当前位置: 仪器信息网 > 行业主题 > >

稳定时间

仪器信息网稳定时间专题为您整合稳定时间相关的最新文章,在稳定时间专题,您不仅可以免费浏览稳定时间的资讯, 同时您还可以浏览稳定时间的相关资料、解决方案,参与社区稳定时间话题讨论。

稳定时间相关的资讯

  • 快来看看吧,峰值保留时间不稳定要这么做
    在实验的过程中经常会遇到保留时间不稳定的问题,我们也总接触到相关问题的技术咨询。我们的技术工程师深知大家的痛点,特根据大家的反馈,梳理了一个从发现问题到处理问题的解决思路。以后再遇到保留时间不稳定的问题,就可以轻松搞定啦。 保留时间不稳定,会是什么问题?首先要找出变化的模式,这个会帮助我们找到很多潜在的原因。 #1 保留时间在同一天变化大,同一瓶流动相,同一根色谱柱,同一台仪器 1)首先检查泵和混合器。使用秒表和量筒来检测流速(设置仪器流速1ml/min,用10ml量筒收集流出液10分钟,应该得到液体约10ml±0.5ml,量筒有误差,使用的试剂与仪器厂家标定泵流速时试剂不一样,最终体积也有些差异,如果超过这个范围,再分开通道检测,以找到流速不正确的原因,并排除); 2)检查流动相组成是否变化,可以在流动相中加入跟踪剂来观察基线的变化,例如:反相条件,UV检测器,在有机相中加入0.1%丙酮,监测254nm下的基线变化,还有一种方法人工配制流动相,然后通过混合器,这时候保留时间稳定了,不再波动,那就是混合器工作不正常,或者混合不均匀,进行排除。 #2 保留时间一天之内正常,不同天数之间变化 1)仪器本身不太可能有问题,可能是流动相的组成变化引起的,在反相色谱中,保留因子k和流动相中的有机溶剂的体积含量成指数关系,根据经验,如果有机溶剂含量误差在1%,那保留时间的变化在5%-15%之间,大部分变化在10%左右,意味着用称量有机溶剂的方式配置流动相能得到更稳定的保留时间; 2)流动相的脱气方式也可能导致,最好的脱气方式是使用真空超声脱气大约1分钟左右,非真空条件下超声脱气5分钟,这样会Z大程度的减少溶剂的挥发,还有一种方法是流动相中通过氦气,流动相被氦气平衡后,氦气流立刻关闭,避免氦气带走溶剂蒸汽,而导致溶剂组成改变; 3)流动相的抽滤方式,通常情况下,如果我们使用有机溶剂和水相混合流动相时,会先将流动相配置混匀好后,再进行抽滤,这样的好处是流动相混合更均匀,但是对于流动相中沸点较低的部分,在抽滤过程中会损失更大,导致流动相溶剂组成改变,建议有机相和水相分开抽滤,再进行混合,超声脱气; 4)检测目标物是离子状态或者离子化的,那么控制流动相的pH就非常重要,就算是0.1单位pH的变化都有可能导致保留时间漂移10%左右,所以准确称量pH值并保证pH仪被很好的校正了,在反相色谱柱中,随着pH值的升高,酸的保留会减少,碱的保留会增加。 反相色谱中,分离离子或离子化的样品,保留时间会受到正确缓冲溶液的离子强度的影响,但影响会很小,可以不计,典型状况是缓冲盐的摩尔数改变20%,保留时间的变化是1%,缓冲盐的组成通常是称量的,那么大的误差是不会发生的。 #3 保留时间漂移 还有影响保留时间的一个重要问题就是保留时间漂移(一直延长或一直缩短)。 1)大部分工作者认为漂移是平衡的问题,如果使用的是未修饰硅胶柱做正相色谱,这是最有可能的原因,使用半饱和流动相改善。反相色谱中,平衡通常会很快,5-10个柱体积的流动相通常就足够平衡了,但不全是如此,典型的就是离子对色谱中,使用离子对试剂平衡色谱柱,由于离子对试剂的浓度在2-5mmol/L甚至更低的浓度,它们要吸附在反相色谱柱填料表面,表面浓度在0.5-2μmol/m2,1根4.6*250mm的色谱柱大约有3g填料,需要2mmol的离子对试剂进行完全的柱平衡,流动相浓度为2mmol时,那需要1L流动相进行平衡,这个虽然是J端条件,但是用几百毫升的流动相去平衡色谱柱也是正常的,因此离子对色谱中,使用了有机溶剂清除了离子对试剂,这样第二天需要更长的时间平衡色谱柱。这两个现象都是流动相中有低浓度的强吸附试剂导致的,这是保留时间漂移最常见的原因,也还有别的原因。2)样品中含有强吸附剂,在重复进样中会慢慢累积,从而改变色谱柱的化学性质,如:药品的赋形剂。可以通过观察保留时间变化的速率来得知杂质是从流动相中引入还是样品中引入。实验如下:● 进样几次,如:进样四次,共使用了1个小时;● 走相同量的流动相,不进样;● 重复第一步;● 做一个关系图;保留时间:▲ 对时间的关系 ▲ 对进样次数的关系如果第一个图得到一条平滑的曲线,那么流动相是引入杂质的原因,如果第二个图得到一条平滑的曲线,那么杂质的来源是样品。3)键合相水解,色谱柱制造商会制定一个pH范围,超出范围可能导致键合相不稳定,然而,很多情况下使用者不得不在接近这个pH极限,但是并没有一个明显的分界线,因为水解还取决于其他因素,如:温度,有机溶剂,缓冲盐的浓度和种类,样品的化学性质等,因此这个水解也可能发生在这个pH范围内。要保存固定相的水解稳定性,最好是在中性pH值(3-5左右)和低温下。等度条件稳定性优于梯度条件,在等度条件下发生水解的过程中,键合相通常会发生自我吸附,并达成一种区域平衡,在使用高浓度的有机溶剂时,在梯度时或者冲洗色谱柱时,这种平衡会被打破,键合相被冲出色谱柱。4)温度的变化,如果样品是自动分析过夜或者过了周末,那保留时间的漂移可能和实验室的温度变化有关,在很多地方,室温的设置在晚上或者周末是不一样的,一般来讲,1℃的变化导致保留时间的漂移大约在1%到2%。这个可以联系最后一个导致保留时间漂移的原因--柱压的增加,柱压的异常升高,表明色谱柱被污染,仅仅是筛板被堵塞就可能导致保留时间漂移,这是因为,为了使流动相通过筛板,需要额外的压力来促使流动相通过筛板,这会使流动相在摩擦的过程中受热,从而导致保留时间的漂移。5)反相色谱键合相发生了“相塌陷”,由于流动相中有机溶剂比例太少,高键合覆盖率、“完全封端”的C18没有很好的被流动相浸润,这会使得流动相和固定相没有很好的接触,造成键合相卷曲,固定相之间相互吸附,从而导致固定相可以和样品相互作用的表面积减少,使得保留时间逐渐变短。这时候立即用一定量的有机溶剂(建议40%乙腈水)冲洗色谱柱可以使键合相恢复,这种现象在短链烷烃结合,未封尾的反相键合相上则很少发生,或者是不发生。
  • VarioBasic系列主动隔振台:为精密实验室量身定制的高性能稳定平台
    实验室中的精密仪器和敏感实验往往要求高度精确的测量与控制,微小的振动都可能对实验结果产生不可忽视的影响。因此,为什么主动隔振台会成为众多实验室不可或缺的设备,以下是几个关键原因:1. 保护精密仪器的精确度与稳定性精密科学仪器如显微镜、光谱仪、电子显微镜、原子力显微镜(AFM)及各类光学平台等,对振动极其敏感。即使是微小的地壳振动、人员走动或空调运行等日常因素引起的震动,都可能导致测量结果失真、图像模糊或数据采集错误。主动隔振台通过动态监测并抵消外界振动,为这些精密设备创造一个几乎“零振动”的工作环境,确保实验结果的准确性和可重复性。2. 提升实验研究的质量与效率在生命科学、纳米技术、材料科学等领域,很多实验需要长时间曝光、微观结构观察或进行精密测量。若无有效的隔振措施,持续的外部振动会显著增加实验失败率,延长实验周期。主动隔振台能够有效减少因振动导致的重做次数,提升实验效率,同时保障研究成果的高质量。3. 促进创新研究与复杂实验的开展随着科学研究的深入,越来越多的前沿实验要求在极端条件下进行,如量子计算、生物分子成像等,这些实验对环境的稳定性和纯净度提出了更高要求。主动隔振台不仅能隔离低频到高频的广泛振动范围,还能适应不同的负载和实验条件,为科学家探索未知领域提供稳定的技术支撑平台,推动科学进步。4. 保障研究人员的安全与健康在进行某些涉及危险物质或高压环境的实验时,任何意外的振动都可能引发安全问题。主动隔振台通过减少外部干扰,不仅保护了实验的顺利进行,也间接保障了实验室人员的安全健康,营造了一个更加安全可靠的研究环境。综上所述,主动隔振台作为现代实验室基础设施的重要组成部分,对于维护实验的精确性、促进科研效率、推动科技前沿探索以及保障实验室安全均具有非常重要的作用。在此茂默科学推荐VarioBasic系列主动隔振台。基础信息:Vario Basic 40尺寸:396x120x111mm 载重:0-300kg,0-600kg Vario Basic 60尺寸:636x130x111mm载重:0-300kg,0-600kgVario Basic 90尺寸:932x130x111mm载重:0-300kg,0-600kg主要特征: 相比于气囊式被动隔振台,主动隔振台没有低频共振,即使在低频范围内也有出色的隔振性能。 超快的稳定时间:低至0.3秒(普通被动隔振台的稳定时间为30秒至60秒)。 主动隔振台带宽0.6/1Hz至200Hz(远超被动隔振台)。 6个自由度主动隔振。 真正的主动隔振:即时产生反作用力来抵消振动。 操作简单-按钮式解决方案。 设计紧凑,安装简便。 高度的位置稳定性-1Hz时固有刚度通常是被动隔振台的20到30倍。 接电即可,无需压缩空气。 适用于将高分辨率测量设备与建筑振动隔离, 广泛的适用范围:拥有标准化产品和用户定制产品。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多隔振台相关的产品,Welcome to consult~咨询有惊喜哦!
