当前位置: 仪器信息网 > 行业主题 > >

外延膜

仪器信息网外延膜专题为您整合外延膜相关的最新文章,在外延膜专题,您不仅可以免费浏览外延膜的资讯, 同时您还可以浏览外延膜的相关资料、解决方案,参与社区外延膜话题讨论。

外延膜相关的论坛

  • 外延薄膜晶格常数计算的问题

    外延薄膜晶格常数计算的问题

    [color=#444444]在钛酸锶(SrTiO3)基片上沉积陶瓷薄膜CTNA,如图,由XRD可以看出是外延生长薄膜,现如今想计算该薄膜的晶格常数,怎么算??[/color][color=#444444]用Jade拟合,然后晶胞参数精修行不通(拟合之后的误差因子非常大);[/color][color=#444444]如果手动计算,条件好像不够(薄膜样为正交结构,a不等于b不等于c。由同一晶面族的三个晶面算不出来,一个方程两个未知数。)[/color][color=#444444]如果采用GSAS结构精修,是否可行? XRD图谱里面既有薄膜样的衍射峰又有基底的衍射峰,并且又是外延薄膜,和pdf卡片上面的标准衍射峰不可能完全对应,怎么处理?或者有没有其他的计算方法。。[/color][color=#444444] 请大侠赐教,不胜感激![img=,690,478]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041523_01_3226112_3.jpg[/img][/color]

  • 【求助】SEM 能用来标定外延膜的厚度么?

    请教各位大侠,SEM能用来标定异质外延膜的厚度么?外延膜大概40nm左右,衬低375微米,SEM能分辨出不同的物质么,象TEM不同的物质颜色不一样,或者还是得打能谱?一般的SEM分辨率能有多少?能谱束斑多大?急切等待各位大侠赐教!!!!!!!!!!!!!!!!!!!!!!!!!

  • 【转帖】分子束外延生长的优缺点

    MBE有许多优点:①由于MBE是在超高真空系统中操作,使用纯度极高的元素材料,所以可以得到高纯度、高性能的外延薄膜;②生长速率低,大约为一微米每小时,可以精确地控制外延层厚度,制造超薄层晶格结构及其它器件;③生长温度低,可避免高温生长引起的杂质扩散,能得到突变的界面杂质分布;④可在生长腔内安装仪器,例如配置四极质谱仪、反射式高能衍射仪、俄歇电子谱仪、二次离子谱仪和X射线光电子能谱仪等。通过这些仪器可以对外延生长表面情况、外延层结晶学和电学性质等进行原位检测和质量评价。这保证了外延层质量;⑤由于基本能够旋转,保证了外延膜的均匀性。分子束外延技术使异质结构、量子阱与超晶格得到迅速发展,使器件物理学家和工程师们设计出新的具有“带结构工程”的器件,为晶格失配外延生长开辟了器件制造的新领域。MBE存在的不足是:表面形态的卵形缺陷,长须状缺陷及多晶生长,难于控制两种以上V族元素,不利于批量生产等。

