当前位置: 仪器信息网 > 行业主题 > >

碳酸盐基体

仪器信息网碳酸盐基体专题为您整合碳酸盐基体相关的最新文章,在碳酸盐基体专题,您不仅可以免费浏览碳酸盐基体的资讯, 同时您还可以浏览碳酸盐基体的相关资料、解决方案,参与社区碳酸盐基体话题讨论。

碳酸盐基体相关的资讯

  • 北京水利学会发布团体标准《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)
    各有关单位及专家: 根据《北京水利学会团体标准管理办法》(京水学〔2022〕1号)有关规定,由我会组织相关单位编制的团体标准《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》已完成征求意见稿(见附件1)。现向有关单位及专家(名单见附件2)征求意见,请认真研究并填写意见表(见附件3),并于2023年6月30日前反馈我会。 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》团体标准征求意见材料和意见表可登陆北京水利学会官网(http://www.bjslxh.org.cn),于公告栏中下载。 联 系 人:徐斌010-68183703、魏工 010-88613202 电子邮箱:18600597703@163.com、shuilxh@126.com 单 位:北京水利学会 通讯地址:北京市海淀区玉渊潭南路普慧北里北京水务综合楼305室 邮政编码:100036 附件:1. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》征求意见材料 2. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)征求意见单位及专家名单 3. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)专家(单位)意见表   北京水利学会2023年6月12日 附件1-1:水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法(征求意见稿)V1.0.pdf附件1-2:编制说明V1.0.pdf附件3:专家(单位)意见表-0612.pdf附件2:征求意见单位及专家名单-0613-徐(4).pdf
  • 北京水利学会关于批准发布《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》团体标准
    经理事长专题办公会批准,决定发布《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》团体标准,现予以公告。标准自2023年10月1日起实施。标准名称标准编号批准日期实施日期《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》T/BHES 0001—20232023.8.252023.10.1北京水利学会2023年8月25日
  • 北京兴东达泰公司推出碳酸盐组份分析技术
    北京兴东达泰公司推出碳酸盐组份分析技术,这个分析技术可以直接将碳酸钠和碳酸氢钠组份直接测试出结果,测试过程不需要标准样品,测试精度可达+/-0.3%。详细内容欢迎直接登录我公司电子展台下载。
  • 戴安提供完全符合《饮用天然矿泉水》新国标溴酸盐检测方法
    新《饮用天然矿泉水》国家标准将于10月1日起实施。记者获悉,新标准最受关注的是新增了饮用天然矿泉水中的溴酸盐指标限量。新国标被公认为最大的亮点就是:增加了溴酸盐的限量指标,每1L(升)饮用天然矿泉水中的溴酸盐含量不得超过0.01mg(毫克)。据了解,溴酸盐是在各个饮用水行业厂家大量使用臭氧进行杀菌的过程中,不可避免产生的一种毒副产物。溴酸盐在国际上被定为2B级潜在致癌物。 现行饮用天然矿泉水国标GBT8538-2008规定的溴酸盐检测使用的是离子色谱法,同时包含使用氢氧根系统淋洗液和碳酸盐系统淋洗液,分别使用IonPac AS19(250mm× 4 mm)分析柱、ASRS-ULTRAⅡ型抑制器和IonPac AS9-HC分析柱,两者直接进样矿泉水500&mu L,最低检测质量浓度都达到了0.005 mg/L。戴安公司提供完全符合现行矿泉水国标GBT8538-2008和10月1日即将实施的新《饮用天然矿泉水》国家标准检测方法,提供包括氢氧根系统和碳酸根离子色谱仪、色谱柱及抑制器,戴安最新推出的AS23高容量柱被推荐为AS9-HC的替代色谱柱,除了分离效果更佳以外,还具有柱容量更高,可以耐受更复杂基体的特点。 有需要了解这方面客户请联系戴安中国北京应用中心010-62849182,戴安中国市场部010-64436740转市场部或点击www.dionex.com.cn。 我国自来水等城镇供水的消毒方式主要以二氧化氯消毒为主,但是瓶装水的消毒则有部分采用臭氧消毒。溴酸盐是用臭氧对饮用水进行消毒时产生的一种消毒副产物。研究表明,当人们终生饮用含溴酸盐为5.0 µ g/L或0.5 µ g/L的饮用水时,其致癌率分别为万分之一和十万分之一。臭氧对溴氧化生成溴酸盐的过程如下: 由于溴酸盐的致癌作用,各国政府和国际组织对溴酸盐的毒性给予了极大关注,对饮用水中的溴酸盐进行了大规模的研究,并且制定了饮用水中溴酸盐的最大容许浓度。美国国家环境保护局(EPA)在第一阶段饮用水控制法案中规定饮用水中BrO3-的最大容许浓度为10&thinsp µ g/L;世界卫生组织(WHO)规定为25&thinsp µ g/L&thinsp 。我国规定的溴酸盐的最高允许浓度为10&thinsp µ g/L,这个规定从2005年6月1日已经开始实施。 戴安中国市场部 戴安公司成立于1975年(纳斯达克股票:DNEX),位于美国硅谷Sunnyvale。公司奋斗目标是不断为全球化学工作者提供高科技产品,帮助减少繁复而耗时的实验室工作环节。戴安公司成立同年推出了世界第一台商用离子色谱,该项革命性的分析技术使得全球化学工作者能够从混合物中快速分离鉴别出各项离子成分。历经几十年的发展,到目前为止戴安各项成熟技术已被大大扩展,包括离子色谱仪IC,高效液相色谱HPLC包括毛细管和微流量液相色谱Nano-LC氨基酸直接分析仪AAA-Direct,快速溶剂萃取仪ASE和固相萃取仪Autotrace及在线分析仪器等。 Dionex Corporation was founded in 1975 with the goal of helping chemists become more productive by providing them with products that eliminate repetitive, time-consuming tasks. At the time, Dionex was developing ion chromatography (IC), an innovative analytical technique that enabled chemists to quickly separate, isolate, and identify ionic components of chemical mixtures. Since then, the scope of Dionex technology has expanded to include a broad range of techniques, including IC, high-performance liquid chromatography (HPLC) including capillary and nano LC, AAA-Direct,accelerated solvent extraction (ASE), automation, and on-line process analys.
  • 2009中国无机质谱年会在北京召开
    中国质谱学会无机、同位素和仪器与教育委员会学术交流年会(2009)在北京召开   仪器信息网11月9日讯,近年来,质谱技术迅速发展,质谱仪的性能不断提高,应用范围不断扩大。随着我国在科学和技术方面投入的不断加大,质谱工作者的队伍也不断壮大,进行高水平学术交流的需求非常迫切。为了适应这一需求,并推动我国无机质谱、同位素质谱、质谱仪器研发和质谱技术应用的发展,中国质谱学会无机质谱、同位素质谱和仪器与教育专业委员会联合举办的“中国质谱学会无机、同位素和仪器与教育委员会学术交流年会(2009)”于2009年11月7日在北京召开。 会议现场   中国质谱学会理事长李金英研究员在大会上致辞并祝大会圆满成功。致辞中李金英研究员强调,我们要大力加强自主创新的力度,并且不同单位、不同个人之间展开广泛的合作,联合攻关。 中国质谱学会理事长李金英研究员   会议邀请了清华大学查良镇教授、中国科学院青海盐湖研究所肖应凯研究员、核工业北京地质研究院分析测试研究中心主任郭冬发研究员、东华理工大学陈焕文教授、中国环境科学研究院刘咸德研究员、浙江大学刘子阳教授、上海大学周振教授、中国工程物理研究院核物理与化学研究所龙开明研究员、西北核技术研究所周国庆博士等专家做报告。   来自赛默飞世尔科技、珀金埃尔默、岛津分析技术研发公司的专家分别介绍了他们的最新技术和产品,与参会专家进行了学术交流,并且三家公司赞助了本次大会。   部分报告如下:    清华大学查良镇教授:二次离子质谱学的新进展   查良镇教授综合了2008年10月召开的第四届中国二次离子质谱学会议和2009年9月召开的第十七届国际二次离子质谱学会议的信息,对二次离子质谱学的进展做了简要综述。当前生物和生命科学是推动二次离子质谱学发展的主要动力,原子团离子轰击和生物样品成像等是热点前言课题。    中国科学院青海盐湖研究所肖应凯研究员:B(OH)3掺入碳酸盐的硼同位素证据-无机碳酸盐沉积于珊瑚养殖实验    肖应凯研究员的报告中介绍了近期开展的海洋生物碳酸盐和无机碳酸盐沉积时的硼同位素分馏研究及珊瑚养殖实验,发现了异常的硼同位素分馏现象,提供了B(OH)3掺入无机碳酸盐沉积的硼同位素证据,为利用海洋生物碳酸盐硼同位素组成重建古海洋pH的可行性提供了新的证据。    东华理工大学陈焕文教授:水样中痕量铀的快速质谱测定   陈焕文教授曾成功研制了小型化质谱仪并应用于爆炸物现场快速检测 并协助研制月球资源探测用质谱仪,在我国“探月工程”中,质谱仪担当着检测月球上3He、4He等稀有物质的重要角色。而目前陈焕文教授工作中心则由仪器研制转向质谱方法研究,本次报告介绍了采用其发明的EESI-MS(萃取电喷雾电离)技术进行复杂基体样品的快速质谱分析。      核工业北京地质研究院分析测试研究中心主任郭冬发研究员:铀矿地质勘查中的质谱分析技术   郭冬发研究员的报告中介绍了其实验室在铀矿地质勘查中主要质谱技术新进展,包括:ICP-MS实现高通量、固体样品直接分析、研制新型低功率ICP源三个新进展。   随着科学技术的进步,质谱学有了进一步的发展。我国的质谱技术,包括质谱仪器及其附属设备进一步完善,从业人员逐年增加,队伍不断扩大,质谱法在分析科学中的地位不断提高,成为国民经济赖以发展的主要分析测试技术和方法。此次三个专业委员会共同组织的学术交流会展示了质谱学和质谱技术的最新进展,开展了广泛的学术交流,检验了质谱法应用的最新成就,促进我国质谱事业的发展。
  • 科研赋能:珀金埃尔默在锂电池行业分析中的应用
    锂电池是一种以锂离子为电荷载体的可充电电池,广泛应用于便携式电子设备、电动汽车(EVs)、能源存储系统以及其他多种应用中。锂电池由正极材料、负极材料、电解液、隔膜、电池外壳等部件组成,其中 01正极材料: 常见的有锂钴氧化物(LiCoO2)、锂铁磷酸盐(LiFePO4)、锂镍锰钴氧化物(NMC)等。 02 负极材料: 通常使用石墨或硅基材料。 03 电解液: 含有锂盐的有机溶剂,如六氟磷酸锂(LiPF6)溶解在碳酸酯类溶剂中。 04 隔膜: 一种多孔材料,允许锂离子通过,同时防止电极间的物理接触。 05 电池外壳: 保护内部组件并提供结构支持。 如新能源汽车上使用的磷酸铁锂电池和三元锂电池,正极使用的配方与主量元素间的配比,直接决定电池的能量密度、充放电循环效率等。正/负极材料与点解液中的杂质元素含量,对电池品质也有着重要影响,珀金埃尔默分析仪器对上述质量控制节点,均有很好的解决方案。 1 ICP-OES/ICP-MS 正极材料分析中的应用 锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁(Fe )、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、铅(Pb)等金属杂质时,电池化成阶段的电压达到这些金属元素的氧化还原电位后,这些金属就会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。自放电对锂离子电池会造成致命的影响,因而从源头上防止金属异物的引入就显得格外重要。 图1. 电池正极材料 现阶段的众多锂电池企业,均采用ICP-OES作为主量元素配比以及杂质元素浓度的测定工具。使用ICP-OES测试主量与杂质元素时,可能会遇到的一些问题如: 1.主量元素浓度高,仪器动态范围是否够宽? 2.测定主含量元素的同时,能否测定微量杂质元素? 3.测定主含量元素仪器是否稳定? 4.测定杂质仪器是否有足够的灵敏度? 等等 得益于珀金埃尔默公司Avio系列ICP-OES上的独特设计,配备平板等离子体技术、双向观测模式、丰富的元素谱线库、专利性的光谱干扰校正技术(MSF,多谱拟合技术)能够有效解决上述问题。 (点击查看大图) 伴随着产业的发展以及工艺的提升,对杂质的管控越发严格,杂质浓度限值一直在往下调。ICP-OES由于其仪器原理的限制,在测定低浓度杂质元素时遇到瓶颈。Cr、Cu、Fe、Zn、Pb这些元素尤其明显。据调研,部分厂家该5个元素浓度控制在1ppm以下(部分厂家Fe含量在10 ppm以内),在常规100倍固液稀释比前处理后,样品溶液中该元素浓度在10 ppb以下,因此使用ICP-OES进行检测遇到了极大的挑战,尤其在谱线干扰严重的情况下。而ICP-MS由于其灵敏度更高,检测下限更低,是一个非常好的检测手段。 图2. NexION系列ICP-MS 使用ICP-MS测试正极材料中杂质元素的挑战包括: 1. 