当前位置: 仪器信息网 > 行业主题 > >

涂层缺陷

仪器信息网涂层缺陷专题为您整合涂层缺陷相关的最新文章,在涂层缺陷专题,您不仅可以免费浏览涂层缺陷的资讯, 同时您还可以浏览涂层缺陷的相关资料、解决方案,参与社区涂层缺陷话题讨论。

涂层缺陷相关的论坛

  • 【原创大赛】涂层失效问题,你遇到了吗

    【原创大赛】涂层失效问题,你遇到了吗

    涂料经过涂装施工成为涂层,涂层经过干燥或交联固化后发挥其保护、装饰和功能性作用。在涂装后,涂层有时会出现缺陷甚至失效现象,如粉化、失光、褪色、脱落等现象。若这些涂层衰减处于涂层保质期内,或其未对涂层的保护、功能性作用造成本质影响,则此涂层质量的降低属于涂层质量的正常递减。但若涂层在各种因素的作用下,在物理化学和机械性能方面出现不可逆的变化,即涂层性能被明显破坏,则称之为涂层的失效。 涂层失效的原因很多,一般归咎于四个主要的方面:涂料施工不当,涂料本身有质量缺陷,涂料品种选择不当,涂层服役环境苛刻等。另外,除以上宏观原因,涂层失效还有着更深层次、更本质的失效原理和失效模式。本文将对涂层失效的现象及原理、涂层失效的分析方法进行深入解析。[b]一.涂层失效的现象及原理 1. 开裂、脱落现象[/b] [align=center][img=,298,198]http://ng1.17img.cn/bbsfiles/images/2018/07/201807101008496463_1610_2879355_3.jpg!w298x198.jpg[/img][/align][align=center]Figure 1-1 涂层的开裂、脱落现象[/align] 涂层发生开裂、脱落现象是涂层失效常见的表现形式,如Figure 1-1所示。原理:交联固化后的涂层可视为一种“粘弹性”固体,当受到外界应力时,会发生形变来消除应力。常见的形变情形有:涂层在一定温度和湿度下的膨胀、收缩,基材受力引起的振动、冲击等。Figure 1-2所示为涂层中树脂的应力-应变曲线:A为屈服点,A点以前为弹性区域(可恢复原样),A点以后为永久变形区域(不可恢复原样)。[align=center][img=,298,212]http://ng1.17img.cn/bbsfiles/images/2018/07/201807101009599788_2251_2879355_3.jpg!w298x212.jpg[/img][/align][align=center]Figure1-2 涂层中树脂的应力-应变曲线[/align] 如应用于木器漆上的涂层,由于温度和湿度的变化会发生膨胀和收缩。如果膨胀/收缩力发生在该涂层应力-应变曲线上的屈服点之前,涂层不会发生不可逆形变而导致失效;如果膨胀/收缩力发生在应力-应变曲线上的屈服点之后,则涂层会通过以下两种方式进行应力消除:(1) 涂层与基材之间附着力良好,发生开裂现象;(2) 涂层与基材之间附着力较差,发生脱落分层现象。 如果涂层基材是底漆,则底漆根据自己的应力-应变行为,可能会发生面漆开裂、面漆与底漆脱落分开、底漆从基材上剥离等现象。[b] 2. 化学腐蚀现象 [/b][align=center][img=,298,178]http://ng1.17img.cn/bbsfiles/images/2018/07/201807101010367783_7623_2879355_3.jpg!w298x178.jpg[/img][/align][align=center]Figure 2 涂层的化学腐蚀现象[/align] 化学腐蚀也可认为是作用于涂层上的一种应力,如Figure 2所示,其作用原理可解释如下:若涂层中树脂主要含有碳碳单键、醚键等化学键,则其耐化学侵蚀性能就相对稳定,如酚醛树脂、乙烯基树脂。若涂层中树脂含有羟基、羧酸基、酯基、胺基和酰胺基等基团,则其极易受到酸、碱和氧化剂的侵蚀,如醇酸树脂则易在碱性潮湿环境中会迅速发生水解而失效。有些颜料对酸和碱也很敏感。如铝粉,在碱性较强的环境中,会很快发生变质失效。[b] 3. 黄变、粉化现象[/b] [align=center][img=,298,194]http://ng1.17img.cn/bbsfiles/images/2018/07/201807101011031053_8400_2879355_3.jpg!w298x194.jpg[/img][/align][align=center]Figure 3 涂层的黄变、粉化现象[/align] 涂层的黄变、粉化现象一般是由涂层的应力老化引起。应力老化是指涂层中树脂在光(主要是紫外光)、热等气候因素的作用下发生高分子链的断裂和降解的情况,如芳香族聚氨酯可能会发生黄变,环氧树脂可能会粉化。[b] 4. 起泡现象 [/b][align=center][b][img=,175,201]http://ng1.17img.cn/bbsfiles/images/2018/07/201807101011331821_627_2879355_3.jpg!w175x201.jpg[/img][/b][/align][b][/b][align=center]Figure 4 涂层的起泡现象[/align] 涂层起泡包括渗透起泡和电渗起泡,一般指的是水分、离子等在浓度梯度或电势梯度的作用下渗透到涂层内部,导致涂层内基材腐蚀或涂层脱落、起泡等现象。涂层的起泡现象一般发生在涂层有针孔缺陷或服役环境严苛的情况下,如海边、高温潮湿的环境等。[b] 二.涂层失效的分析方法[/b] 涂层失效的分析方法包括实地考察、仪器分析、模拟实验等。 实地考察一般是考察涂层的服役环境(温度、湿度、地点)、失效现象、失效部位,然后针对失效涂层进行取样等,最后根据综合信息判断失效原因,多数情况下还要结合仪器分析及模拟实验推断失效原因。可用于研究涂层失效的仪器分析手段有很多,如FTIR、SEM-EDS、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS、DSC等,分析工具的选择要根据样品的特性以及失效现象来确定。[b] 1. FTIR[/b] FTIR在失效分析中的应用非常广泛,可进行污染物的检测、涂层中树脂种类及填料种类的鉴定、树脂固化程度的鉴定等,还可将从供应商处获得的已知涂料样品信息与待测样品信息进行对比,判断所用涂料种类是否正确等。[b] 2. SEM-EDS[/b] SEM-EDS可以在高的放大倍数和大的景深条件下对样品进行表观形貌观测和元素分析。表面形貌观测可以发现很多涂膜缺陷,如点蚀、异物、气泡、涂层致密度等;正常部位和失效部位元素信息的对比,可以帮助找到失效原因。[b] 3. [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS[/b] [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS可以对失效涂层的液体留样进行分析,判断涂料中的溶剂类型,判断失效是否是由于稀释剂的配伍不当引起。如无液体样品,可以对固体样品进行顶空[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS分析,检验涂膜中残留的溶剂。[b] 4. DSC[/b] DSC可用于交联反应的动力学研究和热塑性涂料的玻璃化转变温度的确定,从而考察涂料的相对固化程度。如正常样品和失效样品在同等条件下进行DSC分析,若失效样品的玻璃化转变温度低于正常样品,则可说明失效样品可能是没有充分固化。 模拟实验是根据失效现象和失效部位,针对性模拟涂层在服役环境下的性能,以期找出失效原因。涂层失效分析的工具和方法还有很多,并不局限于以上3,实际进行涂料失效分析时,思路需开阔,根据样品的个性化差异选择适合的分析方法。[b] 三.涂层失效案例 案例背景: [/b]一个涂有白色涂料的金属板,局部出现了涂料从金属基材脱落的现象,需要找到涂料脱落的原因。[b] 案例分析: [/b]通过对失效样品进行观察发现,脱落涂层的背面颜色较暗,且脱落的面积较大。而正常样品的涂层颜色很白,且涂层与基材的附着力较好。[b] 解决方案:[/b]针对“失效样品”与“正常样品”进行对比分析。 (1)对失效样品脱落部位的背面和正常样品涂层的背面进行FTIR分析,两者无明显差异,排除脱落部位有明显污染物的可能性。 (2)对失效样品和正常样品同时进行SEM-EDS分析,发现失效样品的氧元素和铁元素的含量比正常样品都明显偏高,结合失效部位的颜色,判断涂层失效是由金属基材的锈蚀引起。[align=center][img=,618,478]http://ng1.17img.cn/bbsfiles/images/2018/07/201807101012019253_7276_2879355_3.jpg!w618x478.jpg[/img][/align] 基于涂层失效的表现多样性和原因复杂性,牵扯到涂料、施工、表面处理等方面,分析和解决问题的难度较大,所以仅仅依靠涂料工程师根据涂料的施工、使用环境等角度进行涂层失效原因的判断是不够的,借助于仪器分析对失效涂层进行分析来判断失效原因是非常必要的。[list][*]声明:本文资料为“上海微谱化工技术服务有限公司”原创,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 帮忙看下钛的高分辨图--寻找位错、层错、孪晶等缺陷

