当前位置: 仪器信息网 > 行业主题 > >

细胞相互作用

仪器信息网细胞相互作用专题为您整合细胞相互作用相关的最新文章,在细胞相互作用专题,您不仅可以免费浏览细胞相互作用的资讯, 同时您还可以浏览细胞相互作用的相关资料、解决方案,参与社区细胞相互作用话题讨论。

细胞相互作用相关的资讯

  • 200万!上海交通大学单细胞相互作用仪采购项目
    项目编号:0705-2240JDSMTXDK/04/招设2022A00214项目名称:上海交通大学单细胞相互作用仪预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1单细胞相互作用仪1)采用声场作用力,最大作用力高达1 nanoNewton(10 µm polystyrene beads);2)具备单细胞分辨率:实时记录单个细胞相互作用的生物力学及位置的变化;3)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后3个月内合同履行期限:签订合同后3个月内交货本项目( 不接受 )联合体投标。
  • 新型纳米传感器实时监测单细胞间相互作用
    据美国物理学家组织网7月18日(北京时间)报道,美国科学家研发出了一种新技术,将纳米传感器“贴”在细胞膜表面,可实时监测细胞间的相互作用,清晰度远超以往。这项创新技术能让科学家进一步理解复杂的细胞生物学、监测移植细胞的生长情况以及为疾病研发出有效的治疗方法。最新研究发表在7月17日出版的《自然纳米技术》杂志上。  研究中,科学家使用纳米技术将一个传感器“锚定”在单个细胞的细胞膜上,这使他们能准确实时地监测到细胞在微环境下的信号传导情况,以及移植细胞或组织的情况。之前的细胞信号传导传感器只能测量一组细胞的整体活动。进行这项研究的位于美国波士顿的布莱根妇女医院再生治疗中心主任杰弗瑞卡普表示,新技术让他们能以前所未有的空间和时间清晰度来实时监测单个细胞之间的相互作用 更清楚地洞悉细胞之间的信号传导细节以及细胞与药物之间的相互作用等,所有这些对基础医学和药物研发都具有重要意义。  科学家表示,这种方法可被进一步精炼成一种工具,用来定期研究药物和细胞之间的相互作用,也有望用于未来的个性化医疗领域。卡普认为:“未来,医学专家在为病人制定合适的治疗方法之前,可以使用这项技术来测试某种药物对细胞和细胞之间相互作用的影响。”  让科学家们尤为感到兴奋的是,新技术可以实时追踪和监测移植细胞的“生活”环境,以前根本无法做到这一点。美国马萨诸塞州波士顿市哈佛医学院的免疫学家乌尔里奇艾德里安并没有参与该试验,但他表示:“最新研究朝着实时、高清晰度地侦察到细胞之间的相互联系这个目标向前迈进了一大步,对新药研发和诊断具有深远意义。”
  • 独辟蹊径!单分子与单细胞水平解锁生命过程中的相互作用
    生物结构和功能之间的联系是生命科学研究的关键,然而对这个领域的认识目前仍有很多空白。LUMICKS 是总部位于荷兰的生命科学仪器供应商,研发和生产动态单分子和细胞亲合力分析仪器,让研发人员能够在分子和细胞水平上建立结构和功能之间前所未有的桥梁。 LUMICKS 的产品在生物相互作用过程中施加和测量作用力,实现对分子和细胞的研究,从而能够对潜在的生物机制进行详细的实时分析。LUMICKS主要有两款产品,分别是C-Trap 动态单分子显微镜和z-Movi 细胞复合亲合力分析仪,目前众多世界顶尖大学研究所均为 LUMICKS的技术产品的用户,如哈佛大学,牛津大学,清华大学等。2020 年, LUMICKS 在北京设立了亚太区办公室 (卢米科思贸易(北京)有限公司)以服务于亚洲的客户。单分子&动态 观察生物分子机制的全幅图景现代的生物研究通常涉及多种实验技术与方法手段,想了解一个生物分子机制的全幅图景,我们既需要能够分析单个分子,也需要了解分子的动态过程。为什么单分子如此重要?首先单分子观察是对一个分子最直观的分析,眼见为实,这也是许多科学技术一直追求观察更小的单元的原因。其次,单分子技术允许科学家了解单个分子的性质,并非是一个群体的结果。众多技术,例如凝胶电泳、表面等离子共振等,提供的都是万千分子的平均读数,常常不能体现分子的多态性能。为什么我们需要观察动态过程?生物过程本身是动态发展的,只有了解生物分子的行为,才能够理解它们的机制,也才能够为制药、治疗等目标提供指导。结构生物学的方法能够精确到生物分子中的每个原子,然而每个结构都是一个静止的状态,因而目前很多结构生物学家们也在发展能够将静态结构与动态过程结合的方法。C- Trap 动态单分子显微镜填补了这一空白,既能够观察单分子尺度的生物分子,又可以实时观察DNA与蛋白互作、蛋白构象等动态过程。此外,C-Trap的光镊技术允许控制、操作单个 DNA、蛋白、细胞骨架等分子,在微米、纳米尺度下触摸、移动、控制生物分子,为研究人员带来前所未有的体验和结果。C-Trap动态单分子显微镜在动态单分子领域,LUMICKS的C-Trap 是行业首家商业化仪器。相较于其他解决方案,C-Trap 提供业内第一的测量精度和稳定性,真正实现对单分子过程的动态实时观察,高度集成易用的软件使得任何研究人员都可以操作,从样品制备到实验数据分析全流程支持帮助高效产出成果,以及来自全球工程师优质的售后服务。目前 C-Trap 仪器主要在高校的前沿研究中以及生物制药公司的研发中使用,相较于欧美,在中国的C-Trap 使用刚刚起步,未来将会逐步占领市场,成为生物实验室的必备仪器。C-Trap 动态单分子显微镜主要应用在DNA 结合蛋白、细胞骨架与分子马达活性、蛋白质折叠结构变化、细胞力学、生物相变与大分子相分离等领域。尤其在DNA的分子研究领域拥有非常多的应用:DNA 修复,基因编辑,DNA 转录,核小体结构功能等。客户发表在CNS杂志上的应用案例包括DNA 基因编辑过程中 cas9 蛋白与DNA 结合位点在靶、脱靶受哪些因素影响,DNA 损伤修复过程中 Rad 51 蛋白如何与其他蛋白协作,DNA 解旋酶在DNA 上的移动、解旋以及与其他蛋白的互动等等。由于 C-Trap 在生物领域广泛的应用,尤其适合多个研究室作为平台共享设备。免疫细胞治疗领域 复合亲合力测量正在受到瞩目过去的十几年里免疫细胞疗法极大地加速了临床肿瘤治疗的进展,但过继性细胞治疗的效果仍面临着很多挑战。尽管付出了巨大的资源和成本,非常多CAR-T研发团队的临床试验都以失败告终:接受免疫治疗的癌症患者中有很多对药物没有反应或者出现不良反应。这是由于免疫系统与癌细胞的动态环境本身非常复杂,因而众多体外检测方法并不能准确预测体内(临床)疗效。传统衡量免疫细胞效果的方法有很多种。分子水平上,如在研究TCR,CAR受体识别肿瘤表面抗原的特异性时,通常采用的表面等离子共振(SPR)或MHC四聚体(MHC Tetramer)等技术,优化筛选出与靶点亲和力(affinity)最佳的TCR/CAR设计。除此以外,也可以通过体外细胞实验,如细胞杀伤或细胞因子分泌检测去评估免疫细胞的激活及特异性杀伤能力。然而,这些体外实验数据一致性较低,需要更好的生物参数或者assay去预测体内及最终临床结果。什么是细胞复合亲合力(cell avidity)?它阐明了细胞间总的结合强度,这包括了:共受体结合、T 细胞受体(TCR)聚集、细胞粘附蛋白,甚至是结合的方向和分子键的价态。它揭示了一个细胞与另一个细胞之间的复杂的相互作用,而并不仅仅局限于一个蛋白受体与另一个蛋白抗体之间。因而细胞复合亲合力提供了更完整的、更具有生理学相关性的信息,反映了免疫细胞与肿瘤细胞之间更真实的相互作用,从而对免疫治疗期间的细胞响应和效果进行更准确的预测。在免疫细胞治疗领域,特别是CAR-T研发中,复合亲合力测量正在受到瞩目。2022年4月哈佛医学院发表在 《Nature》上的论文 “CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours” 指出“亲合力逃逸” (avidity escape)是实体瘤用来避免 CAR T 细胞杀伤的一种抗性机制,因而对于细胞复合亲合力的测量能够预测 CAR T 对于实体瘤的临床治疗效果。z-Movi 细胞复合亲合力 (Cell avidity) 分析仪,是免疫治疗细胞复合亲合力领域排名第一也是唯一的产品。z-Movi 提供了一套完整的实验解决方案,专注细胞治疗领域,简化免疫细胞筛选流程,一键测量细胞间的复合亲合力。从而帮助研究人员加速细胞治疗产品的筛选和药物开发,更准确高效地筛选出优秀的免疫细胞。z-Movi 细胞复合亲合力检测仪z-Movi 的应用领域主要包括CAR-T, TCR-T, NK/CAR-NK及Cell engager免疫疗法的研发。在CAR-T研发时,通过检测cell avidity,优化CAR的设计,可以降低脱靶效应等不良反应,提高T细胞功能。至于TCR-T,相比affinity,cell avidity与T细胞功能有更好的相关性,借助z-Movi评估不同突变TCR的功能。在NK/CAR-NK研发中,cell avidity也能够用来评估NK细胞的功能及CAR的设计,筛选合适的Donor NK。最后,通过检测不同双特异性抗体与效应细胞靶细胞的cell avidity,研发者能够更好地了解cell engager在细胞相互作用中的功效。未来,我们也将与更多科研院所合作,拓展z-Movi的应用,如树突细胞(Dendritic cell),巨噬细胞(macrophage)等。基于独一无二的测量和优秀的产品设计,z-Movi 已在一众生物制药公司中大放异彩,将来,z-Movi 也必将成为细胞免疫治疗实验室与研发团队中的必备设备。本文作者:王磊博士,LUMICKS 亚太区产品应用专家于晨露博士,LUMICKS 亚太区市场负责人本文为LUMICKS供稿。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎相关行业朋友投稿。投稿邮箱:lizk@instrument.com.cn
  • 165万!华南理工大学分子与细胞相互作用分析系统采购项目
    项目编号:GZZJ-ZFG-2023066项目名称:华南理工大学分子与细胞相互作用分析系统采购项目预算金额:165.0000000 万元(人民币)最高限价(如有):165.0000000 万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)11分子与细胞相互作用分析系统1套分子与细胞相互作用分析系统采用实时的非标记分析技术,不仅可以进行细胞与生物分子的相互作用分析,而且测定各类生物分子亲和力和动力学,并能通过已知生物分子进行未知功能分子的垂钓和鉴定,能极大提高效率,降低试验成本并缩短时间。并广泛应用于蛋白、核酸、脂类、抗体/抗原、多肽、糖类、小分子化合物、天然产物提取物、纳米颗粒、病毒、细菌及细胞等不同类型的生物分子间相互作用分析,以及生物分子间的竞争、协同作用分析。并在分子水平上对功能机理进行揭示,研究信号通路,调控机理,蛋白质结构,药物筛选,或进行有特定靶标的生物功能分子的筛选。人民币165万元经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:收到信用证后(60)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • Cancer Research | 中山大学彭穗/邝栋明教授团队发现骨髓细胞和B细胞之间的相互作用是
    肿瘤微环境(TME)在肿瘤的所有阶段中都起着关键作用,从早期发起到转移性疾病。由于对TME的广泛研究,越来越多的免疫疗法,特别是免疫检查点阻断(ICB),已经显著改变了抗癌治疗的格局。然而,由于肝脏是一个高度免疫耐受的器官,肝癌的免疫治疗受到阻碍。2023年6月26日,中山大学附属第一医院彭穗/邝栋明教授团队在Cancer Research上在线发表题为“Crosstalk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer ”的研究论文。该研究首次从单细胞角度对原发性和继发性肝癌中的免疫微环境进行了深入探讨,揭示了不同类型的浆细胞与髓系细胞相互作用介导免疫抑制微环境的相关机制。证明了B细胞是肝细胞癌( HCC )和结直肠癌肝转移( CRLM )微环境中的重要调节因子。这篇文章详细探讨了骨髓细胞和B细胞之间的相互作用如何塑造原发性和继发性肝癌的不同微环境。研究发现,在肝细胞癌(HCC)和结直肠癌肝转移(CRLM)中,B细胞表现出不同的发育轨迹。单细胞分析揭示,IgG+浆细胞在HCC中优先积累,而IgA+浆细胞则在CRLM中更为丰富。实验部分本文使用TissueGnostics公司TissueFAXS Spectra全景多光谱组织扫描定量分析系统g肝脏组织样本进行多色荧光图像采集。并且使用多重免疫荧光技术,通过AI Classifier技术获得大量组织形态学信息,还结合了Tissue Cytometry技术中精准的单细胞识别技术。通过多种细胞的组织原位信息,证实了cxcr3 + B细胞和TAMs通过CXCR3-CXCL10轴的相互作用,并通过进一步实验,发现在体内阻断CXCR3可以显著地减弱B细胞向肿瘤的迁移,证明了TAMs在HCC中募集CXCR3 + IgG浆细胞的重要作用。Figure 1 TAMs 通过 CXCR3-CXCL10 轴招募肝细胞癌中的 IgG 浆细胞D mIHC染色验证CXCR3þ B细胞和巨噬细胞在HCC中的相互作用。E mIHC 染色三级淋巴结构以确定 HCC 中 CXCR3þ B 细胞的位置I,J 对照组和抗 CXCR3 小鼠肝脏病变中 CD19 IHC 染色的图像和定量分析(使用StrataQuest软件对抗CXCR3小鼠肝脏病变中 CD19进行定量分析)Figure 2 CRLM 中的 IgA 浆细胞通过 CCR10-CCL28 轴被肿瘤细胞招募F mIHC 染色验证 CRLM 中 CCL28 和 CCR10 的相互作用H,I 对照组和抗CCL28小鼠肝脏病变中IgA的IHC染色图像和定量分析(使用StrataQuest软件对抗CCL28小鼠肝脏病变中IgA进行定量分析)这项研究的重要性在于,它揭示了肿瘤浸润B细胞的免疫调节模式在原发性和继发性肝癌中是不同的,浆细胞介导的重要生理过程推动了癌症的进展。这为理解肝癌的免疫微环境提供了新的见解,并可能对肝癌的免疫治疗策略产生影响。借助于TissueFAXS Cytometry技术,结合多色免疫荧光染色,不但可以对肿瘤组织进行精准识别 ,还可以实现肿瘤微环境中免疫细胞在组织中的空间分布、形态特征、与其他细胞类型的相互作用等方面进行高通量、高精度的原位定量分析。
