当前位置: 仪器信息网 > 行业主题 > >

图层石墨

仪器信息网图层石墨专题为您整合图层石墨相关的最新文章,在图层石墨专题,您不仅可以免费浏览图层石墨的资讯, 同时您还可以浏览图层石墨的相关资料、解决方案,参与社区图层石墨话题讨论。

图层石墨相关的资讯

  • 石墨烯“三防”涂层技术问世 填补市场空白
    p style="text-indent: 2em "在工业生产中,涂层最常起到抗腐蚀、抗热、抗氧化等功能。像海洋这种高盐高湿的恶劣环境,电化学腐蚀能在极短的时间内将钢铁船变成一块废铁,因此常采用阴极保护与防腐涂层结合的方法来保护船体及一些暴露在烟雾等腐蚀条件下的工件、设备或部分等。/pp style="text-indent: 2em "但对于舰船燃气轮机等在高温环境下的部件来说,需要的涂层不仅要耐湿耐腐蚀,同时还要有优异的耐高温性能。最近,一种石墨烯“三防”涂层技术已在秦皇岛经济技术开发区研发成功,可应用于舰船燃气轮机、航空航天发动机高温部件保护以及舰船防盐雾及海生物腐蚀等,有力地填补了高温涂层技术应用在重盐雾地区的市场空白。/pp style="text-indent: 2em "这种石墨烯“三防”涂层技术由远科秦皇岛节能环保科技开发有限公司历时3年多时间研发成功,相关涂层材料在南海、东海重盐雾地区的高温部件上挂件测试,通过6000小时连续工作验证,使原基材在不改变属性的情况下,增加3倍以上的使用寿命,经国家权威部门认定,该产品具有防霉菌、防盐雾腐蚀、抗高温氧化功效,完全可以满足高温条件下发动机热部件1500小时的应用,解决了我国在这一领域的技术难题。/pp style="text-indent: 2em "据了解,这种石墨烯涂料主要是碳原子和稀土氧化物原子复合而成,这种复合性碳原子保护共性材料,使基础材料强度增强,形成了超保护薄膜,从而改变了隔热系数。/pp style="text-indent: 2em "据远科秦皇岛节能环保科技开发有限公司总经理闫俊良透露,随着我国在石墨烯涂层技术上取得突破,它的应用领域会逐渐扩展,“三防”涂层技术除可应用于我国舰船燃气轮机、航空发动机领域外,还可在各种远洋运输船、游轮等民用船舶上使用。这种材料一旦得到应用,预计每年可为我国节省维护费用上百亿元,并使各类装备的使用寿命和强度大幅提升。/p
  • 改性石墨烯增强有机硅涂层及其性能研究
    HS-DSC-101差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。改性石墨烯增强有机硅涂层及其性能研究【齐鲁工业大学 姚凯 】改性石墨烯增强有机硅涂层及其性能研究上海和晟 HS-DSC-101 差示扫描量热仪
  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 天然双层石墨烯内发现新奇量子效应
    由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。
  • 滨海正红发布石墨消解器新品
    石墨消解器一、产品指南温控电热板,也称防腐电热板,表面经优质特氟龙涂层不粘处理,不受强酸强碱的影响,是样品加热消解、蒸干、煮沸、赶酸的实验用电热板。 多配套我司特氟龙系列烧杯、坩埚、消解管、溶样罐、消解罐内杯等使用,效果好。二、技术参数说明 型号DBF型GWB型操作面积(mm)600*400mm、400*300mm、500*250mm 可加工其他规格加热方式电加热 PID数显工作温度室温-260℃室温-350℃温控精度±1℃加热板块表面防腐PFA特氟龙涂层无涂层加热板材质精致铸铝、优质石墨额定电压220v连续工作时间>48h 优点★特氟龙防腐涂层,防腐铸铝加热板升温速度快★ 多个样品同时处理无交叉污染★ DBF型电热板支柱全部采用聚四氟乙烯材料,很大程度上减少金属零部件进入实验室★可定制时间设定功能,分段式温控,同时也可按要求加工不同的板面三、使用注意:1. 将电热板工作面擦拭干净,上面不要有水滴,污物等;2. 放置装样试瓶或其他器皿;3.调节调温,升至所需要的温度,电热板处于工作状态时应有专人照管;4.工作完毕,关了电源开关,切断电源;5.待工作面冷却后将其清理干净。南京滨正红仪器有限公司 创新点:渡特氟龙保护层,立体包裹式加热,温度均匀,效率更高;2:加热模块采用等静压高纯超细石墨,加热均匀,保证各个消解孔间温差小于± 1.0 ℃;3:控温精确 ,PID参数自检,可调节加热速率,控温精度± 0.1℃,单孔温度波动度± 1.0℃;4:自动化程度高,智能控温。程序控制 ,16段程序控温,可实现程序升温并控制加热保持时间,完成加热程序后自动停止加热。可自行设定控温程序;石墨消解器
  • 石墨烯前沿最新综述精选(内附石墨烯网络研讨会参会福利)
    石墨烯具备超强导热性与导电性、以及轻质高强、柔性、透明等无比伦比的特性,被誉为“新材料之王”,应用前景十分广阔。自2004 年问世以来,关于石墨烯的研究热度持续不减,新兴研究领域不断被开拓。本文对近期石墨烯领域的部分综述进行盘点汇总,以此总结该领域最新前沿科研成果,以飨读者。(鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。)宁波材料所在石墨烯复合硅碳负极材料及其高能量密度锂离子电池方面取得进展动力电池、消费类电池等终端产品对高能量密度锂离子电池需求越来越强。目前,产业界主要采取硅碳复合路线来提升硅基负极应用水平,但高比容量的硅碳负极材料嵌/脱锂过程体积膨胀巨大,循环过程中活性材料会发生结构失效导致电接触变差,表面固体电解质膜反复破裂/再生导致电解液快速消耗,锂离子电池可逆容量迅速衰减。针对硅碳负极材料的体积膨胀问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队从源头出发,创新性地构筑了高机械稳定的自机械抑制石墨烯复合硅碳负极材料。刘兆平团队将氧化亚硅和石墨烯浆料在液相体系混合均匀,其中沥青作为添加剂,通过喷雾干燥、高温热处理和化学气相沉积等一系列工艺,制备类球形的石墨烯/沥青裂解碳封装硅氧化物复合负极材料(SiOx/Graphene/C,简称SGC),SGC复合负极材料可维持石墨烯宏观结构的完整性和机械稳定性。自机械抑制石墨烯复合硅碳负极材料制备研究表明,SGC复合负极材料可抑制SiOx摄锂量,降低体积膨胀,提升循环稳定性。该高性能石墨烯复合硅碳负极材料已成功实现产业化,研制出能量密度达350-400Wh/kg的系列新型高能量密度锂离子电池。俄罗斯借石墨烯涂层开发出新材料:用“微电厂”取代电池技术俄罗斯国立研究型技术大学与俄罗斯科学院微电子技术问题研究所科研人员,通过沉积石墨烯涂层技术开发出一种独特的硅纳米复合材料,这一研发成果将加速直接放置在电子产品印刷电路板上的“微电厂”技术的发展。俄罗斯国立研究型技术大学半导体与电介质材料科学系副教授叶卡捷琳娜戈斯捷娃解释说:“我们提出了独一无二的方法,在硅结构整个深度的孔道内壁上沉积多层石墨烯涂层。目前没有其他方法可以生产用于高效微燃料电池的电极。这种电源不仅可以为设备提供长期备用电源,而且可能会随着时间的推移取代电池。”郑大《ACS Nano》:MXene/石墨烯气凝胶实现超强电磁波吸收!郑州大学申长雨院士和刘春太教授课题组通过定向冷冻法和肼蒸汽还原法制备得到一种新型的含有磁性Ni纳米链锚定的三维MXene/石墨烯复合气凝胶(命名为NiMR-H)。特殊的取向结构和介电/磁性组分的异质界面有利于获得优异的吸波性能,具有良好的阻抗匹配、多重极化和电/磁耦合效应。NiMR-H气凝胶制备示意图及结构形貌表征图中国科大实现二维石墨烯室温铁磁性中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂策略,实现二维石墨烯的室温铁磁性。