    帮忙看下钛的高分辨图--寻找位错、层错、孪晶等缺陷

    HCP钛,晶粒尺寸只有几个纳米,希望在高分辨照片中找到位错、层错、孪晶等缺陷。看着这些高分辨图却一筹莫展。哪位老师帮忙看一下。还有第三张图上一条一条的是什么?圈起来的那个部分是位错吗?另外,有什么高分辨像下类似缺陷分析的资料推荐没?非常感谢!http://ng1.17img.cn/bbsfiles/images/2014/01/201401281428_489218_1603303_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/01/201401281429_489219_1603303_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/01/201401281429_489220_1603303_3.jpg

  • 不粘锅涂层:正常使用无需担心

    不粘锅涂层:正常使用无需担心

    不粘锅的出现,为健康少油的烹饪提供了条件,也使炊具清洗变得更加简便。然而在不粘锅走进生活的同时,对于其涂层安全性的质疑之声也从未停息。不粘锅涂层,尤其是特富龙涂层,它们在使用中会存在健康风险吗?特富龙:大部分不粘锅的武器不粘锅和它所使用的涂层材料的历史可以追溯到二战时期。最早的不粘锅材料是聚四氟乙烯(PTFE),也就是我们现在所熟知的特富龙(Teflon),这种材料于1938年由杜邦公司的工程师罗伊•普朗克特发现。当时,他正尝试制作新的氯氟碳化合物冷媒,却意外地发现四氟乙烯在高压储存容器中发生了聚合反应,生成一种新的物质。这种新的物质具有高度的耐腐蚀性,绝大多数强酸强碱(包括王水和氟锑酸在内)、强氧化剂和还原剂都奈何不了它,因此特富龙又有另外一个外号——塑料王。然而,真正让特富龙进入炊具领域的却是它的另外两个性能:超低的摩擦系数和表面能。特富龙的摩擦系数在所有塑料中是最小的,它的表面能在所有固体材料中也是最低的,这些性能都使得其他物质很难在其表面附着。凭借这两个绝对优势,特富龙占据了不粘锅涂料的大部分市场。近些年来,除了特富龙以外,其他类型的不粘涂层也在发展,日本的大金(Dakin)氟涂料、美国的华福(Whitford)涂层以及陶瓷涂层都逐渐被市场接受。不过,特富龙依靠其极佳的性能和较高的性价比依然占据着不粘锅市场的主要地位。特富龙会释放有毒物质吗?不粘锅为烹调带来了许多方便,但对于特富龙涂层的安全性很多人却总是放心不下。那么,它在使用中到底有没有可能释放有毒物质呢?聚四氟乙烯在常温及常态下具有非常稳定的理化性质,但考虑到炊具都是在高温环境下使用,因此其高温下的安全性才是我们所关注的焦点。根据杜邦公司资料显示,使用特富龙不粘涂层的炊具在常温至260℃(550°F)的温度范围内都不会发生任何变化,但是当温度超过260℃时,涂层逐渐向不稳定状态转变,当温度超过350℃(660°F)时会发生分解。在日常的烹饪方式中,温度较高的爆炒通常也只会达到200℃左右的温度,即使采用油炸的方式,油温一般也不会超过250℃,因此在正常的烹调中,不必担心涂层分解释放有害物质。而且,常见食用油的烟点多在200℃~250℃之间,如果真把锅烧到足以让涂层分解的温度,首先需要考虑的恐怕是油脂分解产生有害物质了,这样的饮食习惯自然也不健康。如果真的对特富龙涂层进行过度加热,吸入其释放的烟雾可能会引起类似流感的症状,症状包括寒战、头痛、发热和咳嗽等,这种情况被称为“聚合物烟雾热”(Polymer fume fever)。这些“聚合物烟雾”还可能对某些鸟类产生更严重的危害,可导致鸟类死亡。不过,这种情况要把涂层材料加热到300~450℃才会发生,除非把不粘锅长时间空烧否则很难做到。不粘锅导致“聚合物烟雾热”的情况极少发生,在2012年的《英国医学期刊•病例报告》(BMJ Case Reports)上刊登了一个这样的罕见病例,不过它的发生条件也决不属于“正常使用”的范畴:当事人在烧热锅打算准备午餐时睡着了,并且一睡就是5个小时,醒来时才发现厨房已经被烟雾包围。在正常使用条件下,不需要担心“聚合物烟雾热”的发生。http://ng1.17img.cn/bbsfiles/images/2015/04/201504241633_543433_1916297_3.jpg不粘涂层的生产原料会导致畸形和癌症吗? 除了聚四氟乙烯本身,对特富龙不粘锅的安全疑问还有部分来自其生产过程中使用的一种加工助剂——全氟辛酸(PFOA)。有报道称,这种物质可导致癌症,并与出生缺陷有关,这一点需要担心吗?全氟辛酸是一种碳链中的氢被氟原子全面替代的有机酸,它在工业上用于氟聚合物的生产,不过在最终产品中只有极微量的残余。全氟辛酸对人体健康的影响目前还存在一些争议,一些流行病学调查确实将它与癌症或出生缺陷的风险增加联系在了一起,但值得注意的是,这些研究针对的是工厂职业暴露或水源受污染的情况,而并没有证据表明特富龙涂层成品中极微量的暴露会增加风险。美国国家环境保护局(EPA)及美国癌症学会(ACS)都指出,虽然全氟辛酸可能有害,但消费者接触到的特富龙和同类氟聚合物产品本身都不需要担心。而且,全氟辛酸现在也已经不再用于不粘锅涂层生产了。在2011年底时,所有的不粘炊具都实现了去PFOA化,只要是2012年及之后上市的特富龙涂层炊具,都不会再使用全氟辛酸。涂层掉了怎么办? 有机不粘涂层的性能虽然强大,但它们确实不那么耐磨。随着不粘炊具使用时间的延长,涂层多多少少都会受损,甚至出现剥落的情况。当你正常使用的时候,无须担心涂层剥落带来健康风险。常温下聚四氟乙烯的性质非常稳定,即使吃进了少量涂层微粒也不会影响身体健康。不过涂层一旦剥落,不粘的效果就会大打折扣,清洁起来也会变得麻烦,因此还是小心地使用这些不粘炊具吧。基本上,只要做到以下几点,就能很大程度上延长不粘锅的使用寿命:不在非正常情况下过度加热不粘炊具;在使用完不粘炊具后不要立即用冷水冲洗;洗涮不粘炊具的时候尽量使用软布条擦拭,避免使用硬度较大的钢丝球去刷洗炊具内壁,同样在炒菜时尽量使用木制或合成材料的锅铲,避免刮伤内胆。目前看来,只要适当控制烹调温度,不粘锅的特富龙涂层就可以安全地使用。与其担心特富龙是否会危害人体健康,还不如花更多的精力在改进烹饪方法与饮食习惯、饮食结构上,这样对改善健康也更有帮助。

