当前位置: 仪器信息网 > 行业主题 > >

微纳米加工

仪器信息网微纳米加工专题为您整合微纳米加工相关的最新文章,在微纳米加工专题,您不仅可以免费浏览微纳米加工的资讯, 同时您还可以浏览微纳米加工的相关资料、解决方案,参与社区微纳米加工话题讨论。

微纳米加工相关的方案

  • 微纳米气泡的粒度测试方法
    微纳米气泡是指液体中存在的直径在100nm-100μ m之间的气泡,是通过专用的气泡发生器产生的。含有微气泡的水具有很多奇特的功效:用微纳米气泡养鱼能提高产量,用微纳米气泡栽培或灌溉能促进作物生长,微纳米气泡浴能有清洁、镇静和愉悦身心的效果,向污水中注入微气泡能加速水体及底泥中污染物的生物降解过程,实现水质净化。但是,微纳米气泡的粒度分布决定了它的性能,准确测试微纳米气泡的粒度,对验证微纳米气泡发生器的效能、评价微纳米气泡的效果至关重要。那么,怎样测试微纳米气泡的粒度呢?
  • 微纳米气泡发生器在水处理中的应用
    微纳米气泡的出现及其不同于普通气泡的特点,使其在水处理等领域显现出优良的技术优势和应用前景,介绍了微纳米气泡以及其比表面积大、停留时间长、自身增压溶解、界面电位高、产生自由基、强化传质效率等特点,论述了微纳米气泡在水体增氧、气浮工艺、强化臭氧化、增强生物活性等环境污染控制领域的应用研究。引 言微米气泡(microbubble)通常是指存在于水中直径为10~50μ m的微小气泡,直径小于200nm的超微小气泡称为纳米气泡(nanobubble),介于微米气泡和纳米气泡之间的气泡称为微纳米气泡(micro-nano bubble),与传统大气泡(coarse bubble,直径50mm)和小气泡(fine bubble,直径5mm)相比,微纳米气泡直径小,其传质特性和界面性质均显著不同于传统大气泡。
  • 微纳米气泡的直观表征方法
    微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡数量、球形度等信息,用于表征、鉴别微米气泡;通过纳米颗粒跟踪分析技术,测得纳米气泡的粒径分布、浓度、电位等信息,用于全面表征纳米气泡的性质。
  • 3D打印纳米级光学级玻璃的无烧结低温路线
    3D打印纳米级光学级玻璃的创新无烧结低温路线通过引入多面体低聚倍半硅氧烷(POSS)树脂,结合双光子聚合(TPP)技术和飞秒激光加工,实现了在650°C低温下直接形成高质量熔融二氧化硅。该技术突破了传统高温烧结的限制,解决了石英玻璃在微纳米尺度上的加工难题,为微系统技术的发展提供了新思路。实验证明,该技术能够制造高精度、复杂的三维纳米结构,满足纳米光子器件对精度和表面质量的高要求。
  • 拉曼光谱+微纳塑料+检测
    表面增强拉曼光谱(SERS)技术是一种结合拉曼散射和纳米技术的超灵敏振动光谱技术,检测水平可低至单分子,可应用于微纳塑料的检测研究。复旦大学张立武课题组之前的研究工作中,首次报道利用 SERS 技术实现了环境纳米塑料的检测(EST,2020, 54(24): 15594)。但是该研究中采用的商业化 Klarite 基底成本昂贵,不适宜广泛大规模的应用。
  • 纳米级尺寸电子束斑测量
    阿米精控科技(山东)有限公司专注于纳米运动控制及超精密机电系统领域的创新设计及产品研发,是一家集研发设计、制造、销售于一体,拥有全自主知识产权的微纳测控及超精密自动化“系统级硬科技”公司。阿米精控纳米运动平台基于微纳柔性机构和压电执行器实现超高分辨力纳米运动,内置光栅/电容微位移传感器,通过高性能纳米伺服系统实现闭环控制,具有亚纳米级运动分辨率、纳米级运动精度和高速、高动态轨迹扫描功能。
  • 原子层沉积 ALD 在纳米材料方面的应用
