当前位置: 仪器信息网 > 行业主题 > >

微溶样品

仪器信息网微溶样品专题为您整合微溶样品相关的最新文章,在微溶样品专题,您不仅可以免费浏览微溶样品的资讯, 同时您还可以浏览微溶样品的相关资料、解决方案,参与社区微溶样品话题讨论。

微溶样品相关的资讯

  • 【小坛微课】以土壤中六价铬为例!揭秘标准溶液和标准样品的区别和使用
    本期视频以土壤中的六价铬的检测为例,讲解了标准溶液和标准样品的区别和使用。视频内容包括标准溶液和标准样品的区别、标准曲线绘制、样品检测分析过程、样品测定步骤等。下面就让我们一起来学习吧。 课程老师介绍 课程老师坛墨质检化学产品部技术总监谢英梅 2021年3月加入坛墨质检,担任化学产品部技术总监,主要负责环境、职业卫生、食品等领域基质标物项目的研发工作。负责项目《土壤污染监测及溯源技术产品的开发》获2021年常州市创新创业大赛三等奖。 讲解老师坛墨质检基质研发工程师董慧莹 2021年4月加入坛墨质检,担任基质研发工程师,主要负责基质产品的研发。基质产品涵盖环境、职业卫生、食品等领域。参与项目《土壤污染监测及溯源技术产品的开发》获2021年常州市创新创业大赛三等奖。课程列表 标准溶液和标准样品的区别标准曲线绘制样品检测分析过程样品测定步骤
  • 青岛:花生油样品查出溶剂油 毒过地沟油
    检测样本:从莱西市院上镇蔡家庄一工厂带回的花生油样品  检测目的:花生油样品中是否添加溶剂油  溶剂油俗称轻汽油,轻汽油是苯系物含量比较低的,脂肪烃含量比较高,适用于食品提取行业。90号、93号汽油是苯系物含量比较高的,不适用于食品行业,苯系物会对人体造成伤害。  检测原理:溶剂油沸点较低,高于五六十摄氏度开始蒸发,如果加热后花生油颜色有变化,而且产生气泡,说明添加了该物质。  在看到记者带去的工厂花生油样品的第一眼,山东省花生研究所产业工程部杨副主任就惊奇地说:"这是花生油吗?这不是地沟油吗?"3月26日,记者在山东省花生研究所对花生油样品进行了初步化验,结果显示,花生油样品确实含有溶剂油成分,杨副主任评价"连地沟油都不如","这种油绝对不能吃,即使经过精炼处理也很难全部去除其中的有害成分。"  初步分析  杂质太多了,甚至不如地沟油  记者带着从莱西市院上镇蔡家庄一家花生油工厂里拿来的样品,来到位于万年泉路上的山东省花生研究所。研究所的杨副主任从记者手中接过样品后,不由地有些打怵。他询问记者,"是从哪里弄的?"得知是从花生油厂拿到的样品后,他有些吃惊地说,"这是花生油吗?甚至不如地沟油。"  杨副主任说,"为了省花生油钱,很多饭店使用地沟油,颜色都比这个更鲜亮一些。这个油里的杂物质太多了,根本不能食用,甚至现在都不能称之为花生油。按照常规,这种物质是用来做皂角的 ,也就是加工肥皂,如果是皂角厂的还可以,但要是花生油厂的 ,人吃了这些油显然没好处。"  杨副主任说,"花生油分为压榨油和浸出油,而所谓的浸出油也不能用这种物质来提炼。加了这种对人身体有害的物质后,即使提炼也不可能一点杂质都没有,如果拿这个加工成花生油,是应该禁止的。"  实验过程  花生油样品中检出溶剂油成分  溶剂油沸点比较低  "小作坊设备比较落后一些,没法把花生里所有的油都榨出来,剩下的那些花生饼一般情况下会被碾碎成粉末,再将溶剂油和花生粕粉末混在一起,溶剂油会和花生粕里面剩余的花生油合成吸收,这一过程结束以后,溶剂油和花生油产生的混合油会被当做毛油提炼出来。这还仅仅是第一步,下一步也就是最重要的一步,就是对混合油进行精炼,达到国家生产标准就可以食用了。"杨副主任说。  "大的花生油厂加工花生油有好几种方法,一种也是压榨花生米,再继续提炼剩下的物质 另外就是直接将花生米碾碎,将这些粉末里的油全提炼出来。这些工序都是在正规大厂里加工的,所以符合规定。但如果被小厂分开来加工,为了降低成本,使用一些价格便宜、对人身体有害的物质,显然很不可取。"杨副主任说,"如果工厂只生产毛油,那么是否存在精炼设备就是一个疑问。"  "其实要测花生油是否含有溶剂油很简单,只要加热就能看出来,因为溶剂油的沸点比较低,高于五六十摄氏度就开始蒸发,如果加热后看到颜色有变化,就说明里面添加了这种物质,含有溶剂油的花生油会慢慢产生一些气泡,这些气泡也是这种物质。等加热到沸点时会听到啪啪的声音,听到这种声音可以说明油根本不纯净,一种可能是油里面的杂质,另一种可能是偏酸性的物质。"  加热后变黑还发出声响  记者跟着研究员来到五楼的实验室,研究员首先拿出两个容器,将记者带来的花生油分别倒进两个容器中,在加热仪器上放了一个加热垫后,将容器放在上面加热,另一杯放在旁边。  1分钟后,被高温加热的容器里,花生油逐渐开始有了变化,瓶子底部开始往上泛着气泡,而气泡的数量随着温度的上升一点一点增加着。  2分钟以后,在记者的要求下,实验人员在杯口加上了盖子,记者并没有看到在玻璃壁上凝结的小水珠。这表明花生油里面含有的溶剂油是不凝结的。  3分钟后,气泡上升的速度变得很快,油的顶部已经积累了不少气泡,油的颜色逐渐进一步变化,变得没有加热的容器里的油颜色更深了一些。  5分钟后,油的顶部几乎已经堆满了气泡,油的颜色和没加热的颜色有了明显差别,显得更黑更浓一些。  8分钟后,加热容器里逐渐发出了"噼啪"声,声音从小变大,频率也开始增快,慢慢的,这种声音开始变得有些大,能明显感觉到,油里有别的物质存在。  实验室充斥着汽油味  经过加热实验后的实验室到处充斥着一股汽油和花生混合后产生的气味。杨副主任看了实验后说,"这个实验肯定了我的说法,里面含有溶剂油,添加这种物质使花生饼提炼出油来,当这种物质逐渐蒸发后,浑浊的花生油开始变得透明,正常情况下颜色应该变得很淡,但花生油越加热越黑,只能说明里面还含有其他杂质,杂质是什么,需要进一步做实验来证实。"  专家解释  精炼处理也难消除有害成分  杨副主任解释:"像这样含有一股浓烈汽油味的花生油根本不可能达到食用标准,如果按照现在的市价来计算,出厂价一吨一万四千多元,如果进一步再加工,还不如直接用花生米压榨便宜,一些大品牌的出厂价也不过是一吨一万四千左右。"  从收益上不可能,从技术上也不是太可能。杨副主任说:"继续加工提炼也需要一些设备,需要进一步投资,而且精炼出来的花生油基本没什么营养价值了,更何况不可能将花生油里面所含有的有害成分全部提炼出来。"  "这样的花生油无论怎么处理都不能吃。"这是杨副主任的观点。随后,记者联系了莱阳市质监局的王主任,他告诉记者,他所了解的一些工厂是用120号的汽油来浸出花生油,到底合不合格要看工厂的设备和能力,如果浸出后油是很纯净的,不危害身体健康,符合国家规定和行业规定,因为国家没有规定不能使用这些方法。"这些油品不是成品油,最终是否符合规定要看成品。如果是成品油里含有对人身体不好的物质,那么质监部门肯定要对工厂进行检查。"  记者手记  花生油生产者"三赢",消费者却输了  记者带着工厂的花生油样品找到山东省花生研究所的杨副主任时,他有些迷茫的眼神让记者也很疑惑,这真的是花生油吗?他的一句话更加深了这样的感受:"这是花生油吗?甚至不如地沟油。"这些被工厂老板称之为能食用的油连人人喊打的地沟油都不如,可见这些油是多么劣质。  通过实验后我们才知道,原来提炼这些花生饼粉末的混合物质是那种连汽油都不如的溶剂油。试想一下,你吃的花生油里含有溶剂油,这种油吃到身体内会有益处吗?为何这种颜色完全不正常的花生油,工厂老板会说可以食用呢。这真让人感到不解。  一个行业有一个行业的标准,一些知名大厂的标准甚至高于行业标准,但不可否认,还有一些工厂为了达到行业标准而费尽心思。一位教授的一句话一针见血地指出了国家标准存在的漏洞:"其实要达到行业标准不难,对于大厂来说甚至很简单,花生油里含多少物质是有规定数值的,优质花生油里添加了这些劣质的油,数值肯定超标,达不到标准。这怎么办?继续加好油,冲淡这些劣质油,让标准下降,直到下降到符合标准为止。"  最终会怎样?答案显而易见,花生油生产者实现了"三赢":油符合标准了,添加劣质油、油的数量上升了,钱也赚了。但这样一来,购买花生油的消费者却输了。
  • 《离子色谱分析用氨溶液标准样品》等56项国家标准样品延长有效期
    近日,国家市场监督管理总局(国家标准化管理委员会)批准了《 离子色谱分析用氨溶液标准样品》等56项国家标准样品延长有效期,具体名单如下。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 实例解析:如何防止混合溶剂“碰撞”导致的样品损失?
    之前聊过关于不同沸点的单一溶剂在蒸发过程可能产生的暴沸以及浓缩过程中可能产生的暴沸都可以用Dri-Pure技术解决。最糟糕的混合溶剂“碰撞”问题是否也能解决呢?1、“容易碰撞”的溶剂类型下面列举的一些“容易碰撞”的溶剂类型,看看是否你也遇到过:● 极易挥发的溶剂;● 含有可溶性气体的溶液(e.g.一水合氨);● 两种溶剂混合,容易蒸发的溶剂密度更大(倒置);● 两种溶剂的密度非常接近,但溶液可能不能很好地混合;● 溶剂或溶剂混合物中有导致碰撞的溶质(e.g.HPLC馏分);● 干燥后的化合物会在溶液表层形成覆盖物的溶液。 典型例子一个典型的例子是二氯甲烷(又称DCM)和甲醇。由于DCM的密度更大但比甲醇更容易蒸发,这意味着DCM会下沉到底部但理论上应该先沸腾,我们称之为倒置。这种混合溶液特别容易发生碰撞,底部溶剂暴沸会导致样品飞溅。(即使是完全混溶的溶剂,在高离心力下也能发生一些分离)2、如何解决溶剂暴沸?通过使用GeneVac系统,你完全不需要担心这些,只需要选择相应的溶剂类型,一键开启。 GeneVac S3 HT GeneVac 4.0 EZ-2实例说明——DCM和甲醇例如:有一个混合溶液(离心后)在1cm DCM的顶部分离出1cm甲醇,在500g离心力作用下,管中1cm深的甲醇受到压力比表面高出近400mbar(比重为0.79)。 我们设定从25℃开始,压力先下降到550mbar,而DCM的沸点是25℃,如果不是因为上面的甲醇,DCM现在就可以蒸发了。但因为有Dri-Pure技术存在,即使腔体内的气压是550mbar,DCM实际上受到的压强是950mbar,所以还无法沸腾。因此,压力继续下降到160mbar时,甲醇的沸点是25℃,所以甲醇开始在表面沸腾。当下降到150mbar时,DCM将受到总压力为550mbar开始沸腾。此时甲醇层可能已经变浅了,所以实际上400mbar的压力差会由于甲醇的蒸发一直在减少,但是蒸发会带走热量,所以整个溶液也会冷却一点,降低温度从而进一步延迟DCM沸腾的时间。 未采用Dri-Pure 防暴沸技术 Dri-Pure 防暴沸的效果确切的数字在不同的情况下会有所不同,但需要注意的是,仍然存在一个节点会有大量的甲醇层,但它下面的DCM想要开始沸腾。另外,机器内置Sample Guard功能会通过红外探温器来探测支架和样品温度,防止温度过高引起溶剂沸腾,并且不直接接触样品,避免样品的污染与损坏。 3、GeneVac助力加速研发效率 GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载特有的Dri-Pure技术,能够轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。 同时,有上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,很大程度上保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,并且,该系列还具备更多高端功能,详细可拨打热线400-006-9696或者点击填写表单进行咨询。
  • 《羽绒羽毛标准样品(样照)》正式发布
    近日,国家标准委下达的国家标准制标项目《羽绒羽毛标准样品(样照)》(编号:S2005-101)(以下简称《样照》)正式发布。专家指出,该样照真实、准确、系统地显现了样品外观形态特征,它的出台不仅有利于技术交流与统一,方便检测人员的教育与培训,从长远看可以促进我国羽绒羽毛行业的发展和产品质量的提高,帮助企业跨越贸易技术壁垒,协助企业取得国际市场认可和推进产品顺利进入国际市场,其研制水平达到了国际先进水平。  提高检验能力刻不容缓  据了解,我国是羽毛绒资源极其丰富的国家,是世界上最大的羽绒及制品的生产国和出口国,也是最大的消费国,出口贸易额占据了世界羽绒市场70%以上。凭借羽绒资源和劳动力资源的优势,我国羽绒行业在国际市场中具有举足轻重的地位。  “当前,以环保生态为由的贸易壁垒正在加剧,这对我国出口羽毛绒制品提出了许多挑战。”据无锡出入境检验检疫局纺检中心主任田林辉介绍,检验水平不高是我国很多羽绒出口企业和外贸公司存在的普遍问题,这一问题也成为企业和产品顺利进入国际市场的障碍。在日常的检验中发现,一些出口企业和外贸公司不了解感官检测的方法标准,不知道如何组织生产和验货,遭遇退货和索赔的现象屡屡发生。“因此,加强羽毛绒的检验能力,提高我国产品的国际竞争力,保持我国产品在国际市场上的地位已刻不容缓。”  无锡出入境检验检疫局纺检中心副主任邓瑾介绍,从各国的标准看,对羽毛绒的检验,大部分不能通过仪器进行,尤其是成分分析阶段,如采用传统的感官检验方法,测试人员通过视觉、触觉检查产品的特性,通过感官分析来识别其属性,如成分分析、种类鉴定、透明度双十字线的确定等。感官检验的依据是按照标准上的文字定义,但由于文字描述外观特性有一定的局限性,检验人员难以准确掌握,检验标准难以统一,检测结果常受检验人员的情绪因素、操作技术、专业知识水平的影响而产生波动。“因此,迫切需要研制一套《样照》,作为文字标准的补充,以提高检测水平,不断提高检验质量。”  五重突破提高感官检测能力  据介绍,此次研制的《样照》与《羽绒羽毛》(GB/T 17685-2003)相配套,以实物对照国家标准中各定义文字,使抽象的文字说明辅以实物标样,直观感强,便于识别和统一目光,可供商检、外贸和各羽毛加工厂专业技术人员使用。据了解,与原重庆进出口商品检验局发布的《出口羽毛标准样品(样照)》相比,新样照从种类鉴定、微生物菌落状态、成分分析和透明度双十字线的清晰度以及形态演变5方面进行了完善和突破,以全面提高羽毛绒感官检测能力。  首先,《样照》明确不同种类填充物的鉴定方法。据介绍,鹅绒和鸭绒,鹅毛和鸭毛、鸡毛等在外观上并无明显的区别,然而,在作为羽毛绒填充物的保暖性能方面却有着明显的差异,相同含量的鹅绒的保暖效果要优于鸭绒,市场上的价格也较高。而许多不法商贩为了牟取暴利,常在鹅毛绒中掺入鸭毛绒或陆禽毛加以销售,给消费者造成了损失。因此,毛绒的鉴别成为羽毛绒检测中重要的一项。  “不同的标准对于鹅、鸭毛绒种类鉴别的说法各有不同,这也给不法商贩以可乘之机。因而,我们明确提出了不同填充物的种类鉴定方法。”邓瑾给记者列举了鸭绒的鉴定方法,即鸭毛绒子和羽毛根部的羽枝远端有三角形的棱节,鸭毛绒的棱节较大,呈三个一组较有规律地排列于小羽枝末端,棱节间距离较短,约等于棱节的长度。  同时,《样照》增加了微生物菌落状态。据了解,因为羽毛绒为禽类皮肤的衍生物,虽然经过清洗、加工、储存、包装过程,但仍不可避免地会受到生态方面的关注。许多国家,特别是欧盟对羽毛绒及其制品都提出了生态要求。同时,随着人们绿色消费意识的加深,不少消费者不惜高价购买挂有“绿色标签”的羽毛绒制品。“基于此,我们在《样照》中增加菌落的状态,这将会使相关人员有一个更直观的认识,便于检测人员更快地掌握标准。”邓瑾说。  羽绒标准体系将进一步完善  业内人士称,《样照》是目前为止最为完善、最为完整的《羽绒羽毛标准样品(样照)》,它的出台将使整个羽绒羽毛标准体系更为完整、科学。  中国羽绒工业协会秘书长姚小曼认为,本标准的研制,与中国羽绒羽毛文字标准相配套,使整个标准更为完整、科学,标准更具权威性、公正性,在国际贸易中发挥更大的作用。此外,样照真实、准确、系统地显现了样品外观形态特征。采用计算机数字图像新技术,使样照更为清晰,容易辨认。并为今后样照的研制提供了新的手段与经验。  中国畜产加工研究会羽绒分会会长王敦洲说,《样照》的出台将有利于技术的交流与统一,方便检测人员的教育与培训。从长远看,不仅可以促进我国羽绒羽毛行业的发展和提高羽绒羽毛产品质量,而且可以帮助企业跨越贸易技术壁垒,协助企业取得国际市场认可和推进产品顺利进入国际市场。