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • Nature | 我国科学家开发融合蛋白质图像和相互作用的细胞多尺度结构模型
    细胞是跨越了至少四个数量级的、复杂而精妙的模块化系统【1】。对细胞内模块化系统的刻画主要有两种方式,一是蛋白质荧光成像,一是蛋白质生物物理特性,这两种方面的技术可以产生大量的数据,但是这两种方式所产生的数据库具有不同的质量和分辨率,通常需要分别进行处理。那如何将两种方式的优点进行同时整合呢?近日,美国加州大学圣地亚哥分校Trey Ideker研究组(第一作者为博士生秦越)与瑞典皇家理工学院以及斯坦福大学Emma Lundberg研究组合作发文题为A multi-scale map of cell structure fusing protein images and interactions,将来自于人类蛋白质图谱(Human Protein Atlas)【2】的免疫荧光图像与BioPlex数据库【3】中亲和纯化结果进行整合,构建了多维度细胞整合图谱MuSIC1.0(Multi-scale integrated cell),对人类细胞中的结构层次进行了统一化的分析,从而解析出69个亚细胞系统,为整合各种各样不同类型的数据来创建全蛋白细胞模型铺平了道路。真核细胞由多种大的组分组成,比如细胞器、凝聚体或者蛋白质复合体,从而形成一个多维度的结构。人类蛋白图谱系统性地对人类细胞中蛋白质在亚细胞结构中定位进行了全面解析,与此同时质谱与亲和纯化(Mass spectrometry combined with affinity purification, AP-MS)技术将临近标记引入蛋白质组学探究之中,从而能够快速检测蛋白和蛋白之间的相互作用。因此,如果能将蛋白质成像与生物物理之间的关联结合起来,便可以对细胞结果进行更进一步地解析。为此,作者们构建了一种机器学习方法,可以将蛋白质成像与生物物理特性进行关联和集成,从而构建一个亚细胞结构组成组分的统一图谱。图1 蛋白质成像与AP-MS数据库整合策略首先,作者们使用深度神经网络(Deep neural network,DNN)对蛋白质图像与相互作用数据进行整合,确定每个平台中蛋白质的坐标,对蛋白质之间的距离进行校准和组合,从而确认在不同维度下蛋白质复合体的组装方式(图1)。这两个全方位的数据库均来自HEK293细胞。作者们对蛋白质配对之间的相互作用距离进行检测,举例来说,来自蛋白质复合体中的蛋白之间相互作用距离少于20nm,而细胞器中的蛋白质之间距离可能会超过1μm。作者们分析了661个蛋白质之间的所有距离,以识别相互接近的蛋白质组分。随着距离的变化,能够产生一个蛋白质多维度结构层次图谱(图2)。由此,作者们发现所构建的MuSIC系统能够以很广的范围对生物系统内的蛋白质相互作用进行测量和捕捉。图2 结构层次图谱建立和检测的流程在建立起该整合图谱后,作者们希望对MuSIC系统进行一个全局性的评估。MuSIC图谱中有370个蛋白以前未在AP-MS实验中用于亲和标记进行相互作用因子的钓取。因此,作者们对134个猎物蛋白进行标记进行AP-MS实验,从而检测到339个相互作用配对,进而对该整合图谱的准确性进行了全面的验证。在MuSIC发现的全新的亚细胞系统中,有一个由七个蛋白质复合体组成的直径估计为81nm的系统,作者们将此系统命名为前体核糖体RNA加工组装复合体(Pre-ribosomal RNA processing assembly,PRRPA)。为了对PRRPA复合体在前体rRNA加工中的作用进行确认,作者们使用siRNA对每个蛋白进行了敲降,发现所有的敲降都会一定程度上破坏核糖体RNA的成熟。另外,作者们使用RNA免疫共沉淀定量qPCR对这些蛋白结合45S前体rRNA的能力进行检测,再次证明了这些蛋白质在前体rRNA加工过程中的作用。同时作者们发现所建立的MuSIC系统也可以对一些蛋白质的功能进行更为全面的认识,包括发现已知蛋白的全新功能和未知蛋白的潜在功能。总的来说,该工作通过汲取蛋白质荧光成像与蛋白质生物物理特性两方面之长构建了多尺度细胞整合图谱MuSIC 1.0,进一步地提高了现有蛋白质荧光图像中信息的分辨率,也为蛋白质相互作用提供了空间维度的信息,为人类细胞中蛋白质组研究提供了更为全面的认识。原文链接:https://doi.org/10.1038/s41586-021-04115-9
  • 小编精选|大分子相互作用仪导购篇
    生物分子的活性功能是通过分子之间的相互作用来实现的,研究生物分子间的相互作用,可以从分子水平上了解生命现象,从而阐明生命活动的机理,发现生命的本质。大分子相互作用仪作为分子互作的重要研究工具,在生命科学、临床医学、食品安全、环境检测和药物筛选及相关药物动力学检测等研究中发挥了重要作用。随着检测分子间相互作用技术的迭代与创新,市面上出现了各种品牌型号的大分子相互作用仪,其技术原理主要包括表面等离子共振技术(SPR技术)、生物膜干涉技术(BLI技术)和微量热泳动技术(MST技术)等,那么如何挑选一款真正符合自己需要的大分子相互作用仪成为了一道难题,接下来,小编根据检测技术进行分类,遴选推荐一些靠谱品牌型号,以飨读者。首先是基于表面等离子共振(Surface Plasmon Resonance, SPR)技术研发的大分子相互作用仪。1.Biacore 8K/8K+生物分子相互作用分析系统▲Biacore 8K/8K+生物分子相互作用分析系统( 点击查看 )Cytiva(思拓凡)公司推出的Biacore 8K/8K+生物分子相互作用分析系统正是基于SPR技术研发的,该产品能够满足化药于生物新药的高通量筛选及表征,16组检测通道,8根进样针平行分析;高灵敏度,可用于小分子量样品、超低偶联和低浓度样品的分析检测;8K可实现60小时无人值守作业,8K+可实现72小时无人值守作业;4-40℃样品仓控温,支持96/384孔板。自1990年至今,Biacore经历了30多年的发展,已成为分子互作的“金标准”和基础科研及药物开发的工具。2.HORIBA OpenPlex表面等离子体共振成像仪▲HORIBA OpenPlex 表面等离子体共振成像仪( 点击查看 )法国HORIBA scientific公司将等离子体共振技术、成像技术和微阵列芯片技术进行结合,研发出一次能够获取百种生物分子相互作用的信息的HORIBA OpenPlex表面等离子体共振成像仪。该产品采用阵列式检测,突破了传统通道式测量的局限,特别适用于快筛及实时成像的应用需求。此外可实时监测相互作用并获得动力学参数。 外置部件选择性灵活,可选附件包括蠕动泵、注入系统、自动脱气装置等。3.多参数表面等离子体共振分析仪 MP-SPR 220A▲多参数表面等离子体共振分析仪 MP-SPR 220A( 点击查看 )芬兰BioNavis公司的多参数表面等离子共振技术MP-SPR起源于芬兰国家技术研究中心,该技术技术突破了传统SPR技术的局限性,它不仅测量分子间的相互作用,而且也测高性能金属,石墨烯等材料。MP-SPR 220A可用于检测埃米至微米厚的薄层间相互作用和结构信息,并且具有附加波长的选项。4.BI-4500 表面等离子体共振仪▲BI-4500 表面等离子体共振仪( 点击查看 )全新的BI-4500表面等离子体激元共振(SPR)仪具有多通道流动模式,有助于对固定量低和分子量小(100 Da)的分析物的精准检测。BI-4500配备了BI-DirectFlowTM (BI-直流技术) 后,将精确的进样和几近零扩散的传质过程结合起来用于快速动力学的研究并有效地消除各种表面现象的干扰。用户可机动灵活地选择多种巧具匠心的分析模块从事诸如生命科学、电化学、气相或液相传感等研究。5.SPRm 200表面等离子体共振显微镜▲SPRm 200表面等离子体共振显微镜( 点击查看 )美国Biosensing Instrument公司研发的细胞原位分子互作动态分析系统SPRm 200,巧妙地将表面等离子体共振技术和光学显微镜结合为一体。SPRm200无需对观察目标进行标记,可以实时定量的进行检测,并且可同时可视化观察细胞结构和局部结合活性。此外无需提取细胞膜蛋白,即可在正常活细胞状态下观察和测量药物和膜蛋白的实时相互作用。样本容量为384*2,具有5条通道,进样体积最低为1μL。6.便携式4通道SPR仪-P4SPR▲便携式 4通道SPR仪-P4SPR( 点击查看 )加拿大Affinité Instruments基于SPR技术开发出新一代非标记分子相互作用分析仪P4SPR,仪器小巧,易于携带,可在用于各种户外环境中的现场检测。适用于小分子化合物、核酸、多肽、蛋白、脂类、多糖、纳米颗粒、病毒、微生物、细胞等各种样品,可4通道同时检测,实时扣除背景,自动做重复,获得可信数据。10分钟验证是否结合,并且获得亲和力和结合/解离速率,此外还可与其它仪器(HPLC,MS等)联合使用。7.Inter-Bio英柏表面等离子共振检测仪MI-S200▲Inter-Bio 英柏表面 等离子共振检测仪MI-S200( 点击查看 )北京英柏生物科技有限公司基于SPR技术研发的表面等离子共振检测仪MI-S200,荣获2019年度中国分析测试协会科学技术奖BCEIA金奖。MI-S200能够在各种条件下通过实时监控分子之间相互作用的全过程,从而获取结合解离动力学的过程和相关的结合解离常数等重要数据。该产品具有高灵敏度的柱面一体式传感器,自主研发的中英文控制及数据分析软件,支持个性化定制实验流程。8.表面等离子体共振仪SPR▲表面等离子体共振仪 SPR( 点击查看 )KEI公司成立于2012年,专注于设计并制造SPR 仪器和软件,并将其与分子间相互作用的电化学表征 (ESPR) 相结合。KEI 公司的表面等离子体共振仪SPR采用变化频率为76Hz的扫描镜改变入射光角度的方法,使光线产生4000m°的变化范围,另外配备分辨率达0.05 m°的检测器,提供更精确的测量结果。偏移角可以通过旋转手柄实现手动调节,以获得最广的动态角度范围。KEI SPR 采用开放式设计,可连接到任何其他恒电位仪/恒电流仪,同时采用进样针进样,对管道和样品无污染。其次是基于生物膜干涉(Bio-Layer Interferometry, BLI)研发的生物分子相互作用仪器。9.赛多利斯OctetR8生物分子相互作用分析系统▲赛多利斯 OctetR8 生物分子相互作用分析系统(点击查看)赛多利斯基于BLI技术研发的OctetR8生物分子相互作用分析系统,在基础研究、生物制药发现与开发、药物质量控制等应用中展现更高的灵活性,并实现更广的功能性。进行定量分析,使用浸入即读TM的生物传感器提供实时的结合常数ka、解离常数kd以及亲和力常数KD。亲和力检测范围更广,从mM(毫摩尔)至pM(皮摩尔),可实现从片段、小分子、核酸、蛋白,到病毒、细菌、细胞等各类生物分子亲和力的检测。没有液流系统,不存在堵塞风险,即可即用,无需对仪器进行清洗和复杂维护,大大降低维护成本。兼容粗提样本,无需进行样品预处理(如纯化、标记等)。近年来,基于微量热泳动(MicroScale Thermophoresis, MST)技术开发的大分子相互作用仪也开始纷纷亮相。10.NanoTemper 新一代生物分子互作检测仪 Monolith▲NanoTemper 新一代生物分子互作检测仪 Monolith( 点击查看 )德国 NanoTemper 公司于2020年推出的新一代生物分子互作检测仪Monolith系列,提供更加简捷、快速并精准分析生物分子相互作用的分析方法。新一代Monolith系列是基于MST技术研发的新平台,能够实现24个样品的同时检测,精确的温度控制(20-40 °C +/-0.5 °C),具备灵活的检测方式,根据样品随意切换检测灵敏度,仅微量样品,即可在溶液中直接测定,无需固定,速度快,10分钟之内即可获得亲和力数据。随着科学技术发展,涌现了一系列新技术,比如光栅耦合干涉(GCI)技术、组分-梯度多角度光散射(CG-MALLS)技术和微流控扩散测量(MDS)技术等。近年来,基于这些新技术原理开发的大分子相互作用仪纷纷崭露头角,或能成为市场“黑马”。11. Creoptix分子相互作用仪 WAVE delta▲Creoptix 分子相互作用仪 WAVE delta( 点击查看 )Creoptix(瑞士)公司基于光栅耦合干涉技术(Grating-Coupled Interferometry , GCI)搭配微流体独特设计和Google公司研发的自动化软件研发出WAVE分子间相互检测系统,突破了SPR技术的局限性,Creoptix WAVE 系统产生的消逝波(evanescent field)仅在芯片表面与样品溶液接触,并且延长了其与样品相互作用的长度,以确保更低的信噪比(0.015pg/mm2)。凭借WAVE的低检测限,可轻松获取无标记互作分子高精度的动力学速率,亲和常数及浓度数据。