  • 科学监测不能异化为稳定监测
    湖南省浏阳市镇头镇长沙湘和化工厂长期镉污染,严重伤害村民的生命健康,当地民众数月来不断向有关部门反映,最终在7月30日上街抗议。事件发生后,长沙市县两级政府采取措施,及时成立了镉污染事件处置工作指挥部,决定永久关闭湘和化工厂,并对周边群众进行补助,对周边污染进行详细调查。负有直接责任的工厂法人代表已被刑事拘留,浏阳市环保局局长和分管副局长被停职。  肇事企业湘和化工厂自2004年4月以来,未经审批建设炼铟生产线,导致镉污染,直到2009年4月才被迫停产。其间,当地村民不断反映其饮用水安全问题,包括上访、媒体报道、网络发帖、邀请环保部门进行水样检测,甚至动员当地学生给市长写公开信,但事态未能以这些缓和方式得到解决,直到最终上级督办,当地环保局长和分管副局长停职,这起旷日持久的环境事件才进入解决程序。  事件以如此突兀的方式终结,值得深思的地方很多。环境污染事件不同于别的社会公共事件,它有一个渐进发展的过程,提供了众多着手解决的机会。最重要的是,环境污染监测是一门科学,有国家法定的监测标准。这就使环境污染事件中的复杂利益博弈,并不是全无底线的各方争斗。超标就是超标,污染就是污染,它不随企业大小、权力高低而失去其客观性。因而,环保部门要僭越环境监测的科学性,从中立的公共管理者角色脱位,首先就意味着环境科学监测的扭曲,然后才是对公共职责的背叛。  浏阳镉污染事件中,这家污染企业违规生产长达六年之久。厂区周围树林大片枯死,村民相继出现全身无力、头晕、胸闷、关节疼痛等症状,但始终未能得到重视。如此明显的污染症候,却未能撼动当地环保部门的所谓科学监测。浏阳市环保局在今年3月的举报回复中,承认该厂有违规,但否认镉污染,并称只有工厂里不注意防护的工人可能会镉超标。而当地政府要求环保局做的第一件事,就是“制作一些宣传资料,让老百姓对铅中毒和镉中毒有一个比较理性的认识,让他们在心理上克服恐惧心理”。  但是,戏剧性的结果仅仅在五个月后就出现了。处置此次污染维权事件的官方材料认定,“省市环境监测部门的监测结果和专家调查咨询意见认为,化工厂是该区域镉污染的直接来源,非法生产过程中造成多途径的镉污染,是此次区域性镉污染事件的直接原因。”而污染区内民众全面体检结果,有1/6的群众镉超标。如此正反对照的监测结果,使环境监测的科学鉴定,变成了随机应变的政治鉴定。当环境监测丧失实事求是的科学标准,沦为可以随意敷衍扭曲的权力表演,环境污染事件如何能避免走向社会冲突?  这种行政权力的随意性吞噬环境监测的科学性,不只是构成专业科学性的失落,更严重的是,它使政府环保部门的监管丧失了起码的原则,成为可以随意捏造的借口和理由,造成政府公信力的可怕流失。公众不得不接受这样一个事实,某些环保部门的环境科学监测,事实上变成了对民众维权事态演变的稳定指数监测。当一地污染延续而民心离散时,这样的监测所透露的,不过是稳定指数高企掩盖了污染指数高企。于是,环境污染不再是一个依据科学监测定论的专业问题,而成为了依据稳定指数选择性定论的社会问题。  因此,对浏阳镉污染事件的反思,不应只是停留在影响社会稳定的环境维权事件这样的理解上,它同时表明了某些基层政府在处置类似问题上的一种思维定式,就是轻视环境监测的科学性原则,只重视维权事件本身的所谓稳定性后果。正是这种思维,推动本来可以依靠公正的科学监测即能处置的环境污染问题,一步一步走向高度紧张的社会冲突。这种舍本逐末的环保行政监管,恰恰酝酿了环境维权事件的升级。就此而言,浏阳环保局长停职不应只是行政问责之下的个人际遇,还期待它是环境监测执法尊重和贯彻科学性的开始。
  • 德瑞克 大型 步入式 药品稳定性试验室 可非标定制
    药品稳定性试验箱主要用于模拟药品在实际储存和使用过程中的环境条件,以便对药品的稳定性进行评估。该设备具备温度控制、湿度控制、光照模拟、振动模拟、气体环境模拟、时间设定、数据记录和安全保护等功能。德瑞克 大型 步入式 药品稳定性试验室 可非标定制,是一款根据用户要求并参照GB/T10586-2006、GB/T10592-2008、GB4208-2008、GB4793.1-2007等有关条款设计、制造。主要用于制造和维持温度与湿度恒定的空间,该装置的制冷、加热等完全自动控制。德瑞克 大型 步入式 药品稳定性试验室 可非标定制,技术参数:1、温度范围:15℃&sim 50℃2、湿度范围:50%RH &sim 85%RH3、温湿度分辨率:温度:0.1℃;湿度:0.1%4、外箱尺寸:2700×5600×2200mm5、内部尺寸:2700×5000×2200mm6、冷冻系统:采用艾默生谷轮涡旋全封闭压缩机,两套制冷系统一备一用7、冷却方式:风冷式8、功率:20KW德瑞克 大型 步入式 药品稳定性试验室 可非标定制,产品特点:1、全新完美的造型设计,厚度为100MM聚氨酯保温库板,外部钢板烤漆,内部SUS 304不锈钢,内部可开安全门,和室内报警开关和独立超温报警系统,保证操作人员安全;2、中央控制系统采用日本进口优易控触摸屏温湿度控制器,控温精度高,备有USB接口,LAN网线接口,电脑操控软件实现远程监控,温湿度曲线查看,数据保存,数据打印机,故障手机短信报警等功能;3、控制信号采集采用奥地利E+E原装进口温湿度变送器;4、平衡调温控制系统(BTHC),以P.I.D.连续自动可调的方式控制SSR,使系统之加热量等于热损耗量,故能长期稳定使用;5、提供3Q认证方案:可以为客户提供IQ(安装确认)、OQ(运行确认)、PQ(性能确认)等一系列服务6、货架为不锈钢镀铬,隔栅式层板可调节。注:因技术进步更改资料,恕不另行通知,产品以后期实物为准。
  • 水质分析仪运转速度快,稳定性强
    随着科技的不断进步以及人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善,水质检测成为了一项重要的工作。而随之而来的需求,便催生了各种不同类型的水质分析仪器。水质分析仪作为一种灵活性高、功能的设备,正逐渐成为水质测定领域中的重要工具。  水质分析仪报价参考→https://www.instrument.com.cn/show/C551505.html  一、水质分析仪作用分析:  1、水质分析仪可以快速、准确地测量和分析水中各种重要参数,如pH值、溶解氧、浊度、电导率、温度、氨氮、总磷等。通过对水质参数的监测和评估,可以判断水体的健康状况,确定是否符合相关的水质标准和要求。  2、多参数水质分析仪可以用于监测不同水体环境的水质情况,包括河流、湖泊、水库、海洋、地下水等。通过实时监测水质,可以及时发现和解决潜在的污染问题,保护水源和环境资源。  3、水质分析仪可以帮助进行水处理和调整。通过对水质指标的测量,如pH值、溶解氧、电导率等,可以检测水体的特征和问题,从而采取相应的水处理措施,使水质得以改善或调整。这对于工业、农业和民用领域的水处理过程非常重要。  4、多参数水质分析仪在紧急情况下具有快速响应的能力。例如,在自然灾害(如洪水、地震)或突发污染事件中,可以立即使用该设备进行水质检测,评估受灾地区的水质情况,及时采取措施保护人民的饮用水安全。  5、水质分析仪在实验室和研究领域中也有重要作用。它可以用于教学实验、学术研究或专业调研,帮助学生和研究人员进行实时的水质监测和数据收集,培养科学研究能力,并为科研成果提供准确的数据支持。  二、水质分析仪功能特点:  1、采用全新安卓7.1.1智能系统,人性化中文操作界面,运转速度更快速,稳定性更强。  2、8英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。  3、采用精密比色池设计,使用光源一致,可以解决由于光源误差带来的检测结果误差问题,检测结果更加精准。  4、光源采用进口超高亮发光二极管,光源亮度可以自动调节与校准。  5、支持10mm、30mm、50mm皿比色和φ16mm管比色等比色方式,多元选择,确保测量的准确性;  6、具有无线通讯功能,支持WIFI、RJ45、手机热点联网传输,检测数据亦可通过U盘导出;  7、多功能样品管理,可对样品进行中英文命名,方便样品记录和数据存储;  8、仪器可永久存储800万组数据,为方便大量数据查找,可通过时间检索,并随意选择分析;  9、支持HDMI输出,方便用户培训、讲解、及大屏展示。  10、仪器带有监管云平台,数据可通过局域网和互联网上传,亦可对接上传至环境监管部门平台。  11、内置热敏行式打印机,打印纸上的内容可自由选择(包括二维码打印);  12、交流220V,可选配6ah大容量充电锂电池,方便户外流动测试;  13、后期产品固件可升级。  三、多参数水质分析仪技术参数:  波长配置:420nm、470nm、520nm、560nm、620nm、700nm;  示值误差:≤±5%;  仪器稳定性:<0.5%;  仪器重复性:<0.5%;  光化学稳定性:20min内数值漂移≤0.002A(10万小时寿命);  四、水质分析仪物理参数:  比色方式:比色管(16mm消解比色一体管)、比色皿(10mm、30mm、50mm);  操作系统:Android7.1.1智能操作系统  操作界面:中文或英文操作界面;  显示屏:8英寸(1024*768分辨率)高清晰度彩色液晶触摸屏;  曲线数量:820条标准曲线、420条拟合曲线  网络接口:USB2.0、HDMI、WiFi、蓝牙、热点、RJ45;  云平台:仪器带有监管平台,连接有线/无线网络,检测结果直接传输至环境安全监管平台。  打印机:热敏行式打印机;  数据储存:800万组,可自由调用查看;  数据导出格式:Excel表格;  仪器尺寸:(367*243*125)mm;  仪器重量:2.1kg;  五、多参数水质分析仪环境及工作参数:  环境温度:(5-40)℃;  环境湿度:相对湿度<85%(无冷凝);  额定功率:10W  工作电源:AC220V±10%/50Hz;  可配置:大容量锂电池。  水质分析仪在水质监测、环境保护、水处理调整、紧急响应和研究应用等方面发挥着重要的作用。它的简便性、快速性和精确性使其成为水质领域中一种实用的工具,通过使用这种仪器,可以方便地进行水质测试工作,提供准确的测试结果,帮助用户了解和解决水质问题。
  • 赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!