  • 新品上市|融通创维科技全自动土壤样品制备系统
    新品上市自主研发全自动土壤样品制备系统产品简介全自动土壤样品制备系统涉及土壤标本制作设备及其土壤分装装置。土壤分装装置包括存料件、盛样容器输送机构,盛样容器输送机构包括用于承载盛样容器的容器承载件和驱动容器承载件活动的承载件驱动机构,承载件上设有至少两个盛样容器承载部分,各盛样容器承载部分处均设有用于称量盛样容器重量的称重装置;盛样容器在盛样容器输送机构的作用下依次被输送至土壤出口下方, 使各盛样容器内落入设定量的土壤,称重装置在盛样容器内土壤达到设定量时向控制系统发送信号,控制系统控制盛样容器输送机构使容器承载件移动,使下一个盛样容器处于土壤出口下方,实现自动分装,解决了目前的土壤标本制作设备需要人工分装土壤造成的取样效率低的问题。产品优势1,样品制备全程智能自动化作业;2,可解决土壤标本制备设备需要人工分装土壤造成的取样效率低问题;3, 智能系统控制,高功效对样品初筛、干燥、研磨、混匀、二次筛分、分样、称量、装样、系统自动清洁,并具备升级自动进样和自动出样功能;4,制备过程中与样品直接接触的部位为非金属材质,杜绝外源性污染;5,二维码编码扫描,温度、湿度、时间、质量、视频全流程数字化记录,报表自动生成;6,内置称量模块,全程质量追踪,远程视频监控,可接入实验室质控系统;7,样品处理全过程符合国家相关标准。
  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备
    这里是TESCAN电镜学堂第6期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!样品制备对扫描电镜观察来说也至关重要,样品如果制备不好可能会对观察效果有重大影响。通常希望观察的样品有尽可能好的导电性,否则会引起荷电现象,导致电镜无法进行正常观察;另外样品还需要有较好的导热性,否则轰击点位置温度升高,使得试样中的低熔点组分挥发,形成辐照损伤,影响真实的形貌观察。如果要进行EDS/WDS/EPMA定量检测,还需要样品表面尽可能平整。第一节 常规样品制备样品制备主要包括取样、清洗、粘样、镀膜处理几个步骤。§1. 取样在进行扫描电镜实验时,在可能的条件下,试样应该尽量小,试样有代表性即可。特别在分析不导电试样时,小试样能改善导电性和导热性能。另外,大试样放入样品室会有较多气体放出,特别是多孔材料,不但影响真空度,还大幅度增加抽真空的时间,可能也会引入更多的污染。因此对于多孔材料在放入电镜前,可以在不损伤样品的前提下,对样品进行一定的热处理,比如电吹风吹,红外灯烘烤,或者放入烘箱低温加热一段时间,将其空隙的气体排出,以减小进入电镜后的抽真空时间。对于薄膜截面来说最好能够进行切割、镶嵌、抛光等处理。在镶嵌时最好能将试样一分为二,将要观察的膜面朝里然后对粘,然后再进行镶嵌、抛光处理。这样做的好处是避免在抛光过程中因为膜面和镶嵌料之间的力学性能有一定的差异,而引起薄膜的脱落或者出现裂纹和缝隙,如图4-1。对粘后的膜面两面力学性能一样,会改善此种情况。 图4-1 单膜面力学性能不对称引起的损伤对于比较软的样品在制截面时,一般不要用剪刀直接剪断,直接剪断的截面经过了剪切的拉扯,质量较差。可以考虑用锋利的刀片切断,比如手术刀片等。或者在将试样浸泡在液氮中进行冷冻脆断。在冷冻脆断前可以先切一个小缺口,这样冻硬的样品可以顺着切口用较小的力就可发生断裂。有条件的话可以考虑用截面离子束抛光或者FIB抛光。对于粉末样品来说,取样要少量,否则粉末堆叠在一起会影响导电性和稳定性。粉末样品团聚严重的话,可以考虑将粉末混合在易挥发溶剂中(如纯水、乙醇、正己烷、环己烷等),配成一定浓度的悬浊液,用超声分散,然后取小滴滴在试样座或者硅片、铜(铝)导电胶带上。此时不要使用碳导电胶带,因为碳导电胶带不够致密,会使得样品嵌入在空隙中影响观察。等待溶剂挥发干燥后,粉体靠表面吸附力粘附在基底上,如图4-2。 图4-2 粉末超声分散制样不过值得注意的是溶剂的选择,溶剂不能对要观察的试样有影响,否则会改变试样的初始形貌而使得图像失真。如图4-3,高分子球样品在用水稀释分散后仍为球形,而用无水乙醇分散后,形貌发生了变化。 图4-3 水(左)和乙醇(右)稀释分散对形貌的影响§2. 清洗试样尽可能保证新鲜,避免沾染油污。特别是不要直接用手直接接触试样,以免沾染油脂。清洁不仅仅是针对试样的要求,同样还包括了样品台。样品台要做到经常用无水乙醇进行清洗。§3. 粘样试样的粘贴应该尽量保持平稳、牢固,并尽可能减少接触电阻,以增加导电性和导热性。特别是对于底面不平整的试样,最好用银胶进行粘贴,让银胶填满缝隙以保证平稳。如果要进行EBSD测试,最好也用银胶。EBSD采集要经过70度的倾转,重力力矩较大,而导电胶带有一定的弹性,可能会因为重力缘故而逐步拉伸,导致样品漂移。此外,平时大多数试样都是采用碳导电胶带进行粘贴,不过如果要进行极限分辨率的观察,最好也用银胶,以进一步增加导电性。我们粘贴样品的目的是使得样品要观察的表面要能和样品台底座之间具有导电通路,而不是仅仅认为表面导电就好。样品表面导电性再好,如果没有导电通路和样品台联通的话,仍然会有荷电。特别是对于不规则样品,更要注意粘贴时候的导电通路。如图4-4,左边与中间的表面并未和样品台导通,属于不合理的粘贴,而右边形成了通路,是合理的粘贴方式。 图4-4 合理(右)与不合理(左、中)的粘贴对于很多规则样品,比如块体或者薄片样品,也存在很多不合理的粘贴方式。很多人认为试样有一定的导电性,就将试样直接粘在导电胶带上,如图4-5左。样品表面和样品台之间依然会出现没有通路的情况,有时即使样品导电性好,可能也会因为有较大的接触电阻使得图像有微弱的荷电或者在大束流工作下有图像漂移。而图4-5右,则是开始将导电胶带故意留一段长度,将多余的长度反粘到试样表面去。这样使得不管样品体内导电性如何,表面都能通过导电胶带形成通路。而且即使样品整个体内都有较好的导电性,连接到表面的导电胶带相当于一个并联电路,并联电路的总电阻总是小于任何一个支路的电阻,所以无论试样的导电性任何,都应习惯性的将一段导电胶带连接到表面,以进一步减小接触电阻,增强导电性。 图4-5 将导电胶带延伸到试样表面的粘贴 对于粉末试样的粘贴,也是要少量,避免粉末的堆叠影响导电性和导热性。粉体可以取少量直接撒在试样座的双面碳导电胶上,用表面平的物体,例如玻璃板或导电胶带的蜡纸面压紧,然后用洗耳球吹去粘结不牢固的颗粒,如图4-6左。如果粉末量很少,无法用棉签或药勺进行取样,也可将碳导电胶带直接去粘贴粉末,如图4-6右。 图4-6 粉末试样的粘贴方法§4. 镀膜对于导电性不好的试样,我们通常可以选择镀膜处理。通常情况我们选择镀金Au膜,如果对分辨率有较高的要求,可以选择镀铂Pt、铬Cr、铱Ir。如果要对样品进行严格的EDS定量分析,则不能镀金属膜,因为金属膜对X射线有较强的吸收,对定量有较大影响,此时可选用蒸镀碳膜。现在的镀膜设备一般都能精确控制膜厚,通常镀5nm的薄膜就足够改善导电性,对于有些特殊结构的试样,比如海绵或泡沫状,表面不致密,即使镀较厚的导电层,也难以形成通路。所以我们镀膜尽量控制在10nm以下,如果镀10nm的导电膜仍没有改善导电性,继续增加镀膜也没有意义。一般镀金的话在10万倍左右就能看见金颗粒,镀铂的话可能需要放大到20万倍才能看见铂颗粒,而镀铬或者铱则需要放大到接近30万倍。所以对于导电性不好的试样来说,可以根据需要选择不同的镀膜。镀膜之后,由金属膜代替试样来发射二次电子,而一般镀的金、铂都有较高的二次电子激发率,在镀膜之后还能增强信号强度和衬度,提升图片质量。只要镀膜不会掩盖试样的真实细节,完全可以进行镀膜处理,而不用纠结于一定要不镀膜进行观察,除非有特别不能镀膜的要求。当然,对于要求倍数特别高或者严格测量的一些观察要求,则要谨慎镀膜处理。毕竟在高倍数下,镀膜会掩盖一定的形貌,或者使测量产生偏差。如图4-7,左边是镀金处理的PS球在SEM下的测量结果,右边是TEM直接拍摄的结果,可以发现SEM的测量结果大约在195nm左右,而TEM的测量结果在185nm左右,这就是因为给PS球镀了5nm金而引起直径扩大了10nm左右。 图4-7 PS球在SEM下镀膜观察和TEM直接观察的对比除了不导电样品需要镀膜,对于一些导热性不佳的试样,有时也需要镀膜。电子束轰击试样时,很多能量转变成热能,使得轰击点温度升高,升高温度表达式为ΔT(K) = 4.8 × VI / kd其中,V为加速电压、I为束流、d为电子束直径,k为试样热导率。对于导热性差的试样,k较低,ΔT有时能接近1000K,很容易对试样造成损伤。比如有时候对高分子样品进行观察时,会发现样品在不断的变化,其实是样品受到电子束轰击造成了辐照损伤损伤,如图4-8。而经过镀膜后,可以提高热导率,降低升温程度,避免样品受到电子束辐照损伤。 图4-8 电子束辐照损伤【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【奖品公布】上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】如果要对样品进行严格的EDS定量分析,可以镀金属膜吗,为什么?(快关注“TESCAN公司”微信公众号去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息:TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看: 电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
  • "小贝开讲"之检验科和实验室中高感染性生物样品前处理过程中的气溶胶安全防范
    时间:2020年2月20日 14:00 - 15:00内容简介:样品前处理过程和样品误操作中产生的气溶胶很容易被忽略,但是却同样具有污染性。课程从气溶胶的危害、产生原理、可疑污染实验场所到样品灭活、气溶胶污染处理和使用离心机过程中减少气溶胶产生的可行操作等方面进行了全面讲解。主讲人简介:霍德华,贝克曼库尔特生命科学市场部副总监,超过15年生命科学实验室及仪器行业技术支持经验,曾协助和指导国内外多个实验室搭建不同的技术应用平台,现主管离心机、自动化、颗粒分析等多条产品线。
  • 115万!上海市环境科学研究院碳质气溶胶滤膜样品自动进样分析仪采购
    项目编号:MT-22-06057项目名称:上海市环境科学研究院碳质气溶胶滤膜样品自动进样分析仪采购预算金额:115.0000000 万元(人民币)最高限价(如有):115.0000000 万元(人民币)采购需求:1、项目名称:上海市环境科学研究院碳质气溶胶滤膜样品自动进样分析仪采购2、项目编号:MT-22-060573、预算金额(元):1150000元(人民币)4、最高限价(元):1150000元(人民币)5、项目主要内容、数量及简要规格描述:采购碳质气溶胶滤膜样品自动进样分析仪一套,可测量颗粒物样品中的有机碳(OC)、元素碳(EC)、碳酸盐(CC)的含量,数据可用于含碳颗粒物来源分析研究。(详见招标文件第三章-项目概况及服务需求)6、交付地点:上海市环境科学研究院(上海市徐汇区钦州路508号)7、交付日期:合同签订之日起3个月内交货合同履行期限:合同履行至合同期结束。本项目( 不接受 )联合体投标。
  • iCEM 2016邀请报告:冷冻样品超分辨光电融合成像技术
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)邀请报告/strong/pp style="TEXT-ALIGN: center"strong冷冻样品超分辨光电融合成像技术/strong/pp style="TEXT-ALIGN: center"img title="纪伟.jpg" style="HEIGHT: 278px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201609/insimg/65f6bf9d-8b5c-4597-b5b3-806bc64fa3c8.jpg" width="200" height="278"//pp style="TEXT-ALIGN: center"strong纪伟 高级工程师/strong/pp style="TEXT-ALIGN: center"strong中国科学院生物物理所/strong/ppstrong报告摘要:/strong/pp  近十年来超分辨荧光成像可以说是生物物理领域最热门的研究方向,尤其是基于单分子定位的超分辨荧光成像技术,它为细胞生物学的研究提供了新的技术手段,高精度的单分子定位图像能帮助研究者观察到许多以前看不到的精细结构。冷冻电镜技术近几年来也是发展的如火如荼,为细胞生物学和结构生物学注入了新的活力。单分子定位荧光成像具有特异性标记、精确分子定位的优势,电镜具有超高分辨率、解析细胞内部细节结构优势。这两种技术的结合衍生出来的超分辨光电融合成像技术(Correlative light and electron microscopy, CLEM)给生物成像技术带来了新的发展契机,该技术通过把定位位置信息和结构信息进行整合、处理,可以表征出目标分子机器在细胞原位的分布、结构。相比常温样品的光电融合成像,冷冻样品的光电融合成像更具优势:(1)低温下荧光分子发光性能提高,成像定位精度也大幅度提高 (2)冷冻样品制备方法能保持样品的近天然状态。/ppstrong报告人简介:/strong/pp  纪伟,中国科学院青促会会员,中国科学院关键技术人才。生物物理研究所正高级工程师。从事新型成像系统的研制工作近十年,发展了单分子探测和超高分辨率光电融合成像技术。 参与三项中国科学院重大科研装备研制项目,其中主持一项。作为主要骨干参与首批国家重大科研仪器设备研制专项《超分辨光电融合生物显微成像系统》的研制。研制的设备和发展的技术产出的成果发表于PNAS、Cell Research、Biophysical Journal、Nature methods等杂志。/ppstrong报告时间:/strong2016年10月26日下午br//ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//a/p