  • 【分享】LED结构生长原理以及MOCVD外延系统的介绍

    第一章 外延在光电产业角色近十几年来为了开发蓝色高亮度发光二极管,世界各地相关研究的人员无不全力投入。而商业化的产品如蓝光及绿光发光二级管LED及激光二级管LD的应用无不说明了Ⅲ-Ⅴ族元素所蕴藏的潜能,表1-1为目前商品化LED之材料及其外延技术,红色及绿色发光二极管之外延技术大多为液相外延成长法为主,而黄色、橙色发光二极管目前仍以[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]外延成长法成长磷砷化镓GaAsP材料为主。MOCVD机台是众多机台中最常被使用来制造LED之机台。而LED或是LD亮度及特性的好坏主要是在于其发光层品质及材料的好坏,发光层主要的组成不外乎是单层的InGaN/GaN量子井Single Quantum Well或是多层的量子井Multiple Quantum Well,而尽管制造LED的技术一直在进步但其发光层MQW的品质并没有成正比成长,其原是发光层中铟Indium的高挥发性和氨NH3的热裂解效率低是MOCVD机台所难于克服的难题,氨气NH3与铟Indium的裂解须要很高的裂解温度和极佳的方向性才能顺利的沉积在InGaN的表面。但要如何来设计适当的MOCVD机台为一首要的问题而解决此问题须要考虑下列因素:1要能克服GaN 成长所须的高温2要能避免MO Gas金属有机蒸发源与NH3在预热区就先进行反应3进料流速与薄膜长成厚度均。一般来说GaN的成长须要很高的温度来打断NH3之N-H的键解,另外一方面由动力学仿真也得知NH3和MO Gas会进行反应产生没有挥发性的副产物。了解这些问题之后要设计适当的MOCVD外延机台的最主要前题是要先了解GaN的成长机构,且又能降低生产成本为一重要发展趋势。第二章 MOCVD之原理MOCVD反应为一非平衡状态下成长机制,其原理为利用有机金属化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法metal-organic chemical vapor deposition MOCVD是一种利用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应物,或是前驱物precursor和Ⅲ族的有机金属和Ⅴ族的NH3,在基材substrate表面进行反应,传到基材衬底表面固态沉积物的制程。MOCVD 利用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应物间之化学反应将所需产物沉积在基材衬底表面的过程,蒸镀层的成长速率和性质成分、晶相会受到温度、压力、反应物种类、反应物浓度、反应时间、基材衬底种类、基材衬底表面性质等巨观因素影响。温度、压力、反应物浓度、反应物种类等重要的制程参数需经由热力学分析计算,再经修正即可得知。反应物扩散至基材衬底表面、表面化学反应、固态生成物沉积与气态产物的扩散脱离等微观的动力学过程对制程亦有不可忽视的影响。MOCVD 化学反应机构有反应气体在基材衬底表面膜的扩散传输、反应气体与基材衬底的吸附、表面扩散、化学反应、固态生成物之成核与成长、气态生成物的脱附过程等,其中速率最慢者即为反应速率控制步骤,亦是决定沉积膜组织型态与各种性质的关键所在。MOCVD对镀膜成分、晶相等品质容易控制,可在形状复杂的基材衬底上形成均匀镀膜,结构密致,附着力良好之优点,因此MOCVD已经成为工业界主要的镀膜技术。MOCVD制程依用途不同,制程设备也有相异的构造和型态。整套系统可分为1.进料区进料区可控制反应物浓度。气体反应物可用高压气体钢瓶经MFC 精密控制流量,而固态或液态原料则需使用蒸发器使进料蒸发或升华,再以H2、Ar等惰性气体作为carrier而将原反应物带入反应室中。2.反应室反应室控制化学反应的温度与压力。在此反应物吸收系统供给的能量,突破反应活化能的障碍开始进行反应。依照操作压力不同,MOCVD 制程可分为I 常压MOCVD APCVDii低压MOCVD LPCWDiii超低压MOCVD SLCVD。依能量来源区分为热墙式和冷墙式,如分如下(Ⅰ)热墙式由反应室外围直接加热,以高温为能量来源(II)等离子辅助MOCVD(III)电子回旋共振是电浆辅助(Ⅳ)高周波MOCVD(Ⅴ)Photo-MOCVD(Ⅵ)others其中(II)至(VI)皆为冷墙式3.废气处理系统通常以淋洗塔、酸性、碱性、毒性气体收集装置、集尘装置和排气淡化装置组合成为废气处理系统,以吸收制程废气,排放工安要求,对人体无害的气体。一般来说,一组理想的MOCVD 反应系统必需符合下列条件a.提供洁净环境。b反应物于抵达基板衬底之前以充分混合,确保膜成分均匀。c.反应物气流需在基板衬底上方保持稳定流动,以确保膜厚均匀。d.反应物提供系统切换迅速能长出上下层接口分明之多层结构。MOCVD近来也有触媒制备及改质和其它方面的应用,如制造超细晶体和控制触媒得有效深度等。在可预见的未来里,MOCVD制程的应用与前景是十分光明的。

