当前位置: 仪器信息网 > 行业主题 > >

酸性农残氯丙铜苯

仪器信息网酸性农残氯丙铜苯专题为您整合酸性农残氯丙铜苯相关的最新文章,在酸性农残氯丙铜苯专题,您不仅可以免费浏览酸性农残氯丙铜苯的资讯, 同时您还可以浏览酸性农残氯丙铜苯的相关资料、解决方案,参与社区酸性农残氯丙铜苯话题讨论。

酸性农残氯丙铜苯相关的资讯

  • 中药农残分析之“QuEChERS”(中):原理应用
    QuEChERS的原理  3.1 QuEChERS方法原理  QuEChERS原理与高效液相色谱和固相萃取相似,都是利用吸附剂填料与样品基质中的杂质相互作用,吸附杂质从而达到除杂净化的目的。均质后的样品经乙腈(或酸化乙腈提取后,采用萃取盐盐析分层后,利用基质分散萃取机理,采用PSA或其它吸附剂与基质中绝大部分干扰物(有机酸、脂肪酸、碳水化合物等)结合,通过离心方式去除,从而达到净化的目的。  QuEChERS方法的步骤可以简单归纳为:  (1)样品粉碎   (2)单一溶剂乙腈提取分离   (3)加入MgSO4 等盐类除水   (4)加入乙二胺-N-丙基硅烷(PSA)等吸附剂除杂   (5)上清液进行GC-MS、LC-MS 检测(图6)。  注:对高色素含量的样品,可采用PSA/C18/石墨化炭黑净化管进行净化。  图6 QuEChERS方法的主要步骤  3.2 提取液的选择  食品中农药残留检测前处理常用的提取剂有丙酮、乙酸乙酯、乙腈等,QuEChERS 法最初的研究对象是针对水果、蔬菜等含水量较高的农产品,丙酮虽然可以从样品中很好地提取出残留农药,但是其水溶性过强,很难与基质中的水分分开,从而提高了分离难度且影响试验结果 乙酸乙酯只能部分和水互溶,较易分离,但其对于强极性农药无法从含水基质中萃取完全,因而也不是合适的选择。乙腈相对于乙酸乙酯和丙酮可以对水果、蔬菜样品中的农药有更强的选择性,不易提取出多余的杂质,且可以通过盐析较易与基质中的水分分离,所以该方法最终选择乙腈作为最合适的提取剂。实验数据表明,在回收率方面,对于非极性农药来说,乙腈与乙酸乙酯没有明显的区别,但是乙腈可以提供更稳定的结果,相对标准偏差(RSD)值更小 对于极性农药(拒嗪酮、甲胺磷、乙酰甲胺磷等)来说,乙腈的提取效率要高很多。  3.3 QuEChERS方法中常用的吸附净化剂  表1 QuEChERS方法中常用的吸附净化剂及其作用  目前报道的QuEChERS方法中使用的填料通常包括PSA(乙二胺基-N-丙基)、C18、无水MgSO4和GCB(石墨化炭黑)等,MgSO4常被用作含水分样品的基础除水剂,PSA通过胺基的弱离子交换作用和极性基质成分形成氢键,从而吸附和消除样品基质中的糖类、色素以及脂肪酸。GCB对杂质有强烈的吸附作用,但同时对非极性农药和具有平面结构的物质也有一定的吸附作用,二者结合能够对样品中不同类型的杂质起到好的吸附作用,所以吸附剂的选择和用量是净化步骤的重点(表1)。  C18是目前使用最多的一种吸附剂,对非极性化合物有较强吸附作用,常被用来去除极性溶液中的非极性化合物,对于中药基质来说,C18主要用于去除共萃物中的非极性组分,如油脂等。弗罗里硅土主要成分是硅酸镁,属于极性吸附剂,适用于从非极性的溶液中萃取极性化合物(如胺类、羟基类及含杂原子或杂环化合物),主要用于有机氯和拟除虫菊酯类农药的前处理净化。硅胶为非键合的活性硅土,是最强的极性吸附剂,将目标化合物溶在非极性溶剂中,通过增强四氢呋喃或乙酸乙酯来逐渐增加溶剂的极性,将目标物与干扰物分开。石墨化炭是将炭黑在惰性条件下加热到2700-3000度而制成,表面是六个碳原子构成的平面六角形,这种结构对于平面芳香环结构以及具有六元环结构的分子具有很强的选择性,石墨化炭属于疏水性填料,其结构特点是石墨化炭吸附剂既适用于萃取非极性至中等极性的化合物,也可用于对极性化合物的萃取。在中药材样品中的应用主要是除去叶类或全草类中药中的色素。对于复杂样品,仅采用一种填料的净化方式并不能达到理想净化效果,常需要含有不同吸附剂的组合净化。  3.4 针对不同极性农药QuEChERS方法吸附剂的选择[4]  酸性农药(如2,4-D、灭草松等)会和氨基型吸附剂(如NH2、PSA等)发生结合而导致回收率降低,因此,对于分析含有这类目标化合物时,最好的分析方法是跳过分散基质萃取步骤直接进LC-MS/MS分析,可采用尼卡巴嗪作为内标。  由于石墨化碳对于片状化合物的特殊选择性,使用石墨化碳黑时可能也导致片状农药(百菌清、克菌丹等)的回收率降低,可以考虑通过在萃取液中加入甲苯来提高该类农药的回收率(乙腈/甲苯比率一般为3:1)。另外部分样品如鳄梨、花生、橄榄油等含有较多的脂肪,由于脂肪在乙腈中的溶解度有限,所以会导致部分脂溶性好的农药(如六氯苯、DDT等)的回收降低,因此可选择两种方式进行处理:(1)将萃取液或净化后样品放入冰箱冷冻1h以上(或冷冻过夜) (2)反相吸附剂吸附去除:在萃取液中加入C18或C8吸附剂,吸附去除脂肪。  经典QuEChERS方法对酸或碱敏感的农药的萃取效率较低,当样品的基质环境在pH值在5-5.5,这类农药可以获得一个更稳定的结果。因此,可采用了乙酸钠和柠檬酸缓冲盐体系来保证样品基质环境的pH值5-5.5,这样既可以保证碱不稳定的农药(如克菌丹、灭菌丹和对甲抑菌灵等的回收,也可以保证酸不稳定的农药等的回收。而对于一些基本身基质质非常酸的样品(pH  (1)GC-MS/MS方法采用溶剂置换避免了乙腈对气相色谱柱和检测器的损伤,无需LVI上样   (2)结合了EN和AOAC的优势,蔬菜水果用EN方法结果更准确 谷物、茶叶等用AOAC方法净化效果更好   (3)使用空白基质做标准曲线,结果更准确   (4)使用陶瓷均质子,混匀效果更好   (5)对于颜色较深的蔬菜水果,建议增大GCB的含量。 图7 GB 23200.113-2018方法    图8 GB 23200.121-2021方法  这两个标准将QuEChERS方法的全面引入,一个样品使用同一个前处理方法即可同时用于GC-MS/MS和LC-MS/MS检测,大大简化了前处理过程,缩短前处理时间,提高了国标方法的适用性和检测效率。GC-MS/MS标准中包含有机磷、有机氯、菊酯、三唑类、酰胺类、三嗪类、苯氧羧酸类、氨基甲酸酯类等208种农药,LC-MS/MS标准中包含剧毒禁用有机磷及氨基甲酸酯类农药,又涉及到常用销量大农药品种如三唑类杀菌剂及苯甲酰脲类杀虫剂等375种农药,其中重合的农药有118种,两个标准共包含465种农药。因此,仅需两针进样即可完成GB 2763-2019《食品安全国家标准 食品中农药最大残留限量》中规定的大多数农药残留品种测定(图9)。    图9 GB 23200.113-2018和GB 23200.121-2021对比  由于中药材基质的复杂性,样品经提取后不仅将残留的农药提取出来,样品基质的相关成分如油脂、色素、糖分、蛋白质、有机酸等也会一同提取出来,这些共萃物会严重污染仪器的色谱系统,影响待测物的离子化效果,进而干扰检测结果。  与食品/农产品相比,中药材与天然药物的农药残留分析具有以下特征[2]:  (1)中药资源广泛,种类繁多,大部分样品还需经过复杂多样的炮制过程,给农药残留测定带来更多的不确定因素   (2)中药材与天然药物所含次生代谢产物较多,种类又复杂多样,有的次生代谢物的含量还会远高于农药残留的水平,这个中药材与天然药物的农药残留测定带来较大挑战   (3)中药材与天然药物的服用人群为身体患有疾病或体质较为虚弱的人,相较食品而言,中药材与天然药物对农药最大残留限量的要求会更严格   (4)长期以来,中药材多为小农户生产,缺乏统一科学的植物保护指导,造成中药材与天然药物施用农药较为混乱,施用种类无法有效统计,这就对中药材与天然药物中农药残留测定的种类提出了更高的要求。