的人胰岛素,又称重组人胰岛素,为中性可溶性单组分人胰岛素。2.4 胰岛素类似物:通过重组DNA技术,对人胰岛素氨基酸序列进行修饰生成的可模拟正常胰岛素分泌和作用的一类物质。目前已用于临床的有赖脯胰岛素;门冬胰岛素;甘精胰岛素;地特胰岛素。人胰岛素为六聚体,皮下注射不能直接进入血液循环,必须解聚成单体或二聚体才能透过毛细血管进入循环。而不同个体分解和吸收的差异较大,导致最后进入循环的胰岛素量会有明显差异。另一方面,胰岛素混悬液若混合不充分或形成晶体会使吸收率降低,不同的注射部位也会影响最后的作用效果,这使得人胰岛素不能很好地重建人体正常的生理性胰岛素的分泌。胰岛素类似物克服了人胰岛素的这些不足,其中速效胰岛素类似物起效、达峰及维持正常时间较人胰岛素缩短,更符合生理餐后胰岛素谱,长效胰岛素类似物吸收变异小,作用时间长,更好地模拟人体生理基础胰岛素分泌。

  • 白炭黑制备工艺对比表面积和吸油值的影响!

    白炭黑制备工艺对比表面积和吸油值的影响!

    为了检测出白炭黑制备工艺与吸油值的影响,北京化工大学教育部超重力实验工程中心安排了此次《白炭黑制备工艺与白炭黑吸油值检测实验对比实验》,通过实验所检测数据和实验现象进行对比分析,以确保该实验的完成度。在实验开始前,我么先探讨一下关于白炭黑结构重造等现象实验现象吧!利用正交设计安排实验, 在超重力旋转床中, 采用硫酸沉淀法制备超细白炭黑, 研究实验制备工艺条件 pH、硅酸钠浓度、温度、电解质和旋转床转数以及不同干燥方式对白炭黑的 BET比表面积和 DBP吸油值的影响。 实验结果表明, 反应终止时 pH 对白炭黑的 BET比表面积影响最大, 其次是温度、电解质、硅酸钠的浓度和旋转床的转数。 干燥方式是影响 DBP吸油值的决定性因素, 其次是温度、电解质、旋转床的转数、硅酸钠的浓度和反应终止时 pH。 制得产品的 BET比表面积 140 ~ 351 m2/g, DBP吸油值 1. 42 ~ 4. 41 mL /g[align=center][img=,419,217]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031040512392_3675_3557318_3.png!w419x217.jpg[/img][/align]在整个实验过程中,我们按照实验起初的安排进行了准备工作,所准备的材料、实验器材、以及不同环境下的实验现场等多种实验数据,确保整个实验正常进行![align=center][img=,690,315]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031041146882_572_3557318_3.png!w690x315.jpg[/img][/align]依据正交实验表,硅酸钠溶液稀释到一定浓度,并加入一定量的 NaC l, 混合均匀后加入超重力旋转填充床(RPB)。量取一定量的浓 H2 SO4 , 加入加酸容器中 。开启水浴循环泵 , 加热料液至接近反应温度后, 开启物料循环泵 ,达到反应温度时, 开始以一定的速率滴加浓 H2 SO4 , 每隔 0. 5 m in记录一次反应体系的温度和 pH。反应过程中 pH 会发生突变(见图 2),当体系 pH变化不超过 0.04 /m in时 ,温度不变,可认为反应过程完成 。反应结束后从出料口放出料液至保温陈化容器中 , 调节 pH 至 4 ~ 5, 在70 ~ 80 ℃陈化 30 m in。然后将料液真空抽滤, 所得湿滤饼用水反复洗涤至检不出 C l为止。湿滤饼直接烘干 ,然后粉碎至粒径 ≤38 μm 得到产品 。由反应最优化条件制得的湿滤饼 ,同时再采用共沸蒸馏和醇洗置换方式对其进行干燥 ,以研究不同干燥方式对比表面积和吸油值的影响 。DBP吸油值按照 GB10528— 1989测定 一次粒径为电镜放大照片中统计 100个左右一次粒子的平均粒径 。[align=center][img=,582,346]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031041369102_8413_3557318_3.png!w582x346.jpg[/img][/align]对正交实验结果 作直观分析可知 ,各因素对产品比表面积影响的主次顺序为 :B D C A E 。各因素对产品 DBP吸油值影响的主次顺序为 :C E D A B 。正交实验中最大比表面积和最小比表面积的差值与平均比表面积(270. 7 m2/g)的比值为 0. 632, 最大和最小 DBP吸油值的差值与平均吸油值 (1. 705 mL /g)的比值为0. 394,说明各因素对比表面积的影响要大于对吸油值的影响。将不同水平下比表面积均值与各个因素分别做图, 得到各因素与平均 BET比表面积和 DBP吸油值的关系曲线 (见图 3),以获得最小比表面积作为评价指标的最优化条件为 :B1D2C2A4E 2 。即pH为 9, 温度为 80 ℃, 电解质加入量为 120 g, 液体硅酸钠的加入量 为 1. 5 L (硅酸钠质 量浓度为71. 0 g /L), 旋转床转速为 1 000 r /m in。考虑到电解质的加入量和温度都对 DBP吸油值和 BET比表面积有显著影响 ,因此在最优化条件的基础上增加对比实验, 提高反应温度至 90 ℃, 电解质的用量为150 g,其余条件与最小比表面积最优化条件相同。最优化条件的实验结果见表 3。[align=center][img=,690,270]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031042010232_9288_3557318_3.png!w690x270.jpg[/img][/align][align=center][img=,690,338]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031042175742_4923_3557318_3.png!w690x338.jpg[/img][/align]在超重力旋转床中采用硫酸沉淀法制备白炭黑, 反应终止时 pH 对白炭黑的 BET比表面积影响最大 ,其次是温度、电解质加入量 、硅酸钠的浓度和旋转床的转速。干燥方式对白炭黑的 DBP 吸油值影响最大 ,超过制备工艺条件成为 DBP吸油值的决定性因素 ,因此可通过干燥方式的选择实现对 DBP吸油值的调节 ,制备工艺条件对 DBP吸油值的影响顺序是电解质加入量 、旋转床的转数、温度、液体硅酸钠的浓度和反应终止时pH。所以,在实验过程中,炭黑吸油值的变化与实验环境有着密切的关系,平衡的实验环境能够带给人们更多的了解炭黑的特质,尤其是白炭黑在橡塑行业所具有的独特仪器环境中。