  • 【转帖】分子束外延生长过程

    MBE生长是由发生在衬底的一系列物理化学过程实现的,它是从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]到凝聚相,再通过一些表面过程的结果。这一复杂过程包括的具体过程包括:(1) 来自[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的分子和原子撞击到表面而被吸附;被吸附的分子、原子在衬底表面发生迁移和分解。 (2)原子进入衬底晶格形成外延生长。 (3)未进入衬底晶格的分子、原子因热脱附而离开表面。与其它外延生长不同,MBE外延生长可以认为是一种表面非平衡态生长过程。

  • 【求助】关于外延生长

    现在很多催化剂的形貌都有纳米颗粒与载体的晶格匹配问题,也就是类似于材料物理的外延生长。那么怎么去判断是否属于外延生长呢?比如基体是MnO2,而负载颗粒是Au,那么需要转正MnO2的带轴,然后看两者之间的接触点,看是否晶格匹配?这个过程中就有一个问题,不同MnO2的带轴都能看到晶格匹配么?

  • 强烈建议创办一个MBE(分子束外延)版

    我是一名研究生,使用分子束外延设备制备薄膜。国内拥有此设备的地方不多,但其发展呈上升趋势。所以,我想创建桓鲂掳妫璏BE(分子束外延)版,不知道怎样才能创办。 创办这个版,目的有以下两点: 1、有关MBE设备、及相关书籍、文章在国内还不是那么多,所以在此创 办一个MBE版,可以使所有使用过MBE或对MBE有兴趣的人拥有一个交 流的平台; 2、在此我们可以互相学习,共同研究,促进MBE在国内的发展。 以下是引用的有关MBE的简单介绍及简要回顾: 分子束外延(Molecular Beam Epitaxy)技术在现代超导薄膜(YBCO、BSCCO等)、半导体物理、器件以及GaAs工业发展中起着十分关键的作用。 回顾分子束外延的发展历史,它始终追求的是应用目标,把原子一个个地排列起来,同时将几种不同组分的材料交替地生长,而每种材料的厚度小于电子的平均自由程(100nm),两种不同材料之间的界面平整度在单个原子水平上,重复周期在100次以上,这需要很高的技术。是什么力量促使人们不断完善这一技术,使它成为当今信息产业发展的一项重要技术呢?这得从诺贝尔物理学奖获得者江崎与美籍华人朱兆祥提出的半导体超晶格理论说起,他们设想,如果将两种晶格匹配得好的半导体材料A和B交替生长,则电子沿生长方向( Z 方向)的连续能带将分裂成几个微带。 从而改变了材料的电子结构,他们预言在这种人造材料中可能出现若干新的现象与效应,从而出现了人们常说的能带工程(或能带裁剪),1970 年—2006 年期间,超晶格、继而低维及小量子系统的物理器件的长足发展均与分子束外延以及有机金属[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]淀积技术的发展息息相关) 在此期间,分子束外延技术走向成熟,有若干技术上的突破。 希望仪器信息网的论坛能给我这个机会,我会把这个版创办好的。谢谢!

  • [求助]关于截面外延薄膜样品,位错伯格斯矢量的测定,用JEOL2010。

    [求助]本人近日要用JEOL2010做关于外延材料位错的东西,请教。材料是蓝宝石上外延的GaN薄膜,位错的伯格斯 矢量希望通过汇聚束得到,有以下需要帮助的,或有疑问的,请大哥大姐们不吝赐教:经典的Cherns和Preston的关于会聚束测伯格斯矢量文章无处可得?!如果谁有,请发附件,或是发我邮箱lonelyguy1998@sina.com 。JEOL2010是否适合做会聚束,我们的2010没有特别的附件,平时主要做HR-TEM?是否只是无法做"LA"CBED?还有,聚得很小的电子束 会不会 损坏GaN样品?

