当前位置: 仪器信息网 > 行业主题 > >

微细金属

仪器信息网微细金属专题为您整合微细金属相关的最新文章,在微细金属专题,您不仅可以免费浏览微细金属的资讯, 同时您还可以浏览微细金属的相关资料、解决方案,参与社区微细金属话题讨论。

微细金属相关的资讯

  • 基于扫描电镜-拉曼联机系统的微细矿物快速识别与定量分析技术
    扫描电子显微镜(SEM,简称扫描电镜)是观测物质表面形貌的基础微束分析仪器,具有分辨率高、景深长、样品制备简单等特点,已成为地球和行星科学研究领域最常用的仪器之一。近年来,扫描电镜的空间分辨率已大幅度提升,分辨率优于1纳米,附属硬件的集成(如背散射电子探头、X 射线能谱仪、拉曼光谱等)和软件的开发极大地拓展了扫描电镜的功能,显著提高了人们认知矿物组成和微观结构的能力,促进了固体地球科学、行星科学等多个学科的发展。复杂样品的三维重构,微细复杂矿物的快速精准识别、定位以及定量分析,是扫描电镜分析技术的前沿发展方向。   中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。该仪器可快速精准地实现扫描电镜与拉曼光谱仪之间的切换,采集样品同一微区的形貌、成分及三维结构信息。克服了传统扫描电镜对熔体包裹体、有机质和同质多像矿物识别的困难,并将拉曼光谱分析拓展至亚微米和纳米尺度。   铌(Nb)是医疗、航空航天、冶金能源和国防军工等行业不可缺少的重要战略性金属资源。我国白云鄂博是超大型稀土-铌-铁矿床,氧化铌的远景储量达660万吨,占全国储量的95%。对富铌矿物的赋存状态开展研究,有助于查明铌的分布规律,提高铌矿床选冶效率。然而,白云鄂博矿床的铌矿物种类繁多,且具分布分散、粒度小、成分和共伴生关系复杂等特点,如何精准识别和定位这些矿物并进行分类,往往给科研人员带来困扰。该团队针对这一问题,在白云鄂博碳酸盐样品的基础上,建立了铌矿物快速识别、精准定位和定量分析方法。通过电子背散射图像灰度阈值校正、两次图像采集和两次能谱采集,极大地缩短了对铌矿物识别和定量分析的时间,15分钟即可实现118平方毫米区域内微米级铌矿物的快速识别和精准定位,整个薄片尺度可在3小时内完成。基于自动标记区域的能谱定量分析数据,结合主成分分析(PCA)统计学方法,即可实现不同铌矿物的准确分类。该方法也可用于稀土矿床中稀土矿物、天体样品中微细定年矿物等在大尺寸范围内的快速识别、精准定位和分类。   嫦娥五号月壤具有细小、珍贵、颗粒多、成分复杂等特点,平均粒径不足50微米。获取如此细小颗粒的全岩成分,是对微束分析技术的一次挑战。传统方法通常运用电子探针分析获取矿物平均成分,用面积法统计矿物含量,再结合矿物密度,计算出月壤的全岩成分。然而,月壤矿物(如橄榄石和辉石)普遍发育显著的成分环带,为矿物平均成分统计带来很大的不确定性。因此,传统方法不仅效率低,误差也大。   针对这一问题,该团队建立了单颗粒月球样品全岩主量元素无损分析方法。他们首先使用 MAC国际标准矿物为能谱定标,检测限为0.1 wt%,对于含量1 wt%的元素, 分析精度优于2-5%。在此基础上,通过能谱定量mapping技术,直接准确获得矿物的平均成分,再结合矿物含量与密度,最终可确定单颗粒月壤的全岩成分。将新方法运用于月球陨石NWA4734号样品,在误差范围内与其他化学分析方法的推荐值一致。该新方法已成功应用于嫦娥五号月壤样品研究。由于该方法不受样品形状的限制,不仅可用于月球、小行星、火星等珍贵样品的全岩成分分析,还可以针对薄片尺度内任意形态微区开展局部全岩成分分析。   扫描电镜技术在地球和行星科学领域分析仪器中具有不可替代的地位,随着搭载附件和软件的提升,其分析技术开发和应用将具有无限可能。将扫描电镜与大数据分析技术相结合,建立更为高清、高效、精确的图像和成分分析方法,是扫描电镜技术发展的重要方向。   研究成果发表于国际学术期刊Microscopy Research and Technique, Atomic Spectroscopy,Journal of Analytical Atomic Spectrometry上。研究受中科院地质与地球物理研究所重点部署项目(IGGCAS-201901、IGGCAS-202101)、实验技术创新基金(E052510401)和中科院重点部署项目(ZDBSSSW-JSC007-15)联合资助。
  • 国家市场监督管理总局对《微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量》等67项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《跨境电子商务独立站经营评价指南》等67项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月2日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001899,查询项目信息和反馈意见建议。2024年7月3日相关标准如下:#项目中文名称制修订截止日期1微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量修订2024-08-022微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第2部分:氢气含量修订2024-08-023敞开式直接电离质谱仪性能测定方法制定2024-08-024塑料扭转刚性试验方法修订2024-08-025激光器和激光相关设备 角分辨散射的试验方法制定2024-08-026光学和光子学 光学元件 复杂曲面光学元件几何参数测试方法制定2024-08-027医用输液、输血、注射器具检验方法 第2部分:生物学试验方法修订2024-08-028元素分析仪性能测定方法制定2024-08-02
  • SGS集团收购加拿大路德维希集团
    世界最大的检测和认证机构SGS集团于9月10日收购了加拿大路德维希集团(LUDWIG GROUP),一家领先的材料和冶金测试机构,其总部位于卡尔加里和加拿大阿尔伯达省的埃德蒙顿。路德维希集团的优势主要在于石油和天然气行业,特别是石油和天然气基础设施和管道行业,路德维希能够提供全面的专业焊接工程必要的设计、制造、评估和维护技术及服务,也能够提供世界一流的物理测试和材料鉴别服务。 SGS CEO克里斯• 柯克表示,这次收购非常符合SGS的工业战略,将利用路德维希在北美进一步扩大SGS的业务,特别是在石油和天然气工业。
  • 中国科大在超冷原子体系实现理想外尔半金属态
    外尔半金属(Weyl semimetal)是一类重要的拓扑物态,其能带中的外尔点结构具有许多奇异的性质:它是一种拓扑磁单极子,且总是成对出现,在其附近的低能激发的运动模式符合“外尔费米子”的方程,最早于1929年由德国科学家赫尔曼外尔提出。有且仅有两个外尔点的外尔半金属—理想外尔半金属,是外尔半金属“家族”中最为基础的一员,由其衍生的有相互作用关联相总是拓扑非平庸的。在凝聚态材料中,尽管近几年外尔半金属材料取得诸多重要进展,这种仅有两个外尔点的外尔半金属尚未实现。图一A:三维自旋轨道耦合装置示意图。B:实验构造的三维拉曼势结构,导致原子在格点之间的自旋翻转隧穿。超冷原子体系具有环境干净,高度可控等重要特性,通过超冷原子研究拓扑量子物态目前是量子模拟领域中一个活跃的方向,其中人工合成自旋轨道耦合是实现拓扑物相的一项重要技术。实现外尔半金属等高维拓扑物态的模拟,三维自旋轨道耦合是其必要条件。这意味着需要构建更加复杂的三维非阿贝尔规范势,一直是超冷原子量子模拟领域的重大挑战。在超冷原子自旋轨道耦合的研究方面,中国科大通过和北大合作一直处于研究前沿。2016年,实验团队就和北大理论组合作,提出并构建了二维拉曼耦合光晶格,实现了二维自旋轨道耦合拓扑量子气[Science 354,83-88, (2016)]。近期,北大的理论团队在原二维系统的基础上提出了三维自旋轨道耦合和理想外尔半金属的新型拉曼光晶格方案[Science Bulletin 65, 2080-2085 (2020)]。实现三维自旋轨道耦合和理想外尔半金属能带,实验上面临两个技术难题,一是怎样把二维形式的拉曼耦合拓展到三维结构;二是怎样利用传统的二维成像进行三维动量空间的探测。为此,联合研究团队设计了巧妙的光路,通过将光晶格“旋转”45°,并将相位锁定,准确构造出理论方案中三维结构的拉曼势,合成三维自旋轨道耦合(图一),同时通过调节实验参量合成了有且仅有两个外尔点的能带结构。图二 A:通过虚拟断层成像法重构三维自旋纹理,找到两个外尔点的位置。B:通过量子淬火动力学对外尔点位置的标定。在探测方面,研究团队借鉴了北大组和香港科技大学G.-B. Jo组合作提出的虚拟断层成像法[Nat. Phys. 15, 911 (2019)],并应用到当前的三维光晶格体系。利用体系的对称性,通过调节拉曼失谐等效得到z方向不同动量平面上的自旋纹理,再重构出三维动量空间的自旋纹理,找到外尔点;随后利用量子淬火动力学提取出该平面能带的拓扑特征,进而确定外尔点的位置。两种方法互相佐证,印证了理想外尔半金属能带的实现。实验中所使用的CCD(如图一)为牛津仪器ANDOR的iKon CCD相机,在动态模式下连续拍摄三张照片,通过对三张照片的处理得到原子的时间飞行吸收成像照片。图三iKon CCD相机iKon CCD相机真空密封,制冷温度可以低至 -100℃。采用BEX2-DD芯片抑制近红外干涉条纹,全波段量子效率达 90%,动态模式下具有微秒级时间分辨率。《科学》杂志的审稿人对这一工作给予高度评价,认为这项工作“为冷原子体系研究外尔物理中的新奇现象打开了新的方向”(...a very interesting work which opens a new direction of investigating exotic phenomena associated with the Weyl physics for ultracold atoms)“作为三维自旋轨道耦合在冷原子体系的首次实现,是领域中的重要进展,并为冷原子研究提供了新的工具”(...this is the first time that 3D spin-orbit coupling was ever achieved in a cold atom experiment. This, in itself represents a significant progress and an important addition to the cold atom toolbox.)“对理想外尔点的实现是非常有价值的结果,为固体系统提供了起到互补作用的研究方向”(Realizing ideal Weyl cones in cold atom systems is thus an extremely valuable objective and will provide an angle of attack that is complementary to solid-state systems.)在该研究工作的基础上,研究团队将进一步开展外尔半金属中更奇特的现象和物理过程的探索。本工作的技术方案也可以推广到费米子体系,开展强关联拓扑物理的研究。该成果有望极大推动量子模拟领域的发展。
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 半导体材料无机非金属离子和金属元素解决方案——光刻胶篇
    半导体材料无机非金属离子和金属元素解决方案——光刻胶篇李小波 潘广文 近年来,随着物联网、人工智能、新能源汽车、消费类电子等领域的应用持续增长以及5G的到来,集成电路(integrated circuit)产业发展正迎来新的契机。集成电路制造过程中,光刻工艺约占整个芯片制造成本的35%,是半导体制造中最核心的工艺。涉及到的材料包括多种溶剂、酸、碱、高纯有机试剂、高纯气体等。在所有试剂中,光刻胶的技术要求最高。赛默飞凭借其在离子色谱和ICPMS的技术实力,不断开发光刻胶及光刻相关材料中痕量无机非金属离子和金属离子的检测方案,助力光刻胶产品国产化进程。从光刻胶溶剂、聚体、显影液等全产业链,帮助半导体客户建立起完整的质量控制体系。 光刻胶是什么?光刻胶又称抗刻蚀剂,是半导体行业的图形转移介质,由感光剂、聚合物、溶剂和添加剂等四种基本成分组成。将光刻胶旋涂在晶圆表面,利用光照反应后光刻胶溶解度不同而将掩膜版图形转移到晶圆表面,实现晶圆表面的微细图形化。根据光刻机的曝光波长不同,光刻胶种类也不同。 光刻相关材料光刻相关材料主要有溶剂、显影剂、清洗剂、刻蚀剂和去胶剂,这些材料被称为高纯湿电子化学品,是集成电路行业应用非常广泛的一类化学试剂。光刻胶常用溶剂有丙二醇甲醚/丙二醇甲醚醋酸酯(PGME/PGMEA)、甲醇、异丙醇、丙酮和N-甲基吡咯烷酮(NMP)等。常见的正胶显影剂有氢氧化钠和四甲基氢氧化铵等,对应的清洗剂是超纯水。 光刻胶及光刻相关材料中金属离子、非金属阴离子对集成电路的影响半导体材料拥有独特的电性能和物理性能,这些性能使得半导体器件和电路具有独特的功能。但半导体材料也容易被污染损害,细微的污染都可能改变半导体的性质。通常光刻胶、显影液和溶剂中无机非金属离子和金属杂质的限量控制在ppb级别,控制和监测光刻工艺中无机非金属离子和金属离子的含量,是集成电路产业链中非常重要的环节。 光刻胶及光刻相关材料中无机金属离子、非金属离子的测定方法国际半导体设备和材料产业协会(Semiconductor Equipment and Materials International,SEMI)对光刻胶、光刻工艺中使用的显影剂、清洗剂、刻蚀剂和去胶剂等制定了严格的无机金属离子和非金属离子的限量要求和检测方法。离子色谱是测定无机非金属离子杂质(F-、Cl-、NO2- 、Br-、NO3- 、SO42-、PO43-、NH4+)最常用的方法。在SEMI标准中,首推用离子色谱测定无机非金属离子,用ICPMS测定金属元素。