当前位置: 仪器信息网 > 行业主题 > >

尾气净化催化剂

仪器信息网尾气净化催化剂专题为您整合尾气净化催化剂相关的最新文章,在尾气净化催化剂专题,您不仅可以免费浏览尾气净化催化剂的资讯, 同时您还可以浏览尾气净化催化剂的相关资料、解决方案,参与社区尾气净化催化剂话题讨论。

尾气净化催化剂相关的资讯

  • 著名催化剂专家魏可镁院士逝世
    中国共产党的优秀党员、中国工程院院士、福建省人民政府顾问、原福州大学校长、化肥催化剂国家工程研究中心主任、我国著名的催化剂专家魏可镁先生,因劳累过度,突发脑梗塞、心脏骤停,经抢救无效,于2014年10月23日凌晨1时30分不幸逝世,享年75岁。  魏可镁院士,1939年8月出生,福建福清人。1965年毕业于福州大学化学系,师从著名科学家卢嘉锡教授。1997年当选中国工程院院士,曾任第九届、第十届全国人民代表大会代表,中共福建省第七届委员会委员,先后荣获&ldquo 全国首届杰出专业技术人才奖章&rdquo 、 &ldquo 全国先进工作者&rdquo 、&ldquo 全国优秀科技工作者&rdquo 、&ldquo 全国侨界十杰&rdquo 等荣誉称号。  魏可镁院士是我国著名的催化剂专家,主要从事化肥催化剂、汽车尾气催化剂和净化器的研发。他先后研发成功并产业化四个系列十二个化肥催化剂,在全国上百家合成氨厂推广应用并取得巨大经济和社会效益 完成了FD汽车尾气催化净化器的研发,并已达到欧Ⅴ排放限值,成为外企在国内的主要竞争对手,并已实现年产销量15万套,为我国净化器产业的国产化打下坚实的基础。魏可镁院士曾先后获得国家发明奖3项,国家科技进步奖2项,省部级奖6项,为我国化学化工科学技术的发展和应用做出了杰出贡献。  魏可镁院士教书育人四十余载,培养了大批优秀人才,为党的教育事业、科技事业呕心沥血,奉献了毕生精力。他严谨求实的治学态度,勇于创新的科学精神,不求索取、只知奉献的催化剂品格,是我国科技教育界的光辉典范。以魏可镁院士为代表的勇于拼搏的奉献精神被列入福州大学的&ldquo 三种精神&rdquo 之一,将激励和泽及一代又一代的学子。  魏可镁院士的逝世,是我国化学化工科学与教育界、福州大学的重大损失。敬爱的魏可镁院士永远活在我们心中!
  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px "氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) font-size: 16px "strongspan style="color: rgb(0, 112, 192) font-size: 16px text-indent: 2em "看——把烟囱“搬”进显微镜/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。/span/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title="在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt="在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width="450" height="299" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "span style="font-size: 16px "strong在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。/span/pp style="text-align: center text-indent: 0em "span style="font-size: 16px "img style="max-width: 100% max-height: 100% width: 450px height: 393px " src="https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title="反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt="反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width="450" height="393" border="0" vspace="0"//span/pp style="text-align: center text-indent: 0em "strongspan style="font-size: 16px "反应循环的建立确保硫酸盐的沉积与分解达到动态平衡/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strongspan style="text-indent: 2em "算——“白马”“黑马”最佳配比/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。”/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 334px " src="https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title="理论计算理解位阻效应.png" alt="理论计算理解位阻效应.png" width="450" height="334" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongspan style="font-size: 16px "理论计算理解位阻效应/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "“通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。”/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 16px "测/span/strong/spanspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 16px "——/spanspan style="text-indent: 2em "1000小时耐力测试/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 193px " src="https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title="持续稳定的抗中毒性能.png" alt="持续稳定的抗中毒性能.png" width="450" height="193" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongspan style="font-size: 16px "持续稳定的抗中毒性能/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "“可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。”/span/p
  • 《科学》:新型催化式排气净化器问世
    与汽油发动机相比,柴油发动机只需要较少的燃料并释放出较少的二氧化碳,但是它们在美国却非常罕见,这部分缘于此种发动机总是无法达到美国规定的产生烟气污染物的排放量标准。如今,科学家研制出了一种新型的催化式排气净化器,从而使得柴油发动机能够满足上述条件,而无需花费太多。  据美国《科学》(Science)杂志在线新闻报道,早期的柴油发动机会喷出大量的烟雾。为了解决这一问题,工程师设计的发动机能够吸进比燃烧燃料所需还要多的空气。但这样便会产生一个副作用:排气管中剩余的氧气使得这种发动机很难去除能够形成烟雾的氮氧化物。为了找到从柴油发动机排气管中去除氮氧化物的方法,科学家们可谓绞尽了脑汁。  一种解决办法就是在催化式排气净化器中添加某种金属,例如钡。钡可以与氮氧化物反应而生成硝酸钡,后者可以在不影响性能的前提下很容易地从发动机中被去除掉。然而这种基于钡的反应仅仅与一种氮氧化物起作用。如果想要去除其他的氮氧化物还需要用铂进行催化,从而使一氧化氮氧化为二氧化氮,最终再由钡将其去除。遗憾的是,铂却是这颗星球上最贵重的金属之一。这便是为什么与它的汽油发动机“兄弟”相比,清洁柴油发动机要更为昂贵的一个重要原因。  如今黑马出现了。一种名为钙钛矿的廉价金属氧化物可以取代铂,但它通常没有铂的效率高,并且遇到柴油中的硫便容易失效。尽管硫可以通过将催化式排气净化器加热至700多摄氏度的方法加以去除,但这种做法同时也会令钙钛矿分解。  在这项新的研究中,美国密歇根州沃伦市通用汽车全球研发中心的化学工程师李伟(音译)和同事成功开发了一种混合物,这种混合物由钯——比铂便宜70%——和包含有镧、锶和锰的钙钛矿构成。当一台柴油发动机处于巡航温度下时,这种混合物至少可以像传统的铂催化剂一样去除污染物(但是当发动机冷却后,它的作用就很小了)。更棒的是,这种混合物在清除硫的温度下依然可以在排气系统中工作。研究人员在最近出版的美国《科学》(Science)杂志上报告了这一研究成果。  在过去的一年中,研究小组一直在持续研制和改进他们的催化式排气净化器设计,并且正打算将其在样车上进行试验。李伟表示:“目前的最大挑战是设法改善这种混合物在低温下的表现。”  捷克共和国布拉格市化学技术研究所的化学工程师Jan Stepanek预测了另一潜在的问题。他说:“众所周知,由于汽车催化物的降解,道路附近贵金属的浓度将是可观的。”打个比方,目前之所以没有出现环境或健康问题是缘于铂是非常稳定的。但是研究小组的新设计中包含有锶,而锶被认为会阻碍青少年的发育。Stepanek表示,如果锶从一部老化的催化式排气净化器中释放出来,那将更加危险。