该研究组利用两步浸渍—热解的方法,在氮原子辅助下,将钴原子掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu/g,居里温度达到400K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法,研究人员证实样品中的钴是以平面四边形四氮化钴结构单元原子级分散于石墨烯晶格中的,排除了磁性起源于钴相关第二相的可能,四氮化钴结构单元是室温铁磁性的主要来源。精确可控的钴原子掺杂激活石墨烯室温铁磁性曹原一周连发两篇《Nature》:魔角石墨烯再次突破021年4月1日,来自美国麻省理工学院的曹原(通讯兼第一作者)&Pablo Jarillo-Herrero等研究者,通过进行热力学和输运测量,研究了魔角扭曲双层石墨烯(MATBG)的对称性破缺多体基态和非平凡拓扑现象。同时,也使魔角石墨烯的理论和实验都更趋近于一个统一的框架,为我们开发新型的量子材料,带来了更多可能。4月7日,曹原再发《Nature》,本文是关于魔角石墨烯中的Pomeranchuk效应的熵证据。当前相关态的杂化特性和能量尺度的大分离对于双层扭曲石墨烯中相关态的热力学和输运性质具有重要意义。山西大学:利用OAT法实现超高垂直石墨烯薄膜生长山西大学激光光谱研究所陈旭远教授团队在三维竖直石墨烯制备及储能应用领域取得突破性进展,研究成果近日发表在《ACS Appl. Mater. Interfaces》上。该团队开发了一种氧辅助“修正”(OAT)工艺以消除过密的石墨烯片层,阻止片层随时间增长而聚集,克服了生长过程中竖直石墨烯厚度饱和的现象。未聚合的竖直石墨烯陈旭远团队利用这种方法合成了高达80微米的超高竖直石墨烯,并应用于超级电容器中,获得了241.35mF cm–2的面积比电容,展现出了优越的电化学性能及储能能力。值得注意的是,80微米的高度并非该合成技术所能达到的最大值,通过氧辅助“修正”工艺可以获得任意高度的竖直石墨烯。这项工作对于高负载竖直石墨烯的合成具有重要的指导意义。与IC兼容的制造工艺和出色的储能能力使得OAT竖直石墨烯在集成芯片、器件领域中具有非常大的应用潜力。 《ACS Macro Letter》3D打印明胶氧化石墨烯墨水实现自发成肌分化釜山国立大学Dong-Wook Han与韩国亚洲大学Ki Dong Park教授团队在高分子领域顶刊《ACS Macro Letters》上发表了其最新研究成果,由富含酚的明胶(GHPA)和氧化石墨烯(GO)组成的3D可打印生物墨水,是诱导肌发生的材料的组成部分,可通过双重酶介导的交联反应原位形成水凝胶网络。原位可固化的GO/GHPA水凝胶可以成功地用作3D可打印的生物墨水,以提供合适的细胞微环境,并促进C2C12骨骼肌成肌细胞的成肌分化。总体而言,研究团队建议功能性生物墨水可能在肌肉组织工程和再生医学中有用。GO/GHPA水凝胶基质的3D生物打印和理化特性“石墨烯检测技术及应用进展”主题网络研讨会随着业界对石墨烯的高度关注,我国石墨烯研发和产业化得到了快速发展,但其产业化仍然面临诸多挑战和问题。石墨烯的“杀手锏”级应用仍在探索中,石墨烯标准、检测体系不完善,产品鱼龙混杂,市场亟需标准化。基于此,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中……报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 最新研究:石墨单分子层孔道DNA测序法
    美国国家标准与技术研究院(NIST)近期提出了一种高效、精确的DNA测序方法。通过将DNA分子从超薄的石墨片层结构的孔洞中拉动,通过测量石墨孔洞边缘产生的电位变化,从而实现高速、高精度、高效率的DNA测序。该方法不同于以前的桑格尔测序法以及第二代第三代测序法。相关工作发表在《Nanoscale》上。  NIST的研究表明,该方法可以在一秒钟时间内,识别约660亿个碱基, 而且有90%的准确性,并且没有假阳性(false positive)。现在的这个测序还仅仅停留在概念层次,如果真的能够被实验证明,该方法可能最终会比会常规DNA测序更快和更便宜,是真正面向未来的测序方法。  在20世纪70年代开发的常规测序,涉及分离、复制、打标签和DNA的重组件,来读取的遗传信息。NIST的新方法则基于将DNA拉过纳米孔道的理论。这个概念 开创于20年前,基于带电粒子(离子)通过纳米通道,会引起电位的变化。时至今日,这个想法仍然很流行,但会造成诸如不必要的背景电流信号噪声、或干扰,也面临着选择性不足的挑战。  相比之下,NIST的新测序流程,是要建立临时的化学键,依靠石墨烯的能力,从打破这些化学键,将机械应变信号转变为电流信号。这实际上是一个很小的应变传感器,科学家认为他们虽然没有发明完整的技术,但是提出了一个新的物理原则,即有可能是远远优于其他测序方法。由于它的电性能和小型化的薄膜结构,石墨烯是在纳米孔测序概念中非常合适。在新的NIST法,石墨烯纳米带(4.5X15.5纳米)上有多个纳米孔道(2.5纳米宽),其中可以通过碱基。  使用计算机模拟该系统在室温下在水中进行测序,胞嘧啶附着到纳米孔,可以检测到鸟嘌呤。甲单链DNA分子从纳米孔通过,当鸟嘌呤通过是,与胞嘧形成啶氢键。当DNA的不断移动,石墨烯被猛拉,然后滑回原来的位置,键锻裂,从而出现电流变化。  研究人员利用与理论相结合的模拟数据,来估计可测量信号变化的水平。信号强度是在毫安范围内,比早先的离子电流的纳米孔的方法信号更强。基于90%的准确率的性能,而无需任何误报(没有假阳性),研究人员认为,相同的DNA链的四次独立的测量将产生99.99%的精度,可以达到测序人类基因组所需要的精确度。  理论分析表明,基本的电子过滤方法,可以分离出有用的电信号,而不需要复杂的数据处理,或其他严格限制的操作条件。除了连接碱基,纳米孔,所有的传感器组件已通过其他研究小组用实验证实可行。这项研究的作者得出结论,该测序的新概念充满了希望,这可能是新一代颠覆时代的新概念。
  • CIF发布CIF石墨烤胶机新品
    CIF石墨烤胶机CIF石墨烤胶机主要用于对金属敏感的样品,除具备PH18烤胶机产品特点外,更重要的是加热模块整体材质无任何金属附件,机箱整体采用石墨材质,表面PFA涂层,耐高温防腐蚀。加热面板采用陶瓷硅晶玻璃,防腐抗刮划,无污染。产品特点u 无任何金属附件。u 分体式设计,保证实验人员安全,延长仪器使用寿命。u 机箱整体石墨材质,表面PFA涂层,耐高温防腐蚀。u 加热面板采用陶瓷硅晶玻璃,防腐抗刮划,无污染。u 嵌插(镶)式加热系统,维修简单方便。u 5寸全彩触摸屏智能程序化温度控制系统,中英文互动操作界面。u 控温准,加热快速高效,控温精度达到0.1℃。u 加热温度、加热保持时间、加热速率、温度梯度等可自由设置。u 存储 10 种方法 ,并可编辑,每种方法可设定10个温度梯度段 , 可实现100段程序控制。u 实时程序状态显示,实时工作曲线图形显示。u 温度自可校准,保证了控温的准确性。u 延时启动、定时预约启动功能。u 过温自动断电保护。u 加热完成自动停止,无须工作人员值守。技术参数型号控温范围℃控温精度℃功率kw工作尺寸mm外型尺寸(LxWxH)mmPH40RT-360±0.13.0400x400466X466X135mmPH644.2535X350600X415X135mm 创新点:CIF石墨烤胶机整体材质无任何金属附件,机箱整体采用石墨材质,表面PFA涂层,耐高温防腐蚀加热面板采用陶瓷硅晶玻璃,防腐抗刮划,无污染。CIF石墨烤胶机
  • 同是三层石墨烯结构 电学性质因何大相径庭?