赛默飞凭借其离子色谱和ICPMS的领先技术,紧扣SEMI标准,为半导体客户提供简单、快速和准确的光刻胶和光刻相关材料中无机金属离子和非金属离子的检测方案,确保半导体产业的发展和升级顺利进行。针对光刻胶及光刻相关材料中痕量无机非金属离子和金属元素的分析,赛默飞离子色谱和ICPMS提供三大解决方案。 方案一 NMP、PGMEA、DMSO等有机溶剂中痕量无机金属和非金属离子的测定方案 光刻胶所用有机溶剂中无机非金属离子的限量要求低至ppb~ppm级别。赛默飞离子色谱提供有机溶剂直接进样的方式,通过谱睿技术在线去除有机基质,一针进样同时分析SEMI标准要求监控的无机非金属离子。整个分析过程无需配制任何淋洗液和再生液,方法高效稳定便捷,避免了试剂、环境、人员等因素可能引入的污染。ICS 6000高压离子色谱有机试剂阀切换流路图 滑动查看更多 光刻胶溶剂中ng/L级超痕量金属杂质的测定,要求将有机溶剂直接进样避免因样品制备过程引起的污染。由于 PGMEA 和 NMP具有高挥发性和高碳含量,其基质对ICPMS分析会引入严重的多原子离子干扰,并对等离子体带来高负载。iCAP TQs ICP-MS 中采用等离子体辅助加氧除碳,并结合冷等离子体、串联四级杆和碰撞反应技术,可有效去除干扰。变频阻抗式匹配的RF发生器设计,可轻松应对有机溶剂直接进样,并可实现冷焰和热焰模式的稳定切换。 冷焰TQ-NH3模式测定NMP中Mg热焰TQ-O2模式测定NMP中V NMP、PGMEA有机溶剂直接进样等离子体状态未加氧(左),加氧(右) 方案二 显影液中无机金属离子及非金属离子测定方案 光刻工艺中常用的正胶显影液是氢氧化钠和四甲基氢氧化铵,对于这两大碱性试剂赛默飞推出强大的在线中和技术,样品仅需稀释2倍或无需稀释直接进样,避免了样品前处理引入的误差和污染,对此类样品中阴离子的定量限达到10ppb以下。这一方法帮助多家高纯试剂客户解决了碱液检测的技术难题,将该领域的高纯试剂纯度提升到国际先进水平。中和器工作原理四甲基氢氧化铵TMAH是具有强碱性的有机物,作为显影液的TMAH常用浓度为2.38%, 为了避免样品处理中引入的污染,ICPMS通常采用直接进样方式测定。在高温下长时间进样碱性样品,会导致腐蚀石英炬管,引起测定空白值的提高。iCAP TQs使用最新设计的SiN陶瓷材料Plus Torch,耐强酸强碱,可一劳永逸地解决碱性样品中痕量金属离子的测定。新型等离子体炬管Plus Torch 方案三 光刻胶单体和聚体中卤素及金属离子测定方案 光刻胶单体和聚体不溶于水,虽溶于有机试剂但容易析出,常规方法难以去除基质影响。赛默飞推出CIC在线燃烧离子色谱-测定单体和聚体中的卤素,通过燃烧,光刻胶样品基质被完全消除,实现一次进样同时分析样品中的所有卤素含量。燃烧过程实时监控,测定结果准确稳定,满足光刻胶中痕量卤素的限量要求。图 CIC燃烧离子色谱仪SEMI P32标准使用原子吸收、ICP光谱和ICP质谱法来测定光刻胶中ppb级的Al Ca Cr 等10种金属杂质,样品前处理可采用溶剂溶解和干法灰化酸提取两种方法。溶剂溶解法是使用PGMEA等有机溶剂将样品稀释50-200倍,超声波振荡充分溶解后,直接进样测定。部分聚合物较难溶解于有机溶剂中,将采用500-800度干法灰化处理,并用硝酸溶解残留物提取。iCAP TQs采用在样品中添加内标工作曲线法测定,对于不同基质样品及处理方法的样品可提供准确的测定结果。 总结 针对集成电路用光刻胶及光刻相关材料,赛默飞离子色谱和ICPMS提供无机非金属离子和金属离子杂质检测的完整解决方案,为光刻胶及高纯试剂客户提供安全、便捷可控的全方位支持。“胶”相辉映,赛默飞在行动,助力集成电路产业发展,促进光刻胶国产化进程,欢迎来询! 参考文献:1.SEMI F63-0521 GUIDE FOR ULTRAPURE WATER USED IN SEMICONDUCTOR PROCESSING2.SEMI P32-1104 TEST METHOD FOR DETERMINATION OF TRACE METALS IN PHOTORESIST3.SEMI C43-1110 SPECIFICATION FOR SODIUM HYDROXIDE, 50% SOLUTION4.SEMI C46-0812 GUIDE FOR 25% TETRAMETHYLAMMONIUM HYDROXIDE5.SEMI C72-0811 GUIDE FOR PROPYLENE-GLYCOL-MONO-METHYL-ETHER (PGME), PROPYLENE-GLYCOL-MONO-METHYL-ETHER-ACETATE (PGMEA) AND THE MIXTURE 70WT% PGME/30WT% PGMEA6.SEMI C33-0213 SPECIFICATIONS FOR n-METHYL 2-PYRROLIDONE7.SEMI C28-0618 SPECIFICATION AND GUIDE FOR HYDROFLUORIC ACID8.SEMI C35-0118 SPECIFICATION AND GUIDE FOR NITRIC ACID9.SEMI C36-1213 SPECIFICATIONS FOR PHOSPHORIC ACID10.SEMI C44-0618 SPECIFICATION AND GUIDE FOR SULFURIC ACID11.SEMI C41-0618 SPECIFICATION AND GUIDE FOR 2-PROPANOL12.EMI C27-0918 SPECIFICATION AND GUIDE FOR HYDROCHLORIC ACID13.SEMI C23-0714 SPECIFICATIONS FOR BUFFERED OXIDE ETCHANTS
  • 标准委公布2015年拟立项国标 多项分析测试标准入围
    2月5日,国家标准委员发布《关于对2015年第一批拟立项国家标准项目征求意见的通知》,通知中对2015年拟立项的277项标准征求意见。在这277项标准中,涉及仪器及分析测试行业的相关标准约为20%左右。   请登录国家标准委网站的计划公示网页,查询项目信息和反馈意见建议。征求意见截止时间为2015年2月27日。   相关链接: http://ballot.sacinfo.org.cn:8080/stdpub/   仪器信息网摘录了部分与仪器及分析测试行业的标准: 序号 标准名称 状态 1 移动实验室 地下水快速检测通用技术规范 制定 2 表面化学分析 辉光放电原子发射光谱定量深度剖析的通用规程 制定 3 金属材料 延性试验 多孔状和蜂窝状金属高速压缩试验方法 制定 4 电工钢带(片)表面绝缘电阻、涂层附着性测试方法 修订 5 金属材料 矩形拉伸试样减薄率的测定 制定 6 不锈钢 锰、镍、铬含量的测定 手持式能量色散X-射线荧光光谱法(常规法) 制定7 呼出气体酒精含量检测仪 修订 8 变性燃料乙醇和燃料乙醇中总无机氯的测定方法(离子色谱法) 制定 9 直接法氧化锌白度(颜色)检验方法 修订 10 铜钢复合金属化学分析方法 第1部分:铜含量的测定 碘量法 制定 11 金属管材收缩应变比试验方法 制定 12 锆及锆合金加工产品超声波检测方法 制定 13 玻璃纤维中铅、汞、镉、砷及六价铬的限量指标与测定方法 制定 14 锆及锆合金&beta 相转变温度测定方法 制定 15 锆及锆合金管材涡流探伤方法 制定16 金属材料中碳、硫、氧、氮和氢分析方法通则 修订 17 玻璃纤维涂覆制品 耐压痕折叠性能的测定 制定 18 玻璃纤维涂覆制品拉-拉疲劳性能的测定 制定 19 锆及锆合金化学分析方法 第1部分:锡量的测定 碘酸钾滴定法和苯基荧光酮-聚乙二醇辛基醚分光光度法 修订 20 锆及锆合金化学分析方法 第15部分:硼量的测定 姜黄素分光光度法 修订 21 锆及锆合金化学分析方法 第16部分:氯量的测定 氯化银浊度法和离子选择性电极法 修订 22 锆及锆合金化学分析方法 第17部分:镉量的测定 极谱法 修订 23 锆及锆合金化学分析方法 第19部分:钛量的测定 二安替比林甲烷分光光度法和电感耦合等离子体原子发射光谱法 修订 24 表面污染物俄歇电子能谱分析方法指南制定 25 硬质合金化学分析方法 电位滴定法测定钴量 修订 26 硬质合金化学分析方法 钛量的测定 过氧化氢分光光度法 修订 27 烧结金属材料和硬质合金电阻率的测定 修订 28 硬质合金制品检验规则与试验方法 修订 29 硬质合金热扩散率的测定方法 修订 30 纳米粉末粒度分布的测定-X射线小角度散射法 修订 31 硬质合金超声探伤方法 制定 32 硬质合金涂层金相检测方法 制定 33 烧结金属多孔材料 气体过滤性能试验方法 制定 34 铱粉化学分析方法 银、金、钯、铑、钌、铅、铂、镍、铜、铁、锡、锌、镁、锰、铝、硅的测定 电感耦合等离子体发射光谱法 制定 35 区熔锗锭化学分析方法 第2部分 铝、铁、铜、镍、铅、钙、镁、钴、铟、锌含量的测定 电感耦合等离子体质谱法 制定 36 液体材料微波频段使用开口同轴探头的电磁参数测量方法 制定 37 绝缘微细颗粒中金属的测定 俄歇电子能谱法 制定 38 表面化学分析 X射线光电子能谱仪 能量标尺的校准 修订 39 表面化学分析 验证工作参考物质中离子植入产生的保留面剂量的建议规程 制定 40 碳-碳复合材料压缩性能试验方法 制定 41 超高温氧化环境下纤维复合材料拉伸强度试验方法 制定 42 增强塑料巴柯尔硬度试验方法 修订 43 碳纤维复丝拉伸性能试验方法 修订 44 建筑木塑复合材料防霉性能测试方法 制定 45 低温热源双循环余热回收利用装置性能测试方法 制定 46 红外光学玻璃测试方法红外透过率 制定 47 矿物棉及其制品试验方法 修订 48 摩托车轮胎动平衡试验方法 制定 49 聚合物基复合材料疲劳性能测试方法 第3部分:拉-拉疲劳性能测试方法 制定 50 汽车轮胎静态接地压力分布试验方法 修订 51 高效空气过滤器性能试验方法 效率和阻力 修订52 辐射防护仪器 用于放射性物质光子探测的高灵敏手持式仪器 制定 53 辐射防护仪器 用于放射性物质中子探测的高灵敏手持式仪器 制定 54 使用小型X射线管的便携式荧光分析仪 制定
  • 河南省有色金属行业协会发布《焙烧钼精矿化学分析方法 钼、铜含量的测定 波长色散X-射线荧光光谱法(铌内标法)》等22项团体标准
    各相关单位:根据《河南省有色金属行业协会团体标准管理办法》的有关规定,河南省有色金属行业协会批准发布《焙烧钼精矿化学分析方法 钼、铜含量的测定 波长色散X-射线荧光光谱法(铌内标法)》等22项团体标准(详见附件),自2023年12月31日起实施,现予以公告。附件:22项团体标准编号、名称、起草单位一览表 序号编号标准名称起草单位主要起草人实施日期1T/HNNMIA 37-2023铝用炭素焙烧焦油资源化利用规范中铝郑州有色金属研究院有限公司、山西三晋碳素股份有限公司、河南华慧有色工程设计有限公司、万基控股集团石墨制品有限公司、河南中孚炭素有限公司、河南神火炭素新材料有限责任公司杨宏杰、罗钟生、郭彦生、茹德敏、罗英涛、孙丽贞、张继光、刘建军、刘彤、王玉杰、马志华、许炎锋、赵明超2023-12-312T/HNNMIA 38-2023企业温室气体排放核算方法与报告指南铝电解槽中铝郑州有色金属研究院有限公司、中铝环保节能集团有限公司李新华、张树朝、李荣柱、仓向辉、姜治安、罗丽芬、余伟奇、寇帆、卢成、朱君罡、王文广、瞿媛媛2023-12-313T/HNNMIA 39-2023质量分级及“领跑者”评价要求重熔用铝锭中铝郑州有色金属研究院有限公司、包头铝业有限公司、云南铝业股份有限公司、鹤庆溢鑫铝业有限公司寇帆、仓向辉、石磊、王开爱、张蓝霄、刘凤杰、单鑫、罗安民、邓志锋2023-12-314T/HNNMIA 40-2023质量分级及“领跑者”评价要求铝电解用预焙阳极中铝郑州有色金属研究院有限公司、中铝山西新材料有限公司、济南万瑞炭素有限责任公司、鹤庆溢鑫铝业有限公司张树朝、仓向辉、寇帆、马卫丹、崔军峰、郭丽娜、王波、王玉强、邓志锋2023-12-315T/HNNMIA 41-2023铝电解槽用侧部复合块中铝郑州有色金属研究院有限公司、焦作市北星耐火材料有限公司、中国有色集团晋铝耐材有限公司、中铝工业服务有限公司西宁分公司卢成、刘源、仓向辉、寇帆、李东东、朱君罡、阮克胜、杨磊、梁冬梅2023-12-316T/HNNMIA 42-2023铝电解打壳锤头耐磨性测试方法中铝郑州有色金属研究院有限公司、内蒙古华云新材料有限公司、包头铝业有限公司、遵义铝业股份有限公司、广西华磊新材料有限公司、广元中孚高精铝材有限公司侯光辉、李冬生、马军义、张亚楠、刘丹、温瑞宇、王文印、田建明、陈善永、周剑、周晓红、李德赞、张晓东、郭庆峰、张华锋、姜治安、王俊伟、王慧瑶2023-12-317T/HNNMIA 43-2023铝电解废阴极炭块资源化利用规范中铝郑州有色金属研究院有限公司、万基控股集团石墨制品有限公司、河南中孚炭素有限公司、河南神火炭素新材料有限责任公司罗钟生、刘建军、杜婷婷、王珣、孙丽贞、王玉杰、刘彤、马志华、许炎锋、赵明超2023-12-318T/HNNMIA 44-2023焙烧钼精矿化学分析方法 钼、铜含量的测定 波长色散X-射线荧光光谱法(铌内标法)洛阳栾川钼业集团股份有限公司、洛阳栾川钼业集团冶炼有限责任公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司车文芳、姚洪霞、周春仙、李明、常富强、王小红、崔关怀、王君花、侯凯、周哲、李晓燕、杨翠、汤平平、李延槐、陈杰2023-12-319T/HNNMIA 45-2023钼精矿化学分析方法钼含量的测定 微波消解-钼酸铅重量法洛阳栾川钼业集团股份有限公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司、栾川县大东坡钼钨矿业有限公司、洛阳栾川钼业集团冶炼有限责任公司姚建斐、史丽娟、刘素娟、李雪、刘英英、申琳琳、朱孔贺、原娜娜、朱新玉、杨云云、刘珊珊、王璇、李延槐、陈杰、周延松2023-12-3110T/HNNMIA 