  • 达克罗涂层的检测方法的详细介绍

    根据2002年国家质量监督检验检疫总局发布了"锌铬涂层 技术条件"的中华人民共和国国家标准,标准号为GB/T18684-2002,对达克罗涂层的检测主要有以下五项:一、外观:在自然折射光下,用肉眼进行观察。锌铬涂层的基本色调应呈银灰色,经改性也可以获得其他颜色,如黑色等。锌铬涂层应连续,无漏涂、气泡、剥落、裂纹、麻点、夹杂物等缺陷。涂层应基本均匀,无明显的局部过厚现象。涂层不应变色,但是允许有小黄色斑点存在。二、涂敷量和涂层厚度的检测:标准对不同等级涂层的涂敷量或涂层厚度分为四个等级,可以采用二种方法进行检测:1,溶解称重法:重量大于50g试样,采用精度为1mg的天平称得原始质量W1(mg),将试样放入70℃~80℃的20%NaOH水溶液中,浸泡10min,使锌铬涂层全部溶解。取出试样,充分水洗后立即烘干,在称取涂层溶解后的试样质量W2(mg)。量取并计算出工件的表面积S (dm2 ),按下列公式计算出涂层的涂覆量W(mg/dm2):W=(W1-W2)/S2,金相显微镜法: 按GB/T6462要求,采用金相显微镜法检测涂层的厚度。三、附着强度试验:采用胶带试验方法,检测锌铬涂层与基体的附着强度,胶带试验按GB/T5270-1985第1.4要求进行。要求试验后涂层不得从基体上剥落或露底,但允许胶带变色和粘着锌、铝粉粒。耐水性能试验:把试样浸入40℃±1℃的去离子水中,连续浸泡240h,将试样取出后在室温下干燥,再进行附着强度试验,试验结果应达到附着强度试验的要求。附着强度试验应在试样从去离子水中取出后的2h之内进行。进行耐水性试验后,涂层不得从基体上剥落或露底。四、耐盐雾性能试验:耐盐雾性能试验按GB/T10125-1997第3.2.1要求进行。涂层经盐雾试验后,按涂层上出现红锈的时间从120小时到1000小时,分为四个等级。五、湿热试验:湿热试验在湿热试验箱中进行,湿热试验箱应能调整和控制温度和湿度。将湿热试验箱温度设定为40℃±2℃,相对湿度为95%±3%,将样品垂直挂于湿热试验箱中,样品不应相互接触。当湿热试验箱达到设定的温度和湿度时,开始计算试验时间。连续试验48h检查一次,检查样品是否出现红锈。两次检查后,每隔72h检查一次,每次检查后,样品应变换位置。240h检查最后一次。标准中规定,只对3级和4级涂层进行耐湿热试验,要求涂层在240 小时内不得出现红锈。同时标准中还规定了抽取试样的方法:同一批产品中,按每一种试验随机抽取三个试样,进行试验。若其中任何一件试样经试验不合格,则应再随机抽取三件试样进行相同的试验,若其中再有任何一件不合格,则该批产品为不合格。对于组合件或单件质量超过150克的零件或构件,则切取该工件的一部分作为试样进行试验。为了避免切口处裸露的钢铁基体影响试验结果,应采用涂料、蜡或胶带等保护切口。对于形状复杂难以求出表面积的零件也可以采用同样的方法制备试样。除了以上标准中提到的五项涂层的检测外,在实际生产中,通常还进行氨水试验、导电性试验、涂层硬度检测、孔隙率检测等。本文章来自:http://www.8617.cn

  • 电火花检漏仪检测管道3PE防腐涂层?

