当前位置: 仪器信息网 > 行业主题 > >

微米尺度图案

仪器信息网微米尺度图案专题为您整合微米尺度图案相关的最新文章,在微米尺度图案专题,您不仅可以免费浏览微米尺度图案的资讯, 同时您还可以浏览微米尺度图案的相关资料、解决方案,参与社区微米尺度图案话题讨论。

微米尺度图案相关的论坛

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展

    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。[align=center][img=,600,174]https://img1.17img.cn/17img/images/202403/uepic/18c3b2c4-6d3d-4349-b5d2-5c096ac0f32f.jpg[/img][/align]单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。[align=center][img=,500,508]https://img1.17img.cn/17img/images/202403/uepic/b5f63213-6cee-41d0-8519-3a9bc7fc69aa.jpg[/img][/align]作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【求助】测微米尺度半导体薄膜的厚度需要什么显微镜?

    请大家帮我分析一下,我想在玻璃或者硅上生长一层或多层金属氧化物薄膜,这些薄膜多数是半透明的,厚度在0.5-2微米之间,我希望能依靠一种光学显微镜对厚度有个大致的测量,然后根据结果改进我的实验参数,这就需要放大倍数在500倍以上,最好能达到1000倍甚至更高,但必须不能使用油镜。我看了江南永新和上海长方的显微镜资料,发现金相显微镜和偏光显微镜似乎对我有用,我对这两种显微镜的用途不甚了解,不知道该买哪一款。请热心的网友们帮我参谋参谋,谢谢了。

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 纳米原子尺度,衬度成像机制,信息提取

    应用透射电子显微镜观察纳米结构在纳米-原子尺度的细节,需要采用何种衬度成像机制;在霍地图像信息的同时,在纳米尺度综合分析方面,还有哪些信息可以同时提取出来?

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

  • 将核磁共振成像技术提高到微米级别

    [color=#333333]每年都有数百万的磁共振成像(MRI)扫描来诊断健康状况并进行生物医学研究。我们身体的不同组织对磁场的反应是多种多样的,这使得解剖图像得以生成。但是这些图像的分辨率是有限制的——一般来说,医生可以看到小到半毫米大小的器官的细节,而不是小得多。根据医生们的观察试图推断出组织中细胞的情况。Mikhail Shapiro,化学工程的助理教授,想要在MRI图像和在组织中发生的事情之间建立一个联系,它的规模很小,只有一微米——这比现在的可能性小了500倍。[/color][color=#333333][/color]Schlinger学者和传统医学研究所的研究员夏皮罗说:当你看一幅splotchy MRI图片时,你可能想知道在某个黑点发生了什么、现在很难说出比半毫米还小的尺度上发生了什么。在最近发表在《自然通讯》(Nature Communications)杂志上的一项研究中,夏皮罗和他的同事们提出了一种方法,将组织中的磁场模式(在微米尺度上发生)与MRI图像的更大、毫米级特征相关联。最终该方法将允许医生解释MRI图像,并更好地诊断各种情况。例如,医学研究人员可以利用核磁共振成像技术,将被称为巨噬细胞的免疫细胞图像,在患者体内的炎症组织的位置形象化,这些细胞被标记为磁性铁粒子。巨噬细胞将铁粒子注入患者的血液中,然后转移到炎症部位。由于核磁共振信号受到这些铁粒子的影响,因此产生的图像显示了不健康组织的位置。然而准确的MRI对比度取决于细胞如何吸收和储存在微米尺度上的铁粒子,这在MRI图像中是看不到的。这项新技术可以让我们了解不同的铁分布对MRI的影响,而这反过来又能更好地了解炎症的范围。这项研究由加州理工学院的研究生亨特戴维斯和Pradeep Ramesh领导。