46-2023钼精矿化学分析方法钼、铜、铅、钙、三氧化钨、二氧化硅含量的测定 波长色散X-射线荧光光谱法(铌内标法)洛阳栾川钼业集团股份有限公司、栾川县三强钼钨有限公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司、洛阳栾川钼业集团冶炼有限责任公司曹伟强、刘素娟、姚建斐、贺阁、段亚南、史丽娟、李向楠、谢晓丹、董雪姣、段艳阁、常富强、王留晓、李延槐、李曦阳、陈杰2023-12-3111T/HNNMIA 47-2023钼酸铵化学分析方法氟含量的测定 离子选择性电极法 洛阳栾川钼业集团股份有限公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司、洛阳豫鹭矿业有限责任公司、洛阳栾川钼业集团冶炼有限责任公司周哲、罗凯、段亚南、杨绍泷、曹伟强、周春仙、贺阁、朱孔贺、姚洪霞、王亚丽、杨亚楠、李延槐、李凤荣、陈杰、王俊杰2023-12-3112T/HNNMIA 48-2023铅铋合金化学分析方法 铅量和铋量的测定Na2EDTA 滴定法河南豫光金铅股份有限公司、河南豫光锌业有限公司、河南国之信检测检验技术有限公司、河南金利金铅集团有限公司、济源市万洋冶炼(集团)有限公司孔建敏、杨杰、朱晓宇、许双宝、范萍萍、赵凯、李凯、刘家钦、刘艳华、颜江平、袁奔驰、李秉彥、闫清艳、苗贤委2023-12-3113T/HNNMIA 49-2023酸泥 汞含量的测定 铜试剂滴定法河南豫光金铅股份有限公司、 河南国之信检测检验技术有限公司、 河南豫光锌业有限公司、 安徽铜冠有色金属(池州)有限责任公司 、河南中原黄金冶炼厂有限责任公司牛军民、 张全胜、 周君玲、 马金梅、 卫平、 刘家钦、 刘艳华 、牛鹏波、 徐淑敏、姚亚军、 麻瑞苡2023-12-3114T/HNNMIA 50-2023酸泥 硒含量的测定 硫代硫酸钠滴定法河南豫光金铅股份有限公司、 河南国之信检测检验技术有限公司、 河南豫光锌业有限公司、 安徽铜冠有色金属(池州)有限责任公司、 河南中原黄金冶炼厂有限责任公司牛军民、 张全胜、 周君玲、 吴梅梅、 王九菊、 刘家钦、 刘艳华、 牛鹏波、 徐淑敏 、姚亚军、 麻瑞苡2023-12-3115T/HNNMIA 51-2023锌精矿化学分析方法氯含量的测定 氯化银比浊法河南豫光锌业有限公司、河南豫光金铅股份有限公司、中州铝业有限公司徐淑敏、李艳晶、牛鹏波、周玲、耿翠翠、赵晓文、周君玲、张海丽、王阳阳、贾青、贺婕2023-12-3116T/HNNMIA 52-2023铝灰化学分析方法铝含量的测定 气体容量法河南中孚实业股份有限公司、中铝郑州有色金属研究院有限公司、河南科创铝基新材料有限公司、河南中孚铝业有限公司樊军伟、骆帝兴、石磊、孙雅琴、张涛、毛冬艳、牛会娟、禹海燕、焦跃辉、刘楠、李玉莲、胡珂2023-12-3117T/HNNMIA 53-2023铝用炭素生产用石油焦挥发分分析方法河南中孚实业股份有限公司、中铝郑州有色金属研究院有限公司、河南科创铝基新材料有限公司、河南中孚炭素有限公司、河南中孚铝业有限公司、四川广元中孚有限公司樊军伟、骆帝兴、石磊、孙雅琴、张涛、张海燕、牛会娟、焦跃辉、毛冬艳、李玉莲、刘楠、胡珂、黄二军2023-12-3118T/HNNMIA 54-2023器件封装键合用镀金铝线河南理工大学、浙江东尼电子股份有限公司、河南科技大学、合肥中晶新材料有限公司,河南优克电子材料有限公司 曹军、周洪亮、吴雪峰、沈晓宇、丁勇、王福荣、张跃敏、吕长春、周延军、李绍林、张俊超、程平2023-12-3119T/HNNMIA 55-2023微细铜锡合金丝河南理工大学,浙江东尼电子股份有限公司、河南科技大学、常州恒丰特导股份有限公司,河南优克电子材料有限公司曹军,周洪亮,吴雪峰,张俊超、吕长春、沈晓宇、丁勇、陈鼎彪、周延军2023-12-3120T/HNNMIA 56-2023银铜带中铝洛阳铜加工有限公司师凯信、王梦娜、张娟、张梦雨、朱迎利、许春伟、郭云辉2023-12-3121T/HNNMIA 57-2023轧制镜面铝及铝合金板、带、箔材中铝河南洛阳铝加工有限公司、中铝材料应用研究院有限公司、中铝瑞闽股份有限公司、洛阳万基铝加工有限公司、洛阳昆特铝业有限公司、深圳市兴力宏金属材料有限公司、沈阳美拓金属有限公司徐巍昆、赖爱玲、吴广奇、李永锋、刘辉、高崇、韦拥、侯保平、梁重权、孟妙华、李长巍2023-12-3122T/HNNMIA 58-2023食品容器用再生铝合金箔河南明泰铝业股份有限公司、中南大学、河南明泰科技发展有限公司、河南义瑞新材料科技有限公司、郑州明晟新材料科技有限公司、河南爱纽牧新材料有限公司刘杰、闫帅杰、邓艳超、李伟坡、王斌、杨正高、王军伟、柴明科、刘涛、孙文峰2023-12-31河南省有色金属行业协会2023年12月4日关于发布《铝用炭素焙烧焦油资源化利用规范》等22项团体标准的公告.pdf
  • 范景莲——难熔金属创新女魔术师
    p style=" text-indent: 2em " 范景莲,现任中南大学难熔金属与硬质合金研究所所长、湖南省纳米材料工程中心常务副主任,先后荣获国家杰出青年基金、中组部“万人计划”、教育部“长江学者”、全国创新争先奖、何梁何利基金、全国优秀科技工作者等荣誉,享受国务院特殊津贴。 /p p style=" text-indent: 2em " 作为一名女性科学家,这样的成绩和荣誉对她来说殊为不易。1967年7月,范景莲出生于湖南澧县,1983年进入中南大学就读,硕士毕业工作数年后又回到母校攻读博士,并于2001年被破格评为中南大学教授。 /p p style=" text-indent: 2em " 自1990年开始,范景莲教授一直从事难熔合金新材料、新技术和基础理论研究,先后承担了国家杰出青年科学基金、国家自然科学基金重点项目和面上项目、科技部“863”计划、科技部 “ITER”专项、总装重大专项、国防军工项目等30余项科技攻关。针对新型空天飞行器、火箭发动机、原子能等领域对难熔金属材料的重大需求和现有难熔金属强韧性不足、高温抗氧化烧蚀差的问题,范景莲创新性提出“纳米原位复合/微纳复合”设计思想,发展了纳米/微纳复合粉末制备原理与技术,建立了高性能微细结构难熔复合材料烧结理论,开辟“纳米/微纳复合高性能难熔金属基复合材料”新领域,取得系列重大突破: /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/c4f8945e-dfc8-4a72-846e-ccae74e75a7d.jpg" title=" 范景莲在第五届核聚变会议大会做报告.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" color: rgb(127, 127, 127) " 范景莲在第五届核聚变会议大会做报告 /span /strong /p p style=" text-indent: 2em " strong 一、原创发明超高温轻质难熔金属基抗烧蚀复合材料,为新型空天飞行器和火箭发动机提供高性能关键高温材料保障 /strong /p p style=" text-indent: 2em " 新型空天飞行器研制是目前世界各空天强国重点探索的领域,代表了空天技术发展的重大方向。新型飞行器在近地空间以极高速度长时间飞行,其前端关键结构部件与空气产生剧烈的摩擦和冲击,表面产生2000~3000℃高温,同时还承受强表面氧化和高动压高过载冲击,这对热端构件提出了极为苛刻的使用要求,要求具有优异的高温强韧、长时间抗氧化抗烧蚀与轻量化等综合性能,因此,热端构件材料的热防护问题是国际公认的最突出技术难题。现有高温材料因高温强度低、抗氧化和抗烧蚀性差或密度高等不足,无法满足新型空天飞行器热端部件的使用要求,成为新型空天飞行器研制的关键技术瓶颈。 /p p style=" text-indent: 2em " 针对这一重大需求和瓶颈,范景莲创新性提出“微纳复合—氧化抑制”设计思想,通过纳米级超高温陶瓷相与微米级钼基体共格增强,实现陶瓷相对难熔基体的增强和难熔金属的补强,进而实现材料高温强韧化、基体抗氧化和轻量化。同时,通过表面氧化抑制设计,在基材表面原位生长形成梯度复合的陶瓷化的热防护层,与基体具有高的热匹配和强的冶金结合,实现与基体的一体化设计,进而实现高辐射、长时间抗氧化、抗烧蚀。在此设计思想指导下,创新发明了微纳复合原位反应制备纳米陶瓷相增强难熔金属基复合材料,实现了基材的高温、高强韧,其1600℃抗拉强度250MPa以上,与现有超高温材料相比,高温强度提高3~5倍,达到国际领先水平;同时创新采用了基材表面反应烧结形成方向性梯度复合涂层,实现复合涂层高辐射、强冶金结合、良好热匹配和与基体的一体化设计,进而实现高辐射、长时间抗氧化、抗烧蚀,制备出超高温轻质难熔金属基抗烧蚀复合材料,经风洞和火箭发动机反复试验验证,材料基体无破坏、表面基本无烧蚀。该技术成果为国内外原创,填补世界空白,成为新型空天飞行器前缘热端部件的重要关键材料,为我国新型空天飞行器的研制提供关键高温材料保障。2014年6月× × 中心给予了高度评价,评价为:“中南大学范景莲教授轻质难熔金属取得了重大突破,在重大科技专项耐高温材料上作出了重要贡献。” /p p style=" text-indent: 2em " 同时,范景莲还将超高温难熔金属材料成果拓展应用于空空导弹、空地导弹的高能固体火箭发动机,满足了火箭发动机在大推力、高动压、耐3000℃以上的强的抗冲刷、抗冲击和抗烧蚀性能要求,成为多项国家重大高新工程和型号的关键高温部件唯一材料,其中,研制开发的耐高温烧蚀复合喷管和空地导弹发动机飞行喷管已通过用户单位组织的产品鉴定,应用于我国新一代战机和新型空地导弹。 /p p style=" text-indent: 2em " 该研究成果申请和获得国家(国防)发明专利32项,2012年获得“中国× × 工程先进个人二等奖”。 /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/26ca4318-3ad1-4b1a-b1ab-013692d49ffa.jpg" title=" 中国兵器工业集团导弹专家、中国工程院院士王兴治(左二)和中国工程院院士黄伯云(左四)参观考察超高温难熔金属基复合材料基地。.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" color: rgb(127, 127, 127) " 中国兵器工业集团导弹专家、中国工程院院士王兴治(左二)和中国工程院院士黄伯云(左四)参观考察超高温难熔金属基复合材料基地 /span /strong /p p style=" text-indent: 2em " strong 二、发明新型细晶高性能钨基复合材料,成功应用于国防科技、新能源、微电子信息、原子能等高端制造,推动行业领域的发展 /strong /p p style=" text-indent: 2em " 高性能钨基复合材料具有高密度、高强韧等特性,是国防军工和国民经济诸多领域难以替代的关键材料。现有制备技术存在晶粒粗大、性能低、规格尺寸小等缺陷,难以满足尖端技术发展要求。为解决这一重大难题,范景莲提出“纳米原位复合”思想,发明“溶胶—喷雾干燥—多步氢还原”技术,实现粉末超饱和固溶和合金化,突破传统W、Cu不相溶和W渗Cu理论禁锢与技术缺陷,解决了现有W-Cu、W-Ni-Fe(Cu)等钨基合金材料强韧性低、晶粒粗大、组织不均匀的问题,晶粒细化4~10倍,强度提高30%,延伸率提高2~5倍。建立了“纳米原位复合”细晶钨基复合材料相关理论模型,获国际钨领域权威German、Hausselt多次引用和积极评价。通过技术和装备集成创新,研制出系列新型高性能钨基复合材料和超大尺寸钨材,形成了多种规格和品种的产品,成功用于我国10多项重点、重大工程,为保障国家安全做出了重要贡献;超大规格钨材在国内11家企业推广应用,同时产品出口国外,应用于新能源、微电子信息等高端技术领域,经济效益十分显著,性能达到国际先进水平,引领我国钨材向高、精、尖方向发展,支撑了新能源、微电子信息、原子能等高端制造产业的发展,提升我国国际竞争力。这一成果发表论文近300余篇,出版专著2部,申请和获得发明专利授权22项,获国家技术发明二等奖1项(排名第一)、国家科技进步二等奖1项、省部级一等奖3项、省部级二等奖4项。 /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/c9323eb0-9a9d-47fc-8bb5-b304a89ecc26.jpg" title=" 中国核聚变总指挥、中国工程院院士李建刚(左三)对细晶钨偏滤器材料研发工程基地现场考察。.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" color: rgb(127, 127, 127) " 中国核聚变总指挥、中国工程院院士李建刚(左三) /span /strong /p p style=" text-indent: 2em text-align: center " strong span style=" color: rgb(127, 127, 127) " 对细晶钨偏滤器材料研发工程基地现场考察 /span /strong /p p style=" text-indent: 2em " strong 三、发明未来核聚变堆面向等离子体最关键全钨偏滤器材料和部件制备技术,将我国钨材料研究推向国际最前沿领域 /strong /p p style=" text-indent: 2em " 核聚变能与核裂变能相比,具有无核辐射危险、释能大等显著优点。为解决核聚变能的可控利用,中、美、俄、欧盟、韩、日、印七方成立了目前最大的国际合作项目——国际热核聚变实验堆(ITER),我国也已启动了中国聚变工程实验堆(CFETR)建造计划,这将开启人类未来能源的理想途径。聚变堆面向等离子体材料在运行时,承受高能等离子体持续长时间轰击,并在表面产生2000℃以上的高温,对材料高温性能和化学稳定性提出了极高要求。