当前位置: 仪器信息网 > 行业主题 > >

微光显微镜

仪器信息网微光显微镜专题为您整合微光显微镜相关的最新文章,在微光显微镜专题,您不仅可以免费浏览微光显微镜的资讯, 同时您还可以浏览微光显微镜的相关资料、解决方案,参与社区微光显微镜话题讨论。

微光显微镜相关的仪器

  • Flex One 显微光致发光光谱仪欲了解更多信息请拨打:010-56370168-601 性能特点:● 一体化的光学调校——所有光学元件只需要在初次安装时进行调校,确保高效性和易用性● 简单易用的双光路设计——可随意在水平和垂直光路上进行切换,适用于各种常见的样品形态● 超宽光谱范围**——300nm-2200nm● 视频监视光路 ——可供精确调整测试点● 独有的发射光谱校正功能*——让光谱测量更精准且具有可比性 ● 多种激发波长可选**——325nm,405nm,442nm,473nm,532nm,633nm,785nm等● 自动mapping功能可选*——50mm×50mm测量区间,可定制特殊规格● 电致发光(EL)功能可选*——扩展选项● 显微拉曼光谱测量功能可选*——扩展选项● 超低温测量附件可选*——提供10K以下的超低温测量*选配项,请详细咨询; **需根据实际需要进行配置确定。产品简介: 光致发光(photoluminescence) 即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光,在半导体材料的发光特性测量应用中通常是用激光(波长如325nm、532nm、785nm 等)激发材料(如GaN、ZnO、GaAs 等)产生荧光,通过对其荧光光谱(即PL 谱)的测量,分析该材料的光学特性,如禁带宽度等。光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、高灵敏度的分析方法,因而在物理学、材料科学、化学及分子生物学等相关领域被广泛应用。传统的显微光致发光光谱仪都是采用标准的显微镜与荧光光谱仪的结合,但是传统的显微镜在材料的PL 谱测量中,存在很大的局限性,比如无法灵活的选择实验所需的激光器(特别对于UV 波段的激光器,没有足够适用的配件),无法方便的与超低温制冷机配合使用,采用光纤作为光收集装置时耦合效率太低等等问题,都是采用标准显微镜难以回避的问题。 北京卓立汉光仪器有限公司结合了公司十余年荧光光谱仪和光谱系统的设计经验和普遍用户的实际需求,推出了“Flex One( 微光)”系列显微光致发光光谱仪,有效的解决了上述问题,是目前市场上最具性价比的的显微PL 光谱测量的解决方案。( 产品图片仅供参考,以实际系统配置为准)系统组成● 激发光源部分:紫外-近红外波段各种波长激光器● 显微光路部分:优化设计的专用型显微光路● 光谱采集部分:影像校正光谱和高灵敏型科学级CCD或单点探测器和数据采集器● 样品台支架部分:xyz三维可调样品台(手动或自动)、超低温样品台参数规格表:主型号Flex One光谱范围300-2200nm光谱分辨率0.1nm激发光可选波长325nm,405nm,442nm,473nm,532nm,633nm,785nm等探测器类型制冷型CCD 2000×256制冷型InGaAs512×1制冷型InGaAs512×1有效范围300-1000nm800-1700nm800nm-2200nm空间分辨率100μm注*:以上为基本规格,详细规格依据不同配置的选择会有差异,详情请咨询!InGaN/GaN多量子阱的PL谱和EL谱测试 ● 样品提供:KingAbdullahUniversity ofScience and Technology提供的基于蓝宝石衬底MOCVD 生长的 InGaNGaN 量子阱● 测试条件:325nm激发,功率30mW● 光谱范围:340-700nm1. 光致发光(PL)光谱测量分别针对材料的正极( 红色) 和负极( 绿色) 测试得到光致发光光谱曲线如下,GaN 的本征发光峰365nm 附近以及黄带,InGaN 的发光峰475nm 附近。 2. 电致发光(EL)光谱测量将材料的正负极接到直流电源的正负极,电压加到2.5V 时可以有明显的蓝光发射,测量其电致发光光谱曲线如下(红色),峰值在475nm 附近。
    留言咨询
  • 光致发光(photoluminescence) 即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光,在半导体材料的发光特性测量应用中通常是用激光(波长如325nm、532nm、785nm 等)激发材料(如GaN、ZnO、GaAs 等)产生荧光,通过对其荧光光谱(即PL 谱)的测量,分析该材料的光学特性,如禁带宽度等。光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、高灵敏度的分析方法,因而在物理学、材料科学、化学及分子生物学等相关领域被广泛应用。 传统的显微光致发光光谱仪都是采用标准的显微镜与荧光光谱仪的结合,但是传统的显微镜在材料的PL 谱测量中,存在很大的局限性,比如无法灵活的选择实验所需的激光器(特别对于UV 波段的激光器,没有足够适用的配件),无法方便的与超低温制冷机配合使用,采用光纤作为光收集装置时耦合效率太低等等问题,都是采用标准显微镜难以回避的问题。 北京卓立汉光仪器有限公司结合了公司十余年荧光光谱仪和光谱系统的设计经验和普遍用户的实际需求,推出了“OmniPLMicroS”系列显微光致发光光谱仪,有效的解决了上述问题,是目前市场上最具性价比的的显微PL 光谱测量的解决方案。性能特点: 一体化的光学调校——所有光学元件只需要在初次安装时进行调校,确保高效性和易用 性 简单易用的双光路设计——可随意在水平和垂直光路上进行切换,适用于各种常见的样 品形态 超宽光谱范围**——200nm-1600nm 视频监视光路——可供精确调整测试点 独有的发射光谱校正功能*——让光谱测量更精准且具有可比性 多种激发波长可选**——325nm,405nm,442nm,473nm,532nm,633nm,785nm等 自动mapping功能可选*——50mm×50mm测量区间,可定制特殊规格 电致发光(EL)功能可选*——扩展选项 显微拉曼光谱测量功能可选*——扩展选项 超低温测量附件可选*——提供10K以下的超低温测量*选配项,请详细咨询;**需根据实际需要进行配置确定。参数规格表*应用:不同制冷温度下GaN材料的PL谱激发波长:325nm,功率:20mW,制冷机最低制冷温度:10K ZnO材料的PL谱: 激发波长:325nm ZnO 薄膜样品在382nm 处有一个特别强的荧光谱带,而在500 ~ 600nm 波段,有个弱的可见光荧光谱带。通过研究这些谱带,可以反映ZnO 表面态对荧光的影响以及晶型和缺陷信息。
    留言咨询
  • FAI 微光发射显微镜 400-860-5168转3099
    FAI 微光发射显微镜(EMMI)FAI Photo Emmission MicroscopeFAI 微光发射显微镜用于检测半导体内部缺陷引起的微光发射或微热发射来准确定位半导体器件的失效位置。通过使用不同类型的探测器,或者配置双激光扫描系统(SIFT),以及配合相应的检测软件来实现对半导体元器件或芯片电路的微光、微热、光激励诱导失效测试等各种分析手段。FAI的Crystal Vision微光发射显微镜系统对所配置探测器的数量没有限制,可选择配置从一个到我们提供的所有型号的探测器和SIFT激光扫描头。主要功能CCD探测器:波长探测范围 365nm 至 1190nm;带电子半导体制冷器(TEC)的CCD探测器,可冷却稳定在 -40℃以下,无需使用危险的液氮制冷剂;CCD解析度为1280x1024;像素暗电流0.002 电子/秒;读噪声7 个电子;连续收集信号时间从32毫秒至2小时。InGaAs探测器:波长探测范围 900nm – 1750nm;带电子半导体制冷器(TEC)的InGaAs探测器,可冷却稳定在 -40℃以下,无需使用危险的液氮制冷剂; InGaAs探测器分辨率为320x240,像素点尺寸为30 x 30um,更大的像素点面积可以收集更少的光子,探测灵敏度是普通640x480 InGaAs探测器的4倍;连续收集信号时间从1微秒到60分钟;有效波段范围内量子效率(QE)为 80-85%;灵敏度 NEI 1x1010 ph/cm2/sec;量子效率70 QE 在950-1700nm范围内。 VisGaAs 探测器:波长探测范围 500nm – 1800nm,代表了新技术的VisGaAs 探测器覆盖了可见光-红外光波长检测范围,一个探头就可替代传统的CCD和InGaAs 两个探测器;半导体制冷器(TEC) ,可冷却稳定在 -40℃以下。SIFT(Stimulus Induced Fault Testing)双波长激光扫描头:双激光源654nm和1428nm;通过激光扫描芯片电路,导致失效位置电阻发生变化,通过检测反馈信号的变化,从而检测到失效位置;SIFT扫描不受物镜视野限制,可以一次扫描完整整个检测区域,无需图像拼接,避免图像扭曲;FAI的恒定电流附加反馈回路的技术,不但提高了检测灵敏度,而且避免了检测时电压过高的风险;恒定焦距的定镜扫描,可以将激光点停留在任意指定位置,用于确认失效点。FMI荧光热成像技术:FAI的微热分析技术,热分辨率是千分之一K(1/1000K),可以室温操作,无需使用危险的液晶溶液。LC液晶热成像技术:FAI的SLC(稳定液晶)液晶热成像技术的热分辨率为百分之一K (1/100 K)。Moire云纹成像:从硅片背面采用“云纹图像成像”的方式来检测失效位置的微热变化。
    留言咨询
