当前位置: 仪器信息网 > 行业主题 > >

微观观察

仪器信息网微观观察专题为您整合微观观察相关的最新文章,在微观观察专题,您不仅可以免费浏览微观观察的资讯, 同时您还可以浏览微观观察的相关资料、解决方案,参与社区微观观察话题讨论。

微观观察相关的资讯

  • 领拓聚焦 | 前沿金相/电镜制样技术与显微观察学术研讨会
    显微样品制样与分析、电镜样品前处理作为微观研究的关键环节,其技术水平在科学研究和生产制造中扮演着越来越重要的角色。对于不同样品而言,采用正确的制样技术和观察技巧十分关键。5月23日,前沿金相/电镜制样技术与显微观察学术研讨会在西南交通大学成功举办。01 主题汇报活动开始,由材料科学与工程国家级实验教学示范中心副主任陈大志进行开场致辞,对莅临会议的专家学者、研究人员和学生表示了衷心的欢迎和感谢。此次会议主要为技术分享交流。上午由领拓和徕卡的应用工程师分别进行“标乐金相制备流程及应用案例”和“徕卡光学显微镜在不同尺度下的形貌特征”两个主题的汇报分享。下午由领拓的高级应用工程师黄晓晔分别进行“三离子束研磨在金属材料EBSD样品制备上的应用”和“离子减薄技术在透射电镜样品制备中的应用”的主题分享。 02 交流互动领拓仪器在此次会议中盛装出席,携带了徕卡超景深视频显微镜DVM6和正置材料显微镜DM4M来到现场,让现场参会人员能近距离体验设备的操作与观察样品,并提供现场疑问答疑。 03 参会设备徕卡超景深视频显微镜DVM6徕卡Leica DVM6 超景深视频显微镜是一款多功能视频显微镜,可以用在检测分析,质量控制,失效分析,研发产品等领域的测量分析。集成的照明和复消色差物镜确保了高品质的图像。徕卡多年的光学显微镜制备经验,赋予了超景深视频显微镜DVM6更真实的色彩还原度,图像与眼镜所见之物保持一致。徕卡正置材料显微镜DM4MLeica DM4M金相显微镜适用于材料科学和质量控制领域,能够提供真实、可再现的显微镜观察结果,呈现出色的光学性能以及高品质的图像。只需轻敲一个按钮,即可存储和恢复成像条件。利用高品质显微图像,能够轻松进行具有挑战性的检验、测量和分析任务。领拓实验室致力于材料分析业务,可提供形貌观察与测量、金相测试、元素与成分分析、硬度测试、3D扫描等多种解决方案,为您提供最完善的检测服务合作。
  • 飞时曼即将举办新一代医学显微观察分析学术研讨会
    为了满足我国生物医学、重大疾病防治、重大新药创制等前沿科学研究对先进科学仪器的迫切要求,打破国外在显微观察方向领域的垄断,填补国内技术空白,引领民族行业的需要,我们特举办一次“新一代医学显微观察分析”学术研讨会,以期望把先进的技术成果运用到显微分析仪器的发展方向上,为广大医学工作者提供在病理科、检验科研究与临床的解决方案。 届时,将有众多业内的专家学者共同参与探讨,共同见证未来十年新一代医学显微观察分析仪器的应用。 此次参加会议的主要人员有苏州市领导、庄松林院士、樊嘉院士、左超(南京理工光电学院)、李传应(中国科技大学附属医院安徽省立医院)、杨义力(苏州系统医学研究所)等。 会议时间2019.4.12-2019.4.13
  • 院士领衔|首届新一代医学显微观察分析学术研讨会在苏召开
    p  strong仪器信息网讯/strong 春暖花开,吴侬软语,花柳有情。4 月 13日,由苏州飞时曼精密仪器有限公司、江苏省医疗器械产业技术创新战略联盟、苏南国家自主创新示范区医疗器械产业技术协同创新联盟共同主办,江苏医疗器械科技产业园协办的第一届“新一代医学显微观察分析学术研讨会”在苏州高新区科技城召开。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/bec8df31-d95e-4bc6-9d36-998260afe85c.jpg" title="IMG_2971.jpg" alt="IMG_2971.jpg"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 会议现场/span/pp  中国工程院庄松林院士、中国工程院范滇元院士、中国工程院院士方家熊院士、中国工程院戴琼海院士、中国工程院李同保院士、中国科学院樊嘉院士代表及来自南京理工大学、同济大学、哈尔滨工业大学、上海理工大学、苏州系统医学研究所研究院、中国科学院大学苏州生物医学工程技术研究所等近 10 余所大学、科研院所, 以及国内各三甲医院病理科、肿瘤科等临床医学领域的主任医师和江苏省医疗器械产业技术创新战略联盟的企业单位共计超过 150 位专家学者参加了会议,大咖云集,学术先行。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/c2d709d5-377c-4b0f-b383-fc74ea8901eb.jpg" title="IMG_2920.jpg" alt="IMG_2920.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "南京理工大学副校长陈钱主持大会并介绍来宾/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/7faa752d-9dd5-4ed6-91fe-10fade8525d8.jpg" title="IMG_2931.jpg" alt="IMG_2931.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "苏州高新区管委会副主任陶冠红致辞/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/57ff9762-9887-4c07-9741-95a6972c2646.jpg" title="IMG_2967.jpg" alt="IMG_2967.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "庄松林院士致辞/span/pp  会议背景——为了加快推动我国显微观察分析精密仪器在生命科学中应用的迅速发展, “新一代医学显微观察分析学术研讨会”为全国首次举办。本次研讨会邀请院士、专家、医生、企业家等,共同探讨新一代医学显微观察分析在生命科学研究和临床医学的应用,为临床诊断与研究提供更丰富、更精准的影像与数据资料,大幅度降低对病灶的漏诊、提高诊疗质量。从而进一步满足我国生物医学、重大疾病防治、重大新药创制等前沿科学研究对先进科学仪器的迫切需求,填补国内技术空白,实现我国显微光学领域的重大突破。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/12fbad42-3545-4d50-b050-e5d82c6f8eaf.jpg" title="IMG_3037.jpg" alt="IMG_3037.jpg"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 戴琼海院士作主旨报告【主题:多维多尺度计算摄像仪器】/span/pp  脑科学被喻为“人类科学最后的前沿”,认识脑的奥秘是对人类的终极挑战 脑科学的发展,对脑疾病防治、人工智能产业的发展有着巨大的推动作用。戴琼海院士首先分析了世界各国脑计划情况,表示世界各国脑计划都是“仪器先行”,即开首先要开发操作神经回路的工具,开发大规模神经网络的记录技术。接着介绍了脑成像技术需求的迫切性,在体大视场高分辨动态成像对系统生物学至关重要。首先需要克服传统仪器技术中细胞级结构与功能成像无法统一的问题。接着介绍了生命科学成像仪器的最新进展及最新突破。在此背景下,清华大学、浙江大学、中科院你上海光学精密机械研究所共同承担的国家重大仪器专项“多维多尺度高分辨计算摄像仪器”于2011年启动。戴琼海院士重点介绍了该项目第一代和第二代仪器研制思路、研制过程及进展,二代仪器2018年达成世界最大视场、数据通量最高分辨率的光学显微镜的成果。最后结合两代研制仪器应用案例分别列举了获得的系列突破性进展。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/748f283d-6927-4bbf-9099-c932cc57a999.jpg" title="IMG_3049.jpg" alt="IMG_3049.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "飞时曼总经理王矛宏报告【主题:新一代医学显微观察分析技术的应用】/span/pp  王矛宏表示,我国科学仪器市场容量大,应用领域广,其中光学仪器在我国医疗卫生机构拥有巨大需求空间和发展潜力。我国显微分析仪器行业经过多年发展,有一定 行业基础,但普遍存在科技开发能力不强,产品稳定性、可靠性差,企业呈现“多、散、弱”特征,与发达国家产品差距明显。为打破国外垄断,苏州飞时曼提出“新一代医学显微观察分析技术”,在病理科、检验科研究与临床的结局方案,把现今科技成果运用在显微分析仪器发展方向上。接着,依次介绍了飞时曼数字全息显微镜、实时培养箱细胞影像分析仪、数字 扫描显微成像系统、六波段荧光 影像分析系统、超分辨显微镜、生物原子力显微镜等产品的特点及主要应用领域。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/bffaaee9-cf29-4030-881d-aae5d008148d.jpg" title="IMG_3088.jpg" alt="IMG_3088.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "杨波教授报告【主题:无透镜全息成像显微镜技术的开发及应用】/span/pp  杨波主要介绍了无透镜全息显微成像技术和高性能手机显微成像技术。相比传统光学显微技术,无透镜全息显微成像技术具可同时实现大视场和高分辨3D显微成像 结构简单、体积小可实现便携装置等优势。杨波主要介绍了该技术的原理、重建方法、超分辨率合成算法、颜色校准等,并结合宫颈TCT切片实拍案例介绍了其图像应用优势。最后分享了高性能手机显微成像技术的技术原理及应用案例。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/2d5c62ba-a23a-4af6-86ec-be561be6a65f.jpg" title="IMG_3116.jpg" alt="IMG_3116.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "孙云帆博士作主旨报告【主题:引领肝癌诊疗创新“医-研-产“转化医学模式的探索和实践】/span/pp  中国新发肝癌占全球55%,二临床、科研、产业相互脱节,导致临床基础研究成果难以转化为临床诊疗产品。孙云帆认为,解决现有困境的有效手段就是医-研-产相结合。接着介绍了转化医学的“中山模式”,从早期诊断、数字手术、术后复发和转移防治、个性化抗肝癌治疗等方面分别讲解了临床诊断技术的需求,以及如何通过新一代医疗显微分析技术丰富临床诊断资料,降低对病灶的漏诊、提高诊疗质量。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/fda671a1-0f1b-4bee-95f3-f0f1e8d96915.jpg" title="IMG_3208.jpg" alt="IMG_3208.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "陈钱教授作专题报告【主题:计算光学显微成像——非干涉定量相位显微成像】/span/pp  陈钱首先分享了近百年来,13项与显微成像相关的诺贝尔奖,如2017年的冷冻电镜和2018年的光学镊子等。接着分析存在的一些待解决的问题,包括动态无标记显微成像(活细胞)、同时具有大视场和高分辨率等。接着介绍了一系列相关研究工作,包括数字全息显微、给予光强传输方程的非干涉定量相位显微成像、基于傅里叶叠层成像的高分辨大视野成像、非干涉多模态定量相位显微镜等。最后介绍了2018年的研究工作进展,包括基于高数值孔径环形照明的超分辨定量相位成像、基于可编程环形照明的快速高分辨大视场显微成像、基于最优化环形照明的光强传输方程定量相位层析成像等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/c46c5da0-f49c-46e9-ad10-25ba9a1c3375.jpg" title="IMG_3264.jpg" alt="IMG_3264.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "李传应主任作专题报告【主题:数字全息显微镜在肿瘤细胞及周围免疫细胞形态和细胞膜成份变化中的应用研究】/span/pp  李传应首先向大家介绍了病理医师的作用,病理诊断是医学诊断的金标准,病理医师是医生中的医生。精准医学时代病理医师的任务包括从传统病理医师向分子病理方向的转化等。接着表示,免疫治疗时代面临的挑战为PD1/PDL1抑制剂的使用,要求判断肿瘤组织 对免疫治疗药物的疗效。数字全息显微镜的作用包括不需要对样品扫描就可以拥有激光扫描共聚焦显微镜进行三维成像的优点 可实现微纳米精度下的动态三维形貌测量 进行定量分析、细胞和微生物自动鉴别,可对多细胞动态跟踪分析等。最后从医师角度探讨了对显微技术的需求,包括观察肿瘤细胞形态与正常细胞形态差别、观察肿瘤周围浸润淋巴细胞与正常淋巴细胞形态的差异等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/c570b0a6-652c-4b2e-8fb5-2ceedbc0ea92.jpg" title="IMG_3292.jpg" alt="IMG_3292.