    [url=http://www.dscr.com.cn]电火花检漏仪[/url]检测管道3PE防腐涂层?  答:电火花检漏仪可以检测管道3PE防腐涂层上面的质量问题,如防腐层出现针孔、气泡、裂隙和裂纹,仪器将发出明亮的电火花,同时声音报警。  电火花检漏仪检测的对象主要是对底基的要求,只要底基为导电体就可以测量。电火花检漏仪-10H检测厚度:0.5~10mm,输出电压:0.2kv~30kv,是用于检测金属防腐涂层质量的专用仪器,使用本仪器可以对不同厚度的搪玻璃、玻璃钢、环氧煤沥青和橡胶衬里等涂层,进行质量检测。当防腐层有质量问题时,如出现针孔、气泡、裂隙和裂纹,仪器将发出明亮的电火花,同时声音报警。由于是用蓄电池供电,故特别适用于野外作业。该仪器设计先进,稳定可靠,可广泛用于化工、石油、橡胶、搪瓷行业,是用来检测金属防腐涂层质量的必备工具。  电火花检漏仪的检测原理:电火花检漏仪使用很简单,一头接地,另一头是探头,探头形式很多种(有碳刷型,圆圈弹簧型,平板橡胶型),仪器通过高压探头发出直流高压电,当探头经过有缺陷的涂层表面时,仪器会自动声光报警。现行的电火花检测仪大多分为15Kv 和30Kv两种,用来测量不同厚度的涂层。

  • 【求助】XRF和XPS在定量测量涂层成分时哪个更准确?

    前段时间用XRF测过三个涂层试样的化学成分,主要是Ti、C、N、O,涂层厚10μm。 但其中一个试样本应该有N元素的却没有测出来。想用别的方法再测一次。不知道XPS能不能测的出来? 不知道一般情况下,会不会用XPS定量的测化学成分?和XRF相比,结果准确度高吗?

  • 采用光热法进行涂层测厚的技术-----涂魔师非接触无损测厚仪

    采用光热法进行涂层测厚的技术-----涂魔师非接触无损测厚仪

    [b]涂魔师非接触无损测厚仪采用领先的光热法 (ATO)工作原理[/b][url=http://www.tumoshi.com/flex]涂魔师非接触无损测厚仪[/url]采用非接触式无损测厚专利技术ATO,它能测量湿漆、固化前的粉末涂料实时精准得出干膜厚度,或者直接测量固化后的涂层厚度。涂魔师适用于各种涂料类型和所有颜色(包括白色等浅色)。与电磁感应测厚设备相比,涂魔师能精准测量金属、木材、塑料和橡胶等基材上的涂层厚度。与其他基于光热法、激光和超声波原理的设备相比,它具有安全可靠、使用方便、精度高和重复性好、校准简便并无需严格控制测试距离和角度等测量优势。[align=center][img=,480,480]https://ng1.17img.cn/bbsfiles/images/2020/11/202011171428151193_9795_928_3.jpg!w480x480.jpg[/img][/align][b]轻松拿起设备,即可实现一键测厚[/b]涂魔师非接触无损测厚仪是一款具有独特设计且功能齐全的非接触式精准测厚设备,无需等到涂层固化后才进行涂层厚度测量,能有效节省材料和避免涂层缺陷问题,十分适用于生产车间现场。精确监控涂装工艺全过程,通过优化工艺能节省高达25%的涂装材料消耗量,有效节约生产时间并降低返喷率。[b]手持式非接触膜厚分析仪特色功能测湿膜直接显示干膜厚度[/b]在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等[b]非接触式无损测厚领先专家[/b]采用先进的热光学专利技术,无需接触或破坏产品表面涂层,在允许变化角度和工作距离内即可轻松测量膜厚[b]无需严格控制测量条件[/b]允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域)[img]http://www.tumoshi.com/public/img/bg-img/benefits.png[/img][b]适合生产车间现场使用[/b]便携灵活的手持式设计,能够连续实时测量生产线上的移动工件,对于摇摆晃动的工件都能精确测量膜厚[b]数据自动记录及生产全过程[/b]100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况[b]测量时间短,一键即可完成膜厚测试[/b]涂魔师非接触无损测厚仪测量精度高且操作简单,测试时间仅需0.5秒[b][url=http://www.tumoshi.com/flex#collapseOne]技术参数-涂魔师手持式非接触膜厚分析仪,高精度镀层测厚仪[size=10px][font=FontAwesome][/font][/size][/url][url=http://www.tumoshi.com/flex#collapseOne][size=10px][font=FontAwesome][/font][/size][/url][/b]烘干前湿漆 测量范围:1-400 微米固化前的粉末涂料 测量范围:1-400 微米固化后粉末涂料/烘干后干漆 测量范围:1-1000 微米测量时间:0.3 秒允许测量距离:2 – 15 厘米允许倾斜角度:±45°能否测量运动工件:允许相对标准偏差: 1%(取决于涂层/基材类型)访问测试数据方式:通过ERP和浏览器实时访问数据IP防护等级:IP20[b][url=http://www.tumoshi.com/flex#collapseTwo]MP Bolagen Industri AB公司的涂装团队经理对涂魔师手持式非接触膜厚分析仪的评价[size=10px][font=FontAwesome][/font][/size][/url][url=http://www.tumoshi.com/flex#collapseTwo][size=10px][font=FontAwesome][/font][/size][/url][/b]“我们决定在涂装工艺早期使用涂魔师来控制我们的工艺,从而保证使用正确的喷粉量,这样我们就不会消耗过多的粉末涂料。因此我们能确保生产高质量产品的同时避免了返工和保护了环境。”