  • 滴丸制备工艺

    求助各位大侠:本人在清开灵滴丸的制备过程中,遇到了以下两个问题,希望哪位大侠能给指点一下,谢谢:1、滴丸制备过程中,出现时硬时软的现象,(主要成分为胆酸、珍珠母、猪去氧胆酸、栀子、水牛角、板蓝根、黄芩苷、金银花,辅料为聚乙二醇),不知道该怎么解决?2、滴丸在存放过程中会出现出霜现象,不知道什么原因,请教哪位大侠能够给分析一下。

  • 钛白副产绿矾制备饲料级硫酸亚铁的工艺与生产等

    【序号】:6【作者】:田伟军 【题名】:钛白副产绿矾制备饲料级硫酸亚铁的工艺与生产【年、卷、期、起止页码】:《饲料与畜牧》 2009年11期【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-SNCM200911014.htm【序号】:7【作者】:龚竹青 李景升 杨喜云 【题名】:硫酸铜脱除砷、铁的工艺研究【年、卷、期、起止页码】:《中南工业大学学报(自然科学版)》 2000年03期【全文链接】:http://www.cnki.com.cn/Article/CJFDTotal-ZNGD200003009.htm【序号】:8【作者】:杨久义 刘昆鹏 王赫 李桃玲 刘建涛【题名】:饲料级硫酸铜生产新工艺的研究【年、卷、期、起止页码】:《河北工业科技》 2002年06期【全文链接】:http://www.cnki.com.cn/Article/CJFDTotal-HBGY200206009.htm【序号】:9【作者】:刘本发 向兴凯 【题名】:冶炼硫酸铜由工业级提纯为饲料级的工艺研究【年、卷、期、起止页码】:《湖南冶金》 1997年04期【全文链接】:http://www.cnki.com.cn/Article/CJFDTotal-HNYI199704007.htm

  • 冰硼口腔用温敏凝胶制备工艺研究

    【序号】:4【作者】:吴传红魏庭森王小玲【题名】:冰硼口腔用温敏凝胶制备工艺研究【期刊】:甘肃科学学报. 【年、卷、期、起止页码】:2021,33(04)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=vdPasdvfHvsnVSqyOCdGGegzhoXOq9Yi6TzopPOCLUksD_-XECEPB1HQOgMffT13DRIt7puzifH9bkzwhRPPZG_4yd6K0GuTZrzGpboOSEguzmy3raSkwaCvSioeejwp51Vl9lj5VN2Cwn-mejUyWckHF73iQlXl&uniplatform=NZKPT&language=CHS

  • 壳聚糖季铵盐改性物的制备工艺优化及产品的抑菌性

    【序号】:6【作者】: 贾荣仙【题名】:壳聚糖季铵盐改性物的制备工艺优化及产品的抑菌性【期刊】:安徽化工. 【年、卷、期、起止页码】:2016,42(06)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=AHHG201606008&uniplatform=NZKPT&v=bFVROF7n0PFXoc3sS2uqA6NX4V7d4i1P3Ob8fF8doUL6_o194yg8RFts-UDOR8Pt

  • 怎么样的方法来制备咖啡香精

    最近来了一批咖啡豆,要试做咖啡香精,请问有哪位老师对这方面比较厉害的,能否帮帮忙提点一下我,谢谢!顺便问一下:是否可以用美拉德反应来做咖啡香精?

