当前位置: 仪器信息网 > 行业主题 > >

微电子设备

仪器信息网微电子设备专题为您整合微电子设备相关的最新文章,在微电子设备专题,您不仅可以免费浏览微电子设备的资讯, 同时您还可以浏览微电子设备的相关资料、解决方案,参与社区微电子设备话题讨论。

微电子设备相关的资讯

  • 走进电子行业,FLIR红外热像仪助力揭示微电子设备的热特性
    在过去几十年中,微型化是微电子行业的重点发展方向。更小型的设备运行速度更快且具有更紧凑的系统。纳米技术和薄膜处理领域的进步已延伸到各种技术领域,包括光伏电池、温差电材料和微机电系统(MEMS)。这些材料和设备的热属性对于这类工程系统的持续发展至关重要。但是,这些系统存在与热传导有关的各种问题。为了更有效地解决这些问题,全面了解微型材料的热传导性质至关重要。今天小菲就给大家解说下,在阿林顿的得克萨斯大学,以微型热物理学实验室主任Ankur Jain博士为首的团队研究与微尺度热传导有关的各种话题。该实验室采用各种现代设备和仪器,其中就包括FLIR红外热像仪。三维集成电路中的散热Ankur Jain博士负责微型热物理实验室,在实验室里他和他的学生进行关于微尺度热传导、能量转换系统、半导体热管理、生物传热等相关话题的研究。三维集成电路(IC)中的热耗散是一大技术挑战,尽管在过去的十几年或二十年中进行了大量的研究,但这一技术的广泛应用仍然受到阻碍。因此,微型热物理学实验室的研究人员开展实验以测量三维集成电路的关键热特性,开发分析模型以了解三维集成电路中的热传导。测量温度场薄膜材料自诞生以来就一直是微电子技术的一个重要特征,为芯片提供多种功能。为了准确地了解薄膜的热性能,我们需要将热性能与沉积过程中不断变化的微观结构和形貌联系起来。这样,就可以研究诸如导电性、体积模量、厚度和界面热阻等属性。Ankur Jain博士称:“我们对微型器件上温度场随时间的变化尤其感兴趣,通过测量基质的热属性,我们尽力了解微尺度热传导的基本性质。”在电子元件中,热通常是主设备运行的不良副作用。因此,充分了解薄膜的瞬态热现象十分重要。Ankur Jain表示:“通过测量基质的热属性,我们尽力了解微尺度热传导的基本性质。”“通过了解热如何在微系统中流动,我们能够有效地将过热问题最小化。这有助于我们设计出微系统,并在材料选择方面作出更明智的决策。例如,我们已进行一项研究,旨在比较各种类型薄膜的热传导属性。”红外热像仪的应用为了测量微电子设备的温度,Ankur Jain博士的团队使用过各种技术,包括热电偶。这项技术存在的主要问题是热电偶仅能测量单点温度值。为了获得温度场的更全面直观的图像,Jain博士决定使用FLIR红外热像仪。FLIR A6703sc红外热像仪专为电子元件检测、医疗热成像、生产监控、非破坏性测试等应用而设计,完美适用于高速热事件和快速移动目标。短曝光时间使用户能够定格运动,获得精确的温度测量值。热像仪的图像输出可以通过调节窗口,将帧频提高至480帧/秒,并精确描述高速热事件的特征,从而确保在测试过程中不会遗漏关键数据。Ankur Jain表示:“我们感兴趣的设备中的热现象转瞬即逝,我们需要整个温度场的信息,而不是单点测量值,FLIR A6703sc在实验期间大有助益,为我们呈现受测设备非常精细的细节。”FLIR ResearchIR助力科研研发此外,Ankur Jain博士的团队一直将FLIR ResearchIR分析软件用于科研研发应用领域。ResearchIR是一款强大且简单易用的热分析软件,可实现热像仪系统的命令和控制、高速数据记录、实时或回放分析以及报告等。Ankur Jain道:“经证实,FLIR的ResearchIR软件非常实用,尤其是,它能够保存我们的热记录然后在数台电脑之间共享以供进一步分析”。“ResearchIR极大地增进了我们团队内以及我们团队与其他团队的协作,非常感谢菲力尔产品的支持!”
  • 科学仪器研制需要一代一代的长久努力——访中科院微电子所微电子设备技术研究室主任夏洋研究员
    2007年12月19日,中科院微电子所微电子设备技术研究室成立,夏洋研究员担任研究室主任。研究室的主要研究方向包括新型集成电路制造与测试装备、新型太阳能电池制造技术和装备、高效率LED(发光二极管)制造技术和装备、MEMS(微机电系统)加工技术和装备及关键的射频功率源系统技术。   凭借近30年的技术积累以及全体人员的努力,经过近5年时间的发展,研究室的研究成果占领国内IC(集成电路)领域新原理设备制高点,在国际上与现有技术生产厂商形成竞争态势,设备主要包括等离子体浸没注入机、原子层沉积设备、光学检测系统、射频电源等,当前研究室的产品已广泛用于国际国内涉及微电子、光电子、MEMS等领域的企业、高校及研究机构。   近日,仪器信息网编辑特别采访了夏洋主任,请他谈了谈研究室在仪器设备研制、产业化方面的经验及我国科学仪器研制的政策支持情况。 中科院微电子所微电子设备技术研究室主任夏洋研究员   在仪器研制方面都有哪些经验?   “5年前,当时微电子研究所里有三四个仪器研究团队,都是一个研究员带几个助手,大家各自为战,这样力量比较分散,于是我向所里建议把这些团队合并起来,所里对我们的建议很支持,希望我们能将微电子设备技术的研究做大、做强,在2007年末正式成立微电子设备技术研究室”,夏洋主任介绍说。   (1)进行团队建设,坚持做好一件事   “研究室成立后所里进行仪器研制的各项资源就集中起来,之后我们又购置研制仪器所需的各项装备、招聘所需的人才,这样我们的研究平台就形成一定的规模。起初我们只有30人左右,当时也不好招人,没人愿意来,缺乏相关专业的人才,现在随着我们科研能力的提升,以及国家对仪器行业投入的加大和重视,来自海外和国内的求职者都特别多,至今已形成了约150人的团队。”   “在我们的团队中不仅有4名国家‘千人计划’人才,七八名‘百人计划’人才,还有十几名退休返聘人员,他们年龄最大的有70多岁。在管理机制方面,我们也不会墨守成规,在我们的团队中有人想创业,我们也允许他们一边做科研,一边组织团队成立公司。我们坚持唯才是用,只要是有用的人才,我们不会去限制他们发挥自己的才能,而是为他们提供机会更好地展示自己的能力。”   (2)科研和生产两条腿走路,在资金和技术方面相互支撑   资金短缺也是仪器研制当中常常面临的一个问题,很多项目研制出一台样机之后,由于没有后续资金支持,进行进一步的商品化开发,所以就被搁在实验室里,很难对国外仪器形成竞争,对我国的科研开发也难谈真正的贡献。   夏洋主任介绍说:“研究室现在是科研和生产两条腿走路,这两部分工作在资金和技术上相互支撑。我们一边进行仪器研制,一边生产仪器进行销售,同时我们和企业也有一些合作项目。在销售方面我们现在还没有开始做太多的工作,客户主要集中在科研院所,每年销售收入在1000万至2000万元。”   “现在我们研制第一台样机基本都是依靠国家资金的支持,第二台样机的研制经费就得靠自己来解决,做到第三台样机,我们就争取订货销售出去。目前我们已经形成了这样一个良好的工作局面。”   (3)和企业合作是进行仪器研发的一个非常重要的方向   “另外,仪器研发和企业合作是一个非常重要的方向,关起门来搞科研容易与社会需求脱节。而且仪器研制中硬件技术是一方面,方便用户操作使用,以及更好地解决实际应用问题,这是另一方面,之前已经有不少企业和我们合作,他们的思路和看问题的角度与我们不一样,对我们来说帮助很大”,夏洋主任谈到。   “同企业的合作中存在的一个主要问题是,对于市场的变化,企业更多的是关注眼前,‘看单下菜’,难以做出长远的布局,这样在市场竞争中,很难抢占先机。所以在合作中,我们需要更多的沟通和理解。”   “同时和企业合作,信任度以及利益分配机制也是一个的问题。解决这一问题的主要方式是双方在合作中要有诚意。一般在合作中,我们希望企业人员参与研发过程,并将相关的技术教给他们,同时项目交接后我们也派出团队去企业当中,进行后续跟进,帮助企业解决问题,这样既帮助企业培养人才,解决问题,同时对于防止我们自己的人才流失也很有帮助。在资金方面,对于企业来说他们会担心投资风险,所以目前我们的合作方式一般是先直接收取一部分资金用于研发,另外一部分资金从项目投产后的长远收益中获得。”   (4)未来瞄准教学仪器市场   对于研究室未来的研究规划,夏洋主任表示,“我们发现随着仪器自动化、智能化的提升,以及昂贵的价格,使学生的动手能力受到了很大的限制。所以我们希望能做一些教学仪器,这类仪器要很好的展示仪器原理和设计,操作性强,要能够更好地互动。进口仪器现在还没有关注这一领域,而且我们做这类仪器有成本优势,所以市场前景还是比较乐观。”   国家对科学仪器研制的资金支持情况?   谈到近年来国家对于科学仪器研制的资金支持情况,夏洋主任说到:“我国的科学仪器行业的发展从建国到改革开放逐渐发展到一个顶峰,后来逐渐稳定下来,从上个世纪九十年代开始,国家逐渐重视科学仪器的发展,现在经过多年的发展正在逐渐达到另一个峰值。”   “1993年,在国家财政依然十分紧张的情况下,中科院就设立了仪器设备的专项资金。至2000年,共支持研制和改造科学仪器科研项目总数达400余项,支持经费总额约为1.5亿元。截止到2006年底,中科院科学仪器自主研制项目从最初的每年8项增长到每年40多项,累计总投入约3.7亿元,平均项目支持强度超过200万元。”   “国家自然科学基金委(基金委)于1998年设立了科学仪器基础研究专项,当年一共资助了5个项目,总资助经费400万元。而到2011年,基金委科学仪器基础研究专项共资助55项,金额1.5亿元,并启动了国家重大科研仪器设备研制专项,首批重大科研仪器设备研制专项资助9项,金额5.7亿元。”   “另外,科技部、财政部2011年首次启动‘国家重大科学仪器设备开发专项’。 重点支持具有市场推广前景的重大科学仪器设备开发,每年的支持金额达到数十亿元。”   科学仪器研制还需要哪些方面的支持?   国家对于科学仪器研制的资金支持,可以说是达到了前所未有的高度,那么在项目执行当中,还需要注意哪些问题呢?夏洋主任也谈了几点自己的看法。   (1)选择具有研发实力的企业给予支持   “现在我国提倡技术创新应以‘企业创新为主体’,国家重大科学仪器设备开发专项也优先支持科学仪器设备企业作为实施主体的项目。创新是一个研发的过程,需要企业有配套的研发人员及研发平台。中国的企业大部分没有成型的研发队伍,企业有生产能力,但研发能力不一定强,所以要确保项目的顺利完成,一定要对企业的综合研发实力,以及进行某类具体仪器研发的技术积累进行考核。”   (2)国家整体政策要配套   “另外,国家整体政策不配套也是一个问题,比如按照《科学研究和教学用品免征进口税收规定》,我们现在进口科研仪器整机是免税的,但进口零部件不免税,所以研发仪器的成本比整机要贵很多,这样是不利于促进科研院所的老师们进行仪器研制的。”   (3)进行科学仪器研制平台建设   “此外,我认为仪器研发一定要进行团队或平台建设才行,一方面仪器研发是多种技术的融合,需要的综合知识特别强,如物理、化学、材料、机械设计、自动控制、软件等,所以一定要注意合作和团队建设,一个人单独做很难完成。”   “另外仪器的研制需要一代一代的坚持研究,在仪器研制过程当中,搭建出来的第一台仪器只要自己能用就已经很了不起 然后再通过不断改进,推出第二台样机,如果第三台能做成商业机型就已经很顺利,从开始研制到最后实现产业化,整个过程大概得三五年时间,甚至更长才行。现在许多老师,在仪器研制方面有好的想法,但是带着一批学生做了3年之后,学生毕业了,课题经费也没有了,这个项目就结束了,没有持续跟进。”   “研制仪器需要不断的坚持,国外的许多仪器企业都有上百年的历史,其实从原始创新到实现商业化产品,一般也得10-20年的时间,然后再通过一代一代的积累和更新,仪器的性能越来越好。所以如果通过买仪器来做研究,我们在技术起步上至少比别人落后10-20年,很难实现超越。”   “因此国家或许可以设置专门进行仪器研发的重点实验室,这样有一个固定的人员和研发平台,希望通过持续的研究能实现从原始创新,到研制出可用于科学研究的仪器,最后到实现规模化生产的仪器这一流程,而不是半途而废,这样我们的科学仪器事业才能逐渐发展起来。”   采访编辑:秦丽娟