  • 全光谱光催化材料实现水体污染零碳净化
    近日 ,扬州大学环境学科与工程学院朱兴旺团队在光催化治理水体污染方面取得重要进展,团队成功研制一款能够实现全光谱响应的氮碳基光催化剂,实现水体污染治理全程零碳净化,与传统催化剂相比,整体效率提升13.6倍,并已实现产业级制备条件。基于材料制备的光催化网,在工程应用中,使河水污染物在10天内减少80%,且持续效果长达一年。基于氮碳材料的晶面结构催化量子效率提升270倍。(课题组供图)目前,这一研究成果发表在《材料》期刊上,并已申请两项发明专利。在全国率先实现氮碳基光催化材料的工业应用。随着城市化进程加快,生活污水排放严重污染了城市水体,各种有机污染物的大量使用导致水体环境污染加剧,城市水网黑臭现象屡见不鲜,不仅严重影响城市环境和生态,还对生命健康造成巨大危害。传统的水处理方法如截污纳管和内源治理的防范需要铺设大量管道,并将河水截留,把河底淤泥挖出来运走,工程量浩大,地方政府财政压力大。近年来,以催化材料为基础的水处理方法成为黑臭水体处理的热点,但目前的催化材料总体催化效率慢,催化材料寿命短,需要外加能量和持续投入。为此,朱兴旺科研团队长期致力于开发一种无需外加能量、成本低、持久性强、效果好的光催化材料。经过长达5年的持续科研攻关,团队成功研发并优化了一种全光谱响应的氮碳材料,该材料具有光生电子-空穴寿命长、化学稳定性高、光吸收范围宽、光吸收能力强等特点。此外,经过持续改进,材料已实现了产业化制备。在近期开展的工程实验中,团队利用新型材料制备的光催化网在静态河水中成功恢复了河道生态系统,10天内让河水污染物减少80%,有效恢复了其自净能力。相比于其他水体净化材料,处理效率大幅度提升,从常规的30天缩减到10天以下。另外在河道治理中,在每公里的河道,只需要铺设宽度3m的光催化处理网,即可在10天内使河水的化学含氧量达到国家地表水I类标准。“最近一年的研究表明,该材料在1年内光催化网能持续发挥水体净化作用,分解有毒有机物、提高溶解氧、激活生态,净化效率在1年后仍有70%。”团队科研人员刘清介绍说,该光催化网目前主要适用于景观河道水和工业废水中的化学含氧量去除,也为治理城市污染河道,治理湖泊等大型水体,净化水质,恢复水体自净能力提供了方向,改善水体生态系统。
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 预防催化剂中毒,元素分析不用愁
    岛津ICP光谱测试尿素水溶液多种金属元素 GB17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市车辆将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物(NOx)和颗粒物(PM)排放限值分别加严了77%和67%,并新增了粒子数量(PN)的限值要求。 为了达到国六排放标准,尾气后处理系统都会设置选择性催化还原(SCR)系统,以便有效降低尾气中氮氧化物含量。尿素水溶液是SCR 系统主要消耗品,在催化剂作用下,将氮氧化物还原成氮气和水。SCR催化剂通常以TiO2为载体,负载W、Mo、V、Mn 等活性金属。如果尿素水溶液金属离子浓度过高,特别是钾离子和钙离子,会减少催化剂表面的活性位,造成催化剂中毒,从而降低NOx的转化率,缩短SCR催化剂的寿命,所以在GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中对各种金属离子杂质含量有明确的限量要求。 表1 分析参数 岛津ICPE-9820全谱发射光谱仪测试尿素水溶液多种金属元素 ICPE-Solution独特的“自动确定最佳波长”功能,可以从全部波长范围的测定数据中,在数据库中自动检索提取可能存在的光谱干扰信息,自动确定最佳波长。 精确称取20±0.01g车用尿素溶液样品于100 mL容量瓶中,加入50 mL去离子水,再加入5 mL硝酸,去离子水定容至刻度并摇匀,使用ICPE-9820上机测试。 图1 Ca元素标准曲线图2 Ca元素谱峰轮廓图 表2 车用尿素样品分析结果注:N.D.表示未检出。 采用ICPE-9820高盐进样系统和直接进样(标准加入法)测定了柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中的10种杂质元素,结果表明所测市售尿素水溶液金属含量符合GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》要求,该方法无需分离基体、无需样品前处理、不加内标,测定结果准确,方法操作简便,可满足柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中杂质元素的检测技术需求。 撰写人:段伟亚、孙友宝
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 抚研院开发出高活性VOCs废气处理催化剂
    p 抚顺石油化工研究院(简称抚研院)在挥发性有机物(VOCs)环保处理方面,开发出WSH-5型催化燃烧催化剂,适用于炼化企业含VOCs废气的环保处理。处理后的气体排放满足当前国家和地方环保标准。该技术已申请中国发明专利8件,具有自主知识产权,通过了中国石化科技开发部组织的技术评议。/pp 催化氧化技术是处理含VOCs废气的主要技术之一。抚研院结合炼化企业有机废气催化燃烧装置长周期、高效、稳定运行的需求,开发的高活性WSH-5型催化燃烧催化剂具有贵金属用量低和活性高的特点。科研人员通过在催化剂涂层配方和制备工艺方面的创新,提高了催化剂中贵金属成分的分散度,使催化剂的活性得到有效提升,VOCs起燃温度降低20℃以上,同时降低了催化剂的生产成本。/pp 采用WSH-5型催化燃烧催化剂处理炼化企业PO/SM、污水处理场等含VOCs废气,非甲烷总烃去除率可达99%以上。处理后,废气中的非甲烷总烃低于20mg/m3,苯、甲苯、二甲苯等特征污染物浓度均满足《石油化学工业污染物排放标准》(GB31571-2015)和《石油炼制工业污染物排放标准》(GB31570-2015)。/pp 抚研院开发的废气处理催化燃烧催化剂及工艺已在中国石化和中国石油20多家企业应用。所开发的顺丁橡胶生产废气深度治理及能量回收技术获得2016年度中国石化科技进步二等奖。WSH-5型催化燃烧催化剂广泛适用于PO/SM尾气等工业含VOCs废气的环保处理,能够为企业废气处理达标排放提供可靠的技术支撑。/p
  • 飞纳电镜在催化剂观察中的应用
    飞纳电镜近期通过福州大学的验收。福州大学石油化工学院主要研究清洁燃料生产催化剂和工艺研究、多级孔道催化材料的制备以及负载型催化剂纳微结构调变方法和应用。为了保护环境,人们对车用燃料的质量要求越来越高,燃料中芳烃含量的高低不仅直接影响其燃烧性能,而且对大气质量会产生不同程度的影响,因此利用性能优良的催化剂改善燃料质量具有十分重要的意义。 福州大学石油化工学院主要研究催化剂在石油化工中的应用,其中催化剂表面形貌、表面微区成分及分散状态会对催化剂性能及活性产生很大的影响。 配备有能谱的扫描电镜是一种重要的表面分析手段,能够观察催化剂表面形貌和检测催化剂表面微区成分,对催化剂的研发具有十分重要的意义。飞纳台式扫描电镜能谱一体机 ProX 既能观察样品表面形貌,还可以利用能谱对催化剂表面成分和元素分布进行分析。 从催化剂的微观观点上看,催化剂表面形貌和组成对催化行为具有重要的影响,飞纳电镜配置二次电子和背散射电子探头,能够充分发掘样品表面信息。催化剂中活性成分的分散状态与催化剂活性及使用寿命有着密切的关系,采用能谱分析可以对催化剂表面进行元素分析,从而判断活性成分的分布。同时,利用飞纳台式电镜也可以用于分析催化剂活性下降或失活的原因。 扫描电镜下的催化剂晶体颗粒扫描电镜下的球形催化剂颗粒 用户认真学习电镜操作利用飞纳电镜的形貌和成分分析,可以直观地获得催化剂的形态和活性成分分布信息,再结合宏观分析结果,可以大致预测催化剂的活性及性能,筛选掉性能较差的样品,大大节约研究和后期测试时间。
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • 美国麦克仪器公司参展第十届全国催化剂制备科学与技术研讨会