  • PREPS全自动微波样品前处理平台
    table width="624" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="491" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"PREPS/span/strongstrongspan style=" line-height:150% font-family: 宋体"全自动微波样品前处理平台/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"上海屹尧仪器科技发展有限公司/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"李春梅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="162" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"cm.li@preekem.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 □合作开发 √其他/span/p/td/trtr style=" height:255px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="255"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/979beb65-2ceb-4937-8f72-1962ff73bb44.jpg" title="31.png" style="width: 300px height: 300px " width="300" vspace="0" hspace="0" height="300" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"PREPS/spanspan style=" line-height:150% font-family:宋体"全自动微波样品前处理平台具备对各类样品实现全自动加酸、静置、进样、密闭加热、冷却定容等功能。采用全自动化的微波样品前处理平台设计理念,将元素分析前处理中操作多、污染大的环节通过自动化的方式实现,避免人为操作带来的误差。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"1./span/strongstrongspan style=" line-height:150% font-family: 宋体"微波系统:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (1)/spanspan style=" line-height:150% font-family:宋体"单模微波谐振腔:微波能量聚焦,能量利用率最大化。仅需5min即可将常规食品,农产品等样品消解完全。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (2)/spanspan style=" line-height:150% font-family:宋体"最大微波输出功率:≤500W/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (3)/spanspan style=" line-height:150% font-family:宋体"微波PID控制技术:根据反应进程自动调整微波输出,保证温度的精确性和稳定性。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (4)/spanspan style=" line-height:150% font-family:宋体"防爆腔盖:微波运行时,自动关闭将样品锁定在腔体内;反应结束后,冷却到安全温度和压力之下后再自动打开;异常情况下,始终锁定腔体。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (5)/spanspan style=" line-height:150% font-family:宋体"温度监控系统:红外温度实时监测并显示反应温度,多点温度校准技术确保红外温度与反应内温一致。红外测温范围:-20-500℃,测温精度± 0.1℃/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (6)/spanspan style=" line-height:150% font-family:宋体"非接触式压电变送实时测压系统,全程监测并显示样品瓶内的压力变化情况。超压释放,确保反应安全。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (7)/spanspan style=" line-height:150% font-family:宋体"极速风冷系统:超速涡旋负压冷却结合特殊风道设计,可自定义冷却温度。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"200/spanspan style=" line-height:150% font-family:宋体"℃冷却至80℃≤5min。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (8)/spanspan style=" line-height:150% font-family:宋体"反应罐材质:高纯石英。反应罐体积:≥100mL/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (9)/spanspan style=" line-height:150% font-family:宋体"工作温度:240℃。工作压力:40bar。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (10)/spanspan style=" line-height:150% font-family:宋体"两种不同速度的磁力搅拌功能可选,提高微波辅助溶剂萃取效率。/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"2. /span/strongstrongspan style=" line-height:150% font-family: 宋体"自动加液进样系统:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (1)/spanspan style=" line-height:150% font-family:宋体"自动加液进样系统:XYZ机械臂定位精度达到± 0.1mm,高精度注射泵保证加酸的准确性。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (2)/spanspan style=" line-height:150% font-family:宋体"试剂流路≥3个,可支持2.5L或500mL不同规格的试剂瓶,且可实时显示试剂瓶中剩余试剂含量。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (3)/spanspan style=" line-height:150% font-family:宋体"具备加液高度调节、加液流速设置、试剂喷淋功能及加液后静置等功能。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (4)/spanspan style=" line-height:150% font-family:宋体"实时样品追踪:红外光纤传感器实时扫描样品平台,全程监控样品动态。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (5)/spanspan style=" line-height:150% font-family:宋体"批处理量:33个/span/pp style="text-indent:28px line-height:150%"strongspan style=" line-height:150% font-family:宋体"3. /span/strongstrongspan style=" line-height:150% font-family: 宋体"软件控制系统:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (1)/spanspan style=" line-height:150% font-family:宋体"图形化界面控制,具有溶剂设置、方法设置、序列设置、历史数据查询、运行界面动态化显示、用户界面管理、传感器校准等功能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (2)/spanspan style=" line-height:150% font-family:宋体"每个样品可设定独立程序:灵活适应各种类型的样品/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (3)/spanspan style=" line-height:150% font-family:宋体"温度控制模式及功率控制模式兼容,可设置快速升温或斜率升温模式,可实时数显及图显反应温度、压力及微波功率。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (4)/spanspan style=" line-height:150% font-family:宋体"具有机械臂位置、温度、微波功率校准等功能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" (5)/spanspan style=" line-height:150% font-family:宋体"安全报警功能:具有温度超限报警,温压异常报警,酸量不足报警,机械臂故障报警功能。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体")全球唯一实现自动化微波反应,用户仅需称样,即可完成整个前处理流程。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体")精密机器人技术:精密三维机械臂可实现精准加酸、混匀、消解、样品转移及定容等功能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体")最高环保要求:密闭微波反应配置自动化技术,不仅将溶剂消耗降至最低,操作人员无需再接触各种有毒有害气体。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4/spanspan style=" line-height:150% font-family:宋体")极速消解及冷却:单模微波聚焦设计结合超速负压涡旋风道冷却系统,将消解及冷却总时间控制在10-15分钟以内。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"5/spanspan style=" line-height:150% font-family:宋体")不折不扣的安全性能:发明专利(已授权)智能/动态控压技术及红外温度监控系统实时监控反应压力及温度温度,提供最高级别安全控制。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"6/spanspan style=" line-height:150% font-family:宋体")出色的稳定性:实现真正意义无人值守。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"满足实验室中各类食品、农产品、化妆品、塑料、饲料、药品等样品的常规消解,为AAS、ICP、ICP-MS等仪器提供前处理方案。同时试用于各类样品的有机萃取,砷,汞等元素形态提取,凯氏定氮消化处理。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"国家重大仪器设备开发专项:多用途样品前处理仪器的开发和应用重要组成部分/span/p/td/tr/tbody/tablepbr//p
  • 2010《中国药典》中的样品制备新技术:微波消解