杂质元素会受到主量元素质谱干扰; 2. 对不同类型的质谱干扰,需要不同的干扰校正模式。 通过对多个厂家的锂电正极材料做测试,运用空白实验、平行样、加标回收等质控手段进行测试,验证了珀金埃尔默NexION系列ICP-MS,标配AMS进样系统,配合大锥孔三锥设计,四极杆离子偏转器,可以获得优异的基体耐受性、仪器稳定性,以及更低的记忆效应。 图3. NexION ICP-MS测试正极材料 杂质元素加标回收率 (点击查看大图)图4. NexION ICP-MS测试正极材料 杂质元素校准曲线 (点击查看大图)实验结果表明,通过选择合适的同位素以及仪器强大的耐基体性能保证了数据的准确性与稳定性。该方法十分适合分析高基体锂电正极材料。 2 ICP-MS在锂电池 电解液分析中的应用 电解液是锂离子电池的重要组成部分,在电池中作为离子传输的载体,使锂离子在正负极间移动。电解液通常由锂盐、溶剂和添加剂组成,其中溶剂提供离子传输介质,锂盐增强电解质的离子传输率。 电解液样品无法用传统的微波消解前处理,因为样品中含有乙醇与其他挥发性有机物,微波消解会发生爆罐。马弗炉灰化会产生大量有毒的氟化磷,而电热板消解需要大量酸同时实验人员必须在边上值守防止样品碳化,耗时且会引入污染。所以对于这类样品用有机溶剂直接溶解后快速直接进样。短时间内即可处理完样品,同时避免了容器与酸引入的污染。 珀金埃尔默公司的ICP-MS搭配全基体进样系统(AMS)为电解液中杂质元素分析提供一条全新思路。利用ICP-MS极高的灵敏度,可以采取更大稀释倍数降低Li元素带来的高盐影响,在前处理方面,仅采使用10%甲醇(电子级),50倍稀释上机,AMS使用氩氧混合气,实现加氧防止有机物积碳,同时用氩气减少基体效应。实现了电解液中杂质元素的准确、高效、环保分析。 电解液直接进样也会引入大量C相关的质谱干扰,如Mg、Al、Cr会分别受到CC、CN、ArC等干扰,另外Ar与H2O也会是K,Ca,Fe等收到干扰。NexION系列ICP-MS全系列均可使用纯氨气作为反应气体,消除相应的质谱干扰。从而获得最准确的结果。 图5. NexION ICP-MS测试电解液杂质元素1ppb(Hg 0.1ppb)加标回收率 (点击查看大图) 图6. NexION ICP-MS测试 电解液杂质部分元素校准曲线 (点击查看大图) 3 GCMS在锂电池 电解液分析中的应用 通常用于商用锂电池的电解质溶液含有锂盐、有机溶剂和一些添加剂。有机溶剂主要是环状碳酸酯,例如碳酸亚乙酯和碳酸丙烯酯,或链状碳酸酯,例如碳酸二乙酯和碳酸甲乙酯。这些碳酸盐的构成和比例对锂离子电池的能量密度、循环寿命和安全性有重要影响。因此,研究电解质溶液中碳酸盐的构成和含量对锂离子电池的开发和质量控制起着重要作用。 图7. 珀金埃尔默 GCMS 2400 珀金埃尔默 GCMS 2400配 EI 源测定了锂离子电池电解液中的9种碳酸盐。实验结果显示该方法具有良好的精确度、回收率、线性和检测限,能够满足锂离子电池行业的需求。 表1. 精确度、回收率以及方法检出限、定量限 (点击查看大图) 4 GC在锂电池中 鼓包气体成分分析中的应用 锂离子电池因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓包, 从而带来极大的安全隐患。因此,了解电池鼓包气体的组成对于优化电解液的组成是至关重要的。 珀金埃尔默独特的解决方案,采用气相色谱TCD和带甲烷转化炉FID检测器串接技术对锂离子电池中产生的鼓包气体进行检测,获得鼓包气体的主要成分和定量分析。常见鼓包气成分有H2,O2,N2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体,采用TCD和带甲烷转化炉FID检测器串接技术可以同时满足高含量的CO,CO2分析以及低含量的CO,CO2 ,CH4,C2H4,C2H6等烷烃分析,该方法CO,CO2及烷烃类检出限小于1ppm,H2检出限小于10 ppm,该方法可实现手动气密针进样以及气体阀进样,可以获得待测锂离子电池鼓包气体完整、精准的分析结果。 表2.n=7次进样的相对标准偏差(RSD%) (点击查看大图) 5 热分析设备 在电池领域的应用简介在电池组原材料领域, DSC设备可用来分析聚合物以及金属材料的各种相变过程以及相应吸放热量的大小(比如分析聚丙烯的玻璃化转变温度以及结晶熔融过程等);STA同步热分析仪可以研究各种材料的热稳定性,确定热分解温度,定量测定复合材料的相对组成比例等。典型图谱如下图8和图9所示; 图8 电池原材料熔融和结晶过程评价 (点击查看大图)
  • TOF-SIMS质谱仪帮助新电池开发 储能2倍于锂电池
    p   美国能源部可再生能源实验室(NREL)的科学家们开发了一种制造可充电无水镁电池的新方法。 br/ /p p   近期刊登在Nature Chemistry上的一篇论文引起了轰动,该篇论文详细阐述了科学家开发镁金属在无腐蚀性碳基电解质中发生可逆化学反应的过程,并且该过程通过了接下来的测试。比起锂离子电池,该技术具有更有潜力的优势——其中最大的优势是具有更高的能量密度、更强的稳定性和更低的成本。 /p p   Seoung-Bum Son, Steve Harvey, Andrew Norman 和 Chunmei Ban是NREL的研究人员,同时也是Nature Chemistry 白皮书《碳酸盐中人造可逆的镁化学反应》的合著者,他们利用飞行时间二次离子质谱仪来辅助自己的研究工作。该设备可以帮助他们在纳米尺度上研究材料退化和失效机制。 /p p   NREL材料科学部门的科学家、《碳酸盐中人造可逆的镁化学反应》的作者之一Chunmei Ban表示:“作为科学家,我们总是在想接下来会发生什么。”她认为在市场上占主导地位的锂离子电池技术已经触摸到了技术上的天花板,因此迫切需要探索新的化学电池技术,以更低的成本提供更多的能量。 /p p   NREL前博士后,现科学家科学家,该论文的第一作者Seoung-Bum表示:“这一发现将为镁电池的设计提供新的途径。”其他合著者则是Steve Harvey, Adam Stokes, 和 Andrew Norman。当离子从负极流向正极时,电化学反应就会使电池产生能量。对于锂电池来说,电解液是含有锂离子的盐溶液。而电池技术的关键在于化学反应必须是可逆的,只有这样电池才能实现充电过程。 /p p   理论上讲,同体积的镁(Mg)电池所能储存的能量几乎是锂离子电池的两倍。但是之前的研究遇到了一个难题:传统的碳酸盐电解质会因为化学反应在镁表面形成一道屏障,这会阻碍电池的充电过程。镁离子可以通过高腐蚀性的液体电解质流向相反的方向,但这也打消了高压镁电池的可能性。 /p p   而为了解决这个难题,研究人员开发了一种由聚丙烯腈和镁离子盐组成的人工固体电解质夹层,这可以保护镁阳极表面。而最终这种受保护阳极的性能也得到了改善。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/f5d8577d-dfe1-4599-8433-a5dce896b151.jpg" title=" 201804080849345113.jpg" / /p p style=" text-align: center " NREL科研人员攻克可充电镁电池难关示意图(图片来源:John Frenzl) /p p   上文中的插图显示了NREL的科学家是如何解决可充电镁电池问题的。 /p p   科学家们组装了标准电池,证明了人工中间相的有效性,而最终的结果也令人十分欣喜:Mg在具有保护阳极的电池的碳酸盐电解质中发生了可逆化学反应,这一现象是镁电池领域的首次发现。与没有保护阳极的原型电池相比,带有保护阳极的镁电池可以提供更多的能量,并且可以维持周期性的充放电过程。此外,该科研小组还充分展示了镁电池的充电能力,这也首次为解决阳极/电解质不相容问题以及离子离开阴极收到限制的问题提供了解决方法。 /p p   与锂相比,镁的获取范围更广,并且与锂电池这种更成熟的电池技术相比,镁电池还具有其他的潜在优势。首先,镁可以释放两个电子,这是锂的两倍,这使得它可以产生几乎两倍于锂的能量。其次,镁电池中没有枝晶的生长,这种枝晶很容易导致短路,从而导致过热甚至事故的发生,这种特质使得镁电池比锂离子电池更加安全。 /p
  • 问道双碳目标,看岛津TOC-L助力水泥行业碳中和检测!
    导读党的二十大报告指出,推动经济社会发展绿色化、低碳化是实现高质量发展的关键环节。2022年底在海南博鳌举行的以“碳中和——国际视野谋篇布局”为主题的“第二届碳中和博鳌大会”,深入探讨了全球应对气候变化的共识和措施、欧盟碳边境调节机制、中国“双碳”目标顶层设计、碳中和愿景下区域和企业如何做好战略转型布局等议题。众所周知,水泥行业是二氧化碳排放大户之一。水泥生产的碳排放来源主要有:原料碳酸钙的分解直接排放、燃料的燃烧直接排放和生产中的间接排放等。因此,需要研制低碳材料、对混凝土再利用和使用替代燃料,才能最大化实现“双碳”目标。岛津一直致力于碳中和检测技术的研发,尤其对水泥或混凝土碳化中TOC检测及胺类水溶液中CO2吸收量的评估提供解决方案,为“双碳”目标贡献力量。碳达峰碳中和小科普碳达峰是指某个地区或行业,年度温室气体排放量达到历史最高值,是温室气体排放量由增转降的历史拐点,标志着经济发展由高耗能、高排放向清洁低能耗模式的转变。碳中和是指某个地区在一定时间内,人类活动直接或间接排放的碳总量,与通过植树造林、工业固碳等吸收的碳总量相互抵消,实现碳“净零排放”。二者之间,先达到碳达峰,再实现碳中和。碳达峰是基础,碳中和则是低碳发展的终极目标。解决方案1水泥或混凝土碳化定量评价由于混凝土中含有大量钙,通常呈强碱性,吸收空气中的二氧化碳等气体后,形成碳酸钙,碳化逐渐加重,可能会导致产品劣化。因此,在研究水泥产品改良和材料开发过程中,需要正确掌握材料中的碳酸钙含量,以定量评价碳化。分析利器岛津TOC-L 固体样品测定系统TOC -L固体样品测定系统方法特点● 可使用TOC固体样品测定系统进行IC测定,由此迅速且轻松地测定碳酸钙含量;● 最大可测定1g样品,因此可减小样品不均匀所产生的影响;● 与通常使用酚酞、目测进行的评价不同,可通过定量,以数值确认碳酸钙含量细微差异。图1、水泥中碳酸盐含量随时间的变化图由上图可见,刚刚开封的样品几乎不含无机碳(IC),样品在大气环境中静置约3个月后吸收了空气中的二氧化碳,IC浓度增加至约1%。使用TOC-L固体样品测定系统,可定量确认水泥等样品中碳酸盐含量随时间的变化,为研究水泥产品改良和材料开发提供依据。2胺类水溶液吸收CO2评价当前,CO2分离回收方法中常用胺类水溶液,要求其不仅要与CO2立即发生反应,而且吸收后的CO2回收方便。分析利器岛津总有机碳分析仪TOC-L 和总氮测定单元TNM-LTOC-L和总氮测定单元TNM-L方法特点● 可使用TOC-L,评价通过胺类溶液分离、回收温室效应气体CO2 的过程;●通过对胺类溶液进行IC 测定,可求出溶解CO2 和碳酸氢离子浓度等无机碳浓度;● 也可通过TOC/TN 测定,进行胺类溶液的浓度管理。吸收CO2 气体前后的胺类溶液IC、TN(总氮)、TOC测定结果如下表所示(各测定值是经稀释倍数校正后的值)。注:AMP胺类溶液: 2-胺基-2-甲基-1-丙醇, 化学式为(CH3)2C(NH2)CH2OH,制备为20 wt%由表1可知,通过吸收CO2气体,AMP溶液的IC浓度大幅增加至1000倍以上。胺类溶液吸收CO2气体,CO2以碳酸氢根离子的形式溶解于溶液中,导致IC浓度增加。而TOC和TN浓度则没有较大变化。由此可知,此次CO2气体吸收试验,没有对胺类溶液浓度产生较大影响,回收具有良好的稳定性。结论岛津也一直在致力于碳中和检测技术的研发,TOC-L 固体样品测定系统可对水泥或混凝土碳化中TOC进行测量,TOC-L/TNM-L组合可对胺类水溶液中CO2 吸收量评估及管理,为研制低碳材料、对混凝土再利用和使用替代燃料提供技术支撑,为水泥行业实现“双碳”目标做贡献。撰稿人:唐国轩本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • NexION 系列ICP-MS:用于测定尿液中微量元素的理想工具
    在尿液、血液和血清等最常用来监测人体健康状况的待分析体液中,尿液尤为特别,其功能是排出人体代谢物,包含了大量的尿素、尿酸、蛋白质、脂肪、肌酸酐、钠、钾、碳酸盐、碳酸氢盐和氯化物等。不同的尿液样品成分含量会千差万别,并会受到食物、环境和工业接触因素的影响。因此,不同的尿液样品基体和待测元素含量水平相差甚远,给分析造成了较大难度。电感耦合等离子体质谱法(ICP-MS)已经成为测定尿液样品中微量元素的最常用工具,但在实际检测中需要攻克两大难关:1. 基体产生的多原子离子干扰2. 用于评估污染物接触的某些元素如砷(As)、镉(Cd)、汞(Hg)等的含量极低而ICP-MS仪器本身在尿液分析过程中也会遭遇最大挑战:基质中的有机物在锥孔和离子透镜系统的沉积导致信号漂移或减弱,通常情况下清洗锥和离子透镜费时费力,严重影响工作效率珀金埃尔默公司NexION® 系列ICP-MS是测定尿液样品中微量元素的理想工具,它所带来的解决方案会帮助您解决所遇到的一切挑战。• 配合独特的四级真空系统、固态射频发生器、三锥接口和四极杆离子偏转器,使得NexION ICP-MS的基体耐受性非常高,且保障仪器开机快速,运行稳定,四极杆离子偏转器免清洗免维护,三锥接口维护方便简单频次低。• NexION ICP-MS通用池系统具有标准 (Standard)、碰撞(KED)和反应(DRC)三种模式,可选择的碰撞/反应气体种类丰富,真正有效消除各种质谱干扰,实现高基体样品中的高灵敏度检测。• 如果将NexION ICP-MS与相关高通量和快速进样设备相搭配,通过Syngistix软件可以实现无缝集成,可以大大提高检测实验室的工作效率扫描下方二维码,即可下载资料《NexION 1000G 电感耦合等离子体质谱仪》
  • 绿色技术助冰岛快速走向碳中和