  • STEM下纳米尺度特征的元素面分布图

    STEM下纳米尺度特征的元素面分布图

    研究人员采用带STEM模式的场发射透射电镜观察Cu-Zn-S化物,并采用电制冷X-Max80能谱仪(大面积能谱仪,更适合观察纳米结构)对该结构进行观察,获得元素面分布图,最小尺度约5nm。该结果发表于2012年的Angewandte Chemie应用化学中,并选为当期的封面。http://ng1.17img.cn/bbsfiles/images/2013/02/201302161855_425531_2512186_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/02/201302161855_425532_2512186_3.jpg

  • 深圳先进院在微尺度声操控研究方面取得新进展

    中科院深圳先进技术研究院医工所郑海荣研究团队在微尺度声操控方面取得新的进展。5月4日,相关研究成果发表在美国物理联合会期刊Applied Physics Letters上。精确无创地操控微纳米尺度的生物粒子及药物颗粒,是物理声学的热点研究领域之一。随着超声局部给药的不断发展,利用声波精确的操控药物载体得到了广泛的关注。该研究首次利用声波实现了超声造影剂的可编程精确操控,空间分辨率可达2.2 µm。研究人员利用驻波的势阱效应,将超声造影微泡聚集并捕获在势阱的位置,使其排列成网格结构;通过调节入射声源的相对相位,改变驻波场中势阱的位置,实现超声造影微泡的连续移动,并且每次移动的距离和方向均可精确控制;利用可编程声操控,将超声造影微泡富集、移动、停驻在靶向区域,提高局部药物的浓度,实现靶向给药的目的。本工作的意义在于通过精确的操控,有助于研究细胞与超声造影微泡的相互作用,进一步理解超声给药的机理如声孔效应、空化效应等,同时也为超声给药治疗提供了一种具有重要应用价值的新方法,为发展新型超声给药治疗仪器奠定了基础。上述研究工作得到国家自然科学基金委,以及科技部973计划前期研究专项的支持。

  • 北京纳米跃升工程在宏观尺度超润滑领域取得突破

    塑料问答:近日,在北京市科委支持下,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果发表在国际纳米领域权威学术期刊《自然—纳米技术》上。  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。  碳纳米管从结构上看是由石墨烯卷曲而成,理论研究表明,当碳纳米管存在哪怕只有一个原子级别的缺陷时,其管壁间摩擦力就会急剧增大。经过近十年的努力,魏飞教授团队在制备长达数厘米且无缺陷的碳纳米管的制备方面取得了一系列突破,发展了单根碳纳米管的纳米颗粒标记技术,这些工作为宏观尺度超润滑工作奠定基础。在上述基础上,魏飞团队首先在光学显微镜下通过用微弱气流吹动碳纳米管的方法观察到了碳纳米管管壁之间快速相对运动的奇妙现象,进而利用扫描电镜下的微纳米操纵平台进行双壁碳纳米管内层的可控抽出,并测量了管壁间的超低摩擦力。研究发现,双壁碳纳米管的管壁之间存在着超低的摩擦力,并且这种摩擦力与碳纳米管的长度没有关系,即无论多长的碳纳米管,其内层都可以被轻易地抽出来。  这项工作被《自然—纳米技术》杂志审稿人评价为里程碑式原创性工作,对于研究和控制摩擦力做出了重大的、创造性的贡献,为下一代全碳电子器件构筑、超润滑机械开发以及超高速微纳米机械、电子器件制备提供了基础。转自塑料问答

  • 关于粉末衍射制样为什么一定小到一定尺度的不解?

    关于粉末衍射制样为什么一定小到一定尺度的不解?