    重金属元素测定主要分为样品粉碎、消化和分析仪器测定等三个过程,其中消化处理过程为最关键的步骤。传统的化学消化方法分为湿法分解、干法灰化-酸溶法和高压密闭消解,这些方法虽然分解能力强,但耗时长(通常需要几个小时至数天),试剂用量大,劳动强度大,能耗多,空白值高,测定结果不准确(Hg、As、Pb、Cr等元素易挥发,出现损失)。 微波消解作为常规湿法消化方法的延伸,具有消解速度快、样品消解完全、污染少、回收率高、易于控制等优势,已被广泛应用于各种样品的前处理。 自2005年版《中国药典》编纂伊始,上海新仪微波化学科技有限公司积极参与并广泛协助科研院校和药企展开应对原子吸收分光光度法和电感耦合等离子体质谱法以及电感耦合等离子体原子发射光谱法中供试品溶液的制备方法研究。2010年版《中国药典》更为明确将微波消解法纳入首选方法。 上海新仪微波化学科技有限公司应用技术中心急客户之所需,集中实验精英成功开发出一系列样品制备规范SOP,涵盖100余种中药材粗粉和多种药用辅料(如:胶囊用明胶);同时正式为我司的药业客户发布2010《中国药典》重金属限度含量测定的实验室全程解决方案和仪器设备采购目录及指南,详情可咨询400-888-7840. 2010年版《中国药典》部分附录摘要: (1) 附录Ⅸ B 铅、镉、砷、汞、铜测定法(一部) 一、原子吸收分光光度法 本法系采用原子吸收分光光度法(见《药典》附录V D)测定中药材中的铅、镉、砷、汞、铜,除另有规定外,按下列方法测定。 1.铅的测定(石墨炉法) 供试品溶液的制备 (A 法) 取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml 量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 2.镉的测定(石墨炉法) 供试品溶液的制备(A法) 同铅测定供试品溶液的制备 3.砷的测定(氢化物法) 供试品溶液的制备(A法) 同铅测定供试品溶液的制备 4.汞的测定(冷蒸气吸收法) 供试品溶液的制备 A 法: 取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上,于120℃缓缓加热至红棕色蒸气挥尽,并继续浓缩至2~3ml,放冷,加20%硫酸溶液2ml、5%高锰酸钾溶液0.5ml,摇匀,滴加5%盐酸羟胺溶液至紫红色恰消失,转入10ml 量瓶中,用水洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,必要时离心,取上清液,即得。同法同时制备试剂空白溶液。 5.铜的测定(火焰法) 供试品溶液的制备(A法) 同铅测定供试品溶液的制备 二、电感耦合等离子体质谱法 本法系采用电感耦合等离子体质谱仪(见《药典》附录XI D)测定中药材中的铅、砷、镉、汞、铜。 供试品溶液的制备 取供试品于60℃干燥2 小时,粉碎成粗粉,取约0.5g,精密称定,置耐压耐高温微波消解罐中,加硝酸5~10ml(如果反应剧烈,放置至反应停止)。密闭并按各微波消解仪的相应要求及一定的消解程序进行消解。消解完全后,冷却消解液低于60℃,取出消解罐,放冷,将消解液转入50ml 量瓶中,用少量水洗涤消解罐3 次,洗液合并于量瓶中,加入金单元素标准溶液(1&mu g/ml)200&mu l,用水稀释至刻度,摇匀,即得(如有少量沉淀,必要时可离心分取上清液)。除不加金单元素标准溶液外,余同法制备试剂空白溶液。 (2) 2010年版《中国药典》药用辅料部分新增品种和修订品种(【检查】项目摘录) 铬 取药用辅料(如:明胶)0.5g,置聚四氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中 ,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;另取铬单元素标准溶液,用2%硝酸稀释制成每1ml含铬1.0&mu g的铬标准储备液,临用时,分别精密量取铬标准储备液适量,用2%硝酸溶液稀释制成每1ml含铬0-80ng的对照品溶液。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法(附录Ⅳ D第一法),在357.9nm测定,含铬不得过百万分之二。 附:国家食品药品监督管理局关于实施《中国药典》2010年版有关事宜的公告
  • 2019年7月-材料微观结构分析样品制备培训通知
    材料微观结构分析样品制备邀请函 尊敬的客户,您好!为更好的服务于客户,我们特别为金相技术员或者要学习先进制备工艺的金相学者设计了SumMet™ 材料微观结构分析样品制备课程。该课程通过理论学习和实践操作,涵盖了切割、镶嵌、研磨和抛光的知识,这些知识也是标乐在过去80多年历史中的经验累积。此外,学生还可学习有关硬度测试和微观结构解读方面的知识。 基本信息 培训时间:2019年7月8-10日(三天)培训主题:材料微观结构分析样品制备培训地点:标乐中国上海实验室(依工测试测量仪器(上海)有限公司)具体地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼 主要内容 三天的课程涉及多种材料的微观结构分析样品制备和硬度测试的知识。课程内容涉及到样品切割,镶嵌,研磨和抛光的技术知识,对于各种材料的样品制备提供大量实习课程。课程内容包括: 取样和切割(理论和实践) 样品镶嵌(理论和实践) 样品研磨和抛光(理论和实践) 硬度测试原理(理论)注:学员实践操作中可自行携带需要得到解决方案的样品。 特邀讲师 Dr. Mike Keeble 毕业于威尔士大学(The University of Wales),主修材料科学与工程。获得了钢的蠕变性能(creep properties of steels)博士学位及部分熔融铝合金的力学试验和有限元模拟(mechanical testing and FE modelling of partially molten aluminium alloys)硕士学位。Dr. Keeble 之前在英国国防评估和研究机构(现QinetiQ)担任先进金属材料研究员,研究新材料和制造工艺的疲劳、损伤容限和---失效分析。Dr. Keeble 目前在美国标乐担任美国实验室和技术经理的职务,他有超过12年的在金相分析方面提供技术支持和培训的工作经验。Dr. Keeble 曾在伯明翰大学(Birmingham University)担任荣誉讲师,并在华威大学(Warwick University)担任访问学者。Dr. Keeble 是 ASM 和 IMS 的成员,也是金相和硬度测试标准组织(Standards Organizations in metallography and hardness testing)的成员。【助教】 Leo-柳文鹏,标乐应用工程师毕业于西北工业大学材料学院,获得硕士学位。曾多年就职于英业达集团,负责电子材料的可靠性及失效分析;之后就职于德国双立人公司,担任主管金相工程师,主要负责金属材料金相分析及硬度测试;加入标乐公司后,每年前往美国总部接受金相制备高级课程培训,现担任标乐应用工程师,在汽车、航空航天及电子等行业积累了丰富的经验。 Kevin-程凯,标乐应用工程师毕业于河海大学材料科学与工程学院,曾就职于无锡鹰普集团,担任理化工程师、热处理工程师;此后分别就职于通标标准服务(上海)有限公司(SGS),担任金相工程师;莱茵技术(上海)有限公司(TUV Rheinland),担任高级金相工程师。主要负责金相及硬度实验室的所有测试及管理。在金属材料检测以及失效分析方面都有较丰富的经验。现任标乐公司应用工程师,为亚太用户提供全面的技术支持,解决金相制备方面的难题,在原材料、汽车、电子等行业样品的制备积累了丰富的经验。注:课程全英文教学,全程有中文翻译。 费用说明 费用:5000RMB/人说明:费用包含:SumMet教材、培训期间中餐,以及9日晚宴,其他住宿交通等费用自理。汇款账号:名称:依工测试测量仪器(上海)有限公司开户行:农业银行上海浦江支行 行号:103290003237账号:03408800040017687 报名方式 烦请可以填写下方报名回执后发送 info.cn@buehler.com,本次培训小班教学,名额有限,先到先得! 住宿交通 (住宿仅供参考,请学员自行预定)培训地点:依工测试测量仪器(上海)有限公司培训地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼附近交通: 浦东机场:打车:距离35.3KM,打车约138元,约30min;公交:磁悬浮地铁16号线796路(鹤坡塘桥站下), 约134min 虹桥机场:打车:距离30.9KM,打车约108元,约47min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 虹桥火车站:打车:距离31.8KM,打车约111元,约45min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 上海火车站(上海站):打车:距离22.3KM,打车约77元,约34min;公交:地铁1号线地铁8号线796路(鹤坡塘桥站下), 约75min周边住宿(仅供参考,请学员自行预定) 名称:新奇士国际酒店(浦江店) 地址:浦江镇三鲁路3585号(近江月路) 名称:上海浦江智选假日酒店 地址: 浦江镇联航路1188号10号楼3楼H座诚挚地期待您的参加! 标乐市场部2019年5月20日 附件一 报名回执报名人员*单位*姓名*部门*职务*电话*邮件兴趣及关注项目 (如材料、零部件等):工作范畴 (如研究、品质控制、失效分析等):*单位业务范围 □ 金属 □ 航空/航天 □ 热处理 □ 电子 □ 政府研发/教育 □ 测试实验室(第三方实验室) □ 国防 □ 生物医药 □ 汽车/其他运输工具 □ 能源 □ 其他__________________________________说明:务必准确填写,其中 * 为必填项。填写完毕请发送至:info.cn@buehler.com 。
  • 新拓仪器发布多样品全自动固相微萃取仪新品
    多样品自动固相微萃取仪是一款专门针对国标方法中,测定总溶解固体或蒸发残渣时,对水或试剂快速蒸发至恒重的仪器。代替了传统的水浴、油浴以及烘箱,可快速、简便的得到样品中的中溶解固体或蒸发残渣。大大缩减操作工序和步骤,减少实验操作人员的工作量。特点:  1.自带高温老化口,可进行固相微萃取探针的老化和氮气吹扫。  2.探针的插入深度和涂层的伸出长度均可通过程序调节,以适应不同实验的要求。  3.固相微萃取功能中,配有20个样品盘,适用10mL或20mL的顶空瓶。  4.样品盘有独立磁力搅拌加热位,温度控制范围: 室温~150℃,磁力搅拌速度:0~1500rpm。  5.液体进样采用气密针进样,最小进样体积1微升,进样积500微升;进样精度0.5%。  6.液体进样功能中,110个样品位,适用2mL进样小瓶。  7.配有6个清洗瓶位,适用4mL样品瓶,可自定义分配溶剂瓶位和废瓶位;创新点:自动固相微萃取是根据现代仪器的要求生产的一种新的样品预处理技术。凭借对SPME原理和技术发展的深刻理解以及新型SPME设备的不断应用和开发,SPME已广泛应用于环保和水质处理领域。这是较好的样品预处理方法之一,它具有简单,低成本和易于自动化等一系列优点。固相微萃取是在SPE的基础上开发的。它保留了其所有优点,并消除了色谱柱填充和溶剂解吸的缺点。它能通过类似于注射器的固相微萃取装置完成所有预处理和样品注射。该装置的针头中有一根伸缩杆,该杆与熔融石英纤维连接,其表面覆盖有色谱固定相。通常,熔融石英纤维隐藏在针头中。如有必要,可以推动进样器推杆以使石英纤维从针头突出。多样品全自动固相微萃取仪
  • 国标委下达96项国家标准样品研复制项目计划
    全国标准样品技术委员会:  为加强相关领域国家标准样品研复制工作,满足有关方面对国家标准样品的需求,国家标准化管理委员会决定下达&ldquo 钕同位素比值分析标准样品&rdquo 等96项国家标准样品研复制项目计划(见附件)。  请你委员会高度重视,认真组织,加强与有关方面的协调沟通,广泛听取意见,按时保质完成国家标准样品研复制任务。  附件:96项国家标准样品研复制计划项目清单.doc  国家标准委  2013年12月13日96项国家标准样品研复制计划项目清单序号项目编号项目名称研/复制被复制标样号完成时间(年)研(复)制单位1S2013001钕同位素比值分析标准样品研制 2015中国地质科学院地质研究所2S2013002正己烷中2,2&rsquo ,4,5,5&rsquo -五氯联苯分析校准用标准样品(PCB101)研制 2014环境保护部标准样品研究所3S2013003正己烷中2,2' ,3,4,4' ,5' -六氯联苯分析校准用标准样品(PCB138)研制 2014环境保护部标准样品研究所4S2013004丙酮中菲-D10分析校准用标准样品研制 2014环境保护部标准样品研究所5S2013005氮气中二氧化硫气体标准样品 (10&mu mol/mol)研制 2014环境保护部标准样品研究所6S2013006环境基体 土壤重金属元素分析标准样品研制 2014环境保护部标准样品研究所7S2013007环境基体 烟尘重金属元素分析标准样品研制 2014环境保护部标准样品研究所8S2013008甲醇/二氯甲烷中苯并(j)荧蒽分析校准用标准样品研制 2014环境保护部标准样品研究所9S2013009甲醇中硝基苯-D5分析校准用标准样品研制 2014环境保护部标准样品研究所10S2013010水质 碘化物分析校准用标准样品研制 2014环境保护部标准样品研究所11S2013011水质 铋分析校准用标准样品研制 2014环境保护部标准样品研究所12S2013012氮气中丙烯气体标准样品研制 2014环境保护部标准样品研究所13S2013013挥发性22种氯代烃混合气体标准样品研制 2014环境保护部标准样品研究所14S2013014甲醇中十氯酮分析校准用标准样品研制 2014环境保护部标准样品研究所15S2013015甲醇中五氯苯分析校准用标准样品研制 2014环境保护部标准样品研究所16S2013016A类火灾试验用燃烧物标准样品1研制 2015公安部天津消防研究所17S2013017A类火灾试验用燃烧物标准样品2研制 2015公安部天津消防研究所18S2013018鞋类勾心纵向刚度性能标准样品研制 2015中国皮革和制鞋工业研究院19S2013019鞋底耐磨性能标准样品研制 2015中国皮革和制鞋工业研究院20S2013020家用燃气灶具检测用标准容器研制 2015中国标准化协会、浙江苏泊尔股份有限公司21S2013021金属材料拉伸用标准样品复制GSB 03-2039-20062014钢铁研究总院、钢研纳克检测技术有限公司22S2013022金属夏比冲击试验机用标准样品-L级复制GSB 03-2040-20062014钢铁研究总院、钢研纳克检测技术有限公司23S2013023金属夏比冲击试验机用标准样品-M级复制GSB 03-2041-20062014钢铁研究总院、钢研纳克检测技术有限公司24S2013024金属夏比冲击试验机用标准样品-H级复制GSB 03-2042-20062014钢铁研究总院、钢研纳克检测技术有限公司25S2013025金属夏比冲击试验机用标准样品-UH级复制GSB 03-2043-20062014钢铁研究总院、钢研纳克检测技术有限公司26S2013026含钼、铜、铌、氮不锈钢光谱用系列标准样品复制GSB 03-2028-20062014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)27S2013027合金铸铁光谱分析用系列标准样品1#复制GSB 03-2152-20072014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)28S2013028合金铸铁光谱分析用系列标准样品2#复制GSB 03-2153-20072014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)29S2013029合金铸铁光谱分析用系列标准样品3#复制GSB 03-2154-20072014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)30S2013030合金铸铁光谱分析用系列标准样品4#复制GSB 03-2155-20072014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)31S2013031合金铸铁光谱分析用系列标准样品5#复制GSB 03-2156-20072014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)32S2013032合金铸铁光谱分析用系列标准样品6#复制GSB 03-2157-20072014钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司)33S2013033锰硅合金(FeMn67Si23)标准样品复制GSB 