综上所述,中药农残分析对前处理技术提出了更高的要求。  表2 2020年版《中国药典》中药材农残前处理方式的对比  2020年6月,《中国药典》2020年版正式出版,33种禁用农药正式列入2020年版《中国药典》四部通则《0212药材和饮片检定通则》。2020版药典在四部通则《2341农药残留量测定法》中新增了“第五法 药材及饮片(植物类)中禁用农药多残留测定法”。考虑到中药材基质的复杂性, QuEChERS作为可供选择的三种前处理方法之一被正式列入,除此之外还有直接提取法和固相萃取净化法(表2)。  药典中QuEChERS方法其主要步骤如图10所示,特点主要为:  (1)因为兼顾GC-MS/MS和LC-MS/MS分析,没有对上机液中乙腈进行溶剂置换,会对GC-MS/MS色谱柱造成损害,影响使用寿命,最好能配合PVT-LVI进样系统使用   (2)使用了酸性乙腈提取,部分农药对酸敏感,pH=5的提取液条件下,几天内会发生分解,处理完后需尽快上机测定   (3)使用空白基质做标准曲线,结果更准确   (4)方法提取步骤中没有提及使用陶瓷均质子,因此前面样品均质时需均质充分   (5)使用了C18和硅胶填料,对样品中脂肪和糖类有较好去除效果。  图10 2020年版《中国药典》2341通则QuEChERS法
  • 矿物油、氯丙醇酯和缩水甘油酯、真菌毒素、农残检测要点一网打尽!
    为了促进粮油行业分析测技术交流,研讨国内外最新研究应用进展,仪器信息网在8月1-2日举办第三届“粮油食品质量安全及品质检测新技术”主题网络研讨会。我们特别邀请了行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。会议紧密关注时事热点和技术市场动态,于8月1日聚焦粮油质量安全检测技术,深入探讨了粮油中矿物油、氯丙醇酯、缩水甘油酯、真菌毒素和农药残留等关键议题,进行了精彩的技术交流。8月2日会议针对近两年来备受关注的粮油品质检测技术,特邀国内顶尖研究专家,分别就食品多组学技术在粮油研究中的应用、橄榄油中生物酚精确定量技术难题、纯油体系中抗氧化剂界面活性研究等多个领域进行了深入研讨。点击图片 免费回看01矿物油检测武彦文老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。02氯丙醇酯和缩水甘油酯检测氯丙醇酯以及缩水甘油酯在消化过程中会水解并高效释出游离氯丙醇和缩水甘油。氯丙醇酯水解产物3-MCPD是公认的食品污染物,具有潜在的致癌性、神经毒性、免疫毒性、遗传毒性和生殖毒性;缩水甘油酯降解产物缩水甘油同样具有致癌风险。GB 5009.191-2024《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》将替代原有的GB 5009.191-2016标准并在8月8如正式实施。值得注意的是,新标准中新增了气相色谱-三重四极杆质谱(GC-MS/MS)的检测方法,并且首次将缩水甘油酯纳入检测范围,标志着我国食品安全检测技术的进一步提升。张鸿老师向听众深入解析了标准中提及的三种检测方法,并逐一阐述了每种方法的独特优势和应用特点。“食品5009”标准作为中国的一套食品卫生检验方法标准,是保障食品安全的重要手段之一。该标准涵盖了多种食品卫生检验方法,包括食品中各种成分的测定方法,以及食品接触材料的环保测试等。在这样的背景下,仪器信息网特别策划了“2024年食品检测标准全面解读——GB 5009系列”主题约稿,诚邀各位专家和仪器厂商踊跃投稿,共同探讨和分享食品及农产品行业分析检测技术的最新研究与应用。03真菌毒素检测真菌毒素是真菌在适宜环境条件下产生的次级代谢产物,在农作物、食品、饲料及中药中污染较为普遍。真菌毒素是天然存在而非人为添加的,尽管污染量小,但危害性大。在适宜的环境因素(如温度、湿度)条件下,食品可以直接感染真菌并被其产生的毒素污染,且这种污染可以发生在食品链的任何阶段如生产、加工处理、运输和储藏过程等。据联合国粮农组织(FAO)统计,全球每年有25%的食品会受到不同程度的真菌毒素污染。许多真菌毒素还可在体内积累后产生致癌、致畸、致突变和免疫毒性,这些均对人和动物的生命与健康造成重大威胁。我国食品安全限量标准《食品安全国家标准 食品中真菌毒素限量》(GB 2761-2017)中规定了6种真菌毒素在不同类别食品中的限量值。董恒涛老师介绍了岛津LC-MS/MS生物毒素数据库,包含了谷物、水果、水产品中常见的100余种生物毒素的化合物信息、MRM参数、分析方法及操作指南,帮助用户快速建立分析各种毒素的方法。同时董老师还分享了多个LC-MS/MS法测定真菌毒素的应用案例。黄曲霉毒素B1是真菌毒素中的一种,也是国际卫生组织认定的一类致癌物。耿旭辉老师介绍了以紫外LED替代氙灯为光源(寿命是氙灯的6~7倍),自研制基于光电二极管(PD)的微光探测器替代光电倍增管(PMT)探测荧光,设计“紧贴式”荧光光路和首创的微池光衍生化器,研制出我国首套黄曲霉毒素荧光检测器,对黄曲霉毒素B1检测限2.4 ng/L,灵敏度比国际同类仪器高数倍。微光探测器已出口美国,经中国仪器仪表学会成果鉴定为动态范围和长期稳定性达国际领先水平。黄曲霉毒素荧光检测器已在中粮集团、美国Agilent公司等多家权威机构长期应用示范,经中国仪器仪表学会分析仪器分会成果鉴定为填补国内空白、性能达国际领先水平。04农药残留检测在粮谷种植过程中合理使用农药能够防治病虫害、清除杂草,保障粮食的产量和质量。不合理使用农药可能导致终端产品中存在农药残留,带有农残的粮食进入食物链后,可能会对人体健康造成潜在风险。为共同提升粮谷中农残检测的技术水平,确保食品安全,王李平老师介绍了粮谷中农药的作用、各种农药残留的限量要求和检测方法、相关农产品检测技术及注意事项和有效的质量控制措施等内容。《食品安全国家标准 食品中农药最大残留限量》 (GB 2763) 是目前我国统一规定食品中农药最大残留限量 (MRLs) 的强制性国家标准。2022 年 11 月 11 日, 国家卫生健康委员会、农业农村部和国家市场监督管理总局联合发布《食品安全国家标准食品中 2, 4-滴丁酸钠盐等112 种农药最大残留限量》 (GB 2763. 1-2022) 标准, 自 2023 年 5 月 11 日起正式实施。GB 2763. 1-2022是GB 2763-2021的 增补版,可以配套使用。近日,农业农村部 公布 了 《食品中2甲4氯异辛酯等83种农药最大残留限量(征求意见稿)》和《动物源产品中胺苯吡菌酮等57种农药最大残留限量(征求意见稿)》实施后也将于GB 2763配套使用。
  • 中药农残分析之“QuEChERS”(上):发展简史