钨由于极高的熔点、良好的化学稳定性等优点,被认为是未来聚变堆理想的面向等离子体最关键高温结构材料部件。但是,现有钨材料晶粒粗大、性能差,难以满足未来聚变堆苛刻服役环境要求。针对这一难题,创新发明提出“纳米/微纳复合增强”和“纳米梯度复合扩散连接”技术制备细晶全钨偏滤器材料及部件。采用微量稀土氧化物和碳化物纳米/微纳复合增强钨,实现其高强韧和高抗热冲击,与目前国际最先进商业钨相比,抗热冲击性提高50%以上。采用纳米梯度复合扩散连接技术,实现细晶钨材料与热沉结构材料高强度冶金结合,连接强度比传统连接强度提高2倍。研究成果获国际钨领域权威刊物RM& amp HM主编H. Ortnal评价“钨领域重大技术进展”,国际核聚变权威机构CEA法国原子能委员会评价“为全钨偏滤器提供全新技术途径”,将我国钨研究引入国际前沿系列。这一成果发表高水平论文40余篇,申请发明专利15项、获得国家发明专利授权9项和国际专利授权1项。 /p p style=" text-indent: 2em " 在学术兼职领域,范景莲还兼任总装专项、国防科工局专家,国家奖励计划专家,国家核聚变重大专项专家组组长,硬质合金国家重点实验室学术委员,美国粉末冶金协会会员,中国钨协顾问、理事,《中国钨业》和《硬质合金》编委。 /p p style=" text-indent: 2em " 此外,为了让科技成果尽快应用于国家高新技术领域,范景莲积极响应习近平总书记号召“把论文写在祖国的大地上”,使科技成果用起来,在创新驱动和军民融合推动下,组建了由教授、副教授、博士、硕士、工程人员组成的产学研创新团队,在宁乡高新区政策和资金支持下,成立了“长沙微纳坤宸新材料有限公司”,作为工程产业化基地。以“纳米/微纳复合”难熔金属基复合材料技术原型为基础,建立了一条从设计开发到制备,再到部件精密加工与集成的工程化生产线,使新型难熔金属基复合材料在国家重大军事工程成功应用,同时推广应用于微电子、核能等国计民生各尖端技术领域,实现“让成果走出实验室,让创新引领科技发展,让知识更有价值”的转变,走出了一条有特色的产—学—研—用的科研发展与成果转化之路。 /p
  • 世界真细 小小小,小得真奇 妙妙妙
    MCT 系列 岛津微小压缩试验机是一种用于评价微小材料强度的新概念压缩试验机,可对各种微小部件、粉末加工工艺中的微小粒子以及新材料中所用的微细纤维实施强度评价等。 随着金属和陶瓷粉末制造技术不断发展,目前已经可以生产出直径从几微米到几百微米大小不等的球形微粉末颗粒,因此评价这些颗粒的特性就显得十分必要。同样需要对复合材料及各种其他微小材料中所用的微细纤维实施压缩特性评价。岛津MCT系列则正是一款适用上述场景的微小压缩试验机,符合在微小颗粒和微细纤维领域实施强度评价的这一需求。 岛津MCT微小压缩试验机作为一种新概念的压缩试验机,典型特点有: 1、微小压缩位移测量为了评价各种微小材料的压缩特性,MCT系列提供了两种不同分辨率和测量范围的模式: -- 测量范围最高达100 μm,分辨率为0.001 μm。 -- 测量范围最高达10 μm,分辨率为0.0001 μm 2、宽载荷范围MCT系列提供两种不同的试验力:最大试验力分别为4903 mN和 1961 mN 。 3、高准确度测量以设定或显示试验力±1%的精度施加试验力,取较大者。 4、试样尺寸测量作为标配提供使用俯视图像(作为标配提供)的试样尺寸测量功能可确定试样的几何平均直径和长度。 5、可在PC 屏幕上进行长度测量并保存图像(选配)使用选配测长配件(彩色或单色)在PC屏幕上显示俯视图像并测量 试样长度。图像还可以数字数据格式存储。 6、压缩时显示试样图像(选配)压缩过程中可显示侧面观察所截取的图像(需要选配侧面观察配件)。 7、同样可在高温条件下实施试验(选配系统)可在50至250°C的温度条件下实施试验。 应用案例1:树脂球的压缩测试对直径约17毫米的树脂球进行压缩试验,计算断裂强度。树脂球放在样品台的中心,从顶部用压盘施加负载。 试验前后样品照片 试验结果 试验曲线 试验期间照片 从测试期间的照片中,可以确认粒子如何由于测试力的增加逐渐压缩,并垂直形成裂纹。此外,在“试验力-位移”曲线图中,测试力在断裂点 (3) 处迅速下降,我们可以看到裂纹造成了树脂球的破断。 应用案例2:锂电池活性颗粒压缩测试 位于电极附近、尺寸约为10 μm的活性材料需要具备一定程度的抗压强度,确保在涂覆工艺中不会被破坏,本次是对锂电池正极使用的2种类型活性物质颗粒分别实施压缩试验。 试验条件 压缩部分概念图 试验曲线 样品信息和试验结果 结果清晰地显示出2种活性材料间的强度差异,并证实了钴酸锂(LiCoO2)强度更高。
  • LIGA技术制作X射线光学元件在X射线显微学中的应用
    LIGA 是德文的制版术Lithographie,电铸成形Galvanoformung 和注塑Abformung 的缩写。自20世纪80年代德国卡尔斯鲁厄原子核研究所为制造微喷嘴创立LIGA技术以来,对其感兴趣的国家日益增多,德、日、美相继投入巨资进行开发研究。该技术被认为是最有前途的三维微细加工方法,具有广阔的应用前景。与传统微细加工方法相比,用LIGA技术进行超微细加工有如下特点:1.可制造有较大深宽比的微结构。2.取材广泛,可以是金属、陶瓷、聚合物、玻璃等。3.可制作任意复杂图形结构,精度高。4.可重复复制,符合工业上大批量生产要求,成本低。LIGA的基本工艺流程如下:x射线掩模制作首先用电子束或激光对薄光刻胶进行第一次曝光,制成初级掩膜,然后经过显影、电镀等工艺步骤制成初级微结构掩膜板(此掩膜板本质上已经是一个高度较低的微结构)。对于高深宽比微结构,需要进一步制备额外的高深宽比掩膜板。X射线光刻(Lithographie)借助上述的初级微结构掩膜板,在厚光刻胶上用X射线进行曝光,然后经过显影、电镀等工艺步骤制成中级微结构掩膜板。由于同步辐射设备KARA(原ANKA)提供的平行x射线束,可确保高纵横比和光滑的侧壁。电镀(Galvanoformung)将上述步骤获得的光刻胶模具置于金属电镀液中进行电镀,即可实现高纵横比、高精度结构的金属零件。聚合物成型(Abformung)为了复制聚合物基板上的精密结构,可以使用上述工艺制作注塑和热压花用的模镶件。可实现微聚合物结构的精确复制。因此LIGA工艺制造的微结构聚合物和金属零件在x射线光学领域有着广泛的应用,包括在在科研机构和工业领域。 在之前的文章中我们介绍了LIGA工艺制造的光栅在X射线相衬成像领域的应用。今天我们准备给大家介绍它在X射线显微学中的应用。X射线显微学目前基于X射线光管的纳米成像的主要结构有两种技术路线(基于同步辐射的CDI等成像技术,今天暂不做讨论): 1.投影几何放大技术2. 基于菲涅尔波带片的扫描透视显微技术或全场透视显微技术等全场透视显微光路扫描透视显微技术上述方法中的Condenser lens通常使用复制技术、或者玻璃毛细拉伸技术来实现;用于聚焦或目镜的菲涅尔波带片(FZP)通常使用电子束光刻和干法刻蚀等复合技术来加工,今天我们着重介绍一下使用LIGA技术加工光束截止器(central stopper 或者central beam stop)和级次选取针孔Order select aperture。 X 射线波带片结构为一系列明暗相间的同心圆环,如上图所示中,每个环带的面积相等,这些明暗相间的圆环分别使用入射X射线透明与不透明的材料,从而使通过相邻透过或不透过的光程相差一个波长,从而在焦点上发生透过不同环带的相同位相光线的叠加。在扫描透视显微光路中为保证只有一阶衍射光入射到样品上,所以选用使用适当尺寸和吸收体厚度的级次选取针孔(OSA)和光束截止器(Central beam stopper)及其他们放置的位置是非常有必要且关键的。基于成熟的LIGA技术,Microworks公司制造一批多功能、性价比高且性能优越的级次选取针孔(OSA)和光束截止器(Central beam stopper)。光束截止器(Central beam stopper)基本参数吸收材料金厚度80µmBeamstop尺寸10 µm to 160 µm,间隔10 µm开口尺寸650 µm载体薄膜自支撑结构,每个圆柱体由3个宽2.5µm的薄鳍支撑。总尺寸4.5mm*4.5mm安装建议光束截止器非常稳定,可以使用简单支架夹持制作过程视频展示级次选取针孔(OSA)同时我们可以根据您的要求定制孔径和光束截止器。选项包括特定形状、大小、高度和或者特定的阵列等。北京众星联恒科技有限公司作为Microworks公司中国区授权总代理商,为中国客户提供Microworks所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供高端的x射线、极紫外产品及解决方案。参考文献:Ohigashi, T., et al. (2020) A low-pass filtering Fresnel zone plate for soft x-ray microscopic analysis down to the lithium K-edge region. Review of Scientific Instruments.李艳丽, 陈代谢, 孔祥东, 门勇, 韩立. X射线波带片的应用及制备[J]. 纳米技术, 2019, 9(2): 41-54.http://x-ray-optics.de/index.php/en/
  • 细/超细微颗粒物检测相关仪器设备取得阶段成果
    2016年6月15日下午,北京市基金办和北科院共同组织召开了联合资助项目交流研讨会。会议由北科院科研开发处李功越副处长主持。本次项目交流研讨会聚焦大气细颗粒物监测与健康风险评估,共有来自11家单位的近20位相关科研人员参会。北京大学、北京航空航天大学、中国疾病预防控制中心等单位的5位项目负责人分别介绍了项目研究进展和阶段性研究成果,其中健康评价研究方面已构建空气微细颗粒物暴露生物评价模型,细微颗粒物监测方面已研制出具有湿度自调节功能的颗粒物测量仪和能区分纳米级细颗粒物数目的原型样机。  与会科研人员围绕空气微细颗粒物成分精确监测、微细颗粒物人群暴露评价及干预机制、微细颗粒物与人体健康模型建立等方面展开了热烈讨论,建议在后续工作中应重点关注以下问题:(1)不同来源细/超细微颗粒物特征与生物毒理学效应 (2)细/超细微颗粒物在生物体内的表征方法学研究 (3)细/超细微颗粒物对生物体健康效应研究及动物模型的构建 (4)吸入细/超细微颗粒物引起呼吸和心血管系统损伤的内在机制研究 (5)细/超细微颗粒物分级精确检测相关仪器设备的研发。【原标题:市基金办-北科院组织联合资助项目交流研讨会】
  • 村田推出独有技术的世界唯一简易PM2.5检测仪
    村田制作所日前研制出了基于其独有技术&ldquo 金属网元件&rdquo 的小型简易PM2.5(颗粒物)检测仪器,村田制作所称,该仪器为世界首个可实现简易颗粒物检测的设备。该仪器在9月4日-9月6日召开的分析仪器展会&ldquo JASIS 2013&rdquo 上首次展出。 金属网元件及放大后的结构 金属网元件工作原理   新型仪器基于村田制作所的&ldquo 金属网元件&rdquo (金属メッシュデバイス)技术,该技术于2011年公布,已在血液检测、DNA检测等领域使用。 该元件采用了薄膜的微观结构和微米级的加工技术,中间部分为兼具微细构造和机械强度的网状结构,因此得名。利用金属网元件的网状结构,可实现按照物质尺寸划分物质的筛选功能。这种网状结构能够加工成&mu m级微细构造,可以用来捕集粒径在2.5&mu m以下的PM2.5颗粒。 当金属网元件上有物质附着时,元件表面的电磁波共振形态会受到影响,电磁波响应也随之发生变化。通过专用检测仪器测量这种电磁波响应,就能够检测出物质。而电磁波响应的变化量跟该元件上附着的物质的质量有关,事先确定标准曲线(Standard curve)的话,还能进行相对定量检测。   这一检测系统能够在很短的时间内进行一个简单迅速的测量,测量系统也能够被小型化和阵列化。 村田制作所PM2.5采集及检测系统   村田制作所于JASIS 2013展出的PM2.5检测系统使用了该公司开发的微型风扇进行吸气,进而在金属网元件上捕集PM2.5,然后通过用专用检测仪器测量吸气后的金属网元件,就可以检出元件上的PM2.5的数量。   村田制作所为确认此次PM2.5检测系统的准确度,于2013年4月6~20日在日本福冈市内进行了实验。实验结果表明,该系统的PM2.5检测结果和福冈市利用大型检测仪器检测的数据相关系数达到了0.92。 村田制作所还考虑将此次展示的PM2.5检测系统和专用检测仪器合为一体投放。
  • 现代水务:迎接机遇和挑战 未来将继续加大重金属监测产品线研发投入