  • FAI 微光发射显微镜 400-860-5168转3099
    FAI 微光发射显微镜(EMMI)FAI Photo Emmission Microscope咨询请点击导航栏 联系方式,直接联系我们。FAI 微光发射显微镜用于检测半导体内部缺陷引起的微光发射或微热发射来准确定位半导体器件的失效位置。通过使用不同类型的探测器,或者配置双激光扫描系统(SIFT),以及配合相应的检测软件来实现对半导体元器件或芯片电路的微光、微热、光激励诱导失效测试等各种分析手段。FAI的Crystal Vision微光发射显微镜系统对所配置探测器的数量没有限制,可选择配置从一个到我们提供的所有型号的探测器和SIFT激光扫描头。主要功能CCD探测器:波长探测范围 365nm 至 1190nm;带电子半导体制冷器(TEC)的CCD探测器,可冷却稳定在 -40℃以下,无需使用危险的液氮制冷剂;CCD解析度为1280x1024;像素暗电流0.002 电子/秒;读噪声7 个电子;连续收集信号时间从32毫秒至2小时。InGaAs探测器:波长探测范围 900nm – 1750nm;带电子半导体制冷器(TEC)的InGaAs探测器,可冷却稳定在 -40℃以下,无需使用危险的液氮制冷剂; InGaAs探测器分辨率为320x240,像素点尺寸为30 x 30um,更大的像素点面积可以收集更少的光子,探测灵敏度是普通640x480 InGaAs探测器的4倍;连续收集信号时间从1微秒到60分钟;有效波段范围内量子效率(QE)为 80-85%;灵敏度 NEI 1x1010 ph/cm2/sec;量子效率70 QE 在950-1700nm范围内。 VisGaAs 探测器:波长探测范围 500nm – 1800nm,代表了新技术的VisGaAs 探测器覆盖了可见光-红外光波长检测范围,一个探头就可替代传统的CCD和InGaAs 两个探测器;半导体制冷器(TEC) ,可冷却稳定在 -40℃以下。SIFT(Stimulus Induced Fault Testing)双波长激光扫描头:双激光源654nm和1428nm;通过激光扫描芯片电路,导致失效位置电阻发生变化,通过检测反馈信号的变化,从而检测到失效位置;SIFT扫描不受物镜视野限制,可以一次扫描完整整个检测区域,无需图像拼接,避免图像扭曲;FAI的恒定电流附加反馈回路的技术,不但提高了检测灵敏度,而且避免了检测时电压过高的风险;恒定焦距的定镜扫描,可以将激光点停留在任意指定位置,用于确认失效点。FMI荧光热成像技术:FAI的微热分析技术,热分辨率是千分之一K(1/1000K),可以室温操作,无需使用危险的液晶溶液。LC液晶热成像技术:FAI的SLC(稳定液晶)液晶热成像技术的热分辨率为百分之一K (1/100 K)。Moire云纹成像:从硅片背面采用“云纹图像成像”的方式来检测失效位置的微热变化。
    留言咨询
  • 微光显微镜PHEMOS系列PHEMOS-1000是一款标准型高分辨率微光显微镜,其包含了一个红外共焦激光显微镜。PHEMOS-1000可根据设备环境和设备装置来灵活改变包括插座板到300mm双面晶片探针等等的部件。它还可以适配高灵敏度近红外相机和高分辨率纳米透镜等选配件。该显微镜有多种选配,包括红外-光致阻值改变(IR-OBIRCH)分析、与大规模集成电路测试机连接和CAD导航功能等,这些选配有助于该显微镜处理多种测量需要。黑盒照明灯含水银,请根据当地法规处理。特性可选配适用于高分辨率、高灵敏度观测的纳米透镜红外共焦激光显微镜红外-光致阻值改变(IR-OBIRCH)分析功能(选配)低电压样品用高灵敏度近红外相机(选配)数字lock-in组件加强红外-光致阻值改变的检测能力(选配)可安装300mm双面半自动探针显示功能PHEMOS-1000将发光图像叠加到高分辨率模板图像上来快速定位缺陷点。对比度增强功能可使图像更清晰,细节更多。显示功能注释图像的任何位置都可以显示评论、箭头等注释符号。比例显示可使用分段,在图像上显示比例宽度。栅格显示图像上可现实水平和垂直栅格。缩略图显示图像可以以缩略图的形式存储和调用,stage坐标等图像信息也可显示。分屏显示模板图像、发光图像、叠加图像以及参考图像可一次显示在4个窗口的屏幕上。参数产品名称PHEMOS-1000探测目标器件发光(发光探测功能)电流改变(IR-OBIRCH功能)可用器件300 mm 晶片200 mm晶片方块形芯片切割后晶片、封装后器件(取决于探针和样品固定装置)适配探针200/300 mm晶片用双面半自动探针*1200/300 mm晶片用双面手动探针*1200/300 mm晶片用半自动探针(正面观测)*1200/300 mm晶片用手动探针(正面观测)*1尺寸/重量主单元: 1360 mm (W)×1410 mm (D)×2120 mm (H), Approx. 900 kg*2控制台:880 mm (W)×700 mm (D)×1542 mm (H), Approx. 255 kgPC桌:1000 mm (W)×800 mm (D)×700 mm (H), Approx. 45 kg线电压AC220 V (50 Hz/60 Hz)功耗3000W真空度约80 kPa压缩空气约0.5 MPa~0.7 MPa*1:根据需求选购。 *2:PHEMOS主单元重量包含一个探针或等效重量。
    留言咨询
  • EMMI/OBIRCH 微光显微镜 400-860-5168转4585
    EMMI/OBIRCH 微光显微镜PHEMOS--X C15765-01PHEMOS-X 是一种高分辨率发射EMMI显微镜,可通过检测由半导体器件缺陷引起的微弱光发射和热发射来精确定位半导体器件中的故障位置。 由于PHEMOS-X可与通用探针结合使用,您可以使用您正在使用的样品设置来完成各种分析任务 已经熟悉了。安装可选的激光扫描系统可以获取高分辨率图案图像。不同类型的检测器可用于各种分析技术,例如发射分析、热分析和IR-OBIRCH 分析。 PHEMOS@-X支持从探测器插座板到 大型 300 mm 晶探测器
    留言咨询
  • 产品概要:LUXET InGaAs 100 是一款微光显微成像系统,配备了全自动运动系统、深度制冷型InGaAs相机、不同倍率的显微镜头以及锁相测量模式,可以适用于半导体器件的失效点定位。基本信息:技术优势:应用方向:主要应用于氧化层漏电、缺陷;连接点毛刺;闩锁现象。
    留言咨询
  • 倒置微光显微镜iPHEMOS系列该产品配备了Cascade Microtech公司的300mm晶片用背部微光探针(backside emission prober,BEP),其快速准确的晶片多管脚探测或微探测使其可高效地从晶片背部对晶片进行分析。该产品具有多个平台,有包括激光应用、晶片自动测量软件等全系列的选配,可进行多种背面分析。一个单元最多可安装3个探测器。LCD监控灯含水银,请根据当地法规处理。特性高精度级的多相机平台灵活的系统设计多种探测器,可观测低压工作IC倍率从1×到100×,多种镜头可选(可选配10镜头转台)背面观测探针可测量从整个300mm晶片到单个die的范围简化了测试机头对接,便于动态分析用户友好型操作系统易于升级,有利于后期应用高分辨率模板图像选配高分辨率、高灵敏度观测用纳米透镜使用纳米透镜可增加数值孔径,显著提高分辨率和光采集效率。这样可以减少探测时间,却可以提供更好的分辨率。红外-光致阻值改变(IR-OBIRCH)分析功能极受欢迎的红外-光致阻值改变(IR-OBIRCH)分析功能可作为选配增加到仪器中,来探测漏电流或静态电流缺陷(leakage or IDDQ defects)等的线缺陷使用数字lock-in组件,可提高IR-OBIRCH分析的探测功能软件提供的数字lock-in功能即使是很短的图像采集时间,也可以保证获得比模拟lock-in更清晰和锐利的图像。激光辐射的动态分析功能使用激光束照射,来观测器件工作中的状态变化(通过或者失败),以分析功能缺陷序列测量软件通过使用者执行一套流程,该功能可自动进行微光/IR-OBIRCH观测。连接半自动探针后,微光/IR-OBIRCH图像可按照序列测量并保存。连接大规模集成电路测试机或者外部电源也可以进行测量。EO探针单元C12323-01EO探针单元是一款工具,通过使用非连续光源,透过硅基底来观察晶体管状态。配置参数产品名称iPHEMOS-TP尺寸/重量主单元:1990 mm (W)×1510 mm (D)×2090 mm (H), Approx. 1800 kg*2控制台:880 mm (W)×700 mm (D)×1542 mm (H), Approx. 255 kg选配桌:1000 mm (W)×800 mm (D)×700 mm (H), Approx. 45 kg*2:iPHEMOS-TP主单元重量包含一个探针或等效重量。
    留言咨询
  • 微光显微镜PHEMOS系列特性软件环境和用户界面与高端模型一致操作简单可安装300 mm手动探针显示功能PHEMOS-200将发光图像叠加到高分辨率模板图像上来快速定位缺陷点。对比度增强功能可使图像更清晰,细节更多。显示功能注释图像的任何位置都可以显示评论、箭头等注释符号。比例显示可使用分段,在图像上显示比例宽度。栅格显示图像上可现实水平和垂直栅格。缩略图显示图像可以以缩略图的形式存储和调用,stage坐标等图像信息也可显示。分屏显示模板图像、发光图像、叠加图像以及参考图像可一次显示在4个窗口的屏幕上。参数产品名称PHEMOS-200探测目标器件发光(发光探测功能)可用器件300 mm晶片200 mm晶片 方块形芯片切割后晶片、封装后器件(取决于探针和样品固定装置)适配探针200/300 mm晶片用人工探针200 mm晶片用双面人工探针尺寸/重量主单元: 1360 mm (W)×1410 mm (D)×2120 mm (H), Approx. 900 kg*1控制台:880 mm (W)×700 mm (D)×1542 mm (H), Approx. 255 kgPC桌:1000 mm (W)×800 mm (D)×700 mm (H), Approx. 45 kg线电压AC220 V (50 Hz/60 Hz)功耗3000W真空度约80 kPa压缩空气约0.5 MPa~0.7 MPa*1:PHEMOS主单元重量包含一个探针或等效重量。