    在冰岛海利希地热发电站附近的一个小型网格球形穹顶内,充满二氧化碳的水正被泵入数百米深的多孔玄武岩中,二氧化碳会与岩石中的金属发生反应,变成碳酸盐,二氧化碳将安全地封存数千年。这一项目是助力冰岛实现碳中和的方式之一。英国《新科学家》杂志网站在近日的报道中指出,冰岛正在开发一系列技术,帮助其在2040年实现碳中和,这些技术也可以帮助其他国家走向“绿色”。电力几乎全来自可再生能源在可再生能源方面,冰岛比其他国家走得更远。20世纪30年代,冰岛开始开发地热能,第一个项目是为首都雷克雅未克的游泳池、学校和医院提供热水。上世纪70年代,冰岛政府加快了地热发电和水力发电的发展步伐。如今冰岛的电力几乎完全来自可再生能源,其中约70%来自水力发电,30%来自地热发电,成为少数几个实现绿色电力供应的国家之一。此外,冰岛近90%的供暖来自地热发电厂的热水,只有少数独立建筑仍使用燃油锅炉。这使冰岛遥遥领先于欧盟其他国家,欧盟平均仅23%的供暖和制冷能源来自可再生能源。鉴于目前地缘冲突引发的能源危机,可再生能源带来的好处也进一步凸显。能源成本飙升给许多地方的居民和企业带来沉重打击,但在冰岛,能源成本仍然很低。冰岛廉价的绿色能源吸引了数据中心等企业源源不断地到来。通过使用可再生电力运行数据中心或生产产品,然后销往国外,冰岛正有效地向世界其他地区出口其绿色能源。不过,冰岛仍在多大程度上扩大可再生能源生产以支持工业展开辩论。尽管冰岛还有大量电力可供利用,但最好的地热地点位于风景如画的景区。交通领域能源转型乘风破浪在冰岛,交通绿色化被称为继电力和供暖之后的第三次能源转型。对于汽车来说,要实现这一点相对简单。冰岛人均电动汽车销量位居世界第二,仅次于挪威。而且,冰岛将于2030年停止销售汽油和柴油汽车。国内航班的“绿色”转型之路也高歌猛进。2022年,冰岛航空公司测试了一架小型电动飞机,并在考虑购买30座混合动力飞机。绿色转型面临较大问题的是冰岛庞大的捕鱼船队。实现绿色船队的一种方法是改用可再生甲醇。2012年,冰岛“国际碳回收(CRI)”公司建造了第一座可再生甲醇工厂。这座小型示范工厂通过裂解水来制造氢气,然后将其与来自地热发电厂的少量二氧化碳(由热水带来)结合,制成“e-乙醇”。去年,CRI在中国启动了首个可将二氧化碳和氢气转化为甲醇的商业规模的工厂,该工厂将把焦炉煤气中的氢气和石灰窑中的二氧化碳转化为甲醇,年产量能达到11万吨。CRI估计,该工厂每年将减少50万吨二氧化碳排放。该公司已在中国建设第二座工厂。二氧化碳地下安全存储在CRI将二氧化碳转化为燃料时,CarbFix公司则致力于将二氧化碳安全储存在地下。他们的想法是:将二氧化碳注入地下400—800米深处,溶解在水中后会与钙、镁、铁等元素产生化学反应,形成碳酸盐。试验结果表明,超过95%的二氧化碳在不到两年的时间里转化成了碳酸盐,这甚至好于最乐观的预测。和传统技术手段相比,这种方法减少了环境风险和气体逸出的风险,可使二氧化碳以稳定又安全的形式封存。该公司的目标是,到2031年,每年注入300万吨二氧化碳,并希望在世界各地找到合适地点推广该工艺。其中一些二氧化碳甚至可从空气中直接提取。事实上,科学家已经小范围进行了相关试验。就在距离海利希地热发电站几百米远的地方,有一排看起来像巨大空调的装置。这是瑞士Climeworks公司的直接空气捕获试点工厂,该工厂由地热发电厂供电,并将捕获的二氧化碳输送至CarbFix,泵送至地下进行矿化。据悉,Climeworks目前正计划建造一座更大的工厂。
  • TOC分析仪用于锅炉水监测
    背景介绍锅炉系统是一个半封闭的循环系统,它的工作原理是先将水加热使其转换为水蒸气后驱动发电机发电,与此同时蒸汽冷凝结成水后继续回到系统循环使用。因此锅炉水的化学组成直接影响了锅炉效率和燃料的消耗。不合理的水处理容易使锅炉生成结垢并对锅炉系统产生腐蚀。水中的杂质在高温的锅炉管壁上很容易生成结垢和沉积物。结垢会隔离锅炉管,降低锅炉加热效率,在生成同等蒸汽的情况下耗费更多燃料。例如,一个中度结垢的250HP锅炉相比一个“洁净”的锅炉,在产能相同时,每年要多消耗几千美元的燃料。而且腐蚀会降低设备的使用寿命,并需要更多的维修费用。锅炉系统中的腐蚀会快速损坏管路导致工厂停产。因此一个正常运作的脱气器和一个准确的化学水处理方案可以有效解决腐蚀问题,大大延长锅炉寿命。而有效的锅炉防腐蚀方案也离不开有效的监控方案。常用的一种技术是监测和控制进水的硬度和铁离子含量。确保水质最适宜的化学组成可以大大降低沉积和结垢的风险。若您对锅炉的化学性质不太了解,这种情况下您需要选择更好的监控系统。图1:锅炉系统示意图锅炉系统通常由几个易被腐蚀的关键部件组成。一旦腐蚀发生在任一部件上,会大大降低锅炉的工作效率。目前判断腐蚀是否发生的最好方法是监测锅炉水中是否存在有机物。通过对锅炉水中总有机碳(TOC)的检测,可以很好地检测系统的完整性及腐蚀情况,避免因腐蚀而产生严重的后果。大部分工厂都会根据锅炉工作压力,对锅炉进水的TOC值设置一个最高限值。通常来说,压力越低,对杂质含量控制的要求就越低。大部分水中自然含有的有机物可以通过离子交换或物理过滤(例如超滤)等方法去除。但部分氧化物,需要额外的步骤才能被去除或降解。锅炉腐蚀的诸多重要形成原因中,有一项是因为二氧化碳(CO₂)。二氧化碳能以可溶解气体状态进入冷凝系统,或者它也能与给水中碱性的碳酸氢盐及碳酸盐相结合。通常脱气水中往往不含可溶解的二氧化碳。但下方的化学方程式显示了碳酸氢盐或碳酸盐是如何自然地分解成二氧化碳的。反应12NaHCO₃+热量→Na₂CO₃+CO₂+H₂O反应2Na₂CO₃+H₂O+热量→2NaOH+CO₂反应1为完全反应,而反应2的完成度仅为 80%。由二氧化碳而导致的侵蚀表征,通常为金属的缺失,典型的症状为管路底部的管壁呈现腐蚀凹槽。在冷凝系统中最易发生这种情况的是管路的螺纹区域或者受压区域。图2显示了在较长的一段时间内对锅炉水的一个监测结果。在这个工厂里,经理对TOC值设置了一个限值:80 ppm TOC,在监测的这段时间内TOC值一直低于限值。一旦TOC超过了规定值,操作员会快速报告情况并及时改进。平均值(ppm)57.2标准偏差(ppm)3.6RSD6.3%图2:锅炉水中的TOC检测Sievers InnovOx工作原理Sievers分析仪一直致力于开发TOC分析的创新技术,意在为复杂应用提供最为稳定的TOC分析仪。Sievers® InnovOx TOC分析仪将技术创新带到了一个新的领域。采用极为有效的超临界水氧化技术(SCWO),InnovOx能对几千个水样连续监测而无需重新校准,也无需仪器维护或者更换零部件。Sievers InnovOx的操作原理基于湿式化学氧化技术,在水样中加酸和氧化剂。无机碳通过吹扫可去除,然后水样在过硫酸盐和高温作用下被充分氧化。所产生的二氧化碳由非色散红外分光光度计测量。InnovOx将水样和氧化剂的混合物加热到高温,保证充分氧化并将液体水样转化为超临界状态。一旦进入该状态,超临界水氧化(SCWO)现象就发生了。这个创新技术能达到99%的氧化效率,从而使TOC测试达到极高的精确度和准确度。Sievers InnovOx在每次测定结束时,也会去除有问题的样品基体。因此,氧化副产物、盐等物质不会在反应器、管道和阀中残留。总结优化锅炉的性能对于减少防护性的维护或者维修十分重要,而且能最大化盈利率。超临界水氧化技术为目前的TOC检测技术提供了创新和更绿色环保的解决方案。Sievers InnovOx提供可靠、有效的TOC监控解决方案,是整套锅炉水系统不可或缺的组件。◆ ◆ ◆联系我们,了解更多!
  • 问道双碳目标,看岛津TOC-L助力水泥行业碳中和检测!
    导读党的二十大报告指出,推动经济社会发展绿色化、低碳化是实现高质量发展的关键环节。2022年底在海南博鳌举行的以“碳中和——国际视野谋篇布局”为主题的“第二届碳中和博鳌大会”,深入探讨了全球应对气候变化的共识和措施、欧盟碳边境调节机制、中国“双碳”目标顶层设计、碳中和愿景下区域和企业如何做好战略转型布局等议题。众所周知,水泥行业是二氧化碳排放大户之一。水泥生产的碳排放来源主要有:原料碳酸钙的分解直接排放、燃料的燃烧直接排放和生产中的间接排放等。因此,需要研制低碳材料、对混凝土再利用和使用替代燃料,才能最大化实现“双碳”目标。岛津一直致力于碳中和检测技术的研发,尤其对水泥或混凝土碳化中TOC检测及胺类水溶液中CO2吸收量的评估提供解决方案,为“双碳”目标贡献力量。碳达峰碳中和小科普碳达峰是指某个地区或行业,年度温室气体排放量达到历史最高值,是温室气体排放量由增转降的历史拐点,标志着经济发展由高耗能、高排放向清洁低能耗模式的转变。碳中和是指某个地区在一定时间内,人类活动直接或间接排放的碳总量,与通过植树造林、工业固碳等吸收的碳总量相互抵消,实现碳“净零排放”。二者之间,先达到碳达峰,再实现碳中和。碳达峰是基础,碳中和则是低碳发展的终极目标。岛津解决方案1水泥或混凝土碳化定量评价由于混凝土中含有大量钙,通常呈强碱性,吸收空气中的二氧化碳等气体后,形成碳酸钙,碳化逐渐加重,可能会导致产品劣化。因此,在研究水泥产品改良和材料开发过程中,需要正确掌握材料中的碳酸钙含量,以定量评价碳化。分析利器岛津TOC-L 固体样品测定系统TOC -L固体样品测定系统方法特点● 可使用TOC固体样品测定系统进行IC测定,由此迅速且轻松地测定碳酸钙含量;● 最大可测定1g样品,因此可减小样品不均匀所产生的影响;● 与通常使用酚酞、目测进行的评价不同,可通过定量,以数值确认碳酸钙含量细微差异。图1、水泥中碳酸盐含量随时间的变化图由上图可见,刚刚开封的样品几乎不含无机碳(IC),样品在大气环境中静置约3个月后吸收了空气中的二氧化碳,IC浓度增加至约1%。使用TOC-L固体样品测定系统,可定量确认水泥等样品中碳酸盐含量随时间的变化,为研究水泥产品改良和材料开发提供依据。2胺类水溶液吸收CO2评价当前,CO2分离回收方法中常用胺类水溶液,要求其不仅要与CO2立即发生反应,而且吸收后的CO2回收方便。分析利器岛津总有机碳分析仪TOC-L 和总氮测定单元TNM-LTOC-L和总氮测定单元TNM-L方法特点● 可使用TOC-L,评价通过胺类溶液分离、回收温室效应气体CO2 的过程;●通过对胺类溶液进行IC 测定,可求出溶解CO2 和碳酸氢离子浓度等无机碳浓度;● 也可通过TOC/TN 测定,进行胺类溶液的浓度管理。吸收CO2 气体前后的胺类溶液IC、TN(总氮)、TOC测定结果如下表所示(各测定值是经稀释倍数校正后的值)。表1、AMP胺类溶液测试结果样品IC测试(%C)TN测试值%N)TOC测试值(C%)CO2吸收前0.001183.3711.7CO2吸收后1.263.3411.4注:AMP胺类溶液: 2-胺基-2-甲基-1-丙醇, 化学式为(CH3)2C(NH2)CH2OH,制备为20 wt%由表1可知,通过吸收CO2气体,AMP溶液的IC浓度大幅增加至1000倍以上。胺类溶液吸收CO2气体,CO2以碳酸氢根离子的形式溶解于溶液中,导致IC浓度增加。而TOC和TN浓度则没有较大变化。由此可知,此次CO2气体吸收试验,没有对胺类溶液浓度产生较大影响,回收具有良好的稳定性。结论岛津也一直在致力于碳中和检测技术的研发,TOC-L 固体样品测定系统可对水泥或混凝土碳化中TOC进行测量,TOC-L/TNM-L组合可对胺类水溶液中CO2 吸收量评估及管理,为研制低碳材料、对混凝土再利用和使用替代燃料提供技术支撑,为水泥行业实现“双碳”目标做贡献。撰稿人:唐国轩本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 一文了解领先的意大利西姆沉淀碳酸钙生产工艺
    p style=" text-indent: 2em " span style=" font-family: 宋体 line-height: 1.75em text-indent: 28px " 沉淀碳酸钙是将石灰石等原料煅烧生成石灰和二氧化碳,再加水消化生成石灰乳,然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,根据用途可进行碳酸钙粒子表面改性处理,最后经脱水、干燥粉碎而制得。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_422477_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 沉淀碳酸钙是重要的无机粉体填料之一,用途十分广泛。据了解目前中国已经发展成为世界沉淀碳酸钙第一大生产与消费国,但是就生产而言,与国外同行业相比差距仍然较大。如企业规模普遍较小,设备陈旧、水平低、产品品种单一、质量差等问题都急需解决。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 意大利西姆作为领先的沉淀碳酸钙生产工艺设计制造工程公司,其提供的技术、工艺和设备具有一定的先进性,对国内企业的生产具有一定的借鉴作用。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 意大利西姆介绍 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 1967年,意大利西姆诞生于欧洲第二个工业大省——意大利贝加莫,贝加莫是一个具有悠久历史和生产石灰、水泥和磨细碳酸盐的地区。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_459162_newsimg_news.gif" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆最初供应单轴石灰窑,三阶段水合物和包装机等,随后通过扩大其技术范围,继续引进回转窑等设备。目前已成为世界著名的提供石灰工业有关技术、设备与工程的工程公司。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆在世界 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆主要业务包括双筒蓄能活性石灰窑,干式消石灰生产装置,PCC工厂建造等。