    个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!Original Lily 珀金埃尔默 2022-04-21 18:15收录于合集#土壤三普3个#环境31个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!
  • 水力发电系统如何保障居民用电稳定?这三个位置是关键
    水力发电作为可再生的清洁能源,其本质是将水能转化为电能的过程,利用水位高低落差产生具有冲击力的水流,在水流的冲击作用下带动装置中的水轮机旋转,再由发电机转化为电能。此时发出的电力由于电压较低,无法输送给距离较远的用户,因此就需要变压器将电压增高,最后将适合家庭应用的电压输送到各个家庭。水力发电产生的电能要及时输送到千家万户为保证整个电气系统的正常运营定时巡检必不可少选择一款省时省力省心的检测工具尤为重要今天小菲就来给大家推荐几款在电气系统的重要位置检测时比较适合的FLIR产品1预防性检测变压器,避免停机风险电力变压器主要用于输配电线路,改变交流电压大小以适应不同用户的需要。它是电力系统中非常重要的一环,其中主变高压套管是变压器中重要且容易出问题的部件。如何才能快速扫描检测繁多的变压器套管,FLIR T800系列热像仪是个不错的选择!拥有它,检测人员可在设备运行的过程中检测,及时发现潜在隐患,避免突然停机。FLIR T860拍摄到变压器套管将军帽发热异常FLIR T860拥有卓越的测量精度,其热灵敏度为30℃时<40 mK(24°镜头),搭配640×480像素的红外分辨率,能生成清晰的热图像。其还可搭载FLIR FlexView双视场镜头,无需更换镜头就可以瞬间从广域视场切换到长焦视场,在远距离和近距离检测中都能获得优质的热图像,检测人员可站在安全距离范围内放心检测!2看见高压局放的声音,保障输电稳定高压电气设备的局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会立刻造成绝缘体穿透性击穿,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。为了保障输电过程稳定,电力巡检员们需要定期对高压设备进行检查,FLIR Si124系列声像仪是个不错的巡检助手!Si124内置124个麦克风,其接收频率范围在2kHz至65kHz(范围可调整),涵盖了较宽范围的可听声和超声波,这样工作人员可以轻松过滤掉工作环境中的背景噪声,大面积扫描检测到更远距离的高压电力电气设备的常见故障,比如表面放电、浮动放电和空气中放电,让用户能够准确地查明声音来源,区分问题,定位故障!2巡查变电站设备,保证用电安全变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施。为了把水能转换的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,这种升降电压的工作靠变电站来完成。作为用电过程中关键的一环,变电站的巡检尤为重要,任何一个环节的差错,都可能导致产生的电能浪费,严重的还会引发爆炸事故。为了保证用电安全,变电站的日常巡检必不可少!FLIR Exx系列高级红外热像仪(除E54外),配备了UltraMax 高清图像增强技术,集成一键式电平/跨度区域调节功能,让热图像拥有更高的对比度,用户可以查看更多图像细节,因此能够帮助您发现异常热点,排查电气系统故障,在造成严重损坏前预防问题。其还能够搭配使用FlexView双视场镜头,让用户实现了瞬间从广域视场切换到长焦视场而无需更换镜头,不仅大大简化了工作流程,还能保障工作人员的安全,一举多得!双视场镜头一秒切换,快速检测目前我国已形成十三大水电基地未来常规水电开发重点在云南、四川、西藏等西南地区主要集中在金沙江、雅砻江、大渡河、澜沧江、雅鲁藏布江等水电基地为了保证水力发电产生的电能不浪费变电、输电和用电的过程要减少故障
  • 内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析
    内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析北京佰司特贸易有限责任公司蛋白质是生物体中广泛存在的一类生物大分子,具有特定立体结构的和生物活性以及诸多功能,根据这些功能我们可以将其应用于蛋白质的分子设计、蛋白质功能的改造、疾病的基因治疗以及新型耐抗药性药物的开发与设计甚至是发现生物进化的规律等先进科研领域上。因此,蛋白质具有非常重要的研究价值。进行蛋白质性质和功能研究的前提是获得稳定的蛋白质样品,而由于蛋白质自身性质的复杂性,难以保证获得的蛋白质样品是否具有正确的三维结构以及功能,因此急需一种技术手段或设备,对蛋白质的稳定性进行分析,确定获得蛋白质最ZUI适宜的缓冲液条件、蛋白质的长期储存稳定性等。另外在进行蛋白质-配体小分子相互作用研究时,因为需要筛选的小分子配体数量巨大,因此也急需一种技术手段或设备,可以高通量的对配体结合进行筛选。蛋白中的色氨酸和酪氨酸可以被280 nm的紫外光激发并释放出荧光,其荧光性质与所处的微环境密切相关。蛋白变性过程中,色氨酸从疏水的蛋白内部逐渐暴露到溶剂中,荧光释放的峰值也从330 nm逐渐转移到350 nm。内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光(350 nm/330 nm比值)的改变,获得蛋白的热稳定性(Tm值)、化学稳定性(Cm值)等参数。相比传统的方法,无需添加染料,通量高,样品用量少,数据精度高。 多功能蛋白质稳定性分析仪PSA-16是一款无需加入荧光染料、高通量、低样品消耗量检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变形剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。基于内源差示扫描荧光技术(intrinsic fluorescence DSF),在无需添加外源染料的条件下,对蛋白进行升温变性,通过内源荧光和散射光的变化与三级结构变化的关系,PSA-16可用于测定不同buffer中蛋白的Tm值变化,获得蛋白质正确折叠的最ZUI优buffer条件;测定不同detergent条件下膜蛋白Tm值,进行detergent筛选;测定不同添加剂对蛋白稳定性的影响;测定添加配体后Tm值变化进行配体结合筛选;测定蛋白中变性部分的比例,进行质量控制;测定蛋白Tm值与浓度的相关性,获得最ZUI优蛋白浓度进行后续结晶等实验;测定蛋白去折叠过程,进行蛋白复性条件筛选;测定蛋白folding enthalpy,研究蛋白的长期稳定性;测定不同批次和存储后的蛋白的稳定性,并进行相似性评分,对蛋白进行质量控制。多功能蛋白质稳定性分析仪PSA-16,无需对蛋白进行荧光标记,可以直接测定蛋白在不同缓冲液条件中的Tm值,进行缓冲液筛选和优化;同时还可以测定添加不同配体化合物对蛋白稳定性的影响,通过Tm值变化进行配体结合筛选。PSA-16满足我们目前对于蛋白质稳定性分析的迫切需求。多功能蛋白质稳定性分析仪PSA-16可用于评估蛋白(抗体或疫苗)热稳定性、化学稳定性、颗粒稳定性等特性,实现非标记条件下的高通量的抗体制剂筛选、分子结构相似性鉴定、物理稳定性、长期稳定性、质量控制、折叠和再折叠动力学研究等功能。★ 蛋白热稳定性分析★ 蛋白化学稳定性分析★ 蛋白等温稳定性分析★ 蛋白颗粒稳定性分析★ 免标记热迁移实验(dye-free TSA)★ 蛋白去折叠、再折叠、结构相似性分析★ 蛋白质量控制分析 多功能蛋白质稳定性分析仪PSA-16基于内源差示扫描荧光(ifDSF)技术,广泛应用于蛋白质稳定性研究、蛋白质类大分子药物(抗体)优化工程、蛋白质类疾病靶点的药物小分子筛选和结合力测定等领域,具有快速、准确、高通量等诸多优点。蛋白质中色氨酸/酪氨酸的荧光性质与它们所处的环境息息相关,因此可以通过检测蛋白内部色氨酸/酪氨酸在加热或者添加变性剂过程中的荧光变化,测定蛋白质的化学和热稳定性。PSA-16采用紫外双波长检测技术,可精准测定蛋白质去折叠过程中色氨酸和酪氨酸荧光的变化,获得蛋白的Tm值和Cm值等数据;测定时无需额外添加染料,不受缓冲液条件的限制且测试的蛋白质样品浓度范围非常广(10 µ g/ml - 250 mg/ml),因此可广泛用于去垢剂环境中的膜蛋白和高浓度抗体制剂的稳定性研究。此外,PSA-16具有非常高的数据采集速度,从而可提供超高分辨率的数据。同时PSA-16一次最多可同时测定16个样品,通量高;每个样品仅需要15 uL,样品用量少,非常适合进行高通量筛选。PSA-16操作简单,使用后无需清洗,几乎无维护成本。★ 非标记测试★ 10分钟内完成16个样品的分析★ 仅需10μL样品,浓度范围0.005mg/ml—200mg/ml★ 15-110℃温控范围,升温速率0.1-7℃/min★ 适用于任意种类的蛋白分子★ 无需清洗和维护★ 可增配机械手臂实现全自动工作 性能参数:★ 直接检测蛋白质内源紫外荧光,测定时无需额外添加染料,不限制蛋白缓冲液。★ 可同时测定16个样品。★ 样品管材质:高纯度石英管,8联排设计,可使用多通道移液器批量上样,亦可单管使用。★ 样品体积:15 μL/样品。★ 样品浓度范围:0.01 mg/mL–250 mg/mL。★ 温控范围:15-110℃可选。★ 升温速度范围:0.1-15℃/分钟可调。★ 温控精度:+ 0.2℃。★ 采样频率:1 HZ,1/60 HZ可选。★ 应用范围:热稳定性实验、化学稳定性实验、等温稳定性实验、温度循环实验、TSA实验。★ 软件具备比对功能,可通过热变性曲线对蛋白进行相似性评分。★ 测定参数:Tm、Ton、Cm、ΔG、Similarity。★ Tm测定精度:0.5% CV。★ 仪器使用时无需预热及预平衡,实验完成后无需清理,无后续维护费用。★ 一体机,可以通过触摸屏进行试验设置,实时采集数据和显示数据,生成详细的结果报告。应用领域:多功能蛋白质稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白质稳定性分析系统在各学科的研究中都有基础性意义。 1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
  • 德国IKA/艾卡:产品故事之如何提高药用乳剂的分散均一和稳定性
    客户 某大学药学院乳剂是一种液体制剂,系指一相液体以液滴状态分散于另一相液体中形成的非均相液体分散体系。乳剂由于有利于药物的吸收和药效的发挥,广泛应用在临床,可以口服、外用、肌肉、静脉注射。为此,不断开发新的乳剂类型和提高乳剂的稳定性至关重要。挑战1. 乳剂分布均一,提高乳剂的稳定性;2. 实验室研发的乳剂扩大到工业生产。由于乳剂属热力学不稳定的非均相分散体系,经常会发生如下变化:分层、絮凝、转相、合并与破裂、酸败等。乳剂的颗粒大小分布可以在很大程度上提高乳剂的稳定性,而常用的批次式分散设备,粒径的分布区域过宽,不利于提高乳剂的稳定性;另一方面,如何将在实验室研发成功的乳剂顺利的扩大的工业生产,也是研发工作者不得面对的一个问题。解决方案Magic-Lab 实验型多功能乳化分散机根据上述实验需求,IKA提供了完美的解决方案——Magic-Lab配备三级分散DR模块。1)三级分散DR模块(2G/4M/6F),一次性加工就可达到狭窄的粒径分布;2)连续式分散设计,保证了物料与分散腔体的充分接触,解决了批次式分散机中物料不能充分处理而造成的粒径分布不均一;3)采用模块化设计,从研发到生产,无需改变方法,顺利过渡;4)专为实验级混合、分散、湿磨及粉液混合设计;5)各种模块下加热冷却方便,控制面板操作简便,可设置转速、定时等。客户受益1. 解决了研发中的粒径不均一的难题;2. 不必担忧后续的工业化生产基于Magic-Lab自身的特点,最大程度的保证了每次实验的重复性。“IKA的这款Magic-Lab非常实用,DR模块使用后,粒径更加均一化,同时也不必太过担心实验室到工业化生产的放大”药学院魏老师如是说。 关于IKA? ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 恒温循环器,量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 韩国,巴西等国家都设有子公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 卫生部拒绝公开生乳新国标信息 称可能影响稳定
