当前位置: 仪器信息网 > 行业主题 > >

细菌细胞外荚膜

仪器信息网细菌细胞外荚膜专题为您整合细菌细胞外荚膜相关的最新文章,在细菌细胞外荚膜专题,您不仅可以免费浏览细菌细胞外荚膜的资讯, 同时您还可以浏览细菌细胞外荚膜的相关资料、解决方案,参与社区细菌细胞外荚膜话题讨论。

细菌细胞外荚膜相关的论坛

  • 【资料】分光光度法应用5- 细菌细胞密度(OD 600)

    [size=5][font=宋体]实验室确定细菌生长密度和生长期,多根据经验和目测推断细菌的生长密度。在遇到要求较高的实验,需要采用分光光度计准确测定细菌细胞密度。[/font][font=Arial]OD600[/font][font=宋体]是追踪液体培养物中微生物生长的标准方法。以未加菌液的培养液作为空白液,之后定量培养后的含菌培养液。为了保证正确操作,必须针对每种微生物和每台仪器用显微镜进行细胞计数,做出校正曲线。实验中偶尔会出现菌液的[/font][font=Arial]OD[/font][font=宋体]值出现负值,原因是采用了显色的培养基,即细菌培养一段时间后,与培养基反应,发生变色反应。另外,需要注意的是,测试的样品不能离心,保持细菌悬浮状态。[/font][font=Arial][/font][font=Arial][/font][font=Arial] [/font][font=宋体]分光光度计的重要配件[/font][font=Arial] —— [/font][font=宋体]比色杯[/font][font=Arial][/font][font=Arial] [/font][/size][size=5][font=宋体]比色杯按照材质大致分为石英杯、玻璃杯以及塑料杯。根据不同的测量体积,有比色杯和毛细比色杯等。一般测试核酸和紫外定量蛋白,均采用石英杯或者玻璃杯,但是不适合比色法测定。因为反应中的染料(如考马斯亮兰)能让石英和玻璃着色,所以必须采用一次性的塑料杯。而塑料杯一般不适合用于在紫外范围内测试样品。[/font][font=Arial][font=宋体]由于另外测试的样品量不同,所以一般分光光度计厂家提供不同容积的比色杯以满足用户不同的需求。目前市场已经存在一种既可用于核酸、紫外蛋白质定量,亦可用于蛋白比色法测定的塑料杯,样品用量仅需50μl,比色杯单个无菌包装,可以回收样品。如Eppendorf UVette?塑料比色杯,是目前比色杯市场上一个革新。随着生命科学以及相关学科发展,对此类科学的实验研究提出更高的要求,分光光度计将是分子生物学实验室不可缺少的仪器,也成为微生物、食品、制药等相关实验室的必备设备之一。[/font][/font][/size]

  • 【推荐讲座】牛奶中细菌和体细胞检测技术 (2017-12-15 10:00)

    [b]新上讲座:牛奶中细菌和体细胞检测技术举行时间:2017-12-15 10:00立即免费报名:[/b][url]http://www.instrument.com.cn/webinar/meeting_2925.html[/url][b][/b]主讲人:罗海峰,理学博士 福斯中国应用技术部经理 有10多年近红外应用和开发经验, 主要负责原料奶检测及乳制品加工过程的方案的推广和应用。[b]主要内容:[/b][color=black]1. 为什么检测牛奶中的细菌数和体细胞数?2. 细菌数和体细胞数的指标反映了牛奶中的什么问题?3. 是否可以同时获得牛奶细菌数和体细胞数,并快速获得检测结果?3. 总体细胞数的检测和体细胞分型计数;4. 福斯相应的解决方案。[/color]

  • 在奶牛场生产出体细胞数及细菌含量低的牛奶

    在奶牛场生产出体细胞  数及细菌含量低的牛奶  奶牛场受到污染的牛奶一直会存在于整个生产链之中,虽然其后的生产程序可能会尽量减低牛奶的腐败程序以满足消费者的质量要求,但是品质却永远也比不上刚刚从奶牛乳房产出的牛奶了。因此,为消费者提供卫生乳制品的第一步开始于牛场。  1. 体细胞数  1.1体细胞的来源  动物体抵御一些入侵细菌的措施之一就是将白细胞渗透到受感染区域。白细胞来自动物血液,被称为体细胞。以示与入侵微生物细胞的区别。正常情况下,少数白细胞可经乳腺而进入乳汁,但在病原菌入侵时,机体会向乳腺内释放大量的白细胞。若乳腺受到损害,也会造成乳腺上皮细胞脱落,成为乳汁内的体细胞的一部分,但不超过体细胞总数的百分之几。与细菌不同,体细胞一旦进入乳汁内,其总数是不会发生变化的。白细胞包括巨噬细胞、淋巴细胞和嗜中性细胞。正常乳中含有巨噬细胞,其作用是清除乳腺中的细菌和细胞碎片。淋巴细胞在抵抗感染的机制中起主要作用,此时要占体细胞总数的90%以上。体细胞数是变化的,在完全健康奶牛的乳汁中低于200000/亳升;乳腺感染严重,会高于5000000/毫升。  1.2 高体细胞含量牛奶的缺点  体细胞数偏高,表明牛奶产于受损或受感染的乳腺。细菌污染会极大降低牛奶的质量,而体细胞本身也对牛奶质量不利,特别是对这些用于生产发酵乳制品的牛奶。牛奶变质表现为:①牛奶味道变坏 ②牛奶的贮存期缩短 ③乳清量增加,酪蛋白的收缩性降低,导致奶酪产量下降。  1.3 体细胞数的估测  体细胞数(SCC,单位为:细胞数/亳升)可经显微镜人工测定,但耗费时间,一位技术员每天仅能测定很少的样品。体细胞数常常是由称为细胞计数器的电子仪器来测定,但该仪器较昂贵,不易搬运,这就得把奶样送到实验室去分析。在牛舍内实际上可采用一项简单的技术,即用化学试剂来测定白细胞的数量,其最初称为加州乳房炎测定(CMT),但现有众多地方测定方法,如兰州乳房炎测定法(LMT)。CMT法可把牛奶评为0、T、1、2和3级,其大致相对应的细胞数为:  CMT测试等级 大致体细胞数/毫升  0 100,000  T(=微量) 300,000  1 900,000  2 2,700,000  3 8,100,000  1.4 引起体细胞增高的因素  1.4.1 乳房受到细菌感染。这大概是导致体细胞数增加的主要因素。  1.4.2乳房受到损伤。奶牛的乳房并非不会受到损伤,比如经常由于地滑而摔伤乳房。有些奶牛,特别是那些乳房过度下垂的奶牛,站起来时容易踩到自己的乳房。乳房受到伤害,牛奶中体细胞数会暂时升高,随着伤口的愈合,体细胞数又会恢复正常。  1.4.3 奶牛的年龄和泌乳阶段。老龄奶牛似乎更易患乳房炎,这样,体细胞数常常较高。美国的研究表明,未患乳房炎奶牛乳中的体细胞数并不随年龄的增加而提高。这样,随着年龄的增长,对于那些一生中某一阶段曾患过乳房炎的奶牛,其体细胞数增加的机率会增大。  1.5 降低体细胞数。体细胞数值高常常是由于乳房受到了细菌所至,因此降低体细胞数值的最好方法就是防止感染。  2. 乳中的细菌  牛奶通常是老、幼、病、残者的食品,他们也最需要健康食品。奶牛场是微生物污染牛奶的理想环境,最危险的途径之一就是通过存在于乳房中并引起乳房炎的细菌而污染。这些细菌都是病原菌,对牛和人类都有害。  一旦受到这样的污染,牛奶就成为劣质产品。加热处理可减缓或停止细菌的作用,但不管如何处理,这种牛奶仍就是含有活的或死的微生物及其所产生的生化物质。这些物质有的会降低乳制品的品质,有的对消费者的健康有害。来自粪便的细菌还会产生酶类和耐毒素。因此,防止乳制品被污染,应从提供优质鲜奶开始。  细菌进入乳房引起乳房炎的许多途径与其污染牛奶的方式密切相关,有些细菌可引起乳房炎,随后进入牛奶。  2.1牛奶中细菌的类型  下表为牛奶中常见的微生物,经分离,也许可见到其它类型的微生物。大概有95%的乳房炎是由表中前三种细菌引起的。  微生物 来 源 所产毒素 致病性  奶牛 人类  金黄色葡萄球菌 乳房炎  人类污染  环境  牛粪 肠毒素 致病 致病  无乳链球菌 乳房炎 致病 致病  大肠埃西氏杆菌 乳房炎  环境  牛粪 耐热和不耐热肠毒素 致病 有些致病  空肠弯曲菌 受感染的乳房  牛粪 肠毒素 致病 致病  小肠结肠炎耶尔森菌 牛粪  沙门氏菌群 环境  牛粪 肠毒素 致病 致病  产单核细胞李斯特菌 环境  牛粪  饲料—特别是劣质青贮  乳房炎(少数) 致病 致病  结核分支杆菌 受感染乳房  人类污染 致病  牛分支杆菌 受感染乳房 致病 致病  布鲁氏菌属 受感染乳房  牛粪  环境 致病 致病  伯内特柯克斯体 牛粪  受感染乳房 致病 致病  普通变形杆菌 水  环境  假单包菌属 水  环境  2.2 乳房对乳房炎的抵御  乳房低御感染的部位有两处, 其中之一就是乳头的通道一乳头管,乳头上有良好的括约肌,可使乳头口封闭,阻止异物进入通道。  2.3 防止乳房暴露于细菌之中  防止乳房炎最理想的方法首先是防止细菌接触乳房,这就涉及到奶牛管理的各个方面。  2.3.1养牛设施。奶牛舍的设计标准与良好的人类住房的设计原则是相近的,其可归纳如下:  ① 尽量减少疾病的传播。  ② 奶牛拥有一个舒适和较干燥的环境。  ③ 应具备有效地消除废物的设施。  ④ 奶牛容易获得饲料以满足产奶的需要。  ⑤ 奶牛的环境条件不得发生急剧变化。  ⑥ 温度、太阳辐谢、湿度应尽量接近奶牛的“舒适区”。  ⑦ 奶牛易于接近饮水。  ⑧ 易于观察成母牛、育成牛的行为变化,特别是发情鉴定,还有牛群健康观测。  ⑨ 便于将奶牛从主要的饲养区域赶至一些特殊的地点,如挤奶台、配种架等。  ⑩ 整体设计应考虑到尽量节省劳动力。  前三点直接涉及到奶牛所处的环境,但饲料也可成为传播微生物的潜在因素(见2.3.1.3)。  2.3.1.1 栓系式牛舍。中国的许多奶农都采用了栓系式牛舍饲养奶牛,这种牛舍的设计对奶牛的环境卫生有很大的影响。设计原则之一就是既简便又能及时地将粪、尿与奶牛分开。再勤快的奶农也不可能整天在那儿清粪以避免奶牛卧下时弄脏牛体。奶牛是站立排粪尿的,因此,设计上就必须让粪尿直接排入粪尿沟内。荷斯坦牛舍牛床的尺寸应设计为:从饲槽后沿至粪尿沟前沿的长度为1.55-1.65米,而中国奶牛舍内的尺寸一般都为1.8—1.9米, 这样牛粪常被排泄于奶牛躺卧之处,常常污染牛腿、肋部和乳房。  如果奶牛可直接将粪便排入粪尿沟内,说明其站立位置正对饲槽,如果奶牛斜向站立,粪尿将会排在牛床上。但可设置分隔栏,分隔出独立的牛床,以使奶牛保持正确的姿势。不一定一牛一隔栏,可两牛一隔。  牛床应有某种铺垫,以保证栓系式牛舍奶牛肢蹄的健康。铺垫物应清洁、干燥。常采用的有秸秆、沙子、锯末,也可使用专用的橡胶垫。目前中国可生产这种橡胶垫,也买得到。使用时最重要的一点是不要太频繁冲洗橡胶垫。以免潮湿。  2.3.1.2运动场。 在讨论牛奶质量时不宜过多叙述运动场设计的各个方面,必须强调的一点就是干燥。也就是说,如果是土地面,排水应通畅。在许多奶牛场之中,这与生产卫生牛奶是完全不相适应的。水泥运动场应铺成2-3的坡度,以便尽快排走雨水。若水泥地表地设计成沟槽状以增加牛蹄阻力,其方向应顺坡向而走。  2.3.1.3饲养。有人奇怪为什么麽将饲养作为病菌传播的因素之一,但在中国它确实是紧密相关的。李斯特菌对动物和人类都是致病菌。在霉菌适宜的类似环境,特别是发酵度不足的青贮饲料,特别适宜李斯物菌增殖  2.3.2 挤奶  农业生产的挤奶过程是十分独特的,因为在充满了潜在有害微生物污染的环境中获得人类食品。正常的卫生标准应依据食品业的,而非农业的标准。在挤奶的过程中,存在着微生物对奶牛和牛奶污染的极大危险,其过程可分为三步:乳房准备、挤奶和乳房的后处理。  2.3.2.1乳房准备。乳房准备基于以下三个原因:  -刺激奶牛的泌乳反射。  -保证泌乳过程中不受微生物的侵袭。  -保证乳房上的污物不会污染牛奶。  就象野生祖先母牛看到犊牛、闻到犊牛的气味、乳房受到犊牛碰撞而产生的反应一样,品种化的奶牛对擦洗和按摩乳房也产生同样的反应。奶牛对热水冲洗和按摩会习惯性地产生泌乳反应。但擦洗乳房的毛巾和挤乳工的手都会将细菌从一头奶牛传染到另一头奶牛,这是对奶牛健康最大的危险。正确操作的要求是:每头牛分别用洁净水冲洗。现代化的挤奶台采用软管和喷嘴冲洗乳房。用一桶水洗多头牛简直就是在奶牛之间传播病菌,这是不可原谅的错误。即使按照乳品厂的标准加入消毒剂,从一头奶牛到另一头奶牛的挤奶间隔时间也保证不了化学药品的消毒作用。如果增加消毒剂的浓度,乳房细薄的皮肤受到损害的程度就会加大,这也就促进了乳房内部微生物感染的机会。如果不具备软管、喷头这些条件,那麽,用一只手提喷水器也就足够冲洗乳房了。用于擦干乳房的毛巾是微生物的主要载体,再也找不到什麽比这更有效的东西在牛群中传播病原菌了。奶业发达国家主要采用一牛一纸擦试方法,也可采用洁净的报纸替代,虽然效果不如纸巾,但便宜,起码比反复使用毛巾要好的多。  有些专家建议