  • 喷雾干燥法制备微胶囊工艺不当会出现的现象

    喷雾干燥法制备微胶囊工艺不当会出现的现象

    http://ng1.17img.cn/bbsfiles/images/2016/12/201612131358_01_676_3.png喷雾干燥制备微囊时,混合料液通过气流雾化成液滴,均匀地分散于热气流中,雾滴一旦与干燥空气接触,蒸发便在迅速建立起的液滴表面上的饱和蒸汽膜上进行。在蒸发期间,雾滴的尺寸分布要产生变化,不同的产品显示不同的蒸发特性。若工艺参数控制不当,蒸发过程会使雾滴造成膨胀、崩溃、破碎或分裂,导致产生多孔性的,不规则的形状。

  • 【原创大赛】甲钴胺精制过程的研究

    【原创大赛】甲钴胺精制过程的研究

    [align=center][b]甲钴胺精制过程的研究[/b][/align][align=left][b]摘要:目的[/b]甲钴胺作用与维生素B12(氰钴胺)类似,能够维持人体血细胞的正常形态与功能,并维持神经纤维功能的完整,促进轴索内轴流和轴索再生及髓鞘形成,因此对神经轴突传递延迟和神经传递物质的减少有很好的恢复作用。开展甲钴胺原料药工艺技术研究开发与生产,生产出成本低、质量高、对环境污染小的产品,满足临床用药需求,具有重大现实意义。[b]方法[/b]选用了甲钴胺专用精制介质及优化的生产工艺条件,[b]结果[/b]本课题选取了甲钴胺专用的精制介质,该介质对于甲钴胺精制具有较强的专属性,能够有效降低甲钴胺的有关物质,能够制备高纯度的甲钴胺。极大提高了临床用药的安全性。优化了大生产的工艺条件,提高了产品品质,降低了成本。[b]结论[/b]生产出的产品质量好、收率高,甲钴胺收率平均约93%,生产过程中污染物产生量小,拥有很高的实用价值。[/align][b]关键词:[/b]甲钴胺原料药;生产工艺;精制纯化 在氰钴胺的水溶液中,用还原剂进行还原,脱去CN[sup]-[/sup]生成VB[sub]12[/sub]的还原态,其中CN[sup]-[/sup]以甲氨(CH[sub]3[/sub]NH[sub]2[/sub])的形式脱去。还原态的VB[sub]12[/sub]带有一个负电荷,用亲核的甲基化试剂进行甲基化反应,生成甲钴胺,反应式如下:[align=center][img=,425,133]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152018_02_1626619_3.png[/img][/align] 式中:R—Co—CN为氰钴VB[sub]12[/sub],R—Co为VB[sub]12[/sub]还原态,R—Co—CH[sub]3[/sub]为甲钴胺国内多数药厂在甲钴胺生产工艺上都处于技术的一个更新阶段,生产厂家的生产质量参差不齐,多数较大生产厂商都能够达到药典的质量要求,但是对于小的药厂来讲,甲钴胺生产工艺还需要进一步改进。本研究将针对上述各种不足对大生产关键工艺条件进行优化。最终使得甲钴胺的合成工艺既高效,副产物又少,达到质量与收率都提高,同时又不产生固废与异味,减少环保压力。[b]1 甲钴胺精制介质的选择[/b] 现代医药技术要求原料药的色普纯度较高[sup][[/sup][sup]1[/sup][sup]][/sup],对于维生素B12品种来说国际上一般要求其相关物质以高效液相色谱法检测不得大于2.0%。我们为了使得甲钴胺原料药在国际上更具有竞争力,将目标定为相关物质控制在1.0%以内。因此选取一种能够有效去除甲钴胺的相关物质的精制介质是我们这个课题中的重要内容。利用目前已有的精制介质,有50%的甲钴胺产品的有关物质不能达到这个要求。为此我们重点研究了甲钴胺的理化性质,根据它的特征基团的极性常数以及常见相关杂质的特征基团的极性常数,我们提出在一些常用的精制介质的单体中加入某些化学基团,利用甲钴胺和它的相关物质在这种特别的精制介质上的分配系数的不同,从而达到分离的目的。为此课题组与介质生产厂家合作生产了5种精制介质:JZ-1、JZ-2、JZ-3、JZ-4、JZ-5。对5种介质的精制性能进行了试验研究。试验方法如下: 在5个相同的精制柱中,分别加入等量的5种精制介质,取等体积的同一批次甲钴胺溶液,以相同流速通过5个精制柱,分别用等体积的展层剂以相同流速展层,再用等体积的解析剂以相同的流速解析,获得结晶原液,用高效液相色谱法测定其相关物质及甲钴胺的收率。试验情况见表2-1。[align=center]表1-1 精制介质的分离效果[/align][align=center][img=,650,176]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152015_01_1626619_3.png[/img][/align] 注:表中分离效果是指在精制介质上杂质色带与主色带的分离程度。 从表1-1可以看出,精制介质ZJ-3分离相关物质的能力最好。为进一步考察精制介质ZJ-3的分离能力,采用3批甲钴胺做验证试验,其结果见表1-2。[align=center]表1-2 精制介质分离效果表[/align][align=center][img=,660,129]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152018_01_1626619_3.png[/img][/align] 从表1-2中数据可以看出:精制介质JZ-3对甲钴胺分离效果好、收率高(平均收率在96%以上)、可操作性强,因此,选取JZ-3作为该工艺的精制介质。 (1)专用精制介质的特性 目前国际上的VB12提取与精制行业普遍采用的层析介质是XAD1180大孔型树脂和三氧化二铝,这两种介质对所有的VB12品种均有效,但是其选择性不好,分离效果差。为了验证我们创制的专用精制介质良好的分离性能,我们做了对比试验。试验方法:用相同的甲钴胺料液,分别在专用精制介质、XAD1180树脂、三氧化二铝上进行展层精制,考察它们对相关物质去除的程度和收率。具体数据见表1-3。[align=center]表1-3 专用精制介质与其它介质的效果对比数据[/align][align=center][img=,690,113]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152022_01_1626619_3.png[/img][/align] 从上表数据可以看出,我们创制的甲钴胺专用精制介质的性能大大优于国际上普遍采用的分离介质。 (2)小试工艺的验证试验 选用同一批氰钴胺作为原料,分别用原生产工艺与本课题小试确定的工艺同时进行投料反应,重复进行三次,对本课题确定的工艺进行验证。试验数据见表1-4。[align=center]表1-4 验证试验数据 [/align][align=center][img=,650,231]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152023_01_1626619_3.png[/img][/align] 从表1-4可以看出:小试在同一批原料进行的重复试验中,产品的有关物质去除率均比原生产工艺有较大提升,产品质量均达到并超过多国药典的要求,平均收率达到93%以上,超过了日本专利中报道的87%的水平及现有工艺90%的水平。说明生产工艺的稳定性高,可操作性强。[b][b][b][b]2 工艺参数的优化[/b][/b][b][b]2.1高纯氮气的通气量的确定[/b][/b][/b][/b] 据文献报道,反应液中氧的浓度大于0.1ppm时,反应液中的氧会将还原态的VB[sub]12[/sub]氧化为羟钴胺。反应式如下:[align=center][img=,458,39]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152025_01_1626619_3.png[/img][/align] 因此,必须控制反应时中氧的浓度。本研究采用向反应液中通入保护性气体,以脱除反应液中的氧,避免氧化反应的发生。试验方法:反应液中的氧主要来自于溶解原料的水,所以以水代料进行通气试验。对于通气的实际操作我们发现对于容积只有1m3的反应器,在搅拌状态下通入高纯氮气的最大流速只能固定在2000L/min左右,过大会使反应液逃液,为此我们以高纯氮气的流速和通入时间为考察对象,测定反应液氧气含量。因此,选择10组通气量,分别通入与反应液同体积的水中,在5、10、15、20、25、30、40、60 min 时测定水中氧的浓度。试验数据见表3-1。试验数据见表2-1:[align=center]表2-1 一定通气量时不同时间氧的浓度[/align][align=center][img=,650,463]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152028_01_1626619_3.png[/img][/align] 从表2-1数据可以看出,通气时间在20分钟以内能够使水中的氧浓度低于0.1ppm的通气量为:大于600L/min 。将600、800、1000、1200 L/min的通气量作为进一步试验的通气量,以考察能使反应液中氧浓度达到0.1ppm以下的时间对甲钴胺转化率及羟钴胺含量的影响(在高效液相图谱中羟钴胺的百分比越高就说明反应液中氧气浓度越高)。试验数据见表2-2。[align=center]表2-2 不同通气量对转化率的影响[/align][align=center][img=,650,161]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152030_01_1626619_3.png[/img][/align] 从表3-2数据可以看出甲钴胺的转化率并不能说明这个问题,这是因为生成的羟钴胺含量太小,而测定精度不够造成该数据不能有效表征这个问题;而从图谱中可以明显看到通气量与羟钴胺在图谱中的含量差异。根据羟钴胺的含量可知600L/min、800L/min的通气量比较合适,而通气量为1200L/min时,在通气时发生冲料现象,致使反应无法进行。通气量为1000L/min时,产生大量的泡沫,因此该研究选取的通气量为600~800L/min,且通气时间定为30min比较合理。[b][b]2.2搅拌形式的选取[/b][/b] 在该反应中,搅拌效果会在一定程度上影响甲钴胺的转化率。在相同搅拌速度下,我们以浆式、窝轮式及折叶式搅拌形式进行试验,考察搅拌方式对转化率的影响。试验数据见表2-3。[align=center]表2-3 搅拌形式对甲钴胺转化率的影响[/align][align=center][img=,650,304]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152031_01_1626619_3.png[/img][/align] 从表2-3数据可以看出,选用折叶式搅拌形式较合适。[b][b]2.3精制介质展层速度的确定[/b][/b] 由于生产中使用的柱子高度在3米以上,塔板高度与理论板数不能与小柱子同日而语,所以展层速度对于生产展层工艺来说比较重要。其展层效果直接影响甲钴胺的色谱纯度与含量的高低。对于确定的精制介质,若展层剂比例一定,柱子填料一定,装量高度一定的情况下,则其展层速度对分离效果的影响较大,它们遵循范弟姆特动力学方程[align=center]H=A+B/U+C×U[/align][align=left] 其中:H为塔板高度 A为涡流扩展项 B为分子扩散项 C为传质阻力系数 U为展层速度[/align] 如果U过小,可认为C项不起作用,可忽略,这样因B/U值大而导致H值过大,分离效果降低;如果U过大,可认为B可忽略,因C×U 值增大,而导致H值过大,分离效果亦降低。为得到好的分离效果,对介质JZ-3的展层速度进行了试验研究,试验方法为:在相同的精制柱中,加入适量的的精制介质JZ-3,取等体积的反应液,吸附于这个精制柱中,分别用同一比例的丙酮水溶液以不同的10组流速进行展层,而后用同一解析剂以相同的流速解析,用高效液相色谱法测定结晶原液的相关物质及甲钴胺的收率。试验数据见表2-4。[align=center]表2-4 展层速度对甲钴胺有关物质的分离能力[/align][align=center][img=,600,333]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152037_01_1626619_3.png[/img][/align] 由表2-4中数据可以看出:展层速度为700 L/ h时有关物质最低,此时收率为93.8%,而展层速度为600 L/ h和800L/ h时其有关物质与收率也比较与之接近。因此将600~800L/ h的速度作为该工艺的展层速度。采用以上试验确定的工艺参数,设计并建设了甲钴胺生产性试验装置。稳定生产后。连续生产10批的数据见表2-5。