    留言咨询
  • 倒置微光显微镜iPHEMOS系列该仪器设计紧凑,高度仅为80cm,因此可与多种测试机方便地对接。其配备的高灵敏度InGaAs相机以及多种激光选配件扩大了其动态分析的范围。特性高精度级的多相机平台灵活的系统设计多种探测器,可观测低压工作IC倍率从1×到100×,多种镜头可选(可选配10镜头转台)背面观测探针可测量从整个300mm晶片到单个die的范围简化了测试机头对接,便于动态分析用户友好型操作系统易于升级,有利于后期应用高分辨率模板图像选配高分辨率、高灵敏度观测用纳米透镜使用纳米透镜可增加数值孔径,显著提高分辨率和光采集效率。这样可以减少探测时间,却可以提供更好的分辨率。红外-光致阻值改变(IR-OBIRCH)分析功能极受欢迎的红外-光致阻值改变(IR-OBIRCH)分析功能可作为选配增加到仪器中,来探测漏电流或静态电流缺陷(leakage or IDDQ defects)等的线缺陷使用数字lock-in组件,可提高IR-OBIRCH分析的探测功能软件提供的数字lock-in功能即使是很短的图像采集时间,也可以保证获得比模拟lock-in更清晰和锐利的图像。激光辐射的动态分析功能使用激光束照射,来观测器件工作中的状态变化(通过或者失败),以分析功能缺陷序列测量软件通过使用者执行一套流程,该功能可自动进行微光/IR-OBIRCH观测。连接半自动探针后,微光/IR-OBIRCH图像可按照序列测量并保存。连接大规模集成电路测试机或者外部电源也可以进行测量。EO探针单元C12323-01EO探针单元是一款工具,通过使用非连续光源,透过硅基底来观察晶体管状态。配置参数产品名称iPHEMOS-SD尺寸/重量*1主单元:805 mm (W)×915 mm (D)×1180 (775*2) mm (H), Approx. 500 kg*2控制台:880 mm (W)×1000 mm (D)×1775 mm (H), Approx. 200 kg*1:重量因配置不同而改变。*2:高度等于iPHEMOS-SD上样品边缘的高度。
    留言咨询
  • 热点检测微光显微镜THEMOS系列THEMOS-1000发热分析工具是一套用于通过半导体器件探测、热信号定位来进行半导体失效分析的系统。通过将高精度热探测器探测到的发热图与从红外共焦激光显微镜获取的高分辨率模板图像叠加,可快速、高精度地识别失效位置。特性高灵敏度是通过以下方式获得的:InSb相机在3 μm到5 μm波段内具有高灵敏度专为3 μm 到 5 μm波段优化的镜头设计使用lock-in功能(选配)实现低噪声使用斯特林循环冷却器实现高制冷性能噪声等效温差(NETD)只有20mK高分辨率是通过以下方式获得的:InSb相机为640 × 512像素(像素尺寸:15μm)叠加的激光模板图像来自红外共焦激光显微镜可选择热纳米镜头(选配) 使用窗口功能,可获得高速探测能力视频功能连接测试机,可获得动态分析功能系统结构灵活,可进行微观到宏观的观测与PHEMOS、μAMOS系列一样具有用户友好型操作全系列的选配选项应用金属布线短路接触孔异常氧化物层微等离子体泄露氧化物层击穿TFT-LCD泄露/有机EL泄露定位器件开发过程中温度异常监测器件和PC板的温度映射在器件设计早期,通过获取器件工作时的温度信息,反馈回设计流程,可以缩短器件验证时间,也可增强产品可靠性。在观测基于工作环境的温度行为改变上,该功能也很有用。通过增加U11389温度测量功能,便可以方便地获得该测量功能。IR-OBIRCH分析功能极受欢迎的IR-OBIRCH(Infrared Optical Beam Induced Resistance CHange,红外光致阻值变化)分析功能可以作为选配增加到设备中,来探测漏电流或静态电流缺陷(leakage or IDDQ defects)等的线缺陷。可以以4象限电压/电流的形式测量。使用激光激励组件进行动态分析(DALS)使用激光激励组件进行动态分析(DALS)是一种利用激光照射来分析器件工作状况的新方式。在使用LSI测试机的测试模板操作器件过程中,使用1.3 μm激光激励器件,器件的工作状态(通过/失败)因激光产生的热量而改变。通过/失败信号的改变以图像形式呈现,表明了引起时序延迟的点,边际缺陷等等。热纳米镜头系统(Thermal NanoLens System)热纳米镜头系统因为高数值孔径,大大提高了光校正效率和分辨率。通过在样品(即便样品表面平整度很差)和透镜之间施加显微镜浸润油来获取高数值孔径。使用操纵器来简化纳米透镜系统的设计,可使工作设备的更新更简单。LSI测试机对接半导体器件变得越来越复杂,因此必须通过与LSI测试机对接来初始化采样测量、设置特殊条件。安装专用探针卡适配器后,可以用线缆与LSI测试机对接,执行分析。激光标记在定位后的失效点附近进行标记,或者在失效点周围的四个点进行标记,可以轻松地将失效点的位置信息传输到其他的分析设备上。EO探针单元EO探针单元是一款工具,通过使用非连续光源,透过硅基底来观察晶体管状态。它由EOP(Electro Optical Probing)来快速测量晶体管工作电压,由EOFM(Electro Optical Frequency Mapping)以特定频率对活跃晶体管成像。测量示例案例研究:封装器件观测案例研究:对器件一侧开口进行失效层观测案例研究:CMOS观测发现凸球下的缺陷案例研究:PCB和封装器件之间的布线失效在打开封装之前观测热源;打开封装以后获取相位图像以缩小热源范围。参数尺寸/重量主单元:1360 mm(W)×1410 mm(D)×2120 mm(H), Approx. 900 kg控制台:880 mm (W)×700 mm (D)×1542 mm (H), Approx. 255 kgPC桌:1000 mm (W)×800 mm (D)×700 mm (H), Approx. 45 kg线电压AC220 V (50 Hz/60 Hz)功耗约 3000W真空度约80 kPa或更大压缩空气0.5 MPa to 0.7 MPa系统配置C9985-04 InSb相机标配红外共焦显微镜标配自动平台控制XYZ标准透镜0.8×、4×、15×样品平台PM8、PM8DSP探测目镜标配探测镜头NIR 5×抗震桌标配黑盒标配THEMOS分析软件标配FOV(mm)12×9.6 to 0.64×0.51目标晶片(可达12英寸), Si 片, 封装功能热lock-in测量选配 3D-IC测量选配热测量功能选配热纳米镜头选配视频功能标配外部触发标配窗口功能标配IR-OBIRCH分析功能选配DALS选配光发射分析选配EO探测单元选配光发射观测的相机选择型号制冷类型有效像素数光谱灵敏度InGaAs 相机 C8250-21液氮制冷640(H)×512(V)900 nm to 1550 nmInGaAs 相机 C8250-27半导体制冷640(H)×512(V)900 nm to 1550 nmInGaAs 相机 C8250-31液氮制冷1000(H)×1000(V)900 nm to 1550 nm制冷型CCD 相机 C4880-59水冷1024(H)×1024(V)300 nm to 1100 nmSi-CCD 相机 C11231-01半导体制冷1024(H)×1024(V)400 nm to 1100 nm红外共焦激光显微镜1.3 μm激光二极管输出: 100 mW1.3 μm高功率激光器(选配)输出: 超过400 mW1.1 μm脉冲激光器(选配)输出: 200 mW (CW), 800 mW (pulse)光学系统物镜/微距镜头N.A.WD(mm)FOV(mm)配置MWIR 0.8×0.132212.0×9.6标配MWIR 4×0.52252.4×1.9标配MWIR 8×0.75151.2×0.96选配MWIR 15×0.71150.64×0.51标配MWIR 30×0.71130.32×0.26选配M Plan NIR 5×0.1437.52.6×2.6标配M Plan NIR 20×0.4200.65×0.65标配M Plan NIR 100×0.5120.13×0.13标配
    留言咨询