  • 观察活性污泥里细菌细胞用显微镜

    请问活性污泥里细菌细胞需要用多少倍数生物显微镜,我用1600倍的只能看到放大的污泥,看不到细菌细胞。http://simg.instrument.com.cn/bbs/images/brow/em61.gifhttp://simg.instrument.com.cn/bbs/images/brow/em61.gifhttp://simg.instrument.com.cn/bbs/images/brow/em61.gif

  • 细菌在培养基上生长特性

    1.固体培养基标本或液体培养物划线接种到固体培养基表面后,单个细菌经分裂繁殖可形成一个肉眼可见的细菌集团,称为菌落(colony)。(1)菌落的形态特征:大小、形状(露滴状、圆形、菜花样、不规则等)、突起或扁平、凹陷、边缘(光滑、波形、锯齿状、卷发状等)、颜色(红色、灰白色、黑色、绿色、无色、黄色等)、表面(光滑、粗糙等)、透明度(不透明、半透明、透明等)和粘度等。据细菌菌落表面特征不同,可将菌落分为3型: ①光滑型菌落(S型菌落):菌落表面光滑、湿润、边缘整齐,新分离的细菌大多呈光滑型菌落。②粗糙型菌落(R型菌落):菌落表面粗糙、干燥、呈皱纹或颗粒状,边缘大多不整齐。R型菌落多为S型细菌变异失去菌体表面多糖或蛋白质形成。R型细菌抗原不完整,毒力和抗吞噬能力都比S型细菌弱。但也有少数细菌新分离的毒力株就是R型,如炭疽孢杆菌、结核分枝菌等。③粘液型菌落(M型菌落):菌落粘稠、有光泽、似水珠样。多见于厚荚膜或丰富粘液层的细菌、结核杆菌等。(2)菌落溶血特征:菌落溶血有下列3种情况。①α溶血:又称草绿色溶血,菌落周围培养基出现1~2mm的草绿色环,为高铁血红蛋白所致;②β溶血:又称完全溶血,菌落周围形成一个完全清晰透明的溶血环,是细菌产生的溶血素使红细胞完全溶解所致;③γ溶血:即不溶血,菌落周围的培养基没有变化,红细胞没有溶解或缺损。(3)色素:有些细菌产生水溶性色素,使菌落和周围的培养基出现绿色、金黄色、白色、橙色、柠檬色等颜色,产生的色素有水溶性或脂溶性。(4)气味:某些细菌在培养基中生长繁殖后可产生特殊气味,如铜绿假单胞菌(生姜气味)、变形杆菌(巧克力烧焦的臭味)、厌氧梭菌(腐败的恶臭味)、白色假丝酵母菌(酵母味)和放线菌(泥土味)等。

  • 分离的细菌如何鉴定?

    问:分离的细菌如何鉴定?答:细菌的传统鉴定 1. 形态特征及染色结果 ①革兰氏染色 ②鞭毛染色 ③荚膜染色 ④细胞壁染色(NaCl法:1.取1d25%NaCl溶液于洁净的载玻片上。2.挑一环培养6h的细菌在25%的NaCl中涂匀,自然凉干。3.滴加0.01%的结晶紫于其上,30s后水洗干燥,油镜观察。) ⑤抗酸染色 2. 培养特征观察取菌龄24-28h的菌3.6接种于PDA平板,PDA斜面,营养肉汤中培养24h,进行琼脂柱,明胶穿刺培养,30℃培养24h。 3. 生理生化实验需氧性测定和运动性测定:将斜面培养24h的待测菌用接种针穿刺到培养基管底,3d后观察变化。如果菌落沿培养基表面生长,表明为好氧菌,反应为阳性,如果菌落沿穿刺线生长,反应为阴性。培养基成分:蛋白胨0.2g,NaCl0.5g,K2HPO40.2g,琼脂0.5-0.6g,葡萄糖1.0g,水100ml。 4. 生长温度测定在肉汤培养基(外加1%葡萄糖)中用接种针接种,在恒温水浴锅中不同温度下([c

  • 【原创大赛】产气荚膜梭菌初试验

    【原创大赛】产气荚膜梭菌初试验

    1. 适应范围和应用领域1.1. 适应于饮用天然矿泉水中产气荚膜梭菌的测定2. 方法原理2.1. 采用滤膜法。取50ml的水样用孔径为0.22um的滤膜过滤,然后将滤膜移至SPS琼脂培养基上,倒置于36℃±1℃厌氧培养24h,计数黑色菌落,任意挑取3个-5个在滤膜上生长的黑色菌落,分别接种FT培养基,于36℃±1℃厌氧培养18-24h后,将培养物做确证实验,根据实验结果确证产气荚膜梭菌的存在。3. 试剂 3.1. 庖肉培养基 3.2. 亚硫酸盐-多粘菌素-磺胺嘧啶琼脂(SPS) 3.3. 液体硫乙醇酸盐培养基(FT) 3.4. 动力-硝酸盐培养基(A法) 3.5. 卵黄琼脂培养基4. 仪器及设备 4.1. 恒温培养箱 4.2. 厌氧培养装置 4.3. 滤器5. 操作5.1. 样品测定5.1.1. 安装好过滤装置,在100级洁净工作台进行过滤操作。取50ml水样(若含菌量较多,可用0.1%蛋白胨水将水样按比例稀释)注入装有滤膜的滤器中,打开滤器阀门进行抽滤。5.1.2.结束过滤操作,用无菌镊子将滤膜倒置在SPS琼脂培养基上(或正置于SPS培养基上,在上层覆盖约5mlSPS培养基创建厌氧环境),滤膜应与培养基完全贴紧,两者不留气泡。5.1.3.倒置于厌氧装置中在36℃±1℃厌氧培养24h。计数平板上的黑色菌落数。5.2.确证性试验 挑取可疑黑色菌落3-5个,分别接种FT培养基,于36℃±1℃厌氧培养18-24h 5.2.1. 革兰氏染色镜检:产气荚膜梭菌为革兰氏阳性粗大杆菌,其耐热菌株可能形成卵形芽孢,位于菌体中央或近端,其宽度一般不大于菌体。 5.2.2. 动力硝酸盐试验:接种针穿刺,36℃±1℃厌氧培养24h,观察接种线的生长情况,判断有无动力。然后滴加A液和B液2-3滴,观察硝酸盐是否被还原。产气荚膜梭菌现象:无动力;硝酸盐阳性。 5.2.3. 含铁牛乳培养基试验:取生长旺盛的FT培养液1ml接种含铁牛乳培养基,在46℃培养2h后观察“爆裂发酵”现象。在5h内不发酵为阴性。产气荚膜梭菌为阳性。 5.2.4.卵黄琼脂试验:接种针取FT培养液点种于卵黄琼脂平板,,36℃±1℃厌氧培养24h,观察接种点变化。产气荚膜梭菌会分解卵黄中的卵磷脂,接种点底部及周围形成乳白色浑浊带。5.3.结果表述: 根据黑色菌落计数和确证性试验结果,计算每50ml水样中的产气荚膜梭菌数量,结果以CFU/50ml计。附图:[img=,490,278]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141058_01_3081717_3.png[/img]菌株培养---庖肉培养基(图左), 疱肉斜面培养基(图右)[img=,490,248]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141059_01_3081717_3.png[/img]产气荚膜梭菌在SPS培养基上的现象(图左)及大肠杆菌阴性对照[img=,490,514]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141100_01_3081717_3.png[/img]在FTG培养基上生长旺盛[img=,490,208]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141101_01_3081717_3.png[/img]动力-硝酸盐培养基(+)含铁牛乳培养基(+)含铁牛乳培养基(—)[img=,490,235]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141102_01_3081717_3.png[/img]产气荚膜梭菌在血平板上的溶血现象。

  • 细菌悬液稳定性对污水处理的意义的思考?