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 【求购】求购外延设备信息

    本人受托需要购买外延设备,希望哪位仁兄能够提供性能价格比相对好的公司和介绍.如果有可发邮件和我取得联系:a12984025@163.com

  • 分子量检测标准曲线外延法如何实现

    凝胶四氢呋喃相,标样的分子量是580以上,但是需要测个300的分子量,是否可以采取标线外延法,柱子的最小分子量是500,如果可以的话,请问如何实现?

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 国产碳化硅外延设备供应商纳设智能开启上市辅导

    1月9日,证监会披露了关于深圳市纳设智能装备股份有限公司(以下简称”纳设智能”)首次公开发行股票并上市辅导备案报告。12月27日,纳设智能与中信证券签署了上市辅导协议。据披露,纳设智能控股股东为深圳市鑫隆昌投资有限公司,现直接持有公司34.5161%股份。资料显示,深圳市纳设智能装备股份有限公司成立于2018年10月,坐落于深圳市光明区留学人员创业园。公司以“成为全球先进材料制造设备引领者”为愿景,以提升中国先进材料制造能力为使命,致力于第三代半导体碳化硅外延设备、石墨烯等先进材料制造装备的研发、生产、销售和应用推广。创始团队由国际化合物半导体设备龙头企业唯一的华人高级科学家、多名剑桥大学博士和资深行业专家组成,团队在CVD(化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积)、MOCVD(金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积)、ETCH(刻蚀)等先进半导体制造设备领域具有平均超过15年的研发、生产、销售的经验,是少有的既懂设备开发技术,又懂半导体材料生长工艺的研发型团队。公司于2020年被评定为具有高成长性的“国家高新技术企业”,公司自有第三代半导体碳化硅高温化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积外延设备(用于第三代半导体碳化硅芯片生产的核心环节-外延生长)研发荣登“科创中国”先导技术榜单,也荣获深圳市集成电路产业协会的“最佳化合物半导体设备技术开发奖”,是一款工艺指标优异、耗材成本低、维护频率低的的中国首台完全自主创新的碳化硅外延设备。公司坚持以“效率、效果、效益、自省、自律、自强”为企业核心价值观,聚焦行业与客户需求,质量至上,通过“创新、创意、创造”满足客户对先进材料的生产需求。[来源:集微网]

  • 【求助】高强度空心阴极灯的外延裂了还能用吗?

    【求助】高强度空心阴极灯的外延裂了还能用吗?

    今天实验换灯的时候,不小心把砷灯的外延磕裂了一块出来,位置是在石英窗外面的一圈,请问该灯还能用吗?谢谢了~!附图如下:[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912122258_189724_1633957_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912122302_189725_1633957_3.jpg[/img]的

  • 【求助】有外延关系的两套电子衍射斑的标定,求教大侠

    【求助】有外延关系的两套电子衍射斑的标定,求教大侠

    大虾们好,在我所研究的材料中,陶瓷中晶界相与晶粒具有特定的外延取向关系,但是我对此类电子衍射的标准标定方法却很茫然,请您指点。电子衍射图如下,图中我已经参考孪晶的方法,用平行四边形标定了两套格子,其中B代表晶界相,G代表晶粒。另附有原图,您可以将标准的标法在此图上简单示意,非常感谢!http://ng1.17img.cn/bbsfiles/images/2011/06/201106111818_299260_1138810_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/06/201106111815_299259_1138810_3.jpg

  • 30万左右便携红外烟气分析仪求推荐?