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "杨西斌研究员作专题报告【主题:前沿显微及内窥技术研究进展及临床应用思考】/span/pp  杨西斌首先介绍了前沿显微成像技术及应用情况。包括超分辨荧光显微镜、结构光照明超分辨显微成像技术等,同时分享了成纤细胞在不同蛋白包被弹性基地上的动力学定量分析案例。接着介绍了超细光纤内镜和激光共聚焦内镜两种先进内窥技术的研究进展。超细光纤内镜方面主要介绍了高分辨率超细光纤成像内镜的研制过程,获得良好指标,并正在进行临床医疗器械注册证办理。同时结合经小鼠活体肠镜行肠黏膜下注射建立结合直肠癌原位模型案例,介绍了其应用。激光共聚焦内镜方面,介绍了该技术在早期诊断、精准诊断方面的明显优势,其承担“十二五”科技部科技支撑计划项目突破了直径2.1mm共聚焦内窥探头技术,实现该国产部件国产化。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/f9924e6a-ded1-460f-affb-5092dd7f13b7.jpg" style="" title="IMG_3324.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/0dd49ed7-3ad3-483e-87cf-5590c53f8cdc.jpg" style="width: 600px height: 83px " title="讨论.jpg" width="600" height="83" border="0" vspace="0" alt="讨论.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "院士专家分别讨论发言/span/pp  ispan style="color: rgb(127, 127, 127) "(王矛宏主持,李同保院士、方家熊院士、范滇元院士、庄松林院士、陈钱副校长分别发言讨论)/span/i/pp  会议最后,进行了院士专家讨论及发言,分别就整个会议内容发表各自看法、建议并进行讨论。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/f63c424d-b059-4eec-8064-8c12861caf40.jpg" title="看仪器.jpg" alt="看仪器.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "  现场仪器体验/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/0d65e3c3-f31e-4f25-9606-0f970407c259.jpg" title="微信图片_20190413211134_副本.jpg" alt="微信图片_20190413211134_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "邀请专家合影留念/span/pp  本次学术研讨会也联合江苏省医疗器械产业发展联盟共同承办 ,将进一步增强联盟企业间的交流和互动,同时充分对接国内外优质创新资源,加速高端人才和团队引进,进一步打造苏州高新区医疗器械产业资源集聚、功能集成、形态内涵兼具的品牌优势,扩大苏州高新区乃至苏州市医疗器械产业发展的影响力。会议倡议立足高新区,设立苏州“显微观察”高峰论坛(每年一届) ,共同推动显微观察科学技术在生命科学领域的产学研深度融合。/ppbr//p
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 观察者---显微镜下的空间与时间
    从古至今,人类一直在追寻更高更远的真相,从远洋航行到太空探索,人们不断征服一个个宏伟的目标,但是人们肉眼所见的宏观世界不是世界的全部,还有人眼无法看清的微观世界,它同样也吸引着无数人去探索和追寻。无论宏观还是微观事物,我们的观测都是基于三维空间的属性,即XYZ三维,而对事物形态变化的观察则需要再引入一个衡量因素--时间T,因此对事物观察的最完备方式一定是XYZT的同时记录,即形态+时间的长时间摄影,这也是显微镜的终极功能。经过三百多年的发展,现代显微镜提出分辨率、景深、视野等概念,并不断提出解决方案,显微镜已经初步满足我们对微观世界观察的需求,帮助我们记录下微观世界的空间和时间。微观世界观察最重要的是细节的分辨,分辨率的概念便由此诞生,分辨率是指人眼可以区分的两个点之间的最小距离,只在XY维度有效,根据瑞利判据,Rayleigh Criterion,正常人能分辨的极限是明视距离25cm处0.2mm的两个点,当我们使用显微镜后,我们可以看清更小距离的两个点,这便提升了我们观察的分辨率。随着现代研究的不断深入,人们对分辨率的要求也在不断提高,而科学家们也在不断的提升显微镜的分辨率,如电子显微镜将分辨率提升至纳米级别,实现了对病毒的观察,超高显微成像技术,将显微镜的分辨率从200纳米提升到几十纳米,实现了对活细胞细胞器的观察。分辨率的提升也带来了新的问题,即视野和景深的减小,当用普通中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/NA,可见光波长范围为400—700nm,取其平均波长550nm,波长是固定常量,因此,增大NA数值,即可得到更小的D值,也就是可以分辨的两点之间的距离更小,可以让人眼看清楚更小的物体。NA值即数值孔径,描述了透镜收光锥角的大小,NA = n * sinα,即透镜与被检物体之间介质的折射率(n)和孔径角(2α)半数的正弦之乘积。n为物镜与样本之间介质的光折射率,当显微镜物方介质为空气时,折射率n = 1 , 采用折射率高于空气的介质,可以显著提高NA值,水浸介质是蒸馏水,折射率为1.33;油浸物镜介质是香柏油或其它透明油,其折射率一般在1.52左右,接近透镜和载玻片的折射率,因此,油镜的NA值高于空气镜。孔径角又称“镜口角”,是透镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,增大镜口角,可以提高正弦值,其实际上限约为72度(正弦值为0.95),乘以香柏油折射率1.52,可以得出最大NA值为1.45左右,代入分辨率计算公式,可以得出常规显微镜极限XY平面分辨率为0.2um左右。NA值还会直接影响显微镜的视野亮度(B)。由公式B∝N.A.2/ M2 我们可以推出,亮度随数值孔径(N.A.)的增大或者物镜倍率(M)的降低而增加。从理论上来说,我们应该追求尽可能高的NA值,以获得更好的XY平面分辨率和视野亮度。然而凡事都有两面性,XY平面分辨率的提升,会带来Z轴景深和观察视野的减小。显微镜一般都是垂直向下取景的,通过视场直径内观察到的物体表面凸起的位置与凹下的位置都能够看的很清楚时,那么凸点与凹点之间的高度差就是景深了,对于显微镜来说景深越大越好,景深越大在观察高低不平整的物体表面时,能够得到更好更立体的清晰度画面,大景深有助于我们对微观世界进行垂直方向形态的观察,也就是XYZ三维形态中的Z轴信息。景深就是象平面上清晰的象所对应物平面的前后空间的深度:dtot=(λ*n)/NA + n/(M∗NA) * e,dtot:景深,NA :数值孔径,M :总放大率,λ:光波波长, (通常λ=0.55um),n: 试样与物镜之间介质的折射率(空气: n=1、油: n=1.52)根据这个公式,我们可以知道,Z轴景深与XY平面NA值成反比。除了景深外,视野也受到NA值的影响,通过仪器固定注视一点时所能看见的空间范围即视野,它的计算与物镜的放大倍数直接相关,观察所看到的实际视野直径等于视场直径除以物镜的放大倍数,目镜会表明对应视场数,如10/18,即放大倍数10倍,视场直径18mm,因此当目镜确定后,放大倍数越大则观察的视野越小。XY平面分辨率是对局部细节的解析,而视野则决定了我们对样本的观察范围,视野必然是越大越好,但受限于当前的技术,我们必须采用高倍物镜,才可以得到良好的NA值,因此,视野和NA值有间接的负相关系。当我们需要观察的样本大于我们的视野时,每次观察只能看到一个局部,为了解决这个问题,拼图技术便应运而生。通过在XY方向移动样本,连续拍下不同位置的图像,最后拼接在一起,就可以得到一张全视野的图像。▲镜下局部视野▲拼接后全视野▲手动拼接▲自动拼接(图源:Echo显微镜)拼接分为手动和自动两种,手动拼图成本低廉,但是对人员的操作水平,经验要求很高,如上图,操作人员稍有不慎,就会出现图片接缝问题,同时手动拼图速度慢,不适合大批量,高通量样本处理,比如医院病理科日均上百病理切片观察,手动拼图方式无法满足要求。自动拼图的核心部件是全自动载物台,结合软件,可自动实现全自动,大范围全视野拍摄,结合自动Z轴对焦补偿,即可得到全视野的清晰图像。Echo Revolution 全自动荧光显微镜Echo Revolution全自动荧光显微镜,将XYZ三轴全部实现电动化,从而实现自动完成多图拼接的大视野高分辨率成像,而电动化的Z轴可以帮助用户实现自动聚焦、自动定焦和Z-Stacking 多层扫描大景深成像。Echo Revolution全自动荧光显微镜还添加了延时摄影功能,可以帮助用户实现长时间观察和时间回溯,使用户可以进行更全面的观察实验。
  • 探索微观 明察秋毫——浅谈扫描电镜在金属材料失效分析领域的应用
    失效分析是近些年由军工企业向科研学者及企业所普及的一门新学科[1],金属零部件失效轻则会导致工件性能退化,重则会导致人生安全事故,通过失效分析定位失效原因,提出有效改进措施是保证工程安全运行必不可少的一步,因此,充分利用扫描电镜的优势将为金属材料行业的进步做出巨大贡献。 金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。其中最基本也最为常人所熟知的钢铁,作为基本的结构材料,对国家和人民的意义重大。自工业革命爆发后,不论是小到日常生活用品材料,还是大到军事设备,轨道交通,都离不开钢铁的参与。众多钢铁企业及科研院所利用扫描电镜得天独厚的优势来解决生产时遇到的问题,并协助科研开发新产品。扫描电镜搭载相应的附件已成为钢铁冶金行业进行研究和生产过程中发现问题的有利手段。随着扫描电镜分辨率及自动化程度的提高,扫描电镜在材料分析表征方面的应用愈发广泛[2]。01 电镜观察金属件拉伸断口断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析研究一些导致材料发生断裂的基本问题,如断裂起因、断裂性质、断裂方式等。如果要深入研究材料的断裂机理,通常要对断口表面的微区成分进行分析,断口分析现已成为对金属构件进行失效分析的重要手段。图1 国仪量子扫描电镜SEM3100拉伸断口形貌图 根据断裂的性质,断口大致可分为脆性断口和塑性断口。脆性断口的断裂面通常与拉伸应力垂直,脆性断口从宏观来看,由光泽的结晶亮面组成;塑性断口从宏观来看,通常断口上有细小凹凸,呈纤维状。断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径,但如果要对断裂源附近进行细致研究,分析断裂原因和断裂机制,必须进行微观观察,且因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的景深,尽可能宽的放大倍数范围和高的分辨率。综合这些需求,扫描电镜在断口分析领域得到广泛的应用。图1三个拉伸断口样品,通过低倍宏观观察及高倍显微组织观察,样品A断口呈河流花样(如图A)为典型脆性断口特征;样品B宏观无纤维状形貌(如图B),微观组织无韧窝出现,为脆性断口;样品C宏观断口由光泽的刻面构成,故以上拉伸断口均为脆性断口。02 电镜观察钢铁夹杂物 钢的性能主要取决于钢的化学成分和组织。钢中夹杂物主要以非金属化合物形态存在,如氧化物、硫化物、氮化物等,造成钢的组织不均匀,而且它们的几何形状、化学成分、物理因素等不仅使钢的冷热加工性能降低,还会影响材料的力学性能[3]。非金属夹杂物的成分、数量、形状和分布等对钢的强度、塑性、韧性、抗疲劳、耐腐蚀等性能有极大的影响,因此,非金属夹杂物是钢铁材料金相检验中不可缺少的项目。通过研究钢中夹杂物的行为,采用相应技术防止钢中夹杂物进一步形成和减少钢液中已存在的夹杂物,对生产高纯净钢以及提高钢的性能具有十分重要的意义。图2 国仪量子扫描电镜SEM3100夹杂物形貌图图3 TiNAl2O3复合类夹杂能谱面分析图图2、图3所示夹杂物分析案例中,通过使用扫描电镜观察夹杂物,配合能谱分析电工纯铁所含夹杂物成分,可知纯铁内部所含夹杂物种类为氧化物类、氮化物类以及复合类夹杂。扫描电镜自带的分析软件具有强大的功能,可以直接对样品测量或直接在图片上进行任何距离、长度的测量,例如通过测量上图所示案例中电工纯铁夹杂物的长度,可知Al2O3夹杂物平均尺寸约为3μm,TiN及AlN尺寸均在5μm以内,复合类夹杂尺寸不超过8μm;这些细小的夹杂在电工纯铁内对磁畴起到钉扎的作用,会影响最终的磁性能。氧化物类夹杂Al2O3来源可能为炼钢的脱氧产物和连铸过程的二次氧化物,在钢铁材料中的形态多为球形,少部分为不规则形状。AlN在钢铁材料中的形态通常呈细长条状;TiN在钢铁中的形态通常呈四边形,夹杂物的形态与其组分以及在钢液内所发生一系列的物理化学反应有关,观察夹杂物时不仅要观察夹杂物的形态及成分,还要关注夹杂物的尺寸大小及分布,需要多方面统计,从而综合评判夹杂物水平。在对单个夹杂物进行观察分析时扫描电镜具有一定的优势,例如夹杂物导致工件开裂进行失效分析,通常在开裂源头处会发现大颗粒夹杂,此时对夹杂物进行尺寸、成分、数量以及形状等研究具有重要意义,通过分析可以定位工件的失效原因。03 扫描电镜对钢铁材料中有害析出相的检测方法析出相是指饱和固溶体温度降低时析出的相,或固溶处理后得到的过饱和固溶体在时效时析出的相,相对的时效过程是一个固态相变的过程,是第二相粒子从过饱和固溶体中沉淀脱溶并且形核长大的过程。析出相在钢中具有十分重要的作用,其对钢的强度、韧性、塑性、疲劳性能等许多重要的物理化学性能均具有重要影响。合理控制钢铁析出相能够强化钢铁性能,如果热处理温度及时间控制不当,会引起金属性能急剧下降,如脆断、易腐蚀等。图4 国仪量子扫描电镜SEM3100电工纯铁析出相背散图在一定的加速电压下,由于背散射电子的产额基本随试样原子序数的增高而增加,所以可以利用背散射电子作为成像信号,显示原子序数衬度像,在一定范围内可以观察试样表面的化学组分分布情况。铅原子序数为82,在背散模式下Pb的背散射电子产额很高,所以图像中Pb呈亮白色。Pb在钢铁材料中的危害有以下几种,因为Pb和Fe不生成固溶体,在冶炼过程中难以去除,且易在晶界处发生偏聚,形成低熔点的共晶体削弱晶界结合力,使材料的热加工性能下降。电工纯铁中的铅析出可能来源是炼铁原料中含有的Pb,以及冶炼时添加合金元素所含有的微量Pb;如果特殊用途使用,不排除在冶炼过程中加入的可能,目的是改善切削加工性能。04 结语扫描电镜作为一种显微分析工具,可以对金属材料进行多种形式的观察,可以对各类缺陷进行详细的分析、金属材料失效的原因进行综合定位分析,随着扫描电镜功能的不断完善和提升,扫描电镜能够完成的工作也越来越多,不仅为改善材料性能的研究提供了可靠依据,同时也在生产工艺控制、新产品设计和研究等方面发挥了重要作用。参考文献:[1] 陈南平,顾守仁,沈万慈等.机械零件失效分析[M].北京:清华大学出版社,2008,15-17.[2] 张鋆川. 金属材料检测常见问题及解决措施[J]. 数字化用户, 2018, 24(052):67.[3] 郭立波,李朋,武强,等. 扫描电镜及能谱分析在钢铁冶金中的应用[J]. 物理测试,2018,36(1):30-36. 本文作者:于文霞 国仪量子应用工程师