  • 中科院微电子所过亿元仪器设备采购大单揭晓
    自2010年1月20日起至2010年11月29日,中国科学院微电子研究所共发布十四批仪器设备采购项目招标公告,其中已发布中标及成交结果公告的信息统计如下: 包号 仪器设备名称 中标供应商名称 中标金额 第二批 第1包 等离子体喷涂实验系统 廊桥实业(香港)有限公司 $52.876万元 第三批 第1包 高分辨率场发射扫描电镜 天美(中国)科学仪器有限公司 $107.07万元 第六批 第1包 等离子体增强化学气相沉积系统 伯东企业(上海)有限公司 $19.7万元 第七批 第2包 涂胶显影机 沈阳芯源微电子设备有限公司 ¥295万元 第4包 步进光刻机 上海微高精密机械工程有限公司 ¥398万元 第5包 光学轮廓仪 维易科精密仪器国际贸易(上海)有限公司 $11.2万元 第6包 电子束蒸发台 爱韩华(无锡)电子有限公司 ¥165万元 第8包 全自动清洗机 弘塑科技股份有限公司 $63万元 第9包 等离子去胶机 Mattson Technology Inc $37.5万元 第八批 第1包 信号分析仪 安捷伦科技新加坡销售(私人)有限公司 $12.15万 第九批 第1包 超低能离子注入机 维利安精密仪器维修(上海)有限公司 199万$ 第2包 金属栅刻蚀机、氧化硅/氮化硅刻蚀机 Lam Research International Sarl 380万$ 第3包 化学机械研磨机 汉民科技股份有限公司 168万$ 第4包 单片清洗机、单片湿法腐蚀设备 Lam Research International Sarl 165万$ 第5包 单片清洗机 盛美半导体设备(上海)有限公司 44万$ 第十批 第1包 化学清洗线、蚀刻线、显影线、去膜线 铨億机械股份有限公司 $50.5万元 第2包 半自动曝光机 上海欧托科国际贸易有限公司 $42.52万元 第3包 机械钻孔机 金富宝亚太有限公司 $13.80万元 第5包 真空压膜机 联策科技(股份)有限公司 $40.251万元 第6包 封装基板等离子清洗机 盈泰国际(集团)有限公司 $13万元 第7包 精密压机 博可机械(上海)有限公司 $14.58万元 第8包 化铜线、镀铜线 安美特(中国)化学有限公司上海青浦分公司 ¥280万元 第十一批 第1包 半自动清洗机 北京七星华创电子股份有限公司 ¥160万元 第2包 扩散炉系统 北京七星华创电子股份有限公司 ¥405万元 第3包 多晶硅低压化学气相淀积系统 镭社有限公司 $45.05万元 第4包 膜厚仪 Spectramax International Limited $31.80万元 第6包 多晶硅刻蚀机 北京北方微电子基地设备工艺研究中心有限责任公司 ¥1139.4942万元 第十二批 第1包 矢量信号发生器 微波技术有限公司 $133080元 第2包 高性能示波器 微波技术有限公司 $177000元 第3包 芯片自动测试捆绑套件 中科泛华测控技术有限公司 $17万元 第十三批 第1包 导电扫描探针显微镜系统 德国布鲁克AXS有限公司 $18.92万元 第十四批 第1包 基于ARM Core的原型验证开发平台 深圳市亿道电子技术有限公司 $30万元 第2包 宽带数字示波器 美国力科公司 $98249.7元 第3包 193nm激光器 Coherent Inc. $15.3万元   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   项目联系人:窦志超   联系电话:010-68725599-8447
  • 陆军院士任院长,南京理工微电子学院(集成电路学院)揭牌成立
    创新引领强国志,协力共铸中国“芯”。 9月17日上午,由中国电子科技集团、南京市人民政府和南京理工大学三方共建的微电子学院(集成电路学院)揭牌成立仪式在学校科技会堂举行。中国电子科技集团总监徐少俊,中国工程院院士、中国电子科技集团首席科学家、微电子学院(集成电路学院)院长陆军,中电国基北方集团有限公司、中电国基南方集团有限公司、南京电子工程研究所、中科芯集成电路有限公司相关负责人;秦淮区人民政府副区长金超,党组成员、二级巡视员张仲金,秦淮区相关单位负责人;学校党委书记张骏,校长付梦印院士,全体在宁校领导、校长助理;南京电子设备研究所所长唐莽,南京邮电大学副校长郭宇锋,浙江大学教授、新加坡工程院院士李尔平,浙江大学海洋信息学系主任徐志伟,南京大学微电子学院院长施毅,东南大学教授孙伟锋,南京航空航天大学电子信息工程学院常务副院长潘时龙,杭州电子科技大学电子信息学院副院长罗国清等特邀嘉宾;以及学校各机关部门、电光学院、微电子学院(集成电路学院)主要负责人、师生代表等80余人参加仪式,共同见证了南理工聚焦集成电路行业人才培养的崭新开端。仪式由副校长何勇主持。陆军致欢迎辞,向关心和支持微电子学院(集成电路学院)建设的各位领导与来宾表示衷心的感谢。他指出集成电路是信息技术产业的核心,对支撑国家发展和保障国家安全具有至关重要的战略性和先导性作用。南理工瞄准集成电路人才培养,整合优势资源,正式成立微电子学院(集成电路学院),是主动对接国家重大战略需求、顺应科技发展前沿的有力举措。学院由三方联合共建,办学起点高,体制机制活,综合实力强。陆军表示,他将带领全院师生坚守立德树人初心,牢记科技强国使命,着眼集成电路产业技术发展,立足工程应用实际,努力将学院建设成为一流的微电子学院,为推动学校“双一流”建设,助力我国集成电路事业自主创新贡献更多智慧和力量。付梦印宣读了学校设立微电子学院(集成电路学院)党委,成立微电子学院(集成电路学院)的决定。徐少俊代表共建方中国电子科技集团讲话。他表示中国电子科技集团将全力落实三方签订的合作共建协议,持续在创新平台建设、人才联合培养、重大技术攻关和科技成果转化等方面有效对接、深度合作,期盼学院能取得越来越多令人欣喜的办学成果,早日建成为国家示范性微电子学院。张骏代表南京理工大学讲话,向关心支持学院成立的社会各界表示衷心的感谢。他指出集成电路学科正日益显示出重要的战略地位,当前培养高素质人才已成为促进我国集成电路产业发展的迫切需求。他强调南理工作为一所有着光荣办学传统与深厚办学实力的高校,成立微电子学院(集成电路学院),应聚焦打造集成电路领域前沿技术体系和原创技术策源地,为提升我国电子科技核心竞争力提供强有力的支撑。他希望学院要紧扣“政产学研”协同,充分发挥中国电科、南京市的资源平台优势,建立深度合作、相互支撑的良好办学生态,力争尽快培养出一批杰出人才,成为支撑相关领域发展的重要力量。张骏、付梦印、陆军、徐少俊、金超等共同为微电子学院揭牌。欣闻我校微电子学院成立,北京航空航天大学、北京理工大学、西北工业大学、南京大学、天津大学、南京航空航天大学、西安电子科技大学、南京邮电大学、杭州电子科技大学等兄弟院校的微电子学院(集成电路学院)发来贺信。成立微电子学院(集成电路学院)是我校主动支撑国家重大战略发展、布局新兴领域学科建设的重要举措。学院将面向国家科教兴国、人才强国、创新驱动、“长三角一体化”发展等重大战略需求,持续聚焦培养集成电路与微电子领域科技英才,为加速解决我国集成电路“卡脖子”关键核心技术难题,有力支撑“中国芯”的研制提供更多科技与人才保障。
  • 可穿戴电子设备老化测试指南|Q-SUN氙灯老化测试
    可穿戴电子设备老化测试指南新兴消费电子领域市场规模不断扩大,以VR,智能手表,蓝牙耳机,健身追踪器,助听器,心脏起搏器等为代表的可穿戴电子设备发展迅猛。大多数的可穿戴电子设备都要经过质量和性能测试,包括老化测试,腐蚀测试,机械物理测试,电池测试,可用性测试,安全测试等等。大部分可穿戴电子设备生产商面临以下3个问题:我的可穿戴电子设备每个部件应该使用哪种合适的材料?我的可穿戴电子设备的使用寿命符合预期吗?我的可穿戴电子设备性能符合预期吗?可穿戴设备由不同的材料制成,如彩色热塑性塑料或橡胶材料、密封剂和接头、显示器、照相机和保护膜等。这些材料都对紫外线辐射、可见光,温度和湿度敏感。此外,随着佩戴者的行程轨迹,可穿戴电子设备有时使用在户外,有时使用在室内,但世界范围内的气候因地理位置不同,温度,湿度,太阳光辐照度等方面有很大的差异。翁开尔公司代理的美国Q-LAB研发生产了Q-SUN氙灯老化箱适用于可穿戴电子设备的老化测试。通过使用Q-SUN氙灯老化箱对可穿戴电子设备进行耐候性老化测试,用户可以了解可穿戴电子设备每个部件应该使用哪种正确的材料,以及使用寿命和外观是否达到预期等。可穿戴电子设备产品老化主要影响因素太阳光可穿戴电子设备产品主要的压力因素是太阳光,温度和水。太阳光辐射和产品温度是导致聚合物材料降解的两个主要因素,紫外光是材料光降解的关键因素,可见光的关键部分通常仅限于波长范围在380nm-420nm的富含能量的紫光和蓝光,这两种颜色会完整吸收可见光谱的各自部分,导致可穿戴电子设备褪色。热户外暴晒的产品温度很大程度受到颜色的影响,黑色产品表面在户外可以达到65℃,在车内甚至可以达到100℃以上。白色产品表面则温度相对低。此外,可穿戴电子设备也会受到通过其运行能量和佩戴者的体温而受到影响,反应速度随着温度的升高而增加,这对聚合物的光降解也产生了影响。水可穿戴电子设备的聚合物材料在吸水时会膨胀,当水蒸发时,会发生收缩,这个过程会导致机械应力,一般情况下,水的影响只有在水渗入几个小时以上才是重要的。当聚合物吸收水,玻璃转化温度会明显下降,氧气扩散率增加,光氧化和水解反应发生,聚合物基体降解,最终导致物理强度损失。可穿戴电子设备耐候性老化测试解决方案-Q-SUN氙灯老化箱Q-SUN氙灯老化试验箱可用于可穿戴电子设备耐候性测试,提供与产品在室内、户外环境条件下所接触的相同的老化因素。采用氙弧灯光源模拟全光谱太阳光,并通过不同的滤光片适当过滤,得到特定的光谱。通过水喷淋、冷凝和湿度等模拟潮湿环境。可穿戴电子设备的耐候性测试涉及材料的长期降解测试,大部分材料的降解受环境影响。加速老化测试主要检测太阳光,温度和水对可穿戴电子设备的影响,以反映它们的使用寿命。目前市场上没有针对可穿戴电子设备的具体测试标准,传统的材料,如聚合物和涂层,可以使用现有的ISO、ASTM和其他标准进行测试,但针对某些类型的产品可以根据客户的要求进行测试裁剪,以反映老化情况。举例:模拟可穿戴电子设备户外老化测试参考标准:ISO4892-2(塑料.实验室光源暴露方法.第2部分:氙弧灯)ISO 4892-2:2013指定了样品暴露在氙灯光照环境下,模拟户外综合老化效果(包括温度、湿度/潮湿环境下)的测试方法,以再现产品在实际使用过程中暴露在光照环境或者经过窗玻璃过滤的光照环境产生的老化效果。具体设置Q-SUN氙灯试验箱符合DIN EN ISO 4892-2:2013翁开尔40年专业资深代理美国Q-LAB系列产品,欢迎致电咨询。