  • PHEMOS-1000 微光显微镜 PHEMOS-1000 是一款高分辨率微光显微镜,它能通过探测半导体器件缺陷导致发射的微弱光和热来定位失效位置。由于 PHEMOS-1000 可与通用探测仪结合使用,因此您可以使用您已经熟悉的样品设置来执行各种分析任务。安装可选的激光扫描系统可以采集高分辨率图案图像。不同类型的探测器可用于各种分析技术,例如发射分析、热分析和 IR-OBIRCH 分析。PHEMOS-1000 支持从探针插座板到大型 300 mm 晶圆探针的各种任务和用途。 特点● 可安装两个超高灵敏度相机● 可安装多达 3 种波长的激光器和 EOP 探针光源● 配备适用于不同样品的光学载物台 选项● 包括激光扫描系统● 使用高灵敏度近红外相机进行微光发射分析● 使用高灵敏度中红外相机进行热分析● IR-OBIRCH 分析● 通过激光辐照进行动态分析● EO 探测分析 ● 使用 NanoLens 进行高分辨率和高灵敏度分析● 连接到 CAD 导航● 连接到 LSI 测试仪 显示功能叠加显示/对比度增强功能PHEMOS-1000 将微光图像叠加在高分辨率图案图像上,以快速定位缺陷点。对比度增强功能使图像更清晰、更细腻。显示功能● 注释:评论、箭头和其他指示符可以显示在图像上所需的任何位置。● 刻度显示:刻度宽度可以使用分段显示在图像上。 ● 网格显示:垂直和水平网格线可以显示在图像上。● 缩略图显示:图像可以存储和调用为缩略图,并且可以显示图像信息,例如载物台坐标。● 分屏显示:图案图像、微光图像、叠加图像和参考图像可以一次显示在 4 窗口屏幕中。 详细参数尺寸/重量主机:1340 mm (W)×1200 mm (D)×2110 mm (H),约 1500 kg控制架:880 mm (W)×820 mm (D)×1542 mm (H),约 150 kg操作台:1000 mm (W)×800 mm (H)×700 mm (D),约 45 kg线路电压交流 200 V (50 Hz/60 Hz)功耗约 1400 VA(最大 3300 VA)真空度 约 80 kPa 或以上压缩空气0.5 MPa ~ 0.7 MPa*PHEMOS-1000 主机的重量包括探针或同等物品。 PHEMOS-X 微光显微镜 PHEMOS,能够适应未来PHEMOS-X 是一款高分辨率微光显微镜,它能通过探测半导体器件缺陷导致发射的微弱光和热来定位失效位置。 特点可安装两个超高灵敏度相机通过涵盖不同的发射分析和热分析检测波长范围,从而可以轻松选择与样品和故障模式相匹配的分析技术。 可安装多达 5 个 OBIRCH、DALS 和 EOP 光源 专为先进设备设计的高精度载物台 光学载物台的工作范围 X±20 mmY±20 mmZ+80 mm* 由于使用了探针台,加上样品台或 NanoLens 安装的干涉,工作范围可能窄于这些值。 基本显示功能叠加显示/对比度增强功能* 实际显示功能可能因软件版本、环境等因素而异。PHEMOS-X 将微光图像叠加在高分辨率图案图像上,以快速定位缺陷点。 对比度增强功能使图像更清晰、更细腻。 显示功能● 注释:评论、箭头和其他指示符可以显示在图像上所需的任何位置。● 刻度显示:可以在图像上分段显示刻度宽度。 ● 网格显示:可以在图像上显示垂直和水平网格线。● 缩略图显示:图像可以存储为缩略图并进行调用,并且可以显示图像信息,例如载物台坐标。 ● 拆分屏幕显示:可以在 6 窗口屏幕中一次显示图案图像、微光图像、叠加图像和参考图像。 LSI 测试仪连接示例随着设备变得日益复杂,在设备运行时日益需要连接 LSI 测试仪进行分析,以便找到特定部位发生的故障。可以通过短电缆以及专为使用 PHEMOS-X 光学器件进行分析而设计的探头卡适配器,将 LSI 测试仪连接到 PHEMOS-X。 详细参数尺寸/重量主机:1656 mm (W) ×2000 mm (H) ×1247 mm (D),约 1640 kg操作台*1:1000 mm (W) × 700 mm (H) × 800 mm (D),约 39.2 kg / 1480 mm (W) × 700 mm (H) × 800 mm (D),约 48.6 kg线路电压单相 200 V ~ 240 V功耗约 3300 VA真空度至少 80 kPa压缩空气*20.6 MPa ~ 0.7 MPa*1:选项*2:包括调节器
    留言咨询
  • fMOST荧光显微光学切片断层三维成像光片显微镜BioMapping9000是技术fMOST技术的荧光三维成像仪器搭载斜光片实现高通量快速成像样本仅需琼脂糖包埋即可上机采集,无需繁琐的制备操作样本形变小,方便与标准图谱比对成像模式斜光片照明荧光成像适用标记技术Dylight594,mCherry,PI,GFP, YFP等体素分辨率1.3 μm x 1.3 μm x 0.92 μm连续切削厚度20 - 200 μm最大样本体积5 cm x 5 cm x 2.5 cm应用案例▲Thy1-EGFP转基因小鼠全脑三维成像[1]▲c-fos阳性细胞全脑分布及各脑区定量统计文献列表[1]High-throughput light sheet tomography platform for automated fast imaging of whole mouse brain. J Biophotonics. (2018)[2]Brain-wide mapping of c-Fos expression with fluorescence micro-optical sectioning tomography in a chronic sleep deprivation mouse model,Neurobiology of Stress,(2022)
    留言咨询
  • TriPHEMOS 实时分析微光显微镜为了满足CPU越来越快的速度和移动设备中低功耗的需求,先进的IC已经具有降低电压、转化为倒装芯片、多布线层以及进一步减小尺寸等特点。由此也导致使用传统技术难以分析芯片内部工作的时序。TriPHEMOS工具使用二维红外探测器,可以皮秒级精度分析器件时序。特性全新的探测器,其灵敏度范围可达1600nm全新的探测器灵敏度范围为950nm到1600nm,而传统探测器的范围只能到1400nm。扩展出来的光谱灵敏度增加了背面分析和低电压驱动IC的探测效率。全新的TDC(Time to Digital Converter),减少了分析时间全新设计的TDC可以以12.5ps的时间分辨率测量10ms内发生的光发射。专用分析软件可以在全测量范围的任何时间窗内获取结果,因此可探究出每个事件的更多细节。TDC可提供更高的重复频率专门设计的TDC最大可提供10MHz的重复频率。TDC的重复频率范围为100Hz到10MHz,因此使用者在测试工程中可更加灵活(循环长度)。二维探测器同时测量近红外二维探测器同时测量视场内所有晶体管的光发射波形,因此可快速识别目标晶体管。低噪声测量TriPHEMOS的近红外二维探测器的ems噪声比传统固态探测器的要低1/1000(室内),因此可以捕获非常微弱的光现象。多功能平台TriPHEMOS 配备了适用于背面操作的多功能平台。该平台允许使用者增加额外的探测器,可与激光应用配合工作。通过降低样品设置的复杂度进而流程长度,平台将设置样品的效率最大化。分析功能可在测量中实时成像。ROI(感兴趣区域)窗口可对特定的晶体管进行分析。逻辑仿真器下载输出。 选配CAD导航软件选配的CAD导航接口软件可使用户在CAD数据上覆盖发光,以进一步分析。EO探针单元C12323-01EO探针单元是一款工具,通过使用非连续光源,透过硅基底来观察晶体管状态。它由EOP(Electro Optical Probing)来快速测量晶体管工作电压,由EOFM(Electro Optical Frequency Mapping)以特定频率对活跃晶体管成像。应用时序验证IC开发中的设计验证DFM参数收集器件失效分析LSI器件光发射的动态测量LSI器件内部的CMOS晶体管在源极和漏极施加电压时由于电流流动而发光,该发光现象可分为瞬变态和静止态。测量瞬变光发射(瞬变态)当逻辑状态转换时,LSI器件内部的晶体管开关转换,晶体管瞬间的电流反射出脉冲光。对该脉冲光的波形进行时域测量,可以皮秒级精确度对时间进行测量。测量静止光发射(静止态)无论晶体管是维持在开还是关状态,对其施加电压会产生电流并且发光。该现象因对LSI施加的电压以及门电压的不同而不同。当晶体光处于关状态时,决定晶体光特性和缺陷数目的亚阈值电压还影响电流流动中的漏电流量。分析静止态的光发射可以定位缺陷点,追踪晶体管特性浮动、LSI供电不规则性等等参量。测量示例参数产品名称TriPHEMOS灵敏度范围950 nm to 1600 nm有效视场7.8 mm×7.8 mm结构倒置型触发间隔(测量范围)100 ns/10 MHz to 10.5 ms/100 Hz最小时间分辨率12.5 ps软件测量控制,分析, CAD 导航, VCD尺寸/重量*1主单元:1580 mm (W)×1270 mm (D)×1500 mm (H), Approx. 1500 kg控制台1:880 mm (W)×700 mm (D)×1542 mm (H), Approx. 255 kg控制台2:880 mm (W)×700 mm (D)×1542 mm (H), Approx. 255 kg选配桌:1000 mm (W)×800 mm (D)×700 mm (H), Approx. 45 kg线电压AC220 V (50 Hz/60 Hz)功耗约 4400W压缩空气0.5 MPa to 0.7 MPa*1:重量因选配不同而变化。
    留言咨询
  • 显微光谱MS 400-860-5168转3407