  • TT220、TT230涂层测厚仪常见问题

    TT220、TT230涂层测厚仪常见问题1、为什么我的TT220涂层测厚仪近一年没有使用,再次使用不能开机?答:用户在收到新购买的测厚仪时首先要为仪器充电,一般首次充电需要8个小时,如果长期没有充放电,仪器电池容易锁死,同时电池寿命也会受到影响,2个月没有使用的新机器,出现不能开机的现象有可能是电池锁死了,需要对照说明书进行激活。如仍不能开机,请您不要自行打开机器,应返回维修站修理。2、电池锁死后应该如何恢复?答:电池锁死后,用户可以对照相应型号说明书,通过强制复位的方式进行操作,当有文字或数字显示后,即刻进行充电。如仍不能恢复请与维修站联系。3、恢复出厂设置后需要注意什么?答:仪器在强制复位后,必须进行基本校准,校准办法可以对照说明书操作,或者咨询时代销售及维修人员。4、为什么在随机附带的校准试片上校准后,测量工件还是出现测值“不准”?答:影响测值的因素很多,对此说明书上有详细描述,金属材料性质、表面粗糙度等都对测值有影响,随机附带的基材往往与用户现场的金属基材有很大差异,因此我们建议随机带的基材及试片只作为仪器校准使用,实际现场测量工件时要用现场未经喷涂的同种材料作为基材。5、开机出现E字头的错误信息是怎么回事?答:错误提示功能是时代涂层测厚仪的一个特有功能,方便用户进行故障描述,不同的错误信息代表不同的故障,例如E02代表测头磨损,这些说明书后面都有详细表格说明,大家可以参考。6、TT220涂层测厚仪如何关机?答:TT220/230都采用的是自动关机,一般是停止使用后的3-5分钟。7、TT220涂层测厚仪没有充电指示灯,如何判断是否充满电?答:TT220/230充电时间一般新购机器首次充电8小时,正常使用后需要充2-3小时即可。8、充电后仍无法开机?答:首先插上电源按照问题1的解决办法进行强制复位的操作尝试,其次,如果有同类仪器可更换充电器试一下。三,可能电池报废需要更换电池9、测量管材、棒材等曲面材料为什么“不准”?答:曲率变化对涂层测厚仪的影响非常大,如果您在平面的基材上校准零点后直接测量曲面,那么测值肯定有偏差,正确操作是必须在同一曲率半径的未经喷涂工件基材上进行零点校准,然后在测量涂层厚度,这时的测值是准确无误的。10、TT220涂层测厚仪出现“≠”是什么意思?答:表明电池电压低落,需要马上充电11、当出现仪器测量试片准确,测量工件涂层时有“偏差”怎么判断?答:有些用户在使用过程中会出现在随机配的基体试片上测量准确,拿到工件上测量出现偏差,或者不同厂家的仪器在测同一工件出现偏差,遇到这种情况用户往往不知道是自己的工艺出现问题还是仪器本身的问题,是时代仪器准还是其他厂家仪器准。这个问题很好解决,我们只要将随机配带的试片(中国计量院提供)放在用户自己的未经喷涂的工件基材上测量一下就可以了,因为试片的值是恒定的,而且是第三方中国计量院提供的。如果放在工件上测量试片也是准确的,那说明仪器没有任何问题。两台不同厂家的仪器对比采用这个办法也是相同的道理。

  • 液氮罐内部涂层材质到底有何区别?

    液氮罐内部涂层材质到底有何区别?

    液氮罐内部涂层材质是确保罐体安全、提高液氮存储效率的关键因素,我们对比分析了不同涂层材质的优缺点,并给出适用情况的建议。文章除了液氮罐内部涂层材质的特点外,还会介绍其相关应用、行业标准和未来发展趋势。关键词包括:液氮罐内部涂层、液氮存储、涂层材质、液氮罐内部涂层应用、液氮罐内部涂层行业标准、液氮罐内部涂层发展趋势。  液氮罐内部涂层材质对于液氮的存储和使用起着至关重要的作用。目前市面上常见的涂层材质主要有不锈钢、玻璃钢和碳钢三种类型。不同的涂层材质各自具有独特的特点,在不同场合与环境下有不同的表现和应用。我们将针对这三种常见涂层材质进行分析,并给出适用情况的建议,帮助您选择最适合您需求的液氮罐内部涂层材质。  不锈钢涂层  由于不锈钢的抗腐蚀性较强,因此作为[url=http://www.yedanguan365.com/]液氮罐[/url]内部涂层材质,不锈钢具有较高的耐腐蚀性和稳定性。此外,不锈钢涂层还具有较好的密封性和易清洁性,使得其在食品、医药等领域得到广泛应用。据统计,约有70%以上的食品行业和医药行业所使用的液氮罐内部涂层采用不锈钢材质。这一数字表明不锈钢涂层材质在保持液氮纯净度和产品质量方面发挥了巨大的作用。[url=http://www.cnpetjy.com/buyexitong/]液氮补液系统[/url]  玻璃钢涂层  相比之下,玻璃钢涂层则具有更好的绝缘性能和较低的热导率。这使得玻璃钢涂层的液氮罐内部更适合于长期储存和输送需要保持低温的物品。值得一提的是,根据实验数据显示,使用玻璃钢涂层的液氮罐内部,其液氮蒸发的速率相较不锈钢涂层可降低10%-20%,这意味着玻璃钢涂层能够更有效地降低液氮的损耗,提高使用效率。  碳钢涂层  而碳钢涂层则在成本方面具备较大优势。由于碳钢涂层的制造成本相较不锈钢和玻璃钢较低,因此在一些对价格敏感的领域和大型液氮储存设施中,碳钢涂层的使用较为普遍。然而,值得注意的是,碳钢涂层对腐蚀有一定的敏感性,需要定期进行检查和维护,以确保涂层的使用寿命和液氮的储存安全。  应用与行业标准  在实际应用中,用户需要根据自身的需求和具体的使用环境来选择最合适的液氮罐内部涂层材质。同时,国内外相关标准和规范也给出了对于液氮罐内部涂层材质的要求和测试方法,如ASTM标准和EN标准等。对于液氮罐内部涂层材质的选择与应用,我们建议用户在满足行业标准的前提下,结合自身的实际情况做出理性的选择。[img=液氮罐,690,378]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271025222256_3177_3312634_3.jpg!w690x378.jpg[/img]  未来发展趋势  新型涂层材质和涂层工艺也在不断涌现。例如,近年来,一些新型超低温聚合物材料和纳米复合材料正在逐渐应用于液氮罐内部涂层,旨在进一步提高涂层的隔热性能和耐腐蚀性能。此外,随着生物医药行业和航空航天领域的快速发展,对液氮罐内部涂层材质的要求也将不断提高,例如对于液氮罐内部涂层材质的密封性和耐腐蚀性等方面将提出更高标准。[url=http://www.mvecryoge.com/]金凤液氮罐[/url]  总的来说,液氮罐内部涂层材质的选择需要综合考虑其耐腐蚀性、隔热性能、成本和行业标准等多个因素。最终的选择应当是在满足行业标准的前提下,结合具体应用环境和实际需求做出的理性决策。未来,随着新材料和新工艺的不断涌现,液氮罐内部涂层材质将会迎来更多创新发展,为液氮的存储和运输提供更优质的解决方案。

  • 涂层材料的泊松比

    超声波扫描显微镜能比较准确地测量出涂层材料的泊松比吗?需要知道哪些参数?