    1.前言  样品前处理对分析检测实验员来说是至关重要的一环,是样品检测中耗时最长、工作量最大的部分,前处理质量的好坏直接决定着分析的准确性和精密度。据统计,检测分析的误差近50%来源于样品的准备和处理,而真正来源于分析的还不到30%,而且大部分样品前处理所占用的工作量超过整个分析的70% [1]。如何面对越来越复杂的样品基质进行痕量分析及其样品前处理已成为检测分析业界一个大的挑战,也是目前分析测试工作的瓶颈和国内外研究的薄弱环节。在保障检测结果准确的前提下追求更快速,更高效的前处理技术具有十分重要的意义。  一个理想的样品前处理方法应该符合以下条件[2]:(1)能够选择性地将目标化合物从样品基质中提取出来,而共提取的干扰物少 (2)通过提取净化得到的目标化合物应该保持原有的基本特征,不能产生降解,分解等现象 (3)方法的重现性好,回收率满足要求 (4)方法简便,易于操作,能够满足快速响应及高通量样品分析的需求 (5)自动化程度高,这也是样品前处理技术发展的趋势之一。  农药的大量使用而导致的污染危害问题已越来越严重,有关研究已引起世界各国广泛关注。在全球范围内,每年大约有超过2000种食品样品用作农药残留分析,农药残留分析是一项复杂的痕量分析技术。近年来,人们越来越重视农药残留问题,也愈发追求更快速、更高效的农药残留检测手段。QuEChERS方法由于具有快速、简单、廉价、有效、可靠、安全的特点成为一种备受关注的农残分析样品前处理技术。  2.QuEChERS 发展史  图1 QuEChERS 方法的两位发明者  QuEChERS的名字取自快速(Quick)、简单(Easy)、便宜(Cheap)、高效(Effective)、耐用(Rugged)和安全(Safe)六个单词的首字母。它是一种用于高湿度样品中多农药残留分析的样品制备和净化技术。Michelangelo Anastassiades(图1右)于2001-2002在美国宾夕法尼亚州温德摩尔的USDA/ARS-ERRC博士后访问期间,参与Steven Lehotay(图1左)的研究小组时开发了QuEChERS方法。最初,该方法是为分析动物组织中兽药(驱虫剂和甲状腺素)而开发的,但意外发现,QuEChERS方法提取极性化合物,特别是碱性化合物方面的潜力后,在植物中的农药残留分析测试中取得了巨大成功。于2002年6月在罗马举行的EPRW 2002年会议上首次提出(QuEChERS)的农药残留测定方法。传统的样品前处理技术经历了液固萃取、液液萃取、固相萃取几个阶段。QuEChERS方法一经问世,其在食品中的农药分析领域里就引起了人们的广泛关注。与以往费时费力的农残前处理方法相比,QuEChERS将几步实验步骤合为一步,大大提高了实验工作效率同时显著降低了试剂消耗。  图2 AOAC.2007与EN 15662的区别  为了拓宽所能应用的极性农药的范围和提高某些种类农药的回收率,QuEChERS方法自出现以来也经历了许多改进。2007年,Steven Lehotay 编写了AOAC.2007,美国农业部通用标准。2008年,Michelangelo Anastassiades 回到欧洲,并于2008年发表了EN 15662,即现行的欧盟标准。虽然都是有初始的方法发明者参与,但由于国情及理念上的差异,欧美的两个标准之间有一定的区别(图2),主要体现在四个方面[3]:(1)AOAC方法萃取液用1%乙酸乙腈,较EN方法复杂 (2)AOAC方法对于含色素的样品,GCB含量较高,对于平面结构的农药回收率影响较大 (3)AOAC方法中C18含量较多,对于谷物、坚果类净化效果更好 (4)AOAC方法中填料量较EN方法多,价格相对更高。当然,目前AOAC也倾向于去开发一个通用的QuEChERS方法。  因此现在,QuEChERS有三个标准方法版本:最初的(图3)、AOAC官方方法2007.01(图4)、CEN标准方法EN15662(图5),除此之外还有许多差不多的改良方法。伴随着高通量、高灵敏度、高选择性的液相色谱-质谱、气相色谱-质谱技术的发展,近年来QuEChERS技术的应用更是得到了长足的发展。现在QuEChERS已经成为了全球检测水果、蔬菜中农残时的标准样品处理方法。除此以外,其应用也涉及到越来越多的不同领域,比如肉类、血液样品、酒、甚至土壤中抗生素、药物、滥用药、还有其他污染物的检测。只要是待测目标物的回收率满足需求,而且去除杂质的基质背景满足检测的需求,都可以采用该方法来净化。该方法的优点具有高回收率、准确的测定结果、高样品通量以及低的无氯溶剂使用量。这些可以减少试剂的成本,以及实验人员接触有害溶剂的可能性。另外,玻璃器皿的使用和劳动成本也会降低,这是因为该方法所需要的样品量更小,因此无需太大的实验空间和大量的有机溶剂。宽泛的应用范围以及操作的简易性使得该方法成为残留物分析的首选方法之一。    图3 QuEChERS 早期方法版本图4 QuEChERS 方法AOAC.2007版本  AOAC.2007版本的特点[3]:  (1) 脂含量1%的样品,加入与PSA等量的C18   (2) 没有平面结构农药(噻苯达唑、特丁硫磷、五氯硝基苯、六氯苯等)时,可使用与PSA等量的GCB   (3) 有大体积进样(LVI)系统的GC-MS/MS,可直接乙腈进样,没有的建议用甲苯复溶。  图5 QuEChERS 方法EN15662版本  EN15662版本的特点[3]:  (1) 对于含水量80%的样品,需加入足够的冷水,使水的总量约为10g   (2) GCB的作用是去除类胡萝卜素和叶绿素,对于一些非平面结构的色素无法去除   (3) 对于脂质含量丰富的样品,可在提取后取8mL提取液在冰箱中放置一段时间,再取6mL净化   (4) 含果核的样品,测试时应将果核去除,最终计算时应将果核计算在内   (5) 部分农药(如克菌丹、灭菌丹、抑菌灵、对甲抑菌灵、哒草特、灭虫威砜、百菌清等)对碱敏感,PSA的加入会导致其不稳定,在几天内分解   (6) 部分农药(如吡蚜酮、二恶唑、硫双威等)对酸敏感,pH=5的提取液条件下,几天内会发生分解   (7) 部分农药(如磺酰脲、丁硫克百威、丙硫克百威)对酸非常敏感,不能用酸性缓冲体系提取   (8) 丁硫克百威和丙硫克百威在酸性条件下会降解为克百威,因此在酸性提取条件下检出克百威,需要调整提取条件重新测定。
  • 水质中有机氯农药和氯苯类化合物测定的前处理方案
    有机氯农药是用于防治植物病、虫害的组成成分中含有有机氯元素的有机化合物。具有成本低,效率高,杀虫谱广等特点,使用最早、应用最广的杀虫剂有DDT、六六六,三氯杀螨醇、七氯、艾氏剂等。这一类农药性质稳定,难于降解,积存在动、植物体内的有机氯农药分子消失缓慢,其通过地表径流、喷洒残留、渗透或残留在粮食作物上而逃逸到环境中,包括我们赖以生存的水环境,而后经过生物富集和食物链的作用,最后进入人体,在肝、肾、心脏等组织中蓄积,影响人类健康。 尽管有机氯类农药在我国已经禁用多年,但是目前的水环境中还是存在着不同程度的污染。参考:HJ-699-2014 《水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》Detelogy推出水质中有机氯农药和氯苯类化合物测定的高效智能前处理方案。实验步骤取样:量取100.0mL水样,加入20.0μL替代物标准溶液(四氯间二甲苯、十氯联苯),用MultiVortex多样品涡旋混合器混匀。液液萃取:加入10g氯化钠(用于破乳,若样品含盐量较高,可适当减少用量),振荡至完全溶解后,加入15mL正己烷,剧烈振荡15min(注意放气),静置15min分层;再重复萃取一次,合并萃取液待干燥。干燥:将无水硫酸钠干燥柱固定于iSPE-864全自动智能固相萃取仪中,将上述洗脱液以2mL/min的速率过干燥柱进行干燥,少量正己烷洗涤洗脱液盛装器皿,一并过无水硫酸钠干燥柱,收集滤液于浓缩管中,用FV32Plus全自动高通量智能平行浓缩仪浓缩至近干(水浴温度设置为45℃以下),正己烷定容3mL。净化:将弗罗里硅土固相萃取小柱置于iSPE-864全自动智能固相萃取仪按下述条件净化。注:1、上样前需保证整个活化过程萃取柱是湿润的,否则需重新活化。 2、对于较为干净的地下水、地表水、海水样品,可以省略净化步骤。浓缩定容:将洗脱液置于FV32Plus全自动高通量智能平行浓缩仪浓缩至小于1mL,加入5.0μL内标使用液,用正己烷定容至1.0mL,用MultiVortex多样品涡旋混合器混匀,移入自动进样小瓶,待测。实验方案中涉及到的仪器MultiVortex多样品涡旋混合器▣ 高通量,兼容多种规格样品管,包括玻璃试管。▣ 底盘低重心设计,噪声小,动力强劲,最高转速可达3000rpm。▣ 可预设多个方法,每个方法可设6段自动变速,方便随时调用。iSPE-864全自动智能固相萃取仪▣ 8通道,连续批量处理64个样品。▣ 自动完成活化、上样、淋洗、氮吹、洗脱等全流程。▣ 柱塞杆密封过柱技术,有效避免失速和堵柱。▣ 智能溶剂管理系统,废液分类收集,省时环保。▣ 标配氮气吹扫功能,氮吹压力和时长可自由设定。▣ 智能控制终端和主机一体化设计,节省实验空间。FV32Plus全自动高通量智能平行浓缩仪▣ 可同时处理32位样品,兼容2-80mL多规格样品管。▣ 兼容针追随式氮吹和涡旋式氮吹,多路供气保障平行性。▣ 各通道独立控制,可自动定容至1.0mL、0.5mL或近干状态。▣ 三面水浴可视窗具备声光提醒功能,标配智能快插排水口。▣ 13.3寸超大彩色触屏控制,保存多种预设方法随时调用。