即使检测丰度较低的样品,仍可确保数据不失真。兼容48,96,384板任意组合,120h无人值守运行。12.Calypso生物大分子相互作用分析仪▲Calypso 生物大分子相互作用分析仪( 点击查看 )美国Calypso是一个以组分-梯度多角度光散射(CG-MALLS)为基础的生物大分子间相互作用分析系统,可以快速、自动、无损、定量的表征大分子间的相互作用,具有重复性高、灵敏度高及无需样品修饰等诸多优点。Calypso分析系统无需对样品进行修饰(荧光标记、固定化等),且在溶液环境中测量,因此可以最大程度的保证样品的天然状态,得到最真实的结果,样品方便回收。该产品不仅具备智能化配样,消除了手动配样时的误差问题,而且具有快速的测定时间,半小时即可测得实验结果。13. fluidity one-W微流控扩散测量仪▲fluidity one-W 微流控扩 散测量仪( 点击查看 )Fluidity One-W是Fluidic Analytics公司开发的第二款产品,于2019年11月18日发布。基于微流控扩散测量(MDS)技术开发的全新技术平台,能够在溶液中、在天然状态下分析蛋白质的相互作用,不需要通过结合表面、基质或电离。Fluidity One-W测量的流体动力学半径可用于分析蛋白质复合物的结合比例,能够为疾病诊断、治疗开发和个人健康领域的研究提供很大的帮助。技术参数:测量范围(流体动力学半径)0.7-20nm范围(分子量)0.5kDa-14MDa精度±10%准确度CV10%灵敏度1nM Alexa Fluor™ 488运行参数上样量5μL运行时间小分子量蛋白质和多肽-8分钟大分子蛋白质-14分钟适用缓冲液兼容纯缓冲液以及溶菌物原液试剂盒运行容量96尺寸40*40*43cm检测方式荧光适合标记物GFP,EITC,Alexa Fluor™ 488及同等产品 以上,就是小编为大家整理的大分子相互作用仪选型推荐相关内容,更多仪器,请点击进入“大分子相互作用仪”专场。 找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、生命科学仪器、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类。
  • 单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例
    Hendriks L., Skjolding L. M., Robert T., 确定细胞中金属元素的生物利用率的传统方法一般需对细胞进行酸消解,然后利用溶液进样电感耦合等离子体质谱(ICP-MS)进行后续分析。这种方法的缺点是需要大量的细胞,并且只能为给定的细胞群体提供平均值1。众所周知,千人千面,不同群体以及同群体细胞的特异性在文献中也多有报道2。基于这个大前提,使用特定的分析方法对不同群或同群细胞进行逐序单个分析,获取与单个细胞特异性有关的大数据就尤其重要(见图1)。本文中介绍的单细胞-电感耦合等离子体质谱法(sc-ICP-MS)与之前介绍过的单颗粒ICP-MS(sp-ICP-MS)基本类似(微信公共号:粒粒皆信息:什么是单颗粒物ICP-MS质谱分析法?)。事实上,上述两种技术都依赖于相同的基本原理和icpTOF瞬时事件全谱多元素测量能力,从而可以获得由单一个体产生的微秒时间区间内的瞬时信号,例如单个纳米颗粒(NPs)或单个细胞。(译者注:这等同在拍一段有很多快速武术对打的电影场景,需要使用高速摄像机来捕捉每一个武打动作细节和变化,同时也不漏过颜色,声音等关键信息,这样才能最终呈现出高清120Hz的作品。) 单颗粒ICP-MS方法的基础概念和硬件构架3源于2003年Degueldre等发表的第一篇论文。在过去的二十年间,通过进样系统,数据采集硬件和数据处理专用软件的进一步发展和商业化,不断增加的科研文献见证了该技术领域的迅速成熟。在单颗粒ICP-MS上投入的研究和应用开发同样的也使单细胞ICP-MS分析受益。 在单细胞ICP-MS中,细胞悬浮液经超声波雾化后形成的液滴被带入ICP-MS等离子体中。细胞在等离子体中依次被汽化、原子化和最终离子化。每个细胞产生一个含有多种元素的离子云,在仪器上被检测为高于背景的时长几百微秒的单个信号峰。与单颗粒ICP-MS类似,记录到的尖峰频率与细胞数量浓度成正比,这些尖峰的强度则与细胞中该元素质量有关。这种技术已经成功的应用在测定海藻中的镁元素含量4,并进一步用于纳米颗粒物毒理学研究中评估细胞对纳米颗粒物的摄取情况5,6,7。 虽然单细胞ICP-MS的测量方法看起来很简单,但要获得真实可靠的数据,实施起来需要注重的细节很多。除了需要额外注意来自培养基的可能高背景信号和细胞在样品导入系统中的潜在破损,在单细胞研究中反复报道的一个主要瓶颈是细胞进样装置的低运输效率,这是因为与纳米颗粒物相比,细胞的尺寸更大,在传输过程中也更容易损失。事实上,传统的系统通常包括一个旋风式雾化室,是专为引入较小的溶液液滴而设计的,导致细胞传输效率低于10%。而用于单细胞导入的定制系统,包括改进的雾化器或全消耗喷雾室8,9,以及其他创新设计10,11,经过多年反复测试,已被验证可以高效传输单细胞进入ICP-MS。 另一个瓶颈在于质谱仪器质量分析器的性能:传统的ICP-MS仪器具有单四极杆或扇形场质量分析器,在进行单细胞分析时最多只能同时检测一到两种元素信息(只能拍黑白影片)。而在常见的单颗粒分析场景中,比如在纳米毒理学研究中,在试图量化纳米颗粒物(特征金属元素)和细胞(蛋白固有元素)的关联时,需要同时获得单细胞事件内多种元素浓度信息。为了获得微秒级事件信息全貌,快速且广谱分析的质量分析器,如飞行时间质量分析器等高精尖‘摄影器材’是必不可少的(译者注:例如,等同于可提供高清彩色120Hz影片给观众更加真实的IMAX观影体验)。图1:a)在对细胞进行酸消解后,通过传统的雾化法将溶液样品引入ICP-MS,并记录仪器获得的稳态信号。这种整体分析法对初始样品中所包含的数千个细胞获得一个平均值。然而这种实验是基于细胞是均匀的假设,而忽略了细胞具有多样性的事实。因此,少数细胞群(用绿色和紫色表示),在元素组成上虽与主类细胞有差异,却没有被体现在结果中,这完美的诠释了辛普森悖论。b)在单细胞ICP-MS方法中,将细胞悬浮液稀释后,在单位时间内仅有一个细胞个体被引入ICP-MS等离子体。每个细胞产生一个独立的离子云,作为信号峰被ICP-MS仪器记录。这种方法允许检测每一个单独的细胞,从而保证了细胞特异性信息的无损获取和保存。简单来说,在单细胞ICP-MS中,细胞是以个为单位进行分析的,可以根据它们不同的分析物含量识别出不同的群体,而不是仅仅产生一个平均值。icpTOF飞行时间质谱法 在飞行时间质谱法(TOF-MS)中,其基本原理是根据离子到达检测器前通过固定长度的飞行管的飞行时间来精确分辨离子。离子束在脉冲加速电压后具有相同的动能,但轻的离子会比重的离子获得更高的速率,进而更早到达检测器。测量所有离子的陆续到达时间可以得到一个连续时间谱,经过简单的校准和换算后可以得到一张全质谱谱图(一般6-280 Th)。TOF质量分析仪的主要优点是:对分析的元素及同位素的数量没有限制,而且全谱数据采集速度快(通常几十微秒就可以获得一张全元素谱图)。这样的快速全谱数据采集能力在处理单一实体(如单细胞)检测时尤其重要,因为单细胞产生的瞬时事件长度很短,一般在200-500微秒区间。 飞行时间技术在单细胞分析领域并不是一个新概念,最初是由Bandura在2009年提出的,其原型机12用于单个细胞的时间分辨分析13,从而为众所周知的 "质谱流式 "领域打开了大门。这项应用使用稳定的稀土金属同位素来标记细胞,从而允许通过其金属标记物来检测相应细胞14。除了展现了生物研究和药物筛选应用中的巨大潜力,质谱流式也被用于检测细菌细胞中的银纳米颗粒15。然而,由于质量检测范围有限(80 Da)和涉及染色的样品制备程序,质谱流式细胞技术无法检测许多固有元素。 与质谱流式不同的,如图2a) 所示的ICP-TOF (TOFWERK AG, 瑞士) 可以测量从质荷比6到280的全谱图16,从而可以覆盖轻质元素,如Na, Mg, P, S, K, Ca, Mn, Fe, Cu, Zn等。这些元素是活细胞的固有元素,它们的分布(也被称为细胞离子组17)可以作为细胞发育状态的指标18。例如,磷存在于核酸(DNA和RNA)中,也是ATP、CTP、GTP和UTP等能量化合物的重要成分。钠和钾在电信号的传输中起作用,而锌被不同的生物过程中的多种酶用作催化剂。由于ICP-TOF-MS的同时多元素检测能力,可以在多种元素的相关分析基础上进行指纹识别19。如图2b) 所示,镁、磷、锰、铁、铜和锌被鉴定为被分析藻类的本征指纹元素。不需要标记或染色,即可依据细胞的 "天然 "元素指纹来进行单细胞分析20,21。通过测量特定细胞类型的金属微量元素,则可以获得更细致的指纹信息。例如,海藻细胞富含镁等金属微量元素,镁是叶绿素的核心组成部分,对光合作用至关重要。因此,金属微量元素的组成可以作为一种独特的指纹来明确识别不同的细胞种类。通过测量单细胞的金属元素组分,可更好地了解由金属蛋白和金属酶调节的基本生物过程,从而解密细胞生命周期不同状态22。尽管细胞的生物化学并不完全反映在其离子组上,但通过监测其金属含量的变化,可以确定地获得对细胞状况和生物过程的更深入了解。 通过使用TOF质量分析仪作为检测器,可以动态系统地获得完整的质谱数据,从而可以对发现特定实体本身及其所处环境进行连续或高通量表征。因此在纳米毒理学背景下,人们可以很容易地确定纳米颗粒物是否与细胞相关联。图2:a) icpTOF仪器(TOFWERK AG, Thun, Switzerland)的示意图:在iCAP Q(Thermo Scientific, Bremen, Germany)的框架上搭配一套高分辨率飞行时间质量分析器。因此,ICP-TOF受益于与iCAP Q相同的ICP离子源、离子光学、碰撞/反应池技术和样品引入设备。b) 用48 µ s时间分辩率采集的淡水藻类细胞raphidocelis subcapitata的瞬时信号速率。c) 藻类细胞通常用于毒理学风险评估研究,这里在暴露于金纳米颗粒一段时间后进行分析,以调查其摄取情况。在ICP-TOF的全质量数范围内,可以根据检测细胞的本征元素指纹对细胞进行追踪,并能直接定量测量纳米颗粒物-细胞的关联。icpTOF单细胞分析应用实例 单一实体分析,与批量样品测量相比,能产生信号的质量相对有限,这对仪器灵敏度要求更高。下面的应用案例研究展示了icpTOF S2仪器(TOFWERK AG,瑞士)的性能指标:具有与单四极杆ICP-MS类似的高灵敏度,又可同时快速检测全谱信号,特别适合分析单一实体,如单细胞或纳米颗粒(NPs)等。随着工业和日常生活中纳米颗粒物的广泛使用,纳米安全和纳米毒理学在过去20年一直是深入研究的课题。纳米颗粒物的安全评估研究中的一个重要参数是其在细胞摄取的分析和量化。 透射电子显微镜(TEM)和扫描电子显微镜(SEM)具有高空间分辨率,它们经常被用于细胞内纳米颗粒物的分析23,24。尽管有令人印象深刻的成像能力,基于电子显微镜方法的一个主要缺点是对样品制备的繁琐要求。此外,由于没有额外的元素定量或自动图像分析,获得的图像是定性的且结果较难被解读25,26。如前所述,单细胞ICP-MS也可用于量化细胞对纳米颗粒物的摄取,根据观察到的信号峰的强度大小,提供与细胞相‘关联’的纳米颗粒数量的信息5,6。这类实验通常有以下三个明显的观察结果: 只检测到纳米颗粒物中的特征元素,表明溶液中存在纳米颗粒物 只检测到细胞固有元素而没有任何纳米颗粒物中的元素,表明细胞并没有与纳米颗粒物相关联 同时检测到细胞固有元素和纳米颗粒物中的元素,意味着两者有关联 根据观察到的相关联的纳米颗粒/细胞峰的频率和幅度,可以确定摄取了纳米颗粒物的细胞的百分比以及与每个藻类细胞相关的纳米颗粒数量的估计值。在理想的情况下,可以根据浓度和暴露时间动态地对海藻细胞和纳米颗粒数量的相关性的进行评估。 在本案例研究中,将海藻细胞暴露在BaSO4(NM-220)溶液中72小时,接着按照Merrifield等人提出的程序进行清洗5,去除未与细胞结合的纳米颗粒。在暴露后并在ISO8692藻类培养基中进行冲洗后27,样品中预计只包含与藻类细胞相关联的纳米颗粒物。随后,样品被储存在15毫升的试剂管中,用锡纸包裹,等待分析。 在使用四极杆ICP-MS进行单细胞的初始研究中,我们发现清洗后的细胞悬浮液中仍存在BaSO4纳米颗粒,如图3a所示。有学者认为未关联的纳米颗粒已经去除,而这些检测到的纳米颗粒是与海藻细胞相关联的。然而由于只测量了一种元素138Ba,并不能完全证实这一猜想。 我们使用单细胞ICP-TOF-MS(见图2a)重复了一个类似的实验。从图2b中我们可以知道被分析的藻类细胞的本征元素指纹,即只有同时检测到Mg、P、Mn和Fe等元素时才被认为检测到了藻类细胞。令人惊讶的是,即使暴露72小时后,BaSO4 纳米颗粒与水藻细胞的指纹信号没有显著关联(图3b)。可以看到,Ba仅与Mg和Fe的信号同时被检测到,而没有水藻的其他指纹信号同时出现。虽然缺失的元素信号强度有可能是低于仪器检测极限,但至少这说明检测到的元素与藻类细胞的本征元素指纹不一致。然而在检测到藻类细胞的指纹信号中,没有观测到Ba元素信号。综上所述,如果没有icpTOF瞬时多元素检测能力,在清洗后细胞悬浮液中检测到的纳米颗粒的Ba信号很容易被误解为是与藻类细胞相关联的颗粒物。图3:a)实验流程图。在样品暴露于纳米颗粒物72小时后,细胞被清洗以去除上清液中游离态的纳米颗粒物。b) 通过使用飞行时间质谱仪重复单细胞测量,可以跟踪细胞的元素指纹,以验证纳米颗粒物信号和细胞信号的是否同时出现。结果显示虽然纳米颗粒物和细胞没有直接关联,但Ba信号与Mg和Fe信号是一起出现的。 