  • 中科院微电子研究所采购6700万元仪器设备
    自2010年1月20日起至2010年11月29日,中国科学院微电子研究所共发布十三批仪器设备采购项目招标公告,价值过亿。[详细]   2011年1月19日,中国政府采购网再次公布了中国科学院微电子研究所十一批和十三批的部分仪器采购结果,这两批仪器价值6777万元。具体内容如下:   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   招标编号:OITC-G10032233   采购项目名称:中国科学院微电子研究所2010年仪器设备采购项目(第十一批)   第5包 等离子氮化系统、等离子化学增强气相淀积、硅化物热退火系统、接触与互连溅射台、快速热退火系统、钨化学气相沉积系统   成交金额:983万美元   成交供应商名称:Applied Materials South East Asia Pte. Ltd.   评标委员会成员名单:熊少祥、段玉生、郝爱芳、李振声、朱慧珑   招标编号:OITC-G10032277   采购项目名称:中国科学院微电子研究所2010年仪器设备采购项目(第十三批)   第2包 化学液集中供应系统 6套   成交金额:人民币290万元   成交供应商名称:翔泰机电国际贸易(上海)有限公司   第3包 介质化学气相淀积系统改造,供应商最终报价超预算,废标。   评标委员会成员名单:王波、郝爱芳、李振声、胡达平、杨涛(第2包用户代表)   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2011年1月19日
  • 欧盟修订电气及电子设备等产品安全规定
    欧盟《官方公报》即将刊登合共8项经过修订的产品安全指令。这些指令属于欧盟新立法框架的一部分,涵盖8个领域。   电气及电子设备方面:两项经过修订的指令分别是第2006/95/EC号指令,即《低电压指令》,以及第2004/108/EC号指令,即《电磁兼容性指令》。   其他经过修订的指令:分别是《简单压力容器指令》(2009/105/EC)、《计量器具指令》(2004/22/EC)、《非自动称量仪器指令》(2009/23/EC)、《防爆指令》(94/9/EC)、《民用爆炸物指令》(93/15/EC)以及《升降机指令》(95/16/EC)。   此外,与烟火产品的销售有关的第2013/29/EU号指令亦已被修订,同样是欧盟新立法框架的一部分,并已于2013年6月28 日公布。   2011年11月21日,欧洲委员会曾经采纳方案,以修订现有指令,涉及上述9个领域。2014年2月5日,欧洲议会通过其余8项经过修订的指令。   欧盟修订上述指令,目的是确保在欧盟销售的产品(包括进口产品)安全可用,以及业界规定协调统一,便于遵守。现在,标签或追溯的规定以及合格声明的规定已不再有区别。   更新后的规定既有助产品进入欧盟市场,亦能为健康及财产提供更大保障,其要点包括:   1.目的及范畴:修订后的指令将涵盖投放于欧盟市场的新产品。产品可以是设于欧盟的生产商制造的新产品,亦可以是从第三国进口的新旧产品。新例适用于所有供应形式,包括遥距销售。此外,有若干适用于《民用爆炸物指令》及《烟火物品指令》的例外情况。   2.进口商的责任:生产商及进口商须于器具上列明其名称、注册商号或注册商标及邮寄地址 如不可行,应于器具的包装或附随文件列出上述资料。地址必须注明可以联络到生产商的单一地点,联络资料必须以最终用家及市场监察部门容易明白的文字列出。为方便营运商、市场监察部门与最终用家之间的沟通,成员国应鼓励营运商除了提供邮寄地址外,亦列出网址。   3.资料清晰度:所有指示、资料及标签必须清晰易明。   4.欧盟合格声明: 欧盟合格声明须包含指令附件中有关条文列明的元素,并须持续更新。为减少营运商的行政负担,单一欧盟合格声明可以是一套由相关个别合格声明组成的文件。   5.CE标记: 欧洲议会呼吁成员国在现有制度的基础上,确保CE 标记规定正确实施。若发现标记被不当使用,应合力处理问题。   关于器具用途的资料:器具须附有资料,说明组装、安装、保养或使用器具时应采取的安全措施,以确保器具被使用时符合指令的必要规定。   6.剩余库存:指令须转换为国家法例,在后者实施之日前,分销商应能供应已被投放市场的器具,即是已经进入分销链的存货。   新框架允许业者更多使用电子途径,证明产品符合规定。例如,产品的技术文件不必是纸张形式,业者可以向市场监察当局申请以电子方式呈交。消费者安全也获得更多保障,欧盟将可通过追溯系统追寻有问题或不安全的产品,成员国的市场监察部门将添置设备,以便追寻及截停来自非欧盟国家的危险进口产品。
  • 精工盈司参加第二十一届中国国际电子生产设备暨微电子工业展
    第二十一届中国国际电子生产设备暨微电子工业展(NEPCON China 2011)于2011年5月11日-13日在上海光大会展中心举办,这是中国表面贴装行业规模最大、影响最广、历史最悠久的一场行业盛会。 NEPCON展会是由世界领先的展览及会议活动主办机构励展博览集团主办,是中国表面贴装行业规模最大、影响最广、历史最悠久的一场不容错过的行业盛会。NEPCON展会包括3大顶级电子展会,展会面积62,500平方米,1,400家展商,37,608个买家参展,展会将汇集国际外知名展商参展,全面展示表面贴装技术设备与服务,电子制造服务,测试与测量设备及服务,电子元器件,印刷电路板,防静电产品。 NEPCON China 2011顺应中国电子制造市场最新发展趋势现场还开设了绿色电子制造展区,是目前中国唯一为电子产品制造商提供绿色解决方案以使整个制造过程更高效,更节能,更人性化,同时为设备、材料、服务供应商与新应用领域买家搭建一个有效的商贸平台。
  • 汇顶科技“打码控制及打码方法、系统、芯片、电子设备及存储介质”专利获授权
    天眼查显示,深圳市汇顶科技股份有限公司近日取得一项名为“打码控制及打码方法、系统、芯片、电子设备及存储介质”的专利,授权公告号为CN111868669B,授权公告日为2024年8月6日,申请日为2020年3月17日。背景技术目前,电容主动笔与电容触控屏系统里,两者一般是基于预设的通信协议工作,主动笔的打码信号幅度在工作时一直是固定的,为了保证在最恶劣应用环境下也能正常工作,主动笔打码信号幅度通常会一直固定在一个很高的值。发明内容本申请部分实施例提供了一种打码控制及打码方法、系统、芯片、电子设备及存储介质。上述打码控制包括:获取触控屏的噪声幅度(301);确定噪声幅度对应的打码参数值(302);其中,打码参数值包括打码信号幅度;向与所触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码(303)。采用本申请的实施例,使得主动笔可以根据应用环境自适应的调整打码信号幅度。
  • 华为公司申请多光谱模组及电子设备专利,减小多光谱模组的体积
    金融界2024年2月19日消息,据国家知识产权局公告,华为技术有限公司申请一项名为“多光谱模组及电子设备“,公开号CN117560563A,申请日期为2022年8月。专利摘要显示,本申请提供了一种多光谱模组及电子设备,其中,多光谱模组包括驱动组件、镜头组件、滤光片组件和图像传感器,镜头组件、滤光片组件和图像传感器依次排列其中:滤光片组件包括至少一行沿第一方向排列的多个滤光片组,每个滤光片组中包括至少一行沿第一方向排列的多个滤光片,每个滤光片组中具有相同位置的滤光片的通过波长段均相同,多个滤光片中至少两个滤光片的通过波长段不同;驱动组件与镜头组件、滤光片组件和图像传感器中的一者或两者连接,驱动组件用于驱动镜头组件、滤光片组件和图像传感器中的一者或两者沿第一方向运动。本申请能够在满足进光量和空间分辨率不受影响的同时,减小多光谱模组的体积。
  • 滨松中国将参加第二十九届中国国际电子生产设备暨微电子工业展览会
    第二十九届中国国际电子生产设备暨微电子工业展览会(NEPCON China 2019)将于2019年4月24-26日在上海世博展览馆隆重召开。此次展会中,滨松将以半导体制造流程为主线,展现各个环节下可能使用到的关键光电技术,展品覆盖了从器件到模块,再到系统级的产品。光电倍增管、激光驱动白光光源、sCMOS相机、背照式TDI板级相机、红外相机、等离子体工艺监控仪、膜厚仪、微焦点X射线源MFX等产品等届时将登台见面,欢迎莅临展位(展区A 1k10)参观交流。激光加热光源Spold真空紫外光进行静电去除装置L12542
  • 微电子所2011年仪器设备采购项目(第四批)中标公告
    招标编号:OITC-G11032057   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院微电子研究所2011年仪器设备采购项目(第四批)   定标日期:2011年4月7日   招标公告日期:2011年3月15日   公告信息如下:   第1包 近场光学显微镜 1套   中标供应商名称:上海纳腾仪器有限公司   中标金额:23.83万美元   第2包 激光共聚焦扫描显微镜 1套   成交供应商名称:锐科系统集成有限公司   成交金额:13.5万美元   评标委员会成员名单:段玉生、胡达平、戴琳、李振声、谢常青(第1包用户代表)、夏洋(第2包用户代表)   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2011年4月7日
  • 欧盟拟统一各成员国电气电子设备电磁兼容性法律
    2012年2月,欧盟通报了“关于统一各成员国有关电磁兼容性的法律的指令提案”。   该委员会提案涉及使管理电气电子设备电磁兼容性基本要求的现行法规(指令2004/108/EC)与新立法框架的规定,特别是与决议No 768/2008/EC保持一致。该提案是与新的立法框架保持一致的一揽子9个欧盟指令的一部分。所提出的修订涉及强化经济运营者的义务,特别是产品的可追溯性,加强通报机构的要求,以及精简保障条款的程序。   详情参见:   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0765:FIN:EN:PDF
  • 中科院微电子所1-11月采购3532万元仪器设备
    截至2013年11月19日,中国科学院微电子学研究所2013年仪器设备采购项目发布了十批仪器设备采购招标公告,其中第一、二、三、五、六、七、八、九、十批中标结果公布,中标金额达3532.58万元(数据统计以1美元=6.0901人民币元,1欧元=8.244人民币元计算)。具体统计结果如下表所示; 采购项目 中标商 中标金额 第一批 台式电子扫描显微镜 1套 北京新卓仪器有限公司 US$115,500.00 光辐射微光显微镜 1套 深圳市展芯科技有限公司 US$316,500.00 第 二 批 少子寿命测试系统 1套 Semilab Rt. &euro 140,000.00 低温快速热退火设备 1套 广州芦华电子科技有限公司 &euro 129,000.00 高精度电子束蒸发台 1套 EVATEC LIMITED. &euro 325,000.00 单片剥离清洗机 1套三吉世纪科技有限公司 US$643,880.00 第 三 批 MIMO-OFDM 基带测试仪 1套 科电工程有限公司 US$115,300.00 无线协议栈测试仪 1套 北京容域普达科技有限公司 US$238,000.00 频谱分析仪 上海颐合贸易有限公司 US$176,667.00 网络分析仪 1套 上海颐合贸易有限公司 US$258,816.00 第 五 批 高压静态参数测试系统 1套 泰赛国际贸易(上海)有限公司 JPY 28,700,000.00 X射线衍射仪1套 Spectris Pte. Ltd &euro 145,000.00 第六批 金属有机化合物化学气相沉淀(MOCVD) 1套 AIXTRON SEUS$1,700,000.00 第七批 清洗机 北京七星华创电子股份有限公司 ¥ 890,000.00 第八批 无线连接测试仪、信号分析仪 1套 容向国际有限公司 &euro 232,780.00 第九批 IP核混合原型验证平台 1套 Synopsys International Limited US$372,000.00 第十批 高压微雾加湿器及湿膜加湿器 北京思探得加湿设备安装工程有限公司 ¥ 698,000.00