    近日,新华社的一篇文章《水,为何在总书记心中分量这么重》引起广泛关注:“总书记心系长江,先后多次赴长江沿线考察,看化工企业搬迁、非法码头整治、污染治理,了解航道治理、湿地修复、水文站水文监测工作等。5年间,总书记先后3次就推动长江经济带发展召开座谈会,推动沿江省市共抓大保护、不搞大开发。从甘肃到河南,从山西到宁夏,从2019年8月到2020年6月,不到1年时间,习近平总书记先后4次考察黄河。… … 胸怀祖国江河山川,总书记赴地方考察调研中,看水常是重要安排。”水是生命之源、是生态系统得以维系的基础、是倒逼我国高质量发展的一大关键,其重要性不言而喻,解决水污染问题成为用好水的关键。在水环境中有一种重金属污染,是需要重点解决的水污染问题之一。水环境污染中的重金属包括铜、铅、锌、汞、铬、镉、砷、铊等生物毒性显著的重金属元素,具有持久的潜在危害性,难以通过生态系统中的生物净化使其有害性降低或解除。同时,重金属具有富集性,即使浓度很小,也能够在藻类和沉积物中积累,通过食物链不断浓缩和传递,对生物链的高级生物和人体健康构成潜在威胁。当水体中环境因子(pH、氧化还原电位和物理扰动等)发生变化时,沉积物中重金属的形态将发生转化并释放造成二次污染。近10多年来,随着中国工业化的不断加速,涉及重金属排放的行业越来越多,包括矿山开采、金属冶炼、化工、印染、皮革、农药、饲料等,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染事件出现高发态势,已成为当前面临的突出环境问题之一。广西的龙江、广东的北江和湖南的湘江等都曾发生过严重的重金属污染事件,给河流水质和生物群落结构造成很大的破坏,严重影响群众健康。为了解我国水质重金属检测现状,仪器信息网特别策划了“水质重金属检测技术及方法”专题,并邀请莫尔顿水务技术(上海)有限公司产品经理王焕成就相关问题进行了解答。莫尔顿水务技术(上海)有限公司产品经理王焕成水质重金属检测标准及方法目前国内重金属检测的现行标准方法包括原子吸收分光光度法(AAS)、电感耦合等离子体发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)等。这些方法具有较好的精密度和准确度,但是由于仪器体积和质量都比较大,只能在实验室中进行测试,而且分析时间长,程序繁杂,需要对样品进行预处理。近年来涉及重金属的突发环境污染事件频发,在应急监测时往往需要现场采样,现场分析,短时间内快速报送数据,且野外条件恶劣,无法满足实验室条件的配备。标准的实验室分析方法受到这些条件的限制,无法在现场应急场合下发挥较好的作用。伏安法(Voltammetry)是一种电化学分析方法,由Jaroslav Heyrovsky创立并在1959年被授予诺贝尔奖。阳极溶出伏安法(ASV)具有仪器便于携带、测试速度快、操作简便、成本低廉等特点,有效填补了实验室方法在应急监测和水质在线监测预警中的空白。阳极溶出伏安法是一项被广泛认可和应用的重金属现场快速分析方法,相关的方法标准包括US EPA Method 7472,7063,7198,1001,ASTM Method D3557-95,D3559-95,AOAC Method 982.23,974.13,979.17,986.15,NIOSH Method 7701,DIN 38 406等。多品类产品助力水质重金属监测现代水务(Modern Water)是伏安法重金属测试技术的先行者,拥有超过30年便携式、在线重金属分析仪的产品开发和应用经验,产品广泛应用于国内应急监测、科研、地表水、饮用水和工业等领域。其产品MicroTrace® PDV 6000ultra是一款轻量、便携的重金属快速分析仪,非常适合小型实验室和现场应急监测。PDV在2012年广西龙江河镉离子污染事件、2013年某河流铊污染事件、2014年江苏某市砷污染事故等重大突发污染事件的应急监测中发挥了重要作用。Modern Water 便携重金属仪 PDV6000Ultra(点击查看详细参数)PDV 6000ultra的产品优势包括:检测能力多达24种重金属元素检出限低至0.1μg/L单个样品测试时间仅需30-300秒内置所有分析方法的平板App,极大提升易用性另一款产品MicroTrace® OVA 7100 是一款在线式重金属自动分析仪,适用于存在重金属污染风险地区对地表水、饮用水源地监测位点和断面进行实时监测和水质预警。Modern Water 在线重金属监测仪 OVA7100(点击查看详细参数)OVA 7100的产品优势包括:检测能力多达24种重金属元素检出限低至0.1μg/L模块化设计,可按需定制,一台仪器最多同时测试10种重金属元素24小时连续不间断监测,确保不错过任何突发污染事件可灵活选择的样品预处理模块,适用于各种水体水质IP65级防水防尘机遇与挑战并存 深耕细作谋发展近年来,我国政府和环保部门高度重视重金属污染的监测和防治工作,并出台了一系列的推动政策。生态环境部在2020年6月发布的《生态环境监测规划纲要(2020-2035年)》中指出,“十四五”期间,根据水环境管理需要,进一步拓展自动监测指标和覆盖范围,国家层面逐步建立国控断面9+N自动监测能力,其中N就包括了重金属指标。同时,为了加强生态环境应急监测能力,保障生态环境安全,各级生态环境部门正在加快应急监测能力的建设,便携式重金属分析仪就是完善应急监测设备中重要的一项。在测试方法标准方面,中国环境监测总站已经开始了一系列环境现场快速监测方法标准的制定,其中就包括了《水质 锌、镉、铅、铜的测定 现场快速监测阳极溶出伏安法》,这一标准的制定将填补以往重金属测试标准中现场快速监测方法的空白,并为伏安法在应急监测中的应用提供规范性的技术指导。我们预计在未来“十四五”期间的的水质重金属监测市场中,对以阳极溶出伏安法为代表的现场快速测试产品的需求将会有较大的提升,便携和在线快速分析仪将和传统的实验室仪器相互补充,在各自具有优势的领域发挥作用。水质重金属监测是一个充满了机遇和挑战的市场,现代水务将继续在这一产品线加大研发投入,进一步提升产品的检测能力、易用性和精确度,带给用户最佳的使用体验。
  • 走进日本电镜核心部件企业:专注电子源技术55年——访大和电子销售部部长神尾太一
    20世纪30年代,德国物理学家E.Ruska率先发明第一台电镜后不久,日本许多技术人员和学者也开始研究电镜,并将之作为一个产业布局发展。直到当前,捷克、荷兰、日本三个国家在全球电镜出口份额中占比超过七成。日本电镜产业的发展无疑是成功的,成功的背后,除了日本电子、日立等知名电镜品牌的贡献,也离不开电镜产业中核心部件企业的助力。大和电子是一家具有55年发展历史、专注电镜电子源、光阑等核心部件的企业,在日本电镜市场具有较高的知名度。近来,笔者视频连线了大和电子销售部部长神尾太一,神尾太一加入大和电子近20年,先后承担了微细制造技术、海内外销售等工作,以下文字主要结合视频采访内容整理,希望大家对大和电子有进一步的认识,对正在迅速复苏的中国电镜产业发展有一些启发。55年专注电镜核心部件与微细加工技术日本战后20多年里,日本的电子显微镜产业缓慢向前发展,与此同时,全球范围内,电子显微镜技术尚有诸多未知领域待科学家们去征服。20世纪60年代,公司第一任社长佐藤幸男就职于一家钨丝制品的生产厂家,并担任技术要职。此时,知名电镜生产制造商日本电子株式会社(JEOL Ltd., )正在寻求技术合作,于是找到第一任社长,提出电镜用灯丝的需求。随后,第一任社长就从原来的厂家独立出来,在1967年创立大和电子工业株式会社町田研究所,以专注生产制造电镜用灯丝。大和电子第一任社长 佐藤幸男大和电子第二任社长 佐藤洋大和电子现任第三任社长 渡邊正範大和电子成立时的公司招牌(创立时公司名为大和电子工业株式会社,后改名为大和电子科技株式会社)成立初始,公司只有几平米的一个房间,依靠几个人开始开展研发,克服重重困难,从最初以电镜灯丝生产起家,灯丝产品在当时广受好评,到制作灯丝相关制具、灯丝周边配件和零件,再到在灯丝基础上研发的光阑、闪烁体等,不断扩大公司产品范围,直到现在。大和电子总部一角1994年,公司更名为大和技术系统株式会社(Daiwa Techno Systems Co., Ltd.)。如今,除灯丝加工技术外,分析设备零部件、半导体零部件、真空成膜等技术涵盖了电子显微镜零部件整个行业。同时,也逐步开始涉猎海外市场。公司成立50多年来一直全力致力于电子显微镜零部件的制造研发。夜以继日,反复钻研,以独有的技术诀窍,磨砺加工技术,跻身专业行列。半个多世纪以来,先进的技术为电子显微镜行业的发展提供了有力支撑。目前,大和电子主要经营多种搭载于电子显微镜及半导体检测设备等真空相关装置上的零部件,擅长钼(Mo)、钽(Ta)、钨(W)等特殊金属的加工以及微细加工。主要产品包括灯丝/发射极、光阑/小孔、精密加工零部件/陶瓷产品、电子显微镜样品台、电子显微镜特殊零部件等。大和电子主要产品示例作为小众核心零部件生产企业,长年积累的技术工艺已成为大和电子的核心竞争力。基于钼、钽、钨等特殊金属的加工以及微细加工的长期经验与众多成果,大和电子除了经营的五大类零部件产品,也积累了丰富的核心技术工艺。在微细加工零部件生产领域积累的主要技术工艺成果包括灯丝制作技术、微细放电加工与去毛刺技术、清洗处理技术、镀锇技术、精密清洗技术真空热处理、陶瓷加工与耐真空焊接、光蚀刻加工等。可加工材质广泛包括:钼、钽、钨、铼、钛、不锈钢类、铜、铜合金、铝类、金、铂、陶瓷类等。大和电子主要技术工艺从服务电镜整机企业出发,走向终端用户,挑战“按需生产”大和电子的电镜灯丝等产品即是电镜零部件,也是电镜消耗品,这样的产品属性,让大和电子的业务与电镜整机市场有着很强的关联性。一般而言,电镜市场需求越大,则后期随之对电镜零部件或消耗品的需求也会越大。一般情况下,对于标准化的电镜零部件或消耗品,大和电子主要与电镜生产企业合作,而不是直接出售给终端电镜用户,电镜用户如果有电镜零部件或消耗品的需求,便会找到电镜生产企业进行采购。神尾太一表示,这也许是日本比较独特的商业习惯,在日本,电镜用户一般不会直接去零部件生产企业购买产品。而在欧洲或美国,电镜用户直接与零部件生产商进行沟通并采购的现象却是比较普遍的。这也许保持了电镜产业链的一个生态平衡,另外就是对所生产的产品的品质的一个保障,日本非常看重这一点。比如,电镜用户从电镜生产商去购买零部件或耗材,电镜生产商往往可以给零部件提供更全面的品质保证。因为零件是特殊产品,电镜用户直接从零件生产企业采购,不一定能满足其电镜的需求,使之正常运转或发挥其性能。另外,从正规渠道采购有品质保障的零部件,也是产业链中友商之间合作的一个重要因素。不过,这种模式也有一定弊端。大和电子与欧洲、美国等公司也有一定合作,相互对比之后,神尾太一也认为,日本的商业模式确实也相对偏谨慎。一方面,虽然零部件等产品销售给电镜厂商,但实际使用的是终端电镜用户。“用户的使用效果怎样?有没有在使用过程中出现问题?能不能满足需求?”等问题都需要走进用户去了解,大和电子在这方面也越来越重视。另一方面,主要销售给电镜厂商,也不利于对核心部件企业品牌的宣传推广。据介绍,电镜生产品牌一般会直接从大和电子这样的企业采购相关零部件,自主生产的较少。当前,在日本市场,大和电子几乎与所有电镜厂家都有密切合作,且在日本国内电镜零部件领域具有较高的知名度。关于全球市场,大和电子也在逐渐与欧美一些电镜品牌开展合作,包括对中国市场的积极关注等,开始不断拓展海外市场。神尾太一表示,由于零部件产品的特殊性,为满足与电镜整机产品更好的契合,在这些标准的零部件产品上市背后,大和电子与各个电镜品牌商之间的沟通交流是很频繁的。除了与直接购买的电镜厂商的销售部门沟通,更多情况下,双方频繁的沟通从产品提交需求阶段就开始了。从需求对接过程中双方技术人员、工程师的沟通,到研发阶段样品的制造,再到产品产品图纸的定量、产品的加工等,双方的沟通探讨贯穿于产品制造的每个环节,双方共同面对技术挑战,共同开发创新,一致的目标便是让零部件与电镜更好的满足用户的需求。随着科技工作者科研工作的不断发展与深入,当标准化产品不能满足科研需求时,定制化、非标科学仪器与零部件成为市场的另一股需求。在日本市场,除了与电镜生产企业的合作,大和电子与高校院所等研究机构也有着广泛的合作,大和电子也非常重视。非标产品/非标合作案例:材质 Ta,外形φ1.6mm、内径φ0.8mm、间隔W=0.1mm、板厚t=0.3mm, SEM照片非标产品/非标合作案例:材质 Mo,孔径φ0.010mm,小孔正面和小孔内壁SEM照片与这些研究机构的合作涉及的主要是一些非标零部件产品,不像可以从电镜生产商可以直接购买的规格产品,非标零部件往往需要按照客户图纸来设计,或按客户的特殊要求来定做。神尾太一表示,虽然这些客户提出的订单或咨询都是一些比较难加工的零件,从零件材质到尺寸等,要面临许多困难。但大和电子十分重视,通过不断解决难题、挑战,除了帮助客户解决难题、取得一定研究成果、或助力其商业化的成功,另一方面,大和电子在加工技术方面也得到不断提高。而且,从长远来看,这对产业技术的发展也会起到积极助推作用,大和电子也会始终将非标零部件产品的合作看做非常有价值和意义的业务。“持续精进”的微细/特殊材料/真空环境加工技术关于电镜产业的发展,神尾太一认为,电镜产业与半导体工业发展息息相关,大约50多年前,半导体刚开始处于成长道路上时,电镜当时也是刚刚起步,许多技术或对产品的要求还很少。如今随着半导体工业的发展,电镜整体的性能以及电镜零部件的性能都有了很大提升,对应对电镜本身各种零件的要求及加工技术也随之提高。当前,大和电子收到越来越多更高要求产品需求或咨询就是很好的应证。在日本市场,从事零部件加工的企业不在少数,但专注于电镜零部件的企业并不多,聚焦电镜零部件便成为大和电子的强项。与传统零部件不同的是,电镜零部件的加工制造,除了要求精湛的精密加工技术,还需要在真空环境加工工艺方面有长年的经验积累。因为这两方面的技术对于电镜零部件各方面性能、使用寿命等息息相关。电镜作为一类很复杂的精密仪器,其核心部件常被大家津津乐道。神尾太一谈到,在电镜中,电子枪发射电子束、电子束穿过之处无疑是电镜的心脏部位,然后光阑将电子束聚焦,最后投射到闪烁体上,此三个部件都是非常重要的,而大和电子的主要生产销售产品就涵盖了这三类。产品定位决定了大和电子的核心技术所在,归纳起来主要包括三个方面。首先是微细加工技术,微观表征的电镜决定了其零部件的微小尺寸,在此方面,大和电子积累了丰富的微米级微细加工技术能力。点焊技术,可实现从线径φ0.05的极细丝到线径φ0.5左右的极粗丝的精密焊接,右图为点状式灯丝微细放电加工与去毛刺技术:最小可加工φ0.002mm的极小孔其次是特殊金属等材料的加工能力,由于电镜内磁透镜磁性工作环境要求使用钽、钼、钨等非磁性金属零部件,大和电子多年来积累了丰富的高精度加工技术与经验。并可根据顾客提出的性能要求,对不锈钢、铝合金、铜合金以及其他特种金属进行切割、放电加工,研磨加工等全套对应,也可供应陶瓷产品及陶瓷金属焊接产品。特殊材料精细加工示例(下图:钼(Mo)材质,特殊载网案例)再次是真空环境零件加工技术。由于这些部件就是在真空环境中工作,属于真空零件,所以除了生产出来,对其清洁度也有更高的要求。大和电子采取对应技术包括超声波清洗、烘烤除气、泄漏检测、真空包装等。光阑清洗技术示例企业文化:利于“挑战”、“创意”上下功夫有利于挑战的企业氛围神尾太一加入大和电子已经20多年,包括近10年技术工作与近10年销售工作背景。