    环境微生物学提到, 细菌在液体培养基中存在稳定性和不稳定性。稳定性的成为S型,为光滑型,周身亲水,在液体培养基成均匀分布。不稳定性的成为R型,成为粗糙型,呈现脱离液体的趋势,多沉淀到底部。那么,居于稳定或不稳定性这一理论,在污水活性污泥法工艺中,曝气池末端的活性污泥应该为不稳定性状态,才便于在沉淀池中易絮凝沉淀。但是,活性污泥的核心是菌胶团,而菌胶团是由能形成荚膜的细菌粘附到一起并形成公共荚膜的形成体。既然是外围是公共荚膜,那么菌胶团就应该是亲水的,怎么才能成为R型呢?有点疑惑,请高人赐教。

  • 产气荚膜梭菌

    我们以前做产气荚膜梭菌,标准菌在滤膜上会长黑色菌落。用磁珠和庖肉两种方法保存了菌种,过了一段时间从这两种取出再做也是对的。可现在,可能过了大半年吧,两种保存方法接出来的菌都是浅橙色半透明,不是黑色了。革兰氏染色镜检是阳性(紫色)较大的杆菌,和网上的图片很相似。不知道这样正常吗?是否只能是黑色菌落?求高手指点,谢谢!

  • 【分享】距离细菌发电又进了一步

    据美国物理学家组织网5月23日报道,英美科学家首次精确地展示了细菌中运送电荷的细胞内蛋白质分子结构,详细揭示了细菌如何将电子由细胞内推到细胞外的“细枝末节”,最新成果让使用细菌来发电这种美好的愿景更加接近现实,相关研究发表在《美国国家科学院院刊》上。   这个发现意味着,科学家们现在能着手研发合适的办法,将细菌直接“拴到”电极上,用这种方法制造出高效的微生物燃料电池。这项进步也能加速清理油污染或铀污染的微生物试剂的研发,同时也将加速由废物提供电力的燃料电池的研制。  细菌内部的多层蛋白质就像细胞的有机输电线一样,使细菌内部产生的电子被运送到细胞表面。在最新研究中,英国东安格里亚大学生物科学学院的教授汤姆·克拉克领导的英美科研团队,使用名为X射线结晶学的方法揭示了一种依附于海洋细菌细胞表面的蛋白质的分子结构,细菌通过这个细胞转运电子。  克拉克表示:以前我们并不知道细菌内的电子是如何到达细胞表面的,最新发现向我们展示了细菌将电子从细胞内推到细胞外的“细枝末节”。细菌可以吸进氧化物矿物质中的有机碳分子并在细胞内部“消化”它们,接着释放出电子。因此,细菌坐在岩石上并吸进岩石的过程可以应用于电极上,细菌能依靠电极呼吸并产生电子。精确展示这个过程让我们可以“顺藤摸瓜”,进一步研制出高效的微生物燃料电池等。  以前,科学家们试图利用细菌表面的电力,但只能得到很少的电力,现在,利用这一最新发现,科学家们有望获得足以投入实际应用的电力。克拉克说:“我们所做的只是改变细菌生活的表面环境而已。”  英国生物技术和生物科学研究院(BBSRC)和美国能源部对该科研项目提供了资助,美国能源部西北太平洋国家实验室的科学家也参与了该项目

  • 【资料】细菌内毒素的概念

    细菌内毒素的概念   细菌内毒素,英文称作Endotoxin,是G-菌细胞壁个层上的特有结构,内毒素为外源性致热原,它可激活中性粒细胞等,使之释放出一种内源性热原质,作用于体温调节中枢引起发热。内毒素的主要化学成分为脂多糖中的类脂A 细菌内毒素这个概念在1890年的时候就已被提了出来,它是在研究发热物质过程所引成的,1933年Boivin最先由小鼠伤寒杆菌提取出来,进行化学免疫学方面的研究,到1940年时候,Morgan使用志贺氏痢疾菌阐明了细菌内毒素是由多糖脂质及蛋白质三部分所组成的复合体,到了1950年以后,随着生物学,物理化学,免疫学以及遗传学等的进步发展,细菌内毒素的研究工作,尤其是其化学结构组成及各种生物活性间的关系也更加明确起来。 细菌英文叫Bacteria:为原核生物中的一类单细胞微生物由二分裂法繁殖。若按革兰氏染色法可将细菌分为G+菌和G-菌两大类。这两类细菌细胞壁的结构和化学组成存在很大差异。唯有肽聚糖为其共同成分,但其含量的多少和肽链的性质有所不同,见下表:细胞壁结构革蓝氏阳性菌革蓝氏阴性菌厚度厚,15—50薄,10—15肽聚糖含量多,占胞壁干重50—80%少,占胞壁干重10%左右脂类含量少,约1—4%多,约11—22%磷壁酸有无外膜无有脂蛋白无有脂多糖无有 细胞壁较薄,厚约10-15nm,结构也较复杂。肽聚糖含量低,仅占细胞干生10%左右,层薄又较疏松,因肽聚糖之间仅四肽侧链直接联结,缺乏五肽桥;肽聚糖居于细胞最内层,外面由内向外还有脂蛋白,外膜和脂多糖的三层聚合物。 (1)脂蛋白(lipoprotein) 由类脂和蛋白质构成,联结在外膜与肽聚糖层之间,类脂一端经非共价键联结到外膜的磷脂上,另一端由共价键联结到肽聚糖肽链中的二氧基庚二酸 残基上,使外膜和肽聚糖层构成一个整体。 (2)外膜(outer membrane) 是革兰氏阴性菌细胞壁的重要结构,位于肽聚糖的外侧,其结构类似细胞膜,为液态的磷脂双层,其中镶嵌一些特异蛋白质,穿透外膜的内外双层,呈液态镶嵌体。外膜中间有微小孔道,容许水溶性的小分子通过,以进行细胞内外的物质运输和交换。除此之外,外膜还能防止胰蛋白酶和溶菌酶等进入,起到保护性屏障作用。(3)脂多糖(lipopolysaccharide,LPS) 由多糖O抗原、核心多糖和类脂A(lipid A)组成(图1-8),位于最外层。多糖O抗原向外,由若干个低聚糖的重复单位组成的多糖链,即革兰氏阴性菌的菌体抗原(O抗原),有特异性。核心多糖由庚糖、半乳糖、2-酮基-3-脱氧辛酸(2-keto-3-deoxyoctonic acid, KDO)等组成,所有革兰氏阴性细菌都有此结构。类脂A是以脂化的葡萄胺二糖为单位,通过焦磷酸酯键组成的一种独特的糖脂化合物,具有致热作用,是革兰氏阴性细菌内毒素的毒性成分。 细菌内毒素即:许多病原性细菌所产生的毒素。 一般细菌毒素可分为两类,一类为外毒素(Exotoxin);它是一种毒性蛋白质,是细菌在生长过程中分泌到菌体外的毒性物质。产生外毒素的细菌主要是革兰氏阳性菌。如白喉杆菌、破伤风杆菌、肉毒杆菌、金黄色葡萄球菌以及少数革兰氏阴性菌。另一类为内毒素(Endotoxin)。是革兰氏阴性菌的细胞壁外壁层上的特有结构。细菌在生活状态时不释放出来,只有当细菌死亡自溶或粘附在其它细胞时,才表现其毒性,内毒素的主要化学成分是脂多糖中的类脂A成分。