    要粉末只是一个择优取向的问题?但是,如果设想我的样品本身是在纳米尺度上,比如50nm,我过筛到150um块体。如图,在块体中,在微观尺度上排列取向本身也是一个随机分布的。因此为什么拿块体材料去测XRD有相对强度改变的问题呢?还是说通过压片从小到大制样不会带来相对强度的改变?反过来,纳米材料在材料制备过程中,即使得到的是块体,在微观上应该也是随机分布的,因此照成相对强度的不同,到底是什么原因照成的呢?http://ng1.17img.cn/bbsfiles/images/2011/10/201110100154_322561_2319715_3.jpg

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

  • 光电子能谱在微米级二维材料表面分析中的应用

    二维材料是当前材料学的研究热点,尺寸为数十微米的二维材料通常用XPS表面分析设备自带的光学显微镜无法直接观察到。本作品介绍了一种图案点阵法,利用XPS自带的最大12倍的光学显微镜,能很好的定位数十微米的二维材

  • 【分享】固体所探索土壤重金属污染修复技术新途径

    当前我国正处在经济的迅速增长期,伴随着经济活动的过程,环境污染也在同步增长,如大量化工企业的排污和农药化肥的施用等,使得各地相继出现了严重的污染事件,土壤污染问题在日益显现,土壤污染面积在逐年增加。而一般的环境污染,不管是空气中的铅、汞,还是污水里的镉、砷,在逐渐沉淀之后,最后都会造成土壤污染。然而,科技工作者迄今还没有找到一种既经济、有效,又适合大规模土壤(场地)治理的修复模式,大多还处于实验室探索阶段。  中科院合肥物质科学研究院固体物理所纳米材料研究室的科研人员最近研发出一系列兼具纳米尺度材料强吸附性、高比表面积和高活性以及微米尺度材料抗团聚、易分离和可稳定循环利用等特性的新型微/纳结构材料,为重金属污染土壤的渗透墙反应修复等技术提供了新型吸附剂和投料。  这种微/纳结构材料是通过纳米尺度单元(如纳米管、纳米片及纳米颗粒等)按照一定的规律组装成的微米尺度结构材料,既保持了纳米材料高比表面积与强的吸附特性的优点,又克服了纳米材料在使用时结构不稳、易团聚的不足。科研人员通过以下方法获得了不同的微/纳结构材料:

  • 何谓微流控芯片技术

    微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。报告介绍微流控芯片技术领域国际最新发展,结合报告人多年微流控芯片研发成果,介绍一套完整而独特的芯片制造工艺技术,以及多种不同应用的微芯片。

  • 【转帖】日本地震对我国精密测量和计量产生影响

    这次日本地震的震级达到了9.0级,释放的能量较大,其低频振动分量传递较远,对我国高精密计量仪器有显著的影响。 据了解,高精密测量和计量仪器对环境振动的要求极高。美国环境科学和技术研究院经过大量的理论和实验研究推荐:微米级的测量要求1~100赫兹频带内的环境振动控制在12.5微米/秒以下(VC-C级),否则无法保证精密测量的测量精度。例如,1000倍的精密显微镜,要想保证其测量精度,必须对环境振动进行严格控制,否则就会出现丢失像素,甚至丢失整帧图像的问题;而对于测量精度更高的扫描电子显微镜和透射电子显微镜,则要求环境振动控制在VC-D级(即1~100赫兹频带内的环境振动控制在6微米/秒以下);对于纳米级的精密测量,例如半导体线宽、三磷酸腺苷及DNA测量,对环境振动的要求更高。美国国家标准和技术研究院(NIST)还针对纳米尺度的计量开展了大量研究,制定了纳米计量需要满足的环境振动标准。 据蔡晨光介绍,由于日本地震的影响,中国计量科学研究院的环境振动远远超出了精密计量所需要控制的量级。“虽然计量院昌平基地的一些精密实验室位于地下14米,可以隔离掉一部分地表传播的地震波,但是对于深度传播的低频地震波却无法进行有效衰减,致使高精密测量仪器无法正常工作。”他举例说,由于地震的影响,精密质量比较仪会长时间内无法稳定,致使高精度的质量量值无法传递和溯源;纳米尺度的精密测量仪器也会受影响而导致无法正常工作。 蔡晨光说,目前中国计量科学研究院昌平基地还没有建立起环境振动的实时监测系统,还无法实时、有效、准确地评估日本大地震这类偶发事件对高精度计量溯源系统的具体影响。“我国现在急需建立环境振动的实时监测系统。”