    MS | 显微光谱显微光谱系统 选用全球最好的 Semrock 滤光片组,创造性地将激发光、荧光和滤光片集成在一个探头之中。同时,配合闻奕光电的微区探头耦合模块,能将荧光光谱测量的空间分辨率提高至 5μm。显微光谱系统,顾名思义即显微镜系统与光谱仪系统联用,既有显微镜成像的功能,又有光谱分析的功能。该系统可以实现微米级样品的荧光光谱、反射光谱、透射光谱、拉曼光谱等光谱分析,普遍应用于材料领域、生物技术、矿物分析、微纳光学等领域。系统图 显微系统图结构组成 显微光谱系统可分为三个模块:照明模块、光谱接收模块以及成像模块。1. 照明模块 显微光谱系统的照明模块一般分为科勒照明和共焦照明两种。a)科勒照明的光源一般为显微镜自带的卤素灯,通过透镜组将卤素灯丝成像于物镜的后焦平面上,如此,物体可获得较为明亮且均匀的全场照明;其原理图可见Figure 1. 图1b)共焦照明是将照明光源(例如激光、氙灯等)通过光纤引入显微光谱系统,光纤输出端面经过光学系统成像于物体面上,即入射端面与物体面共轭,实现定点照明或激发。2.光谱接收模块 该模块由光纤以及微型光谱仪组成,其中光纤接收光路为共焦接收,即接收面和物体面为共轭面,实现定点光谱接收。接收光纤一端接入显微镜光路,另一端连接至微型光谱仪,从而获取物体微观区域内的光谱信息。3.成像模块 该模块为CCD相机,在显微镜的基础上,将CCD/CMOS相机放置在物体面的共轭面上,在测量光谱的同时,可以实现物体图像实时采集,即共轭成像。 图2系统特点1)操作简便:显微光谱系统是基于显微镜的光路进行了改进和优化,增加光谱测量模块。测量步骤可分为两步,一为显微镜下查找物体,使物体在目镜下呈清晰像,二为通过微型光谱仪采谱软件对光谱进行采集。2)物体小,区域可选:利用共焦原理,接收光纤仅能接收到光纤端面成像在物体面的区域,实现微小区域的光谱采集。采集区域的空间分辨率一般可以通过接收光纤芯径除以物镜放大倍数获得。通过特别定制的光纤,可在采集区域的周围形成一个圆环,实现对微小物体的区域选择及定位。3)测量能力强:具备传统显微镜所不具备的光谱测量功能,传统显微镜只能提供图像的获取,从而对物体进行形貌分析,无法获得物体的光谱信息。显微光谱测量系统,在保有物体图像采集的功能外,还可对物体进行不同区域光谱的采集与分析,更进一步的了解物体的结构与特性。4)扩展功能多:可基于商用显微镜,通过光路切换器的设计与耦合,增加包含显微镜下的透反射、荧光以及拉曼光谱测量,最大限度满足各类的科研需求。典型显微光谱测量1)显微反射光谱测量:通常使用显微镜自带的卤素灯作为照明光源,通过显微镜中的上反射光路照射在物体上(科勒照明),经由物体反射后进入接收光纤,利用微型光谱仪对接收到的反射光进行采谱及分析。2)显微透射光谱测量:通常使用显微镜自带的卤素灯作为光源,通过显微镜下面的透射光路照射到物体,光线透过物体后到达接收光纤,利用微型光谱仪对接收到的透射光进行采谱及分析。3)显微荧光光谱测量:将外界激光光源通过光纤或荧光探头,经由光路切换器耦合进入显微镜系统,并聚焦于物体面,实现对物体的荧光激发。然后,通过对被激发点所返回的光进行过滤(滤去激发激光),使得进入接收光纤的光只保留所需的荧光信息,利用微型光谱仪对接收到的荧光进行采谱及分析。4)显微拉曼光谱测量:将外界激光光源(波长为532nm 或 785nm)通过拉曼探头,经由光路切换器耦合进入显微镜系统,并聚焦于物体面,实现对物体的拉曼激发。然后,通过对被激发点所返回的光进行过滤(滤去激发激光),使得进入接收光纤的光只保留所需的拉曼以及荧光信息,利用微型光谱仪对接收到的拉曼光及荧光进行采谱及分析。
    留言咨询
  • 共焦显微光谱模块 400-860-5168转2332
    gora-Lite,模块化的共焦显微光谱 模块化 / 光纤共焦 / 多功能复用 gora-Lite 共焦显微光谱模块 基于 光纤共焦技术,将共焦显微光路集成为一个个独立的模块,可根据功能需求进行快速搭建,面向 μm 级样品,实现包括透反射、荧光、拉曼、荧光寿命、非线性等光谱功能,以及电致发光和光电流等光电特性检测。最终,带来一系列富有灵活适配性、高性价比的多功能检测方案。gora-Lite 共焦显微光谱系统方案gora-Lite 共焦显微光谱模块 在共焦显微检测领域的良好表现,得益于如下几个特点: 1 模块化 gora-Lite 是一个个集成的共焦显微光谱模块,可根据功能需要,配置其中一个或者多个模块,配合用户已有设备如显微镜、光源、探测器等器件,实现 显微光谱功能 的快速构建; 2 多功能实现 gora-Lite 共焦显微光谱模块,可通过光纤连接不同的激发光源以及探测终端,面向 μm 级样品,可实现包括透反射、荧光、拉曼、荧光寿命、非线性等光谱功能以及电致发光、光电流等 光电特性检测; 3 光纤共焦 gora-Lite 共焦显微光谱模块采用光纤共焦技术,以光纤作为空间滤波器,提供接近衍射极限的样品激发以及 高空间分辨信息接收,能够有效抑制目标区域周围的干扰信号; 4 系统稳定 gora-Lite 共焦显微光谱模块基于光纤连接构建系统,能够避免物理空间上的移动而导致的光路偏移。即使档位来回切换千次,激发光斑始终能保持在 1μm 区域内; 5 超宽谱段光谱检测 gora-Lite 共焦显微光谱模块,能够实现微区条件下,从紫外 250nm 到近红外 1700nm 的微区光谱测试。 注:以上参数如有差异,以官网为准。
    留言咨询
  • 微流控显微光谱分析系统图片简介微流控显微光谱分析系统,由微流控单元与微区光谱单元组成,可以实现微流控芯片通道内微区域的拉曼分析、反透射光谱测量、吸收光谱、紫外吸收光谱、激发荧光以及样品位置扫描分析检测等多种功能,支持实时检测,光斑尺寸低至1um(100x物镜),在微流控方向的应用上具有出色表现。光谱单元采用模块化设计,小巧紧凑,支持市面主流显微镜品牌,如蔡司、莱卡、奥林巴斯、尼康等。您完全可以自行搭配所需显微镜。功能图解应用系统材料领域生物技术矿物分析微纳光学司法鉴定技术参数系统可定制,具体参数需结合搭配确定,参阅附件以查看更多内容。
    留言咨询
  • 苏州汇光是专业的光学显微镜,工业显微镜厂家,我司供应的显微镜都是品牌显微镜,如奥林巴斯,舜宇,价格1000起,欢迎大家前来咨询选购.我们将有专业的技术人员根据您需求做出智能解决方案.目前,苏州汇光供应的视频显微镜种类齐全,根据其外观,性能不同可分为高清测量视频显微镜、高清检查视频显微镜、视频一体机、自动对焦视频显微镜、大视频检测视频显微镜、三维检查显微镜,万向支架视频显微镜,万向支架体视视频显微镜,三目视频显微镜,三目体视视频显微镜等。欢迎有需要的朋友前来咨询选购。苏州工业园区汇光科技有限公司成立于2003年,是一家专业从事以显微光学、显微视觉、数码成像,自动化测量以及非标智能检测类为核心的各种工业用光学检测分析仪器和设备的研发、生产与销售。您如果想要购置金相显微镜,苏州汇光可以欢迎您带着样品来我公司实际体验观察效果,如果您不方便,可以将产品寄到我司,我们把效果调节好以后再拍照,或者邮件的形式发您查看,并把您的样品寄到您公司,如果您觉得该样品设计到机密问题,我们可以带着样机到您公司观察效果。总之,在不损害双方利益的前提下,苏州汇光都愿意配合您。【联系方式】电话:传真:产品详情: 地址:苏州市吴中区东方大道258号好得家产业园苏州工业园区汇光科技有限公司 欢迎大家前来咨询显微镜相关信息!!
    留言咨询
  • 显微光分布测试系统 随着半导体照明的进一步快速和深入发展,LED在道路照明、室内照明、汽车灯、手提灯具等多个领域等到了越来越广泛的应用,同时,业界对LED灯具的二次光学设计以及利用LED灯具的空间光度数据进行照明设计的要求也越来越高。作为LED产品的心脏,LED光源的光品质就显得尤为重要!LED光源的主要功能是把电能转化成光能,而当前,芯片厂和灯珠厂在LED光源设计过程中,仅仅是针对光源进行相对简单的测量,获得整体的亮度、波长和电压等参数。而实际上,由于电极设计、芯片结构、封装方式等方面的影响,光源表面的亮度和颜色并不是均匀分布的,传统的光源测量方式并不能精确地描述光源表面这种空间光分布的特点,这样容易导致光源出现色度和亮度不均匀、光源整体效率低等问题,甚至导致光源失效。因此很有必要利用显微光分布测试系统对光源进行发光均匀度测试来优化光源设计,同时也为LED光源的二次光学设计提供更为准确、详尽的数据。针对以上情况,金鉴实验室联合英国GMATG公司联合推出显微光分布测试系统,主要用于测试光源的发光均匀性,帮助提高光品质。现已演化到第五代,而且价格从150万降到几十万!金鉴显微光分布测试系统针对LED及其他光电器件产业打造,可用于观察微米级发光器件的光分布,测试波长范围190nm ~1100nm,包含了紫外和红外不可见光的测试,可用于测量光源的光强分布、直径、发散角等参数。通过CCD测量光强分布,通过算法计算出光源直径等参数,测量光强的相对强度,不需要使用标准灯进行校准。适合光电器件及照明相关领域的来料检验、研发设计和客诉处理等过程,以达到企业节省研发和品质支出的目的。金鉴实验室自主研发的主要设备有显微红外热分布测试系统、显微红外热点定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉。性能卓著,值得信赖。应用领域:适用于LED芯片、LED灯珠灯具、面板灯、汽车照明灯、LCD显示屏、激光器及其他光电器件的来料检验、研发设计和客诉处理等过程,助力LED芯片设计优化、光源的光线追迹及发光均匀性测量。与近场光学测试设备相比,金鉴显微光分布测试系统优点显著: 近场光学设备与金鉴显微光分布探头对光敏感度差异对比:金鉴显微光分布探头对光敏感度较高,能分辨细小的光强差异,因此成像也更细腻。金鉴显微光分布与传统设备大PK:金鉴显微光分布测试系统可模拟工作温度进行测试,分辨率可达1微米,其具有3D功能,可观测芯片出光效果。金鉴显微光分布测试系统特点:1. 探测器感应波长为190nm-1100nm,覆盖深紫外到近红外光。不同波长光源的光分布图 2. 与光学显微镜搭配,可观察微米级发光器件,图像具备2D和3D显示功能,表现效果更加强烈金鉴显微光分布测试系统的分辨率取决于与之搭配的光学显微镜的分辨率,即如果显微镜能1000倍放大,金鉴显微光分布测试系统也可以观测到1000倍率下的光分布细节。与可见光类似,像素越高画面越清晰越细腻像素越多同时获取的温度数据越多。金鉴GMATG 传感器像素640×595。 3. 独特的遮光设计,杜绝背景光影响,测量更加精准光分布探头接收的是视野内所有的光信号,包括被测样品发射的光以及环境反射光。