  • 从宏观到微观:汽车要”瘦身”更要安全
    导读随着“2020年第七届中国汽车轻量化国际峰会”的日益临近及《国家第六阶段机动车污染物排放标准》的发布与实施,在环境保护和节能降耗法规要求日趋严格的当下,轻量化已成为中国汽车产业发展的重要方向和必然趋势。 其中对车身的轻量化更是提高汽车动力性、降低油耗、保护环境的关键。车身轻量化与使用材料密切相关,如镁合金、铝合金等金属结构材料、工程塑料及其复合材料在轻量化中起到重要作用。采用工程塑料及其复合材料可减轻汽车零部件约40%的质量,可降低成本40%,因此开发工程塑料和复合新材料是车身轻量化发展的趋势,其中PP(聚丙烯)和PMMA(聚甲基丙烯酸甲酯)应用最为广泛。 塑料及其复合材料的应用场景 为什么在汽车材料轻量化中大量应用PP、PMMA?今天,我们要对PP、PMMA做两个有趣的试验: 1. 宏观视界下的拉伸 PP、PMMA在常规的静态测试外,可能会受到动态变形的影响,例如,在涉及运输设备的碰撞和产品掉落时。因此,为了保证可靠性,还必须进行冲击试验。特别是,由于聚合物塑料具有粘弹性,(既有粘性又有弹性),其力学特性表现出对环境温度、时间和变形速率的依赖性。 采用岛津AGX-V电子万能试验机和HITS-TX高速拉伸试验机可以研究PMMA/PP与试验速度关系。 应力-行程曲线 试验结果 高速拉伸试验中PMMA和PP的拉伸强度均高于静态拉伸试验,证实了这两种塑料材料拉伸强度的试验速度依赖性。 2. 微观视界下的断口 当发生损坏、故障事故或劣化时,我们通常迫切需要调查原因和提出对策。塑料的失效形式多种多样,包括静态断裂、冲击断裂、疲劳断裂、蠕变断裂、环境引起的断裂等。根据分析不同类型的断裂原因,可以观察到具有不同特征的断裂面,这表明可以通过断口观察来确定损伤的原因,并研究解决损伤的方法。拉伸试验后,我们选择对PP试样的断口进行镀金,并用光学显微镜和EPMA进行观察。 电子探针EMPA8050G 在PP断裂表面镀金,并用光学显微镜和EPMA进行观察。静态拉伸试验和高速拉伸试验后的聚丙烯断裂表面分别如下图所示。(a)为光学显微镜图像,(b)-(d)为电子探针二次电子像。 对比PP静态拉伸微观图(a)与PP动态拉伸微观图(a)可见,与高速拉伸试验的断口面积相比,静态拉伸试验的断口面积明显较小,这应该是由于静态拉伸断裂时,塑性变形伴随着颈缩而导致的。 静态拉伸微观图 在PP静态拉伸微观图(b)中的断裂面中部,可见纤维断裂面以韧性方式伸长。对 PP静态拉伸微观图(b)的中心区域及其左侧区域进一步放大,结果见PP静态拉伸微观图(c)及(d)。由PP静态拉伸微观图(c)可见树脂纤维伸长的情况。PP静态拉伸微观图(d)显示断面上有许多孔,这是由树脂(如低分子量物质)或杂质等微观缺陷等形核长大而导致的。 高速拉伸微观图 在高速拉伸试验中,断裂处没有出现颈缩现象,整个断口呈扁平、粗糙的片状。对断面中心及边部进一步放大,结果见PP动态拉伸微观图(c)及PP动态拉伸微观图(d),可见,中部和边部的断口形貌无明显差异。据此可推断,随着试验速度的提高会导致无塑性变形的脆性断裂。 结 论 岛津具有丰富的产品线,在宏观方面:拥有各种静态试验机与动态试验机,可以提供力学测试,并进行定制化夹具设计;从微观方面:拥有电子探针EMPA等各种微观测试仪器,可以提供表面分析数据,为客户提供一整套服务与方案。岛津为汽车改性塑料的快速发展提供帮助,在汽车安全性的基础之上实现汽车轻量化,为营造和谐绿色的环境做出贡献,创造崭新的明天。
  • 微观世界|第4期 食物中的力学知识 不同品质大米的微观力学分析
    一、前期回顾 上期我们发现纸币防伪条之所以呈现不同色彩和形貌是因为特殊的微观结构所导致(详细情形见第三期文章),材料的微观结构对宏观的光学性能巨大的改变。由于大部分读者在上期投票中选择【B选项:1元/斤的大米和10元/斤的大米在显微镜下有何区别。】 那么今天笔者带领大家来一起探索优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上有什么不一样。二、序 言金属的强度、韧性、脆性与它的微观组织结构有很大的联系:韧性强的金属材料会发生韧性断裂,在断口的断面会观察到有典型“韧窝”特征的韧性断裂区;脆性大的金属会发生脆性断裂,在断口的断面会观察到有典型“台阶”特征的解理断裂区。这些不同的断口形貌是由微小的热处理工艺或材料成分的微小差别所引起的,不同的微观组织形貌代表了不同的金属材料生产工艺。那么我们猜想:是否可以通过显微形貌分析来判断生长周期不一样、或者营养成分/化学物质不一样的农作物呢?三、大米断面显微形貌分析,大米淀粉形貌及淀粉复粒形貌本期选择同种大米的两个不同时期(新米10元/斤、存放半年的陈米6元/斤)的样本进行微观形貌的拍摄,来研究放置时间长的大米除了靠气味和口感上的差异来区分外,是否可以通过材料显微分析的手段来进行辨别。 1. 大米断口分析 大米断口显微形貌图 如上图A所示,我们把大米粒掰断后可以看到大米粒断口是有形貌特征的。放大到100倍下如图B我们可以看到有类似金属沿晶断口及窝韧形貌特征的存在。图C是窝韧特征的细节放大图,可以发现是由10μm左右的一粒粒大米淀粉微粒组成的、断口高低起伏且小一点的淀粉微粒棱角分明。图D是大米内部淀粉复粒组成的,大米复粒表面比较光滑,复粒淀粉之间的交界面都很平滑,且复粒内不光有淀粉微粒,微粒之间还会有蛋白质存在(表面黑色条纹部位)。 从上图我们可以看出大米颗粒是由一粒粒淀粉微粒所组成的复粒淀粉粒所组成,当断裂部位是沿复粒淀粉截面扩展时,断口呈现平滑的沿晶裂纹特征;当断裂部位穿过复粒淀粉而扩展时,断口呈现穿晶断裂。 不同大米由于生长周期及成分都有差别,导致了淀粉微粒、淀粉复粒的形貌及它们之间的结合力各不相同,因此不同大米的断口形貌也完全不一样。 2. 复粒淀粉沿晶/穿晶断口形貌分析 复粒淀粉穿晶断裂(左)和沿晶断裂(右)形貌差异对比 上图左是复粒淀粉断裂时的断口形貌,可以发现中间的淀粉微粒周围暗色的部分是大米内部的蛋白质,一个个淀粉微粒是由蛋白质连接起来的,其中画红圈的部分是大米内部的脂质颗粒,该颗粒在新大米断口处几乎没有,而在陈旧大米内部有很多,推测该脂质的析出导致了连接淀粉微粒的蛋白质发生了变化,导致大米复粒内部黏合力发生改变。上图右是大米淀粉复粒表明断口图,可以看出断口处非常平滑,正常情况下淀粉复粒间的结合能是远低于淀粉粒间内部结合能的,所以断裂一般都发生在淀粉复粒平滑处。 3. 新米与陈米断口微观形貌结构对比陈米(左)与新米(右)断口显微形貌差别 在显微镜下我们可以看到陈米断口(上图左)相较于新米断口(上图右)呈现更多的“窝韧”形貌特征,断裂面穿过了大米复粒淀粉。而新米大部分断口为“沿晶”解理,断裂面沿淀粉复粒扩展。拍摄结果表明正常新米内部的结合是复粒淀粉内部大于复粒淀粉边界的。随着大米放置时间的增长,米粒内部的化学物质发生了变化,导致复粒淀粉内部的微粒间键合减弱结合力变差,断裂裂纹面主要由从复粒淀粉边界扩展变为从复粒淀粉穿过后断裂。 四、后 记 “天空没有翅膀的痕迹,但是鸟儿却飞过”。不同于鸟儿在天空飞过没留下痕迹,任何材料的生产和合成所经过的工艺都会在材料内部留下显微痕迹,通过显微技术来辨别材料的显微形貌/结构的特征,可以轻易的判断出材料的生产工艺及历程。例如现阶段人们已经开始利用显微镜来鉴别区分不同植物、动物的品种,从而为原材料把控、溯源、生产过程质控提供了重要指导依据。 下期主题(动物)三选一: A、蝴蝶翅膀在阳光下产生绚丽颜色的原因。B、年轻人及老年人头发表面及断面的形貌差异。C、过期变质食物中的细菌。
  • 让微观变得直观——岛津原子力显微镜
    对极限微观的不断探索源于人们原始的求知欲。国际度量衡制度的确立为我们指引了探索的方向。从米到毫米,从毫米到微米,从微米到纳米。当物质被我们不断地“劈碎”。越来越多新性质,新现象,新功能被发现。人们对自然的认识越来越深刻,对物质的操纵也越来越得心应手。 从二十世纪末开始,人类对微观的探索延伸到了纳米领域。在这个从仅比原子高一个层级的尺度范围内,物质展现了一种和宏观截然不同的状态和性质。表面效应、小尺寸效应和宏观量子隧道效应带来的是超高强度、超高导电性、超流动性、超高催化活性等等无与伦比的属性。 碳纳米管作为第一种人工合成的纳米材料,甫一问世,其超高强度就惊艳世人。它的质量是相同体积钢的六分之一,强度却是铁的10倍。 单壁碳纳米管高度(直径)测量在碳纳米管被研制出来以后,双壁碳纳米管、掺杂碳纳米管、复合碳纳米管等多种材料被源源不断制作出来。极小的尺度和样品多样性,迫切需要一种合适的检测工具。 在纳米尺度下,光学显微镜的分辨率早已鞭长莫及,电子显微镜则因为严格复杂的制样过程使测试门槛令人高不可攀,激光粒度仪对长径比过大的样品测试误差极大也不适合。这时,较合适的观测工具就是原子力显微镜。 原子力显微镜作为专门的纳米材料表征工具,天然具有高分辨率、高环境兼容性、多属性分析种种优势。 原子力显微镜观察的不同碳纳米管形态在生产中,因工艺不同,会产生长短粗细不同的碳纤维。如何有效对这些样品进行归类分析是个大问题。 不同工艺下碳纳米管分散状态借助岛津原子力显微镜配备的颗粒分析软件,则可以自动分析筛选,并对纤维的各种尺度进行统计分析。 极长和极短碳纳米管的自动分类统计同样,对于常见到的纳米材料——纳米颗粒而言,也可以依靠该软件进行统计分析。 纳米颗粒的粒径统计而且,利用原子力显微镜,还可以有效观察同样粒径下颗粒的不同形貌。例如以下两个颗粒,粒径均在100nm左右,如果用激光粒度仪测试,会被归为一类。但是用原子力显微观察,则可以发现很大的不同。 粒径近似的纳米颗粒聚集形态左侧的颗粒是单个粒子,二右侧的则是多个颗粒聚集形成的,在原子力显微镜的小范围观察图像中可以清晰分辨二者的不同。 但是,通常的原子力显微镜很难兼顾大视野和高分辨。要想同时观察统计大量颗粒,就需要用大范围观察,这样一来每个颗粒的细节分辨就难以看清。如果聚焦到一个颗粒上细致观察,则无法从整体上评估样品。 解决的办法就是提高原子力显微镜图像的分辨率。岛津推出了8192*8192点阵的高扫描能力。可以在大范围观察的同时又看清每一个小细节。 兼顾大视野和小细节的超大点阵扫描图像原子力显微镜作为人类眼睛的延伸,像一个精细的触手,细致地捕获纳米材料的形貌、机械性能、电磁学性能等等属性,使这个微乎其微的领域直观地展现在我们眼前,为我们更深更广地认识纳米材料提供了有力帮助。 文中相关仪器介绍详见以下链接:https://www.shimadzu.com.cn/an/surface/spm/index.html 本文内容非商业广告,仅供专业人士参考。
  • 微观世界|第3期 揭开“财富”之谜
    ——显微技术在钞票防伪中的应用 前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。 新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。 一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。 1. 2009版100元美刀的制样及观察范围2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。 2. 微观形貌结构对比蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。 3. 高倍形貌-元素分析有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。 二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。 三、后记蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等。。。极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。 下期主题(食品)三选一: A、不同种类淀粉在显微镜下的形貌特征。B、1元/斤的大米和10元/斤的大米在显微镜下有何区别。C、转基因大豆与非转基因大豆的微观形貌观察。
