当前位置: 仪器信息网 > 行业主题 > >

脱酰胺胰岛素

仪器信息网脱酰胺胰岛素专题为您整合脱酰胺胰岛素相关的最新文章,在脱酰胺胰岛素专题,您不仅可以免费浏览脱酰胺胰岛素的资讯, 同时您还可以浏览脱酰胺胰岛素的相关资料、解决方案,参与社区脱酰胺胰岛素话题讨论。

脱酰胺胰岛素相关的论坛

  • 胰岛素-人工胰岛素-人工合成胰岛素

    胰岛素-人工胰岛素-人工合成胰岛素

    胰岛素是由胰脏内的胰岛β-细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等物质刺激而分泌的一种蛋白质激素。胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成,因此,胰岛素在人体新陈代谢中起着重要作用。如果机体内胰岛素的量不足就会引发糖尿病,目前胰岛素依然是治疗糖尿病的特效药,因此胰岛素的人工合成技术一直是生物医药领域研究的热点。(请移步百度搜“合肥国肽生物”即可)现在采用的基因工程技术有两种方法可以让微生物发酵产生胰岛素。一种就是先在大肠杆菌中分别合成胰岛素A链和B链,然后在体外用化学方法将两条链连接成胰岛素。而另一种是采用分泌型载体表达胰岛素原,然后将其转化为胰岛素。[align=center][img=,696,264]https://ng1.17img.cn/bbsfiles/images/2019/03/201903191636238364_2915_3531468_3.jpg!w696x264.jpg[/img][/align]近年来,重组人胰岛素已在临床上广泛应用,但是由于胰岛素分子非常容易聚合,在浓度较高的胰岛素注射液中主要以二体和六体的形式存在。为解决这个难题,通过蛋白质工程开发出的单体速效胰岛素也应运而生。胰岛素的合成相较于普通含有多对二硫键的多肽,难点在于其结构中包含了分子间与分子内的两种二硫键,使得几对二硫键的特异性定点形成更加困难,产率低,纯度低等结果不可避免地出现了。[align=center][img=,694,773]https://ng1.17img.cn/bbsfiles/images/2019/03/201903191636420965_8665_3531468_3.jpg!w694x773.jpg[/img][/align]固相合成法合成胰岛素是我们国肽生物的代表性技术,我们所具有的成熟的胰岛素合成工艺已经得到了国内外客户的广泛认可和肯定。我们的胰岛素产品突破了以往的收率低,纯度不高等缺陷,能够进行大批量生产,并且产品纯度能够高达99%,国肽生物是值得客户信任的胰岛素供应品牌。[img=,220,52]https://ng1.17img.cn/bbsfiles/images/2019/03/201903191637138335_1412_3531468_3.jpg!w220x52.jpg[/img]

  • 人工胰岛素

    人工胰岛素

    [font=宋体][font=宋体]胰岛素是由胰脏内的胰岛[/font]β[font=Calibri]-[/font][font=宋体]细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等物质刺激而分泌的一种蛋白质激素。胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成,因此,胰岛素在人体新陈代谢中起着重要作用。如果机体内胰岛素的量不足就会引发糖尿病,目前胰岛素依然是治疗糖尿病的特效药,因此胰岛素的人工合成技术一直是生物医药领域研究的热点。【详情请咨询国肽生物】现在采用的基因工程技术有两种方法可以让微生物发酵产生胰岛素。一种就是先在大肠杆菌中分别合成胰岛素[/font][font=Calibri]A[/font][font=宋体]链和[/font][font=Calibri]B[/font][font=宋体]链,然后在体外用化学方法将两条链连接成胰岛素。而另一种是采用分泌型载体表达胰岛素原,然后将其转化为胰岛素。[/font][/font][font=宋体][font=宋体][img=,690,261]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091444100160_3142_3531468_3.jpg!w690x261.jpg[/img][/font][/font][font=宋体][font=宋体][font=宋体]近年来,重组人胰岛素已在临床上广泛应用,但是由于胰岛素分子非常容易聚合,在浓度较高的胰岛素注射液中主要以二体和六体的形式存在。为解决这个难题,通过蛋白质工程开发出的单体速效胰岛素也应运而生。[/font][font=宋体]胰岛素的合成相较于普通含有多对二硫键的多肽,难点在于其结构中包含了分子间与分子内的两种二硫键,使得几对二硫键的特异性定点形成更加困难,产率低,纯度低等结果不可避免地出现了。[/font][/font][/font][font=宋体][font=宋体][font=宋体][img=,690,768]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091444294227_180_3531468_3.jpg!w690x768.jpg[/img][/font][/font][/font][font=宋体][font=宋体][font=宋体]固相合成法合成胰岛素是我们国肽生物的代表性技术,我们所具有的成熟的胰岛素合成工艺已经得到了国内外客户的广泛认可和肯定。我们的胰岛素产品突破了以往的收率低,纯度不高等缺陷,能够进行大批量生产,并且产品纯度能够高达[/font]99%[font=宋体],国肽生物是值得客户信任的胰岛素供应品牌。[/font][/font][/font][font=宋体][font=宋体][font=宋体][img=,690,143]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091444579464_9593_3531468_3.jpg!w690x143.jpg[/img][/font][/font][/font]

  • 【求助】胰岛素的液相检测方法

    【求助】胰岛素的液相检测方法

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012121407_266513_1648802_3.jpg本人现在用液相方法检测胰岛素,可是问题是我按照参考文献和药典的方法配置的流动相后,胰岛素的峰形有很严重的拖尾问题,开始用的是小孔径的色谱柱,后来用了300唉孔径的柱子,可还是拖尾,不过比以前有改善,请问有高手给我解决一下吗,十分感谢!7.5min 出的峰就是胰岛素的峰