    p style="text-indent: 2em "近日,日本科学家研制出两种新材料,它们都是三层石墨烯结构,但由于堆叠方式不同,却各具独特的电学性能,这项研究对于光传感器等新型电子器件的发展具有重要意义。/pp style="text-indent: 2em "自从2004年,两位科学家首次利用清洁石墨晶体的透明胶带分离出了单层碳原子,石墨烯就因其迷人的特质吸引了无数研究者蜂拥而至。它的强度是钢的200倍,不仅非常柔韧,而且是一种极为优良的电导体。/pp style="text-indent: 2em "石墨烯的碳原子呈六边形排列,构成了蜂窝状晶格。在单层石墨烯上再堆叠另一单层石墨烯,就可以形成双层石墨烯结构。有两种堆叠方法:让每层石墨烯结构的碳六边形中心彼此正对在一起,就构成了AA堆叠结构;而将其中一层向前移位,使得其碳原子六边形中心位于另一层石墨烯的碳原子之上,就构成了AB堆叠。AB堆叠的双层石墨烯材料在施加外部电场时,具有半导体的性质。/pp style="text-indent: 2em "刻意堆叠三层石墨烯结构是非常困难的,但是这样做却可以帮助科学家们研究三层材料的物理性质是怎样随层与层间堆叠方式的不同而变化的,并从而对新型电学仪器设备的发展具有促进作用。现在,日本东京大学和名古屋大学的研究者已成功研制出两种具有不同电学性能的三层石墨烯结构。/pp style="text-indent: 2em "他们采用了两种不同的方式加热碳化硅,一种是在加压氩气环境下将碳化硅加热到1510摄氏度,另一种是在高真空环境将碳化硅加热至1300摄氏度。随后用共价键已被破坏成单个氢原子的氢气喷涂两种材料,两种不同的三层石墨烯结构就大功告成了。在加压氩气下加热的碳化硅形成了ABA堆叠结构的三层石墨烯,其顶部和底层的碳原子六边形精确对齐,中间层稍有移位。高真空环境下加热的碳化硅则形成了ABC堆叠结构的三层石墨烯,每一层碳原子六边形都比其下面一层稍稍向前移位。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/fda047f2-d0aa-4cca-894b-6475b2f605a5.jpg" title="同是三层石墨烯结构 电学性质因何大相径庭?.jpg"//pp/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "ABA堆叠状三层石墨烯(图a)与ABC堆叠状三层石墨烯(图b)的晶体结构示意图/span/pp style="text-indent: 2em "科学家们检测了这两种三层石墨烯结构的物理性质,发现他们电学性能差异显著。ABA型石墨烯与单层石墨烯类似,是十分优良的电导体,而ABC型石墨烯却更像AB型双层石墨烯结构,具有半导体的性质。/pp style="text-indent: 2em "“ABA型和ABC型两种不同三层石墨烯结构的成功制备,将从堆叠层数和堆叠序列的角度,拓宽石墨烯基纳米电子器件的研发可行性。” 相关研究人员在NPG Asia Materials杂志上发表的论文中这样总结道。/p
  • 半导体所在多层石墨烯边界的拉曼光谱研究方面获进展
    单层石墨烯(SLG)因为其近弹道输运和高迁移率等独特性质以及在纳米电子和光电子器件方面所具有的潜在应用而受到了广泛的研究和关注。每个SLG样品都存在边界,且SLG与边界相关的物理性质强烈地依赖于其边界的取向。在本征SLG边界的拉曼光谱中能观察到一阶声子模-D模,而在远离边界的位置却观察不到。研究发现边界对D模的贡献存在一临界距离hc,约为3.5纳米。但D模的倍频模-2D模在本征SLG边界和远离边界处都能被观察到。因此,D模成为研究SLG的晶畴边界、边界取向和双共振拉曼散射过程的有力光谱手段。  SLG具有两种基本的边界取向:&ldquo 扶手椅&rdquo 型和&ldquo 之&rdquo 字型。与SLG不同,多层石墨烯(MLG)中每一石墨烯层都具有各自的边界以及相应的边界取向。对于实际的MLG样品,其相邻两石墨烯层的边界都存在一个对齐距离h。h可以长到数微米以上,也可短到只有几个纳米的尺度。当MLG的所有相邻两石墨烯层的h等于0时,我们称之为MLG的完美边界情况。MLG边界复杂的堆垛方式以及存在不同h和取向可显著影响其边界的输运性质、纳米带的电子结构和边界局域态的自旋极化等性质。尽管SLG边界的拉曼光谱已经被系统地研究,但由于MLG边界复杂的堆垛方式,学界对其拉曼光谱的研究还非常少。  最近,中国科学院半导体研究所博士生张昕、厉巧巧和研究员谭平恒等人,对MLG边界的拉曼散射进行了系统研究。他们首先对MLG边界进行了归类,发现N层石墨烯(NLG)的基本边界类型为NLGjE,即具有完美边界的jLG置于(N-j) LG上。因此,双层石墨烯(BLG)的边界情况可分为BLG1E+SLG1E和BLG2E两种情况。研究发现:(1)NLG1E边界与具有缺陷结构的NLG的D模峰形相似,其2D模则为NLG和(N-1)LG的2D模的叠加。(2)在激光斑所覆盖区域的多层石墨烯边界附近,相应层数石墨烯的2D模强度与其面积成正比,而相应的D模强度则与在临界距离内的对齐距离(如果hhc)以及边界长度有关。(3)对于BLG1E附近的2D模,随着h从亚微米尺度逐步减少到0时,来自SLG部分的强度从极大值逐步减小至0,而来自BLG部分的强度则保持不变。对于BLG1E附近的D模,随着h从亚微米尺度逐步减少到0时,来自SLG部分的强度先从0增加到极大值,一旦hhc时,该强度再逐渐减小到0,而来自BLG1E部分的强度先保持常数不变,一旦hhc时,再逐渐增加到该常数的2倍。(4)通过BLG边界处2D模的线型和强度,在双层石墨烯边界中成功地鉴别出h为48nm的情况;通过BLG边界处D模的线型和强度,甚至能鉴别出h小于3.5nm的情况。这些尺寸已经远超出了激光斑点的衍射极限,是一般表征手段无法达到的。该系列研究工作近期发表于Nanoscale 6, 7519-7525(2014)和Carbon 85, 221-224(2015)。  这些重要发现为多层石墨烯边界的进一步系统研究奠定了基础,同时为其他二维材料的边界研究提供了参考。该工作得到了国家自然科学基金的支持。  文章链接:1 2  双层石墨烯(BLG)边界的对齐距离从亚微米逐步减少到0的拉曼光谱
  • 有机硅涂层离型膜行业的主要趋势