  • OPTON微观世界 | ZEISS 电镜观察口罩的内部构造
    华夏四大发明对世界进步产生的深远影响可谓是震撼寰宇,可是大家知道吗,最早开始使用‘口罩’的国家也是中国哦!古时候,宫廷里的人为了防止粉尘和口气污染便用丝巾遮盖口鼻,这就是最原始的口罩啦。经过漫长的发展与演变,到20世纪中后期,口罩变成现在常见的样子,在预防和阻断病毒传播方面发挥着关键作用。经历过03年的“非典”、09年的“甲型H1N1”以及当下正在全球范围内肆虐的“新型冠状病毒”,口罩在疫情防控中的功用表现的空前绝后,下面我们一起了解下口罩吧!口罩根据用途不同可分为以下几类:棉布口罩:棉布口罩的主要功能在于防寒保暖,避免冷空气直接刺激呼吸道,透气性好,但几乎没有防尘防菌效果,见图1(a);活性炭口罩:在口罩夹层内加入活性炭,活性炭吸附能力很强,能够有效防有毒性气体及灰尘,见图1(b);防尘口罩:防止或减少空气中粉尘进入人体呼吸器官,见图1(c);医用一次性口罩:材质为无纺布,可以有效防止人口鼻喷溅出来的飞沫造成的病菌感染,见图1(d);N95型口罩:用于职业性呼吸防护,过滤效率达到95%,包括某些微生物颗粒,如病毒、细菌、霉菌、炭疽杆菌、结核杆菌等,见图1(e);图1 几种口罩外形对比 (a)棉布口罩;(b)活性炭口罩;(c)防尘口罩;(d)一次性医用口罩;(e)N95型口罩上述口罩中,医用一次性口罩与N95型口罩均能起到防病毒的效果,那么它们防控病毒的机理是怎么样的呢,下面我们用ZEISS的EVO10电镜来一探究竟(图2)。图2 ZEISS 钨灯丝EVO10医用一次性口罩由三层组成:外层无纺布起阻隔液体作用;内层无纺布起隔湿作用;中间层过滤层由于其材料是熔喷无纺布又称为熔喷层,以聚丙烯为主要原料,纤维直径介于0.5-10 μm,这些随机方向分布的纤维使得过滤材料具有大的比表面积和高的孔隙率,从而使熔喷层具有很好空气过滤性(图2)。 图3 熔喷无纺布形貌 N95医用口罩,是NIOSH(美国国家职业安全卫生研究所)认证的9种防颗粒物口罩中的一种。“N”指的是不适合油性的颗粒,“95”是指在NIOSH标准规定的检测条件下过滤效率达到95%。那么问题来了,N95口罩有什么特别之处使得其过滤效率能够达到95%呢。与医用一次性口罩相同,N95口罩也有三层结构且成分对应一致,不同之处在于它的熔喷层厚度更厚,过滤层数更多,因此过滤效果及防护性能更好。我们利用ZEISS的EVO10来对比这两种口罩熔喷层平面及截面厚度差异。 图4 一次性医用口罩(a)、(b)与N95口罩(c)、(d)平面及截面对比病毒无法独立存在,需要依附在飞沫上,其传播途径主要为直接传播、气溶胶传播和接触传播。直接传播是指患者喷嚏、咳嗽、飞沫、呼出气体近距离直接吸入导致的感染;气溶胶传播是指飞沫混合在空气中,形成气溶胶,吸入后导致感染;接触传播是指飞沫沉积在物品表面,接触污染手后再接触口腔、鼻腔、眼睛等粘膜,导致感染。从实验结果来看,不管是熔喷层厚度198μm的一次性医用口罩还是450μm的N95口罩都能对飞沫起到很好的阻隔作用。N95因其过滤效率达95%而成为医护人员的必备配置,但对于我们普通人来讲,一次性医用口罩不仅起到防护作用,且透气性好、质地轻盈柔软、价格低,还有蓝粉绿等多种好看的颜色可供选择哦。ZEISS EVO系列简易分析型钨灯丝扫描电镜√艺术级工业设计√高清晰成像√超高效率的元素检测性能√高通量分析能力,同时兼具大视场和高分辨率属性√大尺寸容纳空间√原位分析功能拓展性强√一键式获取图像简易功能√夹杂物、清洁度、矿物、GSR等快速自动检测√多维应用拓展,精确且高效关联光学显微镜
  • OPTON的微观世界|第8期 从宏观到微观:向自然界学习压力物质运输的最优化法则——默里定律
    序 言自然界中的所有动物和植物都具有类似的网格状等级结构,比如叶子的叶脉、植物的根茎系统、人体的血管系统等等,这些结构的存在不仅仅是为了保证自身结构的稳定,同时还确保了生命体在进行新陈代谢与物质能量传递过程中所受的阻力最小、运输的效率最高。一、默里定律在自然界的应用我们都知道根据流量与流速的关系,当液体从一个比较粗的管道流进一个比较细的管道时,液体的流速会增加,同时细管的所受的液体压力相对于粗管所承受的压力来说也更大。但是通过对我们生物界的血液系统进行观察可以发现生物体内不管是粗的血管还是细的血管,所受的压力都不会太大。科学家默里通过观察发现在人体中很多小血管从一个大血管分叉出去,所有小血管的横截面积的总和大于大血管的横截面,通过精确计算可以知道在一个最佳血液循环网络中,大血管半径的立方,大约等于小血管半径的立方的总和。图1. 人体血管与叶片脉络的电镜显微图如上图所示,在自然界中不管是动物还是植物,涉及到物质运输时,其运输管道都会遵循默里定律(血管、气管、根系、叶脉等),以使物质传输效率达到最优化,同时也使构造力学结构最优化。二、通过向自然界学习默里定律的应用示例2.1 锂离子电池图2. 根据默里定律设计的多等级孔道电极材料示意图 依据默里定律发现的自然界中动植物物质运输的最优化法则,科学家们设计了上图2所示的多等级孔隙电极材料,电极材料中的大孔、小孔、微孔的孔隙比率遵循了默里定律的最优比。有这种结构的电极材料由于锂离子在其内脱锂嵌锂的效率非常高,其充放电的倍率性能及比容量都比常规的氧化锌电极材料高出很多,下图是其充放电的性能示意图:充放电倍率性能、循环稳定性能、比容量性能示意图2.2 天然气、水、石油运输图3. 管道运输示意图西气东输、南水北调这些石油、天然气、水的大量运输过程中管道的粗细与运输速度和所承受的压力要经过严格的计算才能保证安全高效的运输工作,这里也体现了默里定律的重要性。后 记“实践是检验真理的唯一标准”,先人们通过模仿大自然的运行规律,总结出来了很多可以被我们后人来学习和使用的规则与定律,通过对这些规则与定律的应用,我们的生活水平与科技水平得到了飞速的提高。但是碍于之前我们的观察能力,仅仅能对肉眼或者光学显微镜能够看到的世界来进行学习与模仿。而现如今电子显微镜的存在极大的提高了我们观察身边的微观世界,更有效的学习自然法则,研究微观形貌结构与宏观材料性能的关系,制造出更先进更优异的材料及工具来改善我们现今的生活。
  • OPTON的微观世界|第3期 揭开“财富”之谜
    ——显微技术在钞票防伪中的应用前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。 一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。 1. 2009版100元美刀的制样及观察范围2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。 2. 微观形貌结构对比蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。 3. 高倍形貌-元素分析有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。 三、后记蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等。。。极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。 下期主题(食品)三选一: A、不同种类淀粉在显微镜下的形貌特征。B、1元/斤的大米和10元/斤的大米在显微镜下有何区别。C、转基因大豆与非转基因大豆的微观形貌观察。
  • OPTON的微观世界|第4期 食物中的力学知识 不同品质大米的微观力学分析
    一、前期回顾 上期我们发现纸币防伪条之所以呈现不同色彩和形貌是因为特殊的微观结构所导致(详细情形见第三期文章),材料的微观结构对宏观的光学性能巨大的改变。由于大部分读者在上期投票中选择【B选项:1元/斤的大米和10元/斤的大米在显微镜下有何区别。】 那么今天笔者带领大家来一起探索优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上有什么不一样。二、序 言金属的强度、韧性、脆性与它的微观组织结构有很大的联系:韧性强的金属材料会发生韧性断裂,在断口的断面会观察到有典型“韧窝”特征的韧性断裂区;脆性大的金属会发生脆性断裂,在断口的断面会观察到有典型“台阶”特征的解理断裂区。这些不同的断口形貌是由微小的热处理工艺或材料成分的微小差别所引起的,不同的微观组织形貌代表了不同的金属材料生产工艺。那么我们猜想:是否可以通过显微形貌分析来判断生长周期不一样、或者营养成分/化学物质不一样的农作物呢?三、大米断面显微形貌分析,大米淀粉形貌及淀粉复粒形貌本期选择同种大米的两个不同时期(新米10元/斤、存放半年的陈米6元/斤)的样本进行微观形貌的拍摄,来研究放置时间长的大米除了靠气味和口感上的差异来区分外,是否可以通过材料显微分析的手段来进行辨别。 1. 大米断口分析大米断口显微形貌图 如上图A所示,我们把大米粒掰断后可以看到大米粒断口是有形貌特征的。放大到100倍下如图B我们可以看到有类似金属沿晶断口及窝韧形貌特征的存在。图C是窝韧特征的细节放大图,可以发现是由10μm左右的一粒粒大米淀粉微粒组成的、断口高低起伏且小一点的淀粉微粒棱角分明。图D是大米内部淀粉复粒组成的,大米复粒表面比较光滑,复粒淀粉之间的交界面都很平滑,且复粒内不光有淀粉微粒,微粒之间还会有蛋白质存在(表面黑色条纹部位)。 从上图我们可以看出大米颗粒是由一粒粒淀粉微粒所组成的复粒淀粉粒所组成,当断裂部位是沿复粒淀粉截面扩展时,断口呈现平滑的沿晶裂纹特征;当断裂部位穿过复粒淀粉而扩展时,断口呈现穿晶断裂。 不同大米由于生长周期及成分都有差别,导致了淀粉微粒、淀粉复粒的形貌及它们之间的结合力各不相同,因此不同大米的断口形貌也完全不一样。 2. 复粒淀粉沿晶/穿晶断口形貌分析复粒淀粉穿晶断裂(左)和沿晶断裂(右)形貌差异对比 上图左是复粒淀粉断裂时的断口形貌,可以发现中间的淀粉微粒周围暗色的部分是大米内部的蛋白质,一个个淀粉微粒是由蛋白质连接起来的,其中画红圈的部分是大米内部的脂质颗粒,该颗粒在新大米断口处几乎没有,而在陈旧大米内部有很多,推测该脂质的析出导致了连接淀粉微粒的蛋白质发生了变化,导致大米复粒内部黏合力发生改变。上图右是大米淀粉复粒表明断口图,可以看出断口处非常平滑,正常情况下淀粉复粒间的结合能是远低于淀粉粒间内部结合能的,所以断裂一般都发生在淀粉复粒平滑处。 3. 新米与陈米断口微观形貌结构对比陈米(左)与新米(右)断口显微形貌差别 在显微镜下我们可以看到陈米断口(上图左)相较于新米断口(上图右)呈现更多的“窝韧”形貌特征,断裂面穿过了大米复粒淀粉。而新米大部分断口为“沿晶”解理,断裂面沿淀粉复粒扩展。拍摄结果表明正常新米内部的结合是复粒淀粉内部大于复粒淀粉边界的。随着大米放置时间的增长,米粒内部的化学物质发生了变化,导致复粒淀粉内部的微粒间键合减弱结合力变差,断裂裂纹面主要由从复粒淀粉边界扩展变为从复粒淀粉穿过后断裂。 四、后 记 “天空没有翅膀的痕迹,但是鸟儿却飞过”。不同于鸟儿在天空飞过没留下痕迹,任何材料的生产和合成所经过的工艺都会在材料内部留下显微痕迹,通过显微技术来辨别材料的显微形貌/结构的特征,可以轻易的判断出材料的生产工艺及历程。例如现阶段人们已经开始利用显微镜来鉴别区分不同植物、动物的品种,从而为原材料把控、溯源、生产过程质控提供了重要指导依据。 下期主题(动物)三选一: A、蝴蝶翅膀在阳光下产生绚丽颜色的原因。B、年轻人及老年人头发表面及断面的形貌差异。C、过期变质食物中的细菌。
  • 微观世界|第26期 贝壳结构中的电子显微结构
    序 言贝壳做为水边软体动物的外壳,由软体动物的一种特殊腺细胞的分泌物所形成的钙化物,具有保护动物本身的作用。一、贝壳的种类说到贝壳的种类,可以说是五花八门,主要分为五大纲:腹足纲(有法螺宝螺、蜒螺)、头足纲(鹦鹉)、多板纲、撅足纲(似象牙)、双壳纲(俩壳)。其形态也是千差万别,但是最有名的要数四大名螺了:万宝螺、唐冠螺、凤尾螺和鹦鹉螺。图1、四大名螺:万宝螺、唐冠螺、凤尾螺和鹦鹉螺二、贝壳的成分虽然贝壳的形态各自不同,但是其主要成份基本相同,分为95%的碳酸钙和少量的壳素。贝壳一般主要分为三层,褐色的角质层(壳皮),薄而透明,有防止碳酸侵蚀的作用,由外套膜边缘分泌的壳质素构成;中层为棱柱层(壳层),较厚,由外套膜边缘分泌的棱柱状的方解石构成,外层和中层可扩大贝壳的面积,但不增加厚度;内层为珍珠层(底层),由外套膜整个表面分泌的叶片状霰石(文石)叠成,具有美丽光泽,可随身体增长而加厚。图2是虎斑贝贝壳,可以看出斑点状的花纹。图2、虎斑贝贝壳三、台式电镜下的贝壳那么现在就让我们用coxem台式扫描电镜对我们常见的鲍鱼壳进行显微结构的观察,进一步了解其微观结构吧。图3是我们进行观察的鲍鱼壳,可以看出存在多个孔洞,表面显现出彩色的花纹。图3 、我们选择观察的鲍鱼壳的光学照片进一步我们用coxem台式电镜对鲍鱼壳的截面进行观察,可以看出片层状的结构(图4所示)。进一步放大可以看出片层状的文石结构以及不定形的有机结构颗粒。可以看出贝壳是由片层结构之间相互重叠组成的,其片层结构厚度大约为400nm(图5)。这些无机的片层状的结构的主要成份是CaCO3,提供了贝壳的强度性能,而存在于层状结构间隙的非定形结构的有机蛋白提供了贝壳的韧性,因此,这种砖块加水泥型的微观结构,造成了贝壳的既有一定的强度又有一定的韧性的特征。图4、贝壳的片层状图5、贝壳的片层结构的放大图后 记经过对贝壳的微观结构的观察,可以看出生物材料中的为微纳米结构的特殊排布,可以对材料的性能产生重要的影响,也使我们认识到应该进一步向自然界学习。下期有什么精彩内容呢?敬请期待吧!