    在微纳集成器件进一步微型化和集成化的发展趋势下,现有器件特征尺寸已缩小至深亚微米和纳米量级,以突破常规尺寸的极限实现超微型化和高功能密度化,成为近些年来的热点研究领域。微纳结构器件不仅对功能薄膜本身的厚度和质量要求严格,而且对功能薄膜/基底之间的界面质量也十分敏感,尤其是随着复杂高深宽比和多孔纳米结构在微纳器件中的应用,传统的薄膜制备工艺越来越难以满足其发展需求。ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。
  • 活塞环的纳米力学表征
    是德科技公司的微纳米力学测试系统(Nano Indenter G200)不仅能测试出活塞环的纳米压痕硬度和杨氏模量,还可以通过摩擦磨损测试定量研究活塞环的耐磨特性,为新产品的研发和质量检测给出判据。
  • 纳米力学测试系统在生命科学领域的应用
    是德科技UTM T150 纳米力学测试系统适用于对多种材料的微纳米力学特性进行表征。T150系统对样品进行精确加载,在设计范围内对样品的静态和动态微拉伸和压缩性能进行精确测试与分析。T150系统支持行业内最大的动态载荷范围(500mN),和市场上最高的测试精度(储存模量和损耗模量的测试范围横跨5个数量级),通过对各点进行精确测量,可对多种材料的动态性能进行分析。此外,T150系统也广泛用于对生物材料的拉伸/压缩性能进行测试。
  • 利用纳米傅里叶红外光谱仪nano-FTIR对生物材料中矿物质进行化学成像
    本文次以自然纳米结构(贝壳和骨质中的矿物质颗粒)的化学鉴定,证明通过红外近场显微镜技术能够解决以上问题。 纳米傅立叶红外光谱(nano-FTIR)是通过将傅立叶变换红外光谱技术(FTIR) 与散射式扫描近场光学显微技术(s-SNOM)结合获得的。对紫贻贝贝壳横截面抛光处理后,通过Nano-FTIR可以重复的观察到生物钙质微晶体的声子共振,以及生物文石质上明显不同的光谱特征。更重要的是,本研究次在紫贻贝贝壳中发现了尺寸为20nm左右、稀疏分布的纳米颗粒,其显著不同的光谱特征表明这些纳米颗粒为磷化物晶体。对人类牙齿界面的研究观察到了多组分磷酸盐的红外吸收峰。这些光谱在牙本质小管附近有明显的特征变换,证明了磷灰石纳米晶体的化学与结构的变化。红外光谱峰的强弱对应矿物质浓度变化,这点通过电镜得到印证。Nano-FTIR对结构的畸变反应敏感,因此非常适用于对生物矿物质形成和老化的研究。总体来说nano-FTIR适用于从微纳加工到临床骨科研究等多种学科中涉及复合材料的分析和鉴定工作。
  • 阴极发光设备(SEM-CL)在ZnO纳米线方面的应用
    由于ZnO具有宽的直接带隙(3,37 eV)、大的激子结合能(60 meV)以及优异的光学、压电和光电性能等特性,越来越多的应用领域认识到这种材料所带来的好处,特别是在涉及半导体、压电、光电和微纳米级高柔性机械性能的应用中,ZnO微/纳米线通常是许多领域的首选材料。
  • 采用升级Olympus共焦显微镜升级实现单分子跟踪和三维纳米成像
    耦合ISS的SMT系统到奥林巴斯共焦显微镜,激光扫描成像基于反馈算法,在扫描期间,根据要成像的物体的形状,连续地调整和确定激光束跟随的路径。该算法将激光光斑移动到离物体表面一定距离的位置,由于激光光斑的位置和离物体表面的距离是已知的参数,所以利用这些参数来重建物体的形状。三维细胞结构可以在几秒钟内分辨率达到20-40纳米,精度为2纳米。
  • 扫描电镜在功能化磁性纳米粒子处理废弃机加工乳液机制研究中的应用
    机械加工过程产生的废弃乳化液含有大量表面活性剂和矿物油,由于大量表面活性剂的存在,形成了纳米尺寸的微小油滴,同时表面活性剂成为一层稳定的保护膜,很难实现有效破乳。目前常用的处理技术有气浮、化学絮凝联合气浮、化学和电化学技术、化学破乳剂、膜技术及生物技术等。由于油滴尺寸小、质轻,通常需要很长的停留时间,油水分离比较缓慢且低效。
  • 应用闪光法测试评价微纳结构材料的热扩散率