  • 胰岛素制剂的来源和制备工艺

    胰岛素制剂在临床上的应用日趋广泛,其分类和命名方式较为复杂,易导致概念混淆,使用不当,本文针对胰岛素制剂的分类和特点作一概述,以便我们更好地为病人提供药学服务。胰岛素制剂可根据胰岛素来源、制备工艺、作用时间长短等来进行分类。1.根据胰岛素来源胰岛素制剂可分为人胰岛素、猪胰岛素、牛胰岛素。动物胰岛素与人胰岛素的区别在于结构上氨基酸序列的不同,因而动物胰岛素存在一定的免疫原性,可能在人体产生抗体而致过敏反应。另外,动物胰岛素的效价低,由动物胰岛素换用人胰岛素时,剂量应减少15%~20%,否则会增加低血糖风险。2.根据制备工艺2.1 经动物胰腺提取或纯化的猪、牛胰岛素,目前传统的普通结晶的动物胰岛素逐渐被淘汰,取而代之的是单组分或高纯化胰岛素,是指经凝胶过滤处理后的胰岛素,再用离子交换色谱进行纯化,以进一步降低胰岛素原的含量并去除部分杂质。2.2 半合成人胰岛素:以猪胰岛素为原料进行修饰得到的人胰岛素。2.3 生物合成人胰岛素:用重组DNA技术生产的人胰岛素,又称重组人胰岛素,为中性可溶性单组分人胰岛素。2.4 胰岛素类似物:通过重组DNA技术,对人胰岛素氨基酸序列进行修饰生成的可模拟正常胰岛素分泌和作用的一类物质。目前已用于临床的有赖脯胰岛素;门冬胰岛素;甘精胰岛素;地特胰岛素。人胰岛素为六聚体,皮下注射不能直接进入血液循环,必须解聚成单体或二聚体才能透过毛细血管进入循环。而不同个体分解和吸收的差异较大,导致最后进入循环的胰岛素量会有明显差异。另一方面,胰岛素混悬液若混合不充分或形成晶体会使吸收率降低,不同的注射部位也会影响最后的作用效果,这使得人胰岛素不能很好地重建人体正常的生理性胰岛素的分泌。胰岛素类似物克服了人胰岛素的这些不足,其中速效胰岛素类似物起效、达峰及维持正常时间较人胰岛素缩短,更符合生理餐后胰岛素谱,长效胰岛素类似物吸收变异小,作用时间长,更好地模拟人体生理基础胰岛素分泌。

  • 【分享】胰岛素产品的发展趋势

    [center]胰岛素产品的发展趋势[/center]1、市场规模持续扩大 随着人口老龄化、饮食失调、运动减少和肥胖人数的持续增多,无论在发达国家或是发展中国家,糖尿病的发病率将越来越高。据WHO统计,糖尿病的发病率已超过世界人口增长速度的两倍,1985年全世界有3000万糖尿病人,到1997年增加至1.35亿,现在全球糖尿病病人约有1.5亿。仅美国,糖尿病患者就达1630万人,并以人口增长率的5倍速度增长。据糖尿病流行病学专家预测,到2025年全球糖尿病患者将达到3亿,其中75%在印度、中国等发展中国家,这主要是肥胖人口的比例的增加和平均寿命的延长等原因造成的。 有资料显示,1979年我国成人的糖尿病发病率不足1%,目前已上升到2.5-3.25%。1994年全国普查结果表明,我国糖尿病率患病率已超过2.5%,目前全国糖尿病已超过3000万人,并且每年还在以78万人的幅度递增,其中半数以上的病人不知道自己已患病。总体上,北方发病率高于南方。上海地区目前发病率超过4%,估计患病人口约50万人。另据1998年进行的一项调查结果显示,与1993年相比,我国1998年糖尿病患病率,城市上升53%,农村竟上升128%。国为胰岛素迄今为止仍是抗糖尿病最有效的药物之一,越来越多的糖尿病患者将不得不使用胰岛素以提高生活质量,这将带动这个市场不断增长。估计全国胰岛素市场规模在4亿元左右。未来几年随着国内基因重组人胰岛素的大规模上市促销和居民经济消费水平的提高,预计胰岛素市场将以10-20%的速度增长。 2、市场将继续向外资品牌集中 随着外资企业的本土化、新技术产品的引进以及市场开发成本的降低等,外资企业生产的重组人胰岛素将进一步挤压已经衰退的动物胰岛素市场份额。国产的动物胰岛素将逐步退出大中城市,转向小城市及农村市场。集有多种优势的外资企业将在相当长的时期内继续占据主导地位,并不断扩大市场占有率,这应引起国内众多相关厂商的高度关注。 3、胰岛素产品的发展趋势 短期内重组人胰岛素将继续取代动物胰岛素;400U/10ml×1和300U/3ml×1仍为胰岛素的主流规格;中效胰岛素仍最受欢迎。从长远角度来看,非注射型胰岛素将替代传统型的注射剂型。不少病人因长期自我注射胰岛素致使身上扎满了针眼,然而吸入型胰岛素的出现将使这些痛苦成为过去。国外有关公司已开发上市2种干粉吸入式胰岛素新制剂:(1)速效胰岛素干粉吸入剂Humalog(美国礼来公司开发上市,2000年销售额达3.5亿美元);(2)长效胰岛素干粉吸入剂Humulin,由安万特(Aventis)公司、Inhale治疗剂公司和辉瑞公司共同开发的吸入型人胰岛素(Exubera)将完成第三阶段的临床试验,期望在2002年初上市。 Generox公司的口服胰岛素,是气雾释放进入口中的液体配方,目前也处于第三阶段的试验中。 因此笔者预计在不远的将来,形形色色的非注射型精确释药人胰岛素将成为降血糖领域的畅销商品,而传统的注射剂将逐淡出舞台;与此同时,传统的口服降糖药物也将因为疗效以及肝、肾毒性的原因而失去部分市场。三、讨论与建议 胰岛素是个临床应用多年、疗效确切、市场成熟的老品种,呈现市场规模扩张和市场份额重新洗牌的趋势,其销售额已占降糖药物市场的10%。 专业化推广的外资品牌基因胰岛素已抢占了60%以上的市场份额,而上市近4年之久的国产基因胰岛素在大城市医院的市场份额几乎为零,所不不重视甚至无终端促销队伍的国内各胰岛素药厂应改变营销观念和模式,建立终端市场开拓队伍。我国有广阔的市场,9亿人口在小城市及农村,动物胰岛素的国内药厂应将市场投入重点转向外资企业的薄弱地区市场,即不断增长、潜力巨大但用药水平相对较低的省会城市以下的二级市场。另外,基因胰岛素已有5-6家竞争且市场集中度已较高,建议生产厂商不要轻易介入,而应采取差异化战略,研发有特色的新剂型。