    2018年11月30日~12月3日,第十届全国催化剂制备科学与技术研讨会在四川大学隆重举行,此次会议为来自国内外高校、研究机构和工业界的同行提供了一个交流和合作的平台。作为材料表征仪器领域的全球领先供应商,美国麦克仪器公司也在此次会议上亮相。此次会议为期四天,全体参会代表对催化剂和催化材料的制备科学、制备技术及表征、工业催化剂的制备、工程放大及应用以及理论化学和分子模拟在催化剂制备中的应用等,展开了广泛而深入的交流和讨论。本届会议中不断涌现出催化剂制备科学与技术的新思想和新理念。会议期间还组织了包括美国麦克仪器公司在内的与催化剂行业相关厂商作相关产品展示与技术交流,美国麦克仪器公司拥有多款广泛应用于催化剂等材料表征分析的仪器,其产品在业界和客户中享有盛誉。值得一提的是,四川大学拥有多款美国麦克仪器公司的高性能材料表征分析仪器,并对产品质量和售后服务高度认可。现场的众多参会代表对美国麦克仪器公司的AutoChem II 2920系列高性能全自动化学吸附仪、ASAP 2460系列多站扩展式全自动比表面与孔隙度分析仪等高性能材料表征分析仪器颇感兴趣,我公司技术人员也为前来的来宾详细介绍了这些高性能产品与技术解决方案,受到大家高度评价。我公司今年还将积极参与第三届国际碳材料大会暨产业展览会、2018全国粉体检测与表面修饰技术创新论坛等多个重要行业会议,并期待与您在现场沟通交流。
  • AEM:通过原位/操作电子显微镜观察反应条件下的多相催化剂
    清洁能源和环境的进步在很大程度上取决于在广泛的非均相催化反应中开发高效催化剂,这得益于透射电子显微镜技术在确定原子级形态和结构方面的作用。然而,催化反应条件下的形貌和结构决定了催化剂的性能,这引起了人们在多相催化中开发和应用原位/原位透射电子显微镜技术的兴趣。纽约州立大学宾汉姆顿分校钟传建教授和复旦大学车仁超教授、Cheng Han-Wen(助理)教授等人发表评述性文章。本综述的主要主题是强调使用原位/操作透射电子显微镜技术在相关反应条件下对非均相催化剂的一些最新见解。本综述不是对原位/操作技术的基本原理进行全面概述,而是侧重于深入了解在多相催化、电催化和光催化反应下从单组分到多组分催化剂的各种催化剂的原子级/纳米级细节涉及气固界面和液固界面的条件。在样品环境、支架和电池以及催化剂类型或电催化反应方面,在固体催化剂上与气体(上图)和液体(下图)反应物/产物的非均相反应条件下催化剂的原位/操作 TEM 研究说明。这一侧重点与原子、分子和纳米级形态、组成和结构与反应条件下催化性能的相关性的讨论相结合,揭示了设计用于清洁和可持续能源应用的纳米结构催化剂的挑战和机遇。文献链接:Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. DOI:10.1002/aenm.202202097
  • 应用 | 高效捕获和灭活生物气溶胶的仿生蜘蛛丝光催化剂
    研究背景图1 捕获和灭活空气中细菌的ASS光催化剂的示意图含有生物体的生物气溶胶,如细菌、病毒、花粉、孢子和真菌,会长时间悬浮在空气中。它们广泛存在于室内和室外环境中,这些生物气溶胶可以引起疾病的传播,捕获和灭活生物气溶胶是尤为必要的。在自然界中,蜘蛛丝可以主动捕获空气中微小的尘埃颗粒和微滴;微滴结合形成更大的液滴,将小的尘埃颗粒和水分集中在蜘蛛丝上。近日,广东工业大学环境健康与污染控制研究院、环境科学与工程学院安太成教授团队在著名综合学术期刊Nature Communications杂志上发表了相关论文。在这项工作中,作者基于蜘蛛丝捕获空气中的微尘并将雾气凝聚成微小液滴的特性,制备了具有周期性纺锤结构的亲水“仿生蜘蛛丝”光催化剂,它由尼龙纤维上TiO2的周期性纺锤体结构组成,可以有效地捕获和浓缩空气中的细菌,形成液滴光催化微反应器,并利用固液界面光照射下光催化产生的高效自由基原位实现对生物气溶胶的连续高效光催化灭活。研究发现,ASS光催化剂的捕集能力主要归因于表面粗糙度引起的亲水性、拉普拉斯压差、纺锤体结大小和表面能量梯度的协同效应。ASS光催化剂捕获的细菌在液滴内或空气/光催化剂界面被光催化灭活。这一策略为生物气溶胶净化材料的构建铺平了道路。催化剂的设计将尼龙纤维浸在TiO2/PMMA/(DMF +乙醇)溶液中,以5&minus 95cm s&minus 1的速度抽出,制备了混合TiO2/PMMA主轴结的纤维。在纤维表面形成的一种薄膜,由于瑞利不稳定性,它沿着纤维自发地分离成周期性的聚合物液滴,然后在空气中干燥。在尼龙纤维(人工蜘蛛丝称为ASS)上形成周期性的光催化剂纺锤结,TiO2 光催化剂主要集中在纺锤结构上,其几何形状与蜘蛛的湿捕获丝相似。图2 ASS光催化剂的制备仿生捕获仿生蜘蛛丝捕获生物气溶胶经过捕获、运输及浓缩三个阶段。仿生蜘蛛丝捕获生物气溶胶后,微生物随着小液滴从连接结构处浓缩运输至纺锤结构处。图3 ASS光催化剂对生物气溶胶的捕获过程捕获机理和表征仿生蜘蛛丝的亲疏水性表征,则采用配备20 pL滴定器的接触角测试仪(KRÜ SS DSA30M)测定单纤维在不同湿度下的水接触角。图4 KRÜ SS DSA30M接触角测量仪如图5所示,通过采用不同的纤维基底制备仿生蜘蛛丝,本研究发现亲水性更强的尼龙基底所制备的仿生蜘蛛丝具有更好的捕获生物气溶胶的性能。说明亲水性对仿生蜘蛛丝的捕获性能有较大影响。图5b显示,在湿度 50%时,接头的水接触角(θ)为97.5°(θ90°,疏水),而在湿度 80%时,水接触角为88.9°(θ90°,亲水性)。对于纺锤体结,在湿度 50%时θ为125.3°,在湿度 80%时θ下降到93.6°,在两种条件下均表现出疏水性。结果表明,在高湿度条件下,ASS的亲水性有所提高。在相同的条件下,无论是在高低湿度水平下,纺锤体结处的接触角θ均高于关节。并应用原子力显微镜(AFM)测量了细菌与ASS光催化剂表面之间的粘附力,揭示了生物气溶胶的捕获机理。通过单纤维接触角、AFM细菌探针表面粘附力的测试,发现生物气溶胶对连接结构处亲和力更强,因此捕获可能从连接结构处开始,再通过纺锤结构半径差异造成的拉普拉斯压差和表面粗糙度梯度造成的表面能差,进一步将捕获的微生物在液滴中运输、凝并及浓缩至纺锤结构表面。图5.ASS光催化剂的生物气溶胶捕获机理a具有不同纤维衬底的ASS光催化剂的生物气溶胶捕获性能。b单个ASS光催化剂在不同湿度下的水接触角。c不同RH下细菌与ASS光催化剂之间的粘附力。d用ASS光催化剂用不同的β、主轴节的高度(H)和关节的长度(L)捕获的生物气溶胶的光学图像。e不同形貌的ASS光催化剂的生物气溶胶捕获性能。F ASS光催化剂的SEM图像和AFM图像。i说明了ASS光催化剂的生物气溶胶捕获和浓缩机制。结论综上所述,本文通过将二氧化钛与周期性主轴结集成,开发了一种ASS光催化剂,并详细研究了生物气溶胶的捕获和失活性能及其相应的机理。ASS光催化剂的生物气溶胶捕获性能是纯尼龙的2倍,其失活效率为99.99%。生物气溶胶首先被亲水关节捕获,然后它们向纺锤节移动,留下亲水捕获位点暴露在外,以便进一步的生物气溶胶捕获。本文有删减,详细信息见原文Peng, L., Wang, H., Li, G. et al. Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols. Nat Commun 14, 2412 (2023). https://doi.org/10.1038/s41467-023-38194-1
  • 北化院BHL催化剂完成首次工业应用试验
    近日,北京化工研究院自主研发的新型BHL催化剂在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。
  • 紫外拉曼光谱:破解催化剂技术瓶颈
    新材料作为高新技术的基础和先导,应用范围非常广泛,是21世纪最重要和最具有发展潜力的领域。而新材料的研制与催化剂的使用是分不开的。大连化物所凝聚科学技术研究团队十几年的智慧和心血,研究的催化材料紫外拉曼光谱技术,破解了催化材料的若干关键技术难题,为突破国家建设急需、引领未来发展的关键材料和技术提供了重要技术支持。该成果也因此获得了2011年度国家自然科学二等奖。  催化材料紫外拉曼光谱技术研究的带头人李灿院士告诉记者,作为化学反应中不可替代的催化剂,贵金属在诸多领域发挥着重要的作用。但是稀缺资源的价格都很昂贵,这无疑是横亘在催化剂制造的一道难题。而紫外拉曼光谱技术正是破解这一难题的金钥匙。紫外拉曼光谱是一种无损伤、高灵敏度的测量技术,在物理、化学、生物学、矿物学、材料学、考古学和工业产品质量控制等领域中有着广泛的应用,是研究分子结构和组态、物质成分鉴定、结构分析的有力工具。  紫外拉曼光谱技术破解了世界催化材料发展瓶颈,解决了催化材料关键科学难题,实现了四大突破。一是利用紫外共振拉曼光谱技术解决了一系列重要分子筛材料中有关骨架金属活性中心的结构鉴定难题。建立了微孔和介孔分子筛骨架过渡金属杂原子活性中心鉴定的表征新方法,不仅可以大幅节约贵金属用量,而且单原子相对均一的催化环境有望实现化学反应的高选择性,减少副产物的出现,从而实现真正的绿色催化。  二是紫外拉曼光谱研究了金属氧化物催化材料表面物相结构问题,发现金属氧化物的表面与体相常常具有不同相结构,物相形成过程中表面和体相的相变表现不同步。在太阳能光催化材料研究中,发现表面物相结构和光催化活性有直接关联,提出了“表面异相结和异质结增强光催化活性”的概念。  三是发展了水热催化材料合成中的原位紫外拉曼光谱技术,观察到分子筛合成初期的分子碎片以及模板剂与分子碎片的相互作用形成的微孔结构,提出了分子筛初期形成的重要中间体决定最终分子筛结构的机理。他们的研究发展了表征催化材料的新方法,发现了催化材料合成的重要转化过程和活性中心中间物种,提出了催化材料合成的机理。  四是获得了具有与均相不对称催化相媲美的多相手性催化剂。该催化剂是一大类化合物——手性化合物的一种,而手性药物则是手性化合物中非常重要的一个分支。手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体。利用“手性”技术,人们可以有效地将药物中不起作用或有毒副作用的成分剔除,生产出具有单一定向结构的纯手性药物,从而让药物成分更纯,在治疗疾病时疗效更快、疗程更短。手性药物的研究目前已成为国际新药研究的新方向之一。在国际制药界,手性技术已被广泛应用到消化系统疾病、心血管疾病、癌症等领域新药研发中。  李灿院士告诉记者,1998年他们成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,在国际上最早将其应用于催化及材料科学的研究。到2004年研究组研制成功紫外—可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究走在世界前面。2008年,研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。2010年完成国家重大装备研制项目“深紫外拉曼光谱仪的研制”,获得世界上第一张激发波长低至177纳米的深紫外拉曼光谱。  李灿院士骄傲地告诉记者,在过去的10年间,紫外拉曼光谱已经在化学、物理和生命科学等诸多领域显示出巨大的优越性,成为一项重要的分子光谱技术。我国紫外拉曼光谱研究在国际上的领先地位,极大地促进了中国在这个领域的国际合作研究,大化所与国内外十余个研究机构实现技术合作。今后,紫外拉曼光谱仪技术在多家研究机构的推广应用,一定会有力推动我国新能源、节能环保、电动汽车、新材料等七大战略性新兴产业健康快速发展,一定会让更多的新材料、精细化工产业受益。