  • 国产!惠然微电子全自主研发半导体关键尺寸量测设备CD-SEM出机
    2024年6月14日,惠然微电子顺利出机全自主研发的首台半导体关键尺寸量测设备(Critical Dimension Scanning Electron Microscope, 简称CD-SEM),标志着公司在半导体量检测领域取得了阶段性突破,为半导体量检测设备的国产化注入了新的活力。芯片制造需要上千道工序,其中光刻机、刻蚀机、薄膜沉积和量检测设备是半导体晶圆制造最关键的设备。目前,我国DUV、EUV光刻机和电子束量检测设备在半导体核心设备领域的自主可控度上,存在“高风险”和“难以覆盖”,惠然微电子正是在这个大趋势下应运而生,聚集国内外高精尖核心技术人才,拼搏努力,取得了阶段性的成果。CD-SEM是先进的全自动晶圆在线测量设备,它利用电子束扫描成像技术,主要在晶圆制造过程中实现关键工艺参数监控,应用于显影后光刻胶的临界尺寸测量以及刻蚀后接触孔直径/通孔直径和栅极线条宽度测量,是提高芯片制造良率、维持产品质量一致性的关键设备。惠然微电子掌握底层设计能力,在电子光学系统、图像处理算法、高速晶圆传输系统均为自主设计,为集成电路的多层化、复杂化提供重要的微观数据。惠然微电子表示,攻克“卡脖子工程”,需要众志成城,惠然微电子将与客户、供应商、合作伙伴共同努力,持续攻克电子束稳定性和分辨率、精确定位和控制、图像增强和分析以及提高测量速度等关键技术难题,将加快产品迭代,为集成电路产业提供更多高性能及可靠性的选择,为产业贡献自己一份力量。成立于2024年4月12日的惠然微电子总部位于无锡,基于自主的核心电子光学技术,为半导体产业提供高分辨、高能效的电子束量检测设备和科学仪器,拥有有效提升晶圆良率的软硬件全面解决方案。惠然微电子基于电子光学优势生产的半导体关键尺寸量测设备(Critical Dimension Scanning Electron Microscope, 简称CD-SEM)、缺陷检测设备(Electron-Beam Inspection, 简称EBI)是晶圆生产质量控制和良率保证的关键设备,为集成电路的多层化、复杂化提供重要微观数据;与此同时,公司推出的场发射扫描电子显微镜(SEM)在半导体领域涵盖原材料、设备、芯片设计、晶圆制造、封装测试、分立器件、终端产品的生产与研发过程中发挥重要作用。惠然微电子持续秉持“成为用户信赖的半导体量检测设备解决方案供应商”的愿景,践行“技术领先,服务至上,提升良率,为半导体产业提供卓越支持”的使命,紧跟国家半导体产业的战略布局,加大研发力度,不断创新和改进电子束量检测技术,加强产业链协同发展,共同推动行业的发展。
  • 中科院微电子所仪器采购中标公告
    中国科学院微电子研究所2011年仪器设备采购项目(第五批)第1包成交结果公告   招标编号:OITC-G11032058   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院微电子研究所2011年仪器设备采购项目(第五批)   定标日期:2011年7月1日   招标公告日期:2011年3月23日   公告信息如下:   第1包 金属栅溅射台 1套   成交供应商名称:INFOVION 株式会社   成交金额:116.6万美元   评标委员会成员名单:朱衍勇、段玉生、张德添、戴琳、殷华湘   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2011年7月1日   中国科学院微电子研究所2011年仪器设备采购项目(第六批)第1包成交结果公告   招标编号:OITC-G11032080   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院微电子研究所2011年仪器设备采购项目(第六批)   定标日期:2011年7月1日   招标公告日期:2011年4月12日   公告信息如下:   第1包 尾气处理系统 4套   成交供应商名称:埃地沃兹贸易(上海)有限公司   成交金额:30.7万美元   评标委员会成员名单:朱衍勇、李振声、郝艾芳、张连清、宋希明   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2011年7月1日
  • 致真精密仪器获千万级天使轮融资 聚焦微电子领域测试设备研发
    近日,致真精密仪器(青岛)有限公司(以下简称“致真精密仪器”)已完成千万级天使轮融资,投资方为青岛微电子创新中心有限公司,募集资金主要用于新产品研发、人才团队建设、市场开拓以及知识产权保护等业务。  致真精密仪器成立于2019年,是北京航空航天大学集成电路学院和北京航空航天大学青岛研究院孵化的高科技公司。主要业务为微电子领域测试设备的研发制造和销售,包括磁性芯片产线测试设备和高端科研仪器,致力于解决科研和产业中,尤其是磁性芯片研发领域的卡脖子的、国内尚未解决的仪器设备方面的难题。  致真精密仪器官网显示,依托北航集成电路学院和北航青岛研究院,公司于2020年研发出国内首台商业化高分辨率磁光克尔成像综合测试系统并推向市场。并相继研发完成高精度磁滞回线测量仪、晶圆级磁场探针台、晶圆磁性成像系统等多款高科技产品,已与清华大学、中国科学院物理研究所等建立了密切的合作关系。
  • 中科院微电子所采购1000多万仪器
    招标编号:OITC-G12032066   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院微电子研究所2012年仪器设备采购项目(第一批)   定标日期:2012年4月20日   招标公告日期:2012年3月23日   公告信息如下: 包号 设备名称 数量 中标供应商 中标价格 1 PECVD非晶硅淀积设备 1 爱立特微电子有限公司 31万美元 2 XeF2气相腐蚀设备 1 镭社有限公司 23万美元 3 非线性矢量网络分析仪 1 上海颐合贸易有限公司 39.6万美元 4 高低温半自动探针台 1 香港伊欧陆贸易有限公司 22.5万美元 5 反应离子刻蚀去胶机 1 Trymax Semiconductor Equipment BV 24.5万欧元 6 SiC激光划片机 1 德龙贸易香港有限公司 24万美元   评标委员会成员名单:朱衍勇、李振声、段玉生、郝艾芳、明安杰(第1、2包)、武锦(第3、4包)、郑英奎(第5包)、陈晓娟(第6包)   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2012年4月20日
  • 这家中国电子设备和仪器公司将于2月9日在美国纳斯达克上市
    禾赛科技计划以“HSAI”为股票代码于2023年2月9日在美国纳斯达克挂牌上市,高盛、摩根士丹利、瑞信以及华泰国际担任联席主承销商。公司注册登记日为2023年1月17日,初始预计发行股份总数为900.00万股,发行价区间定为17至19美元。禾赛所属行业为电子设备和仪器。禾赛概况禾赛科技于2014年创立于中国上海,致力于做“机器人的眼睛”,是全球自动驾驶及高级辅助驾驶(ADAS)激光雷达的领军企业。禾赛在光学、机械、电子、软件等激光雷达核心领域有着卓越的研发能力和深厚的技术积累,在全球范围内拥有数百项专利,其自研芯片、功能安全、主动抗干扰等技术打破了行业多项记录。同时,禾赛具备强大的车规级规模化生产能力,年产能百万台的“麦克斯韦”超级智造中心将于2023年全面投产。禾赛的客户包括全球主流自动驾驶公司和顶级汽车厂商、一级供应商、机器人公司等,遍及全球40个国家、90多个城市。公司累计获得包括小米、美团、博世、百度、光速、高瓴、CPE、启明等机构超过5亿美元的融资。禾赛的愿景是通过高性能、高可靠性、低成本的三维传感器赋能机器人,让人类生活更高效舒适。根据该公司委托Frost&Sullivan的一份报告,2021年禾赛在自主移动应用市场上占有60%的市场份额。此外,该公司还从气体检测产品中产生了一小部分收入。财务数据根据同花顺iNews报道:禾赛2022年1月1日至2022年9月30日营业额为7.93亿人民币元,净亏损为1.65亿人民币元。2021财年营业额为7.21亿人民币元,净亏损为2.45亿人民币元。2020财年营业额为4.16亿,净亏损为1.07亿人民币元。禾赛的市场与竞争根据Grand View research 2022年的市场研究报告,估计2021年激光雷达(LiDAR)产品的全球市场价值为18亿美元,预计到2030年将达到42亿美元。这意味着2022年至2030年的预测复合年增长率为9.8%。这种预期增长的主要驱动因素是分辨率和其他性能方面的持续创新,以及众多应用领域对3D图像的需求不断增长。2021全球LiDAR市场禾赛主要竞争对手或其他行业参与者包括:VelodyneLuminarOusterFaro TechnologiesLeica Geosystems Holdings AGTeledyne Optech Incorporated (A part of Teledyne Technologies)Trimble Navigation LimitedRIEGL USAQuantum SpatialSick AGYellowScanGeoDigital三位联合创始人介绍首席执行官 李一帆李一帆,禾赛科技CEO,机器人和运动控制领域的专家,全球自动驾驶行业领军人物。李一帆曾入选《世界经济论坛》“2021届全球青年领袖”、《财富》杂志“中国40位40岁以下商界精英”、《麻省理工科技评论》“35位35岁以下最具有创新性与影响力榜单”、荣获德国“红点设计奖”等。 李一帆拥有清华大学本科与美国UIUC博士学位,曾任美国西部数据集团首席工程师。李一帆在机器人、运动控制、传感器及先进制造领域拥有100余项专利,业余爱好包括马拉松、篮球和摄影等。首席科学家 孙恺孙恺博士本科毕业于上海交通大学机械与动力工程学院,2013年博士毕业于斯坦福大学机械系(主修)和电子系(辅修),在斯坦福大学期间,孙恺博士的研究工作主要利用激光器和新型探测技术搭建超快、高灵敏度、适用于极端恶劣条件的分子测量系统,应用于化学反应动力学的研究,期间多篇论文入选英国物理协会精选集、美国光学学会精选集、阿贡国家实验室百年精选集,并获得《Measurement Science and Technology》期刊2013年度的最佳论文奖。在回国创办禾赛科技前,孙恺博士在斯坦福大学任University Academic Staff — Research Associate职位。首席技术官 向少卿向少卿本科以综合成绩全系第一毕业于清华大学精密仪器与机械学系,并获得全校级优秀毕业生荣誉。2007年获得全额奖学金fellowship赴美国斯坦福大学留学,获得电子工程和机械工程双硕士学位,并独立完成了多个智能机电一体化系统的设计开发。毕业后任职于苹果公司美国总部(美国加州Cupertino)负责电路系统设计,参与了多代iPhone的原型设计,技术开发以及海外生产线的架设。曾任职于三星全球总部(韩国水原)研究中心,负责下一代消费产品概念研发。爱好模型的制作和收藏。