  • 【分享】高同型半胱氨酸血症致胰岛素抵抗机理研究取得创新进展

    [center]高同型半胱氨酸血症致胰岛素抵抗机理研究取得创新进展[/center]胰岛素抵抗是糖尿病前期症状,广泛危害人类健康,但其机制尚未完全阐明。北京大学医学部生理与病理生理学系王宪教授领导的研究室从脂肪细胞因子的角度,就抵抗素在致炎因素高同型半胱氨酸血症促进脂肪组织胰岛素抵抗发病机制中的作用,进行了系列研究并取得创新进展。研究成果论文最近已发表在本领域国际顶级杂志《糖尿病》(《Diabetes》)上。 研究结果显示,在小鼠饮水中补充同型半胱氨酸造成高同型半胱氨酸血症模型4周后,可以观察到任意血糖的明显升高和胰岛素敏感性的显著下降;同型半胱氨酸处理的脂肪细胞,对胰岛素刺激下的葡萄糖摄取能力亦明显降低。高同型半胱氨酸血症小鼠附睾白色脂肪组织中抵抗素基因及蛋白表达显著上调,血中的抵抗素水平显著增高;给予原代培养的大鼠附睾脂肪细胞同型半胱氨酸刺激,结果发现同型半胱氨酸可以呈时间、剂量依赖性上调脂肪细胞中抵抗素的表达。抵抗素是脂肪组织特异性分泌的脂肪细胞因子,具有强烈的致胰岛素抵抗作用,与2型糖尿病的发生密切相关。以上结果证实,致炎因素高同型半胱氨酸血症的致胰岛素抵抗作用是通过抵抗素来实现的,从而为阐明高同型半胱氨酸血症致胰岛素抵抗发生的机制提供了新证据。 据该研究室李茵博士介绍,同型半胱氨酸是体内蛋氨酸脱甲基生成的一种含巯基的氨基酸,如果与同型半胱氨酸代谢有关的酶或辅助因子(如叶酸和维生素B12等)缺乏,则会使同型半胱氨酸代谢受阻,导致高同型半胱氨酸血症。亚洲人可能因遗传和环境因素的不同,高同型半胱氨酸血症的发病率明显高于欧洲人。我国现阶段由于精细食品的过度加工,造成大量B族维生素流失,同型半胱氨酸代谢受阻,高同型半胱氨酸血症的发病率显著增加。因此,该研究成果将有助于阐明胰岛素抵抗的发生和发展中致炎因素高同型半胱氨酸的作用和地位,为早期预防与缓解胰岛素抵抗的发生、发展和今后筛选干预胰岛素敏感性的药物提供新途径。信息来源:中国医药报

  • 胰岛素HPLC检测,出峰时间漂移,求助胰岛素分析注意事项

    用反相C18柱,0.1mol/l高氯酸钠-0.05mol/lL硫酸钠-三氟乙酸缓冲盐体系,保留时间在12min~24min之间变化,尤其是当天停泵后第二天再次做时保留时间就会漂的很厉害,前几针尤其严重,我用的是Waters 2695系统!有做胰岛素分析的朋友吗,是否要注意什么细节啊?

  • 【求助】关于胰岛素大分子蛋白的测定问题

    胰岛素原料的大分子蛋白测定药典要求流速是每小时23毫升。这样测定一次就需要十几个小时。我第一次测就让仪器走了一夜。我第二次提高了近十倍的速度,结果测得的曲线几乎几乎没什么差别!在此想请教做过此实验的高手们,你们的经验是什么呢?速度真的一定要那么慢吗?

  • 糖尿病人打胰岛素会成瘾吗?

    如今,随着人民生活质量的提高,大多数人都有了富贵病!例如糖尿病。有一部分糖尿病患者都认为,打胰岛素就像抽大烟一样,一旦用上,就如附骨之蛆,挥之不去,因此将其视为洪水猛兽,那么,这是真的么?大家如何看呢?