从表2-5的数据可以看出:使用相关物质在2.3%以上的氰钴胺作原料生产的甲钴胺,相关物质全部在1.0%以下,收率平均达到93%以上,甲钴胺含量达到98.5%以上。[align=center]表2-5 生产结果统计[/align][align=center][img=,650,296]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152039_01_1626619_3.png[/img][/align] 从表2-5大生产的批次统计结果可以看出,小试确定的试剂及工艺条件,在大生产中可以生产出稳定的高品质的甲钴胺产品,同时又可以做到清洁生产,降低环保压力的目的。[b]3 质量研究[b]3.1 各国药典标准及产品内控标准[sup][[/sup][sup]3][/sup][/b][/b][align=center] 表3-1 国内市场标准(CP)[/align][align=center][img=,650,317]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152045_01_1626619_3.png[/img][/align][align=center]表3-2 日本市场标准(JP)[/align][align=center][img=,650,273]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152046_01_1626619_3.png[/img][/align][align=center]表3-3美国市场标准(USP)[/align][align=center][img=,650,336]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152055_02_1626619_3.png[/img][/align][b][b]3.2新工艺开发前后产品主要质量指标对比[/b][/b][align=center]表3-4 工艺开发前后产品结果对比[/align][align=center][img=,650,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152057_01_1626619_3.png[/img][/align] 以新工艺制备的三批样品的HPLC图谱及色谱纯度结果见图3-1,图3-2,图3-3。[align=center][img=,650,468]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152059_01_1626619_3.png[/img] [/align][align=center]图3-1 甲钴胺样品-1HPLC图谱[/align][align=center][img=,619,471]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152101_01_1626619_3.png[/img][/align][align=center]图3-2甲钴胺样品-2HPLC图谱[/align][align=center][img=,650,456]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152101_02_1626619_3.png[/img] [/align][align=center]图3-3甲钴胺样品-3HPLC图谱[/align] 综上结果,本课题开发工艺所生产的产品质量在有关物质项明显优于开发前工艺。[b][b]3.3 稳定性试验[/b][/b] 为进一步确定开发后工艺所生产产品的质量稳定性情况,按照相关法律法规要求,将前三批大生产产品列入了长期36个月及加速6个月稳定性考察研究。参照已上市产品的储运条件为10-30℃,参照相关指导原则在温度25±2℃,相对湿度60±5% 的条件下进行,避光保存。以第0个月,3个月、6个月、9个月、12个月、18个月、24个月、36个月为考察时间点,进行重点项目检测。[b][b]3.4 稳定性考察结果统计与分析[/b][/b] 比较重点考察项目,包括性状、含量、有关物质、水分等相关指标不同考察时间节点的变化是否存在显著性差异,其差异的变化范围应在药典质量控制范围之内。[align=center]表3-5甲钴胺加速试验结果[/align][align=center][img=,650,422]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152102_01_1626619_3.png[/img][/align] 表3-5结果表明,按照开发的新工艺生产的产品在重要质量指标:性状、含量、有关物质、水分都符合相关药典要求。目前该项研究仍在进行中。在已完成的加速稳定性考察过程中,产品重点质量指标均符合各相关药典规定;[b][b]4 结果与讨论[/b][/b] (1) 本课题选取了甲钴胺专用的精制介质,该介质对于甲钴胺精制具有较强的专属性,能够有效降低甲钴胺的有关物质,能够制备高纯度的甲钴胺。极大提高了临床用药的安全性。 (2) 优化大生产工艺条件,提高产品质量,降低成本。 总之,以本课题研发的生产工艺生产的甲钴胺原料药具有收率高、质量好、成本低、清洁污染少等优点。在满足患者临床用药安全性、提高公司市场竞争力方面具有重大意义。[b]参考文献[/b]AKAIKEA, TAMURAY,SATOY, YOKOTAT. Protective Effectsofa Vitamin B12 Analog, Methylcobalamin,Against Glutamate Cytotoxicity in Cultured lortical Neurons. EurJPharmacol, 1993,241(1):1-6.石山忠似等, 高纯度B12的制备方法 Chemistry and Biochemistry of B12. Published simultaneously in Canada. Edited by RUMA BANERJEE ,Department of Biochemitry, University of Nebraska Lincoln,NE. 367-379. 国家食品药品监督管理局.[color=#333333] 《[/color]已上市化学药品变更研究的技术指导原则(一)[color=#333333]》[/color],国食药监注242号:7-15.