    尽管许多相关合作伙伴面临着全球挑战,但离型膜行业仍在不断增长:新冠疫情爆发导致2020年成为艰难的一年,但令人欣慰的是,从化学品供应商到离型膜制造商,离型膜行业的全球强劲增长对所有相关组织而言是一个好消息。而对于那些依赖纸张或有机硅的企业而言,这一情况特别具有挑战性。由于离型膜行业对于纸张和有机硅的依赖性非常严重,因此纸张和有机硅的短缺尤其给这一行业带来了挑战。市场短缺使得纸张和有机硅供应商们奋力满足需求,同时市场价格出现了飙升。事实上,在有机硅市场,由于价格上涨和不稳定的供应,许多相关方在2020年和现在的2021年考虑替代材料。离型膜的供需状况似乎没有受到太大影响。APAC(亚太地区)业绩增长最快,市场份额最*大。其中,中国凭借着在有机硅生产领域处于世界领*先地位的强劲记录,在离型膜市场中的份额最*大。其他地区(例如美国,其次是欧洲)都显示出强劲的市场增长迹象。离型膜行业的发展方向:离型膜行业正转向更薄的材料(和涂层)以及更高的生产效率,以降低成本。无论是用于饮料瓶还是大量用于医疗领域,标签占据的离型膜市场份额最*大,遥遥领*先。医疗领域的高需求推动着市场生产更薄、更容易处理的标签。这意味着人们开始使用基于薄膜的合成材料,而非市场上唯*一的基材——纸张。这些离型膜所依赖的并非典型的纸张生产方式,而是由聚丙烯、聚酯和聚乙烯制成,因此可能比传统产品类型要薄得多。为什么这些材料越来越受欢迎?因为这些薄膜合成材料最*高可以减少60%的厚度,对环境和商业具有重大影响。除了产生的废物量更少、生产效率更高外,还更轻便,储存和运输时更高效,这意味着在使用的各个阶段节省大量资金。然而,市场无法持续推动离型膜变得更薄。如果太薄,其将无法发挥作用。多年来,以纸张为基础的离型膜已证明其自身的价值,因此不会在一夜之间被取代。在压敏标签等特定关键领域,其仍然是至关重要且不可或缺的产品。传统的离型膜正发生改变,以满足多种需求,而传统纸张和有机硅离型膜将不会随处可见,而且随着环境问题变得越来越重要,尤其是在中国,合成塑料离型膜已成为一股新兴力量,可能会在未来发挥更重要的作用。日立LAB-X5000能量色散X射线荧光(EDXRF)光谱仪能够让有机硅涂层的重量分析变得更加轻松。这款坚固耐用、结构紧凑的分析仪可在实验室或生产环境中提供可靠且具有可重复性的结果。内置的大气补偿功能允许操作人员在无需氦气的情况下进行分析,从而将每次分析的成本降至最*低。应用工程师对分析方法参数进行了优化,方便对玻璃纸和粘土涂层纸进行快速而简单的分析。新型LAB-X5000可作为用户的质量保证计划的一部分,让用户全天24小时以较低的生产成本确保产品符合规范。日立已针对各种应用领域进行研究,并专业提供离型膜XRF分析解决方案。
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 超显微镜观察到锂离子在双层石墨烯中迁移
    p  德国斯图加特马普固态研究所和乌尔姆大学的科学家使用超显微镜(SALVE),观察到以原子分辨率显示的锂离子在电化学充放电过程中的表现,证明了在单个纳米电池中双层石墨烯发生的可逆锂离子吸收。研究成果发表在最新一期的《自然》杂志上。/pp  斯图加特马普固态研究所物理学家于尔根· 斯迈特介绍说,研究显示“纯碳化合物最适合用于锂基电化学存储系统,在此系统中,锂暂时储存在碳主体中”。/pp  这一项目由巴符州基金会资助,目的是研究锂在二维碳化合物(如原子水平的石墨烯)中的储存和扩散。为此,斯迈特和他的博士生开发了一种由双层石墨烯组成的“微型电池”。石墨烯属于二维材料,由单个碳原子层组成。在只有0.3纳米薄的细长电化学微电池的一端,研究人员在顶部施加了溶解有锂盐的电解质液滴。为使电解质不干扰电子显微照片,实验必须精确定位和机械稳定,他们采用了一种技巧,即添加了在紫外线下固化的聚合物,使液滴成为凝胶状固体留在原处。/pp  实验显示,当电压施加到纳米电池时,锂离子从电解质液滴迁移到石墨烯双层的间隙中,并在那里积聚 去除电位差时,累积储存的锂又溶解并迁移回到电解质液滴中。/pp  在原子水平上,这种过程很难被“原位”观察。乌尔姆大学乌特· 凯瑟教授领导的团队利用超显微镜首次证明了石墨烯在原子水平上的嵌入。/pp  实验结果让研究人员感到吃惊,传统的石墨基电池只有少数紧密堆积的锂在两层碳层之间,而在石墨烯纳米电池里发现非常密集的锂层。凯瑟教授称,超显微镜为理解纳米电池提供了独特的途径,能在石墨烯夹层中观察锂等轻元素的扩散是一项巨大的科学挑战,传统的透射电子显微镜(TEM)做不到。/p
  • 中科院专家成功研制石墨烯“防腐外衣”
    p  记者从中国科学院获悉,该院宁波材料技术与工程研究所王立平研究员和薛群基院士团队成功研制出拥有自主知识产权的新型石墨烯改性重防腐涂料——这层石墨烯“防腐外衣”,有望让钢铁材料“抵御”来自热带海洋环境下高盐、高湿及高温的侵袭。/pp  腐蚀是新兴海洋工程、海岛工程等领域装备、设施安全性和服役寿命的重要影响因素之一,尤其热带海洋开发和基础设施建设,面临着严峻的腐蚀危机,使我国重大工程和装备的可持续发展受到影响。仅2014年我国腐蚀总成本就超过2.1万亿元人民币,约占当年GDP的3.34%。/pp  当然,人们并不缺乏控制腐蚀的方法,比如,在钢铁材料中调整化学元素成分和微观结构,使其成为耐腐蚀材料,等等。还有一种是使用重防腐涂料,以减小腐蚀破坏,保障苛刻腐蚀环境下装备和设施可靠性和服役寿命。王立平和薛群基团队就以“石墨烯”为材料研制重防腐涂料。/pp  按照王立平的说法,石墨烯是目前自然界最薄的二维纳米材料,阻隔与屏蔽性能非常优异。通过引入石墨烯能够增强涂层的附着力、耐冲击等力学性能和对介质的屏蔽阻隔性能,尤其是能够显著提高热带海洋大气环境中服役涂层的抗腐蚀介质(水,氯离子,氧气等)的渗透能力,在大幅降低涂膜厚度的同时,提高涂层的防腐寿命。/pp  经过数年技术攻关,王立平和薛群基团队成功突破石墨烯改性防腐涂料研发及应用的四大技术瓶颈,开发出石墨烯“防腐外衣”。目前该成果已通过中国腐蚀与防护学会鉴定,关键技术指标盐雾寿命超过6000小时,处于国际领先水平,相关成果已经由宁波中科银亿新材料有限公司实施产业化,目前已定型的八大类产品已经在电力设施、船舶、石油化工装备等领域实现了规模应用。/pp  王立平告诉记者,我国拥有高达2000亿元的防腐涂料市场,其中重防腐涂料需求年均增速超过20%,不过由于没有形成自主知识产权技术,缺乏相应技术标准,以前70%的重防腐涂料市场被外资品牌垄断。如今国产石墨烯“防腐外衣”的成功研制,也有望改变我国重防腐涂料被国外产品垄断的市场格局。/pp/p
  • 网络研讨会|白色家电涂层工艺漆膜膜厚自动检测
    涂魔师漆膜膜厚自动检测系统非接触无损测量白色家电涂层厚度涂魔师漆膜膜厚自动检测系统能够精准控制涂层厚度,保证产品质量,非常适合白色家电生产制造商和涂装商。粉末涂料喷涂由于其优越的机械性能和无溶剂涂料的应用,在工业领域发挥越来越重要的作用。但只有当涂层厚度保持在一定的容差范围内,粉末涂料喷涂才能发挥其优势,因此喷涂工艺的重点必须放在粉末涂料的有效使用和控制上。对白色家电喷涂涂层工艺的优化不仅仅适用于大型工厂流水线上,而且也适用于小型的涂装生产线,甚至是人工涂装线,在这些生产线上,每小时的工作或每公斤的清漆对企业的盈亏起到决定作用。在白色家电的生产环境中,涂层工艺的另一个挑战是搪瓷!搪瓷就是在金属表面覆盖一层无机玻璃氧化涂层,涂层最主要的作用是保证金属材质不被氧化和腐蚀。烤箱和炊具的所有零部件(马弗炉、柜台门、风扇罩、锅等)进行搪瓷,主要是为了提高这些家电的耐用性和耐高温性,同时也使得这些家电易于清洁,保证卫生。本次网络研讨会,涂魔师专家Francesco Piedimonte将介绍涂魔师漆膜膜厚自动检测系统,演示涂魔师漆膜厚度检测仪先进的ATO光热法原理,以及使用涂魔师非接触无损测厚仪实时在线自动测量粉末、湿膜/干膜和搪瓷涂层厚度。