  • 超临界流体–乳液干燥法制备可吸入胰岛素微粒

    超临界流体–乳液干燥法制备可吸入胰岛素微粒

    发篇技术文章,呵呵.....---------------------------------------------------------------------在这项研究中,一个新的使用高压CO2的专利乳液干燥技术被用于制备精细的胰岛素微粒。油和水的乳液滴被喷雾到连续加入的高压CO2中。经细小液滴膨胀,水被CO2与有机溶液的混合物去除,即沉析得到胰岛素微粒。使用这种新工艺制备得到微米尺度胰岛素微粒(95%以上的胰岛素微粒的直径低于5µ m)。生物活性被完整保留,并似乎在经过超临界CO2处理后得到了加强。这项基于使用超临界CO2进行水和油的乳液干燥的新工艺被设计用于直接从水溶液制备胰岛素等蛋白质的精细微粒。实验结果显示了几个关键优势:-使用这种工艺制得的微粒一般是球状的,直径在1到5微米之间,符合吸入的要求。-生物分子的干燥在低温下实现,无需直接接触易脆的分子和有机溶剂,保持了生物活性。-稳定剂或赋形剂能在乳状液中与生物分子混合,以实现一步式沉积和预表达全文请到德国未来化学科技公司网站的服务中心栏目下载:www.futurechemtech.com[img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603211541_15361_1707231_3.jpg[/img]

  • 关于USP34中胰岛素锌含量的测定方法讨论

    USP34中关于胰岛素的锌含量测定原文:Zinc content 591 — Determine the zinc content of about 10 mg of it, accurately weighed: not more than 1.0% is found, calculated on the dried basis. 大概意思是:精密称取10mg样品,按干燥品计算其含量不超过1.0%。而在591中,原文“591 ZINC DETERMINATION The need for a quantitative determination of zinc in the Pharmacopeial insulin preparations reflects the fact that the element is an essential component of zinc-insulin crystals. In common with lead, zinc may be determined either by the dithizone method or by atomic absorption. ”红色字体,大概意思是“通常铅,锌的含量的测定,可以用双硫腙法或原子吸收法测定。而591这段前言后,紧接的介绍的方法就只有dithizone method(双硫腙法)了。而在EP7.0中,关于胰岛素锌含量的测定原文就直接选用了atomic absorption spectrometry。照理,美国药典一般都和欧洲药典保持一致的啊。小弟的疑惑是,按照美国药典的规定,锌含量的测定,是否只能用dithizone method而不能用atomic absorption(原子吸收呢)?各位大虾,麻烦大家多多指教!现上传USP591原件

  • 超临界流体–乳液干燥法制备可吸入胰岛素微粒

    在这项研究中,一个新的使用高压CO2的专利乳液干燥技术被用于制备精细的胰岛素微粒。油和水的乳液滴被喷雾到连续加入的高压CO2中。经细小液滴膨胀,水被CO2与有机溶液的混合物去除,即沉析得到胰岛素微粒。使用这种新工艺制备得到微米尺度胰岛素微粒(95%以上的胰岛素微粒的直径低于5µ m)。生物活性被完整保留,并似乎在经过超临界CO2处理后得到了加强。这项基于使用超临界CO2进行水和油的乳液干燥的新工艺被设计用于直接从水溶液制备胰岛素等蛋白质的精细微粒。实验结果显示了几个关键优势:-使用这种工艺制得的微粒一般是球状的,直径在1到5微米之间,符合吸入的要求。-生物分子的干燥在低温下实现,无需直接接触易脆的分子和有机溶剂,保持了生物活性。-稳定剂或赋形剂能在乳状液中与生物分子混合,以实现一步式沉积和预表达全文请到未来化学科技公司网站的服务中心栏目下载:www.futurechemtech.com[color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 多肽合成 胰岛素 同位素标记 磷酸化 二硫键 多肽公司

    合肥国肽生物科技有限公司(简称:国肽生物TM)成立于2014年,是一家专业从事多肽产品的研发、生产和销售以及多肽技术转让的高新技术企业。BP公司成立之初,便成功收购了国内几家多肽、抗体公司,是目前国内的专业多肽合成、抗体制备、蛋白表达的规模型生产企业。国肽生物专长于荧光标记肽、同位素标记肽、人工胰岛素、药物肽、化妆品肽、长肽困难肽等产品的合成与研发,致力于学术水平的科研提升,搭建学术交流平台,促进前沿、专业的学术知识推广,推动多肽在生物医学材料等领域的研究与应用。公司产品广泛应用于药物研发,抗体的制备(包括单抗与双抗),荧光分子探针的构建以及细胞透膜研究、活体成像、新型材料研发和质谱分析等研究领域国肽生物按照客户定制要求供应高品质普通多肽。我们拥有成熟的多肽合成纯化方法,利用SPPS方法和液相合成方法为客户提供高品质多肽。我们的服务特点是:1. 纯度:我们提供粗品肽和纯度纯度为70%,75%,80%,85%,90%,95%,98%,99%的纯品多肽。2.脱盐和转盐:根据客户要求,我们可以对多肽进行脱TFA盐处理,也可以转为醋酸盐。3.交货期限:30个氨基酸之内,一般2-3周,最快1-2周。4.质量控制:每条多肽都免费提供合格的HPLC,MS和COA文件。5.售后服务:1-2周内可以提出异议,我们免费复测,不合格免费退货,1-3个月内使用不合格可以免费提供复测,样品免费保存3个月。国肽生物根据客户要求,供应各种修饰型多肽。1.磷酸化的Ser、Tyr和Thr修饰的多肽:我们提供单磷酸化和多磷酸化多肽服务,目前我们已经能够提供四个磷酸化位点修饰的多肽。2.5(6)-FAM,FITC,CY5,RhodamineB,PNA,EDNAS/dabcyl等荧光标记修饰的多肽:荧光标记修饰多肽技术是我们国肽生物的代表性多肽合成技术,我们的这项技术已经相当成熟。3.生物素Biotin,Lys(Biotin)修饰的多肽:生物素是维生素B2的组成部分,Biotin,Lys(Biotin)修饰的多肽也是客户经常定制的多肽。我们提供生物素修饰的多肽已经有将近100%的成功率。4.含有一对或多对二硫键修饰的多肽:二硫键在蛋白质的结构稳定中起到重要作用,目前我们已经能够为客户提供四对二硫键修饰的多肽。5.含有同位素C13,N15修饰的多肽:同位素标记的多肽主要应用于医学和生物学领域,通常价格较高,为了满足客户需要,我们接受微克级的同位素多肽定制。6.含有特殊氨基酸修饰的多肽:例如,D型氨基酸,氨基酸衍生物,脂肪族羧酸等等,都在我们接受的定制范围内。国肽生物提供150个氨基酸以内的长肽合成服务。多肽合成过程中,肽链过长时,经常会出现缺残基,氨基酸缩合困难等情况,基于这些现象,我们开发了三种有效提高反应成功率的方案:1. 微波合成法:对于合成过程中出现的一些难以缩合的氨基酸,我们采用微波法进行合成,该方法效果显著,并且大大缩短了反应时间。2. 片段合成法:当某些多肽用常规合成方法合成困难,我们也会采用将多肽中某一段的某几个氨基酸缩合之后作为一个整体缩合到肽链上去,这种方法也能够解决许多合成中存在的问题。3.酰肼合成法:酰肼法合成多肽的方法是将固相合成的 N末端Cys 多肽和 C末端多肽酰肼之间的化学选择性反应形成酰胺键而实现多肽的连接,该方法根据肽链中Cys的位置,将整条肽链分成多条序列分别合成,最终经过液相缩合反应得到目标肽,显著地提高了最终产物纯度,广泛适用于含有Cys的长链多肽的合成。国肽生物拥有成熟的长肽合成工艺,能够根据客户定制的多肽序列,快速有效地设计合成方案并迅速开始合成,更快更好的为客户提供所需的服务是我们不变的坚持。详情请咨询合肥国肽生物www.bankpeptide.com