截止2017年10月,西姆足迹遍及5大洲60个国家,共229个石灰窑、169个水化设备?? /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 全球西姆业务分布图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_490464_newsimg_news.png" width=" 400" height=" 300" border=" 0" vspace=" 0" title=" " alt=" " style=" border: 0px margin-left: -3em !important width: 400px height: 300px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 各地区西姆设备分布图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_568358_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 229个石灰窑: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 北美国+欧洲94个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 南美国+中欧/东欧23个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " AFTRIC+中东27个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 亚洲+大洋洲85个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " 169个水化设备: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 北美国+欧洲103个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 南美国+中欧/东欧30个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " AFTRIC+中东16个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 亚洲+大洋洲20个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆沉淀碳酸钙工艺 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆沉淀碳酸钙生产线 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_578396_newsimg_news.png" width=" 557" height=" 472" style=" border: 0px margin-left: -3em !important width: 557px height: 472px " / /p ol class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " 石灰煅烧 /span /p /li /ol p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆石灰的煅烧采用全自动双筒蓄能气烧石灰窑,燃烧介质为天然气或煤气,体积分数在25%左右,入窑石灰石块度小,可降低石灰石的损耗,并可以生产高活性的轻烧石灰石,(相比国内机制窑活性300 ml(4NHCl))蓄能窑的活性可达370ml(4NHCl)。高活性石灰对消化工序与碳化工序设计运行有直接影响,机理上对 PCC 粒子晶型确定,成核,晶体成长,以及粒径分布有积极作用。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2.石灰消化 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " PCC生产中,西姆采用的三级消化技术,厢式连续搅拌消化机,消化能力大,出渣量小,设备占地面积小,Ca(OH)2浓度是浓度 8-16%。消化后过旋液分离器和振动筛,采用二级制冷,一级采用工艺水制冷入口温度74° C ,出口温度34° C;二级冷冻水制冷入口温度34° C,出口温度调到25° C以下。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 3.碳化工艺 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的碳化示意图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_757857_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆的碳化采用两级碳化工艺。一级碳化为大气液比连续碳化塔,碳化过程连续进料,以便快速形成晶核。也称为晶核预成器。Ca(OH)2和CO2进行连续碳化反应。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 二级碳化采用了大容积、搅拌式鼓泡碳化方式,调整pH在7以下。能够提供20、27、40、57m3等4个规格的碳化器。碳化器采用双叶轮搅拌器,碳化反应时间为60-90分钟一塔。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 造纸微米钙和橡塑纳米钙的碳化 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_779250_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 4.包覆工艺 /span /p ul class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " ?皂化 /span /p /li /ul p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 皂化采用30立方的皂化釜,硬脂酸与氢氧化钠高温皂化形成硬脂酸钠,皂化温度控制在80-85℃。 /span /p ul class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " ?活化 /span /p /li /ul p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 活化采用体积50m3,直径3.5m的活化釜,高温、高转速、高剪切搅拌活化,温度控制在80-85℃。加入皂化液后,搅拌2小时进行包覆,与碳酸钙表面结合。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 5.干燥粉碎 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 一般的沉淀碳酸钙产品不需要粉碎可以直接包装,如果认为细粉含量低,仍有团聚,可以另外加解聚装置,采用日本细川公司生产的针形磨,进一步粉碎降低团聚体和吸油值。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 对于纳米碳酸钙来说,其干燥被国内专家称为国内 PCC 技术的“瓶颈”。西姆的技术采用英国阿碎得(ATRITOR)干燥粉磨机,同时完成轻质碳酸钙PCC生产中的干燥和解聚工序,是生产高等级超细钙和纳米轻质碳酸钙的重要设备。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_789796_newsimg_news.png" width=" 509" height=" 295" style=" border: 0px margin-left: -3em !important width: 509px height: 295px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆产品特点与指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 平均粒径尺寸(20-70nm);比表面积(70-18 m2/g);形状规则,粒径分布小;表面包覆硬脂酸,用量1.9-4%,纯度高。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的SC纳米碳酸钙指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_823374_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的造纸钙指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_839392_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p
  • 总有机碳TOC分析仪有哪些模式,哪一种适合您?
    图1:碳的类型*可吹扫有机碳POC也称为挥发性有机碳(VOC)。如果用户需要监测水的有机物或评估总有机碳(TOC)仪器,首先需要通过几个英文缩写了解不同的监测模式。用户可能已有TOC分析仪的相关经验,了解需使用的模式或合规报告需使用的模式(这种情况下更容易确定应该使用哪种模式)。然而,如果不是以上任一种情况,则可能难于区分不同模式之间的差别和确定需使用的模式。本文为您简单介绍不同模式间的差别。以下是TOC分析仪的各种模式列表及其说明和用途。虽然TOC分析仪可能有多种模式用于不同的用途,但大多数仪器并不具有所有模式。TC:总碳总碳模式可用于检测样品的所有碳形态,即同时包括有机和无机两种形态。此模式并不涉及样品酸化或吹扫(详见以下“无机碳”部分),也就是说,是对原始样品进行原状检测。总碳模式最适合以下情况:不需要区分有机碳和无机碳不需要对样品进行预处理只需要获取趋势分析信息总碳模式的最佳应用:冷凝水回流IC:无机碳无机碳模式的对象是特定的化合物,例如碳酸氢盐、碳酸盐、溶解二氧化碳等。通过吹气,或者降低pH以转化平衡为CO2状态,无机碳化合物被吹扫出来。如果对样品不进行吹扫与酸化,无机化合物仍留在溶液中,会被计为TC的部分。这是一种平衡的关系,我们看待TOC时会理解更深刻。无机碳模式最适合以下情况:过程监测需要检测无机化合物,为设备和管道提供保护需要监测水的缓冲能力pH值稳定的样品需要防止锅炉结垢(避免产生碳酸盐沉淀)需要监测薄膜脱气无机碳模式的最佳应用:污水处理厂锅炉给水饮用水TOC:总有机碳在总有机碳模式中,样品的总碳减去无机碳得出总有机碳(TC-IC=TOC)。与其他模式比较,TOC模式更准确,可达到ppb级或以下。总有机碳模式最适合以下情况:需要对过程进行监测,例如排水、清洗或回用必须满足合规要求需要低浓度检测的灵敏度和准确度与总有机碳比,无机碳值相对较低样品的挥发性有机化合物(VOC)含量较高样品的基质在搅拌时会起泡总有机碳模式的最佳应用:制药超纯水(UPW)和清洁验证锅炉给水半导体制造(超纯水)饮用水工艺用水(食品饮料、油气、化工等)NPOC:不可吹扫有机碳不可吹扫有机碳不可吹扫有机碳模式是工艺监测中有机物监测的公认最常用模式。在NPOC模式中,对样品进行酸化将无机化合物转化为二氧化碳。然后,使用不含二氧化碳的空气进行吹扫,以去除无机化合物或可吹扫化合物。对样品中残留的有机碳(即不可吹扫有机碳)进行分析。如果可吹扫有机碳(POC)极少,则总有机碳与不可吹扫有机碳基本相等。不可吹扫有机碳的准确度可达到ppm级。不可吹扫有机碳模式最适合以下情况:需要监控工艺过程样品基质中可吹扫有机碳含量较低不可吹扫有机碳模式的最佳应用:废水排放(工业或市政)POC/VOC:可吹扫/挥发性有机化合物可吹扫/挥发性有机化合物可吹扫或挥发性有机化合物模式用于检测挥发性或半挥发性有机物。有两种途径检测VOC:采用光电离检测(PID)技术直接检测VOC;使用公式VOC=TOC-NPOC计算VOC。PID通过检测样品吹扫分离的中间的带正电荷的碳离子,实现挥发性有机化合物的检测。这些离子通过电极进行收集并检测所产生的电流。此模式可通过NPOC结果与POC结果求和得出TOC值。可吹扫/挥发性有机化合物模式最适合以下情况:为满足控制和安全要求,需要监测挥发性有机化合物不需要区分样品所含的不同种挥发性有机化合物的种类(只需要了解总体值)可吹扫/挥发性有机化合物模式的最佳应用:石化废水冷却塔和排污BOD/COD:生物/化学需氧量生物/化学需氧量BOD和COD是几十年来一直用于确定有机物含量的两个基本参数。BOD确定降解微生物所需的氧气量,而COD确定化学氧化存在的污染物所需的氧气量。这些方法通过测量消耗的氧气量来间接确定有机污染 — BOD需要数天时间,COD需要数小时时间。除了分析时间较长外,这两种方法都存在可能造成干扰的化合物。氯和盐会干扰BOD,而硫化物、氯化物、亚硝酸盐和二价铁会干扰COD。有些化合物能够耐受COD的化学氧化,例如苯。最初,BOD和COD值通过实验室化验获得,但由于前文所述的缺点,目前已有几种分析仪可以通过特定地点的数据相关性来提供这些值。TOC分析仪直接检测和量化样品中存在的碳,并可以提供转换为BOD和COD浓度的实时数据。BOD/COD模式最适合以下情况:相关法规要求报告BOD/COD需要分析仪数据与实验室结果之间的比较样品中不含会干扰BOD/COD的化合物BOD/COD模式的最佳应用:废水排放(工业或市政)结论选择TOC分析仪的模式并非仅选择默认或最常用的模式。监测有机物的最适用模式取决于样品基质、应用以及用户的数据用途。从一开始就选择合适的模式可确保实施过程无缝衔接,使得此后生成的数据非常可靠。作者:Sara SpeakSara Speak是Sievers分析仪的产品应用专员,为化工、石化、食品饮料、市政污水等行业客户提供支持和应用的相关专业意见。Sara与客户合作,提供相关培训,为产品的安装提供支持,优化设备的应用并验证不同检测应用的可行性。在担任产品应用专员之前,Sara曾任工厂服务技术员,负责Sievers仪器的维修和故障排除。Sara曾在食品饮料行业工作(MillerCoors和Leprino Foods),任QA实验室技术员。Sara拥有丹佛大都会州立大学(Metropolitan State University of Denver)化学学士学位和小提琴演奏音乐学士学位。◆ ◆ ◆联系我们,了解更多!