    10月17日,北京市第一中级人民法院作出一审判决,要求卫生部于法定期限内对河南省消费者赵正军提出的政府信息公开予以重新答复。  今年1月,赵正军向卫生部政务公开办公室提出了信息公开申请,要求公开生乳新国标制定时“食品安全国家标准审评委员会(以下简称‘食安国标委’)编写的会议纪要”。  2010年4月,卫生部发文公布了《生乳》(GB19301-2010)等66项新的食品安全国家标准。  有关生乳收购的两项标准发生了变化。此前,我国生乳收购标准是每毫升细菌总数不超过50万个,蛋白质含量最低每百克含2.95克。但是,生乳新国标提高了每毫升的细菌总数,降低了每百克生乳中的蛋白质含量。  根据2010年出台的生乳新国标,生乳收购中每毫升细菌总数提高到了200万个,而蛋白质最低含量下调至2.8克。  有专家表示,新国标中生乳蛋白质含量低于发达国家3.0克以上的标准 而菌落总数放宽4倍后,是美国、欧盟标准10万个的20倍。  广州奶协理事长王丁棉曾“炮轰”此标准是“被大企业绑架,中国乳业新国标是世界最低、全球最差”。  赵正军要求卫生部公开会议纪要的原因,也是为了搞清“新国标是不是被企业绑架了?”他注意到,在2010年出台的新行业标准中,没有关于起草人的具体介绍,而1986年《生鲜牛乳收购标准》中,却注明了起草单位和主要起草人。  1月20日,卫生部拒绝了赵正军的申请。因为食安国标委是“技术机构”,其会议纪要不属于卫生部政府信息公开的范围。  2月16日,赵正军将卫生部诉至法院。  据了解,庭审中,卫生部的依据之一是《国务院办公厅关于做好政府信息依申请公开工作的意见》(国办发[2010]5号文件)。这份文件中规定,“行政机关在日常工作中制作或者获取的内部管理信息以及处于讨论、研究或者审查中的过程性信息,一般不属于《条例》所指应公开的政府信息”。  也就是说,卫生部认为,赵正军所要的会议纪要即属于过程性信息,一旦公开,可能影响社会稳定,增加行政管理工作负担。  “国办5号文,从立法目的来说,并不能一定推导出会议纪要属于过程性信息。”清华大学法学院副教授程洁在接受中国青年报记者采访时说,不能简单说国办5号文是对“信息”的涵义做了“限缩性”解释,否则文件就与《政府信息公开条例》第2条的规定相冲突。  《政府信息公开条例》第2条规定,政府信息是指行政机关在履行职责过程中制作或者获取的,以一定形式记录、保存的信息。  “并不是说所有决策前的信息都属于内部信息或者过程性信息,况且,此项决策已经做出。”程洁表示,在我国的语境中,会议纪要常常具有“准决策”性质,应属于政府信息公开的范围。  程洁表示,在决策之前,乳业公司、奶农、消费者等利益相关方基于自身立场参与讨论、提出意见,都是很正常的事,“用不着遮遮掩掩”。  问题恰恰在于此,生乳新国标虽然是国家强制性标准,但其制定程序却不公开。  北京师范大学法学院教师胡俊宏曾指出,国家强制标准制定过程中的公众质询环节形同虚设,技术标准的技术水平,必然由少部分特定人群把持和操纵。  “强制性标准的起草部门一般是专业技术委员会,只能代表特定人群,通常是企业界的利益。”胡俊宏说。  程洁表示,立法都需要按照法定程序征集意见,制定强制性标准也应该组织听证,进行公开。当决策涉及重大公共利益事项时,会议纪要中的事实内容应当公开。  “如果其中有不应当公开的内容,可以根据《政府信息公开条例》第22条的规定,进行区分处理。”程洁说,比如采取不公开参与人、公开观点的折中方案。  法庭认为,会议纪要属于卫生部在履行其法定职责过程中制作的政府信息,但此案不涉及上述会议纪要是否应当公开的问题,驳回了赵正军要求判令卫生部公开会议纪要的诉讼请求。  目前,诉讼双方均未表示上诉。卫生部新闻发言人邓海华在接受媒体采访时表示:“卫生部收到判决书后,将根据法院判决重新作出答复。”  “如果对答复不满意,我还将起诉卫生部。”赵正军在接受中国青年报记者采访时表示。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 助力复产复工|上海发布《关于进一步维护当前劳动关系和谐稳定的工作指引》的通知
    沪人社关〔2022〕89号各区人力资源和社会保障局,各有关单位:现将《关于进一步维护当前劳动关系和谐稳定的工作指引》印发给你们,请遵照执行。上海市人力资源和社会保障局2022年4月26日关于进一步维护当前劳动关系和谐稳定的工作指引为深入贯彻落实党中央、国务院和市委、市政府关于全力以赴打赢疫情防控攻坚战、有力有序有效推动复工复产的决策部署,现就当前形势下更好保障劳动者合法权益,支持企业复工复产,进一步维护劳动关系和谐稳定制订工作指引如下。一、总体要求坚持依法依规。正确适用《传染病防治法》《劳动合同法》等法律法规以及国家和本市相关政策文件,依法依规调整劳动关系双方的权利义务。坚持统筹平衡。统筹劳动者权益维护和企业健康发展,推动企业和劳动者广泛开展协商,倡导双方互谅互让、共担责任、共渡难关。坚持精准稳妥。密切关注新冠肺炎疫情防控期间劳动关系的新情况、新问题,加强研判,稳妥施策,提升工作的精准度和实效性。二、规范劳动用工(一)劳动合同订立或续订问题。企业与劳动者因疫情影响不能依法及时订立或续订书面劳动合同,可通过协商等方式,合理顺延订立或续订书面劳动合同的时间。企业与劳动者协商一致,可以采用电子形式订立或续订书面劳动合同。(二)企业调整规章制度或重大事项问题。疫情期间,企业可通过电子邮件、内部办公自动化(OA)系统、微信群组等形式,将涉及停工停产、变更劳动报酬、调整工作方式工作时间、轮岗轮休等直接与劳动者切身利益相关的规章制度或重大事项等相关方案和意见,交由工会或职工代表讨论并征求意见,经平等协商确定仅适用于疫情期间并告知劳动者的,可视为已履行民主程序。(三)企业安排劳动者居家办公问题。对因受疫情影响企业不能开工生产或劳动者不能返岗的,企业可以合理安排劳动者通过居家办公、远程办公等工作方式完成工作任务;无法安排劳动者实行居家办公、远程办公等工作方式的,企业可与劳动者协商优先使用带薪年休假、企业自设福利假等各类假。(四)劳动合同解除问题。对依法实行隔离治疗或者医学观察的新冠肺炎患者、无症状感染者、密切接触者以及因政府实施隔离措施或者采取其他紧急措施导致不能提供正常劳动的劳动者,企业不得因此与其解除劳动合同。疫情防控期间,劳动者因不配合政府部门疫情防控措施被追究刑事责任的,企业可依据《劳动合同法》第三十九条相关规定解除劳动合同;劳动者因不配合政府部门疫情防控措施而受到治安拘留等行政处罚,企业依法制定的规章制度对此有规定的,可按其规定处理。(五)劳动合同终止问题。对依法实行隔离治疗或者医学观察的新冠肺炎患者、无症状感染者、密切接触者以及因政府实施隔离措施或者采取其他紧急措施导致不能提供正常劳动的劳动者,劳动合同到期的,分别顺延至劳动者隔离治疗期、医学观察期、隔离期期满或者政府采取的紧急措施结束,需要停工继续治疗的除外。(六)劳务派遣用工问题。对依法实行隔离治疗或者医学观察的新冠肺炎患者、无症状感染者、密切接触者以及因政府实施隔离措施或者采取其他紧急措施导致不能提供正常劳动的被派遣劳动者,用工单位不得因此将其退回劳务派遣单位。(七)共享用工问题。疫情期间由员工富余单位将劳动者借出至缺工单位工作的,不改变借出单位与劳动者之间的劳动关系。借出单位和借入单位应当按照相关规定签署协议,明确权利和义务,所约定的日或小时工资标准等不得违反本市的最低工资标准。签订协议应遵循平等、诚信、公平、合理等原则,不得违反法律、法规的禁止性规定,并不得违背公序良俗。借出单位或借入单位应当切实履行劳动报酬、休息、劳动安全保护等义务,充分保障劳动者在共享用工期间的合法权益。三、保障工资支付(八)被依法采取隔离措施期间的工资问题。根据传染病防治法规定,由医疗机构或政府依法对新冠肺炎患者、无症状感染者、密切接触者等实施隔离措施,导致劳动者不能提供正常劳动的,企业按正常劳动支付其在隔离期间的工资。隔离期结束后,对仍需停止工作进行治疗的劳动者,企业按照职工患病的医疗期有关规定支付其工资。(九)受政府紧急措施影响的劳动者工资问题。对不属于上述被依法隔离情形但因政府依法采取防控措施,导致企业停工停业或劳动者不能返岗的,区分不同情况处理:一是对企业安排未返岗劳动者通过电话、网络等方式提供正常劳动的,按正常劳动支付工资。二是对企业安排劳动者使用带薪年休假、企业自设福利假等各类假期的,按相关假期的规定支付工资。三是对企业未复工或者劳动者未返岗且不能通过其他方式提供正常劳动的,企业参照国家关于停工停产期间工资支付相关规定与劳动者协商,在一个工资支付周期内的,按照劳动合同约定的标准支付工资;超过一个工资支付周期的,由企业发放生活费。(十)生产经营困难企业延期支付工资问题。企业受疫情影响生产经营困难导致暂无工资支付能力的,经与工会或职工代表协商同意后,可延期支付劳动者工资,延期时间一般不超过一个月。(十一)劳动者居家办公期间加班工资支付问题。企业因生产经营需要且经劳动者同意,安排劳动者在居家办公期间加班的,应当按照《劳动法》第四十四条的规定支付劳动者相应的加班工资或安排补休。对于实行不定时工时制和综合计算工时制的劳动者,企业应按照相关规定支付劳动者法定节假日加班工资或延时加班工资。 四、完善工作机制(十二)深化协商调解机制。在执法办案时,既要注重保障劳动者基本生活和就业,也要充分考虑企业生存和发展的必需条件。引导劳动者和企业合理调整预期,互谅互让,以协商取得共识,尽可能以调解的方式解决争议。如对于劳动合同履行受疫情影响,有继续履行可能的,应引导当事人通过协商调整履行时间、地点、方式等变更劳动合同,促使继续履行。(十三)优化协同服务机制。工作中要注意区分案件性质,对企业经营确有困难,但无主观欠薪恶意的,可适用包容审慎监管原则,联动相关政策部门帮助企业渡过难关;对破产、关闭及裁员的企业,积极为劳动者搭建就业、职业技能培训等服务平台,帮助其尽快实现再就业。(十四)强化预警处置机制。进一步畅通线上线下举报投诉渠道,加快办件速度,及时回应企业群众诉求;做好区域内企业欠薪、规模性裁员等情况的监测预警;加强对复工复产企业的用工指导,关注企业劳动权益保障情况。尤其要重视对农民工群体的关心关爱和服务保障,完善应急处置工作预案。五、加强组织保障(十五)加强三级统筹联动。保持市、区人社部门沟通畅通。区人社部门要通过联席会议平台及时向属地区委、区政府报告劳动关系重大事项,更好凝聚起各方齐抓共管的强大合力。要进一步做好对街镇和基层队伍的指导服务,切实发挥基层劳动关系协调队伍和社会组织作用。(十六)发挥三方机制作用。充分发挥工会、企联、工商联职能优势,及时互通情况,共同做好对企业和劳动者的团结、指导及帮扶。尊重和发挥企业内部劳动关系协调机制作用,大力推动企业和劳动者通过民主程序就与疫情相关的用工、工资支付等问题开展协商,找到满足双方意愿的最大公约数,抱团取暖、共克时艰,提高协商成功率。(十七)做好欠薪垫付工作。充分发挥欠薪保障金垫付机制在疫情防控期间保障劳动者基本权益和维护社会稳定的积极作用。对符合垫付情形和条件的,应按照规定的简化程序提高垫付效能;对不符合垫付规定的,应当通过其它途径切实维护劳动者合法权益。《关于进一步维护当前劳动关系和谐稳定的工作指引》.pdf
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周二上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月21日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月28日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料8月4日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉8月11日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月18日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月25日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 材料热稳定性受关注 国家标准与行业标准汇总