  • 重磅发布:细胞外囊泡研究国际指南MISEV2023

    [align=center][img=,600,216]https://img1.17img.cn/17img/images/202403/uepic/0115a8aa-1863-4da0-bf05-5b02661ffb4e.jpg[/img][/align]近年来,细胞外囊泡 (Extracellular vesicles,EV)的研究热度正在持续增长,与EV相关的文献数量呈指数级增长,已成为生命科学和生物医学研究领域内的一大热点话题。前不久,国际细胞外囊泡学会(ISEV)发布了最新版的细胞外囊泡研究指南[color=#00b050][b]《Minimal information for studies of extracellular vesicles(MISEV2023): From basic to advanced approaches》[/b][/color],在MISEV2014和MISEV2018版本基础上整合了来自ISEV专家工作组和1000多名研究人员的反馈意见,加强了研究设计和实验细节,并为新的应用领域提出了建议和指导。[color=#000000][b]MISEV2023重点对EV命名、样品收集和预处理、EV分离与浓缩、EV表征、EV研究技术方法、EV释放与摄取、EV功能研究、EV体内实验进行了介绍。[/b][/color](文末附全文链接)[align=center][color=#c0504d][b][size=20px]关于ISEV和MISEV简介[/size][/b][/color][/align]MISEV指南由国际外囊泡协会(ISEV)编制,ISEV是研究和使用细胞外囊泡的科学家和临床医生的主要专业协会,通过其年会、专题研讨会和其他会议、同行评审期刊、在线学习平台以及与其他学会的合作,吸引了世界各地的不同研究人员群体。因此,ISEV具有独特的优势,可以指导制定和传播关于最佳实践指南和科学考虑的专家共识。MISEV 2014是ISEV发表的第一篇EV研究指南,旨在为EV研究提供可靠的支撑,MISEV 2018对EV研究发展过程中的方法和手段进行了深入的且批判性的评估,其中大部分内容至今仍然有效。而MISEV 2023与之前的版本一样,为EV研究人员提供了简明扼要的建议和指导,对 MISEV2018 中提出的要点进行了完善,并增加了对新发展领域的建议和指导。其目的是帮助EV研究和应用领域的从业人员针对每个EV来源、类型、研究问题或应用展开最佳实践。[align=center][b][size=20px][color=#c0504d]关于EV命名[/color][/size][/b][/align]MISEV 2023保留了MISEV 2018的EV定义,但删除了2018年使用的“自然释放”的用词(新定义:EV是指从细胞中释放出来的颗粒,由脂质双层分隔,并且不能自行复制,即不包含功能性细胞核),以避免排除了通过细胞培养生产的EV。一般来说,ISEV建议使用通用术语“EV”和该术语的扩展,而不是使用具有误导性的术语,如与难以确定的生物发生途径相关的“exosomes(外泌体)”和“ectosomes(核外颗粒体)”。这两个术语是与假定的生物发生途径有关,需要谨慎使用且需要有强有力的证据。术语“exosomes(外泌体)”是指通过多泡体(MVB)释放的来自细胞内部的EV,而术语ectosomes(核外颗粒体,又称微囊泡Microvesicle、微粒Microparticle)是指细胞膜出芽形成的EV。由于目前大多数EV分离技术不能富集由不同机制产生的EV,且没有外泌体、核外颗粒体或其他EV亚型的通用分子标记。因此,ISEV不鼓励使用基于生物发生的术语,除非对此类EV群体进行了专门的分离和表征。相关术语及定义:[align=center][img=,600,639]https://img1.17img.cn/17img/images/202403/uepic/dce5a128-4ecf-4c0c-ae0c-31e02862f1d1.jpg[/img][/align][align=center][b][size=20px][color=#c0504d]EV的收集和预处理[/color][/size][/b][/align]样本采集、预处理、储存等因素可能会对EV数量和质量造成影响,MISEV2023对需要注意的一些因素给出了建议。对于不同样本都适用的因素,给出了普适建议,另外也针对细胞培养物(cell culture‐conditioned medium,CCM)、细菌、血液、尿液、脑脊液、唾液、滑液、乳汁、实体组织共计9类EV来源样本的采集及处理给出了具体建议。[b]1.血液[/b]血液是EV研究中最常见的生物体液样本,但血液样本面临供体变化、分析前处理、血液中血细胞、血小板、脂蛋白及其他蛋白成分的影响。基于此,MISEV2023对血液样本的收集与处理给出了以下建议:? 相较于其他样本,供体对血液及血液EV的影响较大,因此当收集血液样本时,需详细的记录和报告。? 静脉采血应使用管径较大的采血针,以最大限度减少血小板活化和溶血。为减少细菌和皮肤细胞污染、避免组织因子介导的血小板活化,弃去少量抽到的血液是一种有效的做法(例如,人类抽血时丢弃前面的2-3 mL)。? 选用与下游分析兼容的采血管和抗凝剂。? 采血后,应避免过度摇晃和低温,并尽快处理为血浆或血清,以减少血小板激活和EV释放。? 制备血浆或血清时,应选择能够有效去除血小板但不影响EV的方法。若使用离心法,吸取上清时应从上向下吸上清液,并在沉淀上方保留一定量的血浆或血清,以免干扰沉淀导致血小板释放。? 血液EV的主要污染物/共分离物包括血小板、脂蛋白、溶血产物以及大量可溶性/聚集蛋白,检测时需说明任一污染物。[b]2.尿液[/b]尿液是继血液之后第二大用于EV研究的生物体液样本,可以通过非侵入性的方式连续获得大量样本。尿液EV (uEV)研究的挑战源于uEV的来源细胞不同,以及受到液体摄入量、采样时间、饮食、运动、年龄、性别、药物以及健康状况的影响。基于此,MISEV2023对尿液样本的收集与处理给出了以下建议:? 应使用无细胞尿液/无细胞的尿液生物库。? 在适当情况下,报告uEV污染物/共分离成分(THP、白蛋白、其他过滤到尿液中的蛋白)的去除方法和去除效果。? 为实现标准化,收集uEV和非EV尿液(如肌酐、PSA等)数据,用于估计绝对或相对排泄率。[b]3.细胞培养物[/b]MISEV2018针对CCM中提出的建议仍然有效,包括但不限于描述培养基的组成和制备,记录生产细胞的特征、细胞培养条件、物理或化学刺激物处理(如果有)、CCM收获的频率和时间间隔及方法、EV分离之前CCM的储存处理。如果细胞来源不是已建立的细胞系,则应报告采集和预培养条件,如酶消化。? 如使用血清或其他添加剂,需说明来源和用量。如果使用的添加剂已经去除了EV,需说明去除方法并评估去除程度(包括稀释,通过离心的方法去除EV时稀释可能是必要的)。? 应将非条件(空白)培养基作为对照进行处理和定性,以评估培养基本身对EV检测的影响。[b]4.细菌[/b]细菌EV和细菌来源的多样性,很难就样品类型、预处理、分离、收集和表征给出普适性建议。MISEV2023建议在处理细菌样本时需要注意以下事项:? 除其他培养参数外,细菌培养物收获时需说明细菌生长阶段。? 尽量缩短EV分离/浓缩前的储存时间,尤其是在样本未经过滤的情况下。? 当细菌EV样本来自体内或环境,应考虑宿主EV和环境中非目标EV的影响。? LPS(脂多糖)和LTA(脂磷壁酸)可分别作为革兰氏阴性菌和革兰氏阳性菌的EV通用标志物,但在许多特定细菌物种中,该特定标志物仍然不可用。? 细菌EV的非囊泡共分离物可能包括毛、鞭毛、噬菌体和蛋白质、脂蛋白和核蛋白复合物。MISEV2023的建议旨在提高EV研究的严谨性、可重复性和透明度,帮助细胞外囊泡研究和应用领域的从业者根据EV来源、EV类型、研究内容、应用方向选择或制定最佳实践方案。[color=#191b1f]需要说明的是,[/color]MISEV2023的内容建立在MISEV2014和MISEV2018的基础之上,前两份指南中的指导建议很大程度上仍然有效,读者在参阅MISEV2023时应结合之前的文件。[color=#191b1f]下表列出了可供参考的文章:[/color][align=center][img=1.png,600,330]https://img1.17img.cn/17img/images/202403/uepic/1b5a57a4-f9c7-4abe-ac48-423a3c72de9f.jpg[/img][/align]参考:1.[i]权威发布!细胞外囊泡研究国际指南MISEV2023[/i] 2.[i]干货分享|外泌体研究红宝书—MISEV 2023解读(一)[/i] 3.[i]MISEV2023解读:全面认识细胞外囊泡[/i]附全文:[img]https://img1.17img.cn/17img/images/202101/pic/80056faa-b411-482e-9e52-14210fe10051.gif[/img][url=https://img1.17img.cn/17img/files/202403/attachment/07210f6f-ba10-4594-a029-01fcb39d3d64.pdf]J of Extracellular Vesicle - 2024 - Welsh - Minimal information for studies of extracellular vesicles MISEV2023 From.pdf[/url][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 产气荚膜梭菌检验

    老师们请教一下,产气荚膜梭菌检验公式中的 d 表示稀释因子(第一稀释度)是十分之一还是10?

  • 【求助】抗菌肽处理的细菌悬浮液上ICP测渗漏的钙离子浓度的样品前处理

    各位,本人分离到一株拮抗菌,该菌株能有效地杀灭一些植物病原细菌。根据已有资料,我们推测抗菌肽的作用机制是破坏细菌的细胞膜,进而使细胞内的钙离子、钾离子等释放到胞外。因此,我们计划用ICP测量抗菌肽处理后的细菌悬浮液中钙离子和钾离子浓度的变化。现在苦恼的是不知道如何进行样品的前处理。各位如有良方,请不吝赐教!十分感谢!

  • 论紫外线与细菌病毒的战役

    论紫外线与细菌病毒的战役

    紫外线消毒技术是国际上90年代末兴起的最新一代消毒技术。它集光学、微生物学、电子、流体力学、空气动力学为一体,具有高效率、广谱性、低成本、长寿命、大水量和无二次污染的特点,是国际上公认的21世纪的主流消费技术。 紫外线杀菌波段主要介于200~300nm之间,其中以253.7nm波长的杀菌能力最强。当水或空气中的各种细菌病毒经过紫外线(253.7nm波长)照射区域时,紫外线穿透微生物的细胞膜和细胞核,破坏核酸(DNA或RNA)分子键,使其失去复制能力或失去活性而死亡,从而在不使用任何化学药物的情况下杀灭 所有的细菌病毒。杀菌灯不需要转化为可见光,100-200nm的波长就能起到很好的杀菌作用,这是因为细胞对光波的吸收谱线有一个规律,在100-200nm的紫外线有最大的吸收,被吸收的紫外线实际上作用于细胞遗传物质即DNA,它起到一种光化作用,紫外光子的能量被DNA中的碱基对吸收,引起遗传物质发生变异,使细菌当即死亡或不能繁殖后代,达到杀菌的目的。[img]https://ng1.17img.cn/bbsfiles/images/2020/03/202003131110591171_4862_4121857_3.png[/img]

  • 生物显微镜下细菌的理化性状!