  • 驰奔-EMCRAFTS电镜亮相国家会议中心

    驰奔-EMCRAFTS电镜亮相国家会议中心

    驰奔-系列扫描电镜,亮相亚洲最大的科学仪器盛会CISILE2016(第十四届中国国际科学仪器及实验室装备展览会),展会在充满生机的北京奥林匹克公园-国家会议中心如期隆重开幕。 参加本届仪器展览,是驰奔-E系列扫描电镜首次在中国公开场合亮相,驰奔仪器总经理兼产品经理,亲自为来宾现场操作讲解演示。产品精致的外观,小巧结构,强大分析能力,清晰漂亮现场采集的扫描电镜图像,吸引大量专业人士或驻足或坐在仪器旁边,用心体验。也有携带样品,体验从扫描电镜制样到装载样品,到成像,拷贝结果的全套过程。 展览期间,以驰奔仪器产品经理为核心,包括一名韩国销售经理,共计六人,为来自全国各地乃至亚洲各国的来宾进行热情周到的服务。用心解答来访者问题,并做出专业咨询,我们的扫描电镜能做什么不能做什么,市场中哪些产品最适合用户的需求,让来访者清楚明白。由此驰奔仪器也收获来自观众的真诚谢意。 驰奔仪器是由从事扫描电镜技术和业务多年的工程师构成,是Emcrafts在中国战略合作伙伴。展会期间,发放是韩国制作的宣传资料,但驰奔仪器-E系列扫描电镜的型号性能不同,我们按照中国行业标准进行鉴定,确定驰奔-E系列扫描电镜核心性能指标,并承诺和对中国市场负责。指标以驰奔仪器宣传资料为准,欢迎访问驰奔仪器官方网站:www.sem-instrument.com Emcrafts是韩国领先的电子显微镜制造商,具有完全自主开发扫描电镜能力,制造装备精良,核心零部件由本公司专业人员精心制作。驰奔-E系列扫描电镜,具有更高性价比。Emcrafts官方网站:www.emcrafts.com 感谢支持我们的朋友们。感谢支持我们的朋友们。http://ng1.17img.cn/bbsfiles/images/2016/05/201605271446_595030_2574_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/05/201605271447_595032_2574_3.jpg驰奔-EMCRAFTS 系列扫描电镜,包括: 桌面台式扫描电镜、小型立式扫描电镜、大样品仓扫描电镜。所有电镜使用相同的电子光学镜筒,全部满足微米亚微米至纳米尺度结构形貌表征,操作维护简单方便。http://ng1.17img.cn/bbsfiles/images/2016/05/201605271452_595033_2574_3.jpg亚微米尺度扫描电镜图像http://ng1.17img.cn/bbsfiles/images/2016/05/201605271452_595034_2574_3.jpg 纳米尺度扫描电镜图像

  • 【分享】表面等离子体激元学

    众所周知,电子回路提供了控制电子输运和储存能力。但是,现在利用电路进行数字信息保真传送时,面临着相当大的限制,而光子学 (Photonics)给出了一个解决难题的有效途径,构筑基于光纤和光子回路的光通信系统,便是一个很好的方案。不幸的是,光子元件的尺寸是微米量级,而电子元件和回路尺寸要小的多(纳米量级),因此,不可能将它们二者集成一体于纳米尺度的芯片中。表面等离子体激元学(plasmonics)的诞生,使基于表面等离子体激元 (Surface Plasmon Polarifons,,SPPs)的元件和回路,具有纳米尺度,从而可能实现光子与电子元器件,在纳米尺度上完美的联姻。本文简单介绍表面等离子体激元学的原理,目前现状,各种应用,例如等离子体激元芯片,新新型光源,纳米尺度光刻蚀术,突破衍射极限的高分辨率成像等,以及面临的挑战和未来前景.