当问及对公司哪些企业文化比较欣赏或印象深刻,神尾太一思索片刻道:比较有利于挑战的工作氛围。多年来,许多客户提出关于特殊零件的加工或定制,一般都非常有难度。很多情况是其他厂家无法加工完成,然后希望大和电子能够提供帮助。许多需求从提出那一刻便知道难度很大,或即便做起来也不一定能做到。大和电子一般不会很快去答复客户,或直接便放弃,二是会优先考虑怎样能够做出来、怎样能满足或提高客户需要的性能。如此一个迎接挑战的精神,是大和电子一个传统的企业文化。神尾太一接着分享了一个经历。曾经,有一个电镜厂商向大和电子提出一个定制样品,该产品也是首次尝试,结果做的很不成功。但电镜厂商已经与客户形成订单,交货期迫在眉睫,大家一时没了退路。另外,该零件的前期粗加工是大和电子另一个合作伙伴来做的。此情况下,大和电子无奈下与此合作伙伴沟通了当时情况的严重性,对方也是非常理解。于是大家先把利益放在一边,共同合作努力把产品做出来。通过举行三方会议讨论,电镜商将零件周边的零件规格样式进行了微调改动以保证周边配套性能的保证、粗加工合作伙伴及大和电子全力配合重新做样品,最终在三家联合攻坚下共同做出了产品。当初来看,那次合作从经济效益来讲并不划算,但产品最终验证是成功的,而且这款产品也延续了三方稳定的合作,大家也实现了最终的共赢。在“创意”方面下功夫谈到电镜零部件相对微观精密加工与常规宏观精密加工技术相比的不同之处,神尾太一认为,“电镜零部件的加工技术并没有非常特别之处,也并不是说使用到什么特殊的设备,或听所未闻的工艺技术。主要还是在加工的制具、工具、道具、模具等的创意上下功夫。比方说一些加工的具体环节,我们可能会先做一个制具,然后再加工时,比如研磨时,有可能用制具去夹着需要加工的零件,结果最后加工研磨时就把制具一起也研磨出来了。或者比方说很小的零件,连夹都夹不住的这种零件,我们可能就会想办法做一种制具,让他能够夹住零件。”后记:访谈过程中,有句话让笔者印象深刻, “电子显微学向更加微观的方向发展的趋势下,我们作为一个电镜核心部件加工厂家,如果因为做不出来就不做了,那我们的技术就可能到此为止了”。55年来,“挑战”、“创意”的传承,帮助大和电子见证并参与了电子显微学技术的快速发展。同时,神尾太一对中国市场也流露出浓厚的兴趣,对于中国电镜产业当前的快速发展,表示中国市场是一个有魅力的市场,大和电子希望在中国市场有更多的合作,希望为中国电镜产业的发展做一些贡献。受访人简介:日本大和电子科技株式会社 销售部部长 神尾太一神尾太一,2004 年大学毕业后就职于日本大和电子科技株式会社。在制造技术部从事微孔加工工作。为海内外客户试做和定做电子显微镜光阑。在此过程中,专研掌握了有关微细加工技术,真空和电子束的专业知识。 2012 年调任到销售部门,负责对海内外客户进行电镜零部件等真空方面的技术销售,主要客户为电子显微镜制造商和半导体制造设备的制造商,大学和研究机构。积累了工作业绩。 现在,作为销售部门的负责人,努力与所有客户建立信任关系。
  • 中国城市细颗粒物污染严重 长期危害甚于核辐射
    据环保部称,目前,我国城市大气环境质量较差,与世界卫生组织环境空气质量指导值有一定差距。   还有专家称,已经有科学数据证明,PM2.5与肺癌、哮喘等疾病发生密切相关。而PM2.5正是形成灰霾天气的元凶。   大气污染最严重国家之一   我国现行的空气质量标准编制于1982年,后又分别在1996年和2000年进行了修订。目前,我国大部分城市PM2.5浓度超过世界卫生组织规定第一阶段的排放标准。   按照我国《环境空气质量标准》的规定,每天监测和发布的主要有三项空气污染物指标:可吸入颗粒物、二氧化氮和二氧化硫。   这些指标的指数在0~50时为优,51~100时为良,100以上为污染。标准规定监测的“可吸入颗粒物”是指直径小于10微米的颗粒物,但不包括“个头更小”的、小于2.5微米的颗粒物(简称“细颗粒物”,又称PM2.5)。在上述三项污染指标中,可吸入颗粒物在空气污染中的比率最大,而细颗粒物又在可吸入颗粒物中占70%~80%。   当大量细颗粒物浮游在空中,大气能见度就会变小,天空看起来灰蒙蒙的,气象学把这一现象叫做“灰霾天”。而造成这种灰霾天的罪魁祸首就是细颗粒物。   据美国国家航空暨太空总署公布的一张世界空气质量地图显示,全球细颗粒物污染最高的地区是北非以及中国的华北、华东和华中全部,中国大部分地区细颗粒物平均浓度接近80微克/立方米,超出世界卫生组织规定的有关污染指标的8倍。   当前我国的空气污染防治面临前所未有的压力,特别是长三角、珠三角地区城市的空气环境质量仍不尽如人意,以臭氧、灰霾污染为特征的复合型污染日益显现。   中国环境科学院发表的一份研究报告说:“珠三角、长三江、京津冀、四川盆地和沈阳等地城市群,大气细颗粒物污染日益严重。”还有资料称,上海、广州、天津、深圳等城市灰霾天数占到了全年天数的30%~50%。中国已成为世界上大气污染最严重的国家之一。   国际通行的衡量空气污染的标准是测量每立方米空气中所含的悬浮微细粒子,世界卫生组织的标准是20微克。但中国只有1%的城市居民生活在40微克的标准以下,而有58%的城市居民生活在100微克标准以上的空气中。   灰霾带来的伤害有多大   按照世界气象组织的规定,当大气水平能见度小于10公里、相对湿度小于90%时,这样的天气情况为灰霾。   在环境空气质量(API指数)体系上,国际上的标准是监控二氧化硫、二氧化氮、臭氧、一氧化碳、可吸入颗粒物(PM10)、细粒子颗粒物(PM2.5、PM1)、能见度,而目前我国只是监控二氧化硫、二氧化氮、可吸入颗粒物。   PM2.5,是指直径小于、等于2.5微米(不到人的头发丝粗细的1/20)的颗粒物,也称为可吸入肺颗粒物。   在中国,可吸入颗粒物国家标准是年平均浓度每立方米空气100微克,是世界卫生组织标准的5倍。   医学研究表明,颗粒越小,对人体健康的危害越大。细粒子颗粒物十分微小,可以穿透呼吸道的防护结构,深入到支气管和肺部,直接影响肺的通气功能,诱发肺部硬化、哮喘和支气管炎,甚至导致心血管疾病。   细粒子颗粒物吸附在肺泡上很难脱落。而且,细粒子颗粒物还能携带空气中的病毒、细菌、放射性尘埃和重金属等物质,对呼吸系统、心血管、免疫系统、生育能力、神经系统和遗传等都有影响。   有专家发出警告,“灰霾的形成将会对各种传染疾病的流行起到推波助澜的作用,长期生活在这样的大气环境中,人的机体抵抗力也会大为减弱。”   还有专家警告说,一些毒性物质能渗入肺泡里溶解,一些不能吸收的毒性物质则粘在肺细胞的表面,而那些被溶解的毒性物质又将随着人的血液对人的器官包括心脏造成损害。如果同一部位反复发炎,就会有癌变的可能性。   人体每天需要呼吸15立方米的空气,住在城市里的人就相当于一个“吸尘器”和“过滤器”。长期下去,细粒子污染对身体的危害要比切尔诺贝利核辐射严重。   有研究表明,对整体人群的肺癌死亡率资料与大气总悬浮颗粒物年均浓度资料进行测算,结果显示,肺癌死亡率与9年前总悬浮颗粒物的灰色关联度最大,这意味着总悬浮颗粒物致肺癌的潜伏期为8年左右。   影响最大的是人类生理年龄的两端孩子和老人,在美国完成的一项历时8年的前瞻性研究发现,交通污染可显著阻碍儿童肺功能的发育。灰霾,对于体质较弱的老人来说,则意味着死亡。  在中国的许多大中型城市,几亿人口面临着与空气中的隐形杀手的亲密接触。   有资料称,我国呼吸系统和心脑血管疾病死亡的总平均损失寿命为18年,重度污染出现后的第六天呼吸系统疾病死亡率达到最高,而心血管系统疾病死亡则是滞后两天。   2004年,中国城市由于空气污染共造成近35.8万人死亡,约64万呼吸和循环系统病人住院,约25.6万新发慢性支气管炎病人,造成的经济损失高达1527.4亿元。   专家因此发出告诫,晨练的人们最好待在家里,灰霾天里锻炼和运动无疑是“挥刀自戕”,若要外出必须戴好口罩。
  • 岛津推出海水中微量重金属元素的直接分析方法
    目前,我国水体重金属污染问题十分突出。重金属通过矿山开采,金属冶炼,金属加工及化工生产废水,化石燃料的燃烧,施用农药化肥和生活垃圾等人为污染源,以及地质侵蚀,风化等天然源形式进入水体。重金属具有毒性大,在环境中不易被代谢,易被生物富集并有生物放大效应等特点,不但污染水环境,也严重威胁人类和水生生物的生存。   污染海洋的重金属元素主要有汞、镉、铅、锌、铬、铜等。海域受重金属污染,治理困难,应以预防为主,控制污染源;改进生产工艺,防止重金属流失,回收三废中的重金属,切实执行有关环境保护法规。对海域进行监测和监视是防止海域受污染的重要措施。 岛津公司长期关注环境污染问题,已拥有丰富的重金属元素检测手段和应用经验,为各国用户提供了一系列的相应解决方案。此次,为您介绍岛津公司推出的基于电加热原子吸收法的海水中微量元素的直接分析方法。在分析中使用的石墨炉原子化器GFA-EX7采用数字温度控制和数字气体控制,通过改造石墨炉和管道,可高精度地分析基体含量高的试样。本文介绍海水中重金属微量元素(Pb、Cd 、Cr)的分析。 有关“岛津电加热原子吸收法海水中微量元素的直接分析”的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_162812.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 长春应化所承担的微、痕量有害金属智能电分析化学方法和仪器项目通过验收
    近日,由中科院长春应用化学研究所承担的“微、痕量有害金属智能电分析化学方法和仪器”项目在北京通过了专家验收。   该项目建立了多种重金属离子的电化学分析方法,并将纳米材料作为增强单元修饰在电化学系统的电极表面,实现了重金属离子的高灵敏检测。项目组同时还研究出一套适用于RoHS限制使用的有害金属离子及临床医学实用的在线监测电化学系统,并研制出一套小型金属离子智能电化学分析装置和配套的数据采集与分析软件,有效用于铅、镉、汞、镉和砷等离子的电化学检测。
  • 浪声仪器发布浪声 微型大气重金属在线分析仪 GaOA新品
    GaOA微型大气重金属在线分析仪是苏州浪声科学仪器有限公司融合X荧光无损检测技术、空气颗粒物自动富集技术,自主研发的微型化监测仪器,具有体积小巧,检出限低,出数准确,时间分辨率高等特点,可实现空气颗粒物中铅、镉、铬、砷等重金属的连续监测,适合网格化、密集化布点,被广泛应用于城市大气环境监测、工厂厂区无组织排放、交通尾气排放污染气体监测、应急监测等领域。产品原理用X射线轰击样品,样品受激发后产生X射线荧光,X射线通常把元素原子层K层和L层的内层电子打出原子,产生的空穴被高能量的外层电子填补,补充到低能量轨道上的高能量电子把多余的能量以X射线荧光辐射出来,这些辐射出来的谱线中含有各种元素的特征,像指纹一样,并且独立于原子的化学价态。辐射的强度与样品中该元素的浓度成正比。应用范围:辐射监测站的核辐射在线监测固废或垃圾焚烧后在线重金属检测汽车尾气中重金属快速检测环境评价、许可污染源定位、溯源污染预测预警其他现场实验检测执法紧急突发事件监测相关标准:《重金属污染综合防治“十二五”规划》《大气污染物综合排放标准》(GB16297-1996)《固定汚染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)《固定源废气监测技术规范》(HJ/T397-2007)《大气污染物无组织排放监测技术导则》(HJ/T55-2000)《环境空气采样器技术要求及监测方法》(HJ/T375-2007)《环境空气质量自动监测技术规范》(HJ/T193-2005)《污染源在线自动监控(监测)系统数据传输标准》(HJ/T212-2005)《关于加强“十三五”环保规划编制工作的通知》(环发〔2014〕191号)《大气污染防治行动计划》(国发〔2013〕37号)《环境空气质量标准》(GB3095-2012)《重点区域大气污染防治“十二五”规划》(国函〔2012〕146号)《国务院办公厅关于加强环境监管执法的通知》(国办发〔2014〕56号)《国家重点监控企业自行监测及信息公开方法(试行)》(环发〔2013〕81号)《大气颗粒物来源解析技术指南(试行)》(环发[2013]92号)《火电厂大气污染物排放标准》(GB13223-2011)《关于加强重金属污染防治工作的指导意见》创新点:GaOA系统采用5G物联网环境监测和云数据分析技术,通过组合建设网格化、密集化监测设备系统,形成大范围、高时空分辨率的环境监控网络,并实时监控空气质量指标,进一步提高环境监测质量控制水平。 浪声 微型大气重金属在线分析仪 GaOA
  • 普析为您提供螺旋藻中重金属测定解决方案
    (北京普析通用仪器有限责任公司 北京 101200) 螺旋藻是目前地球上人类已知的营养成分最丰富、均衡的生物。科学检测表明:1克螺旋藻粉的营养含量相当于1000克各种蔬菜水果营养的总和。螺旋藻蛋白质含量高达65%-71%,且蛋白质的氨基酸组成与人血蛋白相似,极易被人体吸收。螺旋藻同时富含各种维生素、微量元素、藻多糖、藻蓝素、亚麻酸、类胰岛素等多种生物活性物质,这些有效成分在一定的条件下有降低胆固醇、解肾毒、提高人体的免疫机能,促进前列腺素合成、抑癌防癌、加速创口愈合等多种药用和保健功能。 随着环境污染情况的加剧,天然海产品中重金属残留问题也逐渐凸显,加之生产工艺中所带来的残留,螺旋藻中重金属问题已成为人们聚焦的热点话题。国家出台了GB 16740-1997 国家保健(功能)食品通用标准、GB 16919-1997 食用螺旋藻粉和GB 19643-2005 藻类制品卫生标准,对其中的铅、镉、砷、汞进行了限量要求及相关检测方法,旨在保障人民生活的质量和相关行业、企业的合法利益。 针对这一要求,普析通用公司开发了适用于螺旋藻及其制品中重金属检测解决方案,其中铅、镉采用原子吸收法进行测量,砷、汞采用原子荧光法进行测量。 采用微波消解法对螺旋藻进行前处理,操作简单,引入杂质较少。分别使用TAS-990原子吸收分光光度计和PF6-2原子荧光光度计对铅、镉、砷、汞进行测定,检测结果符合实验要求,能够满足检测人员对螺旋藻的检测。该方案操作简单,结果准确。 欲知详情请拨打垂询电话: 销售热线:010-69910666 010-69910888 免费咨询热线:800-810-0172 400-610-0172