这些结果导致了对可能引发该现象的机制的讨论。一个合理的解释是海藻细胞通过释放胞外聚合物物质(EPS)来清除粘附在细胞表面的纳米颗粒物。EPS被认为是影响藻类细胞对纳米颗粒的生物利用率的关键因素28,29。EPS产量的增加可使藻类细胞主动脱落纳米颗粒,从而减轻摄取或吸附到细胞外部,而纳米颗粒仍然以被包含在EPS中的形式存在于溶液中。虽然缺乏关于这种行为的定量数据,但足以解释BaSO4纳米颗粒信号与Mg和Fe信号的契合。当然Fe与Ba信号的同时出现还可以被解释为溶解的Ba与ISO 8692培养基中的EDTA络合在了一起,而EDTA被添加在溶液中以保持Fe的生物可利用率。要回答这个问题,我们使用TEM观察到EPS聚集体中包裹有纳米颗粒(图4)。由于TEM局限于定性分析,再加上EPS结构微妙,这种包裹的确切机制和发生频率很难被量化。然而单细胞ICP-TOF-MS则可以直接对这一现象进行定量分析,而不需要对样品进行复杂的制备,同时还可以在较短的时间内分析更多的藻类细胞及EPS聚集体,提供更可靠的统计数据。此外,单细胞ICP-TOF-MS可以动态地从藻类悬浮液中不间断取样,评估这种清除行为的发生频率与样品浓度和时间的关系,进一步了解藻类细胞和纳米颗粒之间的相互作用。这种利用ICP-TOF研究动态摄取和清除行为的研究思路不仅限于藻类细胞,还可以扩展到纳米医学或纳米生物技术的其他类型细胞,如哺乳动物细胞或细菌。图4:一个藻类细胞(Raphidocelis subcapitata)的透射电子显微镜图像,该细胞之前暴露在银纳米颗粒物中,脱落的细胞外聚合物物质(EPS)含有银纳米颗粒。(由Louise H. S. Jensen和Sara N. Sø rensen提供)。 正如本研究强调的那样,尽管传统的四极杆质谱(sc-ICP-Q-MS)可以测量单细胞,但它最多只能同时测量一种或两种元素或同位素,所以即使检测到纳米颗粒信号也不能100%确定其与细胞直接关联。另外还需要TEM来确定颗粒物是否被藻类吸收在内部或简单附着在细胞外部。然而使用ICP-TOF-MS可以将被暴露在纳米颗粒物中藻类的离子组与对照藻类的离子组进行比较,从而评估它们的状况。这些信息对于从机理上理解海藻细胞与纳米颗粒物的相互作用非常有价值,并可以进一步促进开发以生理学为基础的纳米颗粒物风险评估工具。icpTOF结论与展望 单细胞ICP-TOF-MS是一个新兴的、令人兴奋且快速发展的研究领域。虽然尚需数年时间才能达到质谱流式技术在单细胞多参数分析方面的水平,但ICP-TOF-MS得益于灵敏度的提高和同时全谱检测能力,能够基于元素指纹检测未被标记的细胞,从而为新的实验设计创意提供可能性。例如,除了测量纳米颗粒物和细胞的相关性外,ICP-TOF-MS记录的多元素数据可用于评估细胞在纳米颗粒介导毒性影响下的不同状态。 除了液体样品引入方法之外,也可以使用激光剥蚀(LA)-ICP-TOF-MS进行单细胞分析30,31。通过将制备有细胞的载玻片放在样品台上并使用激光扫描,可以产生单个完整细胞层面上的元素分布二维图像,其中每个像素包含一个完整的全元素谱图。LA-ICP-TOF-MS成像的高空间分辨率对纳米毒理学研究特别有意义,因为它可以观察和定位纳米颗粒物在亚细胞结构中的聚集,以进一步了解和解释各种现象(如摄取、积累和释放纳米颗粒)。 此外,所生成的大量数据可以通过降维技术进行处理,如主成分分析(PCA)或机器学习工具,并提取与细胞状态和类型有关的信息,从而使细胞的分类变得更容易。这在质谱流式工作流程中是常见的处理方法。这项技术不仅限于纳米毒理学研究,还可以扩展到金属组学和细胞生物学中。无论如何,我们将继续努力改进飞行时间质谱ICP-TOF-MS技术,使其在更广阔的应用领域发挥作用。icpTOF致谢作者感谢Olga Meili和Aiga Mackevica校对本文并提供反馈。Lars M. Skjolding得到了PATROLS – Advanced Tools for NanoSafety Testing项目资助(760813)。感谢Louise Helene Sø gaard Jensen和Sara Nø rgaard Sø rensen允许使用图4中的TEM图像。最后特别感谢Robert Thomas邀请在Spectroscopy杂志中的 "原子视角专栏 "刊登此文。原文链接:Hendriks L., Skjolding L. M., Robert T., Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint, Spectroscopy, 2020, Volume 35, Issue 10, Pages 9–16https://www.spectroscopyonline.com/view/single-cell-analysis-by-inductively-coupled-plasma-time-of-flight-mass-spectrometry-to-quantify-algal-cell-interaction-with-nanoparticles-by-their-elemental-fingerprint (请点击左下角“阅读原文”跳转)本文由TOFWERK中国-南京拓服工坊科技编译,结论以英文原文为准。参考文献1 S. J. Altschuler and L. F. Wu, Cell, 2010, 141, 559–563.2 W. M. Elsasser, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 5126–5129.3 C. Degueldre and P. Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.4 K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114–1122.5 R. C. Merrifield, C. Stephan and J. R. Lead, Environ. Sci. Technol., 2018, 52, 2271–2277.6 F. Abdolahpur Monikh, B. Fryer, D. Arenas-Lago, M. G. Vijver, G. Krishna Darbha, E. Valsami-Jones and W. J. G. M. Peijnenburg, Environ. Sci. Technol. Lett., 2019, 6, 732–738.7 I. L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. Huang, N. Jakubowski, J. Tentschert and A. Haase, J. Nanobiotechnology, 2016, 14, 1–13.8 A. S. Groombridge, S. I. Miyashita, S. I. Fujii, K. Nagasawa, T. Okahashi, M. Ohata, T. Umemura, A. Takatsu, K. Inagaki and K. Chiba, Anal. Sci., 2013, 29, 597–603.9 M. Corte-Rodríguez, R. Á lvarez-Fernández García, P. García-Cancela, M. Montes-Bayón, J. Bettmer and D. . Kutscher, Curr. Trends Mass Spectrom., 2020, 18, 6–10.10 K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann and N. Jakubowski, J. Anal. At. Spectrom., 2013, 28, 646–656.11 P. E. Verboket, O. Borovinskaya, N. Meyer, D. Günther and P. S. Dittrich, Anal. Chem., 2014, 86, 6012–6018.12 D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. E. Dick and S. D. Tanner, Anal. Chem., 2009, 81, 6813–6822.13 K. R. Atkuri, J. C. Stevens and H. Neubert, Drug Metab. Dispos., 2015, 43, 227–233.14 S. D. Tanner, V. I. Baranov, O. I. Ornatsky, D. R. Bandura and T. C. George, Cancer Immunol. Immunother., 2013.15 Y. Guo, S. Baumgart, H. J. Stä rk, H. Harms and S. Müller, Front. Microbiol., 2017, 8, 1–9.16 L. Hendriks, A. Gundlach-Graham, B. Hattendorf and D. Günther, J. Anal. At. Spectrom., , DOI:10.1039/c6ja00400h.17 M. Malinouski, N. M. Hasan, Y. Zhang, J. Seravalli, J. Lin, A. Avanesov, S. Lutsenko and V. N. Gladyshev, Nat. Commun., , DOI:10.1038/ncomms4301.18 D. E. Salt, I. Baxter and B. Lahner, Annu. Rev. Plant Biol., 2008, 59, 709–733.19 A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann and F. Von Der Kammer, Environ. Sci. Nano, 2017, 4, 307–314.20 O. Borovinskaya, S. Aulakh and R. Markus, Tofw. appilcation note, 2019, 1–3.21 M. von der Au, O. Borovinskaya, L. Flamigni, K. Kuhlmeier, C. Büchel and B. Meermann, Algal Res., 2020, 49, 101964.22 L. Mueller, H. Traub, N. Jakubowski, D. Drescher, V. I. Baranov and J. Kneipp, Anal. Bioanal. Chem., 2014, 406, 6963–6977.23 F. Piccapietra, C. G. Allue, L. Sigg and R. Behra, Environ. Sci. Technol., 2012, 46, 7390–7397.24 F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias and R. Popovic, Chemosphere, 2012, 87, 1388–1394.25 L. H. S. Jensen, L. M. Skjolding, A. Thit, S. N. Sø rensen, C. Kø bler, K. Mø lhave and A. Baun, Environ. Toxicol. Chem., , DOI:10.1002/etc.3697.26 C. Brandenberger, M. J. D. Clift, D. Vanhecke, C. Mühlfeld, V. Stone, P. Gehr and B. Rothen-Rutishauser, Part. Fibre Toxicol., , DOI:10.1186/1743-8977-7-15.27 ISO, International Organization for Standarization. ISO 8692. Water quality - Fresh water algal growth inhibition test with unicellular green algae., 2012.28 J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, J. C. White and B. Xing, Nanotoxicology, , DOI:10.1080/17435390.2016.1206149.29 F. Chen, Z. Xiao, L. Yue, J. Wang, Y. Feng, X. Zhu, Z. Wang and B. Xing, Environ. Sci. Nano, 2019, 6, 1026–1042.30 S. Theiner, A. Schoeberl, S. Neumayer and G. Koellensperger, J. Anal. At. Spectrom., 2019, 34, 1272–1278.31 S. Theiner, A. Schweikert, C. Haberler, A. Peyrl and G. Koellensperger, Metallomics, , DOI:10.1039/d0mt00080a.