    p  strong仪器信息网讯/strong 材料的热稳定性在不同的学科领域有不同的含义。建筑学:在周期性热作用下,围护结构或房间抵抗温度波动的能力;电器:热稳定性是指电器在指定的电路中,在一定时间内能承受短路电流(或规定的等值电流)的热作用而不发生热损坏的能力;化学:在化学方面,热稳定性反映物质在一定条件下发生化学反应的难易程度;生物:指的是DNA碱基中G与C之间形成3个氢键而A与T之间形成2个氢键,氢键数越多,其DNA分子的热稳定性越好;其他:试样在特定加热条件下,加热期间内一定时间间隔的粘度和其它现象的变化。/ppspan  仪器信息网对涉及材料热稳定性的18条国家标准和22条行业标准进行了汇总,相关标准涉及煤炭、染料、橡胶、稀土、石油、建筑、危险化学品、塑料、核工业、检验检疫、有色金属、半导体、机械、化工等多个行业。/span/ppbr//pp style="text-align: center "strong热稳定性国家标准/strong/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none"tbodytr style=" height:18px" class="firstRow"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="18"pspan style="font-family:宋体"标准号/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"标准名称/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"主管部门/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 1573-2018/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"煤的热稳定性测定方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 31959-2015/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"碳纤维热稳定性的测定/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国建筑材料联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 2392-2014/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"染料/span span style="font-family:宋体"热稳定性的测定/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 1670-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"增塑剂热稳定性试验/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 16998-1997/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"热熔胶粘剂热稳定性测定/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 1711-1989/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"颜料在烘干型漆料中热稳定性的比较/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:17px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="17"pspanGB/T 14634.3-2010/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="17"pspan style="font-family:宋体"灯用稀土三基色荧光粉试验方法/span span style="font-family:宋体"第/spanspan3/spanspan style="font-family:宋体"部份:热稳定性的测定/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="17"pspan style="font-family:宋体"国家标准化管理委员会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 23800-2009/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"有机热载体热稳定性测定法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家标准化管理委员会/span/p/td/trtr style=" height:17px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="17"pspanGB/T 23595.4-2009/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="17"pspan style="font-family:宋体"白光/spanspanLED/spanspan style="font-family:宋体"灯用稀土黄色荧光粉试验方法/span span style="font-family:宋体"第/spanspan4/spanspan style="font-family:宋体"部分:热稳定性的测定/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="17"pspan style="font-family:宋体"国家标准化管理委员会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 10701-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"石英玻璃热稳定性试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国建筑材料联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 13464-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"物质热稳定性的热分析试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"应急管理部/span/p/td/trtr style=" height:19px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"pspanGB/T 22232-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"pspan style="font-family:宋体"化学物质的热稳定性测定/span span style="font-family:宋体"差示扫描量热法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="19"pspan style="font-family:宋体"国家标准化管理委员会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 15595-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"聚氯乙烯树脂/span span style="font-family:宋体"热稳定性试验方法/span span style="font-family:宋体"白度法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 21280-2007/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"危险货物热稳定性试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家标准化管理委员会/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanGB/T 9349-2002/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"聚氯乙烯、相关含氯均聚物和共聚物及其共混物热稳定性的测定/span span style="font-family:宋体"变色法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanGB/T 17391-1998/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"聚乙烯管材与管件热稳定性试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国轻工业联合会/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanGB/T 2951.32-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"电缆和光缆绝缘和护套材料通用试验方法/span span style="font-family:宋体"第/spanspan32/spanspan style="font-family:宋体"部分:聚氯乙烯混合料专用试验方法/span span style="font-family:宋体"失重试验/span span style="font-family:宋体"热稳定性试验/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"中国电器工业协会/span/p/td/trtr style=" height:90px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="90"pspanGB/T 2951.42-2008/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="90"pspan style="font-family:宋体"电缆和光缆绝缘和护套材料通用试验方法/span span style="font-family:宋体"第/spanspan42/spanspan style="font-family:宋体"部分:聚乙烯和聚丙烯混合料专用试验方法/span span style="font-family:宋体"高温处理后抗张强度和断裂伸长率试验/span span style="font-family:宋体"高温处理后卷绕试验/span span style="font-family:宋体"空气热老化后的卷绕试验/span span style="font-family:宋体"测定质量的增加/span span style="font-family:宋体"长期热稳定性试验/span span style="font-family:宋体"铜催化氧化降解试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="90"pspan style="font-family:宋体"中国电器工业协会/span/p/td/tr/tbody/tablepbr//pp style="text-align: center "strong热稳定性行业标准/strong/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none"tbodytr style=" height:18px" class="firstRow"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"标准号/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"标准名称/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"主管部门/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanMT/T 560-2007/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"煤的热稳定性分级/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家安全生产监督管理总局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanYS/T 1264-2018/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"钛合金热稳定性能试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业和信息化部/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanEJ/T 