    物显微镜下细菌的理化性状!细菌的理化性状一、细菌的化学组成  细菌和其他生物细胞相似,含有多种化学成分。 1、就其元素来讲,包括:有机元素(C、N、H、O)和灰分元素(P、K、Mg、S、Ca以及Fe、Na、Cl、Cu、Zn等)。这些元素主要以化合物的形式存在,构成了细菌细胞的水分和有机物、无机物的固体成分。http://jpkc.yzu.edu.cn/course/shywshw/pictures/t4001.jpg 2、细菌的化学组成 (1)小分子物质:水分是菌细胞重要的组成部分,占细胞总重量的75%~90%; (2)无机盐:占干重的10%; (3)大分子物质:蛋白质、糖类、脂类、核酸; (4)特殊化学物质: 肽聚糖、胞壁酸、磷壁酸、D型氨基酸、二氨基庚二酸(DAP)、吡啶二羧酸(DPA)等。二、细菌的物理性状  1、光学性质:细菌为半透明体。当光线照射至细菌,部分被吸收,部分被折射,故细菌悬液呈混浊状态。  2、表面积:细菌体积微小,相对表面积大,有利于同外界进行物质交换。如葡萄球菌直径约1μm,则1cm3体积的表面积可达60000cm2;直径为1cm的生物体,每cm3体积的表面积仅6cm2,两者相差1万倍。  3、带电现象:细菌固体成分的50%~80%是蛋白质,蛋白质由兼性离子氨基酸组成。革兰阳性菌pI为2-3,革兰阴性菌pI为4-5,故在近中性或弱碱性环境中,细菌均带负电荷,尤以前者所带负电荷更多。  4、半透性:细菌的细胞壁和细胞膜都有半透性,允许水及部分小分子物质通过,有利于吸收营养和排出代谢产物。  5、渗透压: 细菌体内含有高浓度的营养物质和无机盐,一般革兰阳性菌的渗透压高达 20~25个大气压,革兰阴性菌为5~6个大气压。细菌所处一般环境相对低渗,但有坚韧细胞壁的保护不致崩裂。第二节 细菌的生长繁殖一、细菌生长的条件  1、营养:水、碳源、氮源、无机盐,有些细菌还需要生长因子。    生长因子:为细菌生长所必需的一类物质,有维持细菌正常发育和促进生长的功能,极其微量就能显示其影响, 而足够份量可促进某些细菌生长加快数百倍。如:维生素(主要是VB)、有机酸、嘌呤、嘧啶等,以及色素和某些细菌的抗生素等。生长因子多为辅酶或辅基的主要成分,对细菌的生命活动至关重要  2、酸碱度:多数致病菌的最适pH为7.2-7.6  3、气体:   (1)根据对氧的需要不同将细菌分为4类:  ① 专性需氧菌(obligate aerobe)             ② 微需氧菌(microaerophilic bacterium)   ③ 兼性厌氧菌(facultative anaerobe)          ④ 专性厌氧菌(obligate anaerobe)  (2)某些细菌在培养的时候还需要一定浓度的CO2: 5% CO2   4、温度:多数致病菌的最适温度为37℃二、细菌的生物氧化与能量代谢  细菌能量代谢活动中主要涉及ATP形式的化学能。细菌的有机物分解或无机物氧化过程中释放的能量通过底物磷酸化或氧化磷酸化合成ATP。主要有发酵、需氧呼吸、厌氧呼吸等方式。 三、细菌的营养类型  不同种类的细菌,对能源和碳源的要求并不一样,据此可将细菌区分为不同的营养类型。  1、根据碳素营养的区分  (1)自养菌:只能从无机物取得碳源的细菌。能利用无机碳(如CO2、H2CO3等)合成所需要的含碳有机物,如硝化菌。   (2)异养菌:凡能从有机物中取得碳源的细菌。不能利用无机碳,需要有机碳来合成所需要的含碳有机物;必须依赖其他生物供给现成的有机物而营寄生生活  2、根据能源的区分:  (1)光能营养菌:能将光能转变为化学能的细菌;这类细菌都是属于土壤和水中的细菌,在病原菌中不存在此种类型的细菌。   (2)化能营养菌:从无机和有机物中取得能量的细菌;大部分细菌属于此类。前者称为无机化能营养菌;后者称为有机化能营养菌。   3、因此,细菌的营养类型分为:(1)光能自养菌   (2)光能异养菌    (3)化能自养菌    (4)化能异养菌 http://jpkc.yzu.edu.cn/course/shywshw/pictures/t4004.jpg四、细菌吸收营养物质的机制  细菌代谢能力极强,繁殖很快,消耗营养很多。 细菌没有特殊的摄食和排泄器官,这些营养物质,是通过细菌半透性的细胞壁和胞浆膜进行吸收的。  细菌主要有4种吸收营养物质的方式,不同营养物质可沿不同的方式进入:    (1)单纯扩散(simple diffusion)     (2)促进扩散(facilitated diffusion)     (3)主动运输(active transport)     (4)基团转移(group translocation)  1.单纯扩散  也称为被动扩散,是一种最简单的细胞内外物质交换方式。只靠简单的分子运动进行扩散。  吸收的是溶液中的溶质。   特点:  ① 无特异性;  ② 不需要载体   ③ 不需要能量   ④ 速度较慢   ⑤ 可逆,但不能逆浓度梯度.  因此不是细菌取得营养的主要方式   2. 促进扩散   营养物质通过透酶吸收营养基质的方式称为促进扩散,也称为协助扩散。  特点:  ① 严格的特异性,  ② 需要载体,  ③ 不需要能量;   ④ 可逆   ⑤ 与被动扩散相同,也不能逆浓度梯度  3. 主动运输   特点:  ① 需要载体,  ② 严格的特异性,  ③ 需要能量.  ④ 不可逆,可逆浓度梯度; 胞内的基质可高于胞外100~1000倍,  ⑤ 饱和效应:如胞外基质浓度甚高,足使载体饱和,输送的速度达到一定高度时就无法进一步提高;  ⑥ 吸收竞争:某些性质极为相似的化合

  • atp荧光细菌检测仪如何检测水中细菌

    atp荧光细菌检测仪如何检测水中细菌

    [size=16px]  ATP(腺苷三磷酸)荧光细菌检测仪是一种常用于快速检测水样中细菌污染程度的设备。它基于细菌存在时产生的细胞内能量分子ATP,并利用ATP与荧光染料的反应来检测细菌的存在。以下是ATP荧光细菌检测仪如何检测水中细菌的一般过程:  取样和样品制备: 从待检测的水源中取得一定数量的水样。样品可能需要进行预处理,如过滤或稀释,以确保样品中的颗粒物不会影响检测结果。  提取细菌的ATP: 通过一系列化学方法,细胞膜被破坏,使细菌内的ATP能够释放出来。这通常涉及使用一个称为提取缓冲液的溶液,它能够破坏细胞膜并释放细胞内的ATP。  荧光染料与ATP的反应: 一旦ATP被释放,它与荧光染料(通常是叫做“荧光素”的化合物)反应,产生荧光。荧光素与ATP结合后会发出强烈的荧光信号,这个信号的强度与提取的ATP量成正比。  荧光信号测量: 设备会使用荧光探测器测量荧光信号的强度。荧光强度的测量是快速且敏感的,可以在短时间内提供结果。  数据分析和结果显示: 通过与已知细菌样本的比较,可以确定荧光信号的强度与细菌的数量之间的关系。这样,设备可以根据荧光信号的强度,估计水样中细菌的数量或污染程度。  需要注意的是,尽管ATP荧光细菌检测仪在快速检测上非常有效,但它只能提供关于细菌总量的信息,而无法区分具体的细菌种类。此外,样本的处理和设备的操作都需要按照特定的方法和指南进行,以确保准确和可靠的结果。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231557437534_6784_6098850_3.png!w690x690.jpg[/img][/size]

  • 细菌的转化与平板计数

    感受态是指细菌处于容易吸收外源DNA的状态。转化是指质粒DNA或以它为载体构建的重组子导人细菌的过程。其原理是细菌处于0℃,CaCl2低渗溶液中,菌细胞膨胀成球形。转化混合物中的DNA形成抗DNA酶的羟基—钙磷酸复合物粘附于细胞表面,经42℃短时间热击处理,促进细胞吸收DNA复合物。将细菌放置在非选择性]培养基[/url]中保温一段时间,促使在转化过程中获得的新的表型(如Amp[sup]r[/sup]等)得到表达,然后将此细菌培养物涂在含有氨苄青霉素的选择性[://]培养基[/url]上。重组质粒转化宿主细胞后,还需对转化菌落进行筛选鉴定。利用α互补现象进行筛选是最常用的一种鉴定方法。现在使用的许多载体都具有一段大肠杆菌β半乳糖苷酶的启动子及其编码α肽链的DNA序列,此结构称为[i]lac[/i]Z'基因。[i]lac[/i]Z'基因编码的α肽链是β半乳糖苷酶的氨基端的短片段(146个氨基酸)。任何携带着[i]lac[/i]Z'基因的质粒载体转化了染色体基因组存在着此种β半乳糖苷酶突变的大肠杆菌细胞后,便会产生出有功能活性的半乳糖苷酶,在IPTG(异丙基β—D—硫代半乳糖苷)诱导后,在含有Xgal(5-溴-4-氯-3-吲哚-6-D-半乳糖苷)的培养基平板上形成蓝色菌落(半乳糖苷酶能将无色的化合物Xgal切割成半乳糖和深蓝色的底物5-溴-4-靛蓝)。而当有外源DNA片段插入到位于[i]lac[/i]Z'中的多克隆位点后,就会破坏α肽链的阅读框,从而不能合成与受体菌内突变的β半乳糖苷酶相互补的活性α肽,而导致不能形成有功能活性的β半乳糖苷酶,也就不能分解Xgal而显蓝色,因此含有重组质粒载体的克隆往往是白色菌落。[仪器、材料与试剂](一) 仪器和材料 超净工作台、低温离心机、恒温摇床、恒温箱、恒温水浴、离心管、试管、培养皿、锥形瓶、接种针、玻璃涂棒、酒精灯、镊子、牙签、大肠杆菌DH5a 、质粒(二) 试剂0.1mol/L CaCl2溶液 LB液体培养基 LB固体培养基 氨苄青霉素(Amp):用无菌水配制成100mg/mL溶液,置—20℃冰箱保存。Xgal:将Xgal溶于二甲基甲酰胺,配成20mg/mL,不需过滤灭菌,分装小包装,避光贮存于-20℃。IPTG:取2g IPTG溶于8mL双蒸水中,再用双蒸水补至10mL,用0.22um滤膜过滤除菌,每份1mL,贮存于-20℃。[实验步骤](一) 制备感受态细胞1、吸取15µl E.coil菌液,接种于20ml LB液体培养基中,37℃振荡培养过夜,待OD600=0.5左右将该菌悬液以1:50接种量转于50ml LB液体培养基中,37℃振荡扩大培养,当培养液开始出现混浊后,每隔20-30min测一次OD600,至OD600=0.6左右,停止培养。2、培养液转入离心管中,在冰浴10min,4℃下5000rpm离心10min。3、弃上清液,用4ml冰预冷的0.1M CaCl2溶液轻轻悬浮菌体至均匀,冰上放置30min。4、4℃下5000rpm离心6min。5、弃上清液,用2ml冰预冷的0.1M CaCl2溶液轻轻悬浮菌体至均匀,冰上放置片刻后即制成感受态细胞悬液。6、以上制好的感受态细胞悬液可在冰上放置,24小时内直接用于转化实验,也可加入15%高压灭菌过的甘油,混匀后,分装于1.5ml离心管中,每管100µ l感受态细胞悬液,置-70℃条件下保存。.(二) 质粒DNA转化大肠杆菌1、取100µl摇匀后的感受态细胞悬浮液(如是冷冻保存液,则需化冻后马上进行下面的操作),加入5µl连接产物,轻轻摇匀,冰上放置30min后,于42 IPTG水浴中保温90s,然后迅速在冰上冷却2min。2、加入900µl LB液体培养基,则总体积约1ml,混匀于37℃振荡培养90分钟使受体菌恢复正常生长状态并使转化体产生抗药性Amp[sup]r[/sup]。3、在预制的LB琼脂平板上,加40uL 20mg/mL的Xgal和4uL 200mg/mL的IPTG溶液,并用灭菌玻璃推子(酒精灯上烧后冷却),均匀涂布于琼脂凝胶表面,37℃倒置吸收。4、将恢复培养的菌体4000rpm离心5min,移去上层900µl LB培养基,用余下的100µl重悬菌体至均匀。(四) α互补现象的检查将重悬菌体均匀涂布于含X-gal+IPTG+氨苄青霉素的LB平板上,37℃倒置培养12—24h,出现菌落。其中白色菌落从理论上讲为重组克隆。如果进一步验证,可挑取多个白色菌落分别接种到1ml含有氨苄青霉素的LB液体培养基中,37℃振荡培养6-8h,然后提取质粒酶切验证,或进行菌落PCR扩增鉴定。