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • AWSensors发布AWS分子相互作用仪A20+新品
    AWS A20+ Research Platform测试系统基于声波传感原理,可精确测量石英传感器表面质量和结构变化,提供实时、高灵敏的表面相互作用检测,如吸附和脱附过程、分子相互作用、蛋白质构象变化等材料表征与生命科学研究。结合常规QCM芯片、高频QCM芯片与叉指传感器芯片,可精确检测声波在石英本体与表面的传播变化,提高测试的可靠性。AWS-HFF sensor高频QCM传感器芯片和常规QCM-AWS芯片相比品质因子更高,芯片更薄。在高频下操作,可提高2个数量级的测量灵敏度和分辨率。同时芯片面积更小,可节省样品的使用量。专有的支撑框架设计可提高芯片的稳定性和操作的方便性。主要特点基于专利的QCMD技术结合常规QCM芯片、高频QCM芯片与叉指传感器芯片微流控系统集成了样品、缓冲试剂与废液处理功能可对试剂和样品分别控温测试系统配置灵活,1-4个通道具有倍频操作模式,测试频率高达5-160MHz,灵敏度可达0.05ng/cm2应用领域l 薄膜厚度监控l 电极表面电化学化学反应l 生物技术 o DNA和RNA与互补链的相互作用 o通过固定的受体,免疫反应的特异性识别蛋白配体 o检测病毒衣壳,细菌,哺乳动物细胞 o细胞,脂质体和蛋白质的附着力 o表面的生物相容性 o 生物膜的形成l 功能化的表面 o 建立选择性表面 o脂质膜 o聚合物涂层 o 活性表面 o 免疫传感器创新点:1.结合常规QCM芯片、高频QCM芯片和叉指传感器芯片2.微流控系统集成样品、缓冲试剂与废液处理功能,可对试剂和样品分别控温3.比上一代产品A20增加了在线脱气装置AWS分子相互作用仪A20+
  • 2012 蛋白质-配体弱相互作用研究的技术与方法国际研讨会
    2012 年 10 月30日 (中国, 上海)--专注于提高人类健康及其生存环境安全的全球领先企业珀金埃尔默(PerkinElmer )公司10月参加了由中国生物物理学会分子生物物理专业委员会和美国生物物理学会于14-18 日在北京友谊宾馆举办的2012 蛋白质-配体弱相互作用研究的技术与方法国际研讨会。PerkinElmer公司的Tim Cloutier 博士于15日做大会发言,与来自国内外的与会者一起分享PerkinElmer Enspire 多模式微孔板检测系统与无标记检测方案。Tim Cloutier 博士说:&ldquo PerkinElmer EnSpire((CorningEpic).)是世界上第一个多模式多孔板检测仪器。它可用于96和384微孔板,以非介入检测技术在活细胞中识别和表征多个G蛋白偶联型受体(GPCR)通路活性。此外,EnSpire第一次提出了无标记和标记技术在基于细胞和生化分析的正交校验检测方案。在活细胞中,成功地动态监测的细胞内的的质量重分布(DMR),我们无标记检测技术是一个综合性的多功能的工具,能够生成的生理相关的表型数据为G蛋白偶联受体的研究。此外,还可以检测配体依赖性反应的蛋白质:蛋白质和蛋白质的小分子,生物分子的相互作用。非常类似于低通量的SPR技术。 EnSpire无标记,从而提供了一个快速KD亲和力的高通量检测方案,可以是在先于BiaCore检测之前,提供了高通量的预筛方案。&rdquo 我们先进的无标记检测产品,为您解决GPCR的问题,为您的研究带来划时代的飞跃。欲了解更多产品信息,请访问我们的官方网站www.perkinelmer.com/EnSpireLabelfree产品样本下载 PerkinElmer生命科学与技术部
  • 技术流派解析:带你重新认识大分子相互作用仪
    生物分子的活性功能是通过分子之间的相互作用来实现的,研究生物分子间的相互作用,可以从分子水平上了解生命现象,从而阐明生命活动的机理,发现生命的本质。大分子相互作用仪作为研究分子间相互作用的重要研究工具,在生命科学、临床医学、环境检测和药物筛选等研究中发挥了巨大作用。近年来,研究分子间相互作用的技术层出不穷,然而每一种技术都存在应用价值和局限性。小编将主流的技术流派进行汇总,以飨读者。非标记技术在分子间相互作用研究中扮演着越来越多的角色。顾名思义,非标记技术不需要通过标记荧光基团、抗体、探针等外在分子,而是通过检测物理性质(如质量、折光率、频率、分子尺寸、能量等)在分子间相互作用过程中的变化来定性定量地研究分子间相互作用。因此,非标记技术能够有效避免了荧光干扰、特异性等问题,被广泛应用于蛋白质、核酸、多肽以及小分子化合物等生物分子间相互作用的研究。目前,主流的非标记技术主要包括表面等离子共振技术和生物膜干涉技术。表面等离子共振技术提到非标记分子间相互作用检测技术,熟悉的人们首先会联想到SPR技术即表面等离子共振(Surface Plasmon Resonance, SPR)技术。它是一种光学物理传感技术,其工作原理为当一束P偏振光以一定的角度范围内入射到棱镜端面,棱镜与金属薄膜(Au或Ag)的界面将产生表面等离子波。当入射光波的传播常数与表面等离子波的传播常数相匹配时,引起金属膜内自由电子产生共振,即表面等离子体共振。首先在芯片表面固定一层生物分子识别膜,然后将待测样品流过芯片表面,若样品中有能够与芯片表面的生物分子识别膜相互作用的分子,会引起金膜表面折射率变化,最终导致SPR角变化,通过设备监测SPR的角度变化,获得被分析物的浓度、亲和力、动力学常数和特异性等重要参数。SPR技术具有免标记、实时检测、所需样本量少、无需对样本进行复杂处理等优势,已广泛用来研究蛋白质、核酸、多肽、小分子化合物等生物分子的相互作用。1990年,瑞典Pharmacia公司与乌普萨拉大学的研究人员共同发明了全球第一台基于SPR技术的Biacore仪器,使人类第一次利用仪器就能对不同分子间的相互作用进行自动化检测。1996年,Biacore从Pharmacia公司剥离并独立运营,并于2006年被GE收购,成为GE医疗生命科学大家庭中的一员。2020年,丹纳赫集团正式完成对GE生命科学的收购,并更名为Cytiva(思拓凡)。自1990年至今,Biacore经历了30多年的发展,已成为分子互作的“金标准”和基础科研及药物开发的工具,先后推出了一系列的产品型号,从最初的Biacore 1000,到Biacore T系列,X系列以及最新的8K系列等。Biacore 8K/8K+生物分子互相作用分析系统 (点击查看)近年来,国内基于SPR技术研发的大分子相互作用仪在研发和商业化方面也取得了突破性进展,比如北京英柏生物科技有限公司利用SPR原理自主研发的MI-S200仪器,凭借其优异的性能和技术参数荣获2019年度中国分析测试协会科学技术奖BCEIA金奖。Inter-Bio 英柏表面 等离子共振检测仪MI-S200 (点击查看) 2019年,华中科技大学刘钢教授团队自主研发出一种新型纳米等离子光学传感器芯片,该芯片不需要光学耦合器件配合激发且具有更高的共振模式品质,借助这种传感器芯片后仅用常规的普通设备如光学显微镜和酶标仪等就能完成病毒表面蛋白和抗体之间结合过程的定量分析测定。生物膜干涉技术生物膜干涉(Bio-Layer Interferometry, BLI)又称生物层干涉,是一种通过检测干涉光谱的位移变化来检测传感器表面反应的技术。其工作原理为当一束可见光从光谱仪射出后,在传感器末端的光学膜层的两个界面会形成两束反射光谱,并形成一束干涉光谱。任何由分子结合或解离而形成的膜层厚度和密度变化,均能够通过干涉光谱的位移值而体现,并通过这个位移值做出实时的反应监测图谱。检测图谱示意图(图源赛多利斯官网)通过对分子结合过程的实时监测,系统会测定结合常数(ka)和解离常数(kd)以及起始结合速率,并通过拟合计算分析得到亲和力(KD)等重要数据。BLI技术具有实时分析、免标记、更高通量等优势,被广泛应用于蛋白结构靶点分析、药物研发与筛选及天然产物分析等生命科学研究领域。2020年底,BLI技术被正式收录于《美国2021版药典》1108章,这也表明BLI技术将作为药物检测标准规范,延展至更多的应用场景,推动科研和医疗健康行业的进步。ForteBio率先将BLI技术商业化, Octet分子互作分析系统凭借其高通量和简单易用的优点迅速获得了广大药物研发企业和科研工作者的青睐。后来,几经收购,目前Octet系列产品归属于赛多利斯公司,其最新产品Octet R系列,可提供2、4或8通道模式,满足不同科研需求,另外也可以升级成16或96通道,适用于工业应用。Octet R2分子互作分析系统 (点击查看) 随着科学技术发展,基于上述两种技术原理又衍生出一系列新技术,比如光栅耦合干涉技术、局域表面等离子体共振技术和新一代生物膜干涉检测技术等。近年来,基于这些新技术原理开发的仪器纷纷崭露头角,或能成为市场“黑马”。光栅耦合干涉技术光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)由Creoptix AG(瑞士)开发。与传统的SPR技术相比,GCI技术巧妙的利用波导技术的原理,Creoptix WAVE产生的消逝波(evanescent field)仅在芯片表面与样品溶液接触,并且延长了其与样品相互作用的长度,以确保更低的信噪比(0.015pg/mm2)。凭借WAVE的低检测限,可轻松获取无标记互作分子高精度的动力学速率,亲和常数及浓度数据。即使检测丰度较低的样品,仍可确保数据不失真。Creoptix WAVE 分子相互作用仪(点击查看)局域表面等离子体共振局域表面等离子体共振(Localized Surface Plasmon Resonance, LSPR)是以纳米金颗粒为检测基质的新一代SPR技术。区别于传统的SPR基于折射率的SPR角度的改变,LSPR技术检测的是纳米金颗粒表面分子层厚度的变化产生的光吸收峰的位移,当入射光子频率与金属纳米颗粒传导电子的整体震动频率相匹配时,纳米颗粒会对光子能量产生很强的吸收作用,发生局域表面等离子体共振现象。由于光波长的变化受环境影响小,对体积、温度、缓冲液折射率等变化干扰不敏感,因此LSPR技术具有不受温度及缓冲液折射率的变化影响,且可忽略的“bulk”效应,无需专用参照通道,检测更稳定和灵敏等优势。薄膜干涉技术薄膜干涉技术(Thin Film Interferometry, TFI)是通过采集、分析光学探针表面反射干涉光谱的信号变化来检测生物分子间相互作用的一种技术,薄膜干涉本质上是反射干涉光谱,最早由德国科学家发现。Gator Bio公司在第一代BLI技术的基础上进行了多次技术迭代,推出新一代BLI技术,大幅提升了检测灵敏度,并在2019年推出了首款仪器GatorPrime非标记生物分子分析仪。除了非标记技术,微量热泳动技术和等温滴定技术在研究分子间相互作用中应用越来越多。微量热泳动技术微量热泳动(MicroScale Thermophoresis, MST)是通过检测分子在微观温度梯度场中的运动来分析生物分子间相互作用的一种技术。将荧光检测的精准性与热泳动的灵活性及灵敏度结合起来,由红外激光建立微观温度梯度场,通过荧光染料标记、荧光融合蛋白、色氨酸自发荧光等信号追踪,分子在微观温度梯度场中的定向移动就可以被探测和量化,通过记录这个变化来计算出两个相互作用的分子之间的Kd值等重要参数。因为能够在液体环境中直接检测分子间相互作用力,MST技术成功避免了固定样品带来的使用上的局限。2010年底,德国NanoTemper公司创始人Dr. Stefan和 Dr. Philipp将MST测量生物溶液中蛋白-蛋白之间相互作用的研究成果发表在Nature杂志上,引起了很多科研人员的极大兴趣,随后NanoTemper公司基于MST技术开发的微量热泳动仪正式投入市场,并于2020年推出的新一代生物分子互作检测仪Monolith系列,提供更加简捷、快速并精准分析生物分子相互作用的分析方法。NanoTemper 新一代生物分子互作检测仪 Monolith(点击查看) 等温滴定量热技术等温滴定量热(Isothermal Titration Calorimetry, ITC)是一种是用于量化研究各种生物分子相互作用的一种技术,它可直接测量生物分子结合过程中释放或吸收的热量。ITC检测方式与化学反应中的酸碱滴定法相似,可以测定结合配偶体在自然状态下的亲和力,无需通过荧光标记或固定化技术对结合配偶体进行修饰。ITC技术通过测量结合过程中的热传递,就能够准确地确定结合常数 (KD)、反应化学量 (n)、焓 (ΔH) 、熵 (ΔS)和动力学数据(如酶促反应的Km和kcat)等重要参数。ITC技术具有快速、准确、样品用量小、对反应体系的要求不高(如对体系的透光度、浑浊度、粘滞度要求不高)等优势,被广泛应用于生物及医药等相关领域。商业化等温滴定量热仪最早出现在上世纪80年代后期,在过去的近30年中, ITC技术成为研究分子相互作用的常用方法之一。随着科学技术的发展,等温滴定量热仪将会更加灵敏、快速、易用。除此之外,还有许多基于主流技术流派开发出的一些新的分支流派,比如HORIBA scientific将等离子体共振技术、成像技术和微阵列芯片技术进行结合研发出的SPRi-OpenPlex灵活式表面等离子体共振成像系统,可以一次获取百种生物分子相互作用的信息;美国Biosensing Instrument将光学显微镜与SPR技术相结合开发的SPRm200系统,专为观察和测量细胞膜表面蛋白和其他目标分子结合亲和力及动力学常数,为分子相互作用的研究开辟了新的前沿;荷兰KEI研发的扫描角SPR技术,采用变化频率为76Hz的扫描镜改变入射光角度的方法,使光线产生4000m°的变化范围,从而提供更精确的测量结果;加拿大Affinité Instruments基于SPR原理开发出新一代非标记分子相互作用分析仪P4SPR,具有极大的便携性,且可与其它仪器(HPLC,MS等)联合使用。看到最后,相信大家对当前大分子相互作用仪的技术流派有了清晰的认识,但是心中也难免产生一丝丝疑惑,在纷繁复杂的品牌型号中,如何挑选到自己满意的大分子相互作用仪呢?敬请期待下篇——小编精选|大分子相互作用仪导购篇。(点击查看)
  • Biametrics发布b-screen高通量分子间相互作用分析仪新品
    Biametrics公司介绍 位于德国的一家高科技公司,专注于无标记分子间相互作用检测技术及仪器的研发和生产。基于专利的SCORE(Single Colour Reflectometry)技术,研发出真正适合于工业高通量无标记分子间相互作检测分析仪b-screen,及适合一般科研实验室的灵活桌面型分子间相互作用分析仪b-screen。b-screen:新一代高通量分子间相互作用分析仪b-screen高通量分子间相互作用分析仪基于专利的SCORE技术(利用反射光干涉原理),整合生物芯片高通量的优势,一次实验可检测20000+样品反应,在极大提升检测效率的同时,将检测成本成倍降低,真正意义上满足高通量筛选实验室分子间相互作用检测分析和筛选。仪器参数技术原理:专利SCORE(Single Colour Reflectometry)技术,反射光干涉原理检测灵敏度:1 pg/mm2动力学:结合速率常数Ka :103-107 M-1S-1解离速率常数Kd :10-6-0.5 S-1样品类型:蛋白质,抗体、肽段、DNA/RNA、多糖、脂类、小分子、细胞、病毒和纳米颗粒样品基质:各种基质,如含DMSO缓冲液、细胞培养基、尿液,血浆,血清,全血等进样方式:自动化流动式进样检测通量:20000+ 样品点/次检测耗材:高通量生物芯片(>20000个样品点) 应用领域:1、蛋白/蛋白相互作用2、动力学3、免标定浓度分析4、基于细胞的分析5、诊断研究创新点:基于专利的SCORE技术(利用反射光干涉原理),整合生物芯片高通量的优势,一次实验可检测20000+样品反应,在极大提升检测效率的同时,将检测成本成倍降低,真正意义上满足高通量筛选实验室分子间相互作用检测分析和筛选。b-screen高通量分子间相互作用分析仪