  • 中药农残分析之“QuEChERS”(下):注意事项
    QuEChERs应用中的注意事项 图11 样品均质在QuEChERS方法中的重要性  样品的采集以及均质化是QuEChERS的步骤中密不可分的一环,样品良好的均质步骤有利于得到更小的样品颗粒大小,从而保障之后的振动萃取的效率。因此,QuEChERS方法发明者之一的 Anastassiades教授曾在一次采访中说道:“In this regard, the $5000 chopper used for sample comminution is more important than the $300000+ worth of LC–MS and GC–MS instruments used for analyses.”他表示,对于QuEChERS来说,一台好的研磨机的价值远高于30万美元的LC-MS/GC-MS(图11)。由此可以看出,良好的样品均质对于QuEChERS方法良好结果的重要性。  农药残留分析实验室现在面临着样品量越来越多的问题,QuEChERS过程的自动化也渐渐显得重要,在通常的实验中,QuEChERS仍然主要是人手操作的,包括手摇萃取和样品操作。目前市面上也出现了一些使用机械臂操作,电脑控制的全自动QuEChERS样品处理工作站,宣称可以实验人员从日常重复而繁重的操作中解放出来。但是这些全自动设备在实验室日常检测中使用的实际效果如何?Anastassiades和Lehotay认为,QuEChERS面临的问题不是使其更快更简单,而是使其更便捷,完全的自动化往往会使样品处理更花时间和精力,甚至还有更高的花费,但是如果能让实验室的分析人员中不重复操作震摇这个步骤,将是一个非常美好的事情。因为,QuEChERS实验操作过程中的手摇萃取过程对大多数的实验室化学分析人员来说是一个头疼的问题,而且不同人员之间的震摇力度也有较大差异,最终导致结果重现性变差。虽然在大部分的情况下,1min的萃取时间已经足够,但是在某些情况下,延长萃取时间会显著提高萃取的回收率。对于一些农残已经扩散到样品蜡质层结构的样品,普通的手摇萃取是无法取得满意的萃取回收率,就需要更长的萃取时间和更强的震摇力度才能让被包裹的农残目标物浸泡出来得以被提取,这个时候,自动化的震摇装置就显得尤为必要。因此,在QuEChERS的萃取过程中能有一台自动化的强力震摇机将会是实验人员的一个好帮手。  在QuEChERS方法开始的乙腈萃取中,当加入无水硫酸镁时,会产生一定的热量,这可能会带来正反两方面作用。在某种程度上,热量能提高萃取速度和萃取效率,但是另一方面,热量太多时可能会导致一些热不稳定或者易挥发农残的损失。大量的实验数据表明,实验过程中的热量对少数农药造成潜在的降解的机率是非常小的,主要原因在于酸性的提取试剂有助于这些农药保持稳定,此外,如果样品在萃取前放在冷藏环境适当降温或者放在冰水浴环境中进行提取,萃取过后温度反而是非常适中的。  QuEChERS方法适用的农药种类目前已经拓展到了400多种,从目前已有的数据看,除了具有平面结构的农药会被石墨化炭黑在分散基质萃取中强烈吸附而导致回收率偏低,还有一些农药(比如草甘膦及其代谢物氨基甲磷酸、百草枯、乙烯利、乙磷酸、马来酰肼等)也不能用QuEChERS方法提取。  2020年版《中国药典》中共列入了三种前处理方法,分别为直接提取法、QuEChERS法和固相萃取(SPE)法。相对于其它两种方法,SPE法能更有效的去除杂质,但是也会降低某些极性农药的回收,同时操作上更繁琐、实验成本更高。Anastassiades和Lehotay认为,在农残的检测上,大量的实验数据表明,QuEChERS法中的分散基质萃取步骤相对于SPE的化学过滤净化方式能提供更高的回收率,而且操作更快、更简单也更便宜 由于QuEChERS法操作步骤和所需使用的设备更少,不同实验室人员结果之间的重现性也更好。图12 样品中影响回收率的基质干扰物  QuEChERS方法中起净化作用的核心就是吸附剂填料,因此制备高效的吸附剂或者搭配吸附剂组合配比是提高方法净化效果和提高回收率的关键。理想状态下完美的吸附剂应该只去除样品提取液中的杂质而不对目标物造成损失。在食品/农产品样品中,对色谱/质谱分析产生干扰的杂质包括脂肪、碳水化合物、蛋白质、水和少量的金属成分,维生素以及其它一些天然成分。QuEChERS方法中的选择性提取步骤会除去部分杂质(脂肪、水、蛋白质、糖分)(图12),再结合后续的基质分散萃取步骤可以通过吸附剂的吸附进一步降低残留杂质(如脂肪和其它酸性物质、叶绿素、花青素等色素、甾醇类物质、水等)。Anastassiades和Lehotay认为,每毫升提取物加入150mg硫酸镁、50-150mgPSA、50mgC18和7.5mgGCB进行萃取是目前所知对于食品中农残分析的最佳的分散基质萃取方案,可在很广的浓度范围内提供高的回收率。目前一些改进的QuEChERS方法,使用了一些其他吸附剂,或者改变吸附剂用量,调整提取液pH或溶剂组成,用正己烷除脂,这些步骤可能会使的杂质去除得更好,但是会降低农残的回收率。分子印记技术(MIPs)能针对性地去除某类杂质成分,在不降低被测物回收的前提下,该类填料的使用会是一个很好的补充。  QuEChERS方法结合质谱使用时往往会遇到基质干扰(文章标题《一文读懂:农残分析基质效应之“液相色谱-质谱(LC-MS)篇”》)。就农残分析而言,一些简单的食品/农产品样品不会出现基质干扰(某些干燥的、有油脂的样品除外) 但是对于一些复杂样品来说(比如茶叶、中药材、香料、动物内脏、柑桔油等),无论采用哪种净化方法也无法完全消除基质效应的影响。同时,如果样品基质中含有与被测物结构相似的杂质,也很难通过样品前处理过程除去,这时候可以考虑采用调节萃取剂、调剂提取剂pH、加盐、改变体积比、加水、吸附剂等手段加以改善。对于pH的影响,利用QuEChRES方法定量测定蘑菇中尼古丁时,需要调节提取液pH至10-11才能得到较好回收率。从洋葱、韭菜等香味较浓郁的蔬菜基质中提取百菌清时,pH要调至2,这样才能降低基质对其的吸附而提高回收率 另外,对于沙蚕毒素类的农药,低pH值也是非常必要的。而对于酸性的除草剂,比如苯氧基链烷酸,会易于形成共价键结合的残留,因此必须在液液萃取前把其释放出来。通常可以通过先调节pH到12进行碱解30min,然后再调回中性进行QuEChERS萃取的方式来提高回收率。如果是某类的农药,采用针对性强的前处理方法能达到很好的回收,但此时不可避免会降低另外一些农药的回收,在多农残同时提取时这情况难免发生。对于这些复杂的情况,这时候就需要高质量的色谱-质谱分析仪器。高灵敏度、高选择性的色谱-质谱仪可以检测到样品提取液更低浓度的目标物,同时能最大限度的避免样品基质中的杂质干扰。  在QuEChERS出现之前,其它农残检测方法得到的提取液中,一般每毫升非极性溶剂要相当于含有2-5g的样品提前量,当结合使用GC-MS(SIM模式)进行不分流进样,进样量为1-3μL时,方法检出限一般为10ng/g。除非对提取液进行浓缩或者溶剂置换,一般QuEChERS方法得到的提取液乙腈中,每毫升只相当于1g样品提取量。