  • 胰岛素检测--月旭vs日本TSK gel2000SWXL

    胰岛素检测--月旭vs日本TSK gel2000SWXL

    样品:小牛血清蛋白提取液检测目的:测定胰岛素样品中的高分子物质色谱条件:按照国家样品监督管理局国家药品标准(乙腈:三氟乙酸:水=40:0.1:60)检测波长:214 nm进样量:20 μL进样浓度:2.5 mg/mL(样品用流动相溶解)色谱柱:Ultimate SEC-120色谱图:http://ng1.17img.cn/bbsfiles/images/2012/12/201212121049_411956_1628076_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212121049_411957_1628076_3.jpg下图是日本东曹公司TSK GEL2000SWXL色谱柱检测胰岛素的谱图。http://ng1.17img.cn/bbsfiles/images/2012/12/201212121049_411958_1628076_3.jpg呵呵!哪个检测效果更好,应该看得很明显了!月旭SEC色谱柱简介:月旭SEC色谱柱是硅胶基质的体积排阻色谱柱,在高纯硅胶表面键合了亲水聚合物以及亲水性二醇基官能团。双重键合机制使水溶性高分子聚合物、蛋白、生物酶、多肽等生物样品的吸附性极小,因而可广泛应用于水溶性聚合物及生物大分子的分离和测定。

  • 液相色谱测定胰岛素,没有出现主峰,不知道怎么回事

    液相色谱测定胰岛素,没有出现主峰,不知道怎么回事

    [color=#444444]液相色谱测定胰岛素,使用的柱子是ZORBAXEclipsePlusC18 ,流动相为:A相:0.025mol/L无水硫酸钠,0.025mol/L磷酸二氢钠,B相:乙腈, A:B=72:28 ,柱温40℃, 流速1.0ml/min, 波长214nm,做出来的图是这样的,没有出现主峰,不知道怎么回事,请各位大神帮忙分析一下什么原因?谢谢[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051402247978_6353_1848218_3.jpg!w690x517.jpg[/img][/color][color=#444444][/color]

  • 关于EP7.0中人胰岛素中溶解性的描述讨论

    EP7.0中,胰岛素溶解性原文“Solubility:practically insoluble in water and in ethanol(96 per cent).It dissolves in dilute mineral acids and with decomposition in dilute solutions of alkali hydroxides"中文翻译:溶解性:几乎不溶于水和乙醇(96%),在稀无机酸中可溶,能与稀碱性氢氧化物混溶。不知翻译是否恰当。请问“It dissolves in dilute mineral acids and with decomposition in dilute solutions of alkali hydroxides”里描述的溶解性,到底对应凡例中的“very soluble,freely soluble,soluble,sparingly soluble,slightly soluble,very slightly soluble,practically insoluble "哪个呢?中国药典规定本品在水、乙醇和乙醚中几乎不溶,在稀盐酸和稀氢氧化钠中易溶。

  • pH敏感性壳聚糖/海藻酸钠聚电解质复合物在胰岛素口服递送中的应用

    【序号】:1【作者】: 陈婷婷【题名】:pH敏感性壳聚糖/海藻酸钠聚电解质复合物在胰岛素口服递送中的应用【期刊】:南方医科大学 【年、卷、期、起止页码】:2019【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201902&filename=1019171613.nh&uniplatform=NZKPT&v=wqSWdVnWsx01Fzu2oYBmRz1R03rkOOjDCnPuTwbAjWuuYO3QEy-32xYaTpM2BNA3[/url]