  • 【金秋计划】大肠杆菌感受态细胞的制备和质粒转化

    [size=10px][font=&]大肠杆菌宿主菌株作为受体细胞,当这些受体细胞经过([/font][font=&]CaCl[/font][font=&][sub]2[/sub][/font][font=&])处理时,它们的细胞膜通透性会发生暂时性的改变,从而成为能够允许外源[/font][font=&]DNA[/font][font=&]分子进入的感受态细胞。[/font] [b]一、感受态细胞 [font=&]1.感受态:[/font][/b][font=&]受体细胞最容易接受外源基因并将其转化的一种[b]生理状态[/b]。[/font][b][font=&]2.感受态细胞:[/font][/b][font=&]受体细胞通过理化方法处理,使其处于最适摄取和容纳外来DNA的生理状态的细胞。[/font][b][font=&]3.感受态菌龄:[/font][/b][font=&][/font][font=&]细胞的感受态一般出现在[b]对数生长期[/b],新鲜幼嫩的细胞是制备感受态和实现成功转化的关键。[/font] [b][font=&]4.质粒转化:[/font][/b][font=&]质粒DNA或以他为载体构建的重组子导入细菌的过程。[/font] [/size] [b][size=10px]二、感受态细胞制备的原理[/size][/b] [size=10px][b][font=&]1.外源基因表达的条件:[/font][/b][font=&]重组[/font][font=&]质粒必须通过转化进入细菌细胞内,才能进行扩增和表达,从而获得大量的克隆基因。[/font][b][font=&]2.感受态制备原理:[/font][/b]将快速生长的大肠杆菌置于经低温0℃预处理的低渗氯化钙溶液中,便会造成细胞膨胀(渗透作用),同时,[font=&]Ca[/font][sup]2+[/sup]会使细胞膜磷脂双分子层形成液晶结构,促使细胞外膜与内膜间隙中的部分核酸酶解离开来,离开所在区域,诱导细胞成为感受态细胞。[b][font=&]3.质粒转化原理:[/font][/b]感受态细胞细胞膜通透性发生变化,极易与外源DNA相粘附并在细胞表面形成抗脱氧核糖核酸酶的羟基-磷酸钙复合物。将该体系转移到42℃下做短暂的热刺激90s,细胞膜的液晶结构会发生剧烈扰动,并随机出现许多间隙,外源DNA就可能被细胞吸收。 [b]4.外源基因表达:[/b]进入细胞的外源DNA分子通过复制、表达,实现遗传信息的转移,使受体细胞出现新的遗传性状。将转化后的细胞在选择性培养基上(相应抗生素抗性)培养,筛选出带有外源DNA分子的阳性克隆。 [b]三、感受态细胞的制备([font=&]CaCl[/font][font=&][sub]2[/sub][/font]法) [font=&]1. 受体菌种活化:[/font][/b][font=&]取[/font][font=&]-80℃[/font][font=&]冰箱中保藏的菌株(如[/font][font=&]DH5α[/font][font=宋体]、[/font][font=&]Top10、DE3、BL21等)[/font][font=&]在[/font][font=&]LB[/font][font=&]平板(无抗性)上划线分离,放置于[/font][font=&]37℃[/font][font=&]恒温培养箱中倒置培养。[/font][b][font=&]2. 受体菌培养:[/font][/b][font=&]从[/font][font=&]LB[/font][font=&]平板上挑取单菌落,接种于10mLLB液体培养基中,[/font][font=&]37℃[/font][font=&]震荡培养12h左右至对数生长中后期。[/font][b][font=&]3. 菌种的准备:[/font][/b][font=&]将受体菌菌悬液以2%的接种量接种于装有20mLLB液体培养基(无抗性)中,37℃震荡培养大约2-3h至OD600=0.4-0.5,菌落数[/font][font=&]<[/font][font=&]10[/font][font=&][sup]8[/sup][/font][font=&]cfu/mL[/font][font=&]。[/font][/size][align=center][size=10px] [/size][/align][size=10px][font=&][/font][b][font=&]4. 感受态细胞的制备:[/font][/b][font=&][/font][b][font=&](1)离心:[/font][/b][font=&]把上述菌液转移至1.5mL离心管中,冰浴10min,在4℃,3000r/min,离心10min。[/font][b][font=&](2)重悬冰浴:[/font][/b][font=&]弃上清液,加入10mL预冷的0.05M 的CaCl[sub]2[/sub]溶液,轻轻混匀,冰浴30min后,在4℃,3000r/min,离心10min。[/font][b][font=&](3)重悬:[/font][/b][font=&]弃上清,加入6mL预冷的含15%甘油的0.05MCaCl[sub]2[/sub]溶液,轻轻混匀,冰上放置几分钟,即成感受态细胞悬液。或弃上清,加入6mL预冷0.05MCaCl[sub]2[/sub]溶液,轻轻混匀,冰上放置几分钟,即成感受态细胞悬液,直接使用。[/font][b][font=&](4)分装:[/font][/b][font=&]用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]分装重悬液至1.5mL离心管中,每个离心管中分装50μL悬浮液。[/font][b][font=&](5)保藏:[/font][/b][font=&]标记贴标签[/font][font=&],使之迅速冷冻,-80℃保藏备用。 [/font][b]五、质粒化学转化[font=&]1.取感受态:[/font][/b][font=&]如果感受态细胞保藏于-80℃,从-80℃冰箱中取一支感受态,室温下解冻后立即冰浴;如果感受态细胞没有保藏,可以直接用于转化。[/font][b][font=&]2.质粒处理:[/font][/b][font=&]一般质粒为粉末,1ng质粒添加10μL缓冲液或蒸馏水,混匀。[/font][b][font=&]3.转化:[/font][/b][font=&][/font][font=&]在含有50μL感受态细胞的离心管中加入1μL稀释后的标准质粒充分混匀,冰上静置30min。[/font][b][font=&]4.热击:[/font][/b][font=&]将离心管置于42℃热击60-90s,然后迅速冰浴,使细胞冷却2-3 min。[/font][b][font=&]5.培养:[/font][/b][font=&]向离心管中加入已预热的无菌LB培养基(无抗性)300μL,150rpm、37℃恒温震荡培养45min。[/font][b][font=&]6.涂布:[/font][/b][font=&]吸取100μL菌液于LB固体培养基上(含抗性),用涂布器均匀涂布,放置于[/font][font=&]37℃恒温培养箱中倒置培养12-16h。 [/font][b][font=&]7.转化率计算:[/font][/b][font=&][/font] [font=&]转化后在含抗生素的平板上长出的菌落即为转化子,根据此皿中菌落数可计算出转化子总数和转化效率,公式如下:[/font] [font=Times New Roman, serif]转化总数=菌落数×稀释倍数×转化反应原液总体积/涂板菌液体积[/font] [font=Times New Roman, serif]转化率=转化子总数/质粒[/font][font=&]DNA[/font][font=Times New Roman, serif]加入量[/font][font=&]μg[/font] [font=&]理论上转化率最高为每微克的标准质粒转化的菌落数为1×10[/font][sup]10 [/sup][font=&]。[/font] [b]六、注意事项 [font=&]1. 严格无菌操作[/font][/b][font=&][/font] [font=&]操作过程,注意进行无菌操作,避免环境中杂菌污染。[/font] [b][font=&]2.严格控制温度[/font][/b][font=&][/font] [font=&] 操作过程,要注意操作温度,以保持细胞的状态;[/font] [font=&]加入抗生素时注意温度,避免过高温度导致抗生素失活。[/font] [b][font=&]3. 严格控制浓度[/font][/b][font=&][/font] [font=&]严格控制细胞的生长阶段和菌浓,严格控制质粒DNA的质量和浓度,以提高转化效率。 [/font] [font=&][/font] [b][font=&]4. 计算转化率[/font][/b][font=&][/font] [font=&]记录和计算转化率的指标如转化子总数、感受态细胞总数和转化频率以评估转化效率。[/font][/size]

  • 【转帖】细菌的惨叫(很有科学性)

    在得克萨斯农业机械大学工作的留美中国科学家最近开发出一种名为“纳米阱”的设备,可以通过细菌受伤时的“惨叫”,快速判断细菌种类。如果这一技术能够成功推广到病毒领域,将有望用于对SARS病毒进行大规模监测。  得克萨斯农业机械大学电子工程系教授程谟嵩在回复记者的电子邮件中说,当细菌被噬菌体感染时, 噬菌体会在细菌的细胞膜上打一个洞, 将自身的遗传物质注入细菌。  细菌里复制出几十个噬菌体后,细菌细胞就会破裂,新一代噬菌体诞生。而在噬菌体把遗传物质注入细菌的过程中,细菌细胞内的离子会释放出来, 从而改变周围的电场。  根据这种情况,程谟嵩等科学家设计了“纳米阱”。  这种小型设备的关键器件只是一个低成本的芯片,但它可以探测到附近单个细菌的离子活动。当细菌受到噬菌体侵袭释放出离子时,“纳米阱”里就会出现相应的电压噪声。  这个电压噪声的特征与背景噪声完全不同,仿佛是细胞受伤后的“惨叫”。因为每种噬菌体只感染对应的唯一一种细菌,所以科学家可以利用不同的噬菌体,通过“纳米阱”是否听到细菌“惨叫”,检测细菌。   在3月号美国《生物物理和化学》杂志发表的论文中,得克萨斯农业机械大学的科学家称已经利用“纳米阱”对大肠杆菌进行了检测实验, 成功率达到100%,而且检测过程只需几分钟,操作非常简单。而现有的细菌检测技术往往需要几个小时甚至数日的时间用于菌落培养或DNA复制, 由受过专业训练的人员使用昂贵的设备才能够完成。   专家认为,由于“纳米阱”技术快速、成本低,因此可望在医学、农业、环保等领域以及防生物武器袭击方面得到广泛应用。目前,研究人员正在研究把“纳米阱”技术推广到病毒检测领域,如果成功, 这一技术可望用于对SARS等病毒进行大规模的监测。