    随着微电子技术的发展,微纳结构材料的热性能测试评价越来越得到广泛的需求和重视,这主要是由于这些低维材料热性能的测试十分困难。本文介绍了一种测试具有高导热性能的微纳尺寸纤维的测试方法,这种方法基于经典的闪光法(激光脉冲法),但对测量精度和不必要的复杂形式进行了改进。本文采用改进后的闪光法测量了各种碳基结构由聚酰亚胺和沥青构成的纤维,研究了这些纤维热性能随沥青含量的变化规律,测试结果与文献值相比不超过5%。
  • EM科特扫描电镜应用——硅片上的微纳结构观测
    纳米结构通常是指尺寸在 100nm 以下的微小结构。以纳米尺度的物质单元为基础,按一定规律构筑或组装一种新的体系。它包括一维的、二维的、三维的体系,这些物质单元包括纳米微粒、稳定的团簇或人造超原子、纳米管、纳米棒、纳米丝以及纳米尺寸的孔洞。结构表征广泛使用扫描电镜。
  • 涂层表面纳米微粒通过身体接触的传输
    随着纳米微粒在消费品中的使用越来越广泛,人体与纳米微粒的接触与迁移也越来越受到关注,并由此带来一个问题:消费品中的纳米微粒会迁移到人体中吗?人们主要通过身体接触来与这些产品发生互动,所以有必要了解纳米微粒是如何通过身体接触实现向人体迁移的。本文探讨了纳米材料表面上的纳米微粒如何迁移到抹布上,并集中讨论了纳米微粒释放的几大特征:总质量浓度、微粒数量浓度及微粒尺寸分布。我们检测了因抗菌性而被广泛使用的银纳米微粒,及油漆涂层表面的氧化铜纳米微粒的迁移情况。
  • 如何用台式扫描电镜分析纳米纤维的形貌
    大多数人可能没有意识到,我们的生活经常被纤维包围。大到组织工程,小到尿布,都离不开高科技过滤技术。许多普通、廉价的聚合物可以大规模地加工成柔性材料。但并不是所有的纤维材料都可以利用,比如在电子设备上,还需要对材料进一步改性。这篇博客将帮助你了解台式扫描电镜(Desktop SEM)如何在各种纳米工程纤维领域中使用。
  • 细胞表面增强拉曼散射信号与LA-ICP-MS测得的金纳米粒子聚集的关联研究(英文原文)
    细胞对暴露的纳米颗粒反应在各种环境中都是必不可少的,尤其是在纳米毒性和纳米医学中。这里,14纳米金纳米粒子在3T3成纤维细胞在一系列脉冲追踪实验研究了30分钟孵化脉冲和追逐时间从15分钟到48小时。里面的金纳米粒子及其聚合量化细胞超微结构的激光烧蚀电感耦合等离子体质谱法,可以用于评估表面增强拉曼散射(SERS)信号。通过这种方法,可以分别获得它们在微米尺度上的定位信息和它们的分子纳米环境,并且可以将它们联系起来。因此,纳米颗粒从细胞内摄取、细胞内加工到细胞分裂的路径是可以遵循的。结果表明,细胞内纳米粒子及其积聚和聚集支持高SERS信号的能力与纳米粒子的数量和高局部纳米粒子密度没有直接关系。SERS数据表明,细胞内聚集的几何形状和粒间距离必须在内体成熟过程中发生变化,并对特定的金纳米粒子类型起关键作用,才能成为高效的SERS纳米探针。这一发现得到了TEM图像的支持,它只显示了一小部分具有小颗粒间距的团聚体。经过不同的捕集时间后得到的SERS光谱显示,金纳米粒子内体加工后,其生物分子电晕的组成和/或结构发生了变化。
  • 上海伯东 Europlasma 纳米涂层应用于无人机 UAC
    上海伯东 Europlasma 超疏水纳米涂层为无人机制造提供全新防水方案Europlasma 超疏水纳米涂层已在消费电子行业广泛使用, 比如智能手机或无线蓝牙耳机防水, 该技术将一层肉眼不可见的超薄超轻纳米涂层应用到电子元件的表面. 纳米涂层允许对无人机进行全面的再加工和修复, 与其他防水方法 (例如易开裂的保形涂层) 不同, 纳米涂层在产品的整个生命周期内为处理过的设备的电子元件提供持续的保护. 与包括垫圈和密封件在内的机械解决方案相比, 当无人机的外部机身受到撞击或损坏时, 保护不会受到影响, 微观上的超薄涂层也大大减轻了重量.