光分布软件虽然具有背景光扣除功能,但是在测试过程中,环境的变化会导致环境反射光强度的变化,造成测试不准确。金鉴显微光分布测试系统,具备独特的遮光罩设计,隔绝了环境光的影响,大大增加了测试的准确性。如下图所示,在不使用遮光罩的情况下,受环境光变化的影响,芯片光分布图部分区域异常偏暗;在使用遮光罩后,彻底屏蔽了环境光的影响,光分布图异常偏暗区域消失。 4. 高精度控温系统,可实现光源在不同温度下光分布的测试光电器件性能受温度的影响较大,脱离实际环境所测试的结果准确性较差,甚至毫无意义。金鉴自主研发的显微光分布测试系统配备高低温数显精密控温平台,控温范围:室温~200℃,能有效稳定环境温度,实现光源在不同温度下光分布的测试,对定位光源最适宜的工作温度可提供最直观有效的数据。配备的水冷降温系统,在100s内可将平台温度由100℃降到室温,有效解决了样品台降温困难的问题。 如下图所示不同工作温度下的LED芯片发光均匀度对比,同一芯片,工作状态温度越高,亮度越低!温度越高,光衰趋势越大。支架引脚温度由80℃升高到120℃,LED芯片发光强度衰减30.6%。 LED芯片发光强度随温度上升而下降5. 定制化的光分析软件金鉴定制分析软件GM LED NF Analyzer,具有自动影像采集控制、实时影像、对位过程屏上显示、设置多重帧自动采集、灰阶与色彩数值显示、记录环境影像提供校正等多重功能,方便做各个维度的光强分布数据分析和图像效果处理,为科研及分析提供更专业的数据支持。(1)提供2D、3D光束分布显示和轮廓分析。 (2)通过CCD测量光强分布,通过算法计算出光源直径等参数。测量光强的相对强度,不需要使用标准灯进行校准。 (3)OSI彩虹及不同灰阶调色板,满足客户个性化的显示需求。 (4)扣除背景光干扰,增加测试精准度。 (5)可导出光分布图全部像素点的光强数据值,为专业仿真软件分析提供原始建模数据。 (6)自定义报告模式,测试报告一键展现;测试结果即时分享,高效协同。 测试案例:案例一:芯片电极设计对光分布的影响对某LED芯片电极图案进行评估,如下图所示,芯片的发光不均匀,区域1的亮度明显过高;相反地,区域2的LED量子阱却未被充分激活,降低了芯片的发光效率。对此,金鉴建议,可以适当增加区域1及其对称位置的电极间距离或减小电极厚度来降低区域1亮度,也可以减少区域2金手指间距离或增加正中间正极金手指的厚度来增加区域2亮度,以达到使芯片整体发光更加均匀的目的。 LED芯片发光效果图案例二:芯片金道设计对光分布的影响下图中芯片左边为两个负电极,右边为两个正电极,其中,区域1、2亮度较低,电流扩展性不够,需提高其电流密度,建议延长最近的正电极金手指以提升发光均匀度。区域3金手指位置的亮度稍微超出平均亮度,可减少金手指厚度来改善电流密度,或者改善金手指的MESA边缘聚积现象,另外,也可以增加区域3外的金手指厚度,使区域3外金手指附近的电流密度增加,提升区域3外各金手指的电流密度,以上建议可作为发光均匀度方面的改善,以达到使芯片整体发光更加均匀的目的。在达到或超过了芯片整体发光均匀度要求的前提下,可考虑减小金手指厚度来减少非金属电极的遮光面积,以提升亮度。甚至,可以为了更高的光效牺牲一定的金手指长度和宽度。 LED芯片发光效果图 案例三:光分布3D模块测试评估芯片光提取效率金鉴显微光分布3D测试模块可以观察芯片各区域的出光强度,填补芯片的光提取效率测试空白。下图垂直结构芯片采用了多刀隐切工艺,芯片侧面非常粗糙,粗糙界面可以反射芯片侧面出射的光,提高芯片的光提取效率。从该芯片的3D光分布图中可以直观的看到,该芯片边缘出光较多,说明多刀隐切工艺对芯片出光效率的提升显著。案例四:显微光分布测试帮助定位最高效率的电流电压金鉴显微光热分布系统,可帮助客户避免过度超电流,准确定位最高效率下的电流电压!如下案例中,芯片额定电流为60mA,超额定电流90mA下点亮时,芯片温度大大提高,亮度反而出现衰减。过度的超电流,LED芯片产热严重,光产出并不会增加,甚至出现光衰。 案例五:显微光分布测试系统应用于LED芯片失效分析失效的LED芯片必然在光热分布上漏出蛛丝马迹!某灯珠厂家把芯片封装成灯珠后,老化出现电压升高的现象。金鉴通过显微光分布测试系统发现芯片主要在正极附近区域发光。因此,定位芯片正极做氩离子截面抛光,发现正极底部SiO2层边缘倾角过大,ITO层在台阶位置出现断裂、虚接现象,ITO层电阻过大,电流扩散受阻,出现电压升高异常现象。案例六:倒装芯片光热分布分析 失效分析案例中,CSP灯珠出现胶裂异常,使用热分布测试系统对芯片进行测试,由于红外测温是通过物体表面的红外热辐射测量温度,对于倒装芯片表面的蓝宝石也不能穿透,故无法对芯片内部电极等结构进行进一步的分析。此时,使用金鉴显微光分布测试系统可以清晰地观察到芯片电极图案,从光分布图可以看出,芯片负电极位置发光较强,因此推断负电极位置电流密度较大,导致此处发热量也较大,从而局部热膨胀差异过大引起芯片上方封装胶开裂异常。 案例七:多芯片封装的光分布监测金鉴显微光分布系统,能高效精准分析灯珠内各芯片电流密度,是品质把控的好帮手!例如某灯珠采用两颗芯片并联的方式封装,该灯珠点亮时,金鉴显微光分布测试系统测得B芯片发光强度较A芯片的大,显微热分布测试系统测得B芯片表面温度高于A芯片。分析其原因,LED芯片较小的电压波动都会产生较大的电流变化,该灯珠两颗芯片采用并联方式工作,两颗芯片两端的电压一样,芯片电阻之间的差异会造成流过两颗芯片的电流存在较大差异,从而出现一个灯珠内两颗芯片亮度不一的现象,影响灯珠性能。 光学图 光分布图 热分布图 案例八:COB光源发光均匀度测试对于LED光源,特别是白光光源,由于电极设计、芯片结构以及荧光粉涂敷方式等影响,其表面的亮度和颜色并不是均匀分布的。如图所示,COB右半边灯珠亮度明显比左半边低,由标尺计算出,右半边亮度为左半边的三分之二,导致这一失效原因也许是COB的PCB板材左右边铜箔电阻不一致,导致灯珠左右两边的芯片所加载的电压不一致,造成两边芯片的发光强度出现差异。案例九:OLED光分布测试有机发光二极管(OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。使用金鉴显微红外热分布测试系统对OLED显示屏进行测试,可以直观的了解显示屏各区域光强分布情况,对于缺陷点也能及时发现,有助于检测和改善OLED发光品质。如下案例中,OLED电流输入端亮度较大,远离输入端亮度逐渐减小,在此情况下,损失的亮度转换为热能,因此温度的分布会变得不均匀,进而导致OLED显示面板中各处的薄膜晶体管(TFT)的阈值电压和迁移率的变化也分布不均,进一步导致整个显示面板的发光亮度不均匀。 案例十:激光器光束形貌及热场分布金鉴显微光热分布测试系统,配备专用光衰片及水冷散热系统,可测试大功率超亮激光灯的光热分布!
    留言咨询
  • MicroTEQ-S1显微拉曼光谱测量系统,集成荧光、拉曼和反射光谱测量功能。通过把光谱模块集成到显微镜上,实现显微荧光、拉曼和其他光谱信息的测量。系统由光谱仪、激光器、光源、显微镜等部分构成,自由灵活,帮助用户快速对样品微观结构,微观光谱信息的测试和分析;此外系统可以加装二维电控扫描台,通过软件控制,实现光谱二维扫面测量功能。应用范围微流控;植物叶片研究;激光材料评价;生物和细胞测试;光子晶体测试;珠宝、古籍检测 纳米材料分析;拉曼模式拉曼探头可直接插入显微光谱测试模块中,从而快速实现拉曼光谱测量。支持光谱范围覆盖400-1100nm,仅需通过更换探头和激光器,便可实现488nm、532nm、633nm、785nm激发波长的拉曼光谱测量。搭配便携式拉曼光谱仪显微光谱测试模块也能够完美适配ACCUMAN SR 系列科研级便携拉曼,即插即用的工作模式让您不仅可以实现便携的拉曼光谱测量,还可以更方便地在实验室内实现显微拉曼光谱分析。其他模式荧光测量:显微光谱测量模块内部集成了荧光测试光路,通过SMA905光纤接口与荧光激光器和荧光光谱仪连接。其中连接激光器的SMA905接头,可以改装成为自由空间光作为输入光源,从而得到更强的激发功率或更好的光斑质量。模块中带滤光片插槽,可以放置适配不同激发波长的激发滤光片和发射滤光片,实现不同激发波长的显微荧光测量。颜色和反射测量:使用光纤把钨灯光源和显微光谱测量模块连接起来,共用荧光光路,即可实现显微反射光谱测量和显微颜色测量功能。二维Mapping:选配二维电动平台,使用操作软件设置面扫描采样, 获取一定范围内的逐点扫描光谱数据,可用于表征材料表面微观结构和光谱成像。同时测试结果还可以通过图像绘制的方式呈现出来。光谱仪配置拉曼拉曼荧光光谱仪QEPRO@532nmQEPRO@785nmQEPRO-FL光谱范围150-4200cm-1@532nm150-2000cm-1@785nm300-1050nm分辨率~10cm-1@5um狭缝~6cm-1 @5um狭缝1.5nm@5um狭缝信噪比1000:1A/D18位探测器背照减薄型面阵CCD杂散光0.08%@600nm线性度99%动态范围85000:1暗噪声6RMS@18位积分时间8ms-60mins激光器LASER-532LASER-785LASER-405LASER-450激光波长532nm785nm405+/-2nm450+/-2nm激光功率0-300mW可调0-500mW可调0-200mW可调0-200mW可调线宽0.2nm0.1nm2nm2nm寿命10000h10000h10000h10000h拉曼探头RPB-532RPB-785OD值OD6OD6焦距7.5mm7.5mm激光输入端光纤100um光谱收集端光纤200um显微光谱测量模块Micro-S1光谱范围:400-1100nm显微镜4组平场消色差物镜:5X,10X,20X,50X5X,数值孔径:0.15,工作距离:10.8mm10X,数值孔径:0.3,工作距离:10mm20X,数值孔径:0.45,工作距离:4mm50X,数值孔径:0.55,工作距离:7.9mm100X,数值孔径:0.8,工作距离:4mm(非标配,可选)1/2”CMOS彩色CCD,2048*1536(300万像素)载物台面积175mm×145mm,移动范围:76mm×42mm二维电控平移台(可选配)一体式二维电控平移台,含控制器;行程:50mmx50mm;重复定位精度:2um;移动分辨率:1um;