  • [申精]热原和细菌内毒素介绍

    热原和细菌内毒素 一、热原(progon) 医院临床在使用药品注射剂时,常有发生冷感、寒战、发热、头痛、恶心、呕吐、肤色灰白、休克、严重时导致死亡,这种症状称为热原反应。 为提高药品质量和用药安全,人们对热原进行了广泛的研究,直到1923年Seibert提出了用家兔检测热原的方法。在1942年美国药典首先将家兔热原检查项收入药典成为法定方法,中国药典1953年版开始收载该方法,随后的世界各国药典都以动物热原检查法作为药品质量监测的方法之一。 家兔热原检查法的优点,可在规定时间里观察到家兔的体温变化,相应反应了热原质引起哺乳类动物复杂的体温反应过程。所以,在半个多世纪以来热原检查法,为保障药品质量和用药安全发挥了重要作用。 但随着制药工业的发展和临床用药的要求,该方法的局限性越来越明显。这种热原检查法,只局限于某种药物进入体内(血循环)是否能引起体温变化或热原反应作为判断药品是否污染热原的方法,已不能满足医药工业发展的需要。其缺点: ①标准化程度低,无法判断检查样品中存在的热原质到底是什么或是哪一种物质。 ②由于试验动物家兔是处在被细菌污染的环境中,通过吸入或皮肤感染细菌内毒素而被免疫,导致动物的个体差异较大。 ③试验动物受到药品的药理活性干扰,而影响体温变化(如放射性药品、抗生素、生物制品等),实验结果难以判断。 ④设备及实验费用昂贵(如建设动物房、水电、动物饲料等耗费),做一种药品需要几百元/次,而鲎试剂仅几十元/次。 综上情况分析,鲎试验法可避免以上动物热原检查法的不足,该技术的成功和应用真可谓是药品质量监控一场大革命。 什么是热原?目前国内外仍未有统一的认识,但从国内外文献报道中,一个共同的意见,都普遍认为:它是指细菌内毒素的脂多糖。 欧洲药典委员会副主席J.Van Noordwijk提出:“严格地讲,不是每一种热原都具有脂多糖的结构,但所有已知的细菌内毒素脂多糖都有热原活性”。在药品生产质量管理规范(GMP)条件下,药品生产的质量控制一般可以接受的观点是:不存在细菌内毒素意味着不存在热原。 二、细菌内毒素(Endotoxin) 细菌内毒素是革兰氏阴性菌细胞壁上的一种脂多糖(Lipoply Saccharide)和微量蛋白(Protein)的复合物,它的特殊性不是细菌或细菌的代谢产物,而是细菌死亡或解体后才释放出来的一种具有内毒素生物活性的物质。其化学成分广泛分布于革兰氏阴性菌(如大肠杆菌、布氏杆菌、伤寒杆菌、变形杆菌、沙门氏菌等)及其它微生物(如衣原体、立克次氏体、螺旋体等)的细胞壁层的脂多糖,其化学成份主要是由O-特异性链、核心多糖、类脂A三部分组成。(附图1) 、O—特异性链:位于脂多糖分子最外层的多糖链,是由3—5个单糖(一般不多于25个)连成为一个多糖链。其单糖包括戊糖、氨基戊糖、已糖、氨基已糖、脱氧已糖等,单糖的种类、位置和排列顺序和空间构型,因菌种不同而异。因此,它决定菌体热原的特异性。 核心多糖:核心多糖的变异性较小,位于类脂A和0—特异性链(内层)之间,在结构上分为内核心和外核心。外核心含有数种己糖,包括葡萄糖、半乳糖、乙酰氨基葡萄糖等组成。内核心含有庚糖及特殊的酮糖(3-脱氧-D-甘露糖-辛酮糖KDO)。这部分结构对不同菌株的LPS基本相似,而且KDO是以不耐酸的酮糖链与类脂A的氨基葡萄糖连接,是构成内毒素脂多糖的核心部分。 类脂A:位于LPS分子结构的外层,是由氨基葡萄糖、磷酸和脂肪酸(10—18C)组成,故称之为糖磷脂,也是细菌外膜的一种,形成单体聚合物。具有疏水性(强)和亲水性(弱)的双相性。但是,类脂A可从O-特异链及核心多糖分离出来,游离的类脂A可自身凝聚成大分子的复合体而难溶于水,并具有生物活性。所以,类脂A(Lipida)是内毒素多种生物活性或毒性反应的主要基团。该基团没有种属特异性,所以各属细菌的类脂A结构相似,其毒性反应相似。如发热、血液流动力学改变、弥漫性血管内凝血,并导致休克等。 由于类脂A有4条主链和2条支链的脂肪酸与内酰胺连接组成,所以提纯的内毒素LPS是极为不稳定的。这就要求内毒素应在低温条件下保存,在工作中内毒素稀释应尽可能地缩短时间,并要现配现用。 三、内毒素的生物活性与疾病的相关性 据文献报道,在很早期(约19世纪末)的意大利学者Centanne通过菌属自溶的方法,从革兰氏阴性杆菌中提取出一种类似毒素的物质,因为这种物质对动物体产生致热活性的同时,亦产生出一种病理学病性反应,而被命名为致热毒素(Pyrotoxina)。同时由德国的Buchner也从多种细菌中提取到相似的致热毒素,并证实了这种毒素在导致白细胞数目的改变同时,具有增强机体对细菌感染时的免疫能力。因此建立了“发热疗法”。 在美国纽约的临床医师,William B• Coley用加热法杀死录杆菌和化脓性链球菌,将上清滤液用于各种恶性肿瘤(特别是肉瘤)的治疗,取得较好的疗效。他将这种细菌上清液命名为Coley氏毒素。此后murrayJ.Shear 证实Coley氏毒素中具有抗肿瘤作用的物质为内毒素。 直到1933年Boivin等学者在研究鼠伤寒杆菌的致病机理时,从鼠伤寒杆菌中提取出内毒素。在50年代以后,对内毒素的化学成分和化学结构的研究得到迅速发展。经过大量实验表明,内毒素具有极强的生物学活性,特别是革兰氏阴性菌感染和静脉注射提取的内毒素溶液时,可导致动物体发生内毒素休克和死亡。 内毒素的致病机理,主要是由于革兰氏阴性杆菌(如大肠杆菌、沙门氏杆菌、伤寒杆菌,布氏杆菌、变形杆菌金黄色葡萄球菌等)和其它微生物(病毒、立克次氏体、衣原体螺旋体等)感染时,这类菌属随病灶渗液进入血液循环,并扩散到各种组织器官和体液细胞内繁殖,这类菌属在体内死亡和解体后,才稀放出大量的细菌内毒素脂多糖(LPS),据初步实验表明,当机体内毒素浓度國值 0.005ng/ml时,可诱生内源性热原质如肿瘤坏死因子、白细胞介素和β2—干扰素等。这些因子刺激体温调节中枢导致机体发热,细菌内毒素直接或间接作用于肝脏和胰腺时,可使肝细胞损伤,使糖原异生酶(如葡萄糖—6—6磷酸酶、糖原合成酶)的活性降低,抑制糖原的异生和分解。同时内毒素作用于胰腺导致胰腺功能障碍,并形成胰岛素抵抗,造成血糖升高致使并发心肌炎和心肌肿大的系列高血糖症状。所以,革兰氏阴性菌属感染或在病灶中的细菌进入体液细胞繁殖,当其死亡或解体后产生的内毒素,可多次进入血液,引起反复发作,其病理变化极为广泛,几乎所有的器官和组织都可被侵犯,而引起各器官的功能障碍。其中以网状内皮系统最常见,淋巴、脾、肝、肾、骨髓中均有上皮细胞增生,形成肉芽肿,以肝脏有肉芽肿外,还可发生冲血、水肿和肝细胞坏死,最终导致肝硬化的发生。其它器官亦有相似的毒性反应。

  • 肉类反复解冻4次细菌飙升15倍

    一块肉反复冷冻解冻四次,最后测得的菌落数,竟然是未冷冻前的15倍?日前,央视记者做出这样的实验结论。那么,这种结果是否有可能出现?昨天,记者采访了中国畜产品加工研究会的刘登勇博士,刘登勇博士的专业是肉品加工和质量安全控制,他告诉记者,这种情况是有可能出现的,所以肉解冻完还是最好一次吃掉。反复冷冻解冻,肉变质更快?4次解冻实验后,细菌竟然飙升15倍近日,网上流传一种说法,称肉类反复冷冻解冻后,会加快肉类腐败变质,增加细菌含量。针对这种说法,央视记者找到上海一家实验室,将从市场上买来的鲜肉,在五天中,先进行冰箱冷冻,取出后进行解冻,观察细菌生长的趋势。经过反复四次冷冻和解冻后,最后一次测得的结果,是最初没有冷冻时测试结果的15倍左右,很令人吃惊。为什么低温没把细菌杀死?解冻时细胞膜破裂,流出液体滋生细菌那么,这一实验结果是否有可能出现?对此,记者采访了中国畜产品加工研究会的刘登勇博士。刘登勇博士告诉记者,反复冷冻再解冻,是有可能出现菌落总数增加的情况的,而根据实验所处具体环境的不同,菌落总数增加的情况也会有所不同,不能说就一定会增加15倍或其他倍数。在极低温的冷冻环境下,肉品中的微生物不是应该被冻死了吗?为什么把冷冻完的肉取出来之后,细菌又会滋生呢?这其中又有哪些奥妙呢?对此,刘登勇博士告诉记者,在极低温度的情况下,肉品表面的细菌并不会被完全冻死,只是活力被暂时抑制住了。一旦肉品被从低温环境下取出,细菌就会重新获得有利于其生长的环境。而在这种过程中,有一个因素尤其有助于细菌繁殖。“在冷冻过程中,肉品中的水分会形成很多细小的冰晶,反复多次冷冻和解冻会导致冰晶不断长大,这些冰晶会刺破细胞膜,导致细胞中的液体流出来”,刘登勇博士说,这就是为什么肉解冻后会有少量液体流出来的原因,这些细胞中的水分富含营养,会让细菌繁殖得飞快,而每冷冻一次,就意味着细胞膜被多破坏一次,解冻后流出来的养分就会增加,所以细菌总数也会相应增加。

  • JGP:细菌如何抵抗氟化物

    近日, Christopher Miller不是一个牙医,但他专注于研究氟化物。他在布兰代斯大学的两项实验室研究中提供了关于细菌抵抗氟化物毒性机制这一新的见解,这个信息可能最终帮助制定出治疗有害细菌性疾病的新策略。尽管大多数动物细胞免受直接接触氟化物,但这种物质是一种严重威胁单细胞生物,如细菌和酵母的有毒元素。因此,他们的血浆膜带有两种不同类型的蛋白质来帮助消除细胞不需要的氟化物:氟/氢原子逆向运输蛋白使用能量来激活氟化物泵“上坡”离开细胞,特殊氟化物”Fluc”离子通道调解氟化物的消极“下坡”活动来穿过细胞膜。“Fluc”离子通道被Miller和他的同事们首次发现于2013年。在九月份的JGP问题中,他们提供第一份定量数据资料演示这些被动的渠道如何保护细菌免受氟化物侵扰。作者发现,当外部环境是酸性时氟化物累积在缺少”Fluc”离子通道的大肠杆菌中。在酸性环境中,氟化物以氢氟酸的形式进入细胞——这很容易渗透到细胞膜中,分解细胞的低酸度;“Fluc”离子通道为高度带电氟离子提供了一个逃生途径。他们还发现,细菌一旦被高浓度氟化物侵染就会停止增殖,表明带有抗生素的“Fluc”离子通道是一种可以有效减缓细菌增长的方式。在8月份出版的《JGP》中,Miller和他的同事们发现了关于氟/氢逆向转运的新信息,这是CLC蛋白总科的一部分,以出口氯化物而闻名。作者探讨了为什么这种内部调整对氟化物具有高度选择性——这对其功能至关重要,因为氯化物在环境中大量存在,并且能够确定关键结构差异可以解释对氟化物具有优先选择性。J Gen Physiol. 2014 Sep;144(3):257-61. doi: 10.1085/jgp.201411243. Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. Ji C, Stockbridge RB, Miller C.