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在0001方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 2021 年第一期飞纳电镜优秀论文赏析|一种新型电催化剂
    随着能源不断消耗,大气中 CO2 的排放量逐年递增,由此引发的环境问题已成为全球关注的热点。去年的联合国大会上,我国向世界承诺,二氧化碳排放力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和。如何减少 CO2 排放、有效转化和利用 CO2 已引起各国政府的高度关注,CO2 的固定和转化是降低其含量的有效途径之一。 我们都知道自然生物可以利用太阳能、化能等能量形式固定二氧化碳进行自养生长。到目前为止,科学家共发现了 6 种天然固碳途径。其中卡尔文循环(光合作用中的碳反应部分)是自然界分布最广的固碳途径,每年可将 1 千亿吨二氧化碳转化成再生物质。但天然固碳的转换效率较低、经济性较差,是限制其实现工业化利用的主要瓶颈。因此构建具有高转化效率的人工固碳途径一直是相关领域的研究重点。 图1. 卡尔文循环(来自:维基百科) CO2 电化学还原(ERC)技术是在常温常压条件下,利用电能(尤其是可再生能源发电)将 CO2 与水直接反应生成合成气、甲酸、碳氢化合物、醇类等高附加值的化学品或液态燃料的新技术,是一条实现可再生能源存储与 CO2 转化利用的绿色途径,对人类的可持续发展具有重要意义。ERC 技术不需要制氢、加温和加压等额外消耗的能量,且设备投资少,其潜在的经济效益和环境效益引起了研究者广泛关注。 近年来,电化学还原技术取得了长足进展,但仍存在许多亟待解决的问题,例如产物的选择性低、偏电流密度低、催化剂的稳定性与耐久性欠佳等,这些问题限制了 ERC 技术的实际应用和商业化。电催化剂作为 ERC 技术的关键材料,其性能直接影响 CO2 转化效率、还原产物选择性及稳定性。因此,开发高性能的电催化剂,提高催化剂的催化活性、选择性和稳定性具有重要的研究意义和应用价值。 在所有金属电催化剂中,Cu 基催化剂是唯一可在水溶性电解质溶液中将 CO2 高选择性地催化还原生成碳氢化合物和醇类的催化剂。在 Cu 基催化剂表面,CO2 可以还原成 CO、HCOOH、CH4、C2H6、C2H4 及含氧碳氢化合物(醇类)等 16 种不同的还原产物。不同的 Cu 基催化剂用于 ERC 反应时,还原产物分布不同。影响还原产物选择性和还原效率有多种因素,包括催化剂的结构、形貌、晶面、尺寸、组成、表面缺陷等。 浙江大学功能复合材料与结构研究所的研究人员研发出一种新型电催化剂,今年 6 月 2 日,相关研究成果以《在铜-分子界面上紧固溴离子使 CO2 高效电还原成乙醇》(Fastening Br&ndash Ions at Copper&ndash Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol)为题,发表在《ACS Energy Letter》上。 图2. 在新型电催化剂 CuBr 作用下的 CO2 &ldquo 酿&rdquo 酒过程 研发出的新型电催化剂十二烷硫醇改性 CuBr,在催化过程中会形成一个稳定的 Br 掺杂 Cu 硫醇界面,从而更高效地将二氧化碳还原成乙醇。该电催化剂的 C2+(含有两个碳原子及以上的化合物)法拉第效率提高了 72%, 乙醇的法拉第效率达到 35.9%。 图3. 新型电催化剂的合成过程 上图阐述了在铜箔上合成 CuBr 纳米四面体并使用十二硫醇(DDT)进行修饰改性的过程。首先将机械抛光的铜箔片在 CuBr2 溶液中浸泡 30s,快速形成 CuBr 四面体。利用飞纳台式场发射扫描电镜 Phenom Pharos 对 CuBr 和 CuBr - DDT 的形貌进行观察,在铜箔的整个表面上可以清晰地观察到排列紧密、表面光滑的四面体纳米结构(图 3b)。经过 DDT 处理后,可以看到 CuBr 四面体表面吸附的絮凝状 DDT(图 3c)。 实验结果表明,用 DDT 分子修饰的 CuBr 对 C2+ 的法拉第效率高达 72%,乙醇-乙烯比接近 1.1。DDT 在 CuBr 上的吸附会阻碍 Br 的迁移和 CuBr 的完全还原,从而在催化过程中形成独特的 Br 掺杂 Cu 硫醇界面,且界面稳定性高。同时,DDT 的吸附抑制了氢和甲烷的产物选择性。在 Cu 中引入 Br- 可以稳定高价态 Cu,从而提升对乙醇的选择性。这一策略将有助于其他复杂电子-质子转移过程的电催化系统的设计。
  • 奥林巴斯Vanta XRF分析仪是如何应用于汽车催化剂回收行业的?
    Vanta XRF分析仪 应用于汽车催化剂回收行业首先,我们有必要先简要介绍一下汽车催化转化器(Car Catalyst或Car Cat)的功能。这些转化器的目的是减少汽车尾气排放到大气中的污染物。汽车催化转化器是一个蜂窝状圆柱体,有一层铂(Pt)、钯(Pd)和铑(Rh),也称为铂族金属(PGMs),以不同的含量附着在其表面。汽车尾气中未燃烧的残留物,如一氧化碳(CO)、碳氢化合物(CH)或氮氧化物(NO)等,经过附有铂族金属的蜂窝状圆柱体,被尾气中的氧气氧化并被中和。近50年来,汽车催化剂已经成为内燃机汽车不可缺少的一部分。汽车催化剂的平均寿命取决于几个因素,如燃料的质量和发动机的体积,但它通常可以维持100,000公里(约62,000英里)。通过对汽车催化剂的合理处理,我们可以为其中的铂族金属提供第二次生命。通过分类和适当处理废弃的催化剂,铂族金属可以被回收并在未来的生产中重复使用。目前,这些再加工铂族金属占催化剂总产量的40%左右,但仍不能满足日益增长的市场需求。目前,汽车催化剂回收不仅在经济上有利可图,也是世界经济发展趋势和环境标准所预测的必然。含有贵金属供循环利用的汽车催化转化器铂和钯是中和有害排放物最有效的两种元素。虽然除了汽车制造外,铂、钯还被用于许多行业——比如珠宝生产——但如今生产的90%的铂、钯都用于汽车催化剂的生产。随着新燃料标准(China VI, Tier 3, Euro 6d, Bharat 6)的采用,可以肯定地说,在未来几年,铂族金属的需求将会增长。因此,汽车催化剂回收有很大的市场前景。另外一个重要的事实是,从环境的角度来看,回收用过的汽车催化剂比通过采矿提取铂族金属的危害要小得多。更不用说,钯在一般是矿物加工厂的副产品,其提取效率很低。Vanta如何协助回收汽车催化剂?从采矿和废料加工行业引进的X射线荧光(XRF)测试方法已被证明可以完全胜任汽车催化剂的回收工作。如果不使用特殊设备,是不可能快速确定汽车催化剂中铂族金属的含量的,这为回收过程带来麻烦。而奥林巴斯便携式XRF分析仪Vanta可以在几秒内为用户提供待回收催化剂中的铂、铑和钯的含量。使用Vanta分析仪,可以对汽车催化剂进行分类,从而以较佳方式提取铂族金属并为回收确定一个合理的价格。Vanta分析仪可以与研磨机、搅拌机和秤等一起使用,是汽车催化剂回收必备的工具。Vanta分析仪可以分析的元素范围是从镁(Mg)到铀(U)(元素周期表的顺序),同时显示多达45个元素。当然,对于汽车催化剂回收来说,感兴趣的元素种类要少得多:铂(Pt)、钯(Pd)、铑(Rh)、钽(Ta)、铈(Ce)、硒(Se)、钨(W)、硅(Si)、铅(Pb)、锆(Zr)、钌(Ru)、镧(La)、镍(Ni)和硫(S)。所有这些元素都是优先考虑的,并包含在Vanta为该应用定制的Car Catalyst方法中。然而,你仍然可以分析从镁(Mg)到铀(U)范围内的其他元素。随着汽车催化剂回收业务的持续增长,试图以尽可能高的价格出售废旧汽车催化剂的诈骗者数量也在增加。提高汽车催化剂价值最常见的方法是增加含铅(Pb)的添加剂。还有更复杂的欺骗方法,比如在混合物中加入钽(Ta)或硒(Se)来模拟XRF光谱上的铂(Pt)峰。错误也可能在没有恶意的情况下发生——例如,带有非专业校准的pXRF很容易将柴油微粒过滤器(DPF)中的钨(W)误认为铂(Pt)——这种情况非常常见。Vanta分析仪可以帮助避免这种混淆,它独特的校准有助于防止此类欺诈或错误的发生。如何从催化转化器中制备样品,以获得准确和有代表性的结果?