涂魔师漆膜膜厚自动检测支持连续测量生产过程中流水线上的移动部件。马上发邮件到【marketing@hjunkel.com】,备注【9月9号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。涂魔师漆膜膜厚自动检测系统工作原理ATO光热法介绍涂魔师采用ATO光热法专利技术;该项技术采用氙灯安全光源代替激光束进行激发,并以脉冲方式短暂加热待测涂层,内置高速红外传感器将记录涂层表面温度分布并生成温度衰减曲线,最后利用专门研发的算法分析表面动态温度曲线计算待测涂层厚度。通常,涂层厚度越大,反应时间越长(例如1-2秒);涂层厚度越小,反应时间越短(例如0.02-0.3秒),如图所示。相比于传统非接触式测厚仪,涂魔师ATO漆膜膜厚自动检测系统明显降低了仪器维护成本,而且涂魔师能更加快速精准和简单测厚,无需严格控制样品与测厚仪器之间的测试角度和距离,即使是细小部位、弯角、产品边缘、凹槽等难测部位也能精准测厚,并且对操作人员的专业要求低。另外,涂魔师容易集成到涂装系统中,与机械臂或其他移动装置配合使用能方便精准测量工件膜厚,实现不间断连续膜厚监控,提高生产效率。涂魔师漆膜膜厚自动检测系统优势涂魔师漆膜厚度检测仪可以测湿膜直接显示干膜厚度,在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等;涂魔师漆膜膜厚自动检测系统采用先进的热光学专利技术,无需接触或破坏产品表面涂层,在允许变化角度和工作距离内即可轻松测量膜厚;涂魔师漆膜膜厚自动检测允许允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域);涂魔师漆膜厚度检测仪100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况。翁开尔是瑞士涂魔师中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • CIF发布CIF石墨烤胶机PH40新品
    CIF石墨烤胶机CIF石墨烤胶机主要用于对金属敏感的样品,除具备PH18烤胶机产品特点外,更重要的是加热模块整体材质无任何金属附件,机箱整体采用石墨材质,表面PFA涂层,耐高温防腐蚀。加热面板采用陶瓷硅晶玻璃,防腐抗刮划,无污染。产品特点u 无任何金属附件。u 分体式设计,保证实验人员安全,延长仪器使用寿命。u 机箱整体石墨材质,表面PFA涂层,耐高温防腐蚀。u 加热面板采用陶瓷硅晶玻璃,防腐抗刮划,无污染。u 嵌插(镶)式加热系统,维修简单方便。u 5寸全彩触摸屏智能程序化温度控制系统,中英文互动操作界面。u 控温准,加热快速高效,控温精度达到0.1℃。u 加热温度、加热保持时间、加热速率、温度梯度等可自由设置。u 存储 10 种方法 ,并可编辑,每种方法可设定10个温度梯度段 , 可实现100段程序控制。u 实时程序状态显示,实时工作曲线图形显示。u 温度自可校准,保证了控温的准确性。u 延时启动、定时预约启动功能。u 过温自动断电保护。u 加热完成自动停止,无须工作人员值守。技术参数型号控温范围℃控温精度℃功率kw工作尺寸mm外型尺寸(LxWxH)mmPH40RT-360±0.13.0400x400466X466X135mmPH644.2535X350600X415X135mm创新点:CIF石墨烤胶机主要用于对金属敏感的样品,除具备PH18烤胶机产品特点外,更重要的是加热模块整体材质无任何金属附件,机箱整体采用石墨材质,表面PFA涂层,耐高温防腐蚀。加热面板采用陶瓷硅晶玻璃,防腐抗刮划,无污染。CIF石墨烤胶机PH40
  • 科学家辐照缺陷影响热离子发电器件石墨烯电极功函数研究获进展
    近期,中科院合肥研究院核能安全所在辐照缺陷影响热离子发电器件石墨烯电极功函数研究方面取得新进展,研究成果发表在国际材料薄膜领域期刊 Applied Surface Science 上。   石墨烯作为微型堆热离子发电器件电极涂层材料具有巨大的应用潜力,能够显著提升电极表面的电子发射能力。热离子发电器件在服役过程中,电极材料将面临高能粒子的辐照作用,早期的理论计算和实验研究表明,在石墨烯内部辐照诱导的缺陷类型主要是Stone-Wales缺陷、掺杂缺陷和碳空位等。缺陷的产生将会影响电极间隙内碱金属和碱土金属在石墨烯表面的吸附性质,进而改变石墨烯涂层的电子发射性能(功函数)。   针对上述问题,科研人员通过第一性原理计算方法在原子尺度上研究了缺陷石墨烯表面碱金属和碱土金属的吸附和迁移行为。研究结果表明:(1)石墨烯表面缺陷位点作为陷阱对金属原子具有捕获作用,Stone-Wales缺陷和碳空位缺陷附近的金属原子扩散受到了严重的阻碍,在掺杂B或O的石墨烯表面,金属原子迁移势垒也有不同程度的升高;(2)Stone-Wales缺陷、碳空位缺陷及掺杂石墨烯的表面功函数均显著增加,电子发射能力明显降低,这主要归因于电偶极子形成概率的降低以及金属内聚能的增加。本研究工作为石墨烯涂层材料在反应堆热离子发电器件中的应用提供了理论指导。   上述研究工作理论计算部分在合肥先进计算中心完成。图1 热离子能量转换示意图图2 碱金属和碱土金属在原始和含氧缺陷石墨烯表面的迁移行为
  • 中级培训 | 如何实现最佳涂层效果:从KRÜSS的角度优化涂层和基材的性能
    研究背景各种类型的涂层,包括粘合剂和油墨,在包装优化过程中起着关键的作用。对于所有形式的涂层来说,了解并匹配基材的表面特性和涂层的特性是至关重要的,即润湿性、液滴铺展、染料吸收、短期/长期的附着力及印刷质量等。讲座中,KRÜ SS的国内外专家将揭示包装中涂层、印刷和粘接背后的科学,阐述通过不同的表界面测试方法有效地评估涂层和基材性能的原理,这些可量化、可重复的表界面测量方法能够帮助用户在生产和研发过程中实现最佳的涂层效果。我们的国内外专家们从科学和技术两方面带来了丰富的实践经验,并将在这次讲座中和广大行业用户共同探索交流。讲座内容将涵盖接触角测量、表面自由能和预处理等基本原理、测量仪器的技术性能及涂料和印刷行业的各种应用实例。此次讲座内容丰富,干货满满,且完全免费,欢迎新老用户踊跃报名参加!(本次研讨会属于内部技术培训,不提供PPT和纸质资料,请大家做好笔记呦!)讲座安排时间:5月25日(周四)下午13:00至17:30地点:上海市闵行区春东路508号E幢2楼多功能厅费用和注册:本次活动原收费每人1000元,但本次为特别回馈老客户支持,完全免费。此次讲座为线下活动,与会人员必须提前登记预订席位,每家用户的参会名额为2位。报名截止日期为2023年5月22日。讲座内容:液体涂料的评价:静态和动态表面张力的测量理论固体基材的分析:接触角、液滴铺展和附着力分析的基础知识涂层常见缺陷及其处理方法常见的的接触角测量误区实验操作和测量方法的标准化及分析……报名方法:关注公众微信号“克吕士科学仪器”- “最新资讯”。专家团队:王磊:克吕士中国公司总经理,从事KRÜ SS品牌在中国的推广超过15年,对表界面相关领域的应用及测量技术有深刻的理解和洞察。Dr.Thomas Willers:KRÜ SS GmbH应用与科学部门负责人,德国科隆大学实验物理学博士学位,负责德国总部的应用实验室、应用市场、业务发展和培训活动,在界面化学和物理方面拥有多年经验。张晶晶:克吕士科学仪器上海有限公司应用部经理,实验室负责人。研究方向为表/界面张力及泡沫的原理和应用,对KRÜ SS仪器和软件的操作及使用富有经验,长期为客户提供解决方案。杨雅雯:克吕士科学仪器上海有限公司应用工程师,在接触角、表面张力及泡沫分析领域具有多年应用经验,在高温高压领域的解决方案具有实践见解。