    留言咨询
  • 显微光谱测量系统 400-860-5168转3899
    显微光谱测量系统,集成荧光、拉曼、反射和透射光谱测量功能。通过把光谱模块集成到显微镜上,实现显微荧光、拉曼和其他光谱信息的测量。 系统由光谱仪、激光器(或其他光源)、显微镜等部分构成,自由灵活,帮助用户快速对样品微观结构,微观光谱信息的测试和分析; 特别是,此系统可以加装二维电控扫描台,通过软件控制,实现光谱二维空间扫描测量功能 显微光谱测量系统应用领域:植物叶片研究;激光材料评价;半导体材料分析;生物和细胞测试;光子晶体测试;珠宝、古籍检测 纳米材料分析; 显微光谱测量系统搭建模式:拉曼测量 拉曼探头可直接插入显微光谱测试模块中,从而快速实现拉曼光谱测量。支持光谱范围覆盖400-1100nm,仅需通过更换探头和激光器,便可实现488nm、532nm、633nm、785nm激发波长的拉曼光谱测量.荧光测量 显微光谱测量模块内部集成了荧光测试光路,通过SMA905光纤接口与荧光激光器和荧光光谱仪连接,也可以改装成为自由空间光作为输入光源,从而得到更强的激发功率或更好的光斑质量。另外,模块中带滤光片插槽,可以放置适配不同激发波长的激发滤光片和发射滤光片,实现不同激发波长的显微荧光测量. 反射/透射测量 使用光纤把钨灯光源和显微光谱测量模块连接起来,共用荧光光路,即可实现显微反射反射/光谱测量.显微光谱测量系统参数:产品名称显微拉曼显微荧光光谱范围200-4000波数 @532nm185-1100nm分辨率18波数@25μm 狭缝2.5nm@5um狭缝设计思路显微镜+便携式光谱仪连接方式SMA905光纤,一端接口连接光谱仪SMA905光纤,另一端连接激光器;或自由空间输入光源激发源532nm拉曼专用激光器功率:0~300mw连续可调复合光源(汞灯等)激光器(405nm/532nm/785nm等)信噪比500:1(若需更高信噪比,可更换为制冷型CCD,信噪比可达到1000:1)A/D16位探测器滨松科学级,薄型背照式CCD杂散光 0.1% @ 600nm线性度99%动态范围10000:1暗噪声50RMS@18位积分时间4ms-65 s显微镜4X平场消色差物镜,数值孔径:0.1,工作距离:30mm10X平场消色差物镜,数值孔径:0.25,工作距离:10.2mm40X平场消色差物镜,数值孔径:0.65,工作距离:0.7mm100X平场消色差物镜,数值孔径:1.25,工作距离:0.2mm二维平移台手动调节 双层钢丝结构载物平台(康宁玻璃台面),尺寸:302mm×152mm;78mm×32mm,1mm/格,精度0.1mm 电动调节(选配) 行程:50mmx50mm;重复定位精度:2um;移动分辨率:1um;
    留言咨询
  • mini是一款发热显微镜,配备了高灵敏度InSb相机,可探测半导体器件的内部发热。通过将高精度热探测器探测到的发热图与模板图像叠加,可高精度地识别失效位置。特性高灵敏度是通过以下方式获得的:InSb相机在3 μm到5 μm波段内具有高灵敏度专为3 μm 到 5 μm波段优化的镜头设计使用lock-in功能(选配)实现低噪声使用斯特林循环冷却器实现高制冷性能噪声等效温差(NETD)只有20mK高分辨率是通过以下方式获得的:InSb相机为640 × 512像素(像素尺寸:15μm)可选择热纳米镜头(选配)使用窗口功能,可获得高速探测能力视频功能连接测试机,可获得动态分析功能系统结构灵活,可进行微观到宏观的观测与PHEMOS、μAMOS系列一样具有用户友好型操作全系列的选配选项应用金属布线短路接触孔异常氧化物层微等离子体泄露氧化物层击穿TFT-LCD泄露/有机EL泄露定位器件开发过程中温度异常监测器件和PC板的温度映射温度测量功能在器件设计早期,通过获取器件工作时的温度信息,反馈回设计流程,可以缩短器件验证时间,也可增强产品可靠性。在观测基于工作环境的温度行为改变上,该功能也很有用。通过增加U11389温度测量功能,便可以方便地获得该测量功能。宏观分析新研发的0.29×红外镜头可提供无水仙现象、无阴影的清晰视场图像。热纳米镜头系统(Thermal NanoLens System)热纳米镜头系统因为高数值孔径,大大提高了光校正效率和分辨率。通过在样品(即便样品表面平整度很差)和透镜之间施加显微镜浸润油来获取高数值孔径。使用操纵器来简化纳米透镜系统的设计,可使工作设备的更新更简单。LSI测试机对接半导体器件变得越来越复杂,因此必须通过与LSI测试机对接来初始化采样测量、设置特殊条件。安装专用探针卡适配器后,可以用线缆与LSI测试机对接,执行分析。激光标记在定位后的失效点附近进行标记,或者在失效点周围的四个点进行标记,可以轻松地将失效点的位置信息传输到其他的分析设备上。测量示例案例研究:封装器件观测案例研究:对器件一侧开口进行失效层观测案例研究:CMOS观测发现凸球下的缺陷案例研究:PCB和封装器件之间的布线失效在打开封装之前观测热源;打开封装以后获取相位图像以缩小热源范围。参数尺寸/重量880 mm(W)×840 mm(D)×1993 mm(H), Approx. 450 kgPC桌:700 mm(W)×700 mm(D)×700 mm(H), Approx. 50 kg线电压AC220 V (50 Hz/60 Hz)功耗约 700W真空度约80 kPa或更大压缩空气0.5 MPa to 0.7 MPa系统配置C9985-04 InSb相机标配自动平台控制手动标准透镜0.8×、4×、15×样品平台HPK 平台 (8英寸)探测目镜标配探测镜头NIR 5×抗震桌标配THEMOS分析软件标配FOV(mm)12×9.6 to 0.64×0.51目标PCB*,晶片(可达12英寸),Si 片, 封装*:集成0.29×物镜时。功能热lock-in测量选配 3D-IC测量选配热测量功能选配热纳米镜头选配视频功能标配外部触发标配窗口功能标配光学系统物镜/微距镜头N.A.WD(mm)FOV(mm)配置MWIR 0.29×0.0481233×26td选配MWIR 0.8×0.132212.0×9.6标配MWIR 4×0.52252.4×1.9标配MWIR 8×0.75151.2×0.96选配MWIR 15×0.71150.64×0.51标配MWIR 30×0.71130.32×0.26选配M Plan NIR 5×0.1437.52.6×2.6标配外形图(单位:mm)
    留言咨询
  • 产品介绍实时瞬态锁相红外热分析系统(RTTLIT),采用高频高灵敏度红外探测器,结实时高速图形算法,可以获取极其微弱的红外光谱信号,实时瞬态锁相红外分析技术具备超高灵敏度、实时同步输出、无损检测等优点,温度灵敏度可达0.0001C功率检测限低至luw,可用于PCB/PCBA/IC/MOSFET/IGBT/MLCC/LED等各类电子、集成电路及半导体器件的失效分析及缺陷定位。系统主要特点完全自主研发 独有的实时瞬态锁相功能 热灵敏度低至0.1mk 自动对焦和一键相机切换 可做结温、热分布、真实温度测量 制冷/非制冷可选,灵活多变的配置,一套设备可以集成三套系统(可见光显微镜、热红外显微镜) 极简的操作控制: 可实现自动镜头转换自动相机切换。案例展示
    留言咨询
  • 显微镜光谱扩展口 400-860-5168转2332
    CMS,一次光谱的升级广泛的显微镜适配 / 最小 1μm 区域选择 / 透反射 & 荧光 & 拉曼 CMS 光谱扩展口 是对光谱测量的一次升级,将复杂的 Micro Spectrum 功能,如此方便地带到你的面前。CMS 的迷人之处不仅在于拓展的光谱输出口,内部更蕴含了两档光路设计,搭载不同性能光学器件,实现诸如“边看边测”、“微区传输”等过去所不能的设想。典型应用领域: 光子晶体 采用自组装形式制备的光子晶体通常具有微畴,不同酬的光学特性稍许不同;为了探测这些光学特性,需要具有微米级的显微光谱测量能力。 MEMS 器件 MEMS 器件具有微米级尺寸,需要能够采集器件内局部特征位置的反射、透射光谱。 纳米线荧光 纳米线的荧光探测需要能够在微米级尺度准确地测量荧光发射光谱。CMS 光谱扩展口 具有以下显著特点: 1 广泛的显微镜适配 CMS 具有小巧的机身,可以安置在大多数商用显微镜之上;同时,我们会为您做免费的接口定制服务,将 CMS 安装于您的显微镜之上; 2 最小 1μm 区域选择 安装 CMS 后,结合 FIB-M 光纤,可以将光谱测量的空间分辨率提升至最小 1μm 的区域; 3 最宽 200~2500nm 全波谱 CMS 内部可安置适用于不同波段的分束器,从而将光谱输出范围拓展至 200~2500nm 范围; 4 荧光 & 拉曼 除了对透反射的测量,CMS 还可以加载二向色镜和滤光片,实现 显微荧光 及 显微拉曼 光谱测量。 注:以上参数如有差异,以官网为准。
    留言咨询
  • UVM-1 全光谱显微镜 400-860-5168转2045