汽车催化剂块样本以及该样本的初步Pd含量(ppm)样品制备是XRF分析的重要组成部分。90%的XRF误差与样品制备有关。在汽车催化剂回收领域,通常需要处理两种类型的样品:块状蜂窝状样品(整体或分体)和粉末样品。蜂窝结构表面上涂附的铂族金属常常不均匀(图2),所以这样的样本只能提供一个初步测试结果,可以利用该结果对汽车催化剂进行简单分类或者识别那些铂族金属已经被移除的“空汽车催化剂”,特别是当回收小批量汽车催化剂的时候。为了对汽车催化剂进行分类以供后续提纯或大批量生产,需要额外的样品制备步骤以获得有代表性的结果。一般来说,我们建议以下方法:1) 按类型进行粗分类2) 每一类分别粉碎(重要的是要使颗粒大小分布尽可能均匀)3) 均质化4) 取样(如果需要,可以使用压机)另外,必要时也需要密切监测湿度。超过10%的湿度波动会极大地影响分析的准确性。样品获得后,要做3-5次测试,然后取平均值。如果在样品制备阶段没有发生错误,则应该有一个4ppm-31ppm左右的平均误差。不同的Vanta型号有什么区别?奥林巴斯为汽车催化剂回收提供了多种Vanta型号。它们之间的主要区别是分析速度、灵敏度和轻元素(镁(Mg)、铝(Al)、硅(Si)、磷(P)和硫(S)的检测能力。Vanta L分析仪是一种经济型催化剂分类设备。该设备配备了PIN探测器,所以它无法探测到比钛轻的元素。Vanta L分析仪的平均分析时间约为40-60秒。Vanta C和M分析仪是采用硅漂移探测器(SDD)技术的器件,能够检测轻元素,这将有助于确定碳化硅(SiC)的含量以及控制其含硫(S)量。在这些设备上的平均测试时间约为15-20秒,工作效率是配置PIN检测器设备的3倍。表中Pd(单位为ppm)的结果和误差显示了这种差异。Vanta M分析仪5秒测试的测量结果与Vanta L分析仪60秒测试的结果接近。Vanta L分析仪和Vanta M分析仪对Pd的检测结果和误差比较Vanta有哪些特性适合汽车催化剂回收?首先值得一提的是校准的稳定性和结果的重复性。很难相信这些结果来自便携式XRF。此外,基于Axon专利技术,每一台Vanta分析仪之间都能保证较高的重复性。这对市场的大型参与者来说尤其有利。此外,它还提供了使用“用户因子”来调整设备以适应不同催化剂基质,就像你去另一个时区旅行时,只要改变时钟就可以了。钨靶材和银靶材X射线管都是汽车催化剂分析的较佳选择。因为使用铑靶材X射线管时,光谱上会出现相应的特征峰。另外,Vanta分析仪测量窗口的大小是很重要的。大窗口能够分析一个大的表面积,从而提高准确性。回收催化剂是一个粉尘非常大的过程,因此IP55防尘防潮是明显有利的。Vanta系列主线的3年保修期也是一个显著优势。Vanta工作站对于生产过程,客户可以使用奥林巴斯XRF工作站(图3),这将Vanta变成一个成熟的台式XRF,便于固定使用。Vanta也符合工业4.0,可以进行网络连接和并打印报告,可以将数据直接从设备发送到ERP系统,而无需用户干预。此功能有助于让工作更加可控。随着汽车催化剂回收市场的快速增长,提纯工厂将收紧对来料的要求。在计算来料成本时,碳化硅(SiC)和硫(S)的含量将会越来越重要。因此,带有硅漂移探测器(SDD)和X射线粉末衍射仪(XRD)将越来越受欢迎。例如奥林巴斯Terra Ⅱ X射线衍射分析仪,不仅可以定量估计碳化硅(SiC)含量,还可以确定其特定相。在未来,随着奥林巴斯科学云3.0(Olympus Scientific Cloud 3.0)的开放和优化,我们能够为汽车催化剂回收者提供的不仅仅是一个测量工具,更是一个基于云进行计算和测试的生态系统,这对许多小型参与者来说可能是成功的关键。
  • 【HORIBA学术简讯】催化剂、电催化、光催化、陶瓷 领域 | 2021年第38期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对催化剂、电催化、光催化、陶瓷领域,涉及拉曼、荧光技术。催化剂电催化光催化陶瓷更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图
  • 国内首台纳米光催化空气净化器问世
    本报讯(记者李禾)记者7月3日从华东理工大学获悉,我国首台具有自主知识产权的多功能纳米光催化空气净化器在该校国家超细粉末工程研究中心研制成功。该净化器对室内空气中病菌杀菌效果可达99.9%,双重光催化对甲醛、苯等去除率达90%,除尘率达95%以上,并可有效控制甲型H1N1流感病菌在空气中的传播。   据悉,目前市场上销售的一般空气净化器为物理吸附型,没有从根本上去除污染物或处理不干净;由于大部分净化器采用活性炭,时间一长会产生吸附饱和,造成污染物的脱落,产生二次污染。  据上海市环境保护产品质量监督检验总站的报告,多功能纳米光催化空气净化器采用纳米材质,核心模块不需更新;具有光催化、紫外线和除尘系统三重杀菌功能,采用纳米光催化的机理和大比表面积、高吸附性能的载体来负载纳米二氧化钛制备光催化网,可发挥高效物理吸附和光催化分解的协同效应,实现对甲醛、苯等有机污染物的持久分解和对甲型H1N1流感等病菌的及时杀灭,并把有机污染物快速分解成二氧化碳和水,消除了物理吸附饱和及二次污染的缺陷。  此外,该净化器设计了人性化的液晶显示板,能自动检测室内空气质量,并根据空气质量优劣,液晶显示板自动呈现不同颜色:“红色”提示当前室内空气质量差,“蓝色”为中等,“绿色”为优良;而智能控制系统,可根据室内空气质量的不同自动调节出风量,实现节能,又能让空气时时保持清净状态;其负氧离子释放功能,每秒可释放出过百万负氧离子,将空气中极小微尘净化,营造清新气息。
  • 我国成功研制高效纳米光催化空气净化器
    中国拥有自主知识产权的多功能高效纳米光催化空气净化器近日在上海研制成功。  既能高效杀灭病菌、又能快速深度降解挥发性有机物(TVOC)的纳米光催化空气净化器,由设在华东理工大学的国家超细粉末工程研究中心与上海交通大学联合研制。  这种净化器具有光催化杀菌、紫外线杀菌、除尘系统杀菌等三重杀菌功能,并采用大比表面积、高吸附性能的载体来负载纳米二氧化钛制备光催化网,可以发挥高效物理吸附和光催化分解的协同效应,实现对甲醛、苯等有机污染物的持久分解和对病菌的及时杀灭,消除了物理吸附饱和及二次污染的缺陷。  上海市疾病预防控制中心的检测结果表明,它对室内空气中病菌的杀灭率高达99.9%。有关权威部门的检测同时表明,挥发性有机化合物的去除率高达90%,除尘率达到95%以上,净化效率大大高于国家标准。  这种多功能空气净化器设计了人性化的液晶显示板,能自动检测室内空气质量,并根据空气质量的优劣,液晶显示板会自动呈现不同颜色:“红色”提示当前室内空气质量差 “蓝色”提示室内空气质量中等 “绿色”提示室内空气质量优良。  净化器的智能控制系统,可根据室内空气质量的不同自动调节出风量,既实现节能,又能让室内空气时时保持在清净的状态。其负氧离子释放功能,每秒可释放出过百万的负氧离子,将空气中极微小的微尘净化,营造森林般的清新气息。  据科研人员介绍,室内空气污染物主要有挥发性有机物等气体污染物、微生物污染物、固体颗粒污染物等三类污染物。室内空气品质欠佳,对健康十分有害。
  • 模拟光合作用的光动力催化剂问世
    美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。  这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能量进行反应,这些反应可用于合成药物或将废物转化为生物燃料及其他有用的化合物。  研究资深作者、麻省理工学院化学副教授加布里埃拉施劳-科恩表示,光催化可使药物、农用化学品和燃料合成更加高效和环保。研究表明,新型光催化剂可显著提高他们尝试的化学反应的产量,且与现有的光催化剂不同,新催化剂可吸收所有波长的光。  在之前进行的关于光催化剂的工作中,研究人员使用一种分子来进行光吸收和催化。该方法有局限性,因为大多数使用的催化剂只能吸收某些波长的光。为了创建新催化剂,研究人员模拟光合作用并将两种不同的元素结合起来:一种用于采集光,另一种用于催化化学反应。对于光采集部分,他们使用了一种在红藻中发现的被称为R-植物红素的蛋白质。他们将这种蛋白质连接到含钌催化剂上,该催化剂以前曾被单独用于光催化。  联合展开研究的普林斯顿大学团队测试了催化剂在两种不同类型的化学反应中的性能。一种是硫醇—烯偶联,将硫醇和烯烃连接起来形成硫醚,另一种是肽偶联后用甲基取代剩余的硫醇基团。  普林斯顿团队的研究表明,与单独的钌光催化剂相比,新的生物混合催化剂可将这些反应产量提高十倍。他们还发现,这些反应可在红光照射下发生,这是现有光催化剂难以实现的,其对组织的破坏更小,因此有可能用于生物系统。  研究人员说,这种改进的光催化剂可被纳入上述两种反应的化学过程中。硫醇—烯偶联可用于创建蛋白质成像、传感、药物输送和生物分子稳定性所需的化合物。例如,它可用于合成脂肽,使新设计的抗原疫苗更容易被吸收。研究人员测试的另一种反应是西苯脱硫,它在肽合成中有许多应用,包括可用于生产艾滋病治疗药物恩夫韦地。  这种类型的光催化剂还可用于驱动一种被称为木质素解聚的反应,有助于从木材或其他难以分解的植物材料中产生生物燃料。
  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 新型催化剂实现炔烃加氢制烯烃