    最近单位想买一个便携的红外烟气分析仪,使用场合主要是燃烧和气化,测量的组分有O2,CO,NO,NO2,SO2,CO2,CH4,H2,H2S,此外可能还有少量的HCl。价格希望在30万左右,红外的(H2、O2、HCl可以不用红外)。初步调研了一下,能同时测HCl的好像比较少,不知道各位大神有没有推荐的?我们想的另一种方案是单独买一个测量HCl的分析仪,其余气体采用烟气分析仪测,不知道这个方案可行吗,普通的HCl分析仪精度能达到烟气分析仪的效果吗? 另外发现一般烟气分析仪的通道比较少,只能同时测四五个,不知道有没有能同时测八九种的烟气分析仪?这样的话以后更换场合可以采用同一个烟气分析仪。谢谢大家了。

  • 崂应3026型 红外烟气综合分析仪讨论

    崂应14年3月份推出 崂应3026型 红外烟气综合分析仪,该台仪器使用情况如何,邀请你来讨论。一、产品概述 仪器是以非分散红外吸收法(NDIR)为核心的产品,主要用于污染源排放管道中有害气体成分的测量,广泛应用于环境监测以及热工参数测量等部门。分析仪用于测量SO2、NOx等有害气体的浓度,与使用电化学传感器测量方法的仪器相比,具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。分析仪研制过程中广泛征求专家及广大用户的意见,采用进口长光程多组分检测器件、创新抗干扰算法、传感器及新材料领域的高新技术,竭力为用户提供一台质量可靠、性能稳定的高品质仪器。二、采用标准◆ JJG968-2002 《烟气分析仪》◆ HJ/T397-2007 《固定源废气监测技术规范》◆ HJ 629-2011 《固定污染源废气 二氧化硫的测定 非分散红外吸收法》◆ HJ 692-2014 《固定污染源废气 氮氧化物的测定 非分散红外吸收法》三、产品优势◆ 采用长光程吸收气室,检测精度高,并可同时测量多种气体;◆ 独创温度、压力和水汽综合补偿算法,有效降低水汽干扰;◆ 采用通用便携式烟气预处理器,体积小、重量轻,提高整机便携性。四、产品特点◆ 采用多组分高精度NDIR(非分散红外吸收法)测量原理,可测量SO2、NO、CO、 CO2和O2(电化学法)等,最多可同时测量7种气体;◆ 分析模块不含任何运动器件,可靠性好;◆ 内置温度、压力和水汽补偿算法,工况适应力强;◆ 内置参比探测器,采用差分算法,消除光源非一致性的影响;◆ 内置精准控温模块,可在严寒地区工作;◆ 高效粉尘过滤功能,滤芯可重复使用,拆卸清洗方便;◆ 配备便携式烟气预处理器,具有体积小、重量轻、方便携带的特点;

  • 【转帖】在外延生长过程中,三种常见的生长模式

    (1) 层状生长模式(Frank-van der Merwe mode ,FVDM模式)。当吸附原子与衬底之间相互作用强与原子之间相互作用时,发生层状生长。(2) 岛状生长模式(Volmer-Weber mode, V-W模式)。当吸附原子或分子之间的相互作用强于吸附原子与衬底之间的相互作用时,吸附原子在衬底表面以原子团形式成核,发生三维岛状生长。(3) 混合生长模式(Stranski-Krastanov mode, S-K模式)。介于两者之间的过程,先是层装生长,超过一临界值后转化为岛状生长。

  • 用于透射电镜观察的薄膜表面样品制备

    用于透射电镜观察的薄膜表面样品制备

    [img=薄膜样品以及观察方向,527,378]https://ng1.17img.cn/bbsfiles/images/2018/12/201812010917341133_6340_3514662_3.jpg!w527x378.jpg[/img]如上图所示,要观察外延膜的表面结构,要怎么制样?方案1:手磨衬底一面,比较薄之后钉薄,钉到比较薄之后离子减薄(耗时)方案2:FIB,只减薄衬底一面,最后得到的样品含衬底方案3:显微镜下敲碎,找膜露出来的地方用于观察请问还有更好的方案吗?