  • 徕卡微电子类样品电镜制样方法
    电子类样品检测手段多种多样,其中扫描电子显微镜检测不仅观察样品表观形貌,通过制样设备可实现对内部指定点或区域的观察分析,就目前来说电镜观察手段及观察方法渐趋成熟,但制样手段及手法仍有许多值得探究,在这里简单介绍下简单易操作的制样方法。下图是经常遇到的几个电子类材料的类型,线路板PCB,LED,OLED等,从材料角度来说,基本为复合材料(金属/玻璃/硅/聚合物,填料);大多为软硬结合材料;大多为分层结构;多为局部器件的平整面获取和分析。图1.电子材料部分类型举例一般根据样品形状大小,分析观察需要,可采用三种方式制备样品:样品较薄或待分析结构位于表面10微米左右,可用胶加以保护并采用徕卡精研一体机EM TXP配合其光学显微镜观察,切到目标位置附近,再做简单磨抛处理后,采用徕卡三离子束EM TIC 3X进行离子束的切磨处理;若样品较厚,且观察区域较大,可采用传统方法磨抛,并使高度和直径符合徕卡三离子束EM TIC 3X的旋转抛光要求即可,徕卡三离子束TIC 3X旋转抛光具有旋转和移动功能,可最大程度保证加工面积;若样品微小,则可将其用小型包埋板包埋,再用精研一体机EM TXP切割到目标位置附近后,再做离子束的切磨处理,在此不用担心楔形样品,厚度方向和高度方向的倾斜,采用多功能的样品台来调节即可。图2.微电子类材料处理的简单方法图3.徕卡三离子束EM TIC 3X多功能样品台图示对于样品较薄或待分析结构位于表面10微米左右,其处理方法及所需工具如下,胶水,胶带(或其他平整柔软垫子)载玻片,加热台过程如下:胶带贴于载玻片(若有耐高温软垫子,则不需要此步骤),将胶水混合滴在胶带上,样品有结构的一面扣在胶水上,轻轻按压,加热台加热后,抬起胶带,则胶水与样品固化在一起,此方法的优点在于不会过多使用胶,样品导电性不会因为过多的胶引起荷电效应过重或后续处理过于复杂。图4.较薄样品处理所用耗材及工具简图 对于较柔软样品,如柔性屏,由于其材质的不同,则处理起来与上述不同,其需要准备的耗材如下:剪刀或刀片(视材料的薄厚而定)取小块样品,用铝箔纸将其包覆起来,胶水封口,干燥后刀片切出断面,粘在小片硅片上或小样品托上,接着离子束加工即可。图5.柔性电子材料制样工具及耗材 由于电子类材料多为复合材料,且多为胶类物质填充其中,因此电镜观察除了要复合用背散射电子成像信息更丰富以外,导电性是一个干扰正常观察项,同时,微电子材料的诸如分层结构等多为纳米或亚微米级,因此对镀膜处理要求高,若镀膜颗粒大则分层不清楚甚至不分,较宽范围的金属层结构的晶向结构无法分析,徕卡高真空镀膜仪EM ACE600镀膜颗粒细腻,膜厚可控,非常适合离子束加工后的微电子类材料平整断面处理。图6.徕卡高真空镀膜仪 EM ACE600
  • 湖北首家微电子联合实验室光谷挂牌
    湖北省首家微电子联合实验室在武汉光谷正式挂牌。武汉光谷微电子股份有限公司与武汉大学在汉签署战略合作协议,共同建设微电子联合实验室,并组建“武汉大学——光谷微电子功率半导体技术中心”。“微电子半导体技术运用广泛,小到电灯开关、汽车,大到火箭卫星,发展潜力巨大。”光谷微电子公司董事长邝远平介绍,以该公司研发的高端微电子产品可控硅为例,运用到电灯开关中,可比传统开关节能30—40%。   邝远平说,目前中国所有的半导体行业的总产值,仅占全球的7%,还不及“日立”一家企业的产值。“微电子联合实验室的目标是,把武汉乃至湖北省的微电子行业提升到全国领先水平。
  • 预算约1.5亿元!中科院微电子所2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院微电子研究所(以下简称“微电子所”)是国内微电子领域学科方向布局最完整的综合研究与开发机构,是国家科技重大专项集成电路装备及工艺前瞻性研发牵头组织单位,是中国科学院大学微电子学院(国家示范性微电子学院)的依托单位,是中国科学院集成电路创新研究院的筹建依托单位。微电子所目前拥有2个基础研究类中国科学院重点实验室(微电子器件与集成技术重点实验室、硅器件技术重点实验室),5个行业服务类研发中心(EDA中心、集成电路先导技术研发中心、系统封装与集成研发中心、中科新芯三维存储器研发中心、光刻总体部),7个行业应用类研发中心(通信与信息工程研发中心、新能源汽车电子研发中心、健康电子研发中心、智能感知研发中心、智能制造电子研发中心、智能电子系统研发中心、电磁信息智能应用研究中心),4个核心产品类研发中心(硅器件与集成研发中心、高频高压器件与集成研发中心、微电子仪器设备研发中心、光电研发中心)。 微电子所与北京大学、清华大学、复旦大学等高校和武汉新芯、上海华力、华润微电子、北方微电子等企业结为战略合作伙伴,在北京、江苏、湖北、四川、广东、湖南等省市开展科技成果转移转化,在我国微电子领域拥有广泛的影响,为支撑我国微电子产业核心竞争力发挥了不可替代的重要作用。 成果的产出和人才的培养都离不开仪器的支持,微电子所每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对微电子所2022年仪器设备类政府采购意向进行了整理汇总。共收集到21个采购项目,预算金额相加约1.5亿元,采购品目涉及示波器、探针台、ALD、键合机、清洗机、退火炉等多种仪器类型。中国科学院微电子所2022年政府采购意向汇总表序号采购项目名称采购品目预算金额(万元)预计采购日期项目详情15.7寸移动作业终端A021199-其他电子和通信测量仪器2003月详情链接2示波器A032199-其他电工、电子专用生产设备1343月详情链接3多通道高精度阻抗谱分析子系统A02100305-电子光学及离子光学仪器285.244月详情链接4直流-6GHz 多频段微弱电信号高性能分析测试平台A02100305-电子光学及离子光学仪器389.84月详情链接512英寸晶圆贴膜揭膜减薄一体机A032199-其他电工、电子专用生产设备12005月详情链接612英寸芯片至晶圆微米级混合键合一体机A032199-其他电工、电子专用生产设备49305月详情链接7PA-连续波/脉冲功率测试系统A02100305-电子光学及离子光学仪器4405月详情链接8精密电感耦合等离子刻蚀系统A032199-其他电工、电子专用生产设备3505月详情链接912吋晶圆底填机A032199-其他电工、电子专用生产设备1306月详情链接1012吋晶圆助焊剂清洗机A032199-其他电工、电子专用生产设备6006月详情链接1112英寸超薄晶圆划片机A032199-其他电工、电子专用生产设备1706月详情链接1212英寸晶圆化学机械抛光机A032199-其他电工、电子专用生产设备17006月详情链接1312英寸晶圆键合退火炉A032199-其他电工、电子专用生产设备2006月详情链接1412英寸晶圆清洗机A032199-其他电工、电子专用生产设备3006月详情链接15大功率快脉冲测试仪A032199-其他电工、电子专用生产设备215.236月详情链接16高精度靶点识别与成型设备A032199-其他电工、电子专用生产设备1406月详情链接17三维堆叠键合机A032199-其他电工、电子专用生产设备7006月详情链接18大功率高温探针台A032199-其他电工、电子专用生产设备250.37月详情链接19清洗设备研发A032199-其他电工、电子专用生产设备1257月详情链接20多场原位电子全息三维高分辨成像系统A02100305-电子光学及离子光学仪器163512月详情链接21多腔室新型高k金属栅ALD生长系统A032199-其他电工、电子专用生产设备85012月详情链接值得而注意的是,微电子所除了采购仪器设备外,还采购了总额超四千万的流片服务。在集成电路设计领域,“流片”指的是“试生产”,就是说设计完电路以后,先生产几片几十片,供测试用。如果测试通过,就照着这个样子开始大规模生产了。流片服务采购意向汇总序号采购项目名称采购品目预算金额(万元)预计采购日期项目详情1砷化镓流片和SOI流片加工C0908-其他专业技术服务8103月详情链接2流片加工C0908-其他专业技术服务1302月详情链接3新型存储器流片加工服务C0908-其他专业技术服务3003月详情链接4测试调试C0908-其他专业技术服务1205月详情链接5芯片流片C0908-其他专业技术服务1205月详情链接6小芯片加工制造C0908-其他专业技术服务1506月详情链接7芯片分析C0908-其他专业技术服务1506月详情链接8MPW投片费C0908-其他专业技术服务1707月详情链接9流片C0908-其他专业技术服务1957月详情链接10流片、制版C0908-其他专业技术服务1907月详情链接11流片、制版C0908-其他专业技术服务2557月详情链接12流片、制版C0908-其他专业技术服务50944743详情链接13封装加工服务C0908-其他专业技术服务25012月详情链接14流片费C0908-其他专业技术服务10012月详情链接15流片加工服务C0908-其他专业技术服务70012月详情链接
  • 华润微电子规划12英寸晶圆生产线项目
    p style=" text-indent: 2em " 近日,华润微电子有限公司(以下简称“华润微电子”)在投资者互动平台上表示,公司目前正在规划12英寸晶圆生产线项目。 /p p style=" text-indent: 2em " 资料显示,华润微电子是华润集团旗下负责微电子业务投资、发展和经营管理的高科技企业,曾先后整合华科电子、中国华晶、上华科技等中国半导体先驱,是国内少数覆盖完整产业链业务的半导体企业,拥有芯片设计、晶圆制造、封装测试等全产业链一体化运营能力,产品聚焦于功率半导体、智能传感器与智能控制领域。自2004年起,华润微电子连续被工信部评为中国电子信息百强企业。 /p p style=" text-indent: 2em " 今年2月27日,华润微电子正式登陆科创板,成为科创板首家引入“绿鞋机制”的企业,国家大基金参与其本次发行的战略配售,成为华润微电子第二大股东,备受看好。 /p p style=" text-indent: 2em " 在半导体晶圆制造生产线方面,目前,华润微电子在无锡拥有3条6英寸生产线和1条8英寸生产线,其中,8英寸晶圆生产线年产能约为73万片,6英寸晶圆生产线年产能约为247万片。主要为客户提供1.0-0.11μm的工艺制程的特色晶圆制造技术服务,包括硅基和SOI基BCD、混合信号、高压CMOS、射频CMOS、Bipolar、BiCMOS、嵌入式非易失性内存、IGBT、MEMS、硅基GaN、SiC等标准工艺及一系列客制化工艺平台。 /p p style=" text-indent: 2em " 在重庆拥有1条8英寸半导体晶圆制造生产线,年产能约为60万片,目前主要服务于公司自有产品的制造,该产线拥有沟槽型和平面型MOS、沟槽型和平面型SBD、屏蔽栅MOS、超结MOS、IGBT、GaN功率器件等生产制造技术,产品以功率半导体与模拟IC为产业基础,面向消费电子、工业控制、汽车电子等终端市场。 /p p style=" text-indent: 2em " 根据此前的上会稿显示,华润微电子此次科创板上市募集资金将主要用于8英寸高端传感器和功率半导体建设项目、前瞻性技术和产品升级研发项目、产业并购及整合项目、以及补充营运资金。 /p p style=" text-indent: 2em " 除了6英寸和8英寸制造生产线外,近年来,华润微电子也在开始着手投资建设12英寸晶圆厂。 /p p style=" text-indent: 2em " 2018年11月,华润微电子与重庆西永微电园公司签署协议,华润微电子将在重庆西永微电园投资约100亿元建设12英寸功率半导体晶圆生产线,主要生产MOSFET、IGBT、电源管理芯片等功率半导体产品。据了解,华润微电子12英寸功率半导体晶圆生产线已经被列入重庆市2020年重大项目名单中。 /p p style=" text-indent: 2em " 此外,华润微电子还在无锡和深圳拥有半导体封装测试生产线,年封装能力约为62亿颗。公司封装测试生产线具有完备的半导体封装生产工艺及模拟、数字、混合信号等多类半导体测试生产工艺。同时,公司在无锡拥有一条掩模生产线,年产能约为2.4万块。 /p