  • 荷叶碱激活TFEB介导的自噬溶酶体通路改善肝脂肪变性和胰岛素抵抗

    [size=14px] [/size] [size=14px] [/size] [size=14px]非酒精性脂肪性肝病(NAFLD)的特征是肝脂肪变性和胰岛素抵抗,目前尚无批准的针对NAFLD的有效药物疗法。荷叶碱(Nuciferine)是一种含有生物碱的芳香环,是从荷叶中提取的主要活性成分,已被证明对代谢综合征具有广泛的药理活性,包括抗氧化剂,抗肥胖和抗炎作用。尽管现代药理学认为,荷叶碱能够改善肥胖及其相关的代谢紊乱性疾病,但荷叶碱改善NAFLD的作用靶点及发挥作用的分子机制并不清楚。[/size] [size=14px] [/size] [size=14px]2022年6月,吉林大学动物医学学院刘国文教授和李心慰教授团队在Acta Pharm Sin B(IF=14.5)发表题为“Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy–lysosomal pathway”的文章,发现荷叶碱与Ragulator的HBXIP亚基互作,并损害Ragulator复合物与Rag GTP 酶的相互作用,从而抑制mTORC1的溶酶体定位和活性,激活TFEB介导的自噬-溶酶体通路,从而改善肝脂肪变性和胰岛素抵抗。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]1、荷叶碱缓解HFD小鼠肝脏脂质积累、胰岛素抵抗、氧化应激和炎症反应[/size] [size=14px] [/size] [size=14px]作者首先开展体内实验,荷叶碱处理显著减少HFD喂养的小鼠体重,增加肝脏重量和肝脏重量,减轻肝脂肪变性,降低空腹血中甘油三酯、葡萄糖和胰岛素的浓度,改善葡萄糖耐量和胰岛素敏感性,缓解肝脏氧化应激和炎症反应。这些数据表明荷叶碱可缓解HFD小鼠的肝脏中的脂质积累,胰岛素抵抗,氧化应激和炎症。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、荷叶碱激活NAFLD小鼠的肝自噬-溶酶体通路[/size] [size=14px] [/size] [size=14px]作者通过转录组学分析确定荷叶碱对NAFLD的影响,发现受荷叶碱处理影响的基因富集在自噬、溶酶体和脂质代谢,并通过qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]得到验证,数据表明自噬-溶酶体通路(ALP)参与了荷叶碱治疗对NAFLD的有益作用。TFEB通过上调相关基因来控制自噬体和溶酶体生物发生,作者发现荷叶碱增强HFD小鼠中细胞核与胞质TFEB的比率,增加了TFEB的蛋白质丰度。此外,通过使用溶酶体蛋白酶抑制剂,作者发现荷叶碱增加了HFD小鼠中P62的降解和LC3-II的形成,表明荷叶碱增加了肝自噬通量。除自噬外,荷叶碱处理还增强了溶酶体功能,如溶酶体膜标志物LAMP1和CTSD丰度升高,以及溶酶体蛋白酶活性增加。这些数据表明,荷叶碱激活HFD小鼠肝脏中的TFEB和自噬-溶酶体通路。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]3、荷叶碱通过TFEB激活自噬-溶酶体通路[/size] [size=14px] [/size] [size=14px]作者进一步证实荷叶碱对TFEB和自噬-溶酶体通路活化的作用,发现荷叶碱增加TFEB的核定位,增强溶酶体功能。用荷叶碱和自噬通量抑制剂CQ处理的细胞检测P62和LC3-II丰度表明荷叶碱诱导自噬体形成和溶酶体降解。这些体外和体内结果进一步强调了荷叶碱对TFEB和自噬-溶酶体通路的激活作用。接着作者发现敲除TFEB消除了荷叶碱诱导的 P62降解、LC3-II 形成。此外,在饲喂HFD的肝细胞特异性TFEB敲除小鼠中,荷叶碱不显著影响肝自噬活性,也不影响溶酶体功能。这些结果表明荷叶碱对ALP的激活作用是由TFEB介导的。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、敲除肝脏TFEB阻断荷叶碱对NAFLD的有益作用[/size] [size=14px] [/size] [size=14px]作者进一步在体外敲低TFEB,发现抑制了荷叶碱对HepG2细胞中脂质积累、胰岛素抵抗、氧化应激和炎症反应的改善作用。此外,在肝细胞特异性TFEB敲除小鼠中,荷叶碱未能各种有益功效。这些数据表明,TFEB依赖性诱导自噬-溶酶体通路是荷叶碱介导的对NAFLD的有益作用的主要原因。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]5、荷叶碱以mTORC1依赖性方式触发TFEB核易位[/size] [size=14px] [/size] [size=14px]已有研究报道转录因子TFEB是自噬溶酶体通路的主要调节因子,被溶酶体表面的mTORC1磷酸化,使其保留在细胞质中并抑制其转录活性。Rags(RagC/RagD和RagA/RagB)和Ragulator(P18、P14、MP1、C7orf59、HBXIP组成)处于mTORC1上游可直接激活mTORC1并将mTORC1锚定在溶酶体。作者发现通过coIP实验发现荷叶碱抑制Rags和Ragulator相互作用,且抑制P14与P18、MP1、C7orf59、HBXIP之间的相互作用,表明荷叶碱通过损害Ragulator与Rags的相互作用来促进TFEB核定位,从而抑制其被mTORC1磷酸化。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]6、荷叶碱与HBXIP互作破坏Rag-Ragulator相互作用并抑制mTORC1活性[/size] [size=14px] [/size] [size=14px]据报道,TFEB的mTORC1依赖性磷酸化对Rags高度敏感。作者发现荷叶碱抑制Rags介导的mTORC1复合物溶酶体募集,抑制RagC与mTOR和TFEB的互作,并减少TFEB与RagA和RagC的互作,降低RagC的溶酶体定位,并减少了RagA,RagC,mTOR和TFEB的溶酶体定位。因此,荷叶碱通过减少Rags的溶酶体定位来抑制mTORC1活性。据报道,通过Ragulator复合物对Rags进行溶酶体锚定对于介导mTORC1溶酶体募集并因此激活是必要的。作者发现荷叶碱削弱了Rags和Ragulator之间的互作,以及RagC和P18之间的互作,以及P14与RagA和RagC之间的互作。此外,荷叶碱还降低了P14与P18、MP1、C7orf59和HBXIP的相互作用,表明荷叶碱也破坏了Ragulator复合物组分之间的互作。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]接着作者检测荷叶碱是否与Ragulator复合物直接结合,从而改变复合物的正确组装和功能。研究人员通过CETSA证明荷叶碱与HBXIP直接结合,而非P14、P18、MP1 和 C7orf59,并通过分子对接发现荷叶碱与HBXIP的潜在结合口袋结合。这些数据表明,荷叶碱通过与HBXIP亚基相互作用,阻碍RagGTPases-Ragulator溶酶体支架的形成,抑制mTORC1活性。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结[/size] [size=14px] [/size] [size=14px]研究发现荷叶碱以TFEB依赖性方式激活自噬-溶酶体通路(ALP)并减轻脂肪变性。机理研究表明,荷叶碱与Ragulator的HBXIP亚基互作,并损害 Ragulator复合物与Rag GTP酶的相互作用,从而抑制mTORC1的溶酶体定位和活性,从而激活TFEB介导的自噬-溶酶体通路,并进一步改善肝脂肪变性和胰岛素抵抗。因此,荷叶碱是治疗NAFLD的候选药物,且调节mTORC1-TFEB-ALP轴是预防和治疗NAFLD病理结果的潜在有效策略。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size]