689-2016/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"烧结二氧化铀芯块热稳定性试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业和信息化部/spanspan//spanspan style="font-family:宋体"国防科技工业局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSN/T 3078.2-2015/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"化学品热稳定性测定/span span style="font-family:宋体"第/spanspan2/spanspan style="font-family:宋体"部分:热重分析法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家质量监督检验检疫总局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanNB/SH/T 0906-2015/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"发动机油热稳定性的测定/span span style="font-family:宋体"热管试验法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家能源局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSJ/T 11497-2015/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"砷化镓晶片热稳定性的试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业和信息化部/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanNB/SH/T 0859-2013/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"化学物质热稳定性的测定 热分析法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家能源局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSN/T 3078.1-2012/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"化学品热稳定性的评价指南/span span style="font-family:宋体"第/spanspan1/spanspan style="font-family:宋体"部分:加速量热仪法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家质量监督检验检疫总局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanQB/T 4202-2011/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"制革用颜料膏/span span style="font-family:宋体"耐热稳定性测试方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业和信息化部/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSN/T 2942-2011/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"塑料原料热稳定性的评价/span span style="font-family:宋体"差示扫描量热法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家质量监督检验检疫总局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSN/T 2902-2011/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"危险品热稳定性和空气稳定性的筛选实验/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家质量监督检验检疫总局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSN/T 2794-2011/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"陶瓷制品微波炉耐热稳定性检测方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家质量监督检验检疫总局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanJB/T 9021-2010/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"汽轮机主轴和转子锻件的热稳定性试验方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业和信息化部/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanHG/T 3311-2009/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"聚氯乙烯树脂热稳定性的测定/span span style="font-family:宋体"氯化氢水吸收法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业和信息化部/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanMT/T 924-2004/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"工业型煤热稳定性测定方法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家发展和改革委员会/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSH/T 0680-1999/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"热传导液热稳定性测定法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"国家石油和化学工业局/span/p/td/trtr style=" height:18px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanSH/T 0209-1992/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"液压油热稳定性测定法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"中国石油化工总公司/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanHG/T 4767.4-2014/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"颜料和体质颜料/span span style="font-family:宋体"塑料加工过程中颜色热稳定性的试验/span span style="font-family:宋体"第/spanspan4/spanspan style="font-family:宋体"部分:两辊机法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanHG/T 4767.3-2014/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"颜料和体质颜料/span span style="font-family:宋体"塑料加工过程中颜色热稳定性的试验/span span style="font-family:宋体"第/spanspan3/spanspan style="font-family:宋体"部分:烘箱法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanHG/T 4767.1-2014/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"颜料和体质颜料/span span style="font-family:宋体"塑料加工过程中颜色热稳定性的试验/span span style="font-family:宋体"第/spanspan1/spanspan style="font-family:宋体"部分:总则/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanHG/T 4767.2-2014/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"颜料和体质颜料/span span style="font-family:宋体"塑料加工过程中颜色热稳定性的试验/span span style="font-family:宋体"第/spanspan2/spanspan style="font-family:宋体"部分:注塑成型法/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"中国石油和化学工业联合会/span/p/td/trtr style=" height:36px"td width="147" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspanSN/T 1730.2-2006/span/p/tdtd width="368" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"出口烟花爆竹安全性能检验方法/span span style="font-family:宋体"第/spanspan2/spanspan style="font-family:宋体"部分:/spanspan75/spanspan style="font-family:宋体"℃热稳定性试验/span/p/tdtd width="225" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"pspan style="font-family:宋体"国家质量监督检验检疫总局/span/p/td/tr/tbody/tablepbr//p
  • 一招教会你快速制备稳定的微液滴!