  • 中科院微电子所2021年3-12月半导体仪器设备采购意向:预算2亿元
    仪器信息网讯 1月20日,中国科学院微电子研究所公开2021年3至12月政府采购意向,本次意向共涉及采购意向48项,主要为半导体科研相关仪器设备,包含X射线拉曼光谱仪晶体阵列调节机构、等离子体表面处理设备、AMCAD高压脉冲测试系统、晶圆平整度全检仪、毫米波FMR测试仪、光波元器件分析仪、线宽量测仪、套刻偏差量测仪等,总采购预算2.07亿元,预计采购日期分布在2021年2至10月。详细意向信息表如下:序号采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1HPGe研制-离子注入机A02062002电气物理设备详见项目详情3502021年6月2流体PIV测试系统A02100402物理特性分析仪器及校准仪器详见项目详情2002021年4月3LMS模态测试系统A02100402物理特性分析仪器及校准仪器详见项目详情2002021年4月4纳米操控台A02100699其他试验仪器及装置详见项目详情3002021年8月5主动隔振台A02100699其他试验仪器及装置详见项目详情2002021年8月6超快探测器A02100404光学式分析仪器详见项目详情1002021年9月7劳厄谱仪A02100304光学测试仪器详见项目详情1732021年3月8有机分子散射腔A02100405射线式分析仪器详见项目详情3002021年2月9激光干涉仪A02100304光学测试仪器详见项目详情1502021年3月10光束线反射镜A02100313透镜、棱镜、反射镜详见项目详情4002021年5月11多维样品台A02100699其他试验仪器及装置详见项目详情1602021年3月12波带片聚焦系统A02100399其他光学仪器详见项目详情2502021年2月13多层膜KB镜A02100313透镜、棱镜、反射镜详见项目详情1702021年5月14真空低温样品传输系统A02062002电气物理设备详见项目详情1502021年3月15TOF中子闪烁体探测器A02100404光学式分析仪器详见项目详情2002021年2月16100KN测试机A02100501金属材料试验机,A02100602动力测试仪器详见项目详情1102021年2月17液氮循环机组A02062002电气物理设备详见项目详情1102021年3月183D打印机A0201060199其他打印设备详见项目详情8002021年5月19二期束线第三批安全光闸A02100399其他光学仪器详见项目详情2002021年3月20液氮循环机组国产化A02062002电气物理设备详见项目详情1402021年5月212圆机械手式衍射仪机构A02062099其他电气机械设备详见项目详情2502021年2月22超高稳定K-B镜机构A02062099其他电气机械设备详见项目详情2152021年9月23高负荷探测器空间运动机器人A02062099其他电气机械设备详见项目详情3002021年9月24HPGe研制-磁控溅射机A02052499其他真空获得及应设备详见项目详情1502021年6月25HPGe研制-电子束镀膜机A02052499其他真空获得及应设备详见项目详情1002021年6月26X射线拉曼光谱仪晶体阵列调节机构A02062099其他电气机械设备详见项目详情1502021年2月27Von Hamos 光谱仪调节结构以及真空腔体A02052499其他真空获得及应设备详见项目详情2002021年5月28微聚焦X射线源A02100399其他光学仪器详见项目详情3002021年5月29固液环境XPS系统A033413核子及核辐射测量仪器详见项目详情3002021年8月3036元高纯锗固体探测器及其电子学系统A02100402物理特性分析仪器及校准仪器详见项目详情5762021年2月31光学平台及位移台A02100699其他试验仪器及装置详见项目详情2002021年3月32泵A02051907真空泵详见项目详情2502021年3月33阀门A060809阀门详见项目详情2102021年3月34全闪存NAS集群A0201020605集群控制器详见项目详情2502021年5月35HPGe-高速电子学A02062002电气物理设备详见项目详情1502021年2月36大面积探测器A02100404光学式分析仪器详见项目详情2702021年2月37双束聚焦离子束系统A02100305电子光学及离子光学仪器详见项目详情10202021年2月38上海光源同步辐射科学大数据管理服务系统A0201080102数据库管理系统详见项目详情1502021年2月39多路激光测量交会系统A021099其他仪器仪表详见项目详情6802021年3月40高速高分辨率磁场相机A02100399其他光学仪器详见项目详情1002021年4月41高精度三维点测量系统A021099其他仪器仪表详见项目详情2202021年4月42C波段50MW速调管及附件A02062002电气物理设备,A02062099其他电气机械设备详见项目详情3602021年2月43110MW调制器脉冲电源和辅助电源A02061599其他电源设备详见项目详情1402021年2月44高压充电电源A02061599其他电源设备详见项目详情2102021年2月45C波段加速管A02062099其他电气机械设备详见项目详情1602021年4月46真空波荡器A02062002电气物理设备详见项目详情5002021年3月47移相器A02060110移相器详见项目详情1002021年3月
  • 布鲁克AXS中标中国科学院微电子所2010年仪器采购项目
    2010年12月20日,中国科学院微电子研究所2010年仪器设备采购项目(第十三批)中标公告发布,详细如下:   招标编号:OITC-G10032277   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院微电子研究所2010年仪器设备采购项目(第十三批)   定标日期:2010年12月20日   招标公告日期:2010年11月18日   公告信息如下:   第1包 导电扫描探针显微镜系统   中标供应商名称:德国布鲁克AXS有限公司   中标金额: 18.92万美元   评标委员会成员名单:王波、郝爱芳、李振声、胡达平、周华杰   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2010年12月20日
  • 北京燕东微电子拟科创板IPO,投建12吋集成电路生产线
    9月6日,中信建投证券股份有限公司公布了《关于北京燕东微电子股份有限公司首次公开发行股票并在科创板上市辅导基本情况表》。信息显示,中信建投证券股份有限公司和北京燕东微电子股份有限公司于2021年8月13日签署了《北京燕东微电子股份有限公司与中信建投证券股份有限公司关于北京燕东微电子股份有限公司首次公开发行股票并上市之辅导协议》。实际上在此前,京东方科技集团股份有限公司布公告称,公司拟通过下属全资子公司天津京东方创新投资有限公司出资10亿元人民币向北京燕东微电子股份有限公司进行增资,布局集成电路关键领域,推动集成电路及半导体行业国产化进程,共建行业生态圈。公告显示,燕东微拟投资建设特色工艺12吋集成电路生产线项目,计划股权融资45亿元,京东方拟通过下属子公司天津京东方创投出资10亿元参与融资。京东方表示,本次增资用于投资建设特色工艺12吋集成电路生产线项目。据了解,燕东微是一家半导体器件的设计、制造、销售的高科技企业,在集成电路设计制造、塑封器件制造、物业经营等方面开展了多方位的产业化经营。产品包含功率半导体、传感器、ASIC(专用集成电路)和高可靠器件四大产品门类数百个品种,广泛应用于移动通讯、家用电器、声音传输、电源管理、航空航天等领域。目前,燕东微拥有一条6吋芯片生产线,一条基于国产核心装备的8吋芯片生产线。其中,8吋线已完成Trench-MOSFET、LD/PL-MOSFET、Trench-TVS、N-JFET、TMBS、IGBT工艺平台建设并量产。随着燕东微新产线的建设,将带来大量相关仪器设备采购需求。
  • 分析仪不离传感器 微电子智能化为主
    分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 共进微电子和西电共建“传感器与汽车电子封测关键技术联合实验室”
    2024年1月19日,共进微电子和西安电子科技大学共建的"传感器与汽车电子封测关键技术联合实验室"正式揭牌,该实验室旨在促进封测领域的科研合作,推动封测技术的创新和产业的发展。同时,西安电子科技大学博士生导师、封装系首任主任田文超教授也将担任共进微电子首席科学家。封装测试在传感器和汽车电子芯片性能和可靠性方面扮演着至关重要的角色。联合实验室将在传感器与汽车电子芯片的相关结构设计、材料研究、应力、热、电磁仿真和可靠性验证等方面展开合作。此外,联合实验室还将成为为学生提供实习和培训机会的平台,促进人才培养和技术交流。共进微电子总经理张文燕表示:“共进微电子一直致力于封测技术的研发与创新,而西安电子科技大学在封装领域具有丰富的研究经验和优秀的学术背景。通过合作,我们期待能够取得更多突破性的研究成果,并将其应用于实际生产中。”西安电子科技大学田文超教授也表示:“西安电子科技大学的封装专业是2009年国家首批电子封装技术本科专业,同时也是全国唯一的电子封装类国家级特色专业。通过与共进微电子建立联合实验室,我们将充分发挥双方的优势,推动封装技术的创新,促进企业技术进步和生产力提升。”未来,共进微电子将充分利用联合实验室的优势,夯实并增强共进微电子在传感器与汽车电子芯片的封装能力,为客户提供高质量的封测一体化服务!| 关于共进微电子上海共进微电子技术有限公司,简称“共进微电子”,成立于2021年12月。共进微电子由上交所主板上市公司共进股份(603118)、探针智能感知基金(国家新兴产业创业投资引导基金参股)以及一流的技术和管理团队创立,专注于智能传感器领域的先进封装测试业务。专注于智能传感器及汽车电子芯片领域的先进封装测试业务。共进微电子拥有上海研发销售中心和苏州太仓生产基地。已建设1.8万平米先进的研发中心和生产基地,生产基地包含百级、千级和万级无尘室,建设传感器及汽车电子芯片的封装测试量产生产线。共进微电子拥有完整的封装产线,涵盖从晶圆研磨、切割到前段工艺的固晶、引线键合、点胶、贴盖、回流焊,以及后段工艺的注塑成型、打标、切单。提供多种产品封装类型,包括LGA、QFN、Fan-out、SIP和2.5D/3D等。测试能力包括晶圆测试、CSP测试和成品级测试能力。共进微电子封装测试产品包括惯性、压力、电磁、环境、声学、光学、射频和微流控等传感器和汽车电子芯片。公司以满足客户需求为宗旨,制定完整的封装测试方案、流程及品质管控,为客户提供一站式解决方案,打造集研发、工程、批量生产于一体的专业综合封装测试服务平台。共进微电子致力于建设全球知名的规模大、种类齐全、技术先进的传感器及汽车电子芯片封装测试产业基地和领军企业,填补国内相关领域在批量封装、校准和测试领域的空白,突破产业链瓶颈。