因此,为了能使QuEChERS方法达到之前方法的检出限,在气相分析系统中,程序升温进样口结合大体积进样方式是很好的一个解决途径。QuEChERS结合PTV-LVI已成为欧洲的标准方法,但是在美国使用得较少。  QuEChERS方法中大量使用乙腈作为提取溶剂。从化学性质上来讲,乙腈对于液相系统来说是一种很好的溶剂,但对于气相来说就完全不同了,因为乙腈属于极性溶剂,大量进入色谱柱会快速的对色谱柱吸附涂层造成损害,影响色谱柱分离能力。但是PTV-LVI进样系统的使用可以显著减少乙腈进入气相色谱柱的量,因此,如果能使用适当的方法,乙腈的使用在气相分析方法中也不会是一个缺点。但是对于酸化乙腈来说,其会导致一些对碱性环境敏感的农残会在乙腈中发生降解,但数据表明,酸性乙腈会增大气相色谱柱柱流失。同时,从成本上考虑,乙腈的价格比其它溶剂要贵,因此,如果能回收使用乙腈将会对QuEChERS在更大范围内的推广使用带来更好的推动作用。  叶绿素的干扰是QuEChERS方法应用中遇到的一个很大的困难,因为即使每毫升样品提取液中加入7.5mgGCB或者50mgCholoFiltr吸附剂(美国UCT公司),去除率也只有80%-90%。此外,对于叶绿素和脂肪等大分子杂质的去除,凝胶渗透色谱(GPC)相比分散基质萃取效果更好,但是GPC在时间、仪器成本和试剂使用量上都存在明显的缺点。在脂肪类大分子的去除上,可以通过使用C18填料的分散基质萃取或者样品冷冻的方式来达到GPC一样的效果。  6.QuEChERS伴侣   (图13 中药QuEChERS多功能前处理系统(QuEChERS伴侣  随着我国第三方检测市场竞争的日益激烈,检测行业逐渐从“技术密集型”退化成了“人员密集型”,但是用人成本的持续上涨也成为了行业发展的一大瓶颈。  因此,农残检测分析实验室面临三大痛点问题:  1. 人员培训周期长   2. 人员流动性大   3. 检测数据准确性和时效性差。  所以越来越多的实验室从成本和效率角度考虑,倾向于使用QuEChERS方法。国家食品质量监督检验中心和北京本立科技有限公司针对中药材样品特点,共同研制了“中药QuEChERS多功能前处理系统”(图13),配合独有专利技术的样品提取管,可实现中药样本的震摇、均质、萃取、净化、离心步骤完美切换衔接,可同时完成10-12个样品的处理(30min)。整个前处理过程需要人工完成的只有样品预粉碎、称样、加溶剂、取上清液这4个简单步骤,而震摇、萃取、离心这些耗时、繁琐、费力的步骤实现了自动化、标准化集成,既保证了结果的一致性又降低了对实验人员的素质要求和劳动强度,并最大程度减少剧毒乙腈的暴露风险。“中药QuEChERS多功能前处理系统”契合快速(Quick)、简单(Easy)、便宜(Cheap)、高效(Effective)、耐用(Rugged)和安全(Safe)的理念,堪称QuEChERS最佳伴侣,是企业实验室和第三方检测实验室的福音和工作利器。  目前,国家食品质量监督检验中心正在开发与“中药QuEChERS多功能前处理系统”配套的中药材前处理SOP手册,对于实验操作人员来说,对照SOP手册来操作“中药QuEChERS多功能前处理系统”做中药材农残检测,简便直接,几乎不需要培训即可上手,实验结果可媲美具有丰富经验的农残分析工程师,完美解决农残检测分析实验室三大痛点问题。  7. 结语  QuEChERS法作为一种新型的广谱性的残留提取净化技术,自问世以来得到迅速发展和广泛应用。QuEChERS的发展离不开现代色谱与质谱技术的发展,纵观国内外的应用研究就能发现,QuEChERS技术的广泛应用主要是与GC-MS、LC-MS结合进行食品/农产品中农药残留的测定。因此,在可预见的将来,样品前处理技术将会继续与这些检测技术密不可分,会不断加强与各种检测仪器的兼容和联用,进一步扩大其应用范围,逐步成为世界各国进行各类药物多残留痕量、超痕量分析时首选的前处理方法。
  • 欧盟修订双苯三唑醇等农残最大残留限量
    p   2016年7月7日,欧盟委员会发布G/SPS/N/EU/168通报,拟修订法规(EC)396/2005号附件II和V中部分食品的双苯三唑醇(bitertanol)、吡螨胺(tebufenpyrad)和矮壮素(chlormequat)等3种农残最大残留限量。部分限量修订情况见下表: /p p /p table border=" 1" cellpadding=" 0" cellspacing=" 0" width=" 600" tbody tr td width=" 38" p style=" text-align:center " 序号 /p /td td width=" 104" p style=" text-align:center " 农残名称 /p /td td width=" 227" p style=" text-align:center " 产品名称 /p /td td width=" 123" p style=" text-align:center " 现行残留量(mg/kg) /p /td td width=" 116" p style=" text-align:center " 拟修残留量(mg/kg) /p /td /tr tr td width=" 38" p style=" text-align:center " 1 /p /td td width=" 104" p style=" text-align:center " 双苯三唑醇 /p /td td width=" 227" p style=" text-align:center " 荞麦、小米、黄米、燕麦、大米等 /p /td td width=" 123" p style=" text-align:center " 0.05 /p /td td width=" 116" p style=" text-align:center " 0.01 /p /td /tr tr td width=" 38" p style=" text-align:center " 2 /p /td td width=" 104" p style=" text-align:center " 吡螨胺 /p /td td width=" 227" p style=" text-align:center " 杏仁等树生干坚果 /p /td td width=" 123" p style=" text-align:center " 0.05 /p /td td width=" 116" p style=" text-align:center " 0.01 /p /td /tr tr td width=" 38" p style=" text-align:center " 3 /p /td td width=" 104" p style=" text-align:center " 矮壮素 /p /td td width=" 227" p style=" text-align:center " 杏仁等树生干坚果 /p /td td width=" 123" p style=" text-align:center " 0.1 /p /td td width=" 116" p style=" text-align:center " 0.01 /p /td /tr /tbody /table p /p
  • 34种有机氯农药和氯苯类混标全新上市(HJ 699-2014)