  • PCB板产生焊接缺陷的原因

    PCB是现代电子不可缺少的部件,是电子元器件电气连接的载体。随着电子技术的不断发殿,PCB的密度也越来越高,从而对焊接的工艺要求也越来越多,因此,必须分析和判断出影响PCB焊接质量的因素,找出其焊接缺陷产生的原因,这样才能有针对性的改进,从而提升PCB板的整体质量。下面请元坤智造的工程师介绍一下PCB板产生焊接缺陷的原因吧!  1、电路板孔的可焊性影响焊接质量  电路板孔可焊性不好,将会产生虚焊缺陷,影响电路中元件的参数,导致多层板元器件和内层线导通不稳定,引起整个电路功能失效。  影响印刷电路板可焊性的因素主要有:  (1)焊料的成份和被焊料的性质。焊料是焊接化学处理过程中重要的组成部分,它由含有助焊剂的化学材料组成,常用的低熔点共熔金属为Sn-Pb或Sn-Pb-Ag.其中杂质含量要有一定的分比控制,以防杂质产生的氧化物被助焊剂溶解。焊剂的功能是通过传递热量,去除锈蚀来帮助焊料润湿被焊板电路表面。一般采用白松香和异丙醇溶剂。  (2)焊接温度和金属板表面清洁程度也会影响可焊性。温度过高,则焊料扩散速度加快,此时具有很高的活性,会使电路板和焊料溶融表面迅速氧化,产生焊接缺陷,电路板表面受污染也会影响可焊性从而产生缺陷,这些缺陷包括锡珠、锡球、开路、光泽度不好等。  2、翘曲产生的焊接缺陷  电路板和元器件在焊接过程中产生翘曲,由于应力变形而产生虚焊、短路等缺陷。翘曲往往是由于电路板的上下部分温度不平衡造成的。对大的pcb由于板自 身重量下坠也会产生翘曲。普通的PBGA器件距离印刷电路板约0.5mm,如果电路板上器件较大,随着线路板降温后恢复正常形状,焊点将长时间处于应力作 用之下,如果器件抬高0.1mm就足以导致虚焊开路。  3、电路板的设计影响焊接质量  在布局上,电路板尺寸过大时,虽然焊接较容易控制,但印刷线条长,阻抗增大,抗噪声能力下降,成本增加 过小时,则散热下降,焊接不易控制,易出现相邻 线条相互干扰,如线路板的电磁干扰等情况。因此,必须优化PCB板设计:  (1)缩短高频元件之间的连线、减少EMI干扰。  (2)重量大的(如超过20g)元件,应以支架固定,然后焊接。  (3)发热元件应考虑散热问题,防止元件表面有较大的ΔT产生缺陷与返工,热敏元件应远离发热源。  (4)元件的排列尽可能 平行,这样不但美观而且易焊接,宜进行大批量生产。电路板设计为4∶3的矩形最佳。导线宽度不要突变,以避免布线的不连续性。电路板长时间受热时,铜箔容易发生膨胀和脱落,因此,应避免使用大面积铜箔。  综合上述,为能保证PCB板的整体质量,在制作过程中,要采用优良的焊料、改进PCB板可焊性以及及预防翘曲防止缺陷的产生。

  • 金属构件加工缺陷与失效

    1. 常见铸造加工缺陷:①冷隔 ②气孔 ③针孔 ④缩孔 ⑤疏松 ⑥夹杂物 ⑦偏析 ⑧热裂纹 ⑨冷裂纹 ⑩其他缺陷2. 常见锻造加工缺陷:①折叠 ②分层 ③锻入的氧化皮 ④流线不顺 ⑤裂纹 ⑥过热与过烧 ⑦脱碳与增碳3. 常见焊接加工缺陷:①焊接裂纹 a.热裂纹 b.冷裂纹 c.延迟裂纹 d. 再热裂纹 e.层状撕裂②气孔 ③夹渣 ④焊缝成形不良 ⑤未填满 ⑥未焊透 ⑦过烧4. 常见热处理缺陷:①氧化、脱碳 ②内氧化 ③过热 ④过烧 ⑤淬火软点 ⑥回火脆性 ⑦石墨化脆性 ⑧网状或大块状碳化物 ⑨粗大马氏体和大量残余奥氏体 ⑩淬火裂纹

  • 涂层磨穿测试

    涂层磨穿测试

    涂层是经过涂覆所得到的一层连续膜,经过特殊处理后用来保护产品避免生锈以及避免被尖硬物划伤的薄层。为了避免被坚硬物划伤,我们可以对涂层进行耐磨性的检测,进而改良产品。 耐磨涂层按成型工艺通常可分为热喷涂耐磨涂层和化学粘接耐磨涂层。热喷涂耐磨涂层是采用等离子喷涂、电弧喷涂、火焰喷涂在金属表面喷涂陶瓷、合金、氧化物、氟塑料等形成的耐磨涂层。化学粘接涂层是指采用各种树脂、弹性体等配制的耐磨涂层胶,涂敷到金属表面后自然或加热固化所得的耐磨涂层。采用热喷涂技术和化学粘接技术所得到的耐磨涂层均具有优良的耐磨性能。 耐磨功能性涂层广泛应用于各行各业,如化工、机械、纺织、造纸、印刷及包装等领域的应用。磨损消耗了大量的能源,所以对于耐磨涂层的研究是非常有必要的,同时它也会给我们各行各业的成本减少很多,有助于可持续发展。 上海祎品智能科技有限公司可以很好的对涂层及各种材料的耐磨性进行精确的测试。[img=,690,547]https://ng1.17img.cn/bbsfiles/images/2019/12/201912110956405642_2498_3960018_3.jpg!w690x547.jpg[/img]

  • 如何测试表面涂层的卤素?

    最近有测试到一个样品是有涂层的,用XRF测试其卤素超标,确认本体不会含有卤素,请教一下涂层要如何取样?怎样测试的结果更准确些?

  • 【求助】样板是涂层的界定

    近来发现好多塑料涂层不止一层,有的2层,3层.玩具行业对此该如何处理?是分开,还是合在一起.分别该怎么描述呢?请教专家指点,谢谢!