  • 水质分析中的常见指标以及标准物质在其中的作用
    在此,我们将依据GB 5749-2022《生活饮用水卫生标准》中的表1,对水质常规指标进行深入浅出的解读。这些数据,就如同体检报告上的各项指标,默默讲述着水质的故事。让我们一起,探索那数据背后的意义,守护我们的饮水安全。一、微生物指标饮用水需要检测微生物指标,如菌落总数、总大肠菌群、大肠埃希氏菌等,如果这些指标不合格,易引发细菌感染、寄生虫病,使人出现腹痛、腹泻等消化道症状。二、感官性状指标1、色度:天然水或处理后的各种水进行颜色定量测定时的指标。标准限值:15度。2、浑浊度:水中悬浮及胶体状态的颗粒。标准限值:1NTU。3、臭和味:被污染的水体往往具有不正常的气味。用鼻子闻到的叫做臭,口尝到的叫做味。标准限值:无异臭、无异味。4、肉眼可见物:水中存在的、可以肉眼观察到的颗粒或其他悬浮物质。标准限值:不得含有。超标危害:感官性状指标主要是其他指标的表征体现,一般没有直接危害。如浑浊度超标水样中悬浮物容易吸附细菌、病毒等。三、一般化学指标1、pH值:氢离子浓度倒数的对数。标准限值:6.50~8.50。超标危害:对管道的腐蚀进而引起间接中毒。2、总硬度:主要是指水中钙、镁离子的含量。硬度分为碳酸盐硬度及非碳酸盐硬度。碳酸盐硬度和非碳酸盐硬度的总和称总硬度。标准限值:450mg/L。超标危害:引起胃肠道功能紊乱,容器结垢,腐蚀设备等。3、溶解性总固体(TDS):溶解在水里的无机盐和有机物的总称,主要成分有Ca2+、Mg2+、Na+、K+、CO32-、HCO3-、SO42-、NO3-等。标准限值:1000mg/L。超标危害:味道差,口感差,水壶结垢。四、无机非金属指标1、硫酸盐:主要来自石膏和其他含硫酸盐沉积物的溶解。标准限值:250mg/L。超标危害:大量摄入导致腹泻、脱水、胃肠道紊乱。2、氯化物:广泛存在于水中,来源于天然矿物沉积、海水入侵、农业灌溉等。标准限值:250mg/L。超标危害:腐蚀管路,引入咸味,对胃液分泌、水代谢有影响,从而诱发各种疾病。3、氟化物:广泛存在于水中,来源于天然矿物沉积。标准限值:1.0mg/L。超标危害:适量的氟对身体有益,可预防龋齿。摄入过多对人体有害,容易导致氟斑牙、氟骨症。4、氰化物:自然水体一般不存在氰化物,水中来源主要是工业污染、石油化工、农药、电镀等。标准限值:0.05mg/L。5、硝酸盐氮、氨氮:硝酸盐、亚硝酸盐和氨是氮循环的组成部分。除来自地层外,还主要来源工业废水、生活污水、肥料等。标准限值:硝酸盐氮10mg/L,氨氮0.5mg/L。超标危害:本体无毒。在体内形成亚硝酸盐,可导致高铁血红蛋白症。在胃肠道形成亚硝胺,使动物致畸、致癌、致突变。五、金属指标1、铝:来源于工业污染及混凝剂(如硫酸铝、聚合氯化铝、明矾等)的使用,产生的铝化合物随污水进入水体。标准限值:0.20mg/L。超标危害:铝是一种低毒金属元素,并非人体需要的微量元素,不会导致急性中毒,人体摄入铝后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病。2、铁:铁是人体的必需元素。铁是地壳层中第二丰富的金属,以多种形式存在于天然水中。水中的铁通常以Fe3+的形式出现,而较易溶解的Fe2+可能在脱氧的情况下出现。标准限值:0.30mg/L。超标危害:当水中含铁量超过0.30mg/L会使衣服、器皿、设备等着色。在含铁量大于 0.50mg/L时,水的色度可能会大于30度。饮用水铁过多可引起食欲不振、呕吐、腹泻、胃肠道紊乱、大便失常等症状。3、锰:是地壳中较为丰富的元素之一,地下水中锰的质量浓度可以达到每升几毫克。常和铁结合在一起。标准限值:0.10 mg/L。超标危害:高浓度锰有毒性,锰主要危害中枢神经系统,可以出现颓废、肌张力增加、震颤和智力减退等中毒症状。但还未达到此水平时根据味道就需对水进行处理了。当锰的质量浓度超过0.10mg/L,会使饮用水发出令人不快的味道,并使器皿和洗涤的衣服着色。如果溶液中Mn2+的化合物被氧化,会形成沉淀,造成结垢。4、铜:是一种存在于地壳和海洋中的金属。在地壳中的含量约0.01%。自然界中的铜多数以化合物(铜矿物)存在。标准限值:1.0mg/L。超标危害:铜是人体重要的必需微量元素,但重金属又有一定毒性。毒性强弱与重金属进入人体的方式和剂量有关。金属铜不易溶解,毒性比铜盐(醋酸铜和硫酸铜)小。铜超标引起急性和慢性中毒,急性中毒有急性胃肠炎、溶血和贫血;慢性中毒有记忆力减退、注意力不集中,易激动、多发性神经炎等。5、锌:在自然界中多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿,电池的重要原料。水中锌含量很小,但水流经镀锌管道可能被污染,使水的浑浊度升高,具有不舒服的金属味。标准限值:1.0mg/L。超标危害:锌是人体不可缺少的微量元素,但锌超标也有危害:1.锌与硒有拮扰性,人体大量摄入锌后降低了硒的解毒作用,容易引起某些有毒元素的慢性中毒或诱发某些疾病;2.大量的锌能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能,使抗病能力减弱;3.过量的锌致使铁参与造血机制发生障碍从而使人体发生顽固性缺铁性贫血;4.长期大剂量锌摄入可诱发人体的铜缺乏。6、砷:在地壳中广泛存在,大多以硫化砷或金属砷酸盐和砷化物形式存在。某些地区水砷偏高(地方病),有的来自治炼废水、矿物溶出。标准限值:0.01mg/L。超标危害:砷是饮水中一种重要的污染物,国际癌症研究机构 (IARC)确认是使人致癌的物质之一。7、汞:在自然界中分布量很少,但普遍存在,一般动物植物中都含有微量的汞。汞的用途广泛,人类活动造成水体汞污染,主要来自系碱、塑料、电池、电子、化工废水还有农药、化肥等使用。标准限值:0.001mg/L。超标危害:金属汞和无机汞损伤肝脏和肾脏,但一般不形成累积中毒。有机汞(如甲基汞)等毒性高,能损伤大脑,在体内停留时间长,即使剂量很少也可累积致毒,如日本的水俣病。8、镉:在自然界中常以化合物状态存在,一般水中含量很低。镉在电镀、颜料、塑料、稳定剂、Ni-Cd电池工业、电视显像管制造等工业领域使用广泛。镉的污染主要来源工业排放。标准限值:0.005mg/L。超标危害:镉是人体非必需元素,正常环境状态下,不会影响人体健康。镉被人体吸收后,在体肉形成镉硫蛋白,选择性地蓄积在肝肾中。从而影响肝、肾器官中酶系统的正常功能,使骨路的生长代谢受阻碍,从而造成骨路疏松、萎缩、变形等。如日本的痛痛病。9、铬(六价):铬属于分布较广的元素之一。自然界中主要以铬铁矿FeCr204形式存在。铬的污染源有含铬矿石的加工,金属表面处理、皮革鞣制、印染等排放的污水。标准限值(六价铬):0.05mg/L。超标危害:铬是人体必需的微量元素,在机体的糖代谢和脂代谢中发辉特殊作用。铬的毒性与其价态有关,金属铬对人体几乎无害,六价铬才有毒。六价铬比三价铬毒性高。六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体内主要蓄积在肝、肾和内分泌腺中。通过呼吸道进入的易积存在肺部。10、铅:铅在地壳中含量为0.16%,很少以游离态存在于自然界,工业中含铅废气、废水、废渣等可以污染水源。自来水的铅还来自含铅的管道系统,如输水管、焊料、管件及其接头,聚氯乙烯水管材、管件可能含铅,因为铅作为稳定剂用于生产该种塑料管。标准限值:0.01mg/L。超标危害:铅中毒对机体的影响是多器官、全身性的,临床表现复杂,且缺乏特异性,比较明确的是:1、引起血红蛋白合成障碍;2、损害神经系统;3、损害肾脏;4、损害生殖器官;5、影响子代。病期较长的患者并有贫血,面容呈灰色,伴心悸、气促、乏力等。牙与指甲因铅质沉者而染黑色,有的牙龈出现黑色。编辑搜图六、有机物(综合)指标1、高锰酸盐指数(以O₂ 计):是指水样在规定的氧化剂和氧化条件下的可氧化物质的总量。标准限值:3mg/L。超标危害:高锰酸盐指数是反应饮用水中有机污染物总体水平的一项指标,与肝癌和胃癌死亡率之间有非常显著的相关关系。2、三氯甲烷:是一种有机合成原料,主要用来生产氟氯昂。可用于有机合成及麻醉剂,脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂,青霉素,精油、生物碱等的萃取剂,在生产过程中的废水污染水体。饮用水中三氯甲烷的形成在很大程度上取决于用作消毒剂的氯和在水源中存在的前体之间相互反应。标准限值:0.06mg/L。超标危害:主要作用于中枢神经系统,具有麻醉作用,对心,肝,肾有损害,主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状。并认为对人具有潜在的致癌危险性。在使用相关仪器设备对水质进行检测的同时,需要确保已有仪器的正确值,这就需要用到相关的标准物质进行校准,那标准物质在其中起到了什么作用呢?水质检测标准物质主要用于保证水质检测结果的准确性。这些标准物质在环境监测中起到重要的作用,可以用于测定水样中污染物质的浓度。此外,这些标准物质还可以被用于制定一些环境标准,如水质标准,以保证水质监测检测结果的合理性和可靠性,进而保证公众的生命健康和生活的安全。具体来说,水质检测标准物质有以下用途:1. 质量控制:在实验室内部的质量控制程序中,标准物质可被用作质控样品,通过比较实际测试结果与标准物质的不确定度,来评估实验的准确度和精密度。2. 比对试验:标准物质可以作为基准,用于比较不同实验室或不同测量方法的结果,以评估其准确性和一致性。3. “盲样”分析:在某些情况下,标准物质会被混入实际样品中,以测试实验室对特定污染物的检测能力。4. 校准仪器:标准物质可用于校准测量仪器,确保其准确性。5. 标定溶液浓度:标准物质可以用来标定用于样品前处理的溶液,确保这些溶液的浓度准确无误。6. 评价分析方法:通过使用标准物质,可以对新开发或改进的分析方法进行验证,确保其有效性。值得注意的是,某些特殊的水质检测标准物质如水中氨氮溶液标准物质和水中铵离子溶液标准物质,不仅可用于上述用途,还可以直接用于对排放的氨氮污染物进行准确测定,为环保领域的新技术新方法研究、新标准验证、质量控制、能力验证样品检测等方面提供技术保障。
  • 欧盟科学家在非聚碳酸酯婴儿奶瓶中发现BPA
    2012年2月16日消息,欧盟委员会联合研究中心(JRC)公布了一项针对塑料婴儿奶瓶释放化学物质的监测研究的最终结果。研究结果发现,在一个由聚酰胺制成的产品中发现了双酚A(BPA)的存在。   研究人员对277种从欧盟和美国市场购买的婴儿奶瓶的化学品迁移进行了测试。这些奶瓶由替代BPA的非聚碳酸酯材料制成,自2011年3月1日塑料BPA禁令生效后开始使用,材料包括聚酰胺、聚苯醚砜、聚丙烯和硅。   结果表明,总体上来说所有奶瓶都会释放低含量的化学物质,这与11月发布的初步研究结果比较相似。然而,其中一款标签为“无BPA”的聚酰胺奶瓶中检测到了BPA。此外,聚丙烯和硅有机树脂制成的奶瓶中也发现会释放几种未包含在肯定列表中的化学物质,甚至有几种不允许在此类产品中使用,如邻苯二甲酸盐。   研究人员得出的结论为,该结果应在未来关于塑料婴儿奶瓶的风险评估中再次进行考虑,同时建议官方食品控制实验室对目前使用的替代材料进行强化测试,并告知风险管理的结果。
  • 扫描电镜分析技术,助力页岩油勘探开发
    面对10万倍的电镜,原本平整一体的岩石样本,内部结构一览无余展现在镜头下,白色的是碳酸盐岩,黑色的是泥岩,中间夹杂有很多孔隙裂缝,细如发丝,地质人员日思夜想的石油就在这里。从设备中拿出1厘米见方的样品,勘探开发研究院地层古生物实验室经理王伟庆开始了揭秘,“别看只有小拇指尖那么大,经过扫描电镜数万倍放大,就是一个浩瀚的‘宇宙’了。”2021年,胜利油田页岩油勘探开发取得战略性突破,首批上报预测石油地质储量4.58亿吨,首先得益于地质科研人员在基础研究上的突破。一根头发丝的直径通常在0.03毫米左右,也就是30微米左右,胜利油田的页岩油就蕴藏在这头发丝般甚至还细小的孔缝中。“样品中看到的部分,如同在一个足球场内寻找一个乒乓球,要找到这个‘乒乓球’首先要制作出合格的样品。”地层古生物实验室扫描电镜工作人员于杰杰说,扫描电镜对岩石样本要求非常高,页岩取芯难度很大,层多且薄又易碎,手工处理样品要格外掌握好力度、技巧。将页岩手工制作成1厘米见方的小块,再用砂纸反复打磨,直到普通显微镜下看到切面平滑了,再用氩离子抛光仪继续打磨。这个过程可能要重复几十次,直到达到镜面效果了,才能用扫描电镜进行观察。扫描电镜可以聚焦到纳米级,非常直观地反映出页岩油的储集空间、成分特征、矿物架构等。一张有典型意义的图片,犹如毛细血管图似的,要想展现出页岩油孔隙,通常需要从上百甚至上千张图片中挑选出来。勘探开发研究院科研人员通过关键技术攻关,优化试验参数工序,创新工作流程,聚焦提升电镜分析质量,突破了含油样品低真空观察、氩离子抛光高精度成像、背散射样品成分精细识别等技术难关,掌握了非常规样品电镜分析方法,为油田非常规储层评价提供了关键信息,助推了油田页岩油、致密油勘探突破。纳米尺度的电镜图像成为打开非常规储层微观世界的“金钥匙”,凭借过硬的分析技术及分析质量,勘探开发研究院制定了页岩油电镜分析行业标准,成为了行业标杆及排头兵。此外,扫描电镜分析技术还在如何识别致密砂岩里的好储层,如何避免油气层伤害和改造低产储层等领域,扮演了研究工作“利器”的角色。下一步,勘探开发研究院将开发精度更高的聚焦离子束扫描电镜分析技术,模拟和寻找页岩油的流动和路径,届时,足球场上的玻璃弹珠也不再难寻,非常规储层里的原油如何从地层中流出来等难题也会有新的答案。
  • 最美人间四月天 青岛盛瀚发布全新CIC-D100离子色谱仪 精品延续 品质升级
    告别了三月,迎来了最美的人间四月天。姹紫嫣红处一瞥的初见,你惊艳了整个春天。CIC-D100离子色谱仪作为盛瀚一款经典产品,一直广受好评。基于用户最新需求,自动量程电导检测器等经典技术,定位于常规检测的全新一代CIC-D100焕然新生给用户带来更便捷、绿色的高效色谱分析体验。新升级的CIC-D100,可以方便地测试不同基体样品中的阴离子、阳离子及其他极性物质,同时分离相差4个数量级浓度的离子,测试结果准确可靠。系统启动快速、性能可靠稳定,适用于医药、环境、食品、化工、地质及研究实验室等广泛领域。1.自动量程电导检测器传统电导检测器通过档位切换来控制信号值的大小,以此来适应不同浓度样品的检测需求。实际样品中不同离子浓度相差较大,高浓度样品会出现平头峰,导致无法实现同一样品同时定量检测,需要多次测定才能满足检测需求。 自动量程电导检测器,根据样品的不同浓度自动调整信号值的大小, 100ppm氯离子直接进样,也不会出现平头峰(超量程)。优势:*测量线性范围宽ppb-ppm浓度范围信号直接拓展,无需调整量程。*实现一次进样分析分析高低不同浓度组分,缩短分析时间。*无需稀释降低稀释误差对低含量组分的影响及误差。 2.全领域稳定、高效、离子色谱柱离子色谱柱是离子色谱仪的核心部件,其主要功能是分离待测离子,它的特点和性能直接决定了可以检测的离子种类和检测效果;离子色谱柱的研发难点在于填料的合成和处理,工艺流程控制技术难度极大,形成了极大的技术壁垒,长期以来离子色谱柱都被几家国外品牌所垄断。青岛盛瀚敢于担当,先后突破了色谱柱填料合成、处理等一系列技术难题,成为世界上三家能够生产离子色谱柱的离子色谱厂家之一,自主研发的氢氧根体系阴离子色谱柱、碳酸盐体系阴离子色谱柱、阳离子色谱柱,填补了国内空白。经专家论证,盛瀚生产的离子色谱柱性能稳定,质量水平已经达到国际水准。SH系列阴阳离子色谱柱通过最大效率地提高分辨率来改善分离和检测,出色的重现性可保持分析和数据的完整性,还可以通过更快的分离时间,出色的耐用性来降低分析成本,并最大限度地提高实验室生产效率。优势:*可容反相有机溶剂,适应pH 范围0-14。*氢氧化物淋洗液分析柱系列,世界上两大氢氧根体系色谱柱之一:具有背景低,噪音小,灵敏度高的特点,可用于梯度淋洗和二维离子色谱等。3.淋洗液预热技术温度会影响流体的粘度,温度变化会导致流体过色谱柱时压力的变化,过低的温度会使色谱柱压力过大,导致填料塌陷、连接头崩开等问题。另外,温度变化还会影响到离子的保留时间和响应值,影响到离子的定性和定量,柱温箱的使用是非常有必要的。CIC-D100的柱温箱引入淋洗液预热技术,良好的恒温技术使色谱柱受到环境温度的影响极低。优势:*可降低系统噪音和基线背景,改善系统检出限和方法重现性。*柱温箱内设置淋洗液预热模块,进入色谱柱的淋洗液经过预热,减少了热力冲击,提高了色谱柱内的恒温效果。4.电解连续再生抑制器在离子色谱系统中,为准确检测待测离子,避免反离子对电导检测器的干扰,需要使用抑制器将淋洗液中的反离子除去,以达到降低基线背景和噪音,提高检测组分响应值的效果。正是由于抑制器的发明才使得离子色谱作为一种有效分析手段成为可能。也正是有了电解连续再生抑制器使离子色谱真正的从液相色谱中独立出来。优势:*可提供阴/ 阳离子两种类型电解抑制器。*通过电解连续再生抑制容量高,无需使用蠕动泵外加试剂再生。*耐压性能好,最高耐压可达6MPa,不漏液。5.软件升级:一键开关机离子色谱仪启动有诸多参数要进行设置,且不同的参数设置还有顺序要求,而关机操作同样要将不同的功能部件关闭,开机、关机都要占用使用人员的时间,而且有误操作的风险。新增加了智能开机和智能关机功能,通过软件程序将各个操作互锁,只需一键操作,就可以完成多个参数设置和开关等操作,有助于提高分析实验室的生产率。备受关注期待的全新CIC-D100离子色谱仪将于2019.5.5正式公开发售!