  • 55.10 苦参素凝胶骨架缓释片的制备工艺研究

    55.10 苦参素凝胶骨架缓释片的制备工艺研究

    作者:李宗伟; (南方医科大学;)摘要:背景   全世界约有20亿人感染了乙肝病毒,约有3.5亿人患有慢性感染。估计每年有60万人死于急性或慢性乙型肝炎。在儿童时期获得慢性感染的成人中,约25%会因慢性感染死于肝癌或肝硬化。乙型肝炎病毒的传染性比艾滋病毒强50至100倍。乙型肝炎是一个重要的全球卫生问题,也是最严重类型的病毒性肝炎。它可造成慢性肝病,患者死于肝硬化和肝癌的风险极高,乙型肝炎病毒是影响卫生工作者的一个重要的职业危害。   乙型肝炎在中国和亚洲其他地区流行。这些地区大多数人在儿童时期即已感染乙型肝炎病毒,8-10%的成年人会转为慢性感染。乙型肝炎病毒造成的肝癌是导致男子因癌症死亡的三大因为之一,也是导致妇女因癌症死亡的一个主要因为。亚马逊和中东欧南部地区亦为慢性感染高发区。在中东和印度次大陆,估计有2-5%的人口为慢性感染状态。西欧和北美有不到1%的人口为慢性感染状态。   苦参素(Matrine)是从天然植物苦豆子(Sophora Alopecuroides L.)和苦参(Sophora Flavescerls Ait)根中科学提取的生物碱,经氧化合成、纯化、提取而得到的有效单体,是苦参碱的N-氧化物,氧化苦参碱因具有特殊的氧结构从而使分子极性大增,较苦参碱具有独特的作用机理和疗效。   苦参素以氧化苦参碱(Oxymatrine,OM)为主及少量的氧化槐果碱(Oxysophoepine)的混合碱,按干燥品计算,含氧化苦参碱(C15H24N2O2)不得少于98.0%。氧化苦参碱,分子式:C15H24N2O2·H2O,分子量:282.38。苦参素为白色或类白色的结晶性粉末;无臭,昧苦;在水、乙醇、氯仿中易溶,在丙酮中溶解,在乙醚中微溶。   基础药理与临床研究表明有抗癌、抗病毒、抗寄生虫、抗炎、抗心律失常及明显升高白细胞作用,具有广阔的开发前景。近年研究发现,苦参素具有消除或抑制病毒的复制,能调节机体的免疫力,增强肝脏的解毒能力。稳定肝细胞,促进肝细胞再生,提高肝细胞活力,保护肝内酶系统,改善肝功能。用它治疗慢性肝炎,可有效降低ALT,改善临床症状。意义及目的   苦参素还存在着由于脂溶性差,口服生物利用度低,这在一定程度上限制了其临床疗效的发挥。制备成微球或是微丸、纳米制剂则成本较高且难于实现工业化。而药剂学研究中的凝胶骨架缓释片技术能提高其体内吸收,显著地改善其生物有效性,且工艺简单、成本较低。本课题结合临床实际,选择治疗病毒性肝炎具有良好作用的苦参素作为模型药物,在中医药理论及现代实验设计思想的指导下,进行了抗肝炎苦参素凝胶缓释片的制备工艺、理化性质、质量标准、稳定性以及药物代谢动力学方面的研究,为解决苦参素的吸收提供了新的思路。   方法   1.本文以制备12h控制释放的苦参素凝胶骨架缓释片为目的,在以此为基础上,对处方前的各项指标进行考察。建立苦参素的体外的分析方法,并通过详细的方法学确证了体外分析方法的可靠性。建立高效液相色谱法用于氧化苦参碱基本理化性质、片剂的释放度和含量的测定。并对苦参素在各种促渗剂饱和液中