    迪马科技根据《HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》标准定制了34种有机氯农药和氯苯类混标。 产品信息:DIKMA NO:46904DESC:Custom Mixed OCPs & Chlorobenzene (34 Analytes) 100 μg/mL in Acetone 1mL中文名称:HJ699-2014 水质有机氯农药和氯苯类化合物的测定34种混标 适用于《HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》,100 μg/mL在丙酮中,1 mL/安瓿,Cat. No.: 46904序号化合物英文名CAS11,3,5-三氯苯1,3,5-Trichlorobenzene108-70-321,2,4-三氯苯1,2,4-Trichlorobenzene120-82-131,2,3-三氯苯1,2,3-Trichlorobenzene87-61-641,2,4,5-四氯苯1,2,4,5-Tetrachlorobenzene95-94-351,2,3,5-四氯苯1,2,3,5-Tetrachlorobenzene634-90-261,2,3,4-四氯苯1,2,3,4-Tetrachlorobenzene634-66-27五氯苯Pentachlorobenzene608-93-58六氯苯Hexachlorobenzene118-74-19α-六六六alpha-BHC319-84-610五氯硝基苯Pentachloronitrobenzene82-68-811β-六六六beta-BHC 319-85-712γ-六六六gamma-BHC58-89-913七氯Heptachlor76-44-814δ-六六六 delta-BHC319-86-815艾氏剂Aldrin309-00-216外环氧七氯heptachlor epoxide - isomer A28044-83-917环氧七氯heptachlor epoxide - isomer B1024-57-318γ-氯丹Trans-chlordane5103-74-219o,p’-滴滴伊o,p’-DDE3424-82-620α-氯丹Cis-chlordane5103-71-921α-硫丹Endosulfan I 959-98-822p,p’-滴滴伊p,p’-DDE72-55-923狄氏剂Dieldrin60-57-124o,p’-滴滴滴o,p’-DDD53-19-025异狄氏剂Endrin72-20-826p,p’-滴滴滴p,p’-DDD72-54-827o,p’-滴滴涕o,p’-DDT789-02-628β-硫丹endosulfan II33213-65-929p,p’-滴滴涕p,p’-DDT50-29-330异狄氏剂醛Endrin Aldehyde7421-93-431硫丹硫酸酯Endosulfan sulfate1031-07-832甲氧滴滴涕Methoxychlor72-43-533异狄氏剂酮Endrin-ketone53494-70-534三氯杀螨醇dicofol115-32-2
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 这5种蔬菜农药残留最严重,都是你最爱吃的!7妙招教你去农残!
    p   近日,农经委对市面上的44种常见蔬菜进行 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S03004-T020-3-1-1.html" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 农残检测 /span /strong /a 后发现,有5类蔬菜农药残留超标严重——番茄、辣椒、韭菜、芹菜、茼蒿。 /p p style=" text-align: center " img title=" initpintu_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/f29e7f18-4907-436f-a2fc-52b6d676393f.jpg" / /p p   中国农业大学食品学院博士生导师李里特介绍说,一般来说容易生虫、生虫后比较难防治的果蔬,常常是农药污染比较严重的品种。 /p p   相对来说,水果中的苹果、梨、李子、葡萄、草莓等农药残留比较严重,而带壳的水果如荔枝、龙眼等污染较小。 /p p   污染较重的蔬菜有叶菜和细菜,如小白菜、青菜、鸡毛菜、韭菜、菠菜、油菜等,因为农药一般打在叶子上防虫治病,农药再传递到果实上需要一段时间。加之叶菜生长快,一般20多天就上市了,打过农药的间隔期短,农药还来不及分解太多。 /p p   而根菜、瓜菜和果菜(如土豆、南瓜、黄瓜、苦瓜、窝瓜以及洋葱等)受到农药的污染相对较小,并且营养成分较高。 /p p style=" text-align: center " img title=" 1_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/c91cd1e4-3763-4b70-8e5e-64b39a4f1c1d.jpg" / /p p   “农残超标”只是相对而言,但如何清洗农药残留,才是大伙儿最关心的问题! /p p    span style=" color: rgb(255, 0, 0) " strong 1、去皮 /strong /span /p p   蔬菜表面有蜡质,很容易吸附农药。因此,对能去皮的蔬菜,应先去皮后再食用。 /p p style=" text-align: center " img title=" 2_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/43cf9b52-179d-489f-b527-b8e4ac356874.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  2、水洗 /strong /span /p p   一般蔬菜先用清水至少冲洗3-6遍,然后泡入淡盐水中再冲洗一遍。对包心类蔬菜,可先切开,放在清水中浸泡1-2小时,再用清水冲洗,以清除残附的农药。 /p p    span style=" color: rgb(255, 0, 0) " strong 3、碱洗 /strong /span /p p   先在水中放上一小勺小苏打,搅匀后再放入蔬菜。浸泡15分钟,把水倒出去,接着用清水漂洗干净。 /p p    strong span style=" color: rgb(255, 0, 0) " 4、用洗洁精洗涤 /span /strong /p p   用洗洁精稀释300倍先清洗一次,再用清水冲洗1-2遍,这样可去除蔬菜上的病菌、虫卵和残留的农药。 /p p    strong span style=" color: rgb(255, 0, 0) " 5、用开水烫 /span /strong /p p   对有些残留农药的最好清除方法是烫,如青椒、菜花、豆角、芹菜等,在下锅炒或烧前最好先用开水烫一下。据试验,可清除90%以上的残留农药。 /p p style=" text-align: center " img title=" 3_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/b5cc65cf-9516-4089-a0af-80a9aa13599a.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 6、阳光晒 /strong /span /p p   利用阳光中多光谱效应,会使蔬菜中部分残留农药被分解、破坏。这样经日光照射晒干后的蔬菜,农药残留较少。据测定,鲜菜、水果在阳光下照射5分钟,有机氯、有机汞农药的残留量损失达60%。