  • 土壤/沉积物中的有机碳、无机碳及元素碳检测方案 | 德国元素
    对于诸多应用而言,总有机碳含量(TOC)都是一项重要指标。在农业科学中,碳是了解土壤和沉积物中元素循环的重要参数。有机碳通过植物和动物排泄物分解进入土壤,成为微生物和植物的主要养分来源。因此,TOC分析可提供有关微生物活性和有机物质的重要信息,从而对土壤和沉积物进行定性和评估。直接测定TOC是一种重要的分析方法。通常先测定总碳含量,然后再减去总无机碳。除了有机碳,在土壤和沉积物中还存在无机碳,通常以碳酸盐的形式存在。然而其实还有一种碳源的存在,那就是元素碳(ROC),其与无机碳一样,均不具有生物可利用性。但是通过传统的酸化法无法区分元素碳、有机碳及无机碳,这也是一直进行土壤与沉积物中有机碳测定的困扰。德国元素 Soli TOC cube 碳组分分析仪采用创新的温度梯度法,无需对样品进行前处理,即可通过不同的温度梯度,直接区分测定土壤及沉积物中的不同碳组分,如有机碳、无机碳与元素碳。经过多年的不断优化,Soli TOC cube 内置多种优化方法,应对不同样品的测试需求。案例分享:直接将标样与土壤直接称于不锈钢坩埚中;将坩埚直接放置于仪器自动进样器上;按照仪器内置方法进行测定。实验数据:结果显示,德国元素 Soli TOC cube 碳组分分析仪 可高精度分析土壤中的不同碳组分,且与标样、标准土壤样品的理论值非常接近,完全满足客户的测试要求。
  • 四部门印发建材行业碳达峰实施方案!重点任务都在这里——
    11月7日,工业和信息化部等四部门印发建材行业碳达峰实施方案,同时,提出了“十四五”、“十五五”两个阶段的主要目标:“十四五”期间,水泥、玻璃、陶瓷等重点产品单位能耗、碳排放强度不断下降,水泥熟料单位产品综合能耗降低3%以上;“十五五”期间,建材行业绿色低碳关键技术产业化实现重大突破,原燃料替代水平大幅提高,基本建立绿色低碳循环发展的产业体系。 本次碳达峰实施方案特别关注于建材行业,要求2030年前建材行业实现碳达峰。涉及目标,国家对于建材行业还有哪些具体要求?仪器信息网为您梳理—— 2021年9月,国务院发布《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》。该意见指出,到2025年,绿色低碳循环发展的经济体系初步形成,重点行业能源利用效率大幅提升。单位国内生产总值能耗比2020年下降13.5%;单位国内生产总值二氧化碳排放比2020年下降18%;非化石能源消费比重达到20%左右;森林覆盖率达到24.1%,森林蓄积量达到180亿立方米,为实现碳达峰、碳中和奠定坚实基础。要持续提高新建建筑节能标准,加快推进超低能耗、近零能耗、低碳建筑规模化发展。逐步开展建筑能耗限额管理,推行建筑能效测评标识,开展建筑领域低碳发展绩效评估。 2021年10月,国务院印发《2030年前碳达峰行动方案》,方案中明确到2025年,非化石能源消费比重达到20%左右。于建筑行业而言,加强产能置换监管,加快低效产能退出,严禁新增水泥熟料、平板玻璃产能,引导建材行业向轻型化、集约化、制品化转型。推动水泥错峰生产常态化,合理缩短水泥熟料装置运转时间。因地制宜利用风能、太阳能等可再生能源,逐步提高电力、天然气应用比重。鼓励建材企业使用粉煤灰、工业废渣、尾矿渣等作为原料或水泥混合材。加快推进绿色建材产品认证和应用推广,加强新型胶凝材料、低碳混凝土、木竹建材等低碳建材产品研发应用。推广节能技术设备,开展能源管理体系建设,实现节能增效。2022年7月,工信部等三部门联合印发《工业领域碳达峰实施方案》,该方案进一步细化,明确建材行业中水泥行业减碳政策。要求严格执行水泥、平板玻璃产能置换政策,依法依规淘汰落后产能。加快全氧、富氧、电熔等工业窑炉节能降耗技术应用,推广水泥高效篦冷机、高效节能粉磨、低阻旋风预热器、浮法玻璃一窑多线、陶瓷干法制粉等节能降碳装备。到2025年,水泥熟料单位产品综合能耗水平下降3%以上。到2030年,原燃料替代水平大幅提高,突破玻璃熔窑窑外预热、窑炉氢能煅烧等低碳技术,在水泥、玻璃、陶瓷等行业改造建设一批减污降碳协同增效的绿色低碳生产线,实现窑炉碳捕集利用封存技术产业化示范。2022年11月,根据《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《2030年前碳达峰行动方案》,结合《工业领域碳达峰实施方案》,国家制定《建材行业碳达峰实施方案》(以下简称《方案》),进一步细化建材行业对于碳达峰目标的具体实施策略,确保2030年前建材行业实现碳达峰,重点任务摘录如下: (一) 强化总量控制:发挥能耗、环保、质量等指标作用,引导能耗高、排放大的低效产能有序退出。鼓励建材领军企业开展资源整合和兼并重组,优化生产资源配置和行业空间布局;严格落实水泥、平板玻璃行业产能置换政策,加大对过剩产能的控制力度;动全国水泥错峰生产有序开展,有效避免水泥生产排放与取暖排放叠加。(二) 推动原料替代:逐步减少碳酸盐用量。强化产业间耦合,加快水泥行业非碳酸盐原料替代,在保障水泥产品质量的前提下,提高电石渣、磷石膏、氟石膏、锰渣、赤泥、钢渣等含钙资源替代石灰石比重,全面降低水泥生产工艺过程的二氧化碳排放;加快提升固废利用水平,提高混合材产品质量。提升玻璃纤维、岩棉、混凝土、水泥制品、路基填充材料、新型墙体和屋面材料生产过程中固废资源利用水平;推动建材产品减量化使用。减量使用高碳建材产品,开发低能耗制备与施工技术,加大高性能混凝土推广应用力度。(三) 转换用能结构:加大替代燃料利用。支持生物质燃料等可燃废弃物替代燃煤;加快清洁绿色能源应用,有序提高平板玻璃、玻璃纤维、陶瓷、矿物棉、石膏板、混凝土制品、人造板等行业的天然气和电等使用比例;提高能源利用效率水平,建设能源管控中心,开展能源计量审查,实现精细化能源管理。(四) 加快技术创新:加快研发重大关键低碳技术。突破水泥悬浮沸腾煅烧、玻璃熔窑窑外预热、窑炉氢能煅烧等重大低碳技术;加快推广节能降碳技术装备。每年遴选公布一批节能低碳建材技术和装备,到2030年累计推广超过100项;以数字化转型促进行业节能降碳,通过数据采集分析、窑炉优化控制等提升能源资源综合利用效率,促进全链条生产工序清洁化和低碳化。探索运用工业互联网、云计算、第五代移动通信(5G)等技术加强对企业碳排放在线实时监测。(五) 推进绿色制造:构建高效清洁生产体系,大力推行绿色设计,建设绿色工厂,全面开展清洁生产审核评价和认证;构建绿色建材产品体系;将水泥、玻璃、陶瓷、石灰、墙体材料、木竹材等产品碳排放指标纳入绿色建材标准体系;加快绿色建材生产和应用,鼓励各地因地制宜发展绿色建材,培育一批骨干企业,打造一批产业集群。《方案》还明确了关键低碳技术推广路线图: 到2025年前,重点研发低钙熟料水泥、非碳酸盐钙质等原料替代技术,生物质燃料、垃圾衍生燃料等燃料替代技术,低温余热高效利用技术,全氧、富氧、电熔及“火-电”复合熔化技术等。重点推广水泥高效篦冷机、高效节能粉磨、低阻旋风预热器、浮法玻璃一窑多线、陶瓷干法制粉、岩棉电熔生产、石灰双膛立窑、墙体材料窑炉密封保温等节能降碳技术装备。 到2030年前,重点推广新型低碳胶凝材料,突破玻璃熔窑窑外预热、水泥电窑炉、水泥悬浮沸腾煅烧、窑炉氢能煅烧等重大低碳技术,实现窑炉碳捕集、利用与封存技术的产业化应用。在检验检测方面,《方案》特别提出,要健全标准计量体系。加强建材行业节能降碳新技术、新工艺、新装备的标准制定,充分发挥计量、标准、认证、检验检测等质量基础设施对行业碳达峰工作的支撑作用。推动建材行业建立绿色用能监测与评价体系,建立完善基于绿证的绿色能源消费认证、标准、制度和标识体系。有效引导企业实施碳减排行动。推动建材行业将温室气体管控纳入环评管理。加强低碳标准国际合作。
  • 上海凯来助力学术研究,国产飞秒激光剥蚀系统再现科技魅力
    点击蓝字 关注我们在刚刚结束的第十三届全国同位素地质年代学与同位素地球化学学术讨论会上,上海凯来仪器有限公司携带国产自研的GenesisGEO新型飞秒激光剥蚀系统大放异彩!这款新品凭借其尖端科技和卓越性能,一经亮相便成为全场焦点。在展示过程中,专家老师们亲自上手体验,通过对石英等具有挑战性的样品进行操作,专家老师们均可以轻松打出了圆形或矩形平顶坑。与传统飞秒激光和193nm相比,GenesisGEO新型飞秒激光剥蚀系统显示出绝对的领先优势,极大拓展了飞秒激光剥蚀的应用领域,为同位素地质年代学和同位素地球化学领域的研究提供更加高效、精确的工具。专家们纷纷围绕GenesisGEO展开热烈讨论,探索其在地质年代学与地球化学领域的深远应用。无疑,它已成为推动学科进步的重要力量。分享汇报,助力科研上海凯来在专题五上进行了精彩的分享汇报,主题为"国产新型飞秒激光剥蚀系统的最新研究进展及其应用领域"。传统飞秒存在非平底坑、光斑范围小、光斑类型有限等瓶颈;而193nm激光在剥蚀过程中存在明显热效应。两者限制了激光剥蚀技术在地学研究中的应用范围。上海凯来完全自主研发的GenesisGEO新型飞秒激光剥蚀系统通过全新的技术路线,实现了关键突破:平底坑、束斑范围广(1~500μm)、矩形/圆形光斑任选、高能量密度≥50J/cm2等,为地学研究工作提供了新型的科研利器和新的视角与方法。本次报告不仅为我们带来了最新的技术进展,也为地质等相关领域的研究和应用提供了更多的思路和可能性。在汇报中的提问环节,大家响应热烈,许多专家老师听了汇报后前往上海凯来展台进行参观,积极交流新型飞秒激光前沿应用。GenesisGEO新型飞秒激光剥蚀系统的优异性能获得了众多专家的一致认可,认为GenesisGEO是国产仪器的翘楚,为国争光!从上世纪90年代中期至今,中国学者见证了激光剥蚀与质谱联用技术在地学领域的蓬勃发展。上海凯来自成立至今已20余年的时间,随着凯来自研新型飞秒的顺利落地,相信国产新型飞秒将给用户提供更强大、有效的分析工具。我们坚信中国人可以制造出自己的完全自主创新研发的分析仪器,助力相关领域的蓬勃发展,再次感谢各位专家学者及新老用户的关注和支持!专业认可,品质保证GenesisGEO新型飞秒激光剥蚀系统“ 开拓性的设备感受高质量剥蚀效果 ”GenesisGEO新型飞秒激光剥蚀系统为上海凯来全自研自主创新技术,无美国技术,无卡脖子风险。其全新的技术理念颠覆了人们对传统激光剥蚀技术的认知,即将带来全新的激光剥蚀技术革新,很快将在地球化学、环境科学、生命科学、新材料及半导体等关键领域的核心技术重点突破。仪器特点:平底坑,低分馏超大范围光斑,1-500μm无需ArF气体,光路无需N2保护全中文界面,无人值守操作3D动态变焦No Defocussing!左为不变焦剥蚀,右为变焦剥蚀,变焦速率可自定义样品类型:玻璃新型飞秒剥蚀坑形貌钠钙玻璃样品,从左向右尺寸依次为10μm, 20μm, 30μm, 40μm, 50μm, 60μm, 70μm, 80μm, 90μm, 100μm, 200μm, 300μm, 400μm, 500μm微量打点分析石英样本打点信号曲线GenesisGEO新型飞秒激光剥蚀系统采用高功率飞秒激光源,能够提供更高的能量密度,能够对花岗岩类石英轻松剥蚀,检出限≤3ppb。其产生的热效应更小,基体效应弱且脉冲宽度极短,可以实现更高的时间分辨率和更精确的样品剥蚀。碳酸盐岩定年分析Tarim下交点年龄:211.5±3.1Ma(参考年龄:208.5±0.6Ma)GenesisGEO飞秒激光剥蚀系统与Agilent8900三重四级杆联用,对Tarim样品进行碳酸盐岩定年分析,光斑大小为100μm,数据结果与参考年龄一致。流体包裹体分析单个流体包裹体分析GenesisGEO飞秒激光剥蚀系统具有新型观察系统,可清晰观察单个包裹体锆石成像光斑大小1-500μm连续可调,最低可至500nm!可实现高空间分辨率成像。关于凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,深圳,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。END
  • 等离子体质谱仪灵敏度提高 研究建立激光方解石U-Pb定年技术