03-1359-20012014中钢集团吉林铁合金股份有限公司34S2013034微碳铬铁(FeCr65C0.10)标准样品复制GSB 03-1314-20002014中钢集团吉林铁合金股份有限公司35S2013035钛精矿标准样品复制GSB 03-1686-20042014攀钢集团攀枝花钢铁研究院有限公司36S2013036铝合金3003(含Pb)光谱标准样品复制GSB 04-1708-20042014西南铝业(集团)有限责任公司熔铸厂37S2013037氟化铝标准样品复制GSB 04-1477-20022014湖南有色湘乡氟化学有限公司38S2013038点燃式发动机检测用油标准样品复制GSB 06-1631-20102013中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心39S2013039压燃式发动机检测用油标准样品复制GSB 06-1632-20102013中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心40S2013040水泥用石灰石成分分析标准样品复制GSB 08-1345-20102014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心41S2013041水泥用粘土成分分析标准样品复制GSB 08-1347-20102014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心42S2013042水泥用矾土成分分析标准样品复制GSB 08-1351-20012015中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心43S2013043水泥生料成分分析标准样品复制GSB 08-1353-20132014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心44S2013044水泥熟料成分分析标准样品复制GSB 08-1355-20102014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心45S2013045普通硅酸盐水泥成分分析标准样品复制GSB 08-1356-20132014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心46S2013046铝酸盐水泥成分分析标准样品复制GSB 08-1533-20032015中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心47S2013047水泥细度用萤石粉标准样品(80&mu m筛余和比表面积)复制GSB 08-2184-20082014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心48S2013048水泥细度用萤石粉标准样品(45µ m筛余和比表面积)复制GSB 08-2185-20082014中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心49S2013049中国ISO标准砂复制GSB 08-1337-20132014中国建筑材料科学研究总院 、厦门艾思欧标准砂有限公司50S2013050水泥细度和比表面积标准样品复制GSB 14-1511-20102014中国建筑材料科学研究总院、水泥与科学新型建筑材料研究院51S2013051食品分析用丙酸溶液标准样品复制GSB 11-2358-20082014沈阳标准样品研究所52S2013052食品分析用环己基氨基磺酸钠溶液标准样品复制GSB 11-2359-20082014沈阳标准样品研究所53S2013053食品分析用乙酰磺胺酸钾、糖精钠溶液标准样品复制GSB 11-2360-20082014沈阳标准样品研究所54S2013054食品分析用锑溶液标准样品复制GSB 11-2361-20082014沈阳标准样品研究所55S2013055食品分析用脱氢乙酸溶液标准样品复制GSB 11-2362-20082014沈阳标准样品研究所56S2013056食品分析用乙酰磺胺酸钾溶液标准样品复制GSB 11-2363-20082014沈阳标准样品研究所57S2013057食品分析用丁二酸溶液标准样品复制GSB 11-2364-20082014沈阳标准样品研究所58S2013058食品分析用对羟基苯甲酸丙酯溶液标准样品复制GSB 11-2365-20082014沈阳标准样品研究所59S2013059食品分析用对羟基苯甲酸乙酯、丙酯溶液标准样品复制GSB 11-2366-20082014沈阳标准样品研究所60S2013060食品分析用对羟基苯甲酸乙酯溶液标准样品复制GSB 11-2367-20082014沈阳标准样品研究所61S2013061食品分析用钠、钾溶液标准样品复制GSB 11-2368-20082014沈阳标准样品研究所62S2013062食品分析用钾溶液标准样品复制GSB 11-2369-20082014沈阳标准样品研究所63S2013063食品分析用酒石酸溶液标准品复制GSB 11-2370-20082014沈阳标准样品研究所64S2013064食品分析用没食子酸丙酯溶液标准样品复制GSB 11-2371-20082014沈阳标准样品研究所65S2013065食品分析用钠溶液标准样品复制GSB 11-2372-20082014沈阳标准样品研究所66S2013066食品分析用柠檬酸溶液标准样品复制GSB 11-2373-20082014沈阳标准样品研究所67S2013067食品分析用牛磺酸溶液标准样复制GSB 11-2374-20082014沈阳标准样品研究所68S2013068食品分析用苹果酸溶液标准样品复制GSB 11-2375-20082014沈阳标准样品研究所69S2013069食品分析用有机酸溶液标准样品复制GSB 11-2376-20082014沈阳标准样品研究所70S2013070食品分析用苯甲酸溶液标准样品复制GSB 11-2377-20082014沈阳标准样品研究所71S2013071食品分析用钙溶液标准样品复制GSB 11-2378-20082014沈阳标准样品研究所72S2013072食品分析用汞溶液标准样品复制GSB 11-2379-20082014沈阳标准样品研究所73S2013073食品分析用磷溶液标准样品复制GSB 11-2380-20082014沈阳标准样品研究所74S2013074食品分析用山梨酸溶液标准样品复制GSB 11-2381-20082014沈阳标准样品研究所75S2013075食品分析用糖精钠溶液标准样品复制GSB 11-2382-20082014沈阳标准样品研究所76S2013076食品分析用亚硝酸钠溶液标准样品复制GSB 11-2383-20082014沈阳标准样品研究所77S2013077食品分析用镉溶液标准样品复制GSB 11-2085-20072014沈阳标准样品研究所78S2013078食品分析用铝溶液标准样品复制GSB 11-2086-20072014沈阳标准样品研究所79S2013079食品分析用镁溶液标准样品复制GSB 11-2087-20072014沈阳标准样品研究所80S2013080食品分析用锰溶液标准样品复制GSB 11-2088-20072014沈阳标准样品研究所81S2013081食品分析用镍溶液标准样品复制GSB 11-2089-20072014沈阳标准样品研究所82S2013082食品分析用铅溶液标准样品复制GSB 11-2090-20072014沈阳标准样品研究所83S2013083食品分析用铁溶液标准样品复制GSB 11-2091-20072014沈阳标准样品研究所84S2013084食品分析用铜溶液标准样品复制GSB 11-2092-20072014沈阳标准样品研究所85S2013085食品分析用锡溶液标准样品复制GSB 11-2093-20072014沈阳标准样品研究所86S2013086食品分析用锌溶液标准样品复制GSB 11-2094-20072014沈阳标准样品研究所87S2013087河豚毒素标准样品复制GSB 11-2533-20092014国家海洋局第三海洋研究所88S2013088食品中菌落总数标准样品复制GSB 11-2219-20082014中国检验检疫科学研究院89S2013089鳕鱼中金黄色葡萄球菌标准样品复制GSB 11-2224-20082014中国检验检疫科学研究院90S2013090鳕鱼中副溶血性弧菌标准样品复制GSB 11-2223-20082014中国检验检疫科学研究院91S2013091奶粉中单核细胞增生李斯特氏菌标准样品复制GSB 11-2274-20082014中国检验检疫科学研究院92S2013092奶粉中沙门氏菌标准样品复制GSB 11-2275-20082014中国检验检疫科学研究院93S2013093测定聚乙烯树脂熔体流动速率用标准样品PE-T复制GSB 15-1160-20082015中国石油化工股份有限公司北京燕山分公司树脂应用研究所94S2013094测定聚丙烯树脂熔体流动速率用标准样品PP-M复制GSB 15-1313-20102015中国石油化工股份有限公司北京燕山分公司树脂应用研究所95S2013095标准贴衬织物(棉、毛、丝、苎麻、聚酯、聚丙烯腈、粘胶、聚酰胺)复制GSB 16-2082-20102014上海市纺织工业技术监督所96S2013096评定变色、沾色用灰色样卡复制GSB 16-2083-20102014上海市纺织工业技术监督所
  • 伟业新品:土壤分析质控样品系列标准物质
    伟业新品:土壤分析质控样品系列标准物质 土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg。土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。 阳离子交换是土壤比较重要的性质之一,是土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当ph较低时(到达等电点时),整个性质就会发生变化,阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如k、mg、ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受ph影响,低ph条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。一、标准物质的制备本标准物质选择经筛查的土壤为基体,经过风干、去杂、研磨、混匀、过筛、灭菌而成。量值核验一致后在洁净干燥的实验室环境下分装。二、标准物质的检测本标准物质定值方法参照NY/T295-1995中性土壤阳离子交换量和交换性盐基的测定、LY/T 1243-1999 森林土壤阳离子交换量的测定,通过使用满足计量学特性要求的计量器具保证其量值溯源性。实验原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH+4饱和土。用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。三、结论通过多次重复性实验的检测,产品的均匀性良好。经12个月长期稳定性研究结果表明有良好的稳定性,研制单位将继续跟踪监测该标准物质的稳定性,有效期内如发现量值变化,将及时通知上级主管部门与用户。四、应用领域本产品通常运用于土壤方面阳离子交换量、交换性盐基指标的检测。作为产品的质控分析样品,也可以用在环境土壤检测。五、注意事项需要注意的是,阴凉密闭及避光条件下保存。使用前应混匀,最小取样量为1.5g,并注意水分的影响。淋洗次数需合理,淋洗次数不够,不能把交换剂全部洗掉,淋洗过头会使易水解的被洗去产生误差,且不能超声提取。
  • 经验分享:透射电子显微镜应用领域及样品制备方法
    透射电子显微镜是使用较为广泛的一类电镜,具有分辨率高、可与其他技术联用的优点。已广泛应用于医学、生物学等各个研究领域,成为组织学、病理学、解剖学以及临床病理诊断的重要工具之一。常规电镜样品制备包括常温化学双固定、常温脱水包埋、常规超薄切片、普通电镜观察几个步骤。样品制备过程历时约一周,超薄切片经醋酸双氧铀和柠檬酸铅染色后,电镜观察。所有操作均按照以下流程进行。一、试剂0.2 mol/ L磷酸盐缓冲液Na 2 HPO 4 2H 2 O 35.61 g 或Na 2 HPO 4 7H 2 O 53.65 g / Na 2 HPO 4 12H 2 O 71.64 gNaH 2 PO 2 H 2 O 27.60 g 或NaH 2 PO 4 2H 2 O 31.21 g加双蒸水(ddH2O)到1000 mL0.1 mol/ L磷酸盐缓冲液(PBS)0.2 mol/ L磷酸盐缓冲液 250 mL加双蒸水到500 mL2 % 低温琼脂低温琼脂 1.0 g加双蒸水到 50 mL加热到沸腾,溶液均匀后备用1 % 戊二醛固定液25 %(m/v)戊二醛水溶液 2 mL0.2 mol/ L磷酸盐缓冲液 25 mL加双蒸水到50 mL1 % 锇酸固定液2 %(m/v)锇酸水溶液 10 mL0.2 mol/ L磷酸盐缓冲液 10 mL包埋剂A液Epon 812 树脂 50 mL十二烷基琥珀酸酐(modecenyl succinic anhydride, DDSA) 80 mL包埋剂B液Epon 812 树脂 50 mL六甲酸酐(methyl nadic anhydride, MNA) 44.5 mL2 , 4 , 6 - 三甲氨基甲基苯酚( 2, 4, 6 - tridimethylamino methyl phenol, DMP-30 )甲苯胺蓝染液甲苯胺蓝 1 g1 mol/ L NaOH 10 mL加双蒸水到50 mL混匀过滤后使用1 % 醋酸双氧铀染液醋酸双氧铀 0.2 g加双蒸水到10 mL封口膜封口,4℃避光保存1 % 柠檬酸铅染液硝酸铅 0.265 g柠檬酸钠(含2分子结晶水) 0.352 g加双蒸水到10 mL①① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。封口膜封口,4℃保存仪器修块机 Leica EM TRIM切片机 Leica EM UC6光学显微镜 Nikon 80i 及配套拍照系统DS-L1透射电子显微镜 JEOL-1230Gatan Bioscan Camera 792低电压透射电子显微镜 JEM-1230二、实验流程一、 取材与固定A. 植物样品1. 自来水冲洗表面泥尘后,使用灭菌水清洗2-3次,置于铺有预湿滤纸的培养皿中。2. 使用干净锋利的刀片切取目标材料,所取材料体积不大于3 mm3。切取样品时应注意动作迅速、减小损伤,避免来回切拉;使用的灭菌水及器具应4℃预冷,并在操作中尽量保持低温以降低组织细胞活性。3. 将切下材料放入装有预冷的戊二醛固定液的青霉素小瓶中后抽气,抽几次后轻摇小瓶,并打开瓶盖。