  • 浅谈液相色谱分析与制备

    色谱有分离、检测两大功能。分离中起作用的是色谱填料和流动相,往往流动相是可以调整选择的,填料一旦装进去就很难更换。大家一定要注意对填料的选择,尤其是做制备的朋友。 很多朋友用进口色谱柱做分析,想做制备的时候发现进口制备柱太昂贵,想选用国产制备柱,但国产的制备柱填料和进口分析柱填料有一定差异,如安捷伦等分析柱和OL色谱柱 C18-EX,安捷伦大部分色谱柱偏重高效、快速,但柱容很低,OL色谱柱 C18-EX具有高碳载、大表面积、价格优惠、柱容也不错,很适合分离复杂化合物,制备纯化有机物。 这个时候如果想把分析方法照搬到制备上来,就不行了,需要从新摸索优化,浪费大量人力物力财力。所以摸索纯化工艺时候一定要从分析方法就开始选择好色谱柱,现在很多朋友都是直接填OL色谱柱 C18-EX 4.6*250 10um去摸索分析方法的,后期用相同填料,直接利用经验公式放大。 希望对大家有帮助。

  • 羧甲基壳聚糖和季铵盐壳聚糖的制备工艺

    【序号】:4【作者】:刘雪娇景宜【题名】:羧甲基壳聚糖和季铵盐壳聚糖的制备工艺【期刊】:南京林业大学学报(自然科学版).【年、卷、期、起止页码】: 2017,41(03)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iAEhECQAQ9aTiC5BjCgn0Rn0uVL8h-VlZrU3CFsliL7moR6HPE9sb0P5bbZc6YdXj&uniplatform=NZKPT

  • 喷雾干燥法制备耐高温型微胶囊化甜橙油

    [font=微软雅黑][size=10.5000pt]喷雾干燥法制备香精香料微胶囊应用最为广泛的一种方法,利用喷雾干燥法制备的微胶囊化香精或香料在保存期间内不容易被氧化,香料物质挥发性下降,产品的货架期延长。[/size][/font][font=微软雅黑][size=10.5000pt]微胶囊化香精或香料产品的质量和性能在很大程度上取决于产品壁材的选用,壁材的理化性质决定了产品的表现。[/size][/font][font=微软雅黑][size=10.5000pt]香精或天然香料物质中含有大量的易挥发性物质和不饱和物质,这些物质在高温处理过程中,挥发损失增加,不饱和物质会发生热降解或氧化降解,从而降低了产品的香[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量。[/size][/font][font=微软雅黑][size=10.5000pt]因此,在一些需要经高温加工食品的加香过程中,应该提高香精产品的耐高温性能,否则香精产品的用量会显著增加,提高了食品的成本;[/size][/font][font=微软雅黑][size=10.5000pt]另一方面,在高温的作用下,香精的香料通常都是采用油质香精来提高产品的耐温性,取得了一定的效果,但还有很大的提高空间。[/size][/font][font=微软雅黑][size=10.5000pt]从提高香料物质的耐高温性能角度出发,选择具有不同理化性质的壁材物质来包覆甜橙油,制备耐高温微胶囊化甜橙油。[/size][/font]