    方解石可以在多种地质环境中形成。方解石U-Pb年代学在诸多地学领域具有较大应用前景,如古气候、沉积学、成岩作用、断裂时代、成矿过程以及油气运移等方面。   早期方解石U-Pb定年主要基于同位素稀释法(ID),然后采用热电离质谱(TIMS)或多接收电感耦合等离子体质谱(MC-ICP-MS)进行测定。然而,这种分析方法耗时长,成功率低,需要样品溶解以及U和Pb的化学分离;其空间分辨率差,不适合用于具有环带变化的样品,因此未得到广泛应用。   自2014年激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)首次应用于化石中方解石胶结物U-Pb定年以来,该技术在解决一系列关键地质问题中得到广泛应用。与ID-TIMS相比,LA-ICP-MS具有空间分辨率高、分析速度快等优点,能快速测得样品的U-Pb比值。但方解石U含量普遍较低(   基于此,研究建立了LA-SF-ICP-MS方解石U-Pb定年技术。采用国际标准物质Duff Brown Tank、JT和ASH-15对方法的分析精度和准确度进行了验证(图2)。通过改善的灵敏度,空间分辨率达到85-110微米,可以对大多数方解石进行U-Pb定年。研究还进一步证明,基于LA-ICP-MS二维元素成像技术选取样品定年区域可提高方解石U-Pb定年的成功率。   副研究员兰中伍及其合作者将该技术应用于埃迪卡拉纪盖帽碳酸盐岩上。Marinoan冰川杂砾岩和其上部的盖帽碳酸盐岩是支持雪球地球假说(snowball Earth)直接的岩石学证据,该岩石组合指示了古气候由冷到暖的变化,是多学科领域关注的前沿和焦点。前人从这套盖帽碳酸盐岩内陆续开展了沉积学、地层学、地球化学和地球生物学等方面的工作,但其复杂的沉积结构和异常低的δ13Ccarb值(   通过对方解石进行U-Pb定年,在Tera-Wasserburg图解中得到了636.5 ± 7.4 Ma 下交点年龄(图4)。传递衰变常数和标样误差之后,年龄误差为17.8 Ma。因此,采样层位的沉积时代为636.5 ± 7.4/17.8 Ma。该年龄和前人从盖帽白云岩内白云石中测得的U-Pb年龄629.3 ± 16.7/22.9 Ma以及火山灰锆石U-Pb年龄635.23 ± 0.57 Ma在误差范围内相一致。新的年龄数据表明方解石在埃迪卡拉纪早期形成,不可能在埃迪卡拉纪晚期或者寒武纪热液活动中形成。   方解石REE组成总体上表现出La,Y和Gd正异常(δGd=1.1-1.96),高Y/Ho比值(大多数44)(图5)。Eu以正异常为主(δEu=1.02-1.38),少量表现出负异常(δEu=0.79-0.96)。高Y/Ho比值为海水沉积的特征,Eu正异常说明有热液活动的影响。从REE配分型式上可以看出有些方解石可能是从海水中形成的。这种情况下,甲烷的厌氧氧化(AOM)形成了方解石、黄铁矿、硫酸钡、铁氧化物,以及盖帽白云岩中的负δ13Ccarb值。负δ13Ccarb方解石和盖帽白云岩近于同期形成,甲烷水合物去稳导致甲烷泄露到大气中,引发冰川融化。有些方解石可能是在埃迪卡拉纪早期(ca. 632 Ma)热液活动中形成的。   研究成果发表于Science China Earth Sciences和Geological Magazine。研究工作得到国家重点研发项目、国家自然科学基金、岩石圈演化国家重点实验室开放基金、古生物学与地层学国家重点实验室开放基金,以及地质过程与矿产资源国家重点实验室开放基金的共同资助。 图1.三种锥组合(S + H、Jet + H和Jet + X)在不引入N2和引入少量N2条件下206Pb和238U的信号强度图2.ASH-15的下交点年龄和U含量结果图,其中下交点年龄结果以Tera-Wasserburg图表示;U含量变化以相对概率的形式表示。蓝色虚线为固定上交点207Pb/206Pb为0.832的等时线;黑色实线为未固定上交点的等时线。在不同时间内,共进行了2次独立分析图3.三峡地区九龙湾剖面陡山沱组底部葡萄状白云岩内矿物共生组合(BSE图像)。多种形态的方解石胶结物和黄铁矿充填在等厚状白云石内部的孔洞和裂隙内,后期被石英胶结物所包裹图4.方解石Tera-Wasserburg谐和图。回归线的上交点代表普通铅组成,下交点代表样品的年龄图5.葡萄状白云岩内方解石的REE配分型式
  • 北京兴东达泰公司济南环境监测中心在线元素碳/有机碳分析仪服务
    日前,我公司完成济南环境监测中心在线元素碳/有机碳分析仪的安装和培训服务工作。 小知识:热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准-EPA NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量,我公司的在线产品同时具备实验室测试功能,仪器中的激光测试部分具备直接测试黑碳功能,而光热结合测试可以对大气气溶胶中的无机碳/有机碳,碳酸盐等成份做准确定量测试,每个样品的测试过程仪器都会完成自动标气内校步骤。
  • 北京兴东达泰公司完成元素碳/有机碳北京客户的分点服务
    北京兴东达泰公司日前完成客户在线有机碳/元素碳分析仪的分点布局服务,经过长时间的同点多台数据比对论证,我公司的在线有机碳/元素碳分析仪被证明台间数据精度符合要求,其精度已达到同台数据精度。此次分点布局,用于城市内和郊区点的有机碳/元素碳数据连续监测。 我公司的在线有机碳/元素碳分析仪(RT-4)日前已在国内多个国家空气监测项目中使用,可连续测试黑碳,元素碳,有机碳,碳酸盐等指标,并具备实验室采样测试的功能。我公司的有机碳/元素碳分析仪也是EPA5040标准制定实验所使用的仪器。秉承一贯领先的原则,我公司的有机碳/元素碳分析仪已形成:单独实验室分析仪,在线分析仪(同时具备实验室分析功能)系列产品。 其数据可有效反映危害人及环境的细粒子中占比最大的空气气溶胶中碳类各组分的直接数据,可反映污染来源(如汽车排放污染,沙尘,工厂废气污染等等),环境气象变迁提供直接的科学数据,为国家防治空气污染提供战略数据基础,也可以监测森林火灾,秸秆焚烧等事件。
  • 中石化研制世界首台高性能单体包裹体成分分析仪
    中国石化石油勘探开发研究院研制成功世界上第一台高性能单体包裹体成分分析仪,建立具有国际领先水平的单体油气包裹体剥蚀成分分析新技术。   据介绍,该技术突破性地实现了不改变单个包裹体内原始油气组成下的有机成分提取和分析。利用该分析仪,我国首次实现对塔河油田不同期次单体油气包裹体的成分分析,为塔河油田奥陶系油藏油气充注过程、油气成藏期次提供了可靠证据。同时,建立的一系列油气包裹体分析新技术方法所获得的分析数据及地球化学信息,已有效应用于塔河油田、普光气田、胜利油田等油气源对比、油气运移以及成藏过程研究,也为南方海相天然气勘探、我国碳酸盐岩油气成藏理论和勘探实践提供了科学依据。
  • 北京兴东达泰公司在线元素碳/有机碳分析仪为世博保驾护航
    日前,我公司完成长三角多个站点的在线元素碳/有机碳分析仪安装和维护工作,连续24小时密切监测空气中元素碳/有机碳的变化. 大气气溶胶中2.5微米以下粒子中有机碳元素碳一般在空气总粒子占比达到30-70%,是严重危害人体健康的有效危害成份,研究证明:其危害程度甚至超过吸烟的危害. 大气气溶胶粒子中元素碳/有机碳含量的检测已成为国际上关注的热点,随着长三角,株三角等我国重点地区监测装备的提升,使我国的大气气溶胶有机碳/元素碳的监测水平同发达国家同步. 我公司提供的在线元素碳/有机碳分析仪同时具备监测黑碳成份的能力,对太阳辐射水平,灰霾,沙尘传输等气象研究也提供了有力的工具. 小知识:热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准-EPA NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量,我公司的在线产品同时具备实验室测试功能,仪器中的激光测试部分具备直接测试黑碳功能,而光热结合测试可以对大气气溶胶中的无机碳/有机碳,碳酸盐等成份做准确定量测试,每个样品的测试过程仪器都会完成自动标气内校步骤。
  • 大连化物所揭示固体氧化物电解器阴极动态重构和CO2电解反应机制
    近日,大连化物所催化基础国家重点实验室包信和院士、汪国雄研究员与吕厚甫博士团队在高温CO2电解研究中取得新进展,通过电化学原位表征研究,揭示了固体氧化物电解器阴极动态重构和CO2电解反应机制。   固体氧化物电解器(Solid Oxide Electrolysis Cell,SOEC)在高温条件下利用可再生能源将CO2高效电解还原为CO,是一种极具工业应用潜力的负碳技术。然而,在CO2电解过程中,对SOEC阴极催化活性位点原位动态重构及CO2吸附活化机理认识仍然不足。本工作中,研究团队借助高温原位电化学X射线衍射(XRD)、近环境压力X射线光电子能谱(NAP-XPS)和原位X射线吸收光谱(XAS)等表征方法,深入研究了Ir掺杂的Sr2Fe1.45Ir0.05Mo0.5O6-δ(SFIrM)钙钛矿催化剂的动态电化学重构特性以及CO2吸附活化机制。研究发现,SFIrM钙钛矿阴极在CO2电解过程中表面偏析溶出高分散、高密度IrFe合金纳米颗粒(粒径约1.0nm,密度高于80000μm-2);并且IrFe合金纳米颗粒表现出随电压施加和停止相应形成和消失的特征,阐明了电压作为主要驱动力在CO2电解过程中原位促使IrFe合金纳米颗粒在钙钛矿表面溶出的机制。   此外,碳酸盐物种作为CO2吸附和活化反应中间体在原位NAP-XPS中被观测到,其强度随IrFe@SFIrM界面的形成与消失而相应变化。相对于未发生表面溶出的Sr2Fe1.5Mo0.5O6-δ电极,SFIrM电极具有更高的碳酸盐/CO2面积比,证明IrFe@SFIrM界面作为CO2电解反应中的催化活性位点,表现出更高的CO2吸附活化能力。IrFe合金纳米颗粒可通过短暂氧化实现再分散,进一步提高了SOEC中CO2电解稳定性。   本研究阐明了SFIrM阴极的表面重构过程和催化作用机制,有助于深入研究认识SOEC中CO2电解过程。   相关工作以“In situ electrochemical reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-δ perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells” 为题,发表在《国家科学评论》(National Science Review)上。该工作第一作者是我所502组博士研究生沈俞翔和刘天夫博士。该工作得到国家重点研发计划、国家自然科学基金等项目的支持。
  • 37项地质样品同位素分析标准发布,LA-ICP-MS、TIMS等技术成关键
    2024年8月2日,《地质样品同位素分析方法 第1部分:总则和一般规定》等37项行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,经2024年第5次部长办公会审议通过,现予批准、发布,自2024年10月1日起实施。多项标准涉及热电离质谱法(TIMS)、激光剥蚀-电感耦合等离子质谱法(LA-ICP-MS)、能谱法等。详细的标准编号及名称见附表。为聚焦国家重大战略需求,进一步激发地质矿产的创新活力,推动最新科研成果广泛交流,仪器信息网将于2024年8月22日举办“第六届现代地质及矿物分析测试新技术与应用”网络研讨会,聚焦LA-ICP-MS、直读光谱、原子探针、TIMS等技术的最新应用展开讨论,日程如下,点击预约参会》》》。