  • 闪谱酶标新品发布,胰岛素新应用!邀好友集赞享好礼

    闪谱酶标新品发布,胰岛素新应用!邀好友集赞享好礼

    [color=#000000] 9月22日[/color],[color=#000000]仪器信息网[/color]将携手[color=#000000]上海闪谱生物科技有限公司[/color]共同举办[url=https://www.instrument.com.cn/webinar/meetings/flash2023/][color=#c0504d]《闪谱酶标 新品发布》超级品牌日活动[/color][/url](点击查看)。特别设置了闪谱酶标仪发展历程介绍、案例讲解、用户分享、新品展示等多个环节,以便大家全面了解上海闪谱酶标仪以及其制药领域解决方案。[color=#ffffff][back=#c0504d]报名地址[/back][/color]:[url=https://www.instrument.com.cn/webinar/meetings/flash2023/][color=#548dd4]https://www.instrument.com.cn/webinar/meetings/flash2023/[/color][/url](点击报名) 酶标仪作为实验室常规仪器之一,在诊断、科研和工业领域都有着非常广泛的应用,比如疾病研究中的细胞学分析、靶点筛选;生物制药领域中高通量药物筛选、产品质量控制;农牧业以及环境研究中的化合物残留检测等。随着科学技术发展和市场需求演变,酶标仪被赋予的功能日益丰富,现如今凡是与光信号相关的实验,均可考虑使用酶标仪进行信号检测。 然而,国内酶标仪市场长期处于被进口品牌垄断的局面,尤其国产科研级酶标仪,直到2010年仍处于空白状态。为了打破这一现状,依托中国科学院上海生物工程中心的技术力量,上海闪谱生物科技有限公司(以下简称“上海闪谱”)成立,开始了长达十余年的酶标仪研制工作。 今年年初,仪器信息网对2022年酶标仪中标信息进行了不完全统计,发现上海闪谱酶标仪已经突出重围并成功挺进TOP5,打破了进口品牌垄断的市场格局。为此,仪器信息网特别专访了上海闪谱总工程师张建明,他表示,“在科研级酶标仪领域,上海闪谱已经走出死亡之谷,其品牌影响力和业绩表现已经得到了市场认可和积极反馈。目前公司拥有光栅型酶标仪、化学发光酶标仪、多功能酶标仪等多个种类产品,建立了与进口酶标仪一一对标的产品线,最终打造成全球科研级酶标仪两强品牌之一”。[align=center][img=,593,563]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181047038135_6561_6135078_3.jpg!w593x563.jpg[/img][size=16px][color=#333333](注:来源于网络公开招投标平台,不完全统计仅供参考)[/color][/size][/align][align=left] 那么,作为中国科研级酶标仪标杆企业,上海闪谱酶标仪拥有怎样的发展历程?面对“卡脖子”挑战是如何攻破? 9月22日,仪器信息网将携手上海闪谱共同举办《闪谱酶标 新品发布》超级品牌日活动,上海闪谱总工程师张建明将作《以填补国家空白为己任-上海闪谱产品发展历程》主题报告,详细介绍国产科研级酶标仪的发展进程。此外,大连理工大学杨成副教授与上海闪谱应用工程师方根、邹晓伟三位专家还将联袂奉献一场精彩的酶标仪技术交流会,围绕酶标仪在胰岛素生产体系的使用以及制药领域的应用及解决方案展开探讨与交流。 活动当天,上海闪谱还将进行重磅新品SuPerMax 3500型多功能酶标仪的展示与介绍,该产品的一大特点是由氙灯和钨灯2套光源系统构成,并且具有光栅和滤光片2套光路系统,在进口融合光路机型能够实现平替。此外,除了具有光吸收、荧光、化学发光的三大模块功能以外,还具有荧光偏振、时间分辨荧光的测定,拓展了多功能的实验范围,更多细节详解欢迎来直播间。[/align][align=center][img=,620,431]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181048085079_1244_6135078_3.jpg!w620x431.jpg[/img][size=16px][color=#333333]SuPerMax 3500型多功能酶标仪[/color][/size][align=left][size=16px][b]活动日程:[/b][/size][align=center][b][img=,690,289]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181048553734_4623_6135078_3.png!w690x289.jpg[/img][/b][align=left][b][font=&][size=16px][color=#333333]参与本次活动,邀好友集赞,经核实后即可领取精美礼物一份,名额有限,先到先得哦~还可以参与抽奖,将有多款好礼相送!报名地址:[/color][/size][/font][url]https://www.instrument.com.cn/webinar/meetings/flash2023/[/url][font=&][size=16px][color=#333333] (点击报名)[/color][/size][/font][/b][/align][/align][/align][/align]