重复2-3次,直到样品沉入瓶底。4. 室温静置1h,或摇床轻摇1h。5. PBS清洗3次,10min/次。6. 1%锇酸固定液固定1h。7. PBS清洗3次,10min/次。B. 动物样品1. 4℃预冷生理盐水冲洗组织块,迅速切取组织块,体积不大于3 mm32. 将切取的组织块投入装有预冷戊二醛固定液的青霉素小瓶中,并抽气直至样品沉底。3. 室温静置1h,或摇床轻摇1h。4. PBS清洗3次,10 min/次。5. 1%锇酸固定液固定1 h。6. PBS清洗3次,10 min/次。C. 单层培养细胞或悬浮培养细胞样品②1. 3000 rpm离心5 min,收集细胞样品,尽量多的吸弃培养液上清。2. 加入4℃预冷PBS液,充分吹吸混匀,静置4 min,3000 rpm离心5 min,吸弃上清。① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。3. 重复步骤2一次。4. 加入预冷的血清或蛋清,充分吹吸混匀,3000 rpm离心10 min,吸弃大部分上清,留少部分,吹吸悬浮沉淀细胞。(或离心后吸弃上清,留少部分上清,不悬浮沉淀细胞,视样品浓度而定)5. 缓慢加入戊二醛固定液,小心放入4℃冰箱,固定过夜。6. 吸弃上清,刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的血清包埋块。7. 使用干净的单面刀片或手术刀,将血清包埋块切成2 mm3左右的小块,取3-5个富集细胞样品效果较好的包埋小块继续下面实验。8. PBS清洗3次,10 min/次。9. 1%锇酸固定液固定1 h。10. PBS清洗3次,10 min/次。D. 藻类及其他游离培养样品1. 吸取2%低温琼脂液200μL到0.2mL离心管,并将离线管置于冰上,取10μL枪头迅速插入琼脂中并保持离心管竖直,且枪头竖直靠中的包裹在琼脂中。2. 静置1 min,待琼脂凝固后,小心拔出枪头,形成琼脂空腔,待用。3. 3000 rpm离心5 min,收集样品,尽量多的吸弃培养液上清。4. 加入4℃预冷PBS液,充分吹吸混匀,静置4min,3000 rpm离心5min,吸弃上清。5. 重复步骤2清洗,吸弃大部分上清,留极少部分上清液,吹吸悬浮样品。6. 使用10μL 移液器小心将样品加入已经制备好的琼脂空腔中,使样品充满空腔大部分,添加过程中尽量避免气泡出现。7. 吸取50μL溶化的琼脂,快速滴加到空腔琼脂上封口,冰浴5 min,待琼脂完全凝固。8. 使用单面刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的琼脂包埋块,稍作修葺。9. PBS清洗3次,10 min/次。10. 1%锇酸固定液固定1 h。11. PBS清洗3次,10 min/次。二、 脱水1. 按丙酮与灭菌水体积比3:7配制30%脱水剂。吸弃样品管/瓶中的PBS,快速加入现配的脱水剂(脱水换液过程禁止出现样品暴露空气中现象,可不全部吸完,略有剩余,使样品浸润;动作应迅速准确),室温放置或摇床轻摇45 min。加入按30%、50%、70%、90%、100%(v/v)的浓度梯度进行脱水。2. 配制50%脱水剂,快速换液,室温轻摇45 min。3. 配制70%脱水剂,快速换液,室温轻摇45 min。4. 配制90%脱水剂,快速换液,室温轻摇45 min。5. 使用纯丙酮快速换液,室温轻摇30 min③。6. 重复步骤5一次。三、 渗透包埋在此步脱水操作完成后即可开始配制渗透用包埋剂,以免安排不周。样品浸泡在纯丙酮中时间不宜过久,以免造成样品较脆,不利于超薄切片。1. 配制渗透用树脂包埋剂1) 取干净的10 mL注射器,拔去活塞,用封闭针头堵住注射口,放于通风橱中。2) 小心倾倒B液9 mL到注射器中;然后再小心倾倒A液1 mL。3) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色均匀,无丝状液体。4) 小心拔去活塞,通风橱中操作,缓慢滴加14滴DMP-30。5) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色完全均匀,无丝絮状分色,竖直放置待用。2. 按照包埋剂与丙酮体积比3:7配制30%渗透剂,快速吸弃样品管中纯丙酮并加入渗透剂,轻摇渗透3 h。3. 按照包埋剂与丙酮体积比7:3配制70%渗透剂,快速换液,轻摇渗透过夜。4. 重新配制包埋剂,并小心推按注射器,将包埋剂挤到包埋模具中至液面略凸。5. 解剖针挑取样品到纯包埋剂中,渗透3 h。6. 小心挑取样品,滤纸上稍微沾下吸弃部分粘附的包埋剂,轻轻放置到未渗透过样品的包埋孔中,小心将样品按到底,摆放好位置。记录各样品对应包埋块编号。7. 梯度温度聚合包埋1) 37℃烘箱中12 h,期间定时观察样品有无漂移现象,如有,则再次小心摆放样品位置。2) 45℃烘箱中12 h。3) 60℃烘箱中24 h。四、 修块与切片1. 拿到包埋块后检查样品位置是否得当,选取位置好的包埋块优先进行修块、切片。2. 粗修包埋块1) 使用六角扳手将包埋块固定在样品头上,露出长度合适。2) 将样品头固定在修块机上,体视镜观察修块,分四个方向将包埋块头部多余的包埋剂修去,暴露出组织块。3) 使用锋利的单面刀片修去组织块周围毛刺的包埋剂,使其四边光滑清晰。4) 卸下样品头装至切片机上,使用玻璃刀修片,直至样品表面光滑清晰。3. 半薄切片1) 将粘有水槽的玻璃刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见900nm厚度切片反光为亮绿色。6) 待有切片下来形成4-6片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,放到干净载玻片上,酒精灯略微加热,使水蒸干,并对着光亮用记号笔标示切片所在位置。4. 半薄切片染色1) 吸取20μL甲苯胺蓝染液,滴加到载玻片放有切片的位置,室温静置30 s 。2) 去离子水冲洗玻片,直至不再有蓝色。吸水纸上沥干,酒精灯略微加热,加速切片上的水分蒸发。3) 显微镜观察切片质量和样品位置。5. 精修包埋块1) 移去装有水槽的玻璃刀,取下装有包埋块的样品头,装至修块机上。2) 根据半薄切片结果,使用新的锋利刀口,小心修理包埋块四边,使其尽可能的光滑、平整。6. 超薄切片1) 将钻石刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的干涉光谱颜色一致;继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见70nm厚度切片反光为亮灰色及浅灰色。6) 待有切片下来形成10-20片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,轻轻放到干净载膜铜网上,用尖角滤纸靠近铜网边缘缓慢吸干水分。8) 轻轻移去捞片环,将载有切片的铜网放到铺有滤纸的平皿中,晾干待染色观察。五、 染色1. 醋酸双氧铀染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。2) 将放有切片的载网小心放到染色盘上,有切片面靠上,并稍微用镊子按载网边缘,使其与染色盘接触粘附牢固。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色30 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。6) 重复清洗2次。2. 柠檬酸铅染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。④2) 在放置染色盘的平皿中放入2片固体NaOH,用以吸收平皿中CO2气体。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色8 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。连续染色时,载网不需要从染色盘上拿下,清洗后直接进行铅染即可,但是铅染液要现用现取。6) 重复清洗2次。7) 小心夹取载网,放置到铺有滤纸的干净平皿中,晾干待电镜观察。六、 电镜观察1. 取出样品杆,打开样品夹,小心放入载网,合上样品夹,并转动样品杆,轻敲确保样品夹已准确固定载网。2. 将样品杆插入透射电镜样品室,开始抽气。3. 打开灯丝开关,等待检测电流出现后,打开观察窗开始观察。4. 先在低倍下找到切片,再高倍观察切片,寻找待看目标,仔细对焦。5. 将切片目标区域遇到观察窗中间后,调整灯丝电流密度为3.8 pA/cm2。6. 插入拍照CCD,Start View,微调焦距,Start Acquire 拍照。7. 拍照完毕,按格式需求保存照片到指定文件夹。8. 使用专用写保护闪存盘拷贝数据到公共电脑观察、使用。三、应用领域1、材料领域材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电子显微镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结 构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。2、物理学领域在物理学领域中,电子全息术能够同时提供电子波的振幅和相位信息,从而使透射电子显微镜在磁场和电场分布等与相位密切相关的研究上得到广泛应用。目前,透射电子显微镜结合电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。3、化学领域在化学领域,原位透射电子显微镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。透射电子显微镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料Z常用的表征手段之一。4、生物学领域在生物学领域,X射线晶体学技术和核磁共振常被用来研究生物大分子的结构,已经能够将蛋白质的位置精度确定到0.2nm,但是其各有局限。X射线晶体学技术基于蛋白质晶体,研究的常常是分子的基态结构,而对解析分子的激发态和过渡态无能为力。生物大分子在体内常常发生相互作用并形成复合物而发挥作用,这些复合物的结晶化非常困难。核磁共振虽然能够获得分子在溶液中的结构并且能够研究分子的动态变化,但主要适合用来研究分子量较小的生物大分子。
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • “超级”微波消解与自动化结合:破解复杂样品全自动消解难题
    杭州谱育科技发展有限公司(简称“谱育科技”)一直以来都积极推动以技术创新实现分析检测及监测的现场化、自动化、智能化,致力于成为全球领先的科学仪器制造商,在先进工业、生态环境、医疗诊断、生命科学、食品药品、应急安全等领域为用户提供解决方案,推动我国科学仪器发展。近日,谱育科技创新研制的全自动超级微波消解系统荣获2022年度“朱良漪创新成果奖”,这是继上一年获此奖项的又一次获奖,是科学仪器行业对谱育科技创新能力的再一次肯定。为了了解谱育科技与微波消解的“不解之缘”,窥探其保持创新活力并获得成功的“秘诀”,仪器信息网特别邀请谱育科技为我们分享这“背后的故事”。仪器信息网:继去年荣获“朱良漪创新成果奖”后,谱育科技在2022年再次获得此奖,请您谈一谈获奖感受,并简单的介绍下此次获奖的成果。谱育科技:非常感谢朱良漪奖组委会、评审专家给予谱育科技的肯定,同时也感谢在此过程中给与支持和帮助的各位专家,此次获奖是对我们前期工作的肯定,更是对我们后续工作的鞭策。去年、今年持续获奖,也代表了谱育科技在分析仪器上持续奋斗的精神,是对公司创新能力的再一次认可。此次获奖的成果为全自动超级微波消解系统,是对国内科学仪器创新的另一种诠释。谱育科技团队攻克技术难点,开发了基于微波又可实现全自动的微波消解系统,弥补了传统微波操作繁琐、时间长、效果不理想等不足。系统结合多项自研创新技术,其工作温度、压力稳定性、升温速率、冷却效率等指标与国际同类产品相当,达到了国内先进水平。仪器信息网:国内外微波消解产品品牌众多,其中不乏做得非常不错的国产厂商,谱育科技选择这个品类的背景和初衷是什么?谱育科技:接触这个品类时,我们了解到,在样品前处理过程中,微波消解作为有效的手段,能解决常规样品难溶性问题,但是,部分难溶性样品需要更高的消解温度、更高的消解压力才能得到有效消解。为了解决此类难溶难消解样品(例如peek材料、石墨碳矿样等)的消解问题,同时为了结合自动化智能化的设备发展趋势,真正意义上把分析人员从繁琐重复的前处理工作中释放出来,我们采用新一代微波消解技术+自动化系统设计,研制出了消解更加高效、操作更加方便、使用更加安全的超级微波消解系统。同时,谱育科技具备成熟的质谱、色谱、光谱、理化等分析检测技术,而超级微波能够有效提升无机前处理的平台能力,两者结合可持续拓展整体产品组合,以全面的产品体系、创新的应用方案来满足更多客户需求。仪器信息网:该成果经历了怎样的研制过程,取得了哪些里程碑式的进展?当前成果的产业化情况如何?谱育科技:项目从2019年研发立项到2021年研制成功历时近3年,其中,2020年完成了工程样机的集成和应用测试,2021年完成产品样机系统测试,同时完成了生产线建设和产品批量交付。该产品申请了发明专利5项,申请软著2项。每一次客户的难处理样品得到有效解决,都是我们最大的喜悦,也是成果能力的体现。当前该成果已经建立了年产300套的生产线,实现了产业化。在全国多个省市销售200余台。该成果近3年在政府质检、疾控、大型三方检测机构、科研院所等单位都实现规模应用,有效提升了现有样品前处理的手段和能力。仪器信息网:该成果实现了怎样的创新突破?解决了哪些以前没有解决的应用难题,最适合的应用场景有哪些?谱育科技:“全自动超级微波消解系统”首创了同时多腔体独立控制消解模式,通过负载动态自适应的调节算法,提升微波传输效率;自锁式高压微波消解容器的设计,提高了微波消解仪的安全性;单反应腔多样品消解模式设计,实现了复杂样品的全自动消解。该系统将超级微波消解技术与自动化技术相结合,实现了样品消解全流程自动化,与ICP-OES/ICP-MS等仪器进行联用,实现元素分析全流程自动化。仪器信息网:全自动超级微波消解系统可以与谱育科技哪些仪器产品结合提供整体解决方案?请分享1-2个这方面的成功案例。谱育科技:目前该成果可以与公司现有的无机光谱、质谱产品实现自动化联用,实现了系统的自动化应用,提供样品前处理到分析一体化解决方案,同时也与实验室光谱、质谱、理化相关仪器形成整体解决方案,形成行业应用。例如,中国农业科学院作物科学研究所ICS工作人员采用谱育超级微波进行消解,通过SUPEC 7000 ICP-MS对小麦籽粒的8种矿质元素(B、Mg、Ca、Zn、Mo、Mn、Fe、Cu)含量进行检测分析, 以期为小麦矿质元素遗传改良提供有效材料基础。在开启碰撞模式的情况下,对于小麦籽粒这种具有复杂基体的样品,基于此微波消解方法的稳定可靠性,SUPEC 7000能有效消除基体干扰,保持较高的灵敏度、准确度、精密度和稳定性。仪器信息网:围绕成果及相关技术,谱育科技后续还将开展哪些创新工作?谱育科技:未来,围绕分析自动化、实验室4.0的建设目标,我们将进一步加大产品研发投入,优化产品组合,提升产品性能,满足用户更多的需求。结合分析仪器的自动化联用,甚至全自动实验室建设中实现系统联用。在样品前处理仪器、系统、分析仪器、分析自动化系统中不断精进技术,以持续创新应用,为实验室自动化提供有力支撑。仪器信息网:连续两次获得“创新成果奖”,请分享一下公司在产品创新方面的心得?产品创新点来源于哪里?贵公司是如何选择产品研发方向、实现成果转化并成功推向市场的?谱育科技:对于谱育科技来说,产品创新的第一来源就是客户需求,我们始终致力于满足客户未被满足的需求。从2021年的高性能双通道走航质谱分析仪到2022年的全自动超级微波消解系统,我们都是洞察了现有市场的客户需求之后,再展开大面积调研、总结归纳、提炼需求,进一步去解决市场痛点,只有满足客户需求的产品才是成功的产品。谱育科技积极拓展技术平台,补齐自身短板,希望在高端科学仪器领域能不断拓宽自身能力,掌握更多先进技术,用新技术、新产品、新方案来满足客户新需求。同一个问题可以有多个解,我们多掌握一种技术,客户就能多一个选择。实现成果转化的驱动力源自我们强大的研发能力,我们的研发投入占比超20%,研发人员中博硕占比超60%,坚实的研发实力让我们有将需求转化为成果的能力,并根据市场反馈实现快速迭代,最终得到客户认可。产品详见:谱育科技EXPEC 790系列 全自动超级微波消解系统