  • 微观世界|第5期 ‘蝶’影重重
    引子 各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾 书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)。扫描电镜下图像 绿色部分 图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。 黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。 所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 金属材料的微观结构分析——用合适的样品制备获得最佳结果
    微结构用于描述金属材料的主要特征,它在很大程度上决定了产品的性质和性能。 微观方法分析是材料科学的基本技术,以研究其状态和对材料特性的影响。 为了通过金相技术对微观结构进行最佳的描述,合适的样品制备起到了核心作用。微观结构的重要性及其分析无论是悬索桥的钢缆、涡轮机的叶片还是人体的人工髋关节,所有产品都有一个共同点:它们的特性不仅仅来自材料及其化学成分,而是来自内部结构的特殊排列[1]。这是指材料的微观结构,微观结构可以由不同的成分组成,如晶粒、晶界、沉淀或杂质。许多材料性能取决于这种微观结构,例如钢缆的强度或涡轮叶片在极端操作条件下的长期稳定性[2]。金相学是研究微观结构的最重要方法之一,它允许通过定性和定量分析方法对整个微观结构以及单个成分进行微观可视化。金相学的一个重要组成部分和中心作用是样品制备,这取决于材料的类型、条件以及检验方法。如果准备不足或执行不当,后续检查可能会导致错误的结果和对材料性能的错误评估。因此,了解具有特定材料要求的合适试样制备标准并正确实施尤为重要。以下将解释金相制备的基本程序,并以钛为例阐明具体材料要求的明确细节。适当的样品制备及其挑战图1显示了样品制备过程,包括以下步骤:样品切片和切割、样品安装、研磨和抛光,最后对样品进行蚀刻。每个单独的步骤都是相关的,并且会影响制备的金相截面的后续质量。图1 金相制备方法的示意图第一步是确定从整个零件上移除一个截面,有计划的调查研究将在该截面上进行,因为在许多情况下,关注的不是整个零件及其微观结构,而是特定区域。对于通过机械切割方法进行的拆卸,建议使用湿磨料切割机,包括工件的主动冷却。这减少了输入工件的热量,防止了不必要的微观结构变化,并冲洗掉了磨损的颗粒。切割钛时,通常使用碳化硅和合成树脂粘结制成的切割轮。第一步是确定从整个部分的整个部分的去除,在其上,这些部分将在许多情况下进行,而不是整个部分,并且其微观结构是感兴趣的,而是只有一个特定的区域。为了通过机械切割方法去除,推荐使用包括工件的主动冷却的湿磨削切割机。这将输入的热量减少到工件中,防止不希望的微观结构改变并冲洗擦除磨损的颗粒。对于切割钛,通常使用碳化硅与合成树脂键合的截止轮。在样品切片和切割后,将零件以正配合嵌入合成树脂基体中。这种嵌入简化了进一步的试样处理,便于制备机械上特别敏感的试样,允许将多个试样组合在一个金相截面中,并能够使用自动研磨和抛光设备。根据工艺温度,区分冷安装和热安装。温热嵌入期间产生的温度非常低,对试样的任何影响和可能的微观结构变化通常可以忽略不计。如果还要通过扫描电子显微镜检查试样,则必须注意嵌入介质中是否含有导电成分(例如石墨)。在下一步中,可以开始通过研磨和抛光进行准备。由于嵌入试样的表面质量通常较差,研磨过程首先以粗粒度开始,以提高质量并使试样平整。随后,以越来越细的粒度重复研磨过程,以去除粗研磨过程中产生的加工痕迹和划痕。重要的是确保足够的水供应,以消除金属磨损,并防止试样过热。对于钛,当使用碳化硅砂纸时,从P120的砂砾开始,继续使用P240、P320、P600、P800、P1200和P2400。在随后的抛光过程之前,试样应没有深划痕和大的机加工痕迹。如果计划对试样进行机械抛光(例如,电解或振动抛光工艺),则在第一步中使用细绒布和抛光剂。抛光可以手动或自动完成。自动设备的优点是节省时间和使用规定的接触力,因为过大的力会快速导致变形或划痕,尤其是在敏感材料上。在同步条件下,钛用金刚石悬浮液(3µm)在15-25 N的接触力下抛光约10分钟。如果金相断面质量足够且无划痕,则可继续进行最终抛光。为了控制目的,可通过使用暗场过滤器的光学显微镜进行目视检查。在这种情况下,质量良好的表面呈深色,而划痕和凹痕呈浅色。对于钛的精细抛光,使用由粒径为0.06µm(2 x 10 min)的胶体二氧化硅组成的悬浮液,并逐滴添加水。由于钛的高氧亲和力,建议使用30%的过氧化氢溶液作为润滑剂,以避免在制备的部分表面上形成氧化层。根据计划的检查,可能必须重复进行最终抛光。对于光学和大多数扫描电子显微镜检查,一个过程通常就足够了。例如,如果计划通过电子背散射衍射(EBSD)进行分析,则最终抛光应重复数次(最多六次)。图2 用克罗尔(Kroll)试剂蚀刻Ti-6al-4V的EBSD分析,显示相位分布(左)和彩色代码(b)[3]在每次研磨和抛光步骤后,应对制备部分进行彻底清洁,以防止可能遗留的磨损颗粒和污染物。在研磨和抛光步骤之间,至少应用水冲洗。在从研磨过程过渡到抛光过程之前以及最终抛光之后,应在超声波浴中额外清洁准备好的部分几分钟,然后在自来水下冲洗,最后用酒精冲洗。金相切片的干燥是在热气流中进行的,结果应该是镜像和无污染的表面。通过显微方法进行微观结构分析的最终准备步骤是通过蚀刻对比微观结构。这应在最终抛光后立即进行,因为表面上很快就会形成一层氧化物,尤其是钛,这会对蚀刻过程产生负面影响。例如,制备部分的蚀刻可通过化学或物理方式进行。如果钛基材料通过浸渍进行湿化学对比,则可使用克罗尔(Kroll)试剂进行蚀刻。蚀刻时间的持续时间因钛合金而异。纯钛的腐蚀时间为30-45秒,而Ti-6Al-4V合金的腐蚀时间可达60秒。另一种蚀刻剂是由氢氧化钾(KOH)制成的碱溶液。这导致微观结构的不同对比度,从中可以获得更多信息。对于Ti-6Al-4V,此处的蚀刻时间为15-30s。微观结构的显微镜调查制备完成后,可使用各种成像和分析技术对微观结构进行显微镜检查。图2显示了使用EBSD的扫描电子显微镜的分析结果,该分析是在Ti-6Al-4V样品上进行的,该样品如前所述制备并用克罗尔试剂蚀刻。图3显示了使用替代KOH蚀刻试剂成功制备两个Ti-6Al-4V样品,其中可以看到具有篮织结构(左)和马氏体结构(右)的微观结构。当在光学显微镜下观察时,该蚀刻试剂允许微观结构的彩色可视化,并且特别适合于具有马氏体微观结构成分的钛合金,因为如图3(右图)所示,这些成分被清楚地突出显示[3]。图3 用KOH试剂蚀刻Ti-6Al-4V的光学显微镜照片,显示篮织结构(左)和马氏体微观结构组分(右)参考文献[1] Hornbogen, E. et al.: Metalle: Struktur und Eigenschaften der Metalle und Legierungen. 7th ed., Berlin, Springer Vieweg, (2019) ISBN 978-3-662-57763-9.[2] Gottstein, G.: Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen. 4th ed., Berlin, Springer Vieweg, (2014) ISBN 978-3-642-36602-4.[3] Pede, D. et al.: Additive manufacturing: metallographic analysis of microstructure. In Advances in metallography: proceedings of the 53rd Metallography Conference September 18-20, 2019 in Dresden, (2019), ISBN 978-3-88355-417-4.作者简介Dennis Pede(丹尼斯佩德):Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, Germany丹尼斯佩德在汉诺威莱布尼茨大学获得医学工程硕士学位。他目前是福特旺根大学材料科学与工程图特林根研究所(IWAT)的研究助理和博士生,由Mozaffari Jovein教授指导。他的研究活动集中于添加剂制造工艺、金属材料以及材料测试和分析。Lidija Virovac:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyLidija Virovac在富特旺根大学攻读学士学位时学习了医学工程,在硕士学位时学习了应用材料科学,并在学习期间获得了实用金相学的第一次经验。随后,她在Mozaffari Jovein教授的指导下,在Tuttlingen材料科学与工程研究所(IWAT)担任研究助理,加深了自己的知识。进一步的研究领域是添加剂制造和功能涂层的制备。Tobias Poleske:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyTobias Poleske在富特旺根大学攻读材料工程学士学位。自2017年以来,他一直是Tuttlingen材料科学与工程研究所(IWAT)的研究助理,在Mozaffari Jovein教授的指导下从事各种材料科学课题。他的工作重点是使用光学和扫描电子显微镜进行实用材料成像,以及对常规和附加制造部件进行材料分析。Hadi Mozaffari-Jovein:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyHadi Mozaffari Jovein在斯图加特大学攻读冶金学,并从斯图加特大学(马克斯普朗克金属研究所)获得博士学位。自2009年以来,他一直担任富特旺根大学材料科学教授和图特林根材料科学与工程研究所所长。他的研究涵盖各种材料科学主题,包括损伤分析、材料测试和分析、传统和添加剂制造工艺,以及材料开发和优化。原文;Microstructural analysis of metallic materialsMicroscopyLight Microscopy,15 November 2021(符斌 供稿)
  • 神奇“光学扳手”让显微镜镜头更轻薄
    未来的显微镜、望远镜甚至相机镜头,或许不再需要复杂、笨重的镜头组,仅通过纳米级厚度的平面薄膜,便可完成光的聚焦、偏转等控制。 记者日前从中科院光电技术研究所(以下简称光电所)获悉,在国家973项目“波的衍射极限关键科学问题”课题支持下,该所微细加工光学技术国家重点 实验室在国际上首次研究证实:利用光子自旋—轨道角动量相互作用的物理原理,“悬链线”可以对光产生稳定、可控的“扳手”作用。就是说用“悬链线”结构制 造的光学器件,可不借助任何凹凸透镜,仅在“二维”平面上便可实现光的折射、反射,甚至让光旋转成任意姿态。 悬链线与抛物线、月牙线或者半圆线不同,是一条两端固定的链条在重力作用下弯曲形成的曲线。它在生活中随处可见,桥梁悬索、架空电缆、街道护栏铁链等都是悬链线结构。 科学家们发现,在诸多形式的悬链线中有一种“等强度悬链线”可以保持结构在不同位置受力一致。那么,它施加到光上的“力”是否也一致呢?在这种奇特 的力学特性启发下,光电所团队用粒子束在厚度仅百纳米的平面金属薄膜表面,刻下纳米尺寸的“亚波长悬链线”连续结构,并证实了刻有这种悬链线“花瓣”的金 属膜,在光束照射后,可产生稳定可控的折射、反射等光学现象。 该团队负责人杨磊磊介绍说,传统意义上光的折射、反射等相位变化,是由于透镜不同厚度产生,而厚度均匀的平面透镜不会产生光的相位变化。此次科学新发现,意味着利用“悬链线”构成的超薄纳米结构,能够在二维平面内实现对光的连续调控。 “如果把光比喻成行进的列车,过去的凹凸透镜如同依靠弯曲的轨道调整列车运行,而现在仅需扳动悬链线这个铁道岔口的‘扳手’,便可改变列车的前进方 向。”杨磊磊介绍说,为进一步确认悬链线的“光学扳手”作用,研究团队还在平面金属薄膜上尝试刻制出不同形状的悬链线“版画”,并通过一种“花瓣状”的圆 形排列阵列,产生了携带完美轨道角动量,呈螺旋式前进的“光漩涡”。而此前研究中,科学家们还曾将月牙形、抛物线形结构刻制在平面上观察光的折射、反射, 结果证实仅有“等强度悬链线结构”具有稳定的光学相位变化。 “传统光学元件其厚度远大于波长,这就是为何天文望远镜、相机镜头需要不同大小的镜头组。但悬链线光学器件,可通过操作纳米级超薄结构的平移、缩 放、旋转等,实现光的相位变化,其厚度远小于波长。”杨磊磊介绍说,未来基于悬链线构建的新型光学元器件,具有轻薄的特点,可广泛应用于飞行器、卫星等空 间探测领域,手机、相机镜头等成像领域。 而这个受自然现象启迪的美妙光学发现,在电磁学、光通讯领域也让人充满遐想。杨磊磊说,按照光子自旋—轨道角动量相互作用的原理,悬链线还可拓展到 包括微波、太赫兹、红外、可见光在内的大部分频谱范围,广泛用于各种电磁器件;而采用悬链线结构的光通信器件,可在同一波长上传输多路信号,提高光通信的 频谱利用率,大大增加光通信的信息传输量。 上述研究成果在美国科学促进会创办的最新期刊《科学进步》上发表后,受到了国际光学界的广泛关注。《中国科学》对其点评认为,这一发现的证实,“证明了纳米悬链线可用于构建超薄、轻量化的光学器件,有望成为下一代集成光子学的核心”。
  • OPTON的微观世界第5期 ‘蝶’影重重
    引子各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下图像偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)扫描电镜下图像绿色部分图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 金属所在高层错能金属中构筑超细纳米孪晶结构