  • 专家约稿|微电子大马士革工艺的发展现状
    微电子大马士革工艺的发展现状赵心然中科芯集成电路有限公司随着“摩尔定律”逼近物理极限,前道晶圆制造的特征尺寸发展进程变慢,后道布线能力的升级成为提升集成电路密度的关键,而大马士革工艺是晶圆级再布线技术下一阶段需要引进的重要工艺,不仅可以将线宽/线距从PI-Cu 5/5 μm缩减到亚微米级别,还可以利用SiO2基介质材料加工工艺进一步提升再布线层的可靠性,甚至可以推进混合键合先进封装技术的加速落地。针对大马士革工艺,本文将对其工艺原理、流程、难题与突破进展进行总结,便于在封装领域中落地,将会为后道制造更精细的再布线提供新的思路。1 前言半导体产业初期,都是以铝(Al)作为互连材料,后来为了减小互连线的电阻、减轻电子“跳线”现象、避免电迁徙效应,IBM公司首先提出了以铜(Cu)作为互连材料,由于该工艺方法与2500多年前的叙利亚大马士革城铸剑工艺有异曲同工之妙,故以“大马士革”(Damascene)命名。大马士革工艺已经被广泛应用到了微电子工业中,大致思路是,先利用离子刻蚀、光刻蚀等技术在硅片上刻蚀好沟槽和通孔,然后将Cu电镀进入凹陷的硅片中,最后用化学机械抛光(CMP)将多余的Cu磨平,获得嵌有Cu线路的平整硅片。这种镀铜思路最早应用于前道PCB板上Cu线路的制造,虽然目前的工艺极限可以实现4 nm以下线宽,但28 nm被认为是收益最高的线宽,后来大马士革逐渐被中道和后道封装工序采用,来生产比引线键合、倒装、再布线+凸点等方法更加精细的封装系统。一方面,大马士革工艺的布线尺寸可以做到很小,目前已经可以做到几纳米的Cu线宽和焊盘,这是引线焊点、植球/植柱等毫米、微米级连接点所不能比的,这样就可以实现更高密度的互连;另一方面,它不仅可以用来制造2D方向上的沟槽,还可以制造3D方向上的通孔,这对2.5D/3D封装技术的发展也有促进作用。利用了大马士革的最具有代表性的封装技术就是Xperi公司的混合键合(Hybrid bonding),利用极其光滑的表面上的分子间作用力,直接将两个布有大马士革Cu线路的硅片“面对面”相互连接,这种工艺巧妙避开了植球/植柱、转接板、底填胶、引线等各类键合中间物体,在一定程度上模糊了前道和后道的界限。综上,大马士革工艺的精度直接影响了各类3D封装的精度,对微电子工艺一体化至关重要,是未来先进封装必不可少的一个环节,所以研究开发高精度大马士革工艺是很有意义的。2 大马士革工艺当芯片特征尺寸(线宽)达到25 μm以下时,会产生Cu线路间寄生效应,阻容(RC)耦合增大,信号传输延迟、串扰噪声增强、功耗增大、发热增加,器件频率受到抑制。线路之间的介质介电常数(k)对解决上述问题很关键,k值由公式k=Cd/(ε0A)计算,其中ε0为真空电阻率8.85×10-12 F/m,C为电容,A为电极面积,d为膜厚,均使用国际单位。为了减少寄生电容,现在经常使用多孔SiO2、掺氟SiO2(FSG)、掺氟聚酰亚胺(F-PI)等低介电常数材料(Low-k材料)。对于k值是否足够低,业界有以下定义:广义上,k低损耗、低漏电流、高击穿场强、尺寸稳定性、各向异性力学高附着力、高硬度、低应力、高机械强度热学高热稳定性、低热膨胀率、高热导率化学低释气量、耐腐蚀性、不与金属反应、低吸水性通俗地讲,大马士革工艺就是在Low-k介电材料上刻蚀出凹痕并电镀Cu的过程,并不会刻蚀较深的Si晶圆。IBM最早的大马士革工艺称为铜质双重镶嵌,所谓“双重”,即需要刻蚀出通孔和沟槽两种形状,在这两种形状中溅射Ti、Cu种子层,再电镀出Cu互连线,故该工艺也常被称为“双大马士革”(Dual-damascene)。通孔用于垂直方向的互连,直径小;沟槽用于平面方向的互连,直径大。此处的通孔与硅通孔技术(TSV)不同,大马士革刻蚀的是以SiO2为主要成分的介电层材料,而TSV刻蚀的是Si晶圆,由于Low-k介电层很薄,所以大马士革通孔的深度远不及TSV通孔。大马士革工艺有三种路径选择:1)先通孔后沟槽;2)先沟槽后通孔;3)自校准同步沟槽通孔。其中,2、3两种路径分别因为沟槽中的光刻胶堆积效应和校准工艺难度大而被逐渐淘汰,目前应用最广的是第一种先通孔后沟槽的工艺路径,该路径中沟槽刻蚀是最困难的。如图2-1所示,Cu线上方一般会有两层Low-k介电材料,中间夹有一层阻挡层用于更好地刻蚀出沟槽。整个刻蚀流程为,先在Low-k介电材料表面涂覆PR胶,曝光显影后,干法刻蚀穿透表面硬阻挡层和中间阻挡层直达底部SiN阻挡层,然后重新涂覆一层PR胶,使通孔中保留少量PR胶,刻蚀出沟槽,最后洗去PR胶。中间的阻挡层方便通孔和沟槽的分步刻蚀。图2-1 先通孔后沟槽的刻蚀方法示意图当前上海华力微电子有限公司还发展出了一体化刻蚀方法(All-in-one,AIO)[1],即把上述流程中的通孔刻蚀、去除光刻胶、沟槽刻蚀三个步骤合为一体,在同一道工序中完成,具体工艺流程如图2-2所示,其优点是仅需要3步即可完成,与传统的先通孔后沟槽的工艺质量相比,其在小平面控制、光刻胶选择比、通孔边缘粗糙度等方面也有着较大的优势。图2-2 一体化刻蚀方法示意图目前大马士革工艺对光刻精度的要求越来越高,由于Low-k材料是多孔材料,质地较软,容易在高能量的刻蚀下出现侧壁弯曲、阶梯、栅栏等缺陷,故对射频能量、气体流量、压力的控制要求极高,需要经过大量理论计算和实验才能摸索出最优化的光刻条件。不只是光刻,整个大马士革工艺中存在着各种各样的难题,电镀、清洗、等离子体刻蚀、磨平抛光等各个环节都需要精雕细琢,才有助于实现高质量、高可靠性的电路互连,也为大马士革工艺在封装领域的应用奠定良好的基础。以下介绍各类前沿难题与突破,综合论述大马士革在应用时要重点关注的问题。3 难题与突破3.1 低电阻通孔制备难题[2]与沟槽布线相比,大马士革通孔线宽更窄,所以很容易产生更大的电阻,对电信号传输造成损耗。为了解决通孔电阻过高的问题,IMEC的Marleen等人将通孔制备为下半部是钨(W)上半部是Cu的复合型金属通孔。如图3-1(a)~(c)所示,通孔的深度为70 nm,介质层采用SiOCH低介电材料,k值为3.0,使用CVD沉积SiC阻挡层,最终获得的通孔线宽/线距为16/16 nm。图3-1(d)为该结构的电阻值,在相同的通孔直径下,W-Cu复合型通孔电阻值明显低于纯Cu通孔,在通孔直径为10 nm时,W-Cu通孔电阻仅为Cu通孔的一半。该工作还对Wu-Cu复合型通孔的热储存性能做了验证,在200℃的N2气氛下保持150 h后可以储存热量1000 h,证明了该结构的可靠性很高。该工作为微电子布线的材料创新提供了新思路。图3-1 W-Cu复合型大马士革通孔制备方法与电阻效果3.2 电迁移失效难题[3]越细小的Cu线宽和线距,越容易出现电子迁移现象。这种现象的原理是,当电流通过Cu线时,会使Cu原子发生迁移,迁移方向与电子移动方向相同,导致的问题称为失效现象,包括两方面:1)移动的Cu原子原来的位置留下了空洞,导致开路,通常以电阻增加10 %作为判定失效的标准;2)移动的Cu原子在其他地方停留,造成连线间的短路,短路会造成严重的逻辑功能紊乱,现象更加明显。迁移路径分为2种,如图3-2所示,下方金属线1宽较大,上方金属线2线宽较小,中间存在通孔,当电子由上至下迁移(金属线2至金属线1)称为顺流电迁移,电子由下至上(金属线1至金属线2)称为逆流电迁移。顺流迁移失效规律单一,更容易检测和改善,但逆流迁移失效原因复杂,不容易改善。2013年,上海交通大学针对电迁移问题,优化了大马士革结构的工艺参数,该工作就是专门针对逆流迁移失效展开研究,并寻找到了改善失效问题的方法。该实验所刻蚀的Low-k材料为SiCOH,阻挡层为SiCN,种子层为TaN/Ta+Cu(其中含Ta材料起到了粘结作用),整个结构Cu线宽为45 nm。图3-2 逆流电迁移截面示意图图3-2中还标记了大马士革结构的重要参数,可将4个参数归纳为2种深径比,有关通孔的深径比W1 = HD/D1,和有关沟槽的深径比W2 = HT/D2。逆流迁移失效的位置通常有2种,通孔底部和通孔斜面。一方面,如果种子层过厚,通孔会提前封口,在底部形成空洞,发生底部失效,经常发生在晶圆边缘;另一方面,如果溅射种子层的方向过于竖直,不利于在通孔斜面(侧壁)上积累种子层,那么斜面上就容易形成空洞,发生斜面失效。经实验与仿真,研究得出结论,减小W1和W2可以有效改善2种失效现象,具体的方法是:1)减小Low-k介质层总厚度HD;2)减小沟槽深度HT;3)增大通孔上方直径D2。当W1低至4.67,W2低至1.85时,可有效避免失效问题。3.3 电镀添加剂优化[4]上海集成电路研发中心有限公司的曾绍海等人在2018年针对电镀铜添加剂进行了研究。电镀添加剂涉及3种试剂,加速剂A,抑制剂S,平坦剂L。根据文献报道,加速剂A通常使用的是聚二硫二丙烷磺酸钠[bis-(3-sodiumsulfopropyl disulfide),简称SPS],SPS可以在铜沉积的电化学反应中参与到电荷转移步骤中,加速电荷转移过程,此外,SPS还可以在表面形成硫化物,加速Cu沉积时晶核的形成。抑制剂S通常使用的是氯离子Cl-和聚乙二醇(PEG),其中PEG可以在阴极表面阻挡活性位的暴露,而吸附在阴极上的Cl-有助于增强PEG的这种阻挡作用[5]。平坦剂L通常使用的是乙二胺四乙酸二钠(EDTA-2Na),因为EDTA含有2个自由电子对,4个亲水羧基基团,这种结构有助于阴极表面催化析氢反应的进行,析氢的气体张力对电镀层的抛光是至关重要的[6]。该工作使用了多种添加剂配方,探究3种成分的比例对Cu电镀层质量的影响,实验结果表明,抑制剂S的比例过高会引起Cu镀层应力的升高,平坦剂L的比例过高会增加Cu镀层内的杂质含量,也会增加Cu镀层的应力,过高的应力不利于Cu镀层的可靠性。最终,A3/S9/L2为最佳的添加剂配方,300℃下的封装级电迁移测试结果达到可靠性要求,大于10年。如图3-3所示,该工作还展示了SRAM产品55 nm技术双大马士革工艺的版图,通孔直径70 nm,沟槽宽度150 nm,电镀设备为12英寸Sabre品牌设备。图3-3 SRAM产品版图和TEM图像3.4 Ni污染现象[7]2019年,上海华力集成电路制造有限公司的陈敏敏等人研究了金属Ni污染对大马士革刻蚀过程的影响。