  • 关于微波消解处理高有机质药用胶囊样品的几点思考
    关于微波消解处理高有机质药用胶囊样品的几点思考  2010年新版《中国药典》中规定,胶囊和明胶(胶囊用)样品中元素分析的预处理可以采用微波消解方法进行样品消化,同时将样品处理量提高至约0.5 g。但由于这类样品有机质基体含量高,消解过程中会产生大量气体并形成瞬间高压。倘若前处理方法不当,极易导致样品或目标元素(特别是Hg、As、Pb等易挥发元素)的损失,甚至可能导致影响操作人员的安全问题。  目前,一些微波仪器厂商声称,可以通过采用增加样品罐体积或者提高样品罐耐压能力等方式解决上述问题。但这些解决方案也存在许多问题,尤其是安全隐患问题。,因此有必要对上述问题及其“解决方案”进行探讨。  1) 增加样品罐容体积?  增加样品罐容积,可以适当减少样品瞬间高压所造成喷溅甚至爆罐等安全问题。然而,容器体积增加的幅度必须较大,如果只是从现有的60mL增加至100 mL,其效果并不明显。另一方面,罐体体积过大,其耐压能力或安全性能有可能大幅下降,而且较大的罐体体积亦可引起微量目标元素的玷污或损失(样品量仅为0.5 g)。  2) 提高罐体的抗压强度?  提高罐体的抗压强度当然是个不错的选择。目前国内一些厂家声称,,采用所谓的PEEK等耐压材料加工的罐体,其理想耐压值达10 MPa或许更高。但必须指出的是,实际工作中,针对胶囊类样品消解过程中所产生的高压并非是渐进式增加的,而是爆发式增加的,其瞬间的压力大小并不可知或者不容易测得,更重要的是,化学反应产物引起瞬间高压是不可能通过衰减或者关闭仪器微波能量而得到即时控制的,反应产生的大量气体很有可能会使压力远高于罐体所标称的最高耐压值,因此仍然存在安全隐患 另外,在瞬间高压的情况下,防爆膜作为紧急泄压结构是否能起到应有的作用也值得怀疑。  由此可见,简单强调增加容器体积或耐压能力,即可完全解决高有机质基质样品的密闭微波消解所遭遇的问题,是不科学的,也是不严肃的,特别是涉及到操作者的安全问题,需要慎之又慎。  3)合理的解决方案!  一般来说,药品和食品等有机质含量向的样品消解较容易,毋须高压(通常不高于2-3 MPa)。采用密闭微波消解这类样品,首要关注的并非压力参数对消解效率的影响,而是因样品中可能存在的大量有机质基体所引起的安全问题!对于空心胶囊和明胶这种反应时瞬间产生高压的样品处理的安全问题,通过增加样品体积或提高耐压能力有利有弊,应综合各方面的情况。如果仅为仪器推广而简单强调只能使用所谓“超高耐压”罐体在超高压下进行消解,其实是一种误导和不负责任的做法。实际上,无论对于厂家还是用户,均应根据仪器的性能和样品特点等,通过实验条件优化出一套既安全又有效的消解程序才是解决问题的关键。  最近,我公司与中山大学和复旦大学合作,采用上海新拓分析仪器科技有限公司XT系列微波消解仪(独特的压力骤升微波“休克”以及“多罐压力同时监控”等安全功能),对0.5 g胶囊以及胶囊用明胶样品进行消化处理(样品罐体积60 mL),通过ICP-AES测定消解液中的Cr。大量实验研究发现,静置浸泡过夜的样品,经阶段式中低压消解(整个过程中采用的最大压力均不超过3.0 MPa,远低于常规微波消解仪器的最高耐压值,见表1注),即可获得令人满意的结果。实验中虽然也出现过压力突增并快速回落的现象,但并不足以造成安全问题或样品泄漏,样品处理的重现性依然有所保证。简易分析步骤及测量结果如表1所示。表1 样品测量结果(单位:mg/g, n=3)样品名称平均值相对平均偏差/%加标回收率/%胶囊0.942.2110明胶1150.793注:样品处理过程为u准确称取0.5g磨碎的样品于50 mL溶样杯中,加入5-6 mL高纯浓HNO3,小心振摇,加盖(留有缝隙)防尘,然后静置过夜(不要采用加热处理方式,否则可能引起挥发性目标物的损失);v按常规微波消解方法将上述样品罐直接放入消解仪进行消化(三阶段消解程序的设定压力分别为0.5 MPa 0.8 MPa 2.5 MPa,总时间约为15-20 min);w样品消解完成后,以1-2%稀HNO3淋洗、转移并定容至10 mL;x ICP-AES测定消解液中Cr含量。   根据现有大量研究结果表明,采用微波消解方法处理胶囊等具有高基质含量的样品时,只要仪器消解等程序或操作步骤恰当,现有大多数常规微波消解仪器完全可以满足要求。当然,对于多样品的同时消解,微波消解仪器最好具有“多罐压力同时监控功能”(有些仪器没有该功能,仅采用单一“主控罐”方式监控或代表所有样品罐压力),从而防止有些样品因反应程度不同带来的压力不一致和安全失控等问题或安全隐患。  如需进一步了解相关的仪器信息或者具体的前处理方法,请来电咨询,电话:400-688-0892 或通过发送邮件至xintuo@sh-xintuo.com咨询。 上海新拓分析仪器科技有限公司
  • 牛津仪器发布全新大样品原子力显微镜Jupiter XR
    p  strong仪器信息网讯/strong 2月27日,牛津仪器Asylum Research宣布推出新型原子力显微镜(AFM)——Jupiter XR™ AFM,这是一款能够利用单一扫描器同时提供全自动、多功能、高扫描速度和高精度的大样品AFM。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/fcb4ea90-3952-4695-954b-639d2f0cb1fe.jpg" title="000.jpg" alt="000.jpg" style="width: 300px height: 259px " width="300" vspace="0" height="259" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "全新大样品原子力显微镜Jupiter XR™ AFM/span/pp  Jupiter XR™ 提供超过210 mm的样品空间,可呈现更高分辨率,更快速获得结果,用户操作更简单,并且同时满足学术研究和工业研发需求。通过Asylum Research近20年的AFM技术创新历史积累,Jupiter XR™ 将大样品原子力显微镜的性能提升至新高度。/pp  “多年来,用户们一直期望我们能够提供一款大样品AFM,我们也非常高兴这款新推出的Jupiter从性能和易用性等多个方面都能满足用户的需求。”strong Asylum Research总裁Roger Proksch博士表示,/strong“创立至今,Asylum Research始终致力于不断推动AFM技术的极限,Jupiter XR™ 不但具备了一系列Asylum Research独特核心技术——低噪声位置传感器、Cypher AFM出色的分辨率和速度、新的纳米力学测量技术以及blueDrive™ 光热激发轻敲技术等,同时也保持了Asylum Research产品一贯的可靠性和专业的客户支持。”/pp  Jupiter XR™ 具有可高速精准定位的210 mm样品台,可对整个样品任意位置进行精准定位 简单直观的软件操作界面,并且具备全自动的激光和探测器对准,自动智能优化成像参数,自动多点成像和分析 以及Asylum Research独特的blueDrive™ 光热激发轻敲模式,可以大大提高探针尖端寿命和测量可重复性。/pp  与其他Asylum Research原子力显微镜系列产品一样,Jupiter XR™ 具备了广泛的应用和多样的配件体系等特点,并采用模块化设计便于将来扩展,可用于科学研究、平台实验中心、大批量工业应用和故障分析实验室等领域。无论身处怎样的研究领域,Jupiter XR™ 均可凭借其易用性、高速扫描、高性能和灵活性游刃有余。/p
  • 实验室微型喷雾干燥机样品试喷申请报告表
    实验室微型喷雾干燥机样品试喷申请报告表 使用仪器型号L-117实验室微型喷雾干燥机申请单位 单位地址 申请人 职 位 联系电话 EMAIL 一 实验物料的成分:1、化学结构式:2、有否含毒污染:二 实验物料的特性:1、溶液状态:2、粒径范围:3、熔点:三 试用目的:1、理想粒径:2、其他要求:四 试验样品数量:250ml-300ml五 试验时间:2小时。六 试验费用:活动期间免费。七 试验形式:在我公司专业工程师指导下试验,并免费培训相关使用技巧。八 希望参加试验日期: (由于参加活动人数比较多,请提前一周申请)。九 试验地点:北京市丰台区丰北路甲45号鼎恒中心6A 十 活动路线:公交路线:自北京站:乘地铁至万寿路换乘451、809公交车到达自西客站:乘937支、477路公交车到达自 南 站:乘458路公交车到达周边主要公交线路:特7、205、323、323快、458、480、604、654、687、658、937支、944支、958、971、973路等公交车丰台北路站开车路线:西三环丽泽桥西500米路北即到。 十一备注:活动地点:北京来亨科贸有限责任公司 北京市丰台区丰北路甲45号鼎恒中心6A各区域联系人:京津冀  王丝蒙 13488822867/63847795 华南地区  高浩  13141060808/63815565    东北地区  陈文俊  13066766312
  • 安东帕公司为USP新通则232和233提供样品制备解决方案
    美国药典(USP)不断被修订且越来越严格。人们普遍认为目前的 USP231&ldquo 重金属限量检测&rdquo 在范围、准确性、灵敏度和专属性等方面均存在不足,将在 2013 年被新通则 USP232(限度)和 233(方法)所取代。新方法将克服当前方法的局限,特别是关于分析物列表、样品制备、挥发性分析物的保留以及密闭容器样品消解和现代仪器技术的应用,以实现单个分析物的精确回收和浓度测定。 USP233 针对固体样品给出的首选消解技术是密闭容器微波消解。密闭容器避免了挥发性元素(如Hg)的损失问题,这是 USP231 的一个遗留问题,已经通过了充分认证。安东帕全密闭微波消解法可不受药品配方及化学结构影响,完全消解原料药、制剂及溶剂等以便分析其杂质(如重金属)。 安东帕公司利用多年在样品制备领域及制药行业丰富的应用经验,将为您提供全面的应用方法支持及专业的制药行业验证文件包,满足制药行业严格的法规要求,节省验证的时间与投入。
  • 252.8万!海委水文局地下水测站水质样品检测项目
    项目编号:HWSWJHT2022-032项目名称:海委水文局地下水测站水质样品检测预算金额:252.8000000 万元(人民币)最高限价(如有):252.8000000 万元(人民币)采购需求:主要工作内容包括配合甲方开展海河流域565个地下水测站(包括25个地下水水源地取水口、186个保留生产井、354个国家地下水监测工程监测井)水质样品采集的有关协调工作,完成海河流域790个地下水样品的实验室检测分析,检测指标为《地下水质量标准》(GB/T14848-2017)中39项地下水质量常规指标:色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量(CODMn法)、氨氮、硫化物、钠、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、甲苯、总α放射性、总β放射性。出具地下水水质样品检测报告和相关数据。合同履行期限:自合同生效之日起1年本项目( 不接受 )联合体投标。
  • 赛默飞参加第三届全国样品制备学术报告会,ASE加速溶剂萃取仪+Rocket火箭蒸发器广受好评!
    2017年8月24日,第三届全国样品制备学术报告会在昆明文汇酒店隆重召开,赛默飞赞助本次前处理领域顶级盛会并发表赛默飞加速溶剂萃取-从上样到前处理一步到位;应对环境中SVOC检测赛默飞综合解决方案两项精彩报告,获得专家的一致好评与认可。本届会议由中国仪器仪表学会分析仪器分会样品制备专业委员会主办,中科院大连化物所关亚风研究员,军事医学科学院卫生学环境医学研究所高志贤研究员、东北大学理学院化学系分析科学研究中心王建华教授、中国农科院农业质量标准与检测技术研究所王静教授等专家学者分别作了精彩的大会报告。图为:中科院大连化物所关亚风研究员致辞 大会第一天新品推荐环节,赛默飞产品经理胡忠阳为大会带来名为赛默飞加速溶剂萃取-从上样到前处理一步到位的报告,着重介绍赛默飞在样品前处理领域的优势方案:ASE加速溶剂萃取+Rocket火箭蒸发器+GC/MS检测的全流程解决方案,相较于传统旋蒸、索氏提取等耗时耗力的分析方法,该方法从上样到检测,由仪器代为完成,大大缩减了前处理的复杂性和时间成本、最大程度的减小了人为带来的误差、更大限度的保障操作人员的职业安全,减少与有毒有害化学溶剂的接触机会。图为:产品经理胡忠阳介绍ASE加速溶剂萃取仪Rocket火箭蒸发器一经报告,就引发了在座专家的热烈讨论,会后不乏有前处理领域权威对Rocket火箭蒸发器的创新设计给于高度评价。图为:广受好评的Rocket全新设计理念赛默飞高级应用工程师车金水老师,在第二天的大会对SVOC检测领域赛默飞全新结局方案作出精彩报告。SPME Arrow全新技术及CSR大体积进样方案,都获得业内广泛关注,为行业研究中遇到的问题提供了全新的解决方式。图为:赛默飞高级应用工程师车金水-报告SVOC赛默飞解决方案 会后赛默飞展位人头攒动,众多老师咨询ASE+Rocket整体解决方案,赛默飞工程师与前处理专家进行深入交流,方案获得一直认可。如您需要了解赛默飞ASE+Rocket前处理解决方案请浏览我们的网站或咨询赛默飞工程师。
  • 赛默飞参加第三届全国样品制备学术报告会,ASE加速溶剂萃取仪+Rocket火箭蒸发器广受好评!