  • 【文献进展】纳米技术在生物医学中的应用

    摘 要 纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。  关键词 纳米技术;纳米生物学;DNA纳米技术  20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100 nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术[1]。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。  1 纳米生物学的研究对象  有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1 nm~100 nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。

  • 【转帖】固体所探索土壤重金属污染修复技术新途径

    当前我国正处在经济的迅速增长期,伴随着经济活动的过程,环境污染也在同步增长,如大量化工企业的排污和农药化肥的施用等,使得各地相继出现了严重的污染事件,土壤污染问题在日益显现,土壤污染面积在逐年增加。而一般的环境污染,不管是空气中的铅、汞,还是污水里的镉、砷,在逐渐沉淀之后,最后都会造成土壤污染。然而,科技工作者迄今还没有找到一种既经济、有效,又适合大规模土壤(场地)治理的修复模式,大多还处于实验室探索段。 中科院合肥物质科学研究院固体物理所纳米材料研究室的科研人员最近研发出一系列兼具纳米尺度材料强吸附性、高比表面积和高活性以及微米尺度材料抗团聚、易分离和可稳定循环利用等特性的新型微/纳结构材料,为重金属污染土壤的渗透墙反应修复等技术提供了新型吸附剂和投料。 这种微/纳结构材料是通过纳米尺度单元(如纳米管、纳米片及纳米颗粒等)按照一定的规律组装成的微米尺度结构材料,既保持了纳米材料高比表面积与强的吸附特性的优点,又克服了纳米材料在使用时结构不稳、易团聚的不足。科研人员通过以下方法获得了不同的微/纳结构材料:一是基于结构诱导剂的水热法,获得系列新型微/纳结构材料。如:采用乙二胺导向剂合成了蜂巢纺锤状的ZnO微/纳结构材料(Adv.Funct.Mater.2008,18,1047-1056),采用乙二醇诱导剂合成了多孔ZnO片状微/纳结构材料(J.Mater.Chem.,2010, 20, 8582-8590)等。二是基于模板-侵蚀策略,合成了系列微/纳结构空心球。如:硅酸镍微/纳结构空心球,在酸溶液处理的情况下可得到多孔氧化硅空心球,在还原性气氛下可得到镍与氧化硅复合的微/纳结构空心球的普适方法(Langmuir,2010,26(18),14830-14834)。相关的系列成果如硅酸铜和硅酸镁等发表在《化学通讯》、《欧洲化学》、《纳米科学与技术》及《纳米技术》等杂志上,并申请了相关的国家发明专利。 类似地,以金属/金属氧化物芯壳结构微球为模板进行弱酸侵蚀,可获得氧化物空心球。如:Zn/ZnO芯壳结构微球,在弱酸(如酒石酸)的选择性侵蚀下,可得到ZnO空心球;在含有金属离子的弱酸侵蚀下,可得到组装有金属纳米颗粒的ZnO空心球;在含有两种金属离子的弱酸刻蚀情况下,可得到组装有两种金属纳米颗粒的ZnO空心球,相关结果发表在美国化学会ACS Nano杂志上(ACS Nano,2008,2(8),1661-1670)。 三是提出基于有机功能团/金属之间的弱络合作用的新型复合纤维的设计思路,利用电纺技术,获得了系列有机/无机复合微/纳结构多孔纤维,相关结果发表在英国化学会《材料化学杂志》上(J. Mater. Chem., DOI: 10.1039 /C0JM02334E)。 上述各种微/纳结构材料适合工程化合成,条件温和、简单、可控,适宜在土壤重金属污染治理中作为反应渗透墙及包施技术很好的吸附剂材料,这些研究结果为下一步针对土壤中持久性污染物的治理工作奠定了材料基础。

  • 最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    “多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]及微尺度分析测试新方法的研究与应用”网络会议![b][img]https://simg.instrument.com.cn/bbs/images/default/em09507.gif[/img]9月5日正式开讲!特邀资深专家进行讲解~报告主题:[color=#cc0000]多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术特点及在复杂样品分析中的应用[/color][color=#cc0000] 基于探针电喷雾Paternò-Büchi光化学反应的微尺度脂质组学技术研究及应用[/color]免费报名链接:[url]https://www.woyaoce.cn/webinar/meeting_4443.html[/url]课程详情咨询请添加测小二微信号cexiaoer2018 [img=,253,253]https://ng1.17img.cn/bbsfiles/images/2019/08/201908301703303161_1126_3348354_3.jpg!w253x253.jpg[/img][/b]

  • 【原创】纳米材料是否受REACH法规的约束?