  • SPE小柱使用体验原创征文-Anpelclean PA 聚酰胺小柱对姜黄素的净化与富集

    SPE小柱使用体验原创征文-Anpelclean PA 聚酰胺小柱对姜黄素的净化与富集

    实验目的(实验背景及目的):国家标准GB2760-2011版GB2760-2014《食品安全国家标准 食品添加剂使用标准》中规定姜黄(INS100ii,turmeric)和姜黄素(INS100i,curcumin)可作为食用色素在人造黄油、碳酸饮料、胶基糖果、巧克力制品、冷冻饮品等食品中使用,分别规定了使用量。国内目前尚未制定食品中姜黄素的HPLC和LCMSMS检测方法标准,因此建立一种快速、简便、可供确认用的检测方法十分必要。实验方法: 固相萃取柱的选择是关系到固相萃取净化步骤回收率的重要因素,它直接决定着分析组分能否定量地吸附、保留在固相萃取柱上和被一定量的洗脱溶剂洗脱。固定相的选择主要依据目标化合物的性质和样品基体(即样品的溶剂)性质。本实验对比了WatersSep-Pak C18、Agilent-ODS-C18和Anpelclean PA 聚酰胺小柱对姜黄素的净化效果,最终选择国产AnpelcleanPA 聚酰胺固相萃取柱小柱(60 mg,3 mL)。聚酰胺固定相广泛适用于各类含色素样品的净化。利用新的聚酰胺化学技术,制成与水和大多数有机溶剂,及pH0-pH14的酸性和碱性溶剂都兼容的小柱。由于聚酰胺既有亲水性又有亲脂性,对极性和非极性化合物都可以保留。与硅胶类填料不同的是,聚酰胺小柱如果在处理时不慎干涸,也能得到同样的结果。SPE小柱信息1: 货号SBAA- 1400603描述Anpelclean PA 规格60mg, 3ml聚酰胺固相萃取柱使用前,依次用3 mL 甲醇、3 mL 水活化。将上清提取液2.5 mL全部过柱,过滤速度不宜过快。上样完毕后,以2 mL 5 %甲醇水(5.9)淋洗固相萃取柱,淋洗后抽干固相萃取柱。用1.0 mL的 2 %氨化甲醇(5.5)洗脱并收集,洗脱液需尽快转移到氮吹仪,在40℃用氮气吹干后,用1.00 mL甲醇(5.1)溶解定容,过0.45 mm亲水聚四氟乙烯(PTFE)针式滤膜,供仪器测定。本标准HPLC法流动相体系采用“0.1%甲酸水-0.1%甲酸乙腈”体系,等度洗脱。姜黄素用甲醇配制成混合标准储备溶液,校正后母液浓度大致为200μg/mL,在室温或低温避光条件下,有效期至少可达6个月。以420 nm作为UV-vis或DAD检测器的检测波长;采用常规C18柱(250×4.6mm,5μm);流速:1.00 mL/min;进样量:15μL;柱温:25℃。 http://ng1.17img.cn/bbsfiles/images/2015/08/201508041901_559116_1608728_3.png 1.果冻定量限添加10 mg/kg的HPLC色谱图

  • 苯甲酰胺的MSDS!

    【中文名称】苯酰胺 【英文名称】benzamide 【中文同义词】苯甲酰胺 苯甲酰胺苯酰胺苯甲酰胺98+%苯甲酰胺 BENZAMIDE 【英文同义词】benzoylamide BENZAMIDEBENZOIC ACID AMIDEBENZOIC AMIDEBENZOYLAMIDEai3-01031 amidkyselinybenzoove benzenecarboxamide benzenecarboxamide Carbonamide phenylcarboxamide PhenylcarboxyamideBENZAMIDE, SUBLIMED, ZONE-REFINED, 99.9%BENZAMIDE, SUBLIMED, 99.5+%BENZAMIDE CRYSTALLINEBENZAMIDE INHIBITOR OF POLY (ADBENZAMIDE 98+%BenzamideForSynthesisBenzamide-ring-13C6BENZOICACIDAMINOSALTBenzamidBenzamide Zone Refined (number of passes:20)BENZAMIDE pure 【CAS No.】55-21-0 【分子式】C7H7NO 【分子量】121.13 危险性概述 【健康危害】摄入有一定的毒性。热解可生成有毒的氮氧化物。 【燃爆危险】本品可燃。 急救措施 【皮肤接触】脱去污染的衣着,用流动清水冲洗。 【眼睛接触】提起眼睑,用流动清水或生理盐水冲洗。就医。 【吸入】迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 【食入】饮足量温水,催吐。就医。 消防措施

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制