  • 医用超纯水制备检验分析纯水工艺流程

    医用超纯水制备处理超纯水水质要求对医院来说相对更严格以及更高。往往需要超纯水的电阻应高于15000000000000以上。为了确保医疗安全的超纯水,超纯水系统应用于医院行业,主要是由不锈钢材料的组合,必须配备水杀菌装置之前。  医院检验分析超纯水设备工艺流程:原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→精密过滤器→一级反渗透机→中间水箱→中间水泵→EDI系统→纯水水箱→纯水泵→紫外线杀菌器→微孔过滤器→用水点。  医院检验分析超纯水设备各系统说明:  1、预处理系统  医院检验科超纯水设备预处理系统主要由PP喷熔滤元、85C过滤、CTO精密过滤器组成。系统运行总出力200L/h 以上,要求源水温度在25±3℃。喷熔滤元能除去大部份悬浮物、胶体和颗粒状机械杂质,使出水得到初步净化;正常滤水能力为200L/h,其滤速为16m/h。由于原水为地表自来水,水中余氯及有机物的含量可能较高,而低压复合反渗透膜对余氯及有机物有严格的限制,其值必须≤0.1mg/l,所以在预处理中设置85C过滤、CTO精密过滤器去除原水中的余氯及 有机物,有效保证反渗透装置长期、平稳、安全、可靠地运行。85C过滤、CTO精密过滤器 的正常滤水能力为200L/h,其滤速16m/h。所以在反渗透膜前设置三级预处理进行保护, 以防止反渗透浓水侧的污染结垢。有效保证反渗透装置长期、平稳、安全、可靠地运行。运行方式为自动控制。  2、反渗透系统  反渗透装置能去除99.6%以上的盐份及100%的有机物、细菌、病毒物。反渗透运行过程中,膜表面有一定量的沉积物,系统设置主机自动冲洗反渗透装置,以保证反渗透装置的稳定运行。本系统的反渗透膜为美国陶氏公司的TW30-1812-300膜元件两支。  高压泵是RO装置的动力源。为使RO装置处于良好运行状况下,高压泵进出口压力开关;当 高压泵进口压力低于限定值(缺水P≤0.05MPa)或高压泵出口压力高于限定值(P≥0.6 MPa)时,则高压泵及RO系统自动停止运行,以防止误操作引起出水背压过高而对RO膜造 成损坏。RO系统运行制水、压力控制、自动清洗均为自动控制。RO系统每隔一定周期可自 动定时对RO膜元件进行低压表面冲洗,将RO膜元件内尚存的浓水冲洗掉,防止浓水沉积引 起RO膜表面结垢。反渗透系统出力为100公升/小时;一级反渗透系统脱盐率大于99.6%。  3、精脱盐后处理系统  纯水储水罐的反渗透除盐水水质仍达不到高纯水用水标准,还需进行进一步脱盐处理。反渗 透除盐水经过紫外线杀菌,杀灭各种细菌¸病毒¸芽孢等物质。最后进入核子级抛光纯化系统 进行深度脱盐处理。核子级抛光树脂系统产水稳定电导率达0.2us/cm以下,通过交换反应 能彻底除去水中的残余离子,产品水完全符合并超过中国药典规定的纯水指标,最后送去高 纯水用水系统。  4、从设备自来水进水口到终端出水口为止为全自动控制,用水点阀门打开自动出水,自来水缺水设备自动停止运行,纯水箱满水设备自动停止运行,纯水罐体为全密封配置。以保证水质标准完全符合中国药典规定标准。  医院检验分析超纯水设备技术参数:  机器型号:PT-RO-100L/H-A  (产水量还有:10L/H 20L/H 、50L/H、150L/H、0.25T/H .......等更多型号。  进水水源:市政自来水  进水水温:5-38℃  进水水压:1-6Kg  机器电源:220V/50HZ  进水TDS :≤1000ppm  额定功率:150W  制 水 量:100L/H  产水电导率:≤0.2us/cm(25℃)  产水电阻率:≥5mΩ/cm(25℃)  主机体积:长550mm×宽395mm×高960mm  出水水质符合《中国药典2010版》标准。  医院检验分析超纯水设备特点  1、高产水量:主耗材使用寿命更长,超纯化系统采用高性能进口核子级抛光树脂。与同类产品相比,产水量更大,造水成本也更低。  2、制水过程自动控制,部件的造水能力,延长其使用寿命。可更换的配件均符合国标要求,容易购买而且质优价廉,确保低成本运行。  3、即时在线检测:在线即时检测水质,数字化显示更准确、直观。  4、可更换配件质优价廉:RO膜、系统自动冲洗功能可以有效预防生物膜的形成,保证关键  5、关键元器件:采用优质进口配件。6、独特的外观设计:整机一体化设计,结构紧凑、精致典雅、美观大方,方便运输、安装。 总之医院超纯水设备生产水质不仅对于生活用水是最重要的,同时对医院和医疗结构也是最重要的是水,医院的水质量的要求也越来越严格,主要是超纯水、超纯水是医院重要的物品。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制