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 北大研究者发布探索蛋白质相互作用特征的新技术
    北京大学的研究人员报告称,他们开发出了一种遗传编码蛋白质光交联剂,其带有可转移的、质谱可识别的标签。这一研究成果发布在7月27日的《自然通讯》(Nature Communications)杂志上。  北京大学化学与分子工程学院的陈鹏(Peng R. Chen)研究员与王初(Chu Wang)研究员是这篇论文的共同通讯作者。  蛋白质以其自身结构和与其他蛋白质之间的相互作用为基础发挥功能,因此,研究蛋白质的结构和相互作用抑制是生命科学的重要方向。  检测蛋白质相互作用的传统方法,如酵母双杂交、亲和色谱和免疫共沉淀等有着各自的局限性。酵母双杂交可以揭示蛋白质间的直接相互作用,甚至通过大规模筛查发现未知的相互作用,但酵母细胞未必能为异源表达的其他物种蛋白提供合适的相互作用条件。亲和色谱技术和免疫共沉淀技术其通量比较低,背景结合蛋白质与特异性结合蛋白质有时难以区分,直接与间接相互作用也通常难以区分。另外,这三种方法对于瞬间、微弱的相互作用,比如信号转导过程中松散变化的蛋白质复合物,都很难获得有效信息。  近年来,科学家们一直在不断地发展发现及描绘生理条件下蛋白质相互作用特征的技术,其中化学与光亲和交联策略获得越来越多的关注。将生物分子间的非共价相互作用转变为共价交联,使得能够捕获到时常出现在自然界中微弱且短暂的蛋白质相互作用。光交联剂结合质谱技术是近年发展起来在活体系统中研究蛋白质相互作用的一种有力的工具,但它仍然存在着高假阳性鉴别率及无法提供相互作用界面信息等缺点。  在这篇文章中研究人员报告称,他们开发出了一种遗传编码光亲和非自然氨基酸,可在光交联及猎物蛋白-诱饵蛋白分离后将一个质谱可识别的标签(MS-label)导入到捕获的猎物蛋白中。这一叫做IMAPP的策略使得能够直接鉴别出采用传统的遗传编码光交联剂难以揭示的光捕获底物肽。利用这一MS-label,IMAPP策略显著提高了鉴别蛋白质相互作用的可信度,使得能够同时鉴别捕获的肽和确切的交联位点,对于揭示靶蛋白及绘制活体系统中蛋白质相互作用界面具有极高的价值。  来自多伦多大学Lunenfeld-Tanenbaum Research Institute (LTRI)和Donnelly中心的一组研究人员,开发出一种新技术,可以将细胞内的DNA条形码拼接在一起,以同时搜寻数百万个蛋白质配对,用以分析蛋白质相互作用。相关研究结果发表在2016年4月22日的《Molecular Systems Biology》杂志上(研究蛋白质相互作用的新技术)。  斯克里普斯研究所(TSRI)的科学家们开发出了一种强大的新方法来寻找结合特定蛋白质的候选药物。发表在2016年6月Nature杂志上的这种新方法是一个重大的进展,它可以同时应用于大量的蛋白质,甚至直接应用于自然细胞环境中成千上万不同的蛋白质。一些小分子可以用来确定它们靶蛋白的功能,并可充当药物开发的起始复合物。TSRI的研究人员证实这一技术为许多过去认为无法很好结合这些小分子的蛋白质找到了“配体”(结合伴侣蛋白)(Nature发布突破性蛋白质新技术)。  蛋白质是自然界的机器。它们供给氧气为我们的肌肉提供动力,催化一些帮助我们从食物中提取能量的反应,抵御细菌和病毒的感染。数十年来,科学家们一直在寻找方法设计可以满足某些医学、研究和工业特定用途的新蛋白质。现在,北卡罗来纳大学医学院的研究人员开发出了一种方法,通过将已存在蛋白质的片段拼接在一起来生成新蛋白质。这一叫做SEWING的技术发表在2016年5月的Science杂志上(Science发布突破性蛋白质技术)。
  • 114万!福建师范大学生物分子相互作用分析仪等仪器设备采购项目
    项目编号:[3500]FYJK[GK]2022100项目名称:福建师范大学生物分子相互作用分析仪等仪器设备采购采购方式:公开招标预算金额:1,149,000.00元采购包1(福建师范大学生物分子相互作用分析仪等仪器设备采购的合同包1):采购包预算金额:660,000.00元采购包最高限价: 660,000.00元投标保证金: 6,600.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02109900-其他仪器仪表生物分子相互作用分析仪1(批)是详见招标文件660,000.00本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕采购包2(福建师范大学生物分子相互作用分析仪等仪器设备采购的合同包2):采购包预算金额:489,000.00元采购包最高限价: 489,000.00元投标保证金: 4,890.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)2-1A02109900-其他仪器仪表流式细胞仪1(批)是详见招标文件489,000.00本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕
  • 450万!大连理工大学高通量分子相互作用仪采购项目
    项目编号:DUTASZ-2022622项目名称:大连理工大学高通量分子相互作用仪采购项目预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:高通量分子相互作用仪1套。主要进行蛋白、核酸、脂类、抗体与抗原、多肽、糖类、小分子化合物、天然产物提取物、纳米材料、病毒、细菌及细胞等不同类型分子的相互作用分析,可检测分子结合特异性、动力学常数、亲和常数、定量分析所结合蛋白的浓度等。 具体要求详见招标文件。 注:本项目已经财政部门审核,接受进口产品投标,本文件所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。合同履行期限:供货期:自合同签订之日起120个日历日内货到采购人指定地点安装调试验收合格。质保期:货到采购人指定地点安装调试验收合格之日起,免费质保不低于1年。本项目( 不接受 )联合体投标。
  • 单分子追踪技术助力一篇Nature子刊!实现整合素相互作用蛋白的功能与作用机制研究
    研究背景:  FERM结构域的蛋白家族中,黏着斑蛋白(kindlin)和踝蛋白(talin) 是进化上高度保守并且在FERM结构域中表现出高度同源性。kindlin家族在整合素(integrin)活化中发挥重要作用,参与integrin的双向信号传导,对整合素受体介导的细胞与细胞外基质的黏附、细胞-细胞外基质的黏附、细胞迁移、胚胎发育、损伤修复等过程中发挥关键作用。此外kindlin的异常还可以导致多种遗传性疾病的发生,同时kindlin家族作为重要的信号分子还参与了肿瘤的发生发展过程。  近日,《Nature Communications》刊登了Grégory Giannone等学者的最新研究成果,该团队使用Abbelight 3D单分子超分辨成像系统SAFe 360的超分辨-单分子追踪技术(SPT-PALM)研究了kindlin和talin等蛋白在细胞质膜中的扩散机制。  研究内容:  焦点黏着斑蛋白(FAs)家族广泛参与整合素依赖型细胞粘附、极性和迁移等过程,通过直接或间接的方式结合在细胞外基质(ECM)和肌动蛋白细胞骨架之间,并与具有不同结构、信号或支架功能的蛋白建立物理联系。然而FAs蛋白如何被引导到特定的纳米层以促进与特定靶点的相互机制目前尚不清楚。为探究其机制,Grégory Giannone等将kindlin的蛋白分子行为和3D纳米级定位与其在FAs内integrin激活中的功能联系起来,通过单蛋白追踪、超分辨成像以及功能分析kindlin在上膜的定位和扩散对integrin激活、细胞扩散和FAs形成过程,并通过研究发现kindlin通过与talin不同的途径来达到和激活integrin,为integrin激活期间的互补性提供了可能的分子基础。  首先,作者通过追踪integrin在细胞中不同区域的单分子运动轨迹,计算单个β1-integrin或者β3-integrin分子的扩散系数,并比较integrin在FA内和FA外的扩散系数,发现integrin在FA中有自由扩散(绿色轨迹),被束缚的区域扩散(黄色轨迹)和固定不动三种不同模式。不同的细胞中,integrin在FA外普遍表现出更快的扩散速度,更多倾向于纯自由扩散。同时Mn2+的处理会让更多的integrin分子倾向于固定不动,也即参与同kindlin和或talin相互作用。经过计算kindlin突变体和talin突变体中β1-integrin或者β3-integrin的扩散系数并比较,发现对于这两个突变体,Mn2+处理结果略有不同,kindlin突变体中integrin分子倾向于固定不动的比例相对于talin突变体较低一些。integrin,kindlin和talin在细胞中的扩散的轨迹分布于扩散系数分布  为了进一步分析kindlin和talin与integrin相互作用的机制,观测比较kindlin和talin单分子扩散轨迹可发现integrin和kindlin通过细胞膜自由扩散独立进入焦点黏着斑(FAs),而talin和paxillin通过胞浆自由扩散到达FAs。在FAs中integrin展现自由扩散和被束缚的扩散两种扩散模式,两种模式都是通过kindlin和talin的结合触发。自由扩散时integrin,kindlin和talin同时以正确的取向结合的概率非常低,Grégory Giannone等学者研究显示三者更倾向于如上图所示的模型,也即在质膜上自由扩散的integrin和kindlin会先形成不可移动的integrin-kindlin复合物(i);这种复合物可以限制整合素β端的方向,并有利于talin与近端NPxY基序的结合,从而形成短暂integrin-kindlin-talin的三元复合物(ii);kindlin可以间歇性地解离(iii)并再次(ii)与寿命更长的integrin-talin复合物重新结合。这种瞬态的integrin-kindlin-talin三元复合物的相互作用会大大延长integrin和talin的相互作用的持续时间。talin和kindlin脱附后integrin会继续恢复自由扩散的模式,直至再次和kindlin结合。kindlin和talin激活整合素的示意图模型  实验设备简介:  本实验中实用的单分子示踪系统是abbelight公司研发的3D单分子定位显微系统—SAFe 360,利用其特有的DAISY技术将xyz方向的定位精度提高至15 nm,可以精确观测蛋白颗粒的定位分布及其运动轨迹。除此之外,该设备还具备大视场和一键式操作,能够大幅度降低单分子定位操作技术的门槛,帮助研究者从事分子机制的研究。  典型采集实例:神经元超分辨成像大肠杆菌线粒体三维结构外泌体成像  参考文献:  [1] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature communications12.1 (2021): 1-17.
  • 单分子追踪技术助力一篇Nature子刊!实现整合素相互作用蛋白的功能与作用机制研究
    研究背景:FERM结构域的蛋白家族中,黏着斑蛋白(kindlin)和踝蛋白(talin) 是进化上高度保守并且在FERM结构域中表现出高度同源性。kindlin家族在整合素(integrin)活化中发挥重要作用,参与integrin的双向信号传导,对整合素受体介导的细胞与细胞外基质的黏附、细胞-细胞外基质的黏附、细胞迁移、胚胎发育、损伤修复等过程中发挥关键作用。此外kindlin的异常还可以导致多种遗传性疾病的发生,同时kindlin家族作为重要的信号分子还参与了肿瘤的发生发展过程。近日,《Nature Communications》刊登了Grégory Giannone等学者的新研究成果,该团队使用Abbelight 3D单分子超分辨成像系统SAFe 360的超分辨-单分子追踪技术(SPT-PALM)研究了kindlin和talin等蛋白在细胞质膜中的扩散机制。 研究内容:焦点黏着斑蛋白(FAs)家族广泛参与整合素依赖型细胞粘附、性和迁移等过程,通过直接或间接的方式结合在细胞外基质(ECM)和肌动蛋白细胞骨架之间,并与具有不同结构、信号或支架功能的蛋白建立物理联系。然而FAs蛋白如何被引导到特定的纳米层以促进与特定靶点的相互机制目前尚不清楚。为探究其机制,Grégory Giannone等将kindlin的蛋白分子行为和3D纳米定位与其在FAs内integrin激活中的功能联系起来,通过单蛋白追踪、超分辨成像以及功能分析kindlin在上膜的定位和扩散对integrin激活、细胞扩散和FAs形成过程,并通过研究发现kindlin通过与talin不同的途径来达到和激活integrin,为integrin激活期间的互补性提供了可能的分子基础。先,作者通过追踪integrin在细胞中不同区域的单分子运动轨迹,计算单个β1-integrin或者β3-integrin分子的扩散系数,并比较integrin在FA内和FA外的扩散系数,发现integrin在FA中有自由扩散(绿色轨迹),被束缚的区域扩散(黄色轨迹)和固定不动三种不同模式。不同的细胞中,integrin在FA外普遍表现出更快的扩散速度,更多倾向于纯自由扩散。同时Mn2+的处理会让更多的integrin分子倾向于固定不动,也即参与同kindlin和或talin相互作用。经过计算kindlin突变体和talin突变体中β1-integrin或者β3-integrin的扩散系数并比较,发现对于这两个突变体,Mn2+处理结果略有不同,kindlin突变体中integrin分子倾向于固定不动的比例相对于talin突变体较低一些。integrin,kindlin和talin在细胞中的扩散的轨迹分布于扩散系数分布为了进一步分析kindlin和talin与integrin相互作用的机制,观测比较kindlin和talin单分子扩散轨迹可发现integrin和kindlin通过细胞膜自由扩散立进入焦点黏着斑(FAs),而talin和paxillin通过胞浆自由扩散到达FAs。在FAs中integrin展现自由扩散和被束缚的扩散两种扩散模式,两种模式都是通过kindlin和talin的结合触发。自由扩散时integrin,kindlin和talin同时以正确的取向结合的概率非常低,Grégory Giannone等学者研究显示三者更倾向于如上图所示的模型,也即在质膜上自由扩散的integrin和kindlin会先形成不可移动的integrin-kindlin复合物(i);这种复合物可以限制整合素β端的方向,并有利于talin与近端NPxY基序的结合,从而形成短暂integrin-kindlin-talin的三元复合物(ii);kindlin可以间歇性地解离(iii)并再次(ii)与寿命更长的integrin-talin复合物重新结合。这种瞬态的integrin-kindlin-talin三元复合物的相互作用会大大延长integrin和talin的相互作用的持续时间。talin和kindlin脱附后integrin会继续恢复自由扩散的模式,直至再次和kindlin结合。kindlin和talin激活整合素的示意图模型 实验设备简介:本实验中实用的单分子示踪系统是abbelight公司研发的3D单分子定位显微系统—SAFe 360,利用其特有的DAISY技术将xyz方向的定位精度提高至15 nm,可以观测蛋白颗粒的定位分布及其运动轨迹。除此之外,该设备还具备大视场和一键式操作,能够大幅度降低单分子定位操作技术的门槛,帮助研究者从事分子机制的研究。 典型采集实例:神经元超分辨成像大肠杆菌线粒体三维结构外泌体成像 参考文献:[1] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature communications 12.1 (2021): 1-17.