在干法、湿法刻蚀过程中,很多化学试剂中含有成分为金属Ni的杂质,超标的Ni会严重影响刻蚀图形形貌,如图3-4所示,在光刻前用含Ni的清洗剂和无Ni清洗剂处理后的大马士革腔体形貌有很大区别,Ni的污染导致了光刻时聚合物颗粒的形成。该工作详细讨论了Ni污染的机理:金属Ni与CO气氛反应生成Ni(CO)4,会降低PR胶的刻蚀率,造成光刻胶的残留,然后会生成聚合物杂质。虽然我们使用的接触式光刻机不会涉及CO气体,该工作提出的反应机理也只是推测,理由源于文献的引证,缺乏确凿的证据,但仍然要警惕Ni单质会直接影响刻蚀速率的可能性,对于目前的光刻工艺还是有一定的指导意义。图3-4 (a) Ni污染的腔体;(b) 无污染腔体的SEM图像该工作为目前中道线工艺优化提供了一个思路:刻蚀形貌不理想有可能是原料纯度问题。原材料的纯度虚报在工业生产中屡见不鲜,只有通过购买后二次检测才能获得更真实的原材料信息。原材料成分精确的检测方法有:电感耦合等离子体质谱分析(ICP-MS),原子发射光谱分析(OES),X射线荧光分析(XRF)等。而我们常用的电镜能谱(EDX)精度较低,X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)等方法检测对象较局限,不推荐用于原料成分的精细检测。3.5 等离子体损伤难题[8]2019年,中科院大学的赵悦等人从天线扩散效应出发,提出了改善大马士革等离子体损伤的方法。干法刻蚀和Low-k材料沉积的过程需要使用到等离子体技术,但高能量的等离子体会导致充电损伤,降低体系的可靠性。其原理是福勒-诺德海姆(FN)隧穿过程,由于等离子体携带高能光子,当光子能量超越Low-k材料的禁带宽度时,会令材料的电子从价带跃迁至导带,形成短路,所有Cu连线作为一个等势体,会从各个方向收集Low-k介电材料的电荷,所以收集电荷的面积大于连线上表面面积,从而增大了从Cu流向栅极的电流,使栅氧化层可靠性降低。这种电流放大的效应就是天线扩散效应。该工作展示了大马士革工艺的介质层结构,如图3-5所示,各金属层间介质为Low-k材料FSG与一层SiN阻挡层,而最上面是正硅酸乙酯TEOS。TEOS为常用的简单介质层,因为上表面并不需要考虑寄生电容,只需要起到防氧化、防腐蚀作用即可,TEOS完全水解后会形成极细的SiO2,起到保护作用。与FSG相比,上表面的TEOS层不容易被等离子体损伤,原因有:1)PECVD沉积时,TEOS使用的是He气氛,FSG使用的是N2气氛,N2激发的光子更容易诱发损伤;2)TEOS沉积时的腔体压强往往比FSG沉积的压强大很多,能有效缓冲离子轰击。图3-5 大马士革介质层结构示意图该工作提出了有效的等离子体损伤改善方法,一方面需要尽量减少单层的Cu面积,把大面积的Cu布线利用通孔分成多层布线(跳线法);另一方面需要增加电流泄放路径,连接到保护二极管结构,如图3-6所示。故在前期的设计阶段就要充分考虑天线扩散效应,在天线比计算中引入扩散比,增强系统的可靠性。图3-6 电流泄放路径示意图3.6 CMP选择比难题[9]大马士革工艺的表面磨平抛光是一项难题,尤其近年来热门的Hybrid bonding技术要求表面足够光滑才能实现键合,目前使用的磨平技术是化学机械抛光(CMP)。2017年,Merhej等人研究了大马士革工艺中金属与介电材料CMP过程的重要参数:材料去除率(MRR),表示一种材料在CMP过程中去除的速率,单位nm/min。如图3-7,该工作在SiO2介电层中嵌入了Au互连线,最小线宽70 nm,深度50 nm,整个流程与传统的光刻工艺相同,构造了一层单大马士革结构。要想得到第8步Au-SiO2共存的光滑平面,必须要使用最优化的Au和SiO2相对的MRR之比。该工作的CMP分为2步,分别是第7步的多余Au去除,这步只涉及纯Au表面,和第8步Au-SiO2共存表面的抛光。经过实验验证,得到了最优化的CMP参数,涉及4个重要因素:1)时间,纯Au去除60 s,Au-SiO2抛光180 s;2)压力,P = 300 g/cm2;3)转速,Vpad = 50 rpm,Vhead = 40 rpm;4)浆料流量,Dslurry = 25 mL/min。最后可得Au的MRR为 40 nm/min,SiO2的MRR为20 nm/min,故Au/SiO2去除选择比为2。使用原子力显微镜(AFM)对表面粗糙度进行表征,所得结果RMS roughness为1.06 nm。该结果对提升本地CMP工艺能力有很大的参考价值。图3-7 70 nm线宽Au-SiO2大马士革工艺流程图4 发展建议与展望虽然大马士革工艺目前已有了很多突破,但仍有诸多难题有待解决,例如,FSG和SiO2刻蚀的方法在其他Low-k介质层材料中的普适性问题、电镀添加剂配方对于多种线宽的普适性问题以及CMP原位实时的粗糙度检测问题等。大马士革工艺的能力依然有很大的提升空间。大马士革在前道生产中应用广泛,在后道封装领域应用较少,但随着前道后道一体化的推进,我们开发大马士革工艺是有必要的,综合上述难题及研究进展,我们开发大马士革工艺应该重点从3个方面入手:1)刻蚀能力,我们目前只有Si刻蚀相关的技术,需要配备SiO2、FSG、F-PI等介电材料刻蚀相关的设备及原材料;2)电镀能力,我们目前拥有湿法电镀的技术,但仍需要结合大马士革的工艺需求对电镀添加剂成分进行优化;3)CMP能力,我们尚无较好的CMP设备,对粗糙度的检测也只用到了台阶仪,应考虑引入CMP设备及AFM表征渠道。大马士革工艺的开发将有利于混合键合技术的开发,是该技术中不可缺少的一环,更有利于增加前道与后道工艺的兼容性,扩大产品订单的种类。大马士革工艺与目前中道线的刻蚀-电镀技术有相似之处,可以在中道线的基础上增添或升级必要的设备,不用从头建立新的产线,具有较高的可行性。近年来,中科芯努力耕耘CPU、FPGA、DSP、存储器、微系统等领域,“十三五”期间在CPU、FPGA、DSP、存储器、DDS、微系统及封装技术领域都取得了显著的成绩,在“十四五”规划中也对相关重点发展方向提出了更高的要求。未来所制造的芯片性能会越来越强大,与之共存的是,芯片之间的互连密度也将迅速攀升。从晶圆制造栅极尺寸14 nm开始,前道工艺节点的演化已经开始变慢,与此同时,封装层面的布线尺寸进步开始加速,从50/50 μm的再布线线宽/线距迅速缩小到5/5 μm,并向着1/1 μm以下的趋势发展。届时,常规的晶圆级PI-Cu布线已经很难满足工艺需求,必须将大马士革布线技术引进至后道封测产线,配合更加精细的焊盘尺寸,实现芯片与封装基板之间的Si基互连。虽然低k值的SiO2介质层成本比PI高,但可靠性和制造灵活性也是PI介质层不可比拟的,各种先进封装技术将在SiO2介质工艺的支撑下实现完美兼容,例如,TSV转接板、内嵌桥芯片、带核基板等部分的组装,都将克服PI旋涂工艺的困难,利用SiO2-CVD沉积的方式,与各类功能性芯片进行灵活的异构集成。由此可见,大马士革布线工艺是后道先进封装技术发展的关键环节之一,而在此方面中科芯具有较大的优势,由于中科芯具备设计-制造-封测-组装全产业链,拥有较为成熟的前道晶圆制造和后道封测工艺基础,将前后道进行技术融合将有利于促进大马士革工艺在后道的落地,全面提升中科芯芯片产品的性能。参考文献:[1] 盖晨光. 40nm一体化刻蚀工艺技术研究. 半导体制造技术, 2014, 39: 589-595.[2] M. H. van der Veen,O. V. Pedreira, N. Heylen, et al. Exploring W-Cu hybrid dual damascene metallization for future nodes, 2021 IEEE International Interconnect Technology Conference, 2021: 6-9.[3] 唐建新, 王晓艳, 程秀兰, 45 nm双大马士革Cu互连逆流电迁移双峰现象及改善, 半导体技术, 2013: 153-158.[4] 曾绍海, 林宏, 陈张发等, 55 nm双大马士革结构中电镀铜添加剂的研究, 复旦学报(自然科学版), 2018, 57: 504-508.[5] M. Tan, J. N. Harb, Additive behavior during copper electrodeposition in solutions containing Cl-, PEG, and SPS, J. Electrochem. Soc., 2003, 150: C420-C425.[6] S. Mohan, V. Raj, The effect of additives on the pulsed electrodeposition of copper, T. I. Met. Finish., 2005, 83: 194-198.[7] 陈敏敏, 张年亨, 刘立尧, 金属镍污染对大马士革刻蚀的影响, 中国集成电路, 2019, 244: 57-87.[8] 赵悦, 杨盛玮, 韩坤等, 大马士革工艺中等离子体损伤的天线扩散效应,半导体技术, 2019, 44: 51-57.[9] M. Merhej, D Drouin, B. Salem, et al, Fabrication of top-down gold nanostructures using a damascene process, Microelectron. Eng., 2017, 177: 41-45.
  • 微电子所在半导体器件物理领域获进展
    半导体器件存在缺陷态等无序因素,其载流子的输运往往表现为跃迁形式。半导体中的缺陷态种类较为复杂,准确认识并描述半导体器件中的载流子输运及宏观电学特性是本领域内的难点和重点。   低温下半导体器件所广泛表现出的非线性伏安(I-V)特性的具体物理原因是备受关注的话题之一。此前,多数研究将非线性I-V特性归因于电场对半导体材料中的电子跃迁速率的均匀调制效应。这一解释没有解决非线性输运的问题,反而引发了更激烈的争论。   中国科学院微电子研究所微电子器件与集成技术重点实验室刘明院士团队从理论方面提出了载流子的“集体输运效应”(collective transport)的物理机制。该理论认为外电场所导致的非均匀分布的渗流路径生长产生了collective transport效应,进而在器件尺度上导致非线性的I-V特性。在实验方面,该团队进一步在聚合物器件中,通过巧妙控制半导体的维度实现了对器件渗流阈值的控制,在此基础上通过对器件I-V非线性程度的控制直接证实了非线性输运来源于collective transport这一假设。该工作实现了关于上述话题互存争议的各种假设的统一,为发展操控半导体器件I-V特性的方法提供了理论依据。   相关研究成果以Collective Transport for Nonlinear Current-Voltage characteristics of Doped Conducting Polymers为题,发表在《物理评论快报》【Physical Review Letters 130, 177001 (2023)】上。a.collective transport模型,b.电场驱动渗流路径的形成,c.实验观测到维度控制的非线性输运,d.基于collective transport理论仿真维度控制的非线性输运。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制