  • 通过中空纤维洗滤纯化纳米颗粒
    相较于传统的纳米颗粒纯化方法,如超速离心、搅拌室过滤、透析或者色谱方法,中空纤维洗滤(中空纤维切向流过滤)是一种更加高效、快速的替代方法。中空纤维洗滤可以用于纯化多种纳米颗粒,包括脂质体、胶乳颗粒、磁珠以及纳米管。中空纤维洗滤是一种基于膜分离的技术,膜孔径的大小决定了大分子或颗粒是被截留还是通过。这是一种流动的过程,样品温和循环通过管状膜。通过缓冲液的置换,可以获得纯化的纳米颗粒。中空纤维膜洗滤可以从研发体积直接线性放大到生产规模。通过增加膜纤维数量并维持关键操作参数,大体积样品可在和小规模研发体积一致的条件下完成。
  • 纤维素纳米纤维的结晶度测定
    纤维素是多聚糖,是植物细胞壁的主要成分。在将纤维素纺丝成纳米尺度的纳米纤维素中,将宽度为4~100 nm长度为几μ m左右、高长宽比(100 以上)的物质称为纤维素纳米纤维(Cellulose Nanofiber:CNF),作为最尖端的生物质新材料而受到了广泛关注。CNF除了重量轻、强度大的特点之外,还具有高隔气性、吸附性、透明性等优异性能。另外,由于材料源于植物纤维,因此,是一种在生产和废弃的过程中环境负荷都非常小的材料。今后在汽车材料、电子材料、包装材料等的应用中具有很大的潜力。通过X射线衍射,可以对CNF的结晶度进行评价,预计该技术将应用于零件和材料的质量控制。
  • 赛诺普Xenocs小角X射线散射仪检测聚合物纳米复合材料的性质
    纳米复合材料是一类高性能材料,在各个行业都引起了人们的关注,例如汽车行业。它们包括一系列低成本但高性能的材料,具有对汽车制造有价值的机械、热和加工性能。这些整体性质由纳米尺度上的结构决定,因此,小尺度结构的准确分析对于纳米复合材料的表征和开发至关重要。 X 射线散射技术可以对影响纳米复合材料性能的许多参数提供前所未有的洞察力。纳米复合材料是由一种或多种材料组成的纳米颗粒或纤维(填充物)分散在大块(基体)材料中的复合材料。填料和基体都保留了它们本体材料的特性元素,而填料的纳米级参数为纳米复合材料提供了新的特性。 这些参数包括填料颗粒的分散、形状、取向和尺寸分布,以及它们与本体基质的相互作用。 1-4因此,纳米复合材料是一种非常广泛的材料,在生产过程中可以通过改变组成材料的物理和化学性质来精细地调整其性能。
  • 美藤果油纳米乳液稳定性分析研究
    美藤果油是一种含有丰富 α-亚麻酸的功能性植物油,其 α-亚麻酸含量分别是橄榄油的 67. 09 倍、茶籽油的 175. 46 倍、花生油的 506. 89 倍,不饱和脂肪酸质量分数可达 93% ,研究表明,美藤果油在调节人体血脂、预防心血管疾病、增强免疫力、抗菌消炎、保养肌肤等方面具有显著疗效。然而,由于美藤果油中不饱和脂肪酸含量极高,其在贮藏加工中极易发生氧化,且又因为油类物质具有水溶性差、口服利用率低等不足,大大限制了其作为功能油脂在食品中的开发应用。纳米乳液( nanoemulsions) ,多指平均粒径为50 ~500 nm 的乳液体系,是由水、油、表面活性剂或助表面活性剂等按一定比例混合,经过一定的外部能量输入( 如搅拌、均质、分散、超声等) 所形成的热力学稳定的胶体分散体系。纳米乳液可以改善功能性油脂在水相食品中的溶解性和分散性,使功能性油脂可以应用到多相多组分的油水分散体系。纳米乳液与其他乳液体系相比,在乳液稳定性和食品安全性等方面具有较好的优势。将美藤果油制作成美藤果油纳米乳液,可以解决其水溶性差、口服利用率低、贮藏和加工过程中易发生氧化变质等加工应用方面的难题,同时保留美藤果油作为功能性油脂的营养价值,有利于其作为功能性辅料在食品领域进行广泛应用。