  • 超声波测厚仪是怎样穿过涂层测量厚度

    [url=http://www.dscr.com.cn][color=#333333]超声波测厚仪[/color][/url]穿过涂层测厚度的原理:  钢中纵波声速具代表性的为5.900m/s(0.2320in/us),但是在漆层或类似涂层中声速一般低于2.500m/s(0.1000in/us)。常规超声设备在测量带漆层金属的总厚度时将错误地以钢的声速测量涂层,这意味着涂层将显示至少2.35倍(两种声速的比值)其真实厚度的值。在涉及厚涂层和紧公差的情况下,由涂层引入的这种误差可以为总厚度测量的很大一部分。这个问题的解决方案是以这样一种方法----从测量中将涂层成分去除----来测量或计算厚度。  回波―回波测量简单地应用了在两个相邻底面回波间的时间间隔的成熟技术,这个时间间隔代表了透过检测材料的声波的连续往返行程时间。在那些带涂层金属的情况中,这些多次回波只能发生在金属中而不是涂层中,因此任何一对回波的间隔(底面回波1到2、底面回波2到3等),只代表了已去除涂层厚度后的金属厚度。 透过涂层测量要使用一个专利软件来确定在涂层中一个往返行程代表的时间间隔。该时间间隔用于计算和显示涂层厚度,并且通过从总测量值中减去该时间间隔,仪器也能计算和显示金属底层厚度。  上述每一种技术都有优点和缺点,对一个特定的应用都应该考虑选择哪一种方法最好:  透过涂层测量优点:  1,能测量多种金属厚度,具代表性的,在钢中能从1mm到50mm  2,只需要一个回波  3,在点蚀情况能更精确地测量剩余地最小厚度  透过涂层测量缺点:  1,涂层最薄为0.125mm  2,涂层表面应当比较光滑  3,需要使用2种特定探头中地一个4,最高表面温度大约为50℃或51.67℃  回波-回波测量优点:  1,可使用多种普通探头工作  2,常能穿透粗糙表面涂层工作  3,用适当的探头能在接近500℃或498.89℃的高温时工作  回波-回波测量缺点:  1,需要多次底面回波,在严重腐蚀的金属中可能不存在多次底面回波  2,厚度范围比透过涂层测量限制更多

  • 玩具涂层测试问题

    样品描述:木头制成的拼图,小拼块为长方体(5cm*4cm*1.5cm),拼块上都有红色涂层覆盖,正面印有彩色图案(四色印刷,有点厚),背面为红色涂层(不带底层),侧面为红色涂层(带了白色底层)测试标准:CPSIA T-Pb & 7P求助问题一:从工艺上说,背面、侧面的红色涂层是相同的,只是侧面带了一个底层而已,正面和侧面的涂层是分成一组测试呢,还是分成两组测试?为什么?求助问题二:正面的彩色涂层描述的时候要不要带上底层?因为彩色的涂层有点厚,取样的时候可能带到底层,也可能不带到底层。同种类型的问题困扰我好久了,每次遇到这样的样品都很纠结,期待各位解答。先行谢过哈http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 非接触高精度涂层测厚系统

    可测量范围是什么?测量的精度一般是多少??答:一般测量范围如下:l? 低热传导系数的涂层(如大多数聚合物)的测量范围是0,1μm-500μml? 高热传导系数的涂层(如金属)的测量范围是0,1μm-1mm测量精度:l? 可重复性是? 1μml? 测厚精度是? 3%以上数值可能随不同的应用而有所变化,但客户的需求和测量的准确性可能取决于样品,以及用于校准的测量技术的准确性。非接触高精度涂层测厚:在测量时间、测量距离、检测精度、激光安全防护等各类因素之间寻求一种平衡,建立更高精度的解决方案。

  • 甩掉传统观念,表面涂层硬度的准确测量方法------国际方法

    甩掉传统观念,表面涂层硬度的准确测量方法------国际方法

    近期,我看到很多朋友对涂层硬度测试还存在很多误区,因此我写了这个帖子,由于个人知识有限,不足之处,还望指出。随着材料的发展,各行各业对于材料表面的力学性能越来越看重,在这种工业背景下,表面涂层技术为各种功能化部件的使用提供了极大的便利(如图中所示)。因此对表面涂层的检测要求也就越发的重要了,目前表面涂层力学的测量主要为三个方面:表面涂层的硬度、附着力、摩擦磨损寿命http://ng1.17img.cn/bbsfiles/images/2015/03/201503171420_538589_2169811_3.png http://ng1.17img.cn/bbsfiles/images/2017/10/2015031714203246_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015031714203337_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015031714203376_01_2169811_3.png 手表(要求涂层硬度、耐磨性、光泽、附着力) 刀具行业(需要涂层硬度、耐磨、耐高温、附着力好、摩擦寿命高等等)http://ng1.17img.cn/bbsfiles/images/2017/10/2015031714203417_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015031714203678_01_0_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015031714203205_01_2169811_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/03/201503171421_538598_2169811_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/03/201503171421_538597_2169811_3.png 汽车发动机喷油嘴、活塞环、挺杆、凸轮轴、缸套等等(需要涂层硬度、耐摩擦、耐高温、附着力高)----目前这也正是我们国家发动机一直做不好的重要原因之一(评估方法不成熟)http://ng1.17img.cn/bbsfiles/images/2015/03/201503171421_538599_2169811_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/03/201503171421_538600_2169811_3.png人体组织材料(涂层的耐磨性、耐磨寿命) 高分子材料还需要弹性模量 往往人造器官的表面力学性能差很多(有兴趣可私聊)http://ng1.17img.cn/bbsfiles/images/2015/03/201503171440_538612_2169811_3.png由于表面力学检测技术涉及到三种不同的技术(仪器化压痕仪、仪器化划痕仪、摩擦磨损试验机),由于涉及到篇幅问题,今天我主要介绍一下涂层硬度的测量:传统定义:一种材质可以刻划另一种材质或者被另一种材质刻划的能力常规方法:布氏硬度、微氏硬度、洛氏硬度等等(注意,传统方法忽略了材料的弹性、压痕尺寸是否变形、压痕是否压入基底等等)因此在做涂层测试的时候,随着涂层从厚到薄,传统常规硬度测量方法的准确性也就越来越低,在这种情况下,就诞生了仪器化压痕技术:针对不同的膜厚和不同的硬度涂层,我们可以简单把他们分为三类压痕仪:微米压痕(0-10N)纳米压痕(0-500mN)超纳米压痕(0-50mN)他们的测试原理,主要是根据加载-卸载曲线(力和位移曲线):http://ng1.17img.cn/bbsfiles/images/2015/03/201503171449_538614_2169811_3.png http://ng1.17img.cn/bbsfiles/images/2015/03/201503171450_538615_2169811_3.png通过加载力和位移曲线,得出材料刚度S;带入公式得到实际接触深度Hc,由于压头尺寸已知,得出压痕投影面积Ap,然后得出硬度、弹性模量。