    近日,中国科学院大连化学物理研究所研究员陈萍、郭建平团队与厦门大学副教授吴安安团队合作,在催化炔烃选择加氢反应研究中取得新进展。合作团队利用金属配位氢化物,发展出一类新型碱土金属钯基三元氢化物催化剂,并应用于炔烃选择性加氢反应中,实现高选择性催化炔烃加氢制烯烃。相关研究成果发表于《美国化学会志》。  炔烃是一类重要的化工产物,炔烃选择性氢化制烯烃是石油化工以及精细化工中的重要过程。目前研究较多的催化剂主要是金属合金、负载型单原子催化剂等。合作团队提出一种不同的催化剂设计策略,利用碱(土)金属稳定金属氢化物制备出三元配位氢化物催化剂,用于炔烃选择加氢反应,通过催化剂中的阴离子和碱土金属阳离子协同作用调控炔烃、烯烃及反应中间体的吸附与加氢能垒,实现炔烃高选择性氢化制烯烃。  郭建平表示,新型催化剂在活性中心组成、结构、反应动力学性质、催化作用机制等方面显著不同于常规多相炔烃选择加氢催化剂。该研究丰富了炔烃选择性加氢催化剂体系,并基于金属配位氢化物材料组成与结构的多样性,为寻找更加高效的炔烃选择性加氢催化剂提供了更多可能。  相关论文信息:https://doi.org/10.1021/jacs.1c09489
  • 莱驰科技回访粒度仪的老用户--石科院催化裂化催化剂研究室
    在温暖的春日,莱驰科技(Retsch Technology)海外销售经理Joerg Westman先生来到了中国石化石油化工科学研究院(以下简称石科院),回访粒度仪的老用户。石科院是中国石化直属的石油炼制与石油化工综合性科学技术研究开发机构,创建于1956年,以石油炼制技术的开发和应用为主,注重油化结合,兼顾相关石油化工技术的研发。石科院主导开发了催化裂化、铂重整、延迟焦化、尿素脱蜡和催化剂、添加剂的研制生产,被誉为中国炼油史上的“五朵金花”,是实现中国现代炼油技术从无到有的标志。今天我们来到的就是催化裂化催化剂研究室。催化裂化催化剂研究室主要研究催化裂化催化剂,催化裂化催化剂是粒径分布范围主要在20-100um的微球颗粒。催化剂的圆整程度直接影响催化剂流化性能、耐磨损强度等性能,是催化剂重要物性指标之一。 实验要求:实验提供了两种催化裂化催化剂样品,要求使用Retsch Technology(莱驰科技)的动态图像法粒度粒形分析仪CAMSIZER XT对两种样品进行形貌识别,区分出形貌差异。 测试仪器:Camsizer XT采用ISO 13322-2动态图像法原理检测颗粒的粒度分布,独家专利的双CCD镜头设计,能够检测1um-3mm的颗粒粒度与形貌特征。130万像素的高速摄像镜头每秒钟可以采集高达275张照片。检测结果实时显示,单次检测时间仅需1~3min。 样品形貌对比:显微镜照片看到的样品B和样品D的形貌外观相近,见下图。样品B 样品D 图中可以看出,样品D的形貌分布曲线明显区别于样品B,意味着样品D具有更好的球形度,总体形貌更加规则。催化剂球形度随粒径增大而变化的趋势 莱驰科技海外销售经理Joerg Westmann先生与石科院催化裂化催化剂研究室的郭瑶庆老师合影 德国莱驰科技动态图像法粒度粒形分析仪能够完美地表征微球类催化剂的形貌,定量检测催化剂的球形度等形貌信息,单次检测时间仅需1~3min。 参考文献(References):1 郭瑶庆,朱玉霞,张连荣,蔡智. 催化裂化催化剂的粒度分析误差与校正.中国石油学会石油炼制学术年会,2005
  • 卡博莱特· 盖罗回访中石化催化剂(北京)有限公司
    前言乙烯工业是石油化工业的龙头,国内现有的乙烯装置全部采用催化加氢除乙炔工艺来制备聚合级乙烯。碳二加氢催化剂技术是整个乙烯技术中的关键技术之一。卡博莱特盖罗来到中石化催化剂(北京)有限公司对高温箱式炉RHF1400进行安装并回访生产运行一部,探访卡博莱特盖罗马弗炉在石化催化剂行业的应用。 中国石化催化剂有限公司作为中国石油化工股份有限公司的全资子公司,是全球知名的炼油化工催化剂生产商、供应商、服务商。中国石化催化剂(北京)有限公司是中国石化催化剂有限公司的分公司,坐落在美丽的燕山石化,始建于1993年6月,企业已通过GB/T 19001、GB/T 24001、GB/T 28001和Q/SHS0001.1管理体系的认证。公司于2015年5月获得中关村高新技术企业认定。中石化催化剂(北京)有限公司现有4套主要生产装置。主要产品为:银催化剂、碳二碳三选择性加氢催化剂、聚烯烃助剂、芳烃溶剂。 中国石化催化剂(北京)有限公司生产运行一部于2008年和2012年分别购买了两台卡博莱特的高温箱式炉RHF1400,十年间使用状况良好,设备稳定,并于2018年底再次采购了一台卡博莱特盖罗的高温箱式炉RHF1400,6月17日销售经理叶上游先生与高级维修工程师袁石峰先生来到中石化催化剂(北京)有限公司生产运行一部,对新购买的RHF1400进行安装和培训使用。据了解,生产运行一部主要是生产碳二选择性加氢催化剂的部门,马弗炉是用于催化剂的产品检验。碳二选择加氢催化剂的载体性质非常广,马弗炉烧完之后主要检测四项指标,吸水率,强度,密度和比表面积。崔工对卡博莱特盖罗的产品质量及售后服务安装都给予了高度评价。卡博莱特盖罗的马弗炉控温精度比较高,比其他一些品牌精度高一些,样品烧结的差别比较明显。 2008年及2012年采购的卡博莱特盖罗高温箱式炉RHF1400 生产运行一部的崔工(右)与卡博莱特盖罗销售经理叶上游先生(左)合影 合成各种聚合物的乙烯单体,通常是由烃类蒸汽裂解制得。在裂解气中除了乙烯单体以外常常含有少量的乙炔等杂质,为了提高聚合物的性能,通常需要对裂解气进行精制,以使乙炔含量降至10ppm以下,最好小于5ppm。工业上一般采用催化选择性加氢的方法将乙烯原料中的乙炔除去。近年来,由于乙烯需求量的增加,大多数厂家通过改扩建装置来提高乙烯产量,导致碳二加氢单元的负荷增加,因此对乙炔加氢催化剂性能也提出了更高的要求。拥有自主知识产权的碳二选择加氢催化剂的开发并在工业装置上的成功应用,可大大减轻国内乙烯装置对国外技术的依赖,对保证我国能源与经济安全、提高乙烯工业的竞争地位有重要意义。CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,拥有了全系列炉类产品,加热温度从室温至3000°C,容积从3L至14000L,应用领域覆盖实验室至工业,包括各类气氛炉类产品。CarboliteGero有着灵活的方案,能为用户提供个性化的解决方案,如:航空航天领域、工程领域、材料科学、热处理、医药、生物及实验室检测等领域。卡博莱特盖罗以满足用户需求为中心,提供设备选型指导,有专业领域的工程师为全球的用户提供现场安装和调试服务。RHF系列高温箱式炉采用硅碳棒加热,有4种炉腔尺寸,每种都有3种不同最高工作温度可选(1400°C, 1500°C和1600°C)。坚固的结构和高品质加热元件保证加热速率(通常40分钟内升到1400°C)和长久的使用寿命。RHF系列高温箱式炉特点:◆ 最高工作温度1400°C,1500°C或1600°C◆ Carbolite Gero301控制器,单段程序控温,计时器功能◆ 炉腔体积3,8,15或35L◆ 阻尼式上开门(仅3L,8L型号)◆ 硅碳棒加热元件使用寿命长,能够承受间歇操作产生的应力◆ RHF系列3L和8L采用一体成型的炉底板,15L和35L采用碳化◆ 硅炉底板◆ 低蓄热量的保温材料,升温和降温迅速
  • 【综述】电化学催化剂的透射电子显微学研究综述
    p  span style="color: rgb(112, 48, 160) "strong前言/strong/span/pp  能源问题一直是困扰人类生存发展的终极问题之一,随着时代的进步,不断革新的科学技术为解决这一问题带来了曙光。其中电催化是目前有效的手段之一,涉及诸多新能源和环境保护的研究方向,包括燃料电池、水裂解、制氢、二氧化碳资源化利用等。其中,研究电化学催化剂的微观结构,并监测电催化剂在电催化反应过程中的结构演变规律,对于设计新材料、开发新能源具有重要的意义。/pp  电子显微镜作为研究学者的“电子眼”,不但可以直接观察固体催化剂的形貌,而且可以在原子尺度提供催化剂的精细结构、化学信息和电子信息,对新型高效催化剂的发现、反应过程中催化剂结构演变及结构和性能之间关系的研究起到了重要作用。因此,电子显微学方法作为一种重要的表征技术在催化化学的发展中扮演着至关重要的角色。在过去20年中,电子显微学在电催化领域内也得到了广泛的应用。最近中国科学院金属研究所张炳森研究员课题组对电化学催化剂的透射电子显微学研究进行了总结,并指出了存在的挑战和未来发展方向。/pp strong span style="color: rgb(112, 48, 160) "1. 透射电子显微学方法对电化学催化剂的基本表征/span/strong/pp  与材料研究中其它表征技术(如:X射线衍射、X射线光电子能谱、Raman光谱等)相比,透射电子显微镜具有很高的空间分辨率,可以在纳米尺度甚至是原子尺度下对催化材料结构进行研究,极大地促进了催化化学的发展。透射电镜目前已经发展为综合型分析电镜,从催化剂的微观结构,到化学组成,以及电子结构等信息都可以利用透射电镜分析获得。/pp strong 1.1电化学催化剂微观结构表征/strong/pp  电化学催化剂的微观结构,如:颗粒形貌、尺寸、暴露晶面、表界面结构等,对催化剂的性能有非常重要的影响,利用高分辨电子显微术(HRTEM)可以获得这些信息。值得注意的是,在负载型金属催化剂中,很多情况中会有很小的纳米颗粒和原子团簇存在,利用高分辨透射电子显微术(相位衬度成像)观察时可能会忽略这些信息,而利用高角环形暗场-扫描透射电子显微术(HAADF-STEM,Z衬度像)可以很容易地观察到这些颗粒的存在。