    金属材料的强化是长期以来材料领域的核心研究方向。细晶强化(即Hall-Petch强化,包括晶界强化/孪晶界强化)是目前最常用且有效的强化手段之一,其内在机制是源于晶界/孪晶界对位错运动的阻碍。然而,当晶粒尺寸(d)和孪晶片层厚度(λ)达到某个临界尺寸(10-15nm)时,材料的主导变形机制将转变为晶界运动或退孪生,从而使其表现出Hall-Petch关系失效或软化效应(即材料强度随着d/λ的降低而不再增加甚至降低),成为了材料强度提升的瓶颈问题。  近期,金属所沈阳材料科学国家研究中心材料动力学研究部段峰辉特别研究助理(第一作者)、李毅研究员、潘杰副研究员和上海交通大学郭强教授合作,首次在高层错能金属Ni中实现了超细纳米孪晶结构的可控构筑,以及纳米孪晶Ni在10nm片层厚度以下持续强化。这一结果突破了人们对纳米晶金属材料在极小结构尺寸下发生软化的现有认知,为发展超高强度/硬度金属材料提供了可行途径。相关研究成果于6月30日发表在Science Advances杂志上。  纳米孪晶结构普遍存在于低层错能金属材料中,而在高层错能金属Ni(γsf=128mJ/m2)中引入高密度生长孪晶,特别是极小片层厚度的孪晶结构至今鲜有报道。研究人员采用直流电沉积技术,基于高沉积速率和镀层拉应力的协同作用,成功地在金属Ni中获得体积分数达100%的柱状纳米孪晶结构,实现了孪晶片层厚度从2.9 到81.0nm 的可控调节。我们的研究表明,λ图2 纳米孪晶Ni的持续强化行为。纳米孪晶Ni的强度随孪晶片层厚度的变化关系。作为对比,图中不仅包含了文献中不同晶粒尺寸或孪晶片层厚度纯Ni强度值,还包含了纳米孪晶铜的强度随孪晶片层厚度的变化关系。这些强度值都是通过单轴拉伸和压缩实验获得的。可以清楚的看到,在片层厚度小于10-20nm时,纳米孪晶Ni表现出持续强化现象,而纳米孪晶铜表现出软化行为。
  • 高精密3D打印:未来微型机器人研制的重要手段
    机器人技术是一门快速发展的高新技术,在许多领域得到了日益广泛的应用,并对人类社会产生着日益重大的影响。微型机器人(Micro-Robotics)是指集成了微型作业工具、各种微小型传感器,具有通用编程能力的小型移动机构,而微机电系统和微驱动器的出现和发展为微型机器人的诞生提供基础。诞生背景 微型机器人出现是和微机电系统(MEMS)的发展是分不开的,可以说微型机器人就是可编程通用的微型机电系统工程。20世纪80年代后期,随着大规模和超大规模集成电路的迅速发展,微电子技术与机械、光学等学科的交叉融合促进了MEMS技术的迅速发展。和微机电系统一样,微型机器人的发展和微驱动器的发展也是紧密相关的。1987年美国加州大学伯克利分校取得一项轰动世界的突破性成就,首次研制出了转子直径为60~120μm的微型静电动机,随后MIT也研制出了100μm的静电动机。发展现状近年来, 采用MEMS 技术的微型卫星、微型飞行器和进入狭窄空间的微机器人展示了诱人的应用前景和军民两用的战略意义。以日本(三菱电子公司、松下东京研究所和Sumitomo电子公司等)为代表的许多国家在这方面开展了大量研究,重点发展进入工业狭窄空间微机器人、进入人体狭窄空间医疗微系统和微型工厂。在国家自然科学基金、863高技术研究发展计划等的资助下, 清华大学、上海交通大学、哈尔滨工业大学、广东工业大学、上海大学等科研院所针对微型机器人和微操作系统进行了大量研究,并分别研制了原理样机。目前国内对微型机器人的研究主要集中在三个领域:面向煤气、化工、发电设备细小管道探测的微型机器人;针对人体、进入肠道的无创诊疗微型机器人;面向复杂机械系统非拆卸检修的微型机器人。发展瓶颈微型机器人结构尺寸微小,器件精密,可进行微细操作,具有小惯性、快速响应、高谐振频率、高附加值等特点。然而微型机器人并不是简单意义上普通机器人的微小化,而是集成有传感、控制、执行和能量的单元,是机械、电子、材料、控制、计算机和生物医学等多学科技术的交叉融合。而且建立微型机器人需要更为微小的驱动器、执行器、传感器、处理器等,由此展开的对微型机器人微部件的加工和研制,将有利于实现更高意义上的微系统集成。然而,传统的加工工艺远远满足不了这些微小部件加工需求,因此研究人员将目光逐步转移到近些年来非常火热的增材制造工艺。增材制造又称3D打印技术,它摒弃了传统加工工艺过程复杂、成本高、难度大等特点,能够快速、灵活设计各种复杂结构。而高精密微纳3D打印技术又成为微型机器人不可或缺的手段。3D打印技术在微型机器人的应用2019年4月,多伦多大学微型机器人实验室在《Science Robotics》刊登了一篇关于3D打印微型机器人的文章。研究人员将磁性元素钕的颗粒嵌入到柔性材料中,并通过3D打印技术设计二十多种不同形状的磁性机器人结构。研究人员使用一对强力的磁铁来翻转机器人特定部位钕的极性,使它们在磁场中发生排斥和吸引作用,并通过紫外线照射将这些磁性粒子锁定在相应的位置。通过特定的编程程序,控制微型机器人不同部位的极性,使其达到爬行、蠕动、翻滚、收缩等运动效果。文章链接:https://robotics.sciencemag.org/content/4/29/eaav4494现阶段,微型机器人大多还处于实验室或原型开发阶段,因此,现在所见到的微型机器人较为简单,但同时也能执行一些基本的操作指令,离实用化还有相当长的距离。未来随着技术的发展,会出现各种复杂三维的微型机器人,并且能够在各种复杂环境中作业。这同时亟需一种更为精密微细的加工工艺。下图是深圳摩方材料科技有限公司利用陶瓷3D打印机加工的微型齿轮,最小细节0.092mm。( BMF microArch S240陶瓷3D打印机加工的微型齿轮,最小细节可达0.092mm )一般而言,微型机器人整体尺寸不超过100mm,细节尺寸可以达到微米甚至纳米级别,这就对加工精度和自由度提出极高要求。传统的CNC加工工艺成本昂贵,灵活度低,一般适合大零部件的加工。而MEMS加工工艺过程复杂,垂直方向加工受限,适合二维加工。而3D打印技术,作为当前发展非常迅速的制造工艺,具有低成本、高效率、一体化加工成型的特点。虽然一直以来材料是3D打印技术难点之一,研究人员逐步开发一些功能性材料,比如掺杂磁性粉末颗粒增强磁性。并且也可以通过后期表面处理来弥补材料方面的不足,比如表面金属化、溅射镀膜、翻模等工艺。目前,能够实现高精度3D打印的工艺屈指可数,其中面投影微立体光刻(PμSL)工艺是其中之一。该工艺以深圳摩方材料科技有限公司为代表,已经研发出多款型号机型,并且实现商业化生产,为国内外多个大型公司提供高精密加工方案。下图是该公司10um精度设备nanoArch S140通过在高强度韧性树脂中掺杂磁性粉末颗粒(质量比20%)加工的磁性抓手以及磁性弹簧阵列结构。( 磁性抓手,最小壁厚可达0.070mm )( 磁性弹簧阵列,最小线径可达0.099mm )
  • 高精密3D打印:未来微型机器人研制的重要手段
    机器人技术是一门快速发展的高新技术,在许多领域得到了日益广泛的应用,并对人类社会产生着日益重大的影响。微型机器人(Micro-Robotics)是指集成了微型作业工具、各种微小型传感器,具有通用编程能力的小型移动机构,而微机电系统和微驱动器的出现和发展为微型机器人的诞生提供基础。诞生背景 微型机器人出现是和微机电系统(MEMS)的发展是分不开的,可以说微型机器人就是可编程通用的微型机电系统工程。20世纪80年代后期,随着大规模和超大规模集成电路的迅速发展,微电子技术与机械、光学等学科的交叉融合促进了MEMS技术的迅速发展。和微机电系统一样,微型机器人的发展和微驱动器的发展也是紧密相关的。1987年美国加州大学伯克利分校取得一项轰动世界的突破性成就,首次研制出了转子直径为60~120μm的微型静电动机,随后MIT也研制出了100μm的静电动机。发展现状近年来, 采用MEMS 技术的微型卫星、微型飞行器和进入狭窄空间的微机器人展示了诱人的应用前景和军民两用的战略意义。以日本(三菱电子公司、松下东京研究所和Sumitomo电子公司等)为代表的许多国家在这方面开展了大量研究,重点发展进入工业狭窄空间微机器人、进入人体狭窄空间医疗微系统和微型工厂。在国家自然科学基金、863高技术研究发展计划等的资助下, 清华大学、上海交通大学、哈尔滨工业大学、广东工业大学、上海大学等科研院所针对微型机器人和微操作系统进行了大量研究,并分别研制了原理样机。目前国内对微型机器人的研究主要集中在三个领域:面向煤气、化工、发电设备细小管道探测的微型机器人;针对人体、进入肠道的无创诊疗微型机器人;面向复杂机械系统非拆卸检修的微型机器人。发展瓶颈微型机器人结构尺寸微小,器件精密,可进行微细操作,具有小惯性、快速响应、高谐振频率、高附加值等特点。然而微型机器人并不是简单意义上普通机器人的微小化,而是集成有传感、控制、执行和能量的单元,是机械、电子、材料、控制、计算机和生物医学等多学科技术的交叉融合。而且建立微型机器人需要更为微小的驱动器、执行器、传感器、处理器等,由此展开的对微型机器人微部件的加工和研制,将有利于实现更高意义上的微系统集成。然而,传统的加工工艺远远满足不了这些微小部件加工需求,因此研究人员将目光逐步转移到近些年来非常火热的增材制造工艺。增材制造又称3D打印技术,它摒弃了传统加工工艺过程复杂、成本高、难度大等特点,能够快速、灵活设计各种复杂结构。而高精密微纳3D打印技术又成为微型机器人不可或缺的手段。3D打印技术在微型机器人的应用2019年4月,多伦多大学微型机器人实验室在《Science Robotics》刊登了一篇关于3D打印微型机器人的文章。研究人员将磁性元素钕的颗粒嵌入到柔性材料中,并通过3D打印技术设计二十多种不同形状的磁性机器人结构。研究人员使用一对强力的磁铁来翻转机器人特定部位钕的极性,使它们在磁场中发生排斥和吸引作用,并通过紫外线照射将这些磁性粒子锁定在相应的位置。通过特定的编程程序,控制微型机器人不同部位的极性,使其达到爬行、蠕动、翻滚、收缩等运动效果。现阶段,微型机器人大多还处于实验室或原型开发阶段,因此,现在所见到的微型机器人较为简单,但同时也能执行一些基本的操作指令,离实用化还有相当长的距离。未来随着技术的发展,会出现各种复杂三维的微型机器人,并且能够在各种复杂环境中作业。这同时亟需一种更为精密微细的加工工艺。下图是深圳摩方材料科技有限公司利用陶瓷3D打印机加工的微型齿轮,最小细节0.092mm。( BMF microArch S240陶瓷3D打印机加工的微型齿轮,最小细节可达0.092mm )一般而言,微型机器人整体尺寸不超过100mm,细节尺寸可以达到微米甚至纳米级别,这就对加工精度和自由度提出极高要求。传统的CNC加工工艺成本昂贵,灵活度低,一般适合大零部件的加工。而MEMS加工工艺过程复杂,垂直方向加工受限,适合二维加工。而3D打印技术,作为当前发展非常迅速的制造工艺,具有低成本、高效率、一体化加工成型的特点。虽然一直以来材料是3D打印技术难点之一,研究人员逐步开发一些功能性材料,比如掺杂磁性粉末颗粒增强磁性。并且也可以通过后期表面处理来弥补材料方面的不足,比如表面金属化、溅射镀膜、翻模等工艺。目前,能够实现高精度3D打印的工艺屈指可数,其中面投影微立体光刻(PμSL)工艺是其中之一。该工艺以深圳摩方材料科技有限公司为代表,已经研发出多款型号机型,并且实现商业化生产,为国内外多个大型公司提供高精密加工方案。下图是该公司10um精度设备nanoArch S140通过在高强度韧性树脂中掺杂磁性粉末颗粒(质量比20%)加工的磁性抓手以及磁性弹簧阵列结构。( 磁性抓手,最小壁厚可达0.070mm )( 磁性弹簧阵列,最小线径可达0.099mm )—— END ——官网:https://www.bmftec.cn/links/10
  • SciAps手持式分析仪为现场环境金属检测提供了检测限
    位于波士顿的一家专门生产手持分析仪器的公司SciapsInc.引进两种新的分析仪器,为现场关键环境金属检测提供了检测限。使用X射线荧光光谱仪和激光诱导击穿光谱仪,能提供所有8 RCRA金属和所有13个优先污染物金属,而且能在几秒钟内很好的散热。SciAps X-555为手持式XRF设置了新的性能标准。它的重量不到1.36kg,配有电池,它封装了业界强大的X射线管,以便对EPA的关键污染物--尤其是镉、银、锡、锑和钡的检测达到高限度,其中55kV X射线管提供了极大的好处。当它与世界上轻而快的LIBS(激光)分析仪Z-901铍相结合时,操作人员可以在测试中包括铍以及锂、硼、碳、氮、氟和钠。“当操作员长时间坐在阳光下收集数据时,这将是漫长而悲惨的一天。SciAps将这一时间缩短了一半,“SciAps新任命的受限物质和监管市场业务发展主管TimJohnson说。“X-555是不会妥协的。它不会影响尺寸的稳定性或散热,也不会影响检测极限的速度。“SciAps X-555特别适合于RCRA应用和EPA方法6200。多达三种自动光束设置可在整个周期表(从Mg到U)中提供高性能。高压光束通过适当的滤波来优化对该原子序数范围内的镉和其他金属的敏感性。近光设置提供对剩余金属的分析。用户不局限于编写在仪器中的分析公式,而是可以制作自己的经验校准曲线。SciAps使我们能够以实验室测试成本的一小部分,看到所有13种优先污染金属。Z-901铍分析仪是一台用于土壤和粉尘中铍的手持式分析仪,几乎被每个政府国家实验室使用。XRF和LIBS一起提供了好的性能,具有真实的字段可移植性。分析土壤、沉积物、液体、过滤器和擦拭介质。SciAps XRF和LIBS运行在同一个Android平台上,拥有相同的配件,如电池、电缆和充电器。他们的特点是采用了先进的设计;高分辨率,2.7英寸后向显示屏,便于在所有照明条件下查看结果;航空航天级铝质车身,提高了在高温下的性能和耐用性;以及全球连接性,可通过可用的云数据合并和管理生成全功能的报告。
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制