  • 网络研讨会 | 3个铝型材粉末涂层测厚案例研究
    3个铝型材粉末涂层测厚案例研究网络研讨会对早期的喷涂工艺涂层厚度测量可以节省高达30%的涂层材料,避免废品,同时还可以提供一个详细的粉末涂层厚度测量记录文件,方便后续管理。涂魔师Coatmaster提供了完美的涂层厚度测量技术,一方面支持在固化前和固化后进行非接触无损涂层测厚,另一方面易于集成,并可以根据不断变化的环境条件进行及时调整。在此次网络研讨会上,涂魔师Coatmaster总经理Nils A. Reinke教授博士将介绍涂魔师粉末喷涂厚度检测系统技术在垂直方向和水平方向喷涂中的最创新应用。案例研究的范围是从手动非接触无损涂层厚度测量到自动整体成像涂层厚度测量以及闭环涂层厚度控制。此次网络研讨会非常适合铝型材喷涂作业,粉末涂料喷涂作业,垂直方面喷涂作业和水平方向喷涂作业的公司和技术人员参加,欢迎报名参加!通过此次研讨会,你将了解如何通过对早期喷涂工艺进行涂层测厚控制,为喷涂生产线争取更大的效益!网络研讨会时间:2021年7月14日马上发邮件到【marketing@hjunkel.com】报名参加,邮件标题【7月14日涂魔师网络研讨会】进行登记,我们将在研讨会结束后给您发送资料和视频。涂魔师非接触无损测厚系统FLEX介绍涂魔师非接触无损涂层测厚系统FLEX在产线上监控喷粉膜厚后,调节出粉量后节省30%的粉末。特别是对于小批量,产品未出炉已喷完,所以无法根据干膜调整膜厚,而涂魔师在开始喷涂的几分钟内就调整好出粉量,减少返工,降低成本。
  • 电镜等表征技术助力吉大团队在月壤样本中首次发现少层石墨烯
    近日,吉林大学邹猛教授、张伟教授、李秀娟正高级工程师及中国科学院金属研究所任文才研究员等,通过对嫦娥五号钻采岩屑月壤(No. CE5Z0806YJYX004)的观察分析,首次发现天然形成的少层石墨烯。相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,拓宽了人们对月壤复杂矿物组成的认知,为月球的原位资源利用提供了重要信息及线索。研究成果以“Discovery of Natural Few-Layer Graphene on the Moon”为题,于6月17日发表在National Science Review期刊上。 CE-5月壤样品中天然石墨烯的先进电子显微结构表征和谱学分析。(图片来源:吉林大学)过往报道指出,通过观测月球的全球碳离子通量,科研人员认为月球上存在原生碳,利用月球样品的表征研究来揭示原生碳相的晶体结构是可行的。石墨烯以其新奇的物理现象和非凡的特性,在包括行星和空间科学在内的广泛领域发挥着越来越重要的作用。据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定,因此天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。少层石墨烯在月球上可能形成过程。(图片来源:吉林大学)在该项研究中,科研团队采用电镜—拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯(2—7层),并提出少层石墨烯和石墨碳的形成可能源于太阳风和月球早期的火山喷发共同诱导的矿物催化进程。
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 澳维发布澳维防腐型智能石墨消解仪新品
    防腐型智能石墨消解仪用创新技术,秉承实用性、耐久性、人性化的原则,具有防腐耐用、智能工作、快速升温、安全方便等优点。广泛适用于食品、医药、农业、林业、环保、疾控、化工等行业,对土壤、饲料、植物、种子、矿石、生物组织等样品进行消解处理。1.独特的样品架自动升降功能1)样品自动升起散热 仪器执行完升温程序,样品架自动升起,样品进入散热状态,避免实验人员未及时将样品取出,石墨体余温将样品破坏;2)样品悬停近干 当消解工作接近完成,样品量很少时,可以通过升降功能,将样品管的底部升起至容易观察的位置继续加热,直至样品近干,避免样品被破坏。3)隔窗观察样品 在消解过程中,经常需要查看样品消解状态,可以通过线控开关或app软件操控样品架升起,用户可以隔着通风橱玻璃对样品进行观察。 2.兼容单机操作及移动终端app操作防腐型智能石墨消解仪不仅支持单机操作,还支持移动终端app操作,基于Android系统的APP控制软件,可以通过移动终端对设备进行远距离控制,可在通风柜窗口不打开的情况下轻松完成消解过程,减少实验人员与高温酸气的接触,更好呵护实验人员的健康。1)通过移动终端可以控制仪器启动、停止;2)移动终端显示实时温度曲线,更直观地掌握消解进程;3)可通过移动终端编辑、设置消解程序的设定温度和保持时间;4)内置专家程序库,方便的对消解程序进行建立、编辑、保存、调用;3.多重保护防腐耐用 1) 石墨体表面采用先进的耐高温防腐涂层处理,有效防止强酸侵蚀; 2)仪器箱体全部采用不锈钢材质,表面喷涂防腐涂层,耐腐蚀性能优异; 3)电气系统采用独立密封的空间设计,更好保护电器元件,免受酸气腐蚀; 4) 仪器采用无线通讯控制方式,避免了传统有线控制方式端口易腐蚀的弊病。 创新点:依据客户使用过程的痛点,在传统的石墨消解仪基础上,增加了样品架自动升降功能,该功能能够带来以下应用优势:1)样品自动升起散热 仪器执行完升温程序,样品架自动升起,样品进入散热状态,避免实验人员未及时将样品取出,石墨体余温将样品破坏;2)样品悬停近干 当消解工作接近完成,样品量很少时,可以通过升降功能,将样品管的底部升起至容易观察的位置继续加热,直至样品近干,避免样品被破坏。3)隔窗观察样品 在消解过程中,经常需要查看样品消解状态,可以通过线控开关或app软件操控样品架升起,用户可以隔着通风橱玻璃对样品进行观察。
  • 2010年物理诺奖得主团队用石墨烯制出特氟龙替代物
    英国曼彻斯特大学科学家海姆和诺沃肖洛夫因发明石墨烯而获得今年诺贝尔物理学奖。最近,他们领导的研究小组又利用石墨烯制成了一种稳定耐高温的新材料,可替代用于不粘锅的特氟龙材料,具有广泛应用前景。  海姆和诺沃肖洛夫等人在新一期纳米科技刊物SMALL上报告说,他们对石墨烯进行氟化处理,获得了这种新材料。现在被广泛应用的特氟龙材料的化学名称是聚四氟乙烯,是由碳元素和氟元素组成的塑料 而石墨烯是由薄薄的一层碳原子组成的物质,对石墨烯进行氟化处理后得到的材料实际上就是只有一层原子结构的特氟龙。  这种新材料同时具有石墨烯和特氟龙两种材料的优点。它像特氟龙那样化学性质稳定和耐高温,可以用于生产不粘锅和密封垫圈等产品 同时它又像石墨烯那样具有很高的强度和可用于生产半导体的电学性能。  海姆说,两方面优点的结合使得这种材料具有广泛应用前景,它不会只是被作为更薄更轻的特氟龙替代物,而是可以用在任何需要超薄、高强度、化学性质稳定、耐高温涂层的场合,比如可以用于生产发光二极管中的超薄介质。