目前,亚埃尺度分辨的球差校正透射电子显微镜的发展,实现了更好地在原子尺度下观察催化剂表界面结构,同时也促进了单原子电催化剂的发展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f0f6b75a-dca5-4054-932d-4946fad9e0f5.jpg" title="1.jpg"//pp style="text-align: center "  strong图1. 纳米颗粒的HRTEM图片:(a)多面体/strong/ppstrongPtNix单晶纳米颗粒,(b,c)多晶PtNix纳米颗粒,(d)核壳结构Pt/NiO纳米线,(e)PtNi合金纳米线,(f)锯齿状的Pt纳米线。(a,c)图中右下角插图分别是对应PtNix纳米颗粒的形状模型图和原子模型图,(a-c,f)图中右上角插图为对应纳米颗粒的傅立叶变换图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/da1074c4-9a68-49ef-ad5c-007b7e4e4f96.jpg" title="2.jpg"//pp  strong图2.(a)Pt/[TaOPO4/VC]-NHT的TEM图片,(b)相同区域的HAADF-STEM图片 (c,d)球差校正透射电子显微镜获得的高分辨HAADF-STEM图片:(c)核壳结构PtPb/Pt纳米片和(d)MoS2负载单原子Pt(左下角插图是相应的构型模拟图)。/strong/pp strong 1.2电化学催化剂的化学成分及电子结构表征/strong/pp  双金属及多元金属催化剂是电催化中常用的催化剂,其化学组成及元素的分布对于催化剂的性能也有着至关重要的影响。X射线能谱(EDS)分析不仅可以对电催化剂的化学成分进行半定量分析,同时利用面扫和线扫,也可以得到相应元素在催化剂颗粒中的分布情况。除EDS表征手段,电子能量损失谱(EELS)对催化剂中的元素组分进行定性、定量和元素分布分析等也具有独特的优势,尤其在分析B、O、N等轻元素时,与EDS分析相比,会得到更精确的信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/45b9bfc5-c80a-4c25-b99d-f4a411601a16.jpg" title="3.jpg"//pp  br//pp strong 图3.(a)PtNix纳米颗粒的HAADF-STEM图和EDS面扫图,(b)核壳结构Pt/NiO、PtNi合金、锯齿状Pt纳米线的EDS线扫曲线(插图中绿线代表对应的线扫轨迹),(c)100 ?C水热条件下得到的B/P共掺杂有序介孔碳的TEM图片和B、C、O、P元素的能量过滤TEM图片。/strong/pp  影响电化学催化剂催化性能的另一个重要因素是催化剂中原子的电子结构。EELS除了可以进行成分分析,其另一个重要且常用的功能是分析催化剂中原子的电子结构,从而可以得到相应元素的价态、配位情况等,进而获取相关信息,例如:负载型金属催化剂中金属-载体间电子相互作用,纳米碳材料中掺杂原子的种类及电子结构等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/bcafabc9-8776-44d7-b3c5-0e6e40886088.jpg" title="4.jpg"//pp  strong图4.(a,b)Pt-CeOx样品中Ce-M45边和O-K边的电子能量损失谱,(c,d)N-掺杂石墨烯样品中N-K边和C-K边的电子能量损失谱,(e,f)三种B-掺杂类洋葱碳样品中B-K边和C-K边的电子能量损失谱。/strong/pp span style="color: rgb(112, 48, 160) "strong 2. “相同位置-电子显微学”方法(IL-TEM)用于电化学测试条件下电催化剂的结构演变研究/strong/span/ppstrong  2.1 IL-TEM方法简介以及其在商业Pt/C电催化剂稳定性研究中的应用/strong/pp  该方法通过将电催化剂分散在坐标微栅上,在透射电镜下准确记录反应前某一具体位置催化剂的微结构信息 随后将携带样品的微栅放到工作电极上,保证接触良好的前提下,将该工作电极置于反应环境中 待反应结束,将坐标微栅从反应体系中取出,并在透射电镜中根据具体的坐标定位追踪反应前记录的位置。通过反应前后、或反应中各个阶段相同位置催化剂结构对比和统计分析,揭示催化剂在反应条件下的结构演变规律,并结合性能测试结果精确阐述构效关系。IL-TEM方法最初应用于电化学反应体系,例如:德国马普Mayrhofer组和西班牙Feliu组等利用此方法研究了铂基催化剂在电化学处理过程中的微结构演变,如负载铂纳米颗粒的脱落、溶解、迁移、团聚长大以及碳载体的腐蚀等特征行为。通过对负载活性组分(纳米颗粒)以及载体(活性炭)结构演变的同时观察,并关联其性能,揭示了不同反应条件下催化剂的失活机制问题。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/571bfe7a-296b-4eef-a73c-e9eb15528350.jpg" title="5.jpg"//pp  strong图5.(a, b)IL-TEM方法在电化学三电极测试体系中的应用示意图,(c-f)利用坐标微栅在透射电镜下通过依次放大追踪相同位置催化剂的微结构信息。/strong/ppstrong  2.2 IL-TEM方法在电化学新材料体系中的应用/strong/pp  各类新型纳米碳材料,如纳米碳球、碳纳米管、石墨烯等,具有优异的导电性、耐酸碱性以及较高的比表面积和丰富的孔结构等特点在能源转化领域得到了广泛关注。其本身通过杂原子改性作为氧还原和二氧化碳还原反应电催化剂被大量研究。除此以外,利用表面改性纳米碳作为电催化剂载体调控活性组分与碳载体间相互作用也是近几年新兴的研究热点之一,通过使用IL-TEM方法跟踪负载纳米粒子在改性碳载体表面的迁移、团聚和溶解等行为直观揭示不同表面修饰对电催化剂的稳定作用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f57af8d7-c227-4571-8e0c-ed72ae77f569.jpg" title="6.jpg"//pp  strong图6. IL-TEM方法用于氮掺杂碳纳米球负载Pt催化剂在氧还原反应(左上)、氧官能团化和氮掺杂改性碳纳米管负载Pt催化剂在甲醇电氧化反应(左下)、及化学接枝法改性石墨烯负载Pt催化剂在氧还原反应(右)中的稳定性研究。/strong/ppstrong  2.3 IL-TEM方法拓展应用于传统液相催化反应/strong/pp  目前,IL-TEM方法已成功应用于电化学体系,直观揭示了不同反应条件中催化剂结构演变,以及碳材料载体表面性质对于负载金属电催化剂的稳定性影响及失活机制。而在环境电镜或原位透射样品杆中难以实现的传统液相催化反应体系中,IL-TEM方法也具有独特的优势。金属研究所张炳森、苏党生课题组在2016年底报道了此方法在液相催化反应(芳硝基化合物选择性加氢)中的应用,也是此方法第一次应用在传统液相催化反应体系中,通过研究反应条件下相同位置催化剂的结构演变过程,直观证明了氮物种的引入对负载的铂纳米颗粒的稳定性起重要作用,实现了铂-碳相互作用调节提升碳基负载型催化剂催化性能。该方法为精确研究液相催化反应中催化剂的构效关系,尤其是复杂液相催化反应体系,如固液、气液固等三相共存反应体系,探索复杂液相环境中催化反应活性中心的诱导产生、演变等行为规律提供了很好的手段,并更好地为新型高效催化剂的开发提供指导。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/64e15822-6ae3-433a-be3c-a0a0ff5988f2.jpg" title="7.jpg"//pp strong 图7. IL-TEM方法在液相反应体系中的应用示意图(左上) 氧官能团化以及氮掺杂改性碳纳米管负载高分散铂纳米粒子催化剂相同位置在反应前后的透射电镜对比图(左下) 氮掺杂碳纳米管负载高分散铂纳米粒子催化剂相同位置在不同反应时间的HAADF-STEM图(右图)。/strong/ppstrong  /strongspan style="color: rgb(112, 48, 160) "strong3. 原位电化学样品杆的应用前景/strong/span/pp  常规透射电镜表征,样品所处的环境是真空和室温,与实际电催化剂所处的液体环境差距较大,并且是对反应前后进行随机取样表征,不够直观准确且存在严重的滞后效应,因此需要开展原位表征。电化学原位透射样品台的出现为实时观察服役环境下电催化剂的微结构以及结构演变提供了有效研究手段,并通过与电化学工作站联用可以得到实时性能数据,为揭示电催化反应黑匣子提供重要参考依据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9dc78db6-8ef1-4d37-b32f-52ad3873eddb.jpg" title="8.jpg"//pp  strong图8.(a, b)电化学原位透射样品杆示意图,(c, d)电化学测试实时数据。/strong/ppstrong /strongspan style="color: rgb(112, 48, 160) "strong 4. 总结与展望/strong/span/pp  先进电子显微方法(分析型电子显微方法和高分辨电子显微方法)的发展提供了从微观尺度认识和理解电化学纳米催化剂结构特征的有效手段。该文通过大量研究工作全面系统地综述了透射电子显微术在揭示电催化剂纳米尺度形貌、原子尺度精细结构、化学组成以及电子结构等信息方面的重要作用,对新型高效电催化剂的设计研发、反应过程中的催化剂结构演变及结构性能间关系等的研究具有指导意义。“相同位置-电子显微学”方法的引入对于研究真实反应条件下催化剂的结构动态行为特征,揭示其稳定性和失活机理等方面提供了更直观准确的研究手段。同时,前沿性研究中电化学原位透射样品台的介绍,展望了将常规透射电镜对电催化剂的表征转变为在线可视化的电化学微型实验室的研究趋势 通过在电子显微镜中建立微纳米反应室,获取真实反应条件下催化剂活性位结构特征,使其成为电化学催化剂的创新工具。/pp style="text-align: center "---------------------------------------------------------------------br//pp  Liyun Zhang,Wen Shi,Bingsen Zhang, A review of electrocatalyst characterization by transmission electron microscopy, Journal of Energy Chemistry,DOI:10.1016/j.jechem.2017.10.016/p