  • BUCHI纳米喷雾干燥仪B-90在纳米药物悬浮液中的应用
    在医药领域中,通过化学合成方法来制备活性药物是药物研发的最常用方法。但通常这些合成药物大约有60%存在溶解性和低生物利用度问题而限制了药物的使用。如抗精神病药物Aripiprazole(阿立哌唑纳)是一种弱碱性物质,药效好,但为pH依赖性溶解,一般口服制剂难以发挥疗效。本研究采用纳米沉降/酸碱中和均质法制备aripiprazole纳米悬浮液,通过B90纳米喷雾干燥技术制备纳米颗粒,提高了aripiprazole药物的溶出度和口服生物利用度。纳米微粒极大的增加了药物的溶解性能,采用B90制备的纳米颗粒粒径分布均一,多分散指数(polydispersion index)值为0.25,平均粒径为357nm
  • CEM微波合成技术为纳米科学研究者提供更佳的研究平台
    培安公司版权所有 未经许可 不得复制 纳米科学研究已经发展多年了, 目前仍然是较新的科技领域. 随着该领域的不断发展, 纳米材料应用非常广泛,其中包括显示装置,电伏装置,固态照明及生物医学方面的应用。在纳米材料的合成过程中,其中一个难题就是控制晶体生长的热动力学参数,关键就在于把握好”成核理论”。现在研究者可以透过微波能量的应用,溶剂和反应物的选择,从原子水平控制结晶成长过程。 微波能量可以均匀的把热能分布在分子上,更重要的是,微波可以迅速的对反应物加热。 因为化学反应的热量控制会直接影响到结晶成长,所以微波的”瞬时加热”及”瞬时停止”特性使研究员能够更直接地掌握结晶的成长速度。因为微波本身的特性,利用微波能量合成纳米材料是非常有效的方法。
  • 海能仪器:微波消解消解碳纳米管产品配置单(微波消解仪)
    碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料;碳纳米管还具有光学等其他良好的性能。
  • 二维材料用纳米纤维素分散剂的高效分散解决方案
    纳米纤维素具有两亲性,它可被用作稳定剂和分散剂。通常采用分散机和搅拌机来进行液体分散,但是存在稳定性差,分散性不好等问题。为了解决上述技术问题,我们提供了用TRILOS超高压纳米均质机,制备纳米纤维素分散剂的方法。
  • 如何通过扫描电镜分析来理解最新的纳米纤维应用
    电纺纳米纤维是近年来备受关注的一种新型纳米纤维,这归因于这些纤维的特殊性质:它们具有多孔的三维表面,高比值表面积以及可调节孔隙尺寸的互连孔隙。扫描电子显微镜(SEM)被证明为研究纤维性能是如何改变和增强的有力分析工具。
  • 使用珠磨机的超低污染纳米晶体配方制造技术
    减少化学品的污染是纳米晶制剂制备的重要议题之一,我们需要开发一种珠磨加工技术以减少珠磨机对药物的污染。为满足这一需求,我们与 Shionogi Pharmaceutical Co., Ltd.(盐野义) 签订了一项联合研究协议,开发了一种新的珠磨技术,可减少药物污染和缩短珠磨时间。
  • 微纳卫星电热等离子体微推进器羽流特性测试中的低气压精确控制方法
    针对各种微纳卫星电热等离子体微推进器,以口袋火箭这种工作在0.1~10torr低气压范围内的微推进器为例,分析了不同工质气体和不同低气压对羽流特征所产生的影响,说明了低气压精确控制的重要性。关于推进器低气压精确控制这一技术问题,本文详细介绍了具体实施方法,进行了考核试验,试验结果证明低气压控制波动度可以达到± 1%以内。最终本文对测试方法进行了优化,提出了更实用化的全量程低气压精确控制技术方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制