  • 摩擦磨损试验机 | 航空航天工业材料涂层表征
    航天梦据中国载人航天工程办公室消息,我国载人航天工程已经全面转入空间站在轨建造任务阶段。今年将陆续实施空间站核心舱发射、货运补给、载人飞行等多次任务。追忆漫漫太空之路从人造卫星到载人航天中国航天事业蓬勃发展,探索浩瀚宇宙的伟大事业更加行稳致远,航天梦想实现的脚步越来越近。航空航天工业的发展为航天梦奠定了基础。前言航空航天工业包括从先前设计、建造、测试、销售到后期的飞机维护、飞机零件、导弹、火箭或航天器等各个方面的所有公司和活动。图1展示的就是飞机生产车间。图1 :飞机生产车间民用航空和军用航空的飞机及其零部件是一个非常庞大的产业链,零部件的生产和使用所带来的上下游环节非常之多。而生产一架飞机所用的材料更是种类繁多,这其中包括金属、玻璃、陶瓷、塑料和各种复合材料。为了保证飞机的功能、安全和美观,需要对这些材料的特性进行精确描述和表征。客户痛点分析某飞机部件制造商正在考虑引进一种新型钢材料所制造襟翼滚珠丝杠,然而需要知道它们是否会导致接触材料出现过早磨损的情况。尤其是在航空航天工业体系中,过早磨损是飞机部件制造商面临的一个重要问题。安东帕摩擦磨损试验机可为客户提供摩擦系数的测定和磨损的表征。依照用户的痛点和解析,推荐采用表征仪器为安东帕销盘式摩擦仪(TRB3),如图2所示。如果需要模拟高温服役环境的话还提倡采用高温摩擦仪(THT),如图3所示,安东帕高温摩擦仪能提供非常精准的控温和保证高温下极其高的测试精度。在摩擦学实验结束后,用集成式的表面轮廓仪可以测量磨痕轮廓,直接计算相应的磨损率。图2:销盘式摩擦仪TRB3图3:高温摩擦仪THT实验航空航天工业某部件制造商需要调查制造襟翼滚珠丝杠时使用的两种新的涂层钢材料造成的磨损情况。将两种不同涂层材料的样品制作成样块,如图3所示。图3:客户样品步骤:采用安东帕销盘式摩擦仪对样品进行磨损测试,采用线性往复模式进行试验。摩擦副(对磨体)为100Cr6钢球,硬度大约为60 HRC。实验结束后,记录摩擦系数,并用显微镜观察样品和摩擦副的磨损情况。实验分析与结论经过摩擦学试验后,得到两种不同材料的摩擦系数基本什么变化,具体见图4所示。从摩擦系数的曲线来看,经过25min的磨损试验后两种样品基本没什么损伤。但是,通过显微镜观察后发现摩擦副100Cr6钢球表面有损伤。通过计算得到,1# 样品体系下的100Cr6 钢球的磨损量为0.000186 mm3/(Nm),而2# 样品的磨损量为0.000202 mm3/(Nm)。这样可以看出2# 样品对于对磨体的伤害大。图4:摩擦系数和磨损量过早磨损是航天航空行业制造商的一大难题,而安东帕摩擦仪可以为客户提供这类需求的表征手段。通过结果分析,两种样品的摩擦系数相差不大,摩擦系数随时间的变化的曲线趋势也相一致虽然两种涂层材料的表面基本没有损伤,但是对于对磨体100Cr6 钢球的损伤还是存在的,尤其是2# 样品使对磨体产生更大的损伤。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • ​KLA科磊快速压痕技术对隔热涂层的测试
    KLA科磊快速压痕技术对隔热涂层的测试什么是隔热涂层?隔热涂层(TBC)是一种多层多组分材料,如下图所示,应用于各种结构性组件中提供隔热和抗氧化的保护功能1。TBC中不同的微观结构特征,如热喷涂涂层的薄膜边界、孔隙度、涂层间界面、裂纹等,通常会极大地增加测试的难度。图 1. (a)多层、多功能的隔热涂层的示意图《MRS Bulletin》(b)隔热涂层的横截面的扫描电镜图KLA Instruments的测试方法利用KLA发明的 NanoBlitz 3D 压痕技术对TBC 涂层进行测试,每个压痕点测试只需不到一秒,可在微米尺度上对涂层和热循环类的样品的粘结层、表层涂层和粘结层—表面涂层的界面区域等进行各种不同范围的Mapping成像,单张Mapping最多可达100000个压痕点。结果与分析粘结层—表面涂层的界面区域是 TBC研究的重点之一,其微观结构及相应力学性能的变化,会影响到TBC 的热循环寿命。该界面处最重要的考量就是热生长氧化 (TGO) 层的形成,TGO是在高温条件下,粘结层的β-NiAl的内部扩散铝与通过表层涂层渗透的氧发生反应而成,TGO 层可防止粘结层和下面的衬底进一步的氧化,但TGO超过一定的临界厚度,又会导致严重的应变不兼容和应力失配,从而使 TBC 逐渐损坏并最终产生剥离2、3。下图显示了典型的等离子喷涂涂层的变化过程,TGO 的厚度会随着热循环次数的增加而增大。对应的硬度和弹性模量Mapping结果也显示出类似的趋势,同时,从硬度mapping图中也可以观察到粘结层一侧的作为铝源的 β-NiAl 相随热循环次数的增加而逐渐耗尽。图 2. (a,第一列)涂层状态下的 TGO 生长状况的硬度和弹性模量 mapping 图;(b,第二列) 5 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;(c,第三列)10 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;以及(d,第四列)100 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图。TGO 生长引起的弹性模量差异会导致失配应力的发展,该失配应力又导致界面之上的表层涂层产生微裂纹,如上图(d,第四列)所示的mapping结果捕捉到了裂纹区域的硬度和弹性模量的降低现象。KLA的“Cluster”算法可以对不同物相的mapping数据反卷积处理并保留它的空间信息,即对相应的力学mapping图进行重构,如下图所示。图(c) 的Cluster的硬度mapping图清晰的展示出三组硬度明显不同的物相:(1)β-NiAl、(2)γ/γ‘-Ni 和(3)内部氧化产生的氧化物。图 3 .五次热循环后粘结层的(a)微结构图,(b)硬度mapping图(c) Cluster 后的结果。总结与结论KLA 的 NanoBlitz 3D 快速mapping技术可适用于隔热涂层的研究:TBC 不同膜层的界面区以及多孔的表面涂层的研究,甚至可以借助mapping技术获得的大量数据来预测 TBC 样品的剩余寿命。如想了解更多产品参数相关内容,欢迎通过仪器信息网和我们取得联系! 400-801-5101
  • OPTON微观世界 | 第40期 扫描电镜观察电化学沉积法制备的MoSi2涂层形貌