  • 微观世界|第1期 认识雾霾之盾
    认识雾霾之盾——口罩的微观视界序言冬季以来,环境问题—“雾霾”成为人们关注的焦点。网上关于“雾霾”以及“防雾霾”口罩的报道层出不穷。OPTON作为实验室系统解决方案供应商,以自己的显微视角对“雾霾”问题进行了分析和研究,同时,OPTON希望能通过显微分析技术来拓展大家对生活中微观世界的认识。 本期主题是走进“雾霾之盾—口罩”的微观视界。通过电子显微镜对“平时生活中市场上用的最多最有效的几款防PM2.5口罩进行观察分析,带大家一起去领略电镜下的防雾霾口罩。 一、口罩宏观拆解左:EPC 活性炭口罩 KN95;右上:霍尼韦尔H950V;右下:绿盾M95 以上三种口罩皆为颗粒物过滤效率高于95%的口罩,EPC与其它两款口罩不同的地方在于口罩内部加了活性炭层。左:霍尼韦尔H950V;中:绿盾M95;右:EPC 活性炭口罩 KN95; 将口罩截面剪开可以发现,除了霍尼韦尔、绿盾【无纺布-静电滤棉-无纺布】这种经典的口罩结构外,EPC还额外多出了【活性炭层】及【加厚静电滤棉】层。一、口罩微观视界1. 无纺布三种品牌最外层无纺布扫描电镜形貌(左边为低倍、右边为高倍) 防PM2.5口罩的无纺布均采用热轧加固的方式进行成型的,因此从左边三幅图可以发现凡是无纺布上都会有类似压扁的致密“扁坑”。其中由于无纺布制造工艺不同:在形貌上霍尼韦尔的无纺布最致密、“扁坑”最深,绿盾的无纺布最疏松、“扁坑”最大而平;EPC介于两者之间。2. 静电滤棉 静电滤棉也为无纺布中的一种,在无纺布生产后经过静电处理会带有静电。这种静电力会对从其内通过的气体中的微粒物进行吸附,是防PM2.5口罩中,吸附PM2.5颗粒物的主要战斗力。从图中右侧高倍图片可以看出:EPC的静电滤棉最致密,但是形貌不均一,有带状显微及球状纤维颗粒存在;绿盾的静电滤棉纤维形貌最均一,且滤棉也比较致密;霍尼韦尔介于两者之间。3. 活性炭层+加厚静电滤棉EPC活性炭口罩比其它两款多出的两层(右上:活性碳层;右下:加厚静电滤棉层) 三种品牌的口罩在各层性能相差不大的情况下,EPC多出的两层过滤层会有更多的功能:活性炭层不但可以吸附颗粒物,同时对空气中的气体也会起到一定的收集作用,从图中右上部分可以看出在活性碳层上,纤维上有大量的活性炭存在。加厚的静电滤棉层与之前的静电滤棉层形貌有很大的差别,对漏过的少量颗粒物进行再一次吸附,起到进一步的颗粒物过滤功能。 一、后记通过显微分析可以观察到我们平时肉眼不可见的形貌细节,对实际生产与生活中的工艺控制及性能形貌学分析有很重要的意义,是反向工程中重要的技术手段之一。除了EPC这款N95口罩外,市面上也有很多其它品牌的带有活性炭层的PM2.5口罩,基本都是五层结构,最明显的区别就是含有活性炭层的口罩外观都为浅灰色,价格会比同过滤级别的口罩稍高一些。目前口罩品牌及型号很多,笔者仅选择网上用户采购最多的几款来进行实验,向大家介绍显微分析的魅力之处,具体如何评判各种款式口罩的优劣目前还没有比较行之有效的方法,希望后期能与大家进行进一步交流。
  • 微观世界|第5期 ‘蝶’影重重
    引子 各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾 书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)。扫描电镜下图像 绿色部分 图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。 黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。 所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 微观世界|第6期 烫发、染发对发质的影响
    ——不同头发在SEM下的微观分析 前期回顾上期我们探索了优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上的差别。随着大米放置时间的增长,米粒内部的化学物质发生了变化,复粒淀粉内部的微粒间键合减弱结合力变弱。本期我们借助扫描电子显微镜以及能谱研究烫发、染发对发质的影响。 序 言爱美之心、人皆有之。随着社会的进步和社交的不断扩展,人们越来越注重自身的外表,女性则更甚之。改革开放以来,做头发作为一种潮流从年轻人群逐渐扩散到各个年龄阶段的人群。很多人频繁出入理发店,做各类各式的头发。在理发过程中,理发师会极力给客户推荐烫发、染发等各种服务。人们通过做头发,改善了自身的外在形象,提高了自我的精神面貌。那么,做头发是否会对发质有不好的影响?这个影响程度有多大?带着这几个问题,小编通过扫描电子显微镜下自然的头发、烫发、染发的显微观察,揭开烫发、染发对发质的影响。本期所选取的头发来自三位健康成人。其中一人的头发自然,未有后天的人为加工;其中一人的头发经过离子烫处理;第三人的头发经过染发的处理。 健康成人的自然头发的显微分析——形貌分析以及成分分析从图1可以看出,健康成人的自然头发结构排列紧密。在较大的放大倍数下,可以看出头发表面主要由片层状的结构组成。这些片层状的结构如鱼鳞一般分布,且“鱼鳞”之间间隔约为11um-15um。图1 健康成人的自然头发形貌图从图2可以看出,健康成人的自然头发的成分。头发的成分主要含有Ca、O、Na、S、K等元素。健康成人的自然头发富有弹性,这与氨基酸链间连接的双硫键和数量更多的氢键密切相关。头发的角蛋白由一种颇长的氨基酸链组成,其中大多数是胱氨酸。每条链皆为螺旋形,然后再成束卷或绳索样。每个胱氨酸单位有两个半胱氨酸,邻近的两条链中的半胱氨酸通过二硫键形成强的化学结构。众多的双硫键的连接使角蛋白象一只长梯。双硫键的结合很牢固,远大于氢键的结合力,只有用化学的方法才能使其断开。图2 健康成人的自然头发成分图 烫发、染发对头发的微观形貌的影响——形貌分析 从图3可以看出,经过离子烫以及染过的头发与自然的头发在形貌上有一定的区别。自然的头发表面平整,密布着大量的鱼鳞状结构。经过离子烫的头发的表面不平整,有一定的鱼鳞状结构的分布,且有一定量的较大的颗粒状物质分布。这些物质是由于头发经历离子烫的过程中产生的。经过染发处理的头发表面较平整,几乎没有鱼鳞状结构的分布,且有少量的较小的颗粒状物质分布。图3 健康成人的自然头发(a)、烫发(b)、染发(c)的低倍形貌图 从图4可以看出,烫发和染发对头发有一定的损伤。自然的头发表面的鱼鳞状结构有序排列。经过离子烫的头发表面的鱼鳞状结构受到了一定程度的损伤,这些损伤后形成的物质构成了前文中颗粒物的一部分。经过染发的头发表面几乎没有鱼鳞状的结构,只能在头发的局部发现少量未损伤完全的鱼鳞状结构。图4 健康成人的自然头发(a)、烫发(b)、染发(c)的高倍形貌图? 烫发、染发对头发的成分的影响——成分分析 从图5可以看出,烫发和染发对头发有一定的影响。经过烫发和染发处理的头发的S元素的含量较少、Na元素的含量较多。烫发和染发时,卷发器将头发的角蛋白中的多肽链拉长,这时还原剂很容易使二硫键切断,而氧化剂则在拉长后的位置上形成新的二硫键,理论上头发因而形成和维持新的形态。但实际上仍有相当部分二硫键断开,因而降低发质。图5 健康成人的烫发(a)、染发(b)的成分图? 后记 通过扫描电镜显微观察以及能谱的成分分析,可以看出染发和烫发对发质有一定的损害。人们在追求外在美的同时,更因该追求内在美。热爱祖国、团结邻舍、爱岗敬业,锻炼自己的体魄和提高自身的修养。古人说修心养性。只要有健康的人生态度和体魄,即使不做头发也可以很美。
  • CCATM'2014之材料微观解析与失效分析会场
    仪器信息网讯 2014年10月20日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 材料微观解析与失效分析&rdquo 会议在北京国际会议中心举行。  失效分析是指产品失效后,通过对产品及其结构、使用和技术文件的系统研究,从而鉴别失效模式、确定失效机理和失效演变的过程。失效分析对于提高产品质量和防止事故重演特别重要。失效分析工作是一个极其复杂的过程,它需要多学科相互交叉。主要分析内容包括断口分析、化学分析、金相显微分析、力学性能检查和无损探测等方面。  其中微观解析主要指断口分析中的微观分析和金相显微分析。在断口微观分析中,使用扫描电镜或透射电镜可观察微观断口的形貌,从而判断断裂失效机制。另外配合能谱分析仪还可以对断口的微区成分进行分析,以判断是否存在夹杂物、成分偏析等缺陷。  金相显微分析是指利用金相显微镜来观察和研究金属材料显微组织结构及分布的试验方法。是检查金属材料质量的好坏、热处理工艺质量评定的最直观、最准确的方法。  在本次会议中,武钢研究院孙宜强介绍了SPHC热轧板表面疤块缺陷分析 钢铁研究总院谢金鹏介绍了转向弯臂断裂失效原因分析 宝山钢铁股份有限公司王军艺介绍了火花塞膨胀槽脆性开裂失效分析 首钢通化钢铁集团韩德青介绍了隔热管断裂原因分析 钢铁研究总院郑凯介绍了某石化设备用 P201泵出口管道裂纹原因分析 马钢技术中心王德宝介绍了35CrMo高强度连接螺栓杯锥状断口失效分析 武汉钢铁集团公司研究院王志奋介绍了冷轧双相钢性能不合格原因分析 国家钢铁材料测试中心李云玲PSB1080 螺纹钢氢脆断裂分析 西安航空动力控制科技有限公司郭秀乔介绍了活门和衬套卡滞原因分析 江苏省宏晟重工集团有限公司乙海峰介绍了1Cr17Ni2钢热油泵泵轴断裂分析。会议现场
  • 用显微镜带您看微观奇妙世界——生活中的仪器分析
    【生活中的仪器分析】开始于2011年,这个活动的宗旨是让实验室人员利用分析仪器,检测人们生活中最常见、最易接触到的物质,让仪器分析走进生活。不仅可以让坛友们相互交流分析仪器的使用技术,还可以提高对仪器分析的兴趣。  2013年10月一起论坛举办了一期【生活中的仪器分析】之【显微镜观察微观世界】活动,网友对此次活动产生了浓厚的兴趣,在短短的半个月时间里就有多篇作品发表到了论坛上,大家用各类型的显微镜观察了多种物质。  坛友们利用显微镜分别观察了蚊子、蜈蚣、蚂蚁。  上图只是&ldquo 冰山一角&rdquo 高清大图请点:http://bbs.instrument.com.cn/shtml/20131022/5021741/  除了直接用显微镜观察物质,还有坛友分享了基于显微镜的&ldquo 刻画&rdquo 技术:  这几张图片看似简单,其实是应用扫描探针显微镜的纳米蚀刻技术做出来的!  本期【微观看世界】截至到2013年11月18日,目前活动还在火热进行中,如果您也对此有兴趣,请赶快来参与吧!并且可同时参加【第六届原创大赛】,双重大奖等您来拿!  参与活动:http://bbs.instrument.com.cn/shtml/20131014/5009273/  十一月好戏不断!以下活动全部进行中!如有意向,素来参与!全部有奖!  1.【生活中的仪器分析】&mdash &mdash 办公用品中的有害物质检测之【纸张】篇  活动地址http://bbs.instrument.com.cn/shtml/20131104/5044097/  2.【生活中的仪器分析】食品安全&mdash &mdash 饮品卫生大检测  活动地址http://bbs.instrument.com.cn/shtml/20131102/5041701/  3. 【生活中的仪器分析】食品安全&mdash &mdash &ldquo 菜&rdquo 米油盐酱醋茶大检测  活动地址http://bbs.instrument.com.cn/shtml/20131102/5041900/  4. 【生活中的仪器分析】奶嘴中的化学物质检测  活动地址http://bbs.instrument.com.cn/shtml/20131012/5006229/  仪器论坛介绍:  仪器论坛(bbs.instrument.com.cn)是仪器信息网最早的一个栏目,也是仪器行业内从业人员最多的在线交流平台,每天都会接纳近30000用户访问。目前有40个版区,170多个版面,有近800的兼职队伍。在这里,无论您是提问还是学习,都可以得到满意的答案。目前论坛还有大量版面空缺版主,诚邀您的加盟(http://bbs.instrument.com.cn/resume/)