对于方便贮藏的蔬菜,最好先放置一段时间,空气中的氧与蔬菜中的色酶对残留农药有一定的分解作用。购买蔬菜后,在室温下放24个小时左右,残留化学农药平均消失率为5%。 /p p    span style=" color: rgb(255, 0, 0) " strong 7、用淘米水洗 /strong /span /p p   用淘米水洗菜能除去残留在蔬菜上的部分农药。我国目前大多用甲胺磷、辛硫磷、敌敌畏、乐果等有机磷农药杀虫,这些农药一遇酸性物质就会失去毒性。在淘米水中浸泡10分钟左右,用清水冲洗干净,就能使蔬菜残留的农药成分减少。 /p p   没想到这些平时最爱吃的竟然是农药污染最严重的,还是要牢记这些清洗技巧,吃最干净放心的蔬菜。 /p p   看到这,实验室的部分妹子们可能会问: strong 蔬菜中的农药洗去容易,检测难,如何通过有效的实验方法准确地进行检测呢? /strong /p p strong    /strong 别担心,快来 strong a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/" target=" _blank" span style=" color: rgb(255, 0, 0) " 行业应用 /span /a /strong 栏目 strong a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S03004-T020-3-1-1.html" target=" _blank" span style=" color: rgb(255, 0, 0) " 食品检测 /span /a /strong 频道寻找答案吧! /p p /p
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 大连化物所利用固体核磁共振精确表征分子筛中半交联骨架铝物种的辨识、演化和酸性
    近日,大连化物所催化基础国家重点实验室固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队与低碳催化与工程研究部催化基础与催化新反应探索研究组(DNL1201组)徐舒涛研究员合作,利用固体核磁共振(ssNMR)及红外技术,精确表征了分子筛中部分骨架配位铝物种的辨识、演化和酸性。分子筛催化剂由于具有良好的微观孔拓扑结构和固有的酸位点,在现代工业过程中发挥着至关重要的作用,但其活性位点结构及其实际的催化性能仍存在不确定性。陈魁智等在前期工作中,利用超高场核磁共振发现了一种新型骨架部分键联的活性位点,即(SiO)4-n-Al(OH)n(简称Al(IV)-2)。该位点在C-H键活化及烷烃裂解等经典反应中发挥着独特而重要的作用,这使其结构的详细阐明变得十分重要。 本工作中,合作团队进一步以三甲基膦(TMP)作为探针分子,通过对MFI分子筛的全面NMR表征,提出31P化学位移约-58 ppm处的TMP吸附物种,实际上是TMP结合到重要的催化位点上的信号,但此前通常归属为TMP物理吸附在非活性物种上。NMR辅助的31P-27Al核间距测量和全面的二维异核相关(1H-31P, 31P-27Al和27Al-1H)核磁共振实验表明,该TMP结合位点(δ31P = -58 ppm)源于部分骨架配位的Al(IV)-2物种中的Al-OH基团,即Al-OHP(CH3)3。31P-31P同核相关实验证明,BAS与Al(IV)-2的空间距离比BAS与 LAS更近,这有助于揭示催化反应的构效关系。此外,不同合成后处理样品的FT-IR和1H NMR结果对Al(IV)-2和骨架配位Lewis位点提供了新的见解。该工作实现了对TMP-Al(IV)-2物种的全面表征,为阐明分子筛中复杂的BAS-LAS-硅羟基—铝羟基网络结构提供了依据。相关研究成果以“Identity, Evolution and Acidity of Partially Framework Coordinated Al Species in Zeolites Probed by TMP 31P-NMR and FTIR”为题,于近日发表在ACS Catalysis上。该工作的第一作者是大连化物所510组博士研究生王志利。上述工作得到国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、大连化物所创新基金等项目的资助。
  • 日本修订部分农药和兽药的残留限量
    2010年11月9日,日本厚生劳动省发布食安发1109第1号通知,修订部分农药和兽药的残留限量:   1 、根据食品卫生法(昭和22年法律第233号。以下简称“法”)第11条第1项的规定,设定农药四唑嘧磺隆、氯甲酰草胺、环氟菌胺、螺甲螨酯、蚊蝇醚、ピリミスルファン、プロチオコナゾール、霜霉威、环戊恶草酮、1-甲基环丙烯、氟丙氧脲在食品中的残留标准。   此外,关于根据上述规定设定了食品中残留标准的农药苯哒嗪钾,此次删除其在食品中的残留标准。   2、根据食品卫生法第11条第1项规定,删除兽药雷复尼特在食品中的残留标准。   附件:日本厚生劳动省关于食品、添加剂等规格标准的部分修改件
  • 美国环境保护署豁免苯甲醇在作物及农产品上的残留限量
    世界农化网中文网报道: 美国环境保护署(EPA)近日豁免了CJB应用技术公司(CJB)申请的苯甲醇在作物和原始农产品采前和采后的残留限量。   CJB致力于作物保护、特种化学品、生物制品和其他工业市场的产品开发解决方案,在产品和制剂开发方面帮助客户更快进入新市场,提高竞争优势。CJB表示,使用苯甲醇专利技术配制的产品,将增强其活性成分(AI)性能,该公司预计将苯甲醇授权给农业化学品制造商。   苯甲醇是一种工业、消费品、家庭和商业产品中广泛使用的化合物。作为农药助剂和制剂中罐装成分的苯甲醇的试验表明,苯甲醇可增强活性成分的有效性,包括对耐药性的抵抗力。苯甲醇可用于作物采前和采后,以及草坪、苗圃和观赏植物等非作物用途。   CJB的商务总监Jim Loar表示:″出于农业中耐药病原体的威胁,我们一直寻找能够延长活性成分有效性的技术,使其作为防治作物病害的有效工具,由此开发了苯甲醇,并获得了将其用于农业制剂的专利。EPA豁免了苯甲醇的残留限量,将使这项技术有效帮助客户提高产品性能。我们打算在农业制剂中大规模应用这项专利技术,我们的团队将为客户预测可能面临的挑战,并为其找到解决方案。″
  • 《食品中百草枯等54种农药最大残留限量》发布
    中华人民共和国卫生部 中华人民共和国农业部 公告 2011年第2号   根据《食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布食品安全国家标准《食品中百草枯等54种农药最大残留限量》(GB26130—2010),自2011年4月1日起实施。   特此公告。   二〇一一年一月二十一日   附件: 食品中百草枯等54种农药最大残留限量.doc   目 录   前 言. 3   1 范围. 4   2 规范性引用文件. 4   3 术语和定义. 5   4 技术要求. 5   4.1 百草枯(paraquat). 6   4.2 苯丁锡(fenbutatin oxide). 6   4.3 苯菌灵(benomyl). 6   4.4 苯醚甲环唑(difenoconazole). 6   4.5 吡蚜酮(pymetrozine). 7   4.6 丙森锌(propineb). 7   4.7 草甘膦(glyphosate). 7   4.8 虫酰肼(tebufenozide). 7   4.9 除虫脲(diflubenzuron). 8   4.10 春雷霉素(kasugamycin). 8   4.11 敌百虫(trichlorfon). 