    一般认为,纳米材料是指空间三维中至少有一维处于纳米尺度范围(-100nm)或以其作为基本单元构成的材料.因其介于宏观的常规细粉和微观的原子团簇之间的过渡介观区域,故呈现出一些独特的性质,其中一个重要的特性是表面效应因此,纳米材料所具有的危害与常规物质存在很大差异,一般来说要比常规物质危害更加强。因此,目前欧盟仞在考虑是否在REACH法规下对纳米物质采取特定的管理。但整体上来看,只要制造/进口量超过1吨/年的物质就应当进行注册,因此,纳米材料一般说来需要受到REACH法规的制约。

  • 目前超高速DSC是否有考虑到材料的纳米尺寸效应?(纯粹讨论)

    近来有幸参加了江苏省热分析会议,见识了很多热分析领域前沿技术,其中有一项为超高速DSC扫描技术。大部分的内容都能有所理解,不过有一个问题一直无法参透,就是超高速DSC的样品尺寸的问题,提到一类制样方法是采用旋涂法制样,按照之前的个人经验,旋涂可以制备单向为100 nm左右的样品这与高扫速下降低热阻的理念正好是契合的,但是如果用这类样品做DSC测试的话个人觉得是否会受到纳米尺寸效应的干扰,自己也试着搜索了一些相关资料但是发现这方面的讨论并不是很多,因此求教下各位专家是否有关于这个问题的解释或者相关资料可以拜读一下?纯属讨论帖......

  • 【原创大赛】【微观看世界】纳米操纵

    【原创大赛】【微观看世界】纳米操纵

    1.实验讲叙:纳米操纵是搬运纳米零件、组装纳米器件、最终实现纳米制造的基础工艺技术。纳米尺度空间所涉及的物理层次,是即非宏观又非微观的相对独立的中间领域,被人称之为介观研究领域。它是在纳米空间尺度内操纵原子和分子,对材料进行加工,制造有特定功能的产品或对某物质进行研究。掌握其原子、分子的运动规律和特性的崭新高技术科学。同时也是现代科学和现代技术结合的产物。本文讲叙以某种纳米粉末颗粒为试验材料,基于SPM的Nanoman(纳米操纵)技术上对纳米颗粒进行神奇搬迁拼图的全过程。2.实验仪器:采用bruker(布鲁克)公司的扫描探针显微镜(型号:Nanoman VS)3.实验材料:未知的纳米颗粒平均宽度170nm,高度44nm4.实验原理:通过探针对纳米颗粒拨动达到使粉末颗粒搬迁,如图http://ng1.17img.cn/bbsfiles/images/2013/11/201311202204_478477_2224533_3.jpg

  • 纳米生物技术简介

    纳米生物技术简介 纳米(nanometer,nm)是一种长度单位,一纳米等于10亿分之一米、千分之一微米。从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。DNA链的直径就是一纳米左右。由于纳米材料表现出许多不同于传统材料的特殊性能,所以纳米科技被视为21世纪关键的高新技术之一。纳米技术包含下列四个主要方面:第一方面是纳米材料,第二方面是纳米动力学,第三方面是纳米电子学,第四方面是纳米生物学和纳米药物学。在纳米生物学和纳米药物学方面,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。当前纳米生物学和纳米药物学研究领域主要集中在以下几个方向:纳米生物材料、纳米生物器件研究和纳米生物技术在临床诊疗中的应用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制