    2017年8月24日,第三届全国样品制备学术报告会在昆明文汇酒店隆重召开,赛默飞赞助本次前处理领域顶级盛会并发表赛默飞加速溶剂萃取-从上样到前处理一步到位;应对环境中SVOC检测赛默飞综合解决方案两项精彩报告,获得专家的一致好评与认可。 本届会议由中国仪器仪表学会分析仪器分会样品制备专业委员会主办,中科院大连化物所关亚风研究员,军事医学科学院卫生学环境医学研究所高志贤研究员、东北大学理学院化学系分析科学研究中心王建华教授、中国农科院农业质量标准与检测技术研究所王静教授等专家学者分别作了精彩的大会报告。图为:中科院大连化物所关亚风研究员致辞 大会第一天新品推荐环节,赛默飞产品经理胡忠阳为大会带来名为赛默飞加速溶剂萃取-从上样到前处理一步到位的报告,着重介绍赛默飞在样品前处理领域的优势方案:ASE加速溶剂萃取+Rocket火箭蒸发器+GC/MS检测的全流程解决方案,相较于传统旋蒸、索氏提取等耗时耗力的分析方法,该方法从上样到检测,由仪器代为完成,大大缩减了前处理的复杂性和时间成本、最大程度的减小了人为带来的误差、更大限度的保障操作人员的职业安全,减少与有毒有害化学溶剂的接触机会。图为:产品经理胡忠阳介绍ASE加速溶剂萃取仪 Rocket火箭蒸发器一经报告,就引发了在座专家的热烈讨论,会后不乏有前处理领域权威对Rocket火箭蒸发器的创新设计给于高度评价。图为:广受好评的Rocket全新设计理念 赛默飞高级应用工程师车金水老师,在第二天的大会对SVOC检测领域赛默飞全新结局方案作出精彩报告。SPME Arrow全新技术及CSR大体积进样方案,都获得业内广泛关注,为行业研究中遇到的问题提供了全新的解决方式。图为:赛默飞高级应用工程师车金水-报告SVOC赛默飞解决方案 会后赛默飞展位人头攒动,众多老师咨询ASE+Rocket整体解决方案,赛默飞工程师与前处理专家进行深入交流,方案获得一直认可。 如您需要了解赛默飞ASE+Rocket前处理解决方案请浏览我们的网站或咨询赛默飞工程师。
  • OPTON微观世界 | 第42期 制样方法对截面样品形貌的影响
    背景介绍硅橡胶是由硅氧键连接构成的高分子聚合物,硅氧键具有很强的键能,热稳定性,化学稳定性好,具有较强的耐老化性能;压缩率大,表面张力小,憎水防潮性好,比热容和导热系数小,不溶于水。填料的含量对聚合物复合材料的性能有很大的影响,还会影响混炼时的加工性能。加入过多的填料,会使混炼变得困难,还会直接影响到聚合物复合材料的力学性能,填料的含量控制在一定范围内,随着填料含量的增加,聚合物复合材料的性能是逐渐增加的,超过这个阈值,聚合物复合材料的性能则不会增加。填料在聚合物中分散越好,越容易形成网络,对聚合物复合材料的性能越佳。而填料的尺寸对其分散性有非常重要的影响:粒径越小,粒子之间越容易团聚,在聚合物中的分散更加困难,会使聚合物的力学性能急速下降;粒径过大,容易在聚合物中形成应力集中点,使其力学性能下降,因此,也不宜添加过多。所以如何控制填料的粒径和含量,需要通过SEM的实验结果来确定。本文采用了两种制样方法,使用蔡司Sigma300在低电压下不喷金直接观测硅橡胶截面形貌,对比观测氧化铝填料在硅橡胶中的分布情况。制样方法如下所示:(1)刀片切割:采用锋利的刀片切割出较薄的截面;(2)液氮淬断:剪取小块样品放入液氮中冷冻,由于橡胶韧性较好,则需冷冻较长时间。如图1所示图1不同制样方法:刀片切割(A);液氮脆断(B)不同制样方法对结果的影响:图2不同制样方法硅橡胶的截面形貌像A1,A2:刀片切割;B1,B2:液氮淬断实验结果表明:刀片切割后的样品,图中的聚合物基体有一定粘连,对判断 Al2O3填料在聚合物中的分散有一定的影响;但在液氮中淬断的样品,聚合物基体无粘连,很容易判断Al2O3填料在聚合物基体中的分散情况,如图2所示。如果聚合物薄膜较薄,直接用剪刀剪断或者刀片切割,样品的截面则会被表层覆盖,更难判断填料在基体中的分散。
  • 设备更新 | 中仪宇盛样品前处理仪器为您而来!
    设备更新 | 中仪宇盛样品前处理仪器为您而来!2024年03月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》。该方案将推动大规模设备更新,加快构建新发展格局、推动高质量发展,有力促进投资和消费,既利当前、更利长远。此行动方案“坚持鼓励先进、淘汰落后。建立激励和约束相结合的长效机制,加快淘汰落后产品设备,提升安全可靠水平,促进产业高端化、智能化、绿色化发展……”。中仪宇盛作为国产样品前处理仪器制造商,自公司成立以来,始终专注于样品前处理仪器的研究,秉承专业、品质、创新的理念。获得数十项知识产权证书,15年来已为上万家用户提供样品前处理仪器及服务,涵盖环境检测、食品安全、医疗卫生、疾病控制、材料研究、第三方检测机构等众多基础科学及行业应用。全自动热解吸仪重点推荐产品应用行业及领域:环境监测 / 建工检测 / 职业卫生 / 室内环境 / 车内空气 / 风味分析 / 高等院校 / 科研院所适用标准:◆ 《GB/T 18883-2022 室内空气质量标准》◆ 《HJ 583-2010 环境空气苯系物的测定 固体吸附/热脱附-气相色谱》◆ 《HJ 644-2013 环境空气 挥发性有机物测定 吸附管采样-热脱附/气相色谱-质谱法》◆ 《HJ 734-2014 固定污染源废气 挥发性有机物的测定 固相吸附/热脱附-气相色谱》◆ 《GBZ/T 300.62-2017 工作场所空气有毒物质测定 第 62 部分:溶剂汽油、液化石油气、抽余油和松节油》◆ 《GBZ/T 300.66-2017 工作场所空气有毒物质测定 第 66 部分:苯、甲苯、二甲苯和乙苯》◆ 《GBZ/T 300.68-2017 工作场所空气有毒物质测定 第 68 部分:苯乙烯、甲基苯乙烯和二乙烯基苯》◆ 《HJ/T 400-2007 车内挥发性有机物和醛酮类物质采样测定方法》◆ 《GB 50325-2020 民用建筑工程室内环境污染控制标准》◆ 《GB 36246-2018 中小学合成材料面层运动场地》◆ 《GB/T 18204.2-2014 公共场所卫生检验方法 第2部分:化学污染物》……全自动顶空进样器重点推荐产品应用行业及领域环境监测 / 医疗器械 / 疾控 / 司法 / 医院 / 建工涂料检测 / 药厂 / 水厂 / 高等院校 / 科研院所适用标准◆ 《GB/T 5750.8-2023生活饮用水标准检验方法第8部分:有机物指标》◆ 《HJ 620-2011水质挥发性卤代烃的测定顶空气相色谱法》◆ 《HJ 642-2013土壤和沉积物挥发性有机物的测定顶空/相色谱一质谱法》◆ 《HJ 643-2013固体废物挥发性有机物的测定顶空/气相色谱-质谱法》◆ 《HJ 679-2013土壤和沉积物丙烯醛丙烯睛睛的测定顶空气相色谱法》◆ 《HJ 714-2014固体废物挥发性代烃的测定顶空/气相色谱-质谱法》◆ 《HJ 736-2015土壤和沉积物挥发性代烃的测定顶空/气相色谱-质谱法》◆ 《HJ 741-2015土壤和沉积物挥发性有机物的测定顶空/气相色谱法》◆ 《HJ 742-2015土壤和沉积物挥发性芳香的测定顶空/气相色谱法》◆ 《HJ 760-2015固体废物挥发性有机物的测定顶空气相色谱法》◆ 《HJ 810-2016水质挥发性有机物的测定顶空/气相色谱-质谱法》◆ 《HJ 874-2017固体废物两烯醛内烯睛和乙睛的测定顶空气相色谱法》◆ 《HJ 959-2018水质四乙基铅的测定顶空/气相色谱-质谱法》◆ 《HJ 975-2018 固体废物苯系物的测定顶空气相色谱法》◆ 《HJ 1067-2019水质苯系物的测定顶空/气相色谱法》◆ 《HJ 1072-2019 水质的测定顶空/气相色谱法》◆ 《GB/T 42430-2023 血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验》◆ 《SN/T 4148-2015包装材料中挥发性有机物(VOCs)的测定静态顶空气相色谱法》◆ 《GB/T 16886.7-2015医疗器械生物学评价第7部分:环氧乙烷灭菌残留量》◆ 《HJ 1289-2023土壤和沉积物 15种酮类和6种醚类化合物的测定顶空/气相色谱-质谱法》……全自动吹扫捕集装置重点推荐产品应用行业及领域环境监测 / 疾控 / 医院 / 制药 / 食品 / 石油化工 / 高等院校 / 科研院所适用标准◆ 《GB/T 5750.8-2023 生活饮用水标准检验方法》◆ 《HJ 605-2011 土壤和沉积物 挥发性有机物的测定 吹扫捕集 气相色谱质谱法》◆ 《HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 》◆ 《HJ 686-2014 水质 挥发性有机物的测定 吹扫捕集/气相色谱法》◆ 《HJ 713-2014 固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法 》◆ 《HJ 735-2015 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集 气相色谱质谱法 》◆ 《HJ 788-2016 水质 乙腈的测定 吹扫捕集/气相色谱法》◆ 《HJ 806-2016 水质 丙烯腈和丙烯醛的测定 吹扫捕集/气相色谱法》◆ 《HJ 866-2017 水质 松节油的测定 吹扫捕集/气相色谱-质谱法 》◆ 《HJ 893-2017 水质 挥发性石油烃的(C6-C9)的测定 吹扫捕集/气相色谱法》◆ 《HJ 896-2017 水质 丁基黄原酸的测定 吹扫捕集/气相色谱-质谱法 》◆ 《HJ 1020-2019 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集 气相色谱法 》◆ 《SL 393-2007 吹扫捕集气相色谱-质谱分析法(GC-MS)测定水中挥发性有机污染物》◆ 《SL 741-2016 水质挥发性卤代烃的测定吹扫捕集-气相色谱法》◆ 《SL 748-2017 水质 丙烯醛、丙烯腈和乙醛的测定 吹扫捕集-气相色谱法》……萃取蒸馏系列重点推荐产品应用行业及领域环境监测 / 食品检测 / 农作物检测 / 医药领域 / 石油化工 / 高等院校 / 科研院所适用标准快速溶剂萃取仪◆ 《GB 23200.9-2016 粮谷中475种农药及相关化学品残留量测定气相色谱-质谱法》◆ 《GB/T22996-2008 人参中多种人参皂含量的测定液相色谱-紫外检测法》◆ 《GB/T23376-2009 茶叶中农药多残留测定气相色谱/质谱法》◆ 《SL 391-2007 有机分析样品前处理方法》◆ 《HJ 782-2016 固体废物有机物的提取加压流体萃取法》◆ 《HJ 783-2016 土壤和沉积物有机物的提取加压流体萃取法》◆ 《HJ 1290-2023 土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》真空平行浓缩仪◆ 《GB 23200.8-2016 水果和蔬菜中500种农药及相关化学品残留量的测定 气相色谱-质谱法》◆ 《GB 23200.9-2016 粮谷中475种农药及相关化学品残留量的测定 气相色谱-质谱法》◆ 《GB/T 20752-2006 猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定 液相色谱-串联质谱法》◆ 《HJ 743-2015土壤和沉积物 多氯联苯的测定 气相色谱-质谱法》◆ 《HJ 784-2016土壤和沉积物 多环芳烃的测定 高效液相色谱法》◆ 《HJ 1290-2023 土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》固相萃取仪◆ 《HJ 699-2014水质有机氯农药和氯苯类化合物的测定气相色谱-质谱法》◆ 《HJ 715-2014水质多氯联苯的测定气相色谱-质谱法》◆ 《HJ 716-2014水质硝基苯类化合物的测定气相色谱- 质谱法》◆ 《HJ 805-2016土壤和沉积物多环芳的测定气相色谱-质谱法》◆ 《HJ 835-2017土壤和沉积物有机氯农药的测定气相色谱-质谱法》◆ 《HJ 902-2017 环境空气多氯联苯的测定气相色谱-质谱法》◆ 《GB 23200.8-2016水果和蔬菜中500种农药及相关化学品残留量测定方法气相色谱质谱法》◆ 《GB 5009.22-2016食品安全国家标准食品中黄曲霉毒素B族和G族的测定》◆ 《GB/T 5750.8-2023生活饮用水标准检验方法低8部分:有机物指标》一体化智能蒸馏仪◆ 《GB/T 5750.5-2023生活饮用水无机非金属指标》◆ 《GB 8538-2022 饮用天然矿泉水检验方法》◆ 《HJ 484-2009水质氰化物的测定》◆ 《HJ 487-2009水质氟化物的测定》◆ 《HJ 503-2009水质挥发酚的测定》◆ 《GB 5009.225-2016酒中醇浓度的测定》◆ 《GB 5009.266-2016 食品中甲醇的测定》◆ 《NY/T 2013-2011柑橘类水果及制品中香精油含量的测定》◆ 《DB34/T 2499-2015白酒工业废水中挥发性脂肪酸的测定》◆ 《HJ 717-2014土壤质量全氮的测定》◆ 《HJ 745-2015土壤氰化物和总氰化物的测定》◆ 《HJ 833-2017土壤和沉积物硫化物的测定》大气预浓缩系列重点推介产品应用行业及领域环境空气监测 / 恶臭硫化物监测 / 工业污染源监测 / 工作场所有毒气体分析 / 高等院校 / 科研院所适用标准◆ 《GB/T 14678-93空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定》◆ 《HJ 759-2023环境空气65种挥发性有机物的测定 罐采样/气相色谱-质谱法》◆ 《HJ 1078-2019 固定污染源废气 甲硫醇等8种含硫有机化合物的测定 气袋采样-预浓缩/气相色谱-质谱法》 气体进样稀释系列重点推介产品 应用行业及领域实验室标气稀释 / 环境空气检测 / 石油化工气体分析 / 土壤水汽取样 / 高等院校 / 科研院所适用标准◆ 《HJ 1261-2022 固定污染源废气 苯系物的测定 气袋采样直接进样-气相色谱法》◆ 《HJ 38-2017 固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法 》
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制