  • 涂层测厚仪有哪些作用

    涂层测厚仪有哪些作用

    涂层测厚仪主要功能是测量和控制各种涂层或薄膜的厚度,以确保产品的质量、性能和合规性。以下是涂层测厚仪的作用:  质量控制和质量保证:涂层厚测定仪可以用来监测产品表面的涂层厚度,确保涂层质量符合规定的标准和规范。这有助于提高产品的质量,并减少因涂层质量不良而导致的废品率。  涂层均匀性检测:通过涂层厚测定仪,可以检测涂层在不同部位的厚度差异,确保涂层均匀分布,避免涂层不均匀导致的产品性能问题。  工艺优化:制造商可以使用涂层厚测定仪来优化涂装工艺,以确保最佳的涂层厚度,从而提高产品性能、耐久性和外观。 合规性检测:在一些行业,涂层厚度必须符合法规和标准的要求,以确保产品的安全性和可靠性。涂层厚测定仪可以用于检测涂层的合规性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309271039462615_8683_6098850_3.jpg!w690x690.jpg[/img]

  • 涂层毛细管 电流不对

    这两天在试涂层毛细管电泳,先用3%PB再用1%的PSS涂,都是先冲20分钟,静置15分钟,再水冲5分钟,涂了好几根了,电流都很小 20kv的电压,才2微安左右,缓冲液是100mM的Tris和磷酸二氢钾,怎么回事呢,都涂了好几根了,都不成功,还想请问大家 我的样品是用DMSO溶的 涂层管可以耐受么?

  • 粉末涂层测厚仪在喷涂施工中的应用

    对于粉末喷涂施工,测量涂层固化前的粉末层厚度也有着重要的意义。粉末涂层测厚仪与湿膜测厚仪的形式有所不同,使用方法也有区别。其中,非接触式粉末厚度测厚仪是一种超声波测厚仪,使用很方便,可以根据粉末的厚度显示出最终涂层的厚度。  传统的粉末涂层测厚仪包括有:干膜测厚仪和湿膜测厚仪。  [b]湿膜测厚仪应用:[/b]  有研究表明,涂层固化过程中会出现应力是不争的事实。大部分涂层在固化过程中会收缩,由此在涂层内部就出现了拉应力 要是在涂层固化过程中涂料分子的结构发生变化,涂层就会膨胀,涂层内部就会存在压应力。  另外,涂层和基材热膨胀系数不同以及各道涂层间性能的差别等因素都会使涂层内部产生应力。如果涂层中的应力超过了涂层的抗拉强度,涂层就会开裂。内应力的存在还可能使涂层的附着力和抗疲劳性能下降,致使涂层的使用寿命缩短。一旦在涂层完全固化后发现涂层厚度不符合设计要求,就很有可能需要将原先的涂层清除干净后重新涂漆,由此造成的损失会很大。因此,我们需要在涂装过程中随时检查涂层的湿膜厚度。  [b]干膜测厚仪应用:[/b]  涂装施工正式结束之前,要按有关要求或标准对涂层的厚度进行全面的检查。检查涂层厚度的方法有很多,但在涂装施工现场,无损检测法是测量涂层厚度最为常用的方法,这种方法操作简便,工作效率高,经济性好,对涂层不会造成破坏性影响。  为了满足用户对粉末涂料固化前的厚度进行非接触、无破坏性测量,TQC新推出一款可用于湿膜和干膜分析的粉末涂层测厚仪,采用光热法,能够非接触,无破坏性对粉末涂料固化前后的厚度进行分析测量。这台轻巧稳健的仪器可快速精准地测量在金属和MDF底材上粉末涂层在固化前后的厚度。测量系统由传感器和显示器组成,通过一条电缆连接。 [b] TQC Powder TAG 粉末涂层测厚仪特点:[/b]  1、操作简便。只需将探头在合适的距离指向测量物品的表面,然后按下“测量”按钮。  2、可测量任意形状和尺寸的样品,包括边框和边缘的样品。  3、测量范围大,测量值极其精准。  4、可测量任意金属底材品如钢、铝及非金属底材如中密度纤维板。  5、适用于固化或未固化粉末涂料。[align=center][url=http://www.tqc-china.com][img=TQC Powder TAG 粉末涂层测厚仪,416,369]http://www.tqc-china.com/system/upload/day_170711/201707111119434805.png[/img][/url][/align][b]关于TQC Powder TAG 粉末涂层测厚仪更多信息,欢迎随时咨询翁开尔热线:400-680-8138,或者登陆:[/b]www.tqc-china.com.

  • 【原创大赛】冷轧板表面缺陷分析

    【原创大赛】冷轧板表面缺陷分析

    冷轧板表面缺陷分析06Cr13热轧钢带,冷轧、退火后板面存在凹坑和线状缺陷。对送检的缺陷试样进行系统分析,确定缺陷形成原因。1、试验方法对送检的冷轧板表面缺陷部位进行宏观形貌分析;选取典型部位截取试样进行金相分析和利用扫描电镜能谱分析。2、试验结果2.1宏观分析结果对送检的试样进行宏观分析,发现钢板表面存在沿轧制方向分布的凹坑缺陷和线状缺陷,见图1。凹坑状缺陷面积较大,沿轧制方向断续分布,在凹坑缺陷附近有的钢板表面已破裂。线状缺陷宽度在1mm左右,表面凹凸不平,有手感。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311424_530583_1722674_3.jpg图1 板面缺陷宏观形貌2.2金相分析结果磨制纵向试样进行夹杂物评级,经分析发现试样中主要为氧化铝类夹杂物,级别为B1.5级。经苦味酸盐酸酒精溶液侵蚀后,组织为铁素体和碳化物,晶粒度8.5级。2.3扫描电镜分析结果2.3.1凹坑缺陷电镜分析结果扫描电镜下观察凹坑缺陷部位主要有凹坑和块状物质,且块状物质与钢板基体边界清晰,凹坑底部较光滑有明显的碾压压变痕迹,见图2。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311435_530591_1722674_3.jpg 图2 凹坑缺陷部位电镜下形貌对凹坑缺陷附近的块状物质进行能谱微区成分分析,结果见表1。由表1可知块状物质的成分与基体成分没有明显的差别。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311435_530592_1722674_3.jpg 图3 能谱分析图表1能谱分析结果 谱图OSiClCaCrMnFe总的谱图 15.780.550.2511.640.6381.15100.00谱图 210.030.630.250.5912.2076.29100.00谱图 33.060.7112.5983.64100.002.3.2线状缺陷电镜分析结果在电镜下可清晰看到线状缺陷部位钢板的表层一侧与基体相连,一侧已经于基体分离,且局部表皮破损,见图4。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311437_530593_1722674_3.jpg图4线状缺陷电镜下形貌对线状缺陷表皮破损部位进行能谱分析,结果见表2[size=14.0p

  • 关于涂层毛细管

    有经常用涂层毛细管的么?我们实验室买的邯郸一家公司的涂层毛细管,涂层材料未知,感觉不是很好,涂层不是很稳定。大家都用哪家公司的涂层管呢?还是自己动手做?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制