  • 广州明慧|显微镜在线虫观察实验中的应用及赋能
    研究人员对线虫有着复杂的情感,崇敬、亲密,执着。几十年来,科学家已经鉴定并绘制了所有959个成年雌雄同体细胞和1031个成年雄性细胞的发育图。布伦纳称秀丽隐杆线虫为“大自然馈赠给科学的礼物”。线虫是常见的土壤线虫,线虫其个体小,体长仅1-2mm,体态透明,繁殖速度快且数量多,2-3天一代,有雌雄同体和雄虫,平均每代可产生300-500个线虫,可为实验提供大量且均一的样本。线虫在遗传与发育生物学、行为与神经生物学、衰老与寿命、人类遗传性疾病、病原体与生物机体的相互作用、药物筛选、动物的应急反应、环境生物学和信号传导等领域已经得到广泛应用。明场中的线虫筛查在常规解剖镜下可观察到虫体外形结构,使用体视显微镜可以实现对线虫的有效筛选以提高数量。配备灯架或小型照明底座的常规体视显微镜非常适用于线虫筛查,当与辅助物镜一起使用时,它可以实现更高的放大倍率和分辨率,可以轻松制作具有高对比度的线虫图像,即使在低放大倍率下也是如此。对于教学人员来说,它们也是特别好的解决方案。(型号推荐:MHZ101/MHZ201)MHZ101/MHZ201体视显微镜在明场中进行线虫筛查的优势:居中 LED,标本成像具有良好的对比度和均匀的照明;易于存放,体积紧凑轻巧,不使用时可直接置放于壁橱架子上;空间大,有足够的空间让用户用于取虫、显微注射等操作;标本处理简化,最大限度地减少了平板意外掉落的可能性;没有外部灯、电缆,也没有可能从底座上掉下来的设备,适用于学生课程。 转基因线虫育种及荧光筛选 由于转基因通常与绿色荧光蛋白 (GFP)结合,因此可以使用荧光体视显微镜对其进行选择。其他荧光标记如 DsRed在高表达水平下可能有毒,因此通常选择 GFP 标记。使用广州明慧的MHZF700和NSZ818体视荧光显微镜,可以对线虫进行高效荧光筛查。MHZF700和NSZ818体视荧光显微镜优势:搭配BGUV三色荧光模块,支持特殊波段需求定制;极佳的信噪比和清晰的荧光图像,数字成像时最为出色;具备适用于各种常规观察和检查任务从宏观到微观的灵活性;纤薄底座和高亮度LED,方便样品的取放和操作,减少样本转移耗费的时间。
  • OPTON的微观世界|第18期 量子阱
    前期回顾在上期里,小编带大家见识了一下弹壳的神奇,借助Gemini300场发射扫描电子显微镜对弹壳表面材料进行了细微结构的表征和成分分析,以及对收口处裂纹的研究,顿时觉得自己也高大上起来,有木有,这期呢,小编带领大家进军光电材料,再小小透露一点,量子阱材料,一起来见证一下扫描电子显微镜技术在量子阱研究中的厉害吧!概 述那么量子阱是什么呢,小编就小小解释一下,量子阱就是指由2种不同的半导体材料相间排列形成的、具有明显量子限域效应的电子或空穴的势阱。量子阱器件,即指采用量子阱材料作为有源区的光电子器件。一、量子阱的构造 如下图,量子阱器件的基本结构是两块N型GaAs附于两端,而中间有一个薄层,这个薄层的结构由AlGaAs-GaAs-AlGaAs的复合形式组成。在未加偏压时,各个区域的势能与中间的GaAs对应的区域形成了一个势阱,故称为量子阱。电子的运动路径是从左边的N型区(发射极)进入右边的N型区(集电极),中间必须通过AlGaAs层进入量子阱,然后再穿透另一层AlGaAs。量子阱器件虽然是新近研制成功的器件,但已在很多领域获得了应用,如量子阱红外探测器、GaA s、InP基超晶格、量子阱材料、量子光通讯和量子结构LED等,而且随着制作水平的提高,它将获得更加广泛的应用。量子阱的基本结构二、量子阱的微观世界量子阱材料一般使用分子束外延(molecular beam epitaxy ,简称 MBE)或金属有机氧化物化学气相沉积法(MOCVD)技术制备,对于量子阱材料界面结构的观察,晶体生长过程中出现的诸如层错,位错等缺陷的形成、特性及其分布等,我们一般利用高分辨透射扫描电镜(TEM)来观察,从而确定材料微观结构参数与器件宏观性能参数间的关系。众所周知,透射样品制备要求严格,制样困难,首先要将样品膜面利用进行对粘,再继续线切割为3mm×1mm;其次采用砂纸将样品打磨抛光使其厚度为60μm 左右,再抛光至 20μm;最后使用离子减薄仪将样品轰击为10nm以下。这个过程技术要求高,每一步都需要经验,不是一般人都可以做的,而且成本较高;而扫描电镜相比较而言,样品制备简单,导电样品直接用导电胶固定在样品台上,放入腔室内进行观察,对于不导电样品,我们也有自己的解决方案,一配备离子溅射仪,即喷金,二采用低电压模式,低电压成像是现代场发射扫描电镜的技术发展趋势,低电压成像可以呈现样品极表面细节、可以减少不导电样品的荷电(放电)现象、可以减少电子束对样品的损伤。对于薄膜材料更是如此,下面就是我们来看看采用蔡司sigma 500所测的量子阱材料,我们得到了10万和15万倍下的量子阱的背散射图片,可以看出样品界面出现了亮暗程度不同的衬度带,各层分界清楚,界面平整,层分布精度高,周期性好,厚度为 68.11nm,阱和势垒交替出现,从而确定周期厚度。后 记随着分子束外延和金属有机化学汽相淀积技术的迅速发展,人们已能够生长出原子尺度的、界面平滑的优质超薄层半导体材料,可以在生长方向上精确地控制薄层的组分和厚度,从而实现超晶格量子阱结构,所以晶格量子阱结构材料及应用的研究已迅速发展成当今半导体物理和固体物理学中最重要的前沿课题之一,而扫描电子显微镜一定可以大展身手,那就跟紧小编的步伐,我们一起跟随蔡司扫描电镜去见证光电材料史的辉煌吧!下期有什么精彩内容呢?敬请期待吧!
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • OPTON的微观世界第5期 ‘蝶’影重重
    引子各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下图像偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)扫描电镜下图像绿色部分图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 揭秘“大连光源”:人类探测微观世界的利器
    1月15日,辽宁省大连市,中国科学院研制的“大连光源”发出了世界上最强的极紫外自由电子激光脉冲。视觉中国供图  冬日的辽东半岛,海风凛冽刺骨。位于大连这座滨海城市西侧的长兴岛,因四面环海,人口稀少,更显得肃杀、冷清。但就在这里,一项新的世界纪录刚刚诞生。  1月15日,我国最新一代光源“极紫外自由电子激光装置”,即“大连光源”,发出了世界最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中国科学院副院长王恩哥评价这一成果时说,这是该院乃至我国又一项具有极高显示度的重大科技成果。“大连光源”中90%的仪器设备由我国自主研发,标志着我国在这一领域占据了世界领先地位。  更值得一提的是,该装置由中科院大连化学物理研究所和中科院上海应用物理研究所联合研制,开创了我国科学研究专家与大科学装置研制专家成功合作的先例。近日,中国青年报中青在线记者走进“大连光源”,采访有关专家进行揭秘。  看不见的“光”:人类探测微观世界的利器  在大连长兴岛,“大连光源”躺在一个长达100多米的隧道里。在这里,最常见的就是各种灯光闪烁的实验仪器,以及各类如同爬山虎般顺着架子连接着仪器的线缆,当然,还有各种看不见的“光”。  现实中,人们接触最多的“光”,怕是手机屏幕、电脑电视屏幕发出的光,还有白炽灯、霓虹灯的光,白天的太阳光,夜里的月光,以及大自然中水母、萤火虫发出的光,等等。那么,光的本质究竟是什么?  电磁波。  ——近代物理已经证明了这一点,并且发现光这种“电磁波”,还是人类认识和感知物质世界,探测原子和分子等微观世界的最重要工具。  比如,对于声音和图像,人类可以通过麦克风和摄像头转换成“电”信号,然后进行处理和传输。同样地,对于物质世界中的原子和分子,如果要“看到”它们,也只需要将其转换成易于识别和处理的“电”信号。  一个最直接的方法,就是将原子或分子中的电子“打”出来,让原子、分子变成带有正电荷的离子,带正电的离子击打在探测器上,就会形成“电”信号。如此,科学家就可以灵敏地探测即“看到”微观世界。  这其中的关键点,即将原子或分子中的电子“打”出来。不过,并非所有的“光”都能实现这一点。“极紫外光”是其中一种。  根据中科院大连化物所研究员戴东旭的说法,光(电磁波)本身带有能量,其波长越短,能量就越高。也因此,它分为可见光和不可见光,后者包括紫外光、红外光、X光,即人们通常所说的紫外线、红外线、X射线。  可见光的能量算是小的。其波长大致处于400~700纳米之间,可以刺激人的视觉细胞产生信号。  波长小于可见光的紫外光,因为能量高,会对人体产生危害,比如320~400纳米和270~320纳米之间的紫外光。  不过,当波长短到100纳米附近时,光所具备的能量,足以电离一个原子或分子而又不会把分子打碎,这个波段的光,被科学家称为“极紫外光”。  “大连光源”就是要造出这种“光”。一旦造出,就是人类探测微观世界的一把利器。  最新一代光源是“拍电影”,上一代是“拍照片”  “大连光源”总负责人、中科院大连化物所副所长杨学明院士讲了一个故事:19世纪末有人问,马在奔跑时,究竟有没有四蹄同时离地的瞬间?一时间众说纷纭,因为仅靠人眼观察,实在无法判断。直到有人设计出一套连续拍照的装置,将马连续奔跑的过程“分解”为一帧帧照片,才得出了结论。  杨学明说,要研究物质是如何变化、运动的,最好的方式就是将过程“记录”下来,能够让人们清楚地“看到”。如今,随着人类对自然界的认识不断深入,科学家已经知道,与人类生活息息相关的很多物理和化学过程,在本质上都是原子和分子过程。  而要控制或利用这些物理和化学过程,在杨学明看来,就需要在实验室里,研究这些过程所涉及的原子和分子的反应机制,因此,就需要精确并且高灵敏度地“探测”所涉及的原子和分子。  事实上,为了“看到”微观世界,人类制造出了各种各样的工具,这类工具统称为“光源”,其中一类在科学上广泛使用的光源,利用了粒子加速器获得高能粒子,高能粒子在磁铁阵列中震荡产生的高亮度的光被称为同步辐射光。  物理学家斯蒂芬霍金曾经说过,粒子加速器,是人类拥有的最接近时间机器的设备。而人类所能达到的最高温度记录,也是在粒子加速器中创造的。  从上世纪40年代,美国在加州大学伯克利分校发展了第一代高能电子束同步加速器之后,高亮度的同步辐射光源,已经成为当代科学研究最为重要的实验工具之一。