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2--- _10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8~2.8表5:甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响在10 mM缓冲液中,甘氨酸浓度越高,pH值变化越明显,另外通过用同步X射线衍射法监测溶质结晶程度,磷酸盐缓冲液对甘氨酸结晶具有浓度依赖性抑制作用,20%W/V甘氨酸和50-200mM缓冲液,缓冲液浓度越高,抑制作用越强,并且在-20℃进行退火处理,能够增强甘氨酸的结晶度。pH的改变能够引起蛋白凝聚,可以通过降低缓冲液浓度,使用不结晶的缓冲液,通过蛋白,糖来抑制缓冲液结晶,并且某些蛋白本身就具有pH缓冲的功能(Pikal-Cleland et al., J. Pharm. Sci. 2002;Varshney et al., Pharm. Res. 2007;Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel. 2020 Sundarmurathi and Suryanarayanan, J. Phys. Chem. B. 2011 Gokarnet al., J. Pharm. Sci. 2008)。 03.总结 冻干配方成分之间具有复杂的相互作用,某些组分可以通过改变其他组分的相行为来影响其功能性,必须正确选择配方中赋形剂的浓度,使得每种成分能够维持其*的物理形态,发挥应有的功能性。评论抽免费礼品活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 还用传统方法测分子相互作用?Nature作者都用ForteBio了!
    仪器信息网讯 4月8日, 2016年Pall ForteBio中国第四届用户交流会(北京站)于北京中关村皇冠假日酒店成功举办。来自各高校、科研院所、企业研发机构等约100人参加了此次交流会。仪器信息网作为特约媒体对交流会进行了报道。  交流会现场 主办方与部分报告人合影  会议由ForteBio产品经理陈雍硕主持。ForteBio 大中国区销售经理谢智致开幕词。 陈雍硕谢智    生物膜干涉技术(BLI)已发展成为全球增长最快的非标记(label-free)检测技术,可提供实时的、非标记的分子相互作用及含量检测信息,不仅广泛应用于??药物??早期研究开发、筛选鉴定、临床前与临床研究以及下游生产质控等各个环节,而且在生命科学基础研究、生物制药开发、食品安全等领域也有着深入独到的应用,赢得了广泛认可。ForteBio本着“金标准、银标准,服务好客户才是硬标准”的服务理念,在进入中国的7年来,为中国客户提供优良的服务与有力的帮助,受到越来越多用户的认可与支持。  本次交流会针对领域最新技术趋势、方法手段以及具体应用展开,由多位仪器研发及应用专家为大家带来了精彩的报告。  李易真  报告人:上海交通大学医学院附属瑞金医院医学基因组学国家重点实验室李易真博士  报告题目:Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8 21) acute myeloid leukemia  李易真博士就急性髓性白血病的发病机制、融合蛋白的形成过程和蛋白之间的结合过程展开介绍。  李成鹏  报告人:北京大学化学与分子工程学院 纳米抗体平台高级主管李成鹏博士  报告题目:快速高通量纳米抗体筛选平台  李成鹏首先介绍了北京大学化学与分子工程学院纳米抗体平台,平台特点和平台主要实验进度。纳米抗体的介绍和特点,还介绍了ForteBio如何在实验过程中发挥作用。  李元元  报告人:清华大学医学院李海涛课题组助理研究员李元元博士  报告题目:Determination of protein-DNA (ZMYND11-DNA) Interaction by a Label-Free Biolayer Interferometry Assay  李海涛课题组在《自然》(Nature)杂志上发表文章,文章介绍了ZMYND11作为组蛋白变异体H3.3特异性的H3K36me3“阅读器”蛋白,其将组蛋白变体介导的转录延伸控制与肿瘤抑制关联起来。李元元博士针对这一重要发现的研究过程进行了详细介绍。  王磊  报告人:中国药科大学药物分子设计与成药性优化重点实验室王磊博士  报告题目:Discovery and evaluation of small molecule inhibitors with the help of Bio-Layer Interferometry technology  BLI技术可以应用于二次实验结果的评价、蛋白结合过程的测定、结合动力学曲线的测定以及某些天然产物的可能作用靶点的寻找,王磊博士通过介绍中国药科大学药物分子设计与成药性优化重点实验室三个课题的进展情况,详细讲解了BLI技术的应用和优势。  段学欣  报告人:天津大学精密仪器与光电子工程学院段学欣博士,研究员、博士生导师  报告题目:体声波谐振器在生物分子传感中的应用  生物传感器的开发是仪器科学、材料科学和生命科学交叉的多学科交叉科学。段学欣详细介绍了体声波谐振器在生物分子传感器中的应用以及体声波谐振器高通量、自动化、智能化、实现多参数复合检测、去除非特异性吸附、提高选择性、高精度分子操纵从而实现高灵敏度、高检测极限以及提高细胞摄取的特点。  Vishal Kamat  报告人:Vishal Kamat ,Ph.D Biomolecular HTS Center,Therapeutic Proteins,Regeneron  报告题目:Use of Bio-Layer Interferometry(BLI)-Based Octet Platform for Biotherapeutic Drug Discovery and Development  报告介绍了如何利用BLI技术进行生物药的研究和开发。Vishal Kamat博士分别就实时非标记生物感应器重要性、对药物研发过程的支持作用、蛋白质之间的相互作用研究过程、Octet平台在单克隆抗体药物研发中的应用以及与传统HPLC定量方法相比的优势等方面进行了讲解。  王冀殊郝东霞  报告人: 诺和诺德中国研发中心分子生物学部高级研究员王冀殊及研究助理郝东霞  报告题目:Epitope binning investigation by ForteBio Octet /Protein Binding Screening via ForteBio  王冀殊和郝东霞分别就应用ForteBio所进行的抗原决定簇结合研究以及蛋白质结合扫描研究等工作进行了介绍。  陈涛  报告人: ForteBio亚太区应用经理陈涛  报告题目:新型生物制品快速定量技术——BLI 技术应用  BLI技术除了应用于结合动力学研究之外,还可以应用于蛋白和小分子的定量测定。陈涛介绍了ForteBio针对不同物质的不同定量方法,包括直接定量法、抓取定量法、双抗夹心法和竞争法,并举例介绍了各种定量方法的原理及优势,应用BLI技术,不仅可以简化样品处理及测试过程,相应软件还会加速数据分析过程,从而有效降低成本。  会上,ForteBio的应用科学家还与用户进行了现场问题解答。  讨论现场  最后,ForteBio亚太区销售总监Veronica Tok对报告人和与会的专家、广大用户和工作人员表示感谢,同时希望明年的交流会能够吸引更多的业内人士参加,愿ForteBio继续为行业基础研究及工业生产提供强有力的支持。  Veronica Tok
  • Biametrics发布b-portable分子间相互作用分析仪新品
    Biametrics公司介绍 位于德国的一家高科技公司,专注于无标记分子间相互作用检测技术及仪器的研发和生产。基于专利的SCORE(Single Colour Reflectometry)技术,研发出适合于工业高通量无标记分子互作检测设备b-screen,及适合一般科研实验室的灵活桌面型分子互作检测系统b-portable。b-portable:新一代分子间相互作用分析仪b-portable分子间相互作用分析仪一款科研实验室真正用得起、用得上的分子间相互作用分析仪。基于专利的SCORE技术(利用反射光干涉原理),在b-screen基础上推出低通量灵活桌面型b-portable分子互作检测系统,整个流程操作简单,快速获取动力学分析数据,适合于科研实验室低通量分子间相互作用检测应用。仪器参数技术原理:专利SCORE(Single Colour Reflectometry)技术,反射光干涉原理检测灵敏度:1 pg/mm2动力学:结合速率常数Ka :103-107 M-1S-1解离速率常数Kd :10-6-0.5 S-1样品类型:蛋白质,抗体、肽段、DNA/RNA、多糖、脂类、小分子、细胞、病毒和纳米颗粒样品基质:各种基质,如含DMSO缓冲液、细胞培养基、尿液,血浆,血清,全血等进样方式:自动化流动式进样检测通量: 1-4个/次,样品多时可以4个样品为单位次连续多次上样检测耗材:芯片 应用领域:1、蛋白/蛋白相互作用2、动力学3、免标定浓度分析4、基于细胞的分析5、诊断研究创新点:一款科研实验室真正用得起、用得上的分子间相互作用分析仪。基于专利的SCORE技术(利用反射光干涉原理),在b-screen基础上推出低通量灵活桌面型b-portable分子互作检测系统,整个流程操作简单,快速获取动力学分析数据,适合于科研实验室低通量分子间相互作用检测应用。b-portable分子间相互作用分析仪
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 突破!清华团队利用XRD准确定位新冠病毒和受体相互作用位点
    p style="text-indent: 2em "/pp style="text-indent: 2em "/pp style="text-indent: 2em "2月18日,清华大学生命学院王新泉课题组和医学院张林琦课题组紧密合作,利用X射线衍射技术,解析了新型冠状病毒(2019-nCoV)表面刺突糖蛋白受体结合区(receptor-binding domain, RBD)与人受体ACE2蛋白复合物的晶体结构,准确定位出新冠病毒RBD和受体ACE2的相互作用位点,阐明了新冠病毒刺突糖蛋白介导细胞侵染的结构基础及分子机制,从而为治疗性抗体药物开发以及疫苗的设计奠定了坚实的基础。这一重要研究成果已于北京时间2月21日凌晨在论文预印本网站BioRxiv发表。(span style="color: rgb(127, 127, 127) "文章链接为:https://www.biorxiv.org/content/10.1101/2020.02.19.956235v1/span)/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 246px " src="https://img1.17img.cn/17img/images/202002/uepic/e485b342-371b-4a7d-8c64-7f10005a9d23.jpg" title="1.jpg" alt="1.jpg" width="450" height="246" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "2019-nCoV RBD-ACE2复合物晶体结构/span/pp style="text-indent: 2em "王新泉与张林琦实验室在新发与再发病毒感染的分子机制、中和抗体筛选和鉴定、疫苗开发等领域开展合作近10年,积累了丰富的研究经验。前期针对中东呼吸综合征冠状病毒(MERS-CoV),他们合作取得了一系列国际前沿性的研究成果。这些研究经验和积累,为他们针对新冠病毒快速开展研究,并取得重要突破提供了坚实有力的支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/202002/uepic/97198d06-a0d7-468d-a647-66a3fe04fea0.jpg" title="2.jpg" alt="2.jpg" width="450" height="299" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "清华大学生命学院王新泉教授/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 301px " src="https://img1.17img.cn/17img/images/202002/uepic/77c75a30-c2b6-4288-90ab-9b519c3d7775.jpg" title="3.jpg" alt="3.jpg" width="450" height="301" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "清华大学医学院张林琦教授/span/pp style="text-indent: 2em "新冠肺炎疫情发生以来,王新泉和张林琦课题组随即瞄准新冠病毒上RBD如何特异性结合ACE2这一关键科学问题,利用昆虫细胞体系表达和纯化了新冠病毒 RBD和人ACE2胞外结构域,成功生长出新冠病毒 RBD-ACE2复合物的晶体(晶体生长条件:100 mM MES, pH 6.5, 10% PEG5000mme, 12% 1-propanol),利用上海光源BL17U线站收集了分辨率为2.45埃的衍射数据,并成功解析其三维空间结构。