  • 【求助】真诚 急切求助选区电子衍射标定问题

    [em0808][em0808][em0808] 大家好,小弟最近做了选区电子衍射,我是在GaAs基底上外延的MnAs薄膜,做的选区电子衍射结果大致如下,有两套,一套是GaAs基底的,为有心矩形,一套是MnAs外延膜的,为小的矩形.通过XRD 初步确定MnAs为六角和正交两相共存,但选区电子衍射由于正交MnAs含量较少没表现出来.问题是这样的,我现在已经把GaAs基底的标定出来了,并且通过GaAs标定了相机常数,原来为20.08,标定后为18.4,这样我用标定后的准确的相机常数算MnAs的晶面间距,算出来太大,接近六,在六角MnAs的PDF卡片中根本没有这么大的晶面间距,最大3.2几,想问下各位大侠,问题出在什么地方呢?我试图通过跟六角标准电子谱图比较,但没有一个跟我的相同,有一个相近,但是在禁止衍射斑点的地方有衍射斑点出现.急切等待高手的指点.不胜感激!!!!!!!!

  • 石墨烯制备方法

    [b]机械剥离法[/b]机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构。2004年,英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法,这种方法一度被认为生产效率低,无法工业化量产。 虽然这种方法可以制备微米大小的石墨烯,但是其可控性较低,难以实现大规模合成。[b]氧化还原法[/b]氧化还原法是通过使用硫酸、硝酸等化学试剂及高锰酸钾、双氧水等氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨(Graphite Oxide)。然后将反应物进行水洗,并对洗净后的固体进行低温干燥,制得氧化石墨粉体。通过物理剥离、高温膨胀等方法对氧化石墨粉体进行剥离,制得氧化石墨烯。最后通过化学法将氧化石墨烯还原,得到石墨烯(RGO)。这种方法操作简单,产量高,但是产品质量较低。氧化还原法使用硫酸、硝酸等强酸,存在较大的危险性,又须使用大量的水进行清洗,带大较大的环境污染。使用氧化还原法制备的石墨烯,含有较丰富的含氧官能团,易于改性。但由于在对氧化石墨烯进行还原时,较难控制还原后石墨烯的氧含量,同时氧化石墨烯在阳光照射、运输时车厢内高温等外界每件影响下会不断的还原,因此氧化还原法生产的石墨烯逐批产品的品质往往不一致,难以控制品质。[b]取向附生法[/b]取向附生法是利用生长基质原子结构"种"出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,最终镜片形状的单层的碳原子会长成完整的一层石墨烯。第一层覆盖后,第二层开始生长。底层的石墨烯会与钌产生强烈的相互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。[b]碳化硅外延法[/b]SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。[b]赫默法[/b]通过Hummer法制备氧化石墨 将氧化石墨放入水中超声分散,形成均匀分散、质量浓度为0.25g/L~1g/L的氧化石墨烯溶液,再向所述的氧化石墨烯溶液中滴加质量浓度为28%的氨水 将还原剂溶于水中,形成质量浓度为0.25g/L~2g/L的水溶液 将配制的氧化石墨烯溶液和还原剂水溶液混合均匀,将所得混合溶液置于油浴条件下搅拌,反应完毕后,将混合物过滤洗涤、烘干后得到石墨烯。[b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法即(CVD)是使用含碳有机气体为原料进行[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制得石墨烯薄膜的方法。这是目前生产石墨烯薄膜最有效的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。由于石墨烯薄膜的厚度很薄,因此大面积的石墨烯薄膜无法单独使用,必须附着在宏观器件中才有使用价值,例如触摸屏、加热器件等。[b]低压[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]是部分学者使用的,其将单层石墨烯在Ir表面上生成,通过进一步研究可知,这种石墨烯结构可以跨越金属台阶,连续性的和微米尺度的单层碳结构逐渐在Ir表面上形成。 毫米量级的单晶石墨烯是利用表面偏析的方法得到的。厘米量级的石墨烯和在多晶Ni薄膜上外延生长石墨烯是由部分学者发现的,在1000℃下加热300纳米厚的Ni 膜表面,同时在CH4气氛中进行暴露,经过一段时间的反应后,大面积的少数层石墨烯薄膜会在金属表面形成。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制