时间报告专家单位报告方向9:00-9:30郭冬发核工业北京地质研究院锂分析方法与地质分析实践9:30-10:00陈剑峰布鲁克(北京)科技有限公司布鲁克地质及矿物中元素分析解决方案10:00-10:30杨阳德国斯派克分析仪器 销售经理地矿样品中的稀土元素的解决方案10:30-11:00罗涛中国地质大学(武汉)LA-ICP-MS副矿物U-Th-Pb定年技术及标样研究进展11:00-11:30待定上海凯来仪器有限公司待定11:30-12:00董学林湖北省地质实验测试中心固体进样电弧直读光谱技术在战略性矿产分析中的应用14:00-14:30许春雪国家地质实验测试中心战略性矿产标准物质研制现状和需求分析14:30-15:00谢士稳中国地质科学院地质研究所原子探针层析技术及其在矿床研究中的应用15:00-15:30冯兰平中国地质大学(武汉)动态多接收TIMS方法高精度测定锶同位素组成附表标准编号及名称DZ/T 0184.1-2024地质样品同位素分析方法 第1部分:总则和一般规定(代替DZ/T 0184.1-1997)DZ/T 0184.2-2024地质样品同位素分析方法 第2部分:锆石 铀-铅体系同位素年龄测定 热电离质谱法(代替DZ/T0184.2-1997、DZ/T 0184.3-1997)DZ/T 0184.3-2024地质样品同位素分析方法 第3部分:锆石 微区原位铀-铅年龄测定 激光剥蚀-电感耦合等离子体质谱法DZ/T 0184.4-2024地质样品同位素分析方法 第4部分:地质样品 钐-钕体系同位素年龄和钕同位素比值测定 热电离质谱法(代替DZ/T 0184.6-1997)DZ/T 0184.5-2024地质样品同位素分析方法 第5部分:地质样品 铷-锶体系同位素年龄和锶同位素比值测定 热电离质谱法(代替DZ/T 0184.4-1997)DZ/T 0184.6-2024地质样品同位素分析方法 第6部分:脉石英 铷-锶体系同位素年龄测定 热电离质谱法(代替DZ/T 0184.5-1997)DZ/T 0184.7-2024地质样品同位素分析方法 第7部分:辉钼矿 铼-锇体系同位素年龄测定 电感耦合等离子体质谱法DZ/T 0184.8-2024地质样品同位素分析方法 第8部分:地质样品 钾-氩体系同位素年龄测定 熔炉法(代替DZ/T 0184.7-1997)DZ/T 0184.9-2024地质样品同位素分析方法 第9部分:地质样品 氩-氩同位素年龄及氩同位素比值测定 熔炉法(代替DZ/T 0184.8-1997)DZ/T 0184.10-2024地质样品同位素分析方法 第10部分:地质样品 碳-14年龄测定 液闪能谱法(代替DZ/T 0184.9-1997)DZ/T 0184.11-2024地质样品同位素分析方法 第11部分:碳酸盐岩 铀系不平衡地质年龄和铀钍同位素比值测定 α能谱法(代替DZ/T 0184.10-1997)DZ/T 0184.12-2024地质样品同位素分析方法 第12部分:沉积物 铅-210地质年龄测定 α能谱法(代替DZ/T 0184.11-1997)DZ/T 0184.13-2024地质样品同位素分析方法 第13部分:沉积物 铅-210地质年龄测定 γ能谱法DZ/T 0184.14-2024地质样品同位素分析方法 第14部分:沉积物 铯-137地质年龄测定 γ能谱法DZ/T 0184.15-2024地质样品同位素分析方法 第15部分:地质样品 铅同位素组成测定 热电离质谱法(代替DZ/T 0184.12-1997)DZ/T 0184.16-2024地质样品同位素分析方法 第16部分:地质样品 铅同位素组成测定 多接收电感耦合等离子体质谱法DZ/T 0184.17-2024地质样品同位素分析方法 第17部分:岩石 锇同位素组成测定 负热电离质谱法DZ/T 0184.18-2024地质样品同位素分析方法 第18部分:锆石 微区原位铪同位素组成测定 激光剥蚀-电感耦合等离子质谱法DZ/T 0184.19-2024地质样品同位素分析方法 第19部分:硫化物矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.14-1997)DZ/T 0184.20-2024地质样品同位素分析方法 第20部分:硫酸盐矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.15-1997)DZ/T 0184.21-2024地质样品同位素分析方法 第21部分:硫化物矿物 硫同位素组成测定 六氟化硫法(代替DZ/T 0184.16-1997)DZ/T 0184.22-2024地质样品同位素分析方法 第22部分:地质样品 硅同位素组成测定 四氟化硅法(代替DZ/T 0184.22-1997)DZ/T 0184.23-2024地质样品同位素分析方法 第23部分:硅酸盐和氧化物矿物 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.13-1997)DZ/T 0184.24-2024地质样品同位素分析方法 第24部分:水和非含氧矿物包裹体水 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.20-1997)DZ/T 0184.25-2024地质样品同位素分析方法 第25部分:天然水 氧同位素组成测定 二氧化碳-水平衡法(代替DZ/T 0184.21—1997)DZ/T 0184.26-2024地质样品同位素分析方法 第26部分:水 氧同位素组成测定 连续流水平衡法DZ/T 0184.27-2024地质样品同位素分析方法 第27部分:碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法DZ/T 0184.28-2024地质样品同位素分析方法 第28部分:碳酸盐岩和矿物 碳氧同位素组成测定 磷酸法(代替DZ/T 0184.17-1997)DZ/T 0184.29-2024地质样品同位素分析方法 第29部分:微量碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法(代替DZ/T 0184.18-1997)DZ/T 0184.30-2024地质样品同位素分析方法 第30部分:水中溶解无机碳 碳同位素组成测定 连续流磷酸法DZ/T 0184.31-2024地质样品同位素分析方法 第31部分:水中颗粒有机碳 碳同位素组成测定 连续流燃烧法DZ/T 0184.32-2024地质样品同位素分析方法 第32部分:水中溶解有机碳 碳同位素组成测定 燃烧法DZ/T 0184.33-2024地质样品同位素分析方法 第33部分:天然气单体烃 碳同位素组成测定 连续流燃烧法DZ/T 0184.34-2024地质样品同位素分析方法 第34部分:水和含氢矿物 氢同位素组成测定 锌还原法(代替DZ/T 0184.19-1997)DZ/T 0184.35-2024地质样品同位素分析方法 第35部分:水 氢同位素组成测定 连续流水平衡法DZ/T 0184.36-2024地质样品同位素分析方法 第36部分:水 氢氧同位素组成测定 激光光谱法DZ/T 0184.37-2024地质样品同位素分析方法 第37部分:富硼矿物 微区原位硼同位素组成测定 激光剥蚀-多接收电感耦合等离子体质谱法
  • 迎难而上!碳酸钙粉体标样制定工作正式启动
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2019年10月17日,碳酸钙粉体标样启动仪式于IPB2019的“三新”峰会期间隆重举行。仪式由广东省建筑材料行业协会碳酸钙镁分会秘书长刘平主持,马尔文帕纳科中国区总经理梁东,新帕泰克中国区首席代表耿建芳,珠海欧美克销售总监吴汉平、售后服务经理黄俊峰,江西广源化工有限责任公司研发中心主任张晓明等参与了启动仪式的座谈。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/d3554021-ef86-469d-822a-bc9cef8e8882.jpg" title=" IMG_4564.JPG" alt=" IMG_4564.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 广东省建筑材料行业协会碳酸钙镁分会秘书长刘平 /strong /p p style=" text-align: justify text-indent: 2em " 粉体的标样至关重要,本次会议拟正式启动制定工作的《碳酸钙粉体标样》由广东省建筑材料行业协会碳酸钙镁分会、中山大学化学学院作为主制单位,目前的参制单位除了上述的马尔文帕纳科、珠海欧美克、新帕泰克、江西广源外,还有广西汇宾钙业有限责任公司、江西奥特科技(集团)有限公司、耐驰(上海)机械仪器有限公司、东莞市五全机械有限公司等。 /p p style=" text-align: justify text-indent: 2em " 我国的碳酸钙行业一直存在着方法混乱、标准不统一等不足,有鉴于此,广东省建筑材料行业协会碳酸钙镁分会此前已完成纳米碳酸钙和重质碳酸钙的团体标准的制定,并且已经对外公示。为了进一步推动碳酸钙行业高质量、规范化地发展,拟于近日正式启动《碳酸钙粉体标样》的制定工作。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 822px " src=" https://img1.17img.cn/17img/images/201910/uepic/bce859bd-2208-4c44-8916-314ed2f84cf3.jpg" title=" initpintu_副本.jpg" alt=" initpintu_副本.jpg" width=" 600" height=" 822" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 座谈中,几位专家就碳酸钙标样制定的重要性、上下游一致性、供需点、切入点等问题进行了深入探讨,并对标养制定过程中可能遇到的困难与需求展开交流,并给予了建设性建议。 /p p style=" text-align: justify text-indent: 2em " 刘平强调,基于目前中国碳酸钙行业管理、申报机制的繁复性、碳酸钙原料来源及加工检测设备的复杂性,碳酸钙粉体标样的制定工作难度很大。但是难度大重要性更大,主制单位将在上下游企业和高等院校等多方资源的大力支持下,坚定地致力于实现这一目标,为满足时下国内碳酸钙精细化发展的需要,为我国的碳酸钙行业的前进与发展做出贡献。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 324px " src=" https://img1.17img.cn/17img/images/201910/uepic/0e5e9d10-0d5a-4862-8606-e58d4159fa86.jpg" title=" IMG_4597_看图王(1).JPG" alt=" IMG_4597_看图王(1).JPG" width=" 600" height=" 324" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 随着参会专家合影的定格,碳酸钙粉体标样制定工作正式启动。据了解,标样制定组将于2019年11月中旬召开第一次研讨会议。后续也将继续招纳碳酸钙产业链上的重要企业参与到标样的制作工作中来,群策群力,促进工作的全方位考量和全面落实。 /p
  • 胜利油田:扫描电镜分析技术助力页岩油勘探开发
    镜头拉近… … 拉近… … 再拉近,镜头前的物体逐渐清晰。  这不是某位导演在拍大片,是中国石化胜利油田地质科研人员拍的一幅“大片”。10万倍的电镜镜头下,原本平整一体的岩石样本,内部结构一览无余地展现出来,白色的是碳酸盐岩,黑色的是泥岩,中间夹杂有很多孔隙裂缝,细如发丝,地质人员日思夜想的石油就在这里。  从设备中拿出1厘米见方的样品,胜利油田勘探开发研究院地层古生物实验室经理王伟庆开始了揭秘:“别看只有小拇指尖那么大,可是经过扫描电镜数万倍的放大,就是一个浩瀚的‘宇宙’了。”  刚刚看到的图像,只是这块样品上几十平方微米的面积。  2021年,胜利油田页岩油勘探开发取得突破,首批上报预测石油地质储量4.58亿吨,首先得益于地质科研人员在基础研究上的突破。  一根头发丝的直径一般在0.03毫米左右。胜利油田的页岩油就蕴藏在这头发丝般甚至还细小的孔缝中。科研人员就是从比头发丝还细的孔隙里找到了页岩油的“蜗居”之地。  说起来轻松,做起来却着实不易。地层古生物实验室扫描电镜工作人员于杰杰介绍,样品中看到的这个部分,就如同在一个足球场内寻找一个乒乓球。要找到这个“乒乓球”,首先要制作出合格的样品。  扫描电镜对岩石样本要求非常高,页岩取心难度很大,层多且薄又易碎,手工处理样品要格外掌握好力度、技巧。将页岩手工制作成1厘米见方的小块,再用砂纸反复打磨,直到普通显微镜下看到切面平滑了,再用氩离子抛光仪继续打磨。这个过程可能要重复几十次,直到达到镜面效果了,才能用扫描电镜进行观察。  扫描电镜可以聚焦到纳米级,非常直观地反映出页岩油的储集空间、成分特征、矿物架构等。  一张有典型意义的图片,犹如毛细血管图似的,展现出页岩油孔隙,通常需要从上百甚至上千张图片中挑选出来。这就更需要科研人员有的放矢地快速锁定目标。  勘探开发研究院地层室科研人员通过关键技术攻关,优化试验参数工序,创新工作流程,聚焦提升电镜分析质量,突破了含油样品低真空观察、氩离子抛光高精度成像、背散射样品成分精细识别等技术难关,掌握了非常规样品电镜分析方法,为油田非常规储层评价提供了关键信息,助推了油田页岩油、致密油勘探突破。  纳米尺度的电镜图像成为打开非常规储层微观世界的“金钥匙”。凭借过硬的分析技术及分析质量,勘探开发研究院制定了页岩油电镜分析行业标准,成为行业标杆及排头兵。  除了页岩油之外,扫描电镜分析技术还在如何识别致密砂岩里的好储层、如何避免油气层伤害和改造低产储层等领域,扮演了研究工作“利器”的角色。  据悉,勘探开发研究院将开发精度更高的聚焦离子束扫描电镜分析技术,模拟和寻找页岩油的流动和路径。届时,足球场上的玻璃弹珠也不再难寻,非常规储层里的原油如何从地层中流出来等难题也会有新的答案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制