    UVM-1TM全光谱显微镜(UV-visible-NIR microscope)的设计是将紫外和近红外成像技术和宽带显微技术相结合,能够完美的实现紫外-可见-近红外的成像。具有前沿技术的UVM-1TM显微镜结合了CRAIC公司创新设计的光学技术,用户仅用一台显微镜就能在整个宽光谱范围内完成显微成像。无论高分辨率,还是光谱成像能力,UVM-1TM都代表显微成像领域的最高水平。具有独特的多功能性系统设计能够允许用户只在一台显微镜上获得紫外-可见-近红外的高分辨率成像和分析结果。紫外显微镜对半导体内微量异物有很高的灵敏性,相比标准的显微镜,具有更强大的能力解决细节变化;而近红外显微镜能够无损的、有选择性的对硅晶片设备内部的电子电路进行精确成像。这些应用只是其众多应用领域的一小部分,UVM-1TM全光谱显微镜灵活的设计使其在任何应用领域都能做到完美、最优秀。UVM-1TM使用独特创新的光学设计,并配有高分辨能力的数字相机和高放大倍数的显微镜,能够在全光谱范围内获得高品质和高分辨率的彩色成像。UVM-1TM全光谱显微镜堪称是一款强大、独一无二的显微光谱分析工具。显微镜光谱范围200-2500nm透射图像可用荧光激发254-546nm反射成像系统可用偏振成像可用视图范围40-2400微米高分辨率紫外成像可用高分辨率近红外成像可用紫外-可见-近红外目标可用冷固态传感器可用显微镜自动化可用
    留言咨询
  • 三级拉曼显微光谱系统 (Model: Trivista CRS+)德国S&I GmbH TriVista CRS+ 产品定位:多功能开放式自动化“光谱成像综合分析系统”。 TriVista CRS+ 三级显微拉曼光谱仪,高性能模块化设计,具有以下优势:1. 集成多功能:如拉曼,荧光,暗场光谱,TCSPC荧光寿命,变温红外光谱,时间分辨光谱等;2. 适用性宽:结合多种测试环境要求,如大样品光路系统,低温,强磁,高温,AFM。3. 开放性强:可集成多路激光器,四个探测器,四个狭缝入口;4. 超高光谱分辨率:0.14cm-1(加模式) 超低波数拉曼性能:=5cm-1(减模式)5. 系统自动控制与高可靠性,系统设计合理,结构稳定,光路不受温度影响,不需专业人员维护6. 与OPO连续可调波长激光器搭配做共振吸收拉曼,软件控制波长扫描,适于如碳管拉曼测试研究。TriVista CRS+ 性能:激光器深紫外到近红外波长范围多达内置4个波长激光器,外置外接大型激光器紫外和可见光/近红外双光束路径自动控制激光选择自动对准,聚焦和校准功能超高拉曼光谱分辨率 <0.14cm-1 @ 633 nm低波数拉曼,可测试到 +/- 5 cm-1高波数范围: 9000cm-1(@ 532nm)热电制冷和液氮制冷探测器正置/倒置/双显微镜空间分辨率:XY 1um Z 2um步进电机和压电驱动XYZ位移台快速3D拉曼Mapping荧光寿命成像Mapping功能集成控制液氮温度冷热台集成液氦温度低温恒温器可结合拉曼成像和原子力显微镜成像自动控制的偏振光谱功能大样品箱,可放置固体样品,粉末样品,薄膜样品,比色皿池,任意解度激发TriVista CRS+ 系统结构原理三级联光谱仪的参数性能 加模式(1+2+3) 减模式(1-2+3)减模式1级光栅与2级光栅反向旋转,重新合光,利用狭缝的精密控制以消除激光瑞利线。加模式/减模式同一光路,软件切换无需校正光路VISTACONTROL跨平台控制系统激光器自动选择,光路的自动对准波长和强度自动校准功能VistaControl硬件控制界面加热、冷却阶段和低温状态的温度控制自动Z轴聚焦拉曼成像快速拉曼/荧光/寿命 Mapping荧光和背景抑制光谱库匹配数据(物质成份分析)与原子力显微镜(AFM)连用并控制各种数据格式导出,各种后处理程序拓展延伸光路,与外置低温台,SEM,连用大样品箱,可放置固体样品,粉末样品,薄膜样品,比色皿池,测吸收,透射,正反射,任意角度激发
    留言咨询
  • PCB切片分析,是苏州汇光科技专业的金相显微镜分析软件,目前苏州汇光供应的PCB切片分析显微镜有多种,如HGO系列切片分析显微镜,CX系列切片分析显微镜,RX系列切片分析显微镜,您可根据自身需求选择,如果您不确定选择那台显微镜比较合适,也可以咨询我们技术,他们讲根据您检测产品需求为您定制智能解决方案哦。苏州工业园区汇光科技有限公司成立于2003年,是一家专业从事以显微光学、显微视觉、数码成像,自动化测量以及非标智能检测类为核心的各种工业用光学检测分析仪器和设备的研发、生产与销售。 产品主要服务于各类电子工业研发制造领域,通讯电子领域,IC芯片制造领域,LCD显示技术领域,半导体封装测试领域,手机及触摸屏、半导体集成电路、LCD液晶面板、太阳能光伏、柔性电路板等电子类、元器件类以及光学与材料类相关新兴制造行业,汽车部件研发制造领域,新能源新材料研究分析领域,教育教学等等领域;公司在华东乃至全国拥有各类制造业客户,包括世界500强企业与各种知名民营私企。公司全体员工秉承专注、创新、坚持、担当的职业精神与理念,为客户提供高品质的产品及优质的服务;愿成为国内外广大客户的忠实合作伙伴,为科技与工业的发展努力!
    留言咨询
  • 光致发光(photoluminescence) 即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光,在半导体材料的发光特性测量应用中通常是用激光(波长如325nm、532nm、785nm 等)激发材料(如GaN、ZnO、GaAs 等)产生荧光,通过对其荧光光谱(即PL 谱)的测量,分析该材料的光学特性,如禁带宽度等。光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、高灵敏度的分析方法,因而在物理学、材料科学、化学及分子生物学等相关领域被广泛应用。 传统的显微光致发光光谱仪都是采用标准的显微镜与荧光光谱仪的结合,但是传统的显微镜在材料的PL 谱测量中,存在很大的局限性,比如无法灵活的选择实验所需的激光器(特别对于UV 波段的激光器,没有足够适用的配件),无法方便的与超低温制冷机配合使用,采用光纤作为光收集装置时耦合效率太低等等问题,都是采用标准显微镜难以回避的问题。 北京卓立汉光仪器有限公司结合了公司十余年荧光光谱仪和光谱系统的设计经验和普遍用户的实际需求,推出了“OmniPLMicroS”系列显微光致发光光谱仪,有效的解决了上述问题,是目前市场上最具性价比的的显微PL 光谱测量的解决方案。性能特点: 一体化的光学调校——所有光学元件只需要在初次安装时进行调校,确保高效性和易用 性 简单易用的双光路设计——可随意在水平和垂直光路上进行切换,适用于各种常见的样 品形态 超宽光谱范围**——200nm-1600nm 视频监视光路——可供精确调整测试点 独有的发射光谱校正功能*——让光谱测量更精准且具有可比性 多种激发波长可选**——325nm,405nm,442nm,473nm,532nm,633nm,785nm等 自动mapping功能可选*——50mm×50mm测量区间,可定制特殊规格 电致发光(EL)功能可选*——扩展选项 显微拉曼光谱测量功能可选*——扩展选项 超低温测量附件可选*——提供10K以下的超低温测量*选配项,请详细咨询;**需根据实际需要进行配置确定。参数规格表*应用:不同制冷温度下GaN材料的PL谱激发波长:325nm,功率:20mW,制冷机最低制冷温度:10K ZnO材料的PL谱: 激发波长:325nm ZnO 薄膜样品在382nm 处有一个特别强的荧光谱带,而在500 ~ 600nm 波段,有个弱的可见光荧光谱带。通过研究这些谱带,可以反映ZnO 表面态对荧光的影响以及晶型和缺陷信息。
    留言咨询
  • 苏州汇光供应的进口体视显微镜主要有3大类:SZN系列体视显微镜,SZM系列体视显微镜,SZX系列体视显微镜,报价信息可咨询0512-67625945了解详情.下面我简单的给大家介绍一些对于的体视显微镜特点。SZN系列体视显微镜采用紧凑舒适的外观设计,清晰锐利的立体图像,灵活多样的部件组合,广泛应用于现代生物、医学、科研、现代电子工业在线检测和其他科技工业领域等高精度方面的要求。SZM系列体视显微镜经典的设计,使得机体的稳定性更好,出色的光学性能、齐全的附件,多样化的组合配置,满足现代生物、医学、科研、现代电子工业的在线检测。SZX系列平行光路体视显微镜拥有卓越的伽利略光学系统和优异的成像性能,为用户提供真实完美的显微图像;同时,出色的人机工程学原理和人性化的操作系统,真正让用户体验到简单而舒适的工作感受。SZX 可满足生物医学、微电子、半导体领域的研究需求。苏州工业园区汇光科技有限公司成立于2003年,是一家专业从事以显微光学、显微视觉、数码成像,自动化测量以及非标智能检测类为核心的各种工业用光学检测分析仪器和设备的研发、生产与销售。公司拥有专业化的营销团队与技术服务团队,可为客户提供优质的产品和精湛的技术服务,量身定制智能光学检测解决方案。
    留言咨询
  • 找苏州金相显微镜生产厂家,金相显微镜供应商,欢迎您来苏州工业园区汇光科技有限公司.苏州汇光科技供应的金相显微镜有材料分析显微镜、切片分析显微镜、半导体检查显微镜、LCD导电粒子检查显微镜、LED检查显微镜、镀层检测显微镜、熔深检测显微镜、孔隙率检测显微镜、清洁度检测显微镜、线束端子检测显微镜、超景深3D显微镜,红外显微镜、紫外显微镜、明场显微镜、暗场显微镜、偏光显微镜、微分干涉显微镜、舜宇显微镜、奥林巴斯显微镜等,种类齐全,现货供应,随时可发货,且江浙沪一带3天左右就能送到,我们会有专业的技术人员上门安装,显微镜操作培训苏州工业园区汇光科技有限公司成立于2003年,是一家专业从事以显微光学、显微视觉、数码成像,自动化测量以及非标智能检测类为核心的各种工业用光学检测分析仪器和设备的研发、生产与销售。真心欢迎您关注我们。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制