/pp style="text-indent: 2em "该成果使科研人员能够在原子水平观察与理解新冠病毒与受体的特异性相互作用,并发现新冠病毒在关键的受体结合氨基酸位点与SARS病毒大同小异。基于深入的对比分析,科研人员也发现了一些可能造成新冠病毒与SARS病毒传播差异的氨基酸位点,以及导致针对SARS病毒的抗体不能够有效抑制新冠病毒感染的氨基酸位点,后续科学验证工作正在进行中。/pp style="text-indent: 2em "张林琦教授表示:“从病毒进入细胞,再到复制,最后产生它的子孙万代的整个病毒的生命周期来看,病毒如何进入细胞这一步非常关键。”病毒表面蛋白是病毒进入细胞的关键“钥匙”,可以打开细胞受体蛋白的“锁”,从而进入细胞并启动其复制过程。机体的保护性抗体反应,正是通过识别和阻断这个“钥匙”与“锁”的结合而达到阻断病毒进入细胞的作用。/pp style="text-indent: 2em "现在疫苗研发的关键靶点就是针对“新冠”病毒的这把“钥匙”展开的。“因此,在原子分辨率水平极其清晰的看新冠病毒与受体复合物作用界面的信息,对于了解新冠病毒进入细胞或者感染细胞的机制,具有重要的指导意义”。/pp style="text-indent: 2em "两个团队下一步的工作重点是基于结构设计筛选能够阻止二者结合的抗体或者小分子药物,这是一个相对漫长的过程,因为迄今为止能够有效抑制新冠病毒的特异性抗体和药物都还在筛选和验证过程中,这需要更多科学家不断的努力。/pp style="text-indent: 2em "相信通过两个课题组的通力合作,与全社会科研和医务工作者的共同努力,拨开疫情迷雾,守望春天暖阳的日子不会太遥远。/pp style="text-indent: 2em "自2015年起,北京市教委对清华大学结构生物学高精尖创新中心持续提供大力支持;自2019年起,北京市科委更成立生物结构前沿研究中心,加大力度支持清华大学结构生物学以及与生物结构相关的生命科学的研究。北京市的大力支持让科研人员无后顾之忧工作在科研第一线,为王新泉教授和张林琦教授团队在短时间取得突破性成果,提供了有力的支持。该工作也得到了国家蛋白质科学研究(北京)设施清华基地、清华-北大生命科学联合中心的大力支持。/pp style="text-indent: 2em "据悉,西湖大学周强教授团队成功解析出细胞表面受体ACE2全长蛋白与新冠病毒RBD的复合物的电镜结构,中国科学院微生物研究所齐建勋研究团队也解析了新冠病毒RBD与ACE2复合物的晶体结构。这些信息与清华大学团队的结构互为支持、互为补充。值得一提的是,三个独立团队都选择在第一时间将其复合物的原子坐标向全社会公布,以提高其可能的利用率。/p
  • 国内科研市场调查:大分子相互作用仪100%进口
    高校及科研院所重大科研基础设施和大型科研仪器是国家科技基础条件资源的重要组成部分。但由于管理模式及制度,生物大分子相互作用仪等科学仪器设备不对外开放,大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决此问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。仪器信息网对平台高校和科研院所上传的生物大分子相互作用仪的品牌、型号、应用领域等进行统计分析,在一定程度上可反映科研领域中生物大分子相互作用仪的市场现状。希望能帮助正在选购仪器的同学,或苦于寻找仪器共享平台的科研工作者,或对此类仪器市场感兴趣的工作人员。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)。国产缺席,100%进口统计高校和科研院所在全国仪器共享平台上传的数据,截止2021年6月3日,平台上生物大分子相互作用仪的总数量为173台,其中美国Cytiva、德国Sartorius和NanoTemper三家市场占有率超9成,其中,美国Cytiva独自占比58%;Sartorius占比26%,排名第二;NanoTemper占比7%,排名第三。在高校和科研院所中占据优势地位。除此之外,美国Plexera、Biosensing Instrument、Reichert、加拿大Nicoya、法国HORIBA scientific等品牌在市场上也占据少量份额。近年来,生物大分子相互作用仪市场参与品牌日益增多,技术路线多样,产品日趋多样化,市场迎来“百花齐放”的新局面。但本次调查中未出现国产品牌。全国共享生物大分子相互作用仪品牌分布全国共享生物大分子相互作用仪产地分布从全国共享生物大分子相互作用仪型号分布来看,最受高校和科研院所青睐的型号为美国Cytiva的Biacore T200、其次是德国Sartorius的Octet RED 96和美国Cytiva的Biacore X100,仪器共享数量分别为45台、32台和31台。热门型号top10中还包括Biacore 3000、Monolith NT.115、Octet K2、Biacore 8k、PlexArray、Octet QKe和Biacore T100,其中Monolith NT.115和PlexArray分别属于德国NanoTemper和美国Plexera。全国共享生物大分子相互作用仪热门型号top10从调查结果来看,高校和科研院所用的生物大分子相互作用仪被进口品牌垄断。一方面是出于科研需求,科研团队需要采用精度更高,技术更先进的高端仪器,而大部分国外高端科研仪器水平相对较高,因此导致了目前的垄断局面。另一方面,是国产仪器起步相对较晚,国内整体的制造技术水平较欧美发达国家落后一截。资源分布不均,北京独占鳌头统计高校和科研院所在全国仪器共享平台上传的数据发现,平台上生物大分子相互作用仪所属学科领域的分布以生物学、药学、基础医学和化学为主,其中生物学独占鳌头,占比达61%。此外,生物大分子相互作用仪在临床医学、中医学和中药学和食品科学技术等领域发挥越来越重要的作用。全国共享生物大分子相互作用仪学科领域分布全国共享平台上生物大分子相互作用仪涉及27个省份、直辖市、自治区。北京以38台的生物大分子相互作用仪数量高居榜首,其次是山东、上海、江苏、辽宁、湖北和广东,生物大分子相互作用仪数量分别17台、14台、13台、12台、12台12台。从全国共享生物大分子相互作用仪分布图不难看出,仪器资源集中分布在高等教育强省,这一方面与各省份的高校数量和质量有关,另一方面则是受到国家科研经费的制约。共享平台的开放正是为了解决仪器资源分布不均的问题,提升科研设施与仪器服务能力。全国共享生物大分子相互作用仪单位分布此外,共享生物大分子相互作用仪的单位共涉及128所高校及研究院所,且985和211高校的仪器资源更强,其中,共享生物大分子相互作用仪数量超过2台的单位有10所,分别是北京大学、南京中医药大学、厦门大学、大连医科大学、南京农业大学、山东大学、山东省科学技术厅、四川大学、中国科学院生物物理研究所和中国科学院微生物研究所。北京作为共享生物大分子相互作用仪最多的地区,涉及25所高校及研究院所,且科研院所的数量比高校多。全国共享生物大分子相互作用仪数量超2台的单位北京25所全国共享生物大分子相互作用仪单位更多生物大分子相互作用仪器信息,请点击:小编精选|大分子相互作用仪导购篇 or 技术流派解析:带你重新认识大分子相互作用仪
  • 270万!武汉大学无标记分子相互作用仪采购项目
    项目编号:THCX-HW-2022-2-029项目名称:武汉大学无标记分子相互作用仪采购项目预算金额:270.0000000 万元(人民币)最高限价(如有):270.0000000 万元(人民币)采购需求:本次采购共分 \ 个项目包,具体需求如下。(1)项目包编号: THCX-HW-2022-2-029 (2)项目包名称: 武汉大学无标记分子相互作用仪采购项目 (3)类别(货物/工程/服务): 货物 (4)用途: 无标记分子相互作用仪采购项目 (5)数量(数量及单位):1台(6)简要技术要求:详见招标文件(7)采购预算: 270万元 (8)期限(交货期): 合同签订后90日内(9)质保期: 验收合格之日起2年,免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。(10)其他: 本项目接受进口产品投标 合同履行期限:交货期:合同签订后90日内。质保期:验收合格之日起2年,免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。本项目( 不接受 )联合体投标。
  • 北大国家重点实验室王静博士:分子相互作用技术平台发展与使用心得分享
    分子相互作用技术是创新药物研发与产业化中必不可少的研究工具,贯穿药物开发的全过程。北京大学药学院天然药物及仿生药物国家重点实验室的分子相互作用技术平台有13台大型仪器,包括表面等离子共振仪、生物膜干涉分析仪、等温滴定量热仪、微量热泳动仪、石英晶体微天平、蛋白纯化系统、动静态光散射和差示扫描荧光等。现就分子相互作用技术在创新药物研发中的实践进行分享。分子相互作用技术平台发展1.表面等离子共振(SPR)技术SPR技术是法规与药典推荐的药物活性评价方法,可实时、原位检测各种生物分子如蛋白、核酸、多糖、多肽、脂类、病毒、纳米药物、小分子、离子之间的结合与解离过程,提供亲和力、动力学、特异性、活性浓度、作用机制研究(竞争/别构/表位)等信息。SPR技术具有较高的精度、灵敏度和稳定性,广泛应用于药物靶点发现与确认、天然产物活性组分发现、药-靶亲和力和动力学检测、高通量药物筛选、杂交瘤筛选与定量、抗体生物活性分析、仿药一致性评价、免疫原性检测、药物生产过程中的质控等。2.生物膜干涉(BLI)技术BLI技术也是药典里药物结合活性检测的推荐方法,主要用于生物分子间相互作用的亲和力、动力学性质以及蛋白浓度测定。近两年,基于BLI开发的垂钓方法也可以实现中药活性组分发现与验证以及靶标垂钓。BLI通过浸入即读的方式提高了检测速度,具有实时分析、高通量、样品适用性广、操作简便灵活、耗材成本低、样品可回收等优点。3.等温滴定量热(ITC)技术ITC技术是基于热量检测的通用技术。通过检测分子结合过程中吸收或放出的热量,得到亲和力KD、化学计量比N以及全套热力学参数(焓值∆ H、熵值∆ S 和吉布斯自由能∆ G)。其中,∆H反映了氢键和范德华力等特异性相互作用的贡献,∆S反映了疏水效应的贡献以及构象改变、位阻的影响,因此能为分子间相互作用提供全面而深入的作用信息。4.微量热泳动(MST)技术MST技术是基于分子热泳动现象。在MST实验中需要给其中一个分子标记荧光。MST的优势在于样品无需固定,能保持样品天然状态,并且样品消耗量低,检测速度快,不受缓冲液限制。对于难表达纯化或不稳定的蛋白,可以通过基因转染方法给细胞内目的蛋白标记his tag或GFP,然后无需纯化、直接使用细胞裂解液进行相互作用检测。此外,有些样品的相互作用需要提前孵育一段时间,这样的样品也适合用MST进行检测。分子相互作用实验使用心得1. 样品质量高质量的样品对于获取高质量的分子相互作用数据至关重要。对于蛋白样品,实验前可以通过圆二色谱、动静态光散射、差示扫描荧光或差示扫描量热技术对蛋白进行分析,以确保蛋白结构和活性没问题。对于核酸样品,实验前可采用加热变性和缓慢冷却复性来保证其空间结构。对于难溶性小分子样品,需保证小分子在最高浓度下完全溶解,不能出现沉淀或析出。2. 缓冲液选择缓冲液常用PBS、Hepes或Tris体系。为了保持样品活性,有时需要额外调整缓冲液成分,包括pH、盐离子、盐浓度、去垢剂、还原剂、表面活性剂等。3. 分子互作技术和实验方法选择通常根据样品具体情况(类型、数量、多少、标签、纯度等)选择合适的分子互作技术和实验方法。分子相互作用实验,需要在实验过程中边做边摸索和优化条件。多种分子互作技术可以优势互补,相互验证。北京大学药学院天然药物及仿生药物国家重点实验室-王静 博士王静,副主任技师,2016年博士毕业于中科院国家纳米科学中心,2016年8月起在北京大学医学部药学院天然药物及仿生药物国家重点实验室大型仪器平台工作,负责生物分子相互作用技术平台的建设管理、测试服务和新方法新体系开发。利用表面等离子共振仪(SPR)、生物膜干涉分析仪(BLI)、等温滴定量热仪(ITC)、微量热泳动仪(MST)、差示扫描荧光(nanoDSF)等技术建立了靶标垂钓、中药活性成分发现、药物筛选与验证、竞争抑制研究、表位分析、分子相互作用的亲和力检测等一系列新方法新体系。主持一项国家自然科学基金面上项目和一项国家自然科学基金青年项目。近年来以第一作者/通讯作者在Nat. Commun., Adv. Mater., J. Am. Chem. Soc., Theranostics, Anal. Chem.等国际著名期刊上发表科研论文13篇,其他作者论文20余篇。申请发明专利一项,授权发明专利一项。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎相关行业朋友投稿。投稿邮箱:zhaoyw@instrument.com.cn
  • 395万!北京师范大学珠海校区理工实验平台生物分子相互作用分析仪采购项目
    项目编号:CFTC-BJ01-22011048项目名称:北京师范大学珠海校区理工实验平台生物分子相互作用分析仪采购项目预算金额:395.0000000 万元(人民币)最高限价(如有):395.0000000 万元(人民币)采购需求:简要规格描述或项目基本概况介绍数量预算金额(万元)是否接受进口产品本次采购的设备可完成1、蛋白与蛋白的相互作用。2、癌症研究:直接对临床标本、组织,细胞匀浆等复杂标本进行分析。3、抗体和小分子药物的亲和力和动力学测定。4、抗体的筛选。5、小分子药物的筛选。6、核酸或反义核酸与蛋白的相互作用分析。7、海洋水产保健作用及疾病疗效的机理和研发。8、肿瘤中分子标记物的筛选。1套395是合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制