8   4.12 地虫硫磷(fonofos). 9   4.13 丁硫克百威(carbosulfan). 9   4.14 毒死蜱(chlorpyrifos). 9   4.15 多菌灵(carbendazim). 9   4.16噁草酮(oxadiazon). 10   4.17噁霉灵(hymexazol). 10   4.18二嗪磷(diazinon). 10   4.19氟虫腈(fipronil). 10   4.20氟硅唑(flusilazole). 11   4.21氟氯氰菊酯(cyfluthrin). 11   4.22腐霉利(procymidone). 11   4.23 甲胺磷(methamidophos). 12   4.24甲基毒死蜱(chlorpyrifos-methyl). 12   4.25甲基硫菌灵(thiophanate-methyl). 12   4.26甲基异柳磷(isofenphos-methyl). 12   4.27甲萘威(carbaryl). 13   4.28甲氧虫酰肼(methoxyfenozide). 13   4.29腈苯唑(fenbuconazole). 13   4.30喹啉铜(oxine-copper). 13   4.31 乐果(dimethoate). 14   4.32硫丹(endosulfan). 14   4.33马拉硫磷(malathion). 14   4.34咪鲜胺(prochloraz). 15   4.35嘧菌酯(azoxystrobin). 15   4.36灭多威(methomyl). 15   4.37灭瘟素(blasticidin-S). 15   4.38灭锈胺(mepronil). 16   4.39嗪草酮(metribuzin). 16   4.40噻虫嗪(thiamethoxam). 16   4.41噻菌灵(thiabendazole). 16   4.42噻嗪酮(buprofezin). 17   4.43噻唑磷(fosthiazate). 17   4.44三唑锡(azocyclotin). 17   4.45杀螟丹(cartap). 17   4.46杀螟硫磷(fenitrothion). 18   4.47五氯硝基苯(quintozene). 18   4.48烯唑醇(diniconazole). 18   4.49辛硫磷(phoxim). 18   4.50氧乐果(omethoate). 19   4.51乙烯利(ethephon). 19   4.52 乙酰甲胺磷(acephate). 19   4.53异丙甲草胺(metolachlor). 20   4.54异菌脲(iprodione). 20   农药英文通用名称索引. 21   农药中文通用名称索引. 23   前 言   本标准按照GB/T 1.1-2009给出的规则起草。   本标准中乙酰甲胺磷和甲胺磷在糙米中的相关规定代替GB 2763-2005中乙酰甲胺磷和甲胺磷在稻谷上的相关规定。   本标准与国际食品法典委员会(CAC)标准《食品中农药最大残留限量》(2009)中的相关规定的一致性程度为非等同。   食品中百草枯等54种农药最大残留限量   1 范围   本标准规定了食品中百草枯等54种农药的最大残留限量。   本标准适用于与限量相关的食品种类。   2 规范性引用文件   下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。   GB/T 5009.21 粮、油、菜中甲萘威残留量的测定   GB/T 5009.102 植物性食品中辛硫磷农药残留量的测定   GB/T 5009.103 植物性食品中甲胺磷和乙酰甲胺磷农药残留量的测定   GB/T 5009.107 植物性食品中二嗪磷残留量的测定   GB/T 5009.144 植物性食品中甲基异柳磷残留量的测定   GB/T 5009.145 植物性食品中有机磷和氨基甲酸酯类农药多种残留的测定   GB/T 5009.147 植物性食品中除虫脲残留量的测定   GB/T 5009.184 粮食、蔬菜中噻嗪酮残留量的测定   GB/T 5009.201 梨中烯唑醇残留量的测定   GB/T 19648 水果和蔬菜中500种农药及相关化学品残留的测定 气相色谱-质谱法   GB/T 19649 粮谷中475种农药及相关化学品残留量的测定 气相色谱-质谱法   GB/T 20769 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱-串联质谱法   GB/T 23376 茶叶中农药多残留测定 气相色谱/质谱法   GB/T 23380 水果、蔬菜中多菌灵残留的测定 高效液相色谱法   GB/T 23750 植物性产品中草甘膦残留量的测定 气相色谱-质谱法   NY/T 761 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定   NY/T 1016 水果蔬菜中乙烯利残留量的测定 气相色谱法   NY/T 1096 食品中草甘膦残留量测定   NY/T 1453 蔬菜及水果中多菌灵等16种农药残留测定 液相色谱-质谱-质谱联用法   NY/T 1680 蔬菜水果中多菌灵等4种苯并咪唑类农药残留量的测定 高效液相色谱法   SN 0150 出口水果中三唑锡残留量检验方法   SN 0340 出口粮谷、蔬菜中百草枯残留量检验方法 紫外分光光度法   SN 0493 出口粮谷中敌百虫残留量检验方法   SN 0592 出口粮谷及油籽中苯丁锡残留量检验方法   SN/T 1923 进出口食品中草甘膦残留量的检测方法 液相色谱-质谱 质谱法   SN/T 1975 进出口食品中苯醚甲环唑残留量的检测方法 气相色谱-质谱法   SN/T 1976 进出口水果和蔬菜中嘧菌酯残留量检测方法 气相色谱法   SN/T 1982 进出口食品中氟虫腈残留量检测方法 气相色谱-质谱法   SN/T 1990 进出口食品中三唑锡和三环锡残留量的检测方法 气相色谱-质谱法   SN/T 2158 进出口食品中毒死蜱残留量检测方法   SN/T 2236 进出口食品中氟硅唑残留量检测方法 气相色谱-质谱法   JAP-018 吡蚜酮检测方法   JAP-055 氟定脲、除虫脲、虫酰肼、氟苯脲、氟虫脲、氟铃脲和氟丙氧脲检测方法   德国食品与饲料法(LFGB §64) 推荐官方分析方法(2010年版)   3 术语和定义   下列术语和定义适用于本文件。   3.1   残留物 pesticide residues   任何由于使用农药而在农产品及食品中出现的特定物质,包括被认为具有毒理学意义的农药衍生物,如农药转化物、代谢物、反应产物以及杂质等。   3.2   最大残留限量 maximium residue limits (MRLs)   在生产或保护商品过程中,按照农药使用的良好农业规范(GAP)使用农药后,允许农药在各种农产品及食品中或其表面残留的最大浓度。   3.3   每日允许摄入量 acceptable daily intakes (ADI)   人类每日摄入某物质至终生,而不产生可检测到的对健康产生危害的量,以每千克体重可摄入的量(毫克)表示,单位为mg/kg bw。   4 技术要求   每种农药的最大残留限量规定如下。   4.1 百草枯(paraquat)   4.1.1 主要用途:除草剂   4.1.2 ADI: 0.005 mg/kg bw   4.1.3 残留物:百草枯阳离子   4.1.4 最大残留限量:应符合表1的规定。   表 1 食品名称 最大残留限量( mg/kg) 棉籽