    在基于液滴的微流控系统中,微液滴的稳定生成且不融合对后续实验操作有很大影响。本文将逐步探讨如何制备稳定的微液滴。图1.不同液滴生成油的效果对比介绍基于液滴的微流控技术正在成为生化分析筛选的有力工具。液滴微流控生成的液滴体积小至皮升级,且液滴单分散性极高,每个液滴都可作为独立的微反应器。此外,在这些液滴形成后,还可对其进行连续操作,如孵育、液滴融合和基于荧光的活化分选。高频率(kHz)的操作可以在小体积的反应器中进行,这使得这项技术非常适合小分子合成、药物发现和定向进化等领域的高通量筛选。这些应用通常基于荧光测定完成,而在测定之前荧光产物必须被有效的限制在液滴中。然而,在实际操作过程中,水相中化合物成分,如盐、微生物和细胞分泌物,均会对液滴的稳定性造成一定的影响,进而导致液滴间交叉污染或液滴间相互融合。因此,在制备液滴时,保证液滴的稳定生成且不融合至关重要。以油包水的液滴为例,常见的方法是在油相中添加表面活性剂降低液滴表面张力,以避免其融合。然而,不同的液滴生成油体系(油+表面活性剂)展现出的效果差异较大。本文以FluidicLab提供的微滴生成仪结合配套的PDMS标准芯片,以DMEM培养基为水相,以三种不同体系的液滴生油为油相,制备生成液滴并考察其稳定性。试剂与方法三种液滴生成油依次是在矿物油中加入6%Span-80的液滴生成油,在棕榈酸异丙酯中加入6%EM-180的液滴生成油,在HFE-7500电子氟化液中加入2%全氟表面活性剂的液滴生成油(Drop-Surf氟油);水相为DMEM培养基。FluidicLab提供的微滴生成仪结合配套的PDMS-FF-100标准芯片,以上述三种液滴生成油为油相,以DMEM培养基为水相,通过调整合适的流速生成100μm左右的液滴。随后,将生成的液滴收集到疏水的基底上,通过显微镜观察液滴形态。液滴稳定性对比由实验可知,在同一芯片中生成100μm左右的液滴,所用油相体系不同,稳定生成液滴的流速也很有大差异。以Drop-Surf氟油为油相制备液滴,可以实现极高的流速稳定生成液滴(Vwater=40μL/min)。这一结果由图2可知,在同一曝光时间和帧率下,相比于其他两种油相体系,相机更难捕捉到以Drop-Surf氟油为油相时液滴生成运动轨迹(图2.C)。图2.A、B、C三图分别为矿物油、棕榈酸异丙酯、Drop-Surf氟油三种体系的液滴生成状态在将生成的液滴接收到疏水的基底上后,通过显微镜可以准确观察到液滴的形态,且随着时间的延长,液滴的稳定性也有很大变化。由视频1可知,以矿物油体系为油相制备的液滴稳定性较差,高密集度液滴下融合显著;以棕榈酸异丙酯体系为油相制备的液滴,具有相对较好的稳定性,且随时间延长并未出现明显融合(有小部分大液滴存在);而以Drop-Surf氟油为油相制备的液滴,表现出极好的稳定性,高密集度下随时间延长无任何融合现象出现。结论在采用不同的油相体系(油+表面活性剂)制备油包水液滴时,液滴生成频率、水相流速和液滴稳定性有明显差异。采用矿物油体系制备的液滴不仅稳定性差,液滴生成频率和水相流速慢且后期收集的液滴更易融合;采用棕榈酸异丙酯体系制备的液滴稳定性虽相对较好,但同样存在液滴生成频率和水相流速慢的问题,此外,棕榈酸异丙酯熔点高(11~13℃),低温易凝固,这也很有可能影响液滴的正常生成。而采用Drop-Surf氟油制备的液滴则具有极高的稳定性,具有剪切频率、流速快等优点。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex 邮箱:info@lumchina.cn
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex邮箱:info@lumchina.cn
  • 高性能润滑油的稳定性和颗粒特征
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题二: 高性能润滑油的稳定性和颗粒特征课题二的讨论重点是如何通过SEPView软件的三种分析模块来评价高性能的润滑油的稳定性和颗粒特征。主讲人:Stefan Küchler会议持续时间:60分钟会议语言:英语会议时间:2021年9月16日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 精确称重确保直升机重心稳定
    精确称重确保直升机重心稳定 仅用四年时间,第一款直升机便从瑞士公司 Marenco Swisshelicopter AG 的生产线上诞生。 这家公司依靠梅特勒托利多的称重技术保持着最低的运营成本。 从举行第一次集体讨论会到完成原型和成功试飞,仅用四年时间,便从零开始大获成功。 这款涡轮机驱动的轻量级直升机采用的是位于瑞士格拉鲁斯北部的 Marenco Swisshelicopter AG 开发的碳电池。 Marenco Swisshelicopter SKYe SH09 采用先进的玻璃座舱,具备出色的飞行性能,并且运营成本低。 重心至关重要在与梅特勒托利多就该项目开展合作期间,Marenco Swisshelicopter AG 特别注重利用先进的称重技术开发便携式系统,以测定直升机的重心。 重心是一大关键因素,因为重心会影响施加在旋翼头等磨损件上的应力。 因此,这对直升机的运营成本具有巨大影响。 通过引入定制的解决方案,梅特勒托利多能够在确保低运营成本和出色的飞行舒适度上发挥重要的作用。 为了精确计算重心,一套带有四个 SWB505 MultiMount™ 称重模块的称重系统测量直升机滑脚下方四个点的重量。整个应用程序的设计基于客户对带有制图功能的触屏式 IND890 终端的需求,从而使操作变得简单、方便、快速。 来自瑞士的直升机 Marenco Swisshelicopter AG 由一组航空专家于 2007 年成立,致力于开发涡轮机驱动、最大重量 3.175 公吨的轻量级直升机。 Swisshelicopter SKYe SH09 预计将于 2016 年底上市。其无轴承、五刀片主旋翼带有一个内置操纵联动机构和一个覆盖的抗扭矩尾桨,使直升机飞行期间非常安静。 MultiMount™ 称重模块能够以很高的精度识别重心,降低与磨损相关的成本,并提升飞行品质。 为何选择MultiMount™ 称重模块 01 提升保护 02 下降保护 03 精准计量 04 设计通用 05 轻松安装
  • 干货满满!看 Panta 轻松预测 ADC 稳定性
    话题介绍如何预测稳定性实验?对于ADC研发人员来讲,通过进行一系列蛋白质评估将有助于降低早期开发过程中最终产物不稳定的风险,特别是在优化偶联过程中,这些评估策略显得尤为重要。在本期文章中,我们来重点讲讲如何进行预测稳定性实验。借助PR Panta蛋白稳定性分析仪来推断低浓度样本在提高剂量, 并在更高浓度下用于临床给药后的表现。因为,这对于降低筛选过程的风险和确保筛选过程中获得最稳定的候选分子至关重要。一起看看PR Panta提供的真实数据示例,它们比较了裸抗--Trastuzumab(或称Herceptin),与ADC药物分子Kadcyla,和另一种来源于同类裸抗的ADC药物分子 RC48之间的多个维度预测信息。实验热稳定性实验背景 首先,很重要的第一步,我们要先了解标准的热稳定性实验。在PR Panta上进行这些实验很简单,使用相同的样本收集信息,根据候选分子的热稳定性(如Tm和Ton)以及通过PDI、Tsize和Tagg 的胶体稳定性参数对其进行排名。简单地说,首先比较每种的热变性曲线。Herceptin,裸抗,具有最高的热稳定性,与ADC药物分子Kadcyla相比具有更高的Tm1和更清晰的变性展开转变Kadcyla和RC48都表现出Tm1的峰增宽,表明大多数药物与该展开转变相关的结构域缀合--这是个好现象,因为Tm1对应CH2结构域,而Tm2和Tm3分别是Fab结构域和CH3--尽管它们通常很接近,仅显示单个Tm2RC48是一种由另一个母版裸抗构建的ADC药物,与Kadcyla相比,Tm1略有进一步降低。此外,可以判断它是一种与Herceptin不同的裸抗,因为变性展开的曲线轮廓有很大的变化,包括分别展现出的Tm2和Tm3PR Panta高分辨率的热变性展开数据,对每个ADC或mAb的变性结构展开提供了高度精细的分辨率,使其能够在结构域水平上体现出低至0.2°C的差异。这三种药物都经过了优化,可用于临床,因此稳定性的变化是最佳的,不像在开发过程的早期,需要比较候选药物分子--比如,需要筛选不同的偶联策略。因此,这些数据是了解偶联过程如何影响ADC稳定性的好方法。实验预测数据:3个实验了解ADC当我们已经了解了热变性曲线的数据,接下来是时候看看PR Panta可以解锁的预测参数了。1自缔合自缔合参数kD和第二维里系数B22都是告知生物在高浓度下可能如何表现的参数。其中任何正值都表明药物分子不太可能自我缔合--这是一个理想的结果。自缔合会导致聚集和高粘度,由于许多治疗方法在临床上是以高浓度给药,因此,最好在开发过程的早期就了解ADC是否容易发生自缔合。 自缔合参数kD自缔合参数kD是利用PR Panta的DLS检测模块导出的关于扩散常数的信息,来评估分子与自身相互作用的可能性。正kD表示排斥力(这是好的);负kD是有吸引力的(要避免)。数据显示:裸抗(mAb)具有高度自排斥性,表现出具有强趋势线的正kD。这意味着它不太可能在高浓度下的发生自缔合。在PR Panta中表征的数据结果与其他已发表的数据结果一致Kadcyla也有正kD,尽管它没有那么强的自我排斥。然而,它仍然被认为是一个“好”的结果,kD为正RC48表现出自缔合的倾向,kD为负第二维里系数B22第二维里系数B22是利用PR Panta的SLS检测模块得出的,是着眼于整体情况下自身相互作用的强度。尽管B22和kD之间存在关系,但它们是相互独立的进行判断,因此并不总是完美地一致。SLS的散射数据在用于低浓度样本下更容易出错。然而,一些研究人员更喜欢B22而不是kD,因为B22的数据被认为是对样本内相互作用的更“全局”的测量。如下图所示, B22的趋势看起来与kD的趋势非常相似。PR Panta数据计算出的Herceptin自缔合数值较好地反映了文献值,所提供的自缔合数值为您的分子,在放大工艺生产之前,提供了更宝贵的预测信息。2动力学稳定性动力学稳定性实验,着眼于表征以不同的升温速率设置热变性展开实验时,候选分子的热稳定性行为。通过测量蛋白质随着热升温速率的变化而展开的速度,可以计算出展开的活化能。只需以不同的速率设置一系列热变性曲线,然后比较熔化展开温度如何随速率变化即可。之后,使用Arrhenius方程,将这些信息用于预测构建的分子在不同储存温度下的半衰期。 这三位候选分子的比较情况:&bull 显示动力学稳定性Herceptin Kadcyla RC48,这与自缔合行为趋势相呼应&bull 与Herceptin相比,Kadcyla的半衰期显著缩短,但仍在两个月左右&bull RC48的半衰期非常低,表明偶联方法极不稳定362°C下的等温稳定性等温稳定性是进行加速稳定性研究的另一种方法。与动力学稳定性实验类似,可以使用高温下较短时间的稳定性来推断-20°C、4°C或RT(室温)下的长期稳定性。我们可以看到候选分子的变化趋势:&bull 根据累积半径(Cumulant radius,即纵坐标),可以明显检测到轻微的去折叠展开的变化&bull 在62°C下800分钟(13小时以上)后,Herceptin没有明显的大小变化&bull 两个ADC有着显著尺寸变化,RC48有着更明显的大小变化,再次表明它是所有候选分子中最不稳定的实验总结以上结果展示了除热变性试验参数外,PR Panta提供的其他多维度参数,对于预测长期稳定性是极有价值的。在早期开发和风险评估期间, PR Panta提供了关于如何选择的最佳候选药物的额外预测信息,可以用于进一步推进药物开发。并且与许多其他下游分析技术相比,PR Panta所需的样本更少,因此,从预测分析进而深入了解偶联过程对ADC的影响,PR Panta将会是研究者优先考量的选择。PR Panta蛋白稳定性分析仪(仪器价格咨询)欢迎联系我们,进一步了解PR Panta如何为您的ADC和其他生物制品提供高分辨率、高质量的数据。
  • 《保健食品稳定性试验指导原则》征求意见