  • 细胞培养箱中出现霉菌如何消除

    细胞培养箱中的水盘里出现霉菌,虽然没有污染到细胞,而且也在水盘里加入新洁尔灭,但还是不放心,并且培养箱中现有很多细胞,请问有没有一种方法可以在不移除细胞的情况下能够消灭培养箱中的霉菌?已经长出霉菌,建议把所有细胞移出到其他培养箱。将这个培养箱全面消毒,喷酒精,紫外灭菌至少1个小时。因为我们组细胞染过菌,一旦培养箱不洁净,会导致所有培养细胞都要染菌的,爆发以后很可怕。培养箱出现霉菌很可能是水槽的水不够洁净,一定要用超净水超纯水来填充水槽,避免霉菌生长。要定期更换水槽中的纯水。一个月左右换一次。一个季度到半年要培养箱彻底灭菌一次。

  • 【分享】细胞培养中常见的污染情况总结

    污染是细胞培养中一个大敌,一旦污染,前功尽弃!决定要进行细胞培养,首先一定要有强烈的无菌意识!操作中要遵守严格的操作规程,不要怕麻烦,越细心越好!注意以下几点,大部份的污染是可以避免 的 1. 每次开始实验前,先用紫外照无菌台和实验室20分,用酒精擦手,台面和不消毒的器械(如移液枪等);实验中,如允许,尽量多过火,开起或盖盖都靠近火焰或在无菌台深处;使用无菌台后,再用酒精擦台面,紫外照20分! 2. 滴管不要接触瓶口,吸取废液及加入新鲜培养基时都要注意不要滴在瓶口上等等。3. 凡是接触瓶口后都要用酒精灯烧烧。4. 提取组织时,往往头会距离组织很近,所以带口罩很重要!还要换无菌衣(紫外照过的白大褂)。5. 注意配制完全培养基时不要发生污染,在使用前一定要做无菌培养,因为一般应用污染后的培养基培养细胞后,很快就会发生特别严重的污染。6. 操作时一定按照实验室的要求,切忌粗心大意。7. 使用完的东西尽快移出无菌台!另外无菌台上的器械,试剂摆放,也尽量遵循一定的顺序!依污染可能程度依次向外摆。1、细菌:细菌在普通倒置显微镜下为黑色细沙状,根据感染细菌的不同,可有不同的外形,培养液一般会浑浊变黄,对细胞生长影响明显。仔细检查一下器皿的灭菌情况,是否在高压灭菌时放气时间足够,压力足够!尤其是和储存培养液接触的移液管等物品,连续两次污染的话有可能造成储存液污染,一定要注意!下次使用前检查一下培养液是否存在浑浊的现象!可在培养液中加相应的抗生素处理

  • 【原创大赛】双歧杆菌 之扫描电镜照片

    【原创大赛】双歧杆菌 之扫描电镜照片

    拍摄时间: 上个月样品名称:双歧杆菌 双歧杆菌 Bifidobacterium是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌是人体中非常重要的有益菌(见附录)。大豆低聚糖是双歧杆菌的营养物质,还可抑止有害菌的生长,又被称为双歧杆菌增殖因子(双歧因子)。大豆低聚糖还有一个很好的性质,即它不易被胃吸收分解,大部分可进入肠道做为双歧杆菌的营养,因此糖尿病人也可食用。大豆低聚糖市场有卖。酸奶中含双歧杆菌,但绝大部分会被胃酸杀死。市场上还有双歧杆菌药品,也存在同样的问题。据说有些双歧杆菌药品采用特别技术,加上一层保护,使双歧杆菌可通过胃进入肠道。双歧杆菌具有能清除自由基及过氧化脂质的能力,因而能够延缓细胞的衰老,起到延年益寿的作用。除此,双歧杆菌能非特异性地提高机体的免疫力,提高抗感染的能力,也有利于健康和长寿由于细菌的细胞比较小,光镜下很多结构应该是看不太清楚的,鞭毛、芽孢、荚膜正常都看不见适当染色后芽孢和荚膜能看见,鞭毛不行。因为普通光镜的话四十倍之后就是一百倍的油镜了,看动物细胞一般用四十倍的,但是细菌大概是动物细胞的十分之一吧,想看清楚就得用电子显微镜了。、、人眼能分辨的最小长度大约是0.1毫米而细菌的一般直径约0.5微米,长度约0.5~5微米。(1微米=1000纳米) 当然有例外,有一种纳米比亚嗜硫珠菌直径达0.32~1.00毫米(1毫米=1000微米);已知最小的细菌“纳米细菌”直径约50纳米。 0.5微米*200=0.1毫米。也就是说,你将细菌的直径放大200倍大概可以看清了,可是这并不是常见的光学显微镜一、细菌培养:双歧杆菌(实验室自己分离出来一株)将菌种接种在优化以后的GAM液体培养基中,置厌氧工作站(BUG BOXnerobic Workstation)培养。见菌液均勺混浊,涂片。http://ng1.17img.cn/bbsfiles/images/2011/12/201112012058_334696_2019107_3.jpgRuskinn厌氧工作站操作指南及使用注意事项(Bug Box)一、 常规操作1、检查仪器是否正常(温度、气体压力、水槽水位等)。2、若需照明可按下控制面板Chamber Light照明开关或踩下SPOT脚踏。3、温度调节:按FN键→按▲▼调节到所需温度→按FN键直到仪表显示为实际温度和设定温度。4、袖套使用:(1)进入工作腔:涂滑粉→检查气路旋钮(选择单手或双手操作)→将手伸入袖套→踩下VAC脚踏抽气至双手有轻微紧绷感→踩下GAS脚踏充气至适量→逆时针旋转密封盖旋钮至松动→抓住密封盖横杆旋转至水平位置→往里轻推打开密封盖→缓缓伸手将密封盖置于两侧支架上。(2)关闭密封盖:缓缓伸手取下密封盖→将横杆水平方向对准袖套操作口轻轻外拉,旋转至垂直位置,松开横杆→顺时针旋转密封盖旋钮(不可过紧)→确认工作腔已密封,取出双手。5、转移闸使用:(1)放入样品:确认内门已关闭→往里推按钮,打开外门→放入样品架及样品→关闭外门→按下面板Interlock Purge键或踩下LOCK脚踏,Interlock Active指示灯亮,(仪器自动进行转移闸清洁),10秒钟后指示灯熄灭→通过袖套操作口打开内门,放入样品。(2)取出样品:确认外门己关闭→确认转移闸己进行自动清洁(否则按下面板Interlock Purge键或踩下LOCK脚踏清洁转移闸)→打开内门,放入样品→关闭内门,打开外门,取出样品(重复取出样品时,切记每次操作均需进行转移闸清洁)。6、单皿转移系统操作:将密封口螺丝拧松→放下密封板→将平板迅速塞入系统。7、常规操作注意事项:(1)工作腔内操作动作必须轻缓。(2)每天均需确认水槽处于满水位。[siz

  • 超声波破碎细胞的常见问题

    大肠杆菌表达外源蛋白,在超声破碎的时候,用含有1%triton-X-100的PBS悬浮,然后超声的效果较好,1%triton-X-100的作用还是很明显的,对其他的一些细菌同样起作用,比如链霉菌。 细菌沉淀直接加样品1buffer,再加5ul的巯基乙醇,混匀,离心,煮沸10min,直接上样,染色脱色步骤如下:将胶放入适量的染色液微波炉里加热1min(下次适当补点醋酸即可),将染色液换成大量的水(自来水即可)在微波炉煮10min 就可以。 在表达重组蛋白后超声波破碎细胞,采用冰浴,400w,破2s停1s,但是不一会就产生大量泡沫,影响了破碎功率,pbs和tris缓冲液都是这样,最后都是破碎不完全,而我的目的蛋白就在这些未破碎的细胞中。1*会产生气泡是因为你的探头位置没放好。探头一定要接近底部,约1cm(我一般是距底部0.5mm)。功率根据仪器不同会有所不同,但你可以观察液面,有波动但不要太剧烈就好。2*破3S停10S,破个二三十次看看。 3*变幅杆位置摆放也要注意,听声音如果不对的话就要及时调整。另外可以从菌浓度方面考虑。 在破碎时试着加大体积,强度最好不要超过60%. 4*尝试超8s停8s,对有些菌体蛋白来说,你的方法很难散热,导致蛋白变性产生气泡,最好停顿时间稍长一些,这种情况多见于包涵体形式的蛋白。链霉菌(放线菌)超声破碎的,用的方法条件是什么?前处理一般就是配置成一定浓度的菌悬液。使用超声破碎时采用的具体条件是:(1)取细菌的24 h培养液于5 000 r/min 下离心5 min收集菌体.(2)用pH 7.5的Na2HPO -NaH2PO 缓冲液洗涤3次,再用该缓冲液将菌体配成1:3的菌悬液.置于40 mL大塑料试管内.(3)将大塑料试管置于冰浴中,采用超声波破碎(功率200 W,1/2”探头,破碎30 s,间歇30 S).(4)破碎液于12 000 r/min下高速冷冻离心30 min,收集细胞碎片和上清夜. 超声破菌流程与 上述基本一致,就是洗涤菌体也可以用预冷的生理盐水或pH8的Tris-HCl,洗涤一次就可以。另外,超声剂量随样品量、菌体改变比较大,功率可以到400-600w,超5s,停5s,冰浴,要加终浓度1 mM的PMSF。为确定合适的超声强度和次数,有必要随时镜检观察菌体是否完全破碎。 放线菌属于原核生物系统进化树上的(G+C)摩尔百分含量(mol%)高的革兰氏阳性菌(Eubacteria)分枝类群,它虽然具有原核生物特有的分子生物学特性,但在其不同类群中,细胞壁的化学组分变化很大。 在做大肠杆菌超声时,采用的是400W,超5停5的方法,效果不错,但是用在链霉菌上,似乎没什么效果。会不会就是由于细胞壁组成差异造成的呢,因为大肠杆菌式属于革兰氏阴性菌的。 再有镜检是检验破碎效果,但是细胞破碎程度和我需要的酶获得之间有正比关系吗?破碎时间长也会影响到酶的活性。所以想问问anaisai战友,你提供的“功率200 W,1/2”探头,破碎30 s,间歇30 S”的条件好像是用于破碎链霉菌孢子的,也可以用于发酵离心后的菌泥吗?如果可以,你破碎的全程时间大概是多少呢? 如果你需要的是胞内酶,细胞破碎程度和需要的酶获得之间基本上有正比关系。破碎时间长的确会影响到酶的活性。这就需要在最佳的破碎时间和酶活性之间做出判断,最直接的办法是先绘制相关曲线(酶活性和时间的关系曲线)。 实验中,破碎的是棒状杆菌(也是很难破壁的G+菌),破碎时间控制在30min左右,酶活较好。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制