  • 突破!原位电镜揭示双金属催化剂反应状态下的真实活性表面
    p style="text-align: justify text-indent: 2em "近日,中国科学院大连化学物理研究所能源研究技术平台电镜技术研究组副研究员刘伟、杨冰与中国科学院上海高等研究院研究员髙嶷团队及南方科技大学副教授谷猛团队合作,在观察和确认NiAu催化剂在CO2加氢反应中的真实表面方面取得进展。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "催化研究中,常规静态显微分析只能提供催化剂反应前或反应后的非工况结构信息。然而在热振动、气体分子吸/脱附等作用下,催化剂的表面原子难免发生迁移导致表面重构,变化后的表面才是与催化反应活性相关的真实表面,要看清这一表面状态需要借助原位表征技术。尤其对于容易发生表面重构的多元金属催化体系而言,无法原位观测反应气氛下催化剂的原子结构,就不能确认贡献催化活性的真实表面,更无法建立可信的催化构效关系。在以往的研究中,具有宏观统计特性的原位谱学手段已经从精细的能量维度对动态催化过程做出了先驱性探索,例如原位FTIR、原位XPS(AP-XPS)以及原位XAS。在此基础上,实空间下直接观测反应中催化剂的表面原子排布是研究人员长期追寻的目标。针对此问题诞生了环境透射电子显微技术(ETEM),ETEM是主要基于TEM成像的原位手段,适用于原子分辨下追踪气固相反应中催化剂的结构演化过程。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/69a53f56-f8b2-4cb7-adbb-cf19e4397bed.jpg" title="原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" alt="原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg"//span/pp style="text-align: justify text-indent: 2em "在本工作中,研究团队基于环境透射电镜以及特殊设计的mbar级负压定量混气系统,研究了NiAu/SiO2体系催化CO2加氢反应过程。初期静态显微结果表明,该催化剂以Ni为核心,表面包裹2至3层Au原子壳层,为一种典型的Ni@Au核壳构型。而考虑到Ni具有强大的加氢活性,会导致反应的CH4选择性,因此,该核壳构型可合理地解释本工作中CO2加氢高达95%以上的CO选择性。/pp style="text-align: justify text-indent: 2em "但是,环境透射电镜原位观测发现,该催化剂在反应气氛和温度下,内核Ni原子会逐渐偏析至表面与Au合金化;在降温停止反应时,会退合金化返回Ni@Au核壳型结构。原位谱学手段(包括原位FTIR和原位XAS)的结果很好地证实了上述显微观测结果。理论计算和原位FTIR结果表明,反应中原位生成的CO与NiAu表面合金化起到了关键而微妙的相互促进作用,这是该催化剂构型演变及高CO选择性的原因。/pp style="text-align: justify text-indent: 2em "该工作为研究核壳型双金属催化过程提供了启发,例如反应条件下核壳表面是否真实存在,是否贡献催化活性?又如催化剂制备中追求构建核壳表面是否有必要?该工作是一套原位环境下微观结构表征与宏观状态统计的综合应用案例,突出局域原子结构显微观测的同时,借助原位谱学手段,尤其是原位XAS技术,确保了电子显微发现与材料宏观工况性能的关联置信度。从而为发展原位、动态、高时空分辨的催化表征新方法和新技术提供了范例,也为设计构筑特定结构和功能催化新材料提供了借鉴和思考。/pp style="text-align: justify text-indent: 2em "此外,期刊特别邀请审稿人撰写并独立刊发了题为The dynamic of the peel 的工作评述(news & views),以表明本工作对于催化研究的独特启发。/pp style="text-align: justify text-indent: 2em "相关成果发表在《span style="color: rgb(0, 112, 192) "自然-催化/span》(Nature Catalysis)上。该工作得到国家自然科学基金项目、大连市人才项目、中科院青年创新促进会等的资助,尤其得到了研究员苏党生的大力支持。/p
  • 中石大(北京)姜桂元教授团队在《Nature》上发表催化剂研究文章
    在国际顶级学术期刊《Nature》上,中国石油大学(北京)实现了重要突破!中石大(北京)重质油国家重点实验室姜桂元教授团队,联合德国莱布尼兹催化研究所Evgenii V. Kondratenko教授团队、焦海军教授团队、山西大学及德国卡尔斯鲁厄理工学院等科研机构合作者,在丙烷无氧脱氢催化剂研究方面取得新进展。11月10日,研究结果以“In situ formation of ZnOx species for efficient propane dehydrogenation”(原位形成ZnOx物种用于丙烷高效脱氢)为题, 于《Nature》在线发表。中石大(北京)博士生赵丹为本论文的第一作者,姜桂元教授、Evgenii V. Kondratenko教授及焦海军教授为论文的通讯作者。论文以中石大(北京)为第一通讯单位,而这也是该校的首篇《Nature》。继2013年首次《Science》发文之后,至此,中石大(北京)已经集齐了《Nature》和《Science》两大国际顶尖期刊的发表。作者简历:姜桂元,男,教授、博士生导师,中国石油大学(北京)化学工程与环境学院副院长,校青年创新团队负责人。主要从事能源催化方面的研究工作,包括轻烃高效转化和太阳能光催化等。在Nature Commun., Adv. Mater., Chem. Commun., J. Catal., Applied Catal. B等SCI 重要学术期刊上发表论文100余篇,参编学术著作4部,授权国家发明专利24项。先后入选北京市科技新星计划、教育部新世纪优秀人才计划及北京高等学校青年英才计划等。受邀担任《Scientific Reports》、《Current Catalysis》、《Carbon Resources Conversion》期刊编委,担任中国化工学会工程热化学专业委员会委员、中国感光学会光催化专业委员会委员、中国能源学会能源与环境专业委员会委员等。研究简介:丙烯是基本的有机化工原料,近年来供需缺口不断加大。随着页岩气开采技术发展、资源高效利用及能源高质量发展的需求驱动,特别是在双碳背景下石油石化行业面临的转型升级,丙烷无氧脱氢(PDH)制丙烯技术成为填补丙烯供需缺口的一种重要途径。目前商业化的PDH催化剂是K-CrOx/Al2O3和Pt-Sn/Al2O3,Pt价格昂贵以及Cr(VI)毒性高,限制了其进一步应用。研发价格低廉、环境友好的高效非贵金属基替代催化剂并揭示其催化作用机制至关重要且迫在眉睫。针对上述问题,研究人员采用简单的机械混合-原位氢气还原处理方法,成功地在Silicalite-1(S-1)上合成了双核Zn-oxo物种。研究发现,在还原处理机械混合的ZnO-S-1样品时,被还原的ZnO以Zn单质形式迁移至S-1上并与其羟基窝发生反应,得到双核Zn-oxo物种。在还原性条件下,低配位双核Zn-oxo物种是丙烷脱氢的活性位,将该催化剂应用于丙烷无氧脱氢反应时,在400个小时的反应测试中,催化剂展现了优异的催化性能,在与商业K-CrOx/Al2O3类似催化剂相当的丙烯选择性条件下,该催化剂的丙烯时空收率是K-CrOx/Al2O3的3倍左右(上图(a)和(b))。同时该催化剂的制备方法还可以拓展至富含羟基窝的其它类型分子筛以及富含羟基的金属氧化物中(上图(c)和(d)),表现出良好的应用前景。该研究基于分子筛羟基窝和原位预处理/反应构筑高效非贵金属基催化剂,不仅从分子层次阐明丙烷脱氢活性位的形成与作用机制,还为将来高效催化剂理性设计提供了新思路。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制