    关于征求《保健食品稳定性试验指导原则》意见的函  各省、自治区、直辖市食品药品监督管理局(药品管理局):  为加强保健食品注册管理,进一步规范保健食品稳定性试验,我司组织起草了《保健食品稳定性试验指导原则》(征求意见稿)。现公开征求意见,请于2013年8月19日前将意见和建议反馈我司。  联系人:李莉  电 话:(010)88330505  邮 箱:wangtz@sfda.gov.cn  传 真:(010)88374394  附件:《保健食品稳定性试验指导原则》(征求意见稿)  国家食品药品监督管理总局食品安全监管三司  2013年7月29日  (公开属性:主动公开)  附件:保健食品稳定性试验指导原则(征求意见稿)  稳定性试验研究是保健食品质量控制研究的重要内容之一,也是保健食品注册、监管工作的重要依据之一。保健食品注册申请人应按照法律、法规、规章及国家相关标准等的有关要求,应根据产品具体情况,合理地进行稳定性试验设计和研究。  一、基本原则  (一)保健食品稳定性试验是指保健食品通过一定程序和方法的试验,考察产品的感官、化学、物理及生物学的变化情况。  (二)保健食品稳定性试验目的是通过稳定性试验,考察产品在不同环境条件下(如温度、相对湿度等)的感官、化学、物理及生物学随时间增加其变化程度和规律,从而判断申报产品包装、贮存条件和保质期内的稳定性。  (三)根据产品特性不同,稳定性试验可分为加速试验、长期试验和短期试验。  1.加速试验:该类产品一般保质期为2年,为了缩短考察时间,可在加速条件下进行稳定性试验,在加速条件下考察产品的感官、化学、物理及生物学方面的变化。  2. 长期试验:该类产品一般保质期为1至2年,在常温或说明书规定的条件下考察其稳定性。  3.短期试验:该类产品保质期一般在3至6个月内,在常温或说明书规定的贮存条件下考察其稳定性。  二、稳定性试验要求  (一)产品类别:不同的产品,其剂型、原辅料、成分等不同,对稳定性试验的要求、方法、判定标准也不同。  1.一般产品:对贮存条件没有特殊要求的一般产品,可在常温条件下贮存,如固体类产品(片剂、胶囊剂、颗粒剂、粉剂等) 液体类产品(口服液、饮料、酒剂等)。  2.特殊产品:对贮存条件有特殊要求的产品,如:益生菌类、鲜蜂王浆类等。  (二)样品批次、取样和用量:应符合现行法规的要求,满足稳定性试验的要求。  (三)样品包装及试验放置条件  稳定性试验的产品所用包装材料、规格和封装条件应与产品质量标准、说明书中的包装要求完全一致。  1.普通样品  加速试验应置于温度37±2℃、相对湿度RH75±5%、避免光线直射的条件下贮存三个月。  长期试验、短期试验应在说明书规定的储存条件下贮存,贮存时间根据产品质量标准及说明书声称的保质期而定。  2.特殊样品  在说明书规定的贮存条件下贮存。  (四)试验时间  稳定性试验中应设置多个考察时间点,其考察时间点应根据对产品的性质(感官、理化、生物学)了解及其变化的趋势而设定。  1.普通产品  加速试验一般考察时间为三个月,即对放置0月、1月、2月、3月样品进行考察。0月数据可以用同批次产品卫生学试验结果代替。  长期试验一般考察时间应与产品保质期一致,如保质期定为二年的产品,则应对0、3、6、9、12、18、24个月产品进行检验。0月数据可以用同批次产品卫生学试验结果代替。  2.特殊产品  在说明书规定的贮存条件下进行考察。保质期在三个月之内的,应在贮存0、终月(天)进行检测 保质期大于三个月的,应按每3个月检测一次(包括贮存0、终月)的原则进行考察。  (五)考察指标  应按照国家有关部门颁布的或者企业提供的检验方法,对申请人送检样品的卫生学及其与产品质量有关的指标在保质期内的变化情况进行的检测。  (六)所用方法  应按产品质量标准规定的检验方法进行稳定性试验考察指标的检测。  三、稳定性试验结果评价  保健食品稳定性试验结果评价是对试验结果进行系统分析和判断,稳定性试验检测结果应符合产品质量标准规定。  (一)贮存条件的确定  应参照稳定性试验研究结果,并结合产品在生产、流通过程中可能遇到的情况,同时参考同类已上市产品的贮存条件,进行综合分析,确定适宜的产品贮存条件。  (二)直接接触产品的包装材料、容器等的确定  一般应根据产品具体情况,结合稳定性研究结果,确定适宜的包装材料。  (三)有效期的确定  保健食品有效期应根据产品具体情况和稳定性考察结果综合确定。采用加速试验考察产品质量稳定性的产品,根据加速试验结果,产品保质期一般可定为2年 采用长期试验或短期试验考察产品质量稳定性的产品,总体考察时间应涵盖所预期的保质期,应以与0月数据相比无明显改变的最长时间点为参考,根据试验结果及产品具体情况,综合确定产品保质期 同时进行了加速试验和长期试验的产品,其保质期一般主要参考长期试验结果确定。
  • 环保行业标准气体的稳定性研究
    标准气体的重要性环保一直是全社会热议的话题,国家也针对环境保护出台了诸多政策,例如HJ75-2017是关于监测二氧化硫、氮氧化物和颗粒物,HJ-604是关于总烃、甲烷和非甲烷总烃的监测方法,HJ759是关于环境空气挥发性有机物的测定,HJ1078则是关于固定污染源废气——甲硫醇等8种有机硫的监测。任何一种监测方法,都需要用到标准气体。标准气体就是监测的一把“标尺”,用它来校准仪器,才能确保检测出的数据的准确性,保证数据在可接受的误差范围内。但是许多人并不太了解这把影响监测数据准确性的”标尺“,因此,液化空气从标准气体的参数、国家标准物质证书、标准气体稳定性研究这几个方面,在1688直播间与大家进行了标准气体的知识分享,现在就让我们一起来回顾一下吧!1混配精度、分析精度与不确定度不确定度:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。表明结果的可信赖程度。混配精度(BT):配置混合物与要求值的误差范围。分析精度(AA):使用仪器分析给出的值与真实值见的误差范围。也就是说,如果需要配制一瓶10ppm二氧化硫标准气体,氮气作为平衡气,你可能会得到如下结果。若混配精度为5%,则该标准气体的配制值范围为9.5~10.5ppm;若分析精度为1%,标称值为9.8ppm,则该标准气体的真实值范围为9.702~9.898ppm;不确定度为1%2国家标准物质证书购买环保标准气体的客户经常会要求标准气体带有国家标准物质证书,该证书分为一级证书和二级证书。一级证书一般由中国计量院出具,作为中国最权威的标准,而二级证书则是具有一定生产、分析能力的企业向计量院提出申请,由中国计量院进行考核,测试后颁发给企业定级认可证书。针对不同组分、不同浓度的标准物质,计量院都会出具一个对应的GBW(E)证书编号。而且,如果只是标准物质的不确定度变化,也需要重新审核证书。目前,液空中国一共有113个标物证书,覆盖了汽车、环保、石化、食品、检测等各行各业会使用的标准品。液空工厂生产的标准气体都带有以下的标准物质证书,证书上会表明对应的二级标物证书编号,可在国家标准物质资源平台中输入编号查询到相关的证书记录。3影响标准气体稳定性的因素FACTOR-1 原材料标准气体的平衡气主要为氮气、空气等,平衡气的水分、氧杂质含量越低,标准气体的组分浓度稳定性越好。FACTOR-2 管线材质主要指主要指瓶阀、减压阀、管路的材质。环保标准气体常含有强活性和强腐蚀性的组分,若使用铜阀、铜制减压阀,会对标气产生吸附和反应。因此,需要使用不锈钢的瓶阀和减压阀,保证浓度稳定。FACTOR-3 气瓶处理气瓶材质:标准气体气瓶常用铝合金制成,但铝合金有许多材质,合金含量不同,与瓶内物质的反应程度也不同。液空对多种铝合金进行了试验后,发现6061材质能够最有效地保证标准气体的稳定性,所以液空目前采用该种材质的气瓶充装标气。气瓶制造技术:液空采用的是拉拔瓶。该种气瓶是让金属在高温情况下,用模具一体成型,使得气瓶内壁的细纹相对较少。为什么要采用这种方式呢?这是因为,如果气瓶内壁有细小的裂缝,在清洗气瓶时,气瓶内壁便会吸附水分。而标准气体的使用时间往往长达半年至一年,瓶内干燥的气体一定会与裂缝中的水分发生动态平衡,导致裂缝中的水分析出来后与气体发生反应。这也解释了有些标准气体在一开始使用时的浓度是准确的,但后来变得不准确的问题。钢瓶内壁清洁度:也许你听说过涂层瓶,这种气瓶可有效隔绝气体与瓶壁的接触,保证标准气体的稳定性。液空经过多种技术的试验,目前主要选择通过对气瓶内壁进行钝化来保证标气的稳定性。钝化是指用高浓度的标气充满气瓶,例如使用高浓度的SO2,随后静置,让瓶壁吸附饱和SO2,再将气瓶进行清洗、抽真空、烘干后,充装客户需求的浓度。此时,因为瓶壁已经达到了吸附饱和状态,就不会再与气体发生反应。FACTOR-4 标气状态气瓶内的余压对标气浓度稳定性也有影响。每瓶标准气体至少含有两个组分,根据道尔顿分压定律,气瓶内不同组分承担的分压是不同的。在气体使用过程中,随着压力逐渐下降,不同组分的分压就会产生变化。而一些物质的反应是与压力相关的,当承担在各组分的压力不同时,便会发生化学平衡反应的移动,导致组分浓度变化。因此,建议每瓶标气留3-5bar余压。(关于液空标准气体稳定性研究的数据报告,可以联系客服4000529166)4疑问解答Q1 为什么很多标气的保质期能到一年,而有些只有半年或三个月呢?根据标气组分性质的不同,对于有活性或者腐蚀性的组分,其保质期就会受到影响,例如硫化氢、氯气等。Q2 为什么经常发过来的标气浓度和订气时所需求的不一致?因为标气是根据特定需求而特殊定制的产品,其生产方法是根据国际通用的重量法,一瓶一瓶地称出来的,然后再逐瓶通过相应的分析仪器得出数值,其分析报告上给的数值就是根据分析仪器上的读数而来的。由于人工控制和充装设备的不稳定性,一般很难刚好把读数落在需求的数值上,一般情况浓度越低,控制的难度就会越大。所以会产生本文中提到的混配精度、分析精度和不确定的概念。液空会利用先进的充装设备和技术,以及充装工的经验,将误差范围控制在我们提供的技术参数之内。如有特殊需求,液空可根据客户要求的误差范围进行配制。但在此情况下,液空可能需要配制多瓶标气,才能有一瓶的标气浓度落在要求的范围内,导致成本较高。Q3 NO2和NO可以互相转换,这个因素对NO2和NO标气有什么影响?根据反应方程2NO+O2=2NO2,在氧气存在的情况下,NO会反应成为NO2。因此,当配制NO标气时,要尽可能减少氧气,所以需要使用N2做平衡气。而且氮气的纯度越高,才可保证氧杂质的含量越少。当配制NO2标气,则需要大量氧气,所以建议用空气做平衡气。只有氧气充足时,NO2就不会向NO反应。需要注意的是,由于该反应方程为可逆反应,NO中必会存在NO2。但液空配制的标准气体,均使用99.9999%氮气作为平衡气,可保证NO2的含量控制在NO含量的5%以内。如果客户的应用要求更高,液空也可使用纯度更高的平衡气,使NO2的含量降到更低。Q4 对于Cl2和HCl标气,为什么当浓度在10ppm左右时经常测不出读数?因为这类物质易溶于水,比如HCL和水的溶解比例是1:700。当其浓度很低时,尽管气瓶已进行处理,但是减压阀、管路未经过吹扫、钝化,这类组分仍会被吸附。所以这类物质都需要用不锈钢材质的减压阀,并且要吹扫足够长的时间,用标气把管路保压钝化2-3个小时后再去使用和测定,这样才能得到比较准确的数据。
  • 超级电容又添新材料,稳定性大幅度提高
    p  多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。/pp  该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。/pp  根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。”/pp  在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。/pp  从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。/pp  总编辑圈点/pp  日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。/ppbr//p
  • SAXSpace系统 | 高效且稳定的SAXS研究
    用线准直测量低浓度且易受辐射影响的生物样品的小角X-射线散射 (SAXS) ,可以确保短的测量时间,并且得到满足分析低分辨率的3D结构的高超数据质量。_生物样品的SAXSSAXS 可以为生物样品,如蛋白质、RNA、DNA及其复合物等在近乎自然状态的溶液条件下提供非常有价值的结构信息。但是,得到生物材料的高质量SAXS数据是非常复杂的,这是由于低样品浓度使得散射曲线信噪比低,并且样品稳定性低。线准直提供了克服这些挑战的独特优势:相比较于点准直,提高了信噪比良好的样品稳定性(没有辐射损害所致的样品变性)高分辨率(例如,更小的散射矢量)及高通量以确保测量时间短为了数据解析和结构研究,使用标准程序对线模糊化的SAXS数据进行评估。_实验和结果在这个研究中,将实验室SAXS仪器线准直(封闭靶SAXSpace系统)与点准直(旋转阳极靶系统)测量的lysozyme蛋白溶液(5 mg/ml)的散射曲线进行比较。两个实验的曝光时间和qmin是一样的。线准直测得的数据消模糊后的1D散射曲线和对距离分布函数p(r)与点准直得到的完全相符(图1)。图1:lysozyme的径向密度分布:理论与实验数据相比较使用GIFT1程序中IFT运算法则。消模糊后的数据使用DAMMIF2程序,进行低分辨率模型的重建。如图2所示,晶体结构(PDB132I)显然与低分辨率的轮廓相符合。图2:lysozyme和transportin-1低分辨率3D轮廓模型更进一步的SAXS数据在100 kDa 人类核转运受体transportin-1蛋白浓度为8 mg/ml下记录。 如观察到的lysozyme,DAMMIF程序由线准直下测得的散射数据得到的低分辨率模型与晶体结构(PDB 4FDD)完全一致。这表明,使用线准直的得到的SAXS数据很好地适合于研究溶液中的生物样品。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。 特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02 差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。 特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选 2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制