    背景介绍高温抗氧化涂层在航空航天领域是至关重要的部分。一种成功的抗氧化涂层首先必须与基体材料有着化学或者物理上的相容性;其次,在材料温度适用范围内,更能提供一层连续、致密的氧阻挡层[1];再者,涂层要有方便、经济的制备工艺等。MoSi2有着高熔点(2030℃),良好的导电性和导热性,优异的高温抗氧化特性,是一种广泛应用的高温材料。现已发展为用于高温合金和碳/碳复合材料高温抗氧化保护涂层[2]。本实验采用电化学沉积法制备钼基体表面MoSi2涂层,图(a)是在900度氧化10h的表面形貌。图(b)是钼基体表面B改性MoSi2涂层,在900度氧化10h的表面形貌。图1 相同实验条件下不同方式制备涂层表面形貌结果表明:图a涂层经过氧化后在表面形成了一层SiO2氧化膜。该涂层主要用于钼及钼合金表面防护,以提高其在高温环境下的服役时间。图b涂层经过氧化后在表面形成了一层由SiO2和B2O3构成的氧化膜。通过B的改性,可以降低MoSi2涂层在中低温段氧化时的“粉化”倾向,进而提高其抗氧化能力。参考文献[1] Thomas A Kircher,et al.Engineering limitations coatings. Mater Sci Eng. 1992. A155:67[2] 蔡作乾,等编著. 陶瓷材料辞典.北京:化学工业出版社,2002
  • 奥豪斯水分仪在石墨烯水分控制的应用
    有专家预言,未来10至20年内会爆发一场技术革命,“这个时代将来最大的颠覆,是石墨烯时代颠覆硅时代”,“现在芯片有极限宽度,硅的极限是七纳米,已经临近边界了,石墨是技术革命前沿”。这里提到的石墨烯,究竟是何方神圣?它真的能带来颠覆吗? 扫描电镜下的石墨烯,显示出其碳原子组成的六边形结构。石墨烯——一种只有一个原子厚的二维碳膜——的确是种令人惊讶的材料。虽然名字里带有石墨二字,但它既不依赖石墨储量也完全不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来神奇材料的风范。如果再把它的潜在用途开个清单——保护涂层,透明可弯折电子元件,超大容量电容器,等等——那简直是改变世界的发明。连2010年诺贝尔物理学奖都授予了它呢!其实就在2012年,因石墨烯而获得诺贝尔奖的康斯坦丁诺沃肖洛夫和他的同事曾经在《自然》上发表文章讨论石墨烯的未来,两年来的发展也基本证明了他们的预测。他认为作为一种材料,石墨烯“前途是光明的、道路是曲折的”,虽然将来它也许能发挥重大作用,但是在克服几个重大困难之前,这一场景还不会到来。更重要的是,考虑到产业更新的巨大成本,石墨烯的好处可能不足以让它简单地取代现有的设备——它的真正前景,或许在于为它的独到特性量身定做的全新应用场合。客户背景山东某新能源科技公司是全国500强企业,主要生产高端动力电芯、电极材料和石墨烯。石墨烯是目前为止发现的最薄、强度最大、导电导热性最强的新型纳米材料。那么在实际应用环节,到底对于实验室称量产品有着什么样的需求呢?产品应用 在通过与该客户的前期调研和沟通,了解到该客户主要希望通过水分仪来应用于石墨烯研发课题组。客户要求石墨烯水分含量小于2%,因为水分含量过高,其材料实用性将会大大降低 。通过不断地选型与匹配,最终客户选购了三台奥豪斯MB45进口水分测定仪。 客户评价在使用了奥豪斯MB45水分仪后,客户反馈MB45水分仪精度达到0.01%,完全满足了客户对水分精度的控制要求。另外,客户通过水分仪机身上的显示屏监控水分测试曲线。同时,实验数据可传输到电脑上,便于客户进行数据的分析。
  • 仪器情报,科学家首次在扭曲双层石墨烯中取得新发现!
    【科学背景】相关绝缘态是指在周期性超晶格、磁场和各种相互作用的调控下,电子表现出的凝聚态行为。尽管在moire过渡金属二硫化物中已观察到分数值的相关绝缘态,但在扭曲双层石墨烯系统中,特别是在具有三角moire格子的情况下,对几何烦躁效应对电子行为的影响尚未深入研究。此外,如何在实空间建立模型以理解这些复杂现象也是一个未解决的挑战。为了解决这些问题,美国俄亥俄州立大Chun Ning Lau教授团队们进行了广泛的实验和理论研究。他们在不同的扭曲角度下研究了tBLG系统中的相关绝缘态,并发现在大于魔角的扭转角度范围内观察到了强壮的零切尔尼分数相关绝缘态。通过磁场和温度依赖的实验,他们验证了这些态的存在和稳定性。本研究通过建立基于Wannier轨道形状和库仑相互作用的实空间模型,成功解释了这些分数填充下的电子相态。研究表明,Wannier轨道的三叶形状和在不同扭转角度下的几何烦躁效应是导致这些态的关键因素。此外,通过调节掺杂和扭转角度,科学家们展示了可以调控这些态的性质和相变过程。【科学亮点】(1)实验首次观察到在大角度扭曲双层石墨烯(tBLG)中,在1/3填充数下存在高强度的零切尔尼分数相关绝缘态。 (2)实验通过分析大于魔角扭转角度的tBLG样品,发现这些零切尔尼分数态在垂直和平行磁场中仍然稳定存在。具体结果如下:&bull 首次观察到在tBLG中的1/3填充下,存在零切尔尼分数相关绝缘态,这些态显著超过了整数填充的态。&bull 实验结果表明,在较小扭转角度的设备中,观察到了符合预测的砖墙电荷有序态。&bull 在施加平行磁场时,观察到分数填充为 ±8/3 的状态表现出铁磁序,而 ±4/3 的状态表现出反铁磁序,并在有限磁场下观察到向自旋对齐态的转变。&bull 在具有更大扭转角度和较强次最近邻相互作用的设备中,观察到了三倍的单元胞重构,与理论预测的armchair相一致。 &bull 这些分数态的产生源于Wannier轨道形状和由库仑相互作用引起的几何烦躁,其相通过掺杂和扭转角度可调节。【科学图文】图1: 器件D1的温度相关数据,θ=1.32°。图2:实空间模型。图3:在T=300mK时,器件D1的磁输运。图4:在T=1.5K时,器件D2的磁输运。【科学结论】本文深入探索了大角度扭曲双层石墨烯(tBLG)中的零切尔尼分数相关绝缘态。通过观察和理论模型的结合,揭示了Wannier轨道的特殊几何形状如何与库仑相互作用相结合,导致了这些新型电荷有序态的出现。这种研究不仅拓展了我们对二维材料中几何烦躁效应的理解,还为探索和设计新型量子材料提供了重要思路。从实验角度来看,本研究首次在大于常规魔角的扭转角度下观察到这些分数填充态的显著存在,这为探索不同扭转角度下tBLG的电子结构和相变提供了新的视角。同时,通过施加磁场的实验设计,揭示了这些分数态的磁序行为,为理解其物理本质提供了关键线索。从理论角度来看,本文采用了基于轨道几何烦躁的模型,成功解释了实验观察到的各种现象。这种实空间模型的应用不仅有助于理解和预测tBLG中复杂相互作用的影响,还为未来设计具有特定电子性质的新型二维材料提供了有力的理论指导。总之,本文不仅深化了对tBLG电子结构中几何烦躁效应的理解,还展示了通过调控几何形状和外加场效应来实现对电子态的精细控制的潜力。原文详情:Tian, H., Codecido, E., Mao, D. et al. Dominant 1/3-filling correlated insulator states and orbital geometric frustration in twisted bilayer graphene. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02546-5
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制