世界各国先后建立了几十台第三代光源,我国也有北京正负电子对撞机、合肥光源、广东散裂中子源、兰州重离子装置、上海光源等。其中合肥光源和上海光源属于第三代光源。  如今建成的“大连光源”,则是第四代,也是最新一代的光源,即自由电子激光装置。中科院上海应用物理研究所所长赵振堂研究员说,这是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  那么,第三代同步辐射光源和第四代自由电子激光装置究竟有何区别?  赵振堂打了一个比方,上一代是“拍照片”的,而最新一代光源是“拍电影”的,进一步说,即第三代光源只能“看到”微观世界物质的结构,而第四代光源则能记录下微观世界物质的动态过程。  杨学明以雾霾为例,从现有的研究来看,霾是一个从分子结构聚集起来的团簇,包括水、污染物等,那么在研究雾霾时,不仅要知道它是什么结构,即由什么组成,还要搞清楚这些组成部分,是如何聚集在一起的,这就需要科学家不仅要看到静态的结构,还要看到动态的过程。  比如,在空气潮湿的时候,空气中霾的成分通常会有一个明显的增长,为什么会这样,这就需要对其发展过程进行研究。也因此,杨学明将“大连光源”这个第四代光源,称为观察原子、分子反应过程的摄像机,在原子、分子层次上探索物质世界的奥秘。  科学研究专家与大科学装置研制专家首次携手  第四代光源还有一个特点:足够亮。  赵振堂给出一组对比:比起一般家用的白炽灯,太阳的亮度是其1万倍 比起太阳,第三代光源则要亮100亿倍 那么,比起第三代光源,第四代光源还要再亮100亿倍。这里的亮度,是一个科学的概念,也称为峰值亮度,定义是单位时间内、单位立体角内、单位面积上、单位波长范围内所发射的光子数量。  在这般光源的照射下,几乎所有的原子和分子都“无处遁形”。戴东旭说,如今建成的“大连光源”,就是当今世界上在极紫外波段最强的自由电子激光,因此是研究与原子分子过程相关的物理和化学科学问题的强有力的利器。  事实上,在越来越强调协同创新,而非“单打独斗”的大科学时代,像“大连光源”这样的大科学工程,越来越为科学界所重视。  如今,“大连光源”的建成出光,在王恩哥看来,也将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国的科技事业注入新的活力。  杨学明也告诉记者,新的仪器发展,是学术研究发展最为重要的基础,没有新的科学仪器,在物理化学领域可以说是寸步难行。他还记得,当初之所以提出建设“大连光源”,正是因为科研工作多年受困于反应中间体的探测难题。  当时,他找到赵振堂,双方一拍即合:这是我国打造新一代光源的绝佳契机。更为重要的是,双方都意识到,这一项目将是科学研究专家与大科学装置研制专家的首次携手,而这,对于未来加快推动大科学装置在科学研究中的应用,具有重要的现实意义。  很快,“大连光源”得到国家自然科学基金委国家重大仪器专项的资助,于2012年年初正式启动,2014年10月正式在大连长兴岛开工建设。仅两年时间,就完成了基建工程以及主体光源装置研制。  去年9月24日22时50分,超过300兆伏的电子束流,依次通过自由电子激光放大器的各个元件。终于,总长18米的波荡器阵列,发出了第一束极紫外光。  如今,经过调试后的“大连光源”,早已能发出更为强大的光束。但科学家并不会止步于此,中科院大连化物所研究员张未卿透露,国内未来很有可能进军X射线波段的第四代光源。
  • OPTON 的微观世界|第1期 认识雾霾之盾
    认识雾霾之盾——口罩的微观视界序言冬季以来,环境问题—“雾霾”成为人们关注的焦点。网上关于“雾霾”以及“防雾霾”口罩的报道层出不穷。OPTON作为实验室系统解决方案供应商,以自己的显微视角对“雾霾”问题进行了分析和研究,同时,OPTON希望能通过显微分析技术来拓展大家对生活中微观世界的认识。 本期主题是走进“雾霾之盾—口罩”的微观视界。通过电子显微镜对“平时生活中市场上用的最多最有效的几款防PM2.5口罩进行观察分析,带大家一起去领略电镜下的防雾霾口罩。 一、口罩宏观拆解左:EPC 活性炭口罩 KN95;右上:霍尼韦尔H950V;右下:绿盾M95 以上三种口罩皆为颗粒物过滤效率高于95%的口罩,EPC与其它两款口罩不同的地方在于口罩内部加了活性炭层。左:霍尼韦尔H950V;中:绿盾M95;右:EPC 活性炭口罩 KN95; 将口罩截面剪开可以发现,除了霍尼韦尔、绿盾【无纺布-静电滤棉-无纺布】这种经典的口罩结构外,EPC还额外多出了【活性炭层】及【加厚静电滤棉】层。一、口罩微观视界1. 无纺布三种品牌最外层无纺布扫描电镜形貌(左边为低倍、右边为高倍) 防PM2.5口罩的无纺布均采用热轧加固的方式进行成型的,因此从左边三幅图可以发现凡是无纺布上都会有类似压扁的致密“扁坑”。其中由于无纺布制造工艺不同:在形貌上霍尼韦尔的无纺布最致密、“扁坑”最深,绿盾的无纺布最疏松、“扁坑”最大而平;EPC介于两者之间。2. 静电滤棉 静电滤棉也为无纺布中的一种,在无纺布生产后经过静电处理会带有静电。这种静电力会对从其内通过的气体中的微粒物进行吸附,是防PM2.5口罩中,吸附PM2.5颗粒物的主要战斗力。从图中右侧高倍图片可以看出:EPC的静电滤棉最致密,但是形貌不均一,有带状显微及球状纤维颗粒存在;绿盾的静电滤棉纤维形貌最均一,且滤棉也比较致密;霍尼韦尔介于两者之间。3. 活性炭层+加厚静电滤棉EPC活性炭口罩比其它两款多出的两层(右上:活性碳层;右下:加厚静电滤棉层) 三种品牌的口罩在各层性能相差不大的情况下,EPC多出的两层过滤层会有更多的功能:活性炭层不但可以吸附颗粒物,同时对空气中的气体也会起到一定的收集作用,从图中右上部分可以看出在活性碳层上,纤维上有大量的活性炭存在。加厚的静电滤棉层与之前的静电滤棉层形貌有很大的差别,对漏过的少量颗粒物进行再一次吸附,起到进一步的颗粒物过滤功能。 一、后记通过显微分析可以观察到我们平时肉眼不可见的形貌细节,对实际生产与生活中的工艺控制及性能形貌学分析有很重要的意义,是反向工程中重要的技术手段之一。除了EPC这款N95口罩外,市面上也有很多其它品牌的带有活性炭层的PM2.5口罩,基本都是五层结构,最明显的区别就是含有活性炭层的口罩外观都为浅灰色,价格会比同过滤级别的口罩稍高一些。目前口罩品牌及型号很多,笔者仅选择网上用户采购最多的几款来进行实验,向大家介绍显微分析的魅力之处,具体如何评判各种款式口罩的优劣目前还没有比较行之有效的方法,希望后期能与大家进行进一步交流。 关于欧波同欧波同有限公司,是中国领先的微纳米技术服务供应商,是一家以外资企业作为投资背景的高新技术企业,总部位于英国,分别在北京、上海、辽宁、山东、河南、陕西等地设有分公司和办事处。作为蔡司电子显微镜在中国地区最重要的战略合作伙伴,公司秉承“打造国内最具影响力的仪器销售品牌”的经营理念,与蔡司品牌强强联合,正在为数以万计的中国用户提供高品质的产品与国际尖端技术服务。未来,我们将一如既往致力于中国微纳米技术的创新与发展,与中国广大客户一起携手共同描绘中国高端微纳米科技振兴辉煌的广阔蓝图!欲了解更多信息,请浏览公司网站:http://www.opton.com.cn/
  • OPTON的微观世界|第11期 母亲节的那只康乃馨!
    “成长是一列永没有回程的火车将你和父母的距离越拉越远” “大多数时候你说有空我就回家都不过是句空话” “你好吗?刚学会发w微信发给你试看 我是妈妈”“你眼中 家 是一个地方妈妈眼中家是有你在的一段时光” “妈妈不记得母亲节你回家的日子就是过节”“妈,今天你过节,送您一束康乃馨” 以上的文字是否有些扎心,一束康乃馨包含了对母亲无尽的爱,在这个特殊的日子里,欧波同带您一起走进康乃馨的微观世界̷̷序 言十月胎恩重,三生报答轻。五月,空气中到处都弥漫着康乃馨的花香。康乃馨花径笔直,花朵绚丽,花香清幽。每年五月的第二个星期日是一个极有人情味的节日——母亲节,这天,康乃馨是赠送母亲不可缺少的礼品。将康乃馨与母亲节联系在一起是源于1934年5月美国首次发行母亲节纪念邮票。邮票上描绘的是一位母亲安静的坐着,并将双手放在膝盖上,注视着前面花瓶中一束鲜艳美丽的康乃馨(图一)。后来随着邮票的传播,很多国家便把康乃馨与母亲节联系起来,康乃馨便成了象征母爱之花,格外受到人们的敬重。各个国家也发行了很多种母亲节邮票,来表达对母亲节的重视,中国建设银行也曾在2013年发行一组康乃馨的花卉邮票(图二),将这份对母亲的感激与思念,寄托于康乃馨上。图一、母亲节邮票图二、中国建设银行康乃馨邮票我们都知道康乃馨是送给母亲的花朵,她的每一片花瓣都盛满感激,让人倍感温馨。那么你了解康乃馨的花瓣在扫描电镜下的微观结构吗?今天小编就借助蔡司evo ma系列扫描电镜,简单为大家介绍一下康乃馨花瓣微观世界的精彩。一、康乃馨样品的选择小编在花店购置红色康乃馨鲜花一支,基于干花瓣保存时间长的原因,我们将其花瓣及柱头取下,放在滤纸上,在室温条件下自然晾干48小时,然后利用导电胶将康乃馨花瓣及柱头粘在样品桩上(图三)。图三、康乃馨样品准备及粘贴二、扫描电镜下的康乃馨花瓣我们来看看用蔡司evo ma系列扫描电镜拍摄到的康乃馨花瓣的微观图像,实验中观察了花瓣的正面(图四)和背面(图五),并分别拍摄了花瓣边缘、花瓣中心部位以及花瓣根部的微观图像。通过观察发现,宏观上康乃馨花瓣边缘是齿状,不规则,将其放大500倍后,花瓣上有很多阵列状颗粒凸起结构,这样的表皮结构可以很好的保护花瓣并且增强光合作用,利于花朵生长。由于是干花瓣,有些凸起颗粒虽然已经塌陷,但是结构依然非常明显。我们将花瓣边缘的正反面进行对比发现,正面花瓣边缘颗粒凸起结构的间隙要比反面凸起结构的间隙略大,这是因为花瓣上表皮负责感知和接收阳光照射,加上蒸腾和呼吸作用等原因,促使花瓣正反面的凸起间隙不同。这种结构也是导致花瓣正反面颜色略有不同的原因。花瓣中心部位也是阵列状颗粒凸起,但是颗粒尺寸要比边缘的颗粒尺寸大一些。花瓣的根部正反面都是纤维状,这是给花瓣输送养分的“血管”,“血管”彼此相通,关系十分密切。也许正是这样的阵列凸起结构和纤维的“血管”根部,也形象的表示了将康乃馨赠与母亲,象征着母子关系密切,体现着人伦至爱,亲慈子孝的美德。图四、正面花瓣边缘,花瓣中心,以及花瓣根部图五、背面花瓣边缘,花瓣中心以及花瓣根部三、扫描电镜下的康乃馨柱头一般说植物的花蕊分为雌蕊和雄蕊两部分,雌蕊可以分为下部能育的子房和上部不育的花柱,花柱上部再发育形成柱头,在花朵受精过程中,花粉先落到柱头上,长出花粉管,花粉管通过花柱进入子房,最终完成雌雄配子的融合,可见花柱在花朵的受精过程中有很重要的作用。图六的b”中,清晰的看到花柱上分化出很多绒毛状的柱头分支,结构紧密,就像一位母亲怀抱着孩子一样,这些柱头分支仿佛正对着花柱说“妈妈,我爱您!谢谢您赋予了我生命,并含辛茹苦把我养大!” 图六、康乃馨柱头的微观结构后 记尽管母亲节的由来在网络上只要一键搜索就会找到许多条信息,但是小编在这里还是想普及一下:母亲节最早是在美国兴起,由一位名叫贾维斯的母亲倡导,后来由她的女儿安娜贾维斯发起创立,并在1914年正式定为美国法定的全国性节日,大家为了纪念贾维斯这位母亲,就将她的忌日,即每年5月的第二个星期天,定为母亲节。美国创立母亲节后,得到了全世界各国人民的支持。时至今日,纪念这个节日的国家就更多了,母亲节,已经成了一个名副其实的国际性节日。值此母亲节即将到来之际,欧波同祝天下所有母亲永远健康长寿,永远开心漂亮! 下期有什么精彩内容呢?敬请期待吧!
  • 观察分子反应像数星星 新型化学显微镜拥有超高分辨率
    教科书上的化学反应均以单分子形式进行概念描述,但实验中得到的却是大量分子的平均结果。一瓶380毫升的水,约含有10的25次方个水分子,投入金属钠会产生激烈的反应。不妨试想,宏观可见的化学现象,具体到单个分子是怎样的表现?  单分子实验是从本质出发解决许多基础科学问题的重要途径之一。近年来,虽已有单分子荧光显微镜技术,冷冻单分子电镜技术等诺贝尔奖级别的成果问世,观察、操纵和测量最为微观的单分子化学反应仍是科学家面对的长期挑战。  8月11日,浙江大学化学系冯建东研究员团队在国际顶级期刊《自然》发表封面文章。浙大团队以电致化学发光反应为研究对象,发明了一种可以直接对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术可实现更清晰的微观结构和细胞图像,在化学成像和生物成像领域具有重要应用价值。  捕获分子发光信号 1秒内连拍上千张图片  电致化学发光,是指具有发光活性的物质在电极表面通过化学反应实现发光的形式,可令分子产生光信号,在体外免疫诊断、成像分析等领域已有应用。  “在溶液体系还难以开展单分子化学反应的直接光学捕捉。”冯建东介绍,单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。  如何实现微弱乃至单分子水平电致化学发光信号的测量和成像?如何在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像?3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。  “团队通过搭建灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立捕获到了单分子反应后产生的发光信号。” 论文第一作者、浙大化学系博士生董金润介绍。  从空间上,研究团队通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最快在1秒内拍摄1300张,消除邻近分子间的相互干扰。  利用这套光电控制和测量平台,团队首次实现单分子电致化学发光信号的空间成像,其成像特点在于无需借助外界光源,可在暗室操作。  多重曝光合成叠加 实现纳米级超高分辨率  现如今,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“但能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术非常有限。”冯建东提到,主要在于受到光的衍射极限限制,光学成像分辨力不足,即相邻很近的两个点难以分辨。  为此,冯建东团队在获取单分子信号图像基础上,着手研究电致化学发光的超分辨成像。受到超分辨荧光显微镜技术的启发,研究团队利用通过空间分子反应定位的光学重构方法进行成像。  “好比人们夜晚抬头看星星,可以通过星星的‘闪烁’将离得很近的两颗星星区分开一样。”冯建东介绍,技术原理即通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,就能构建出化学反应位点的“星座”。  为验证这一成像方法的可行性以及定位算法的准确性,研究团队通过精密加工的方法,在电极表面制造了一个条纹图案作为已知成像模板,并进行对比成像,条纹间隔为几百个纳米。  记者看到,该微纳结构的单分子电致化学发光成像与电镜成像结果高度吻合。而且,单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。  研究团队进而将该成像技术应用于生物细胞显微成像,以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化,成像结果与荧光超分辨成像可关联对比,其分辨率也可与荧光超分辨成像相媲美。  “相比于荧光成像技术,电致化学发光成像不需要对细胞结构做标记,意味着不易影响细胞状态,对细胞可能是潜在友好的。”冯建东表示,未来,这项显微镜技术将作为一项研究工具,在单分子水平揭示更多化学奥秘,也有助于揭示更为清晰的生物结构和看清生命基本单位细胞如何工作。
  • OPTON的微观世界|第6期 烫发、染发对发质的影响
    ——不同头发在SEM下的微观分析 前期回顾上期内容我们通过显微分析技术,探究了色彩斑斓的蝴蝶之美,本期在女神节到来之际,我们借助扫描电子显微镜以及能谱研究烫发、染发对发质的影响。序 言3月8日是普天同庆的女神节,爱美之心、人皆有之。随着社会的进步和社交的不断扩展,人们越来越注重自身的外表,女性则更甚之。改革开放以来,做头发作为一种潮流从年轻人群逐渐扩散到各个年龄阶段的人群。很多人频繁出入理发店,做各类各式的头发。在理发过程中,理发师会极力给客户推荐烫发、染发等各种服务。人们通过做头发,改善了自身的外在形象,提高了自我的精神面貌。那么,做头发是否会对发质有不好的影响?这个影响程度有多大?带着这几个问题,小编通过扫描电子显微镜下自然的头发、烫发、染发的显微观察,揭开烫发、染发对发质的影响。本期所选取的头发来自三位健康成人。其中一人的头发自然,未有后天的人为加工;其中一人的头发经过离子烫处理;第三人的头发经过染发的处理。健康成人的自然头发的显微分析——形貌分析以及成分分析从图1可以看出,健康成人的自然头发结构排列紧密。在较大的放大倍数下,可以看出头发表面主要由片层状的结构组成。这些片层状的结构如鱼鳞一般分布,且“鱼鳞”之间间隔约为11um-15um。图1 健康成人的自然头发形貌图从图2可以看出,健康成人的自然头发的成分。头发的成分主要含有Ca、O、Na、S、K等元素。健康成人的自然头发富有弹性,这与氨基酸链间连接的双硫键和数量更多的氢键密切相关。头发的角蛋白由一种颇长的氨基酸链组成,其中大多数是胱氨酸。每条链皆为螺旋形,然后再成束卷或绳索样。每个胱氨酸单位有两个半胱氨酸,邻近的两条链中的半胱氨酸通过二硫键形成强的化学结构。众多的双硫键的连接使角蛋白象一只长梯。双硫键的结合很牢固,远大于氢键的结合力,只有用化学的方法才能使其断开。图2 健康成人的自然头发成分图烫发、染发对头发的微观形貌的影响——形貌分析 从图3可以看出,经过离子烫以及染过的头发与自然的头发在形貌上有一定的区别。自然的头发表面平整,密布着大量的鱼鳞状结构。经过离子烫的头发的表面不平整,有一定的鱼鳞状结构的分布,且有一定量的较大的颗粒状物质分布。这些物质是由于头发经历离子烫的过程中产生的。经过染发处理的头发表面较平整,几乎没有鱼鳞状结构的分布,且有少量的较小的颗粒状物质分布。图3 健康成人的自然头发(a)、烫发(b)、染发(c)的低倍形貌图 从图4可以看出,烫发和染发对头发有一定的损伤。自然的头发表面的鱼鳞状结构有序排列。经过离子烫的头发表面的鱼鳞状结构受到了一定程度的损伤,这些损伤后形成的物质构成了前文中颗粒物的一部分。经过染发的头发表面几乎没有鱼鳞状的结构,只能在头发的局部发现少量未损伤完全的鱼鳞状结构。图4 健康成人的自然头发(a)、烫发(b)、染发(c)的高倍形貌图烫发、染发对头发的成分的影响——成分分析 从图5可以看出,烫发和染发对头发有一定的影响。经过烫发和染发处理的头发的S元素的含量较少、Na元素的含量较多。烫发和染发时,卷发器将头发的角蛋白中的多肽链拉长,这时还原剂很容易使二硫键切断,而氧化剂则在拉长后的位置上形成新的二硫键,理论上头发因而形成和维持新的形态。但实际上仍有相当部分二硫键断开,因而降低发质。图5 健康成人的烫发(a)、染发(b)的成分图后记 通过扫描电镜显微观察以及能谱的成分分析,可以看出染发和烫发对发质有一定的损害。人们在追求外在美的同时,更因该追求内在美。热爱祖国、团结邻舍、爱岗敬业,锻炼自己的体魄和提高自身的修养。古人说修心养性。只要有健康的人生态度和体魄,即使不做头发也可以很美。
  • 20类微观表征技术云端碰撞!中科大牛津仪器微观分析论坛成功举办
    仪器信息网讯 4月20日,由牛津仪器科技(上海)有限公司和中国科学技术大学共同主办的“中科大牛津仪器微观分析论坛”线上成功举办,中科大多位微观分析专家及牛津仪器的应用工程师们依次分享了近扫描电镜、透射电镜、EDS、EBSD、原子力显微镜等近20类主流微观表征技术及在材料、半导体、生命科学等热点领域的应用进展。作为同期重要内容,论坛也进行了明日之星奖学金颁奖仪式,仪器信息网网络讲堂栏目实时转播了本次论坛。牛津仪器中国区总裁 何峻 致辞开幕致辞中,牛津仪器中国区总裁何峻首先对中国科技大学的各位领导、老师、同学,以及在线各位同仁的参加及对牛津仪器的支持表示感谢。接着,分享了牛津仪器的发展历程,从六十余年前的马丁伍德爵士在英国创建,到发展成为一家销售服务网络遍布全球的跨国公司;从二十多年前正式进入中国市场,再到业务的飞速发展等。同时,牛津仪器也在不断履行对中国客户的承诺,不断加大在中国的投入,在过去一年里,通过加强应用、服务团队,成立专业的维修服务团队等措施大幅提升了对中国用户的支持能力。最后向获得本次“明日之星奖学金”的各位同学表示祝贺,希望籍此为各位同学的学业成功略尽绵薄之力,预祝各位同学在未来的学习和工作中可以取得佳绩。据中科大公共实验中心办公室主任周宏敏介绍,牛津仪器和中科大已有近八年的紧密合作,在合作过程中,帮助中科大在科研取得了丰硕的成果。从牛津仪器2014年在中科大设立“牛津仪器明日之星奖学金”至今,已有四十多位同学获得奖学金,获奖者涵盖了理化中心、工程与材料中心和微纳中心,去年也覆盖到了生命中心。本年度“明日之星奖学金”,经过评委的严格评审,最终颁发给8位同学,活动现场,中科大公共实验中心主任侯中怀教授为获奖者进行了颁奖。中科大校公共实验中心主任侯中怀教授为获奖学生颁发牛津仪器明日之星奖学金证书颁奖仪式后,围绕材料/半导体微观分析技术、生命科学微观分析技术两大主题,10位中科大微观分析专家、牛津仪器应用专家分别分享了精彩报告,近20类主流微观表征技术与材料、半导体、生命科学等热点领域应用在云端展开思维碰撞。以下为报告内容摘要,详细精彩内容,点击查看报告回放视频(回放视频即将上传)。材料/半导体微观分析技术系列报告中国科学技术大学理化科学实验中心工程师孙梅概要分享了原位液体透射电镜技术。技术概要方面主要列举了不同液体池构造基及其优缺点,组装方法。电子束的影响方面,主要介绍了化学成分变化及温度变化的影响。基于原位液体电镜刻蚀研究方面,主要介绍了采用非原位手段来证明原位结果有效性的相关案例。牛津仪器应用科学家马岚介绍了牛津仪器材料制备与材料表征技术。材料微纳加工制备方面,针对大尺寸样品,牛津仪器相关技术包括晶圆级别刻蚀、气体沉积等设备;针对小尺寸样品,则包括OmniProbe系列纳米操纵手等技术。材料表征方面,则主要分享了成分分析的EDS技术、结构表征的Raman、EBSD、物理性能的AFM等。中国科学技术大学微纳研究与制造中心工程师王秀霞分享了等离子体刻蚀技术及在微纳米加工中的应用。通过化学或物理方法在目标功能材料的表面进行选择性去除,最终形成所需的特定结构,是微纳加工技术中微纳米图形结构转移的主要方法。报告依次分享了等离子体刻蚀的基本原理、NRFC等离子体刻蚀设备与工艺,最后详细展示了等离子体刻蚀相关加工案例。中国科学技术大学 工程与材料科学实验中心高级工程师田杰详细分享了扫描电镜的结构、原理及应用。电子波长远小于可见光波长,用电子束作为照明源,可极大提高显微镜的分辨率,这成为电镜的理论基础。报告从光学显微镜分辨率极限讲起,通过对比光镜与电镜的比较,讲解了电镜的原理及结构。接着依次介绍了扫描电镜的形貌分析、扫描电镜的能谱应用、扫描电镜的EBSD应用等。生命科学微观分析技术系列报告中国科学技术大学生命科学实验中心晶体学平台主管朱中良分享了基于X-射线单晶衍射仪的薄膜样品自动测试平台的研制进展。薄膜样品自动测试平台的研制目的主要是基于现有X-射线单晶衍射仪实现生物结构组织晶体种类和晶体取向的分析。报告主要分享了该研制平台的空间匹配、精度、适应性控制程序等技术难点与对应解决方案、研制成果,以及研制测试平台的实际应用案例。牛津仪器应用科学家潘茗茗介绍了牛津仪器弱光检测及三维成像解决方案。牛津仪器旗下Andor拥有全球弱光探测、解析及成像系统制造技术,报告首先介绍了Andor弱光成像与光谱技术、Dragonfly高速显微成像系统、BC43台式共聚焦等产品技术的发展历程及在生命科学领域的应用进展。接着介绍了WITec生物拉曼快速成像系统在生物医学领域的优势与应用情况。中国科学技术大学生命科学实验中心显微成像平台主管刘振邦介绍了激光共聚焦显微镜成像技术及应用。激光共聚焦显微镜在生物及医学等领域的应用越来越广泛,已经成为生物医学实验研究的必备工具。报告依次分享了激光共聚焦显微镜的原理、结构,接着分别介绍了单光子激光共聚焦显微镜、双光子共聚焦显微镜的各自优势及应用进展。中国科学技术大学技术工程师唐培萍介绍了前沿透射电子显微成像技术在生命科学中的应用。经典生物电子显微成像技术方面,报告主要分享了负染色体制样技术、常温超薄切片技术的技术进展及对应技术流程。现代前沿电子显微成像技术方面,主要分享了时下应用火热的高分辨冷冻电镜技术和冷冻电镜断层成像与关联显微成像技术,并分享了两种技术优势、成像实验流程,以及系列典型应用案例。中国科学技术大学生命科学实验中心分子互作分析平台主管欧惠超分享了基于SPR技术的传感芯片的研制及其应用。SPR技术几乎可以检测多有的生物分子,而芯片则是SPR分子互相分析的关键载体。报告从rBSA羧基芯片制备与测试、高亲和力NTA芯片研究、高载量CN5芯片研究等方面详细介绍了团队基于SPR技术的传感芯片的研制及应用进展。中国科学技术大学生命科学实验中心质谱平台主管吴高分享了纳升液相色谱质谱联用仪常见故障分析及排除。纳升液相色谱质谱联用仪适用微量甚至痕量样品的分析。而仪器的日程维护保养对仪器的灵敏度、稳定性和使用寿命至关重要。报告分别针对色谱和质谱常见故障分别进行了解读,并逐一给出解决方案。相关经验包括样品前处理、使用的试剂纯度可以减少仪器发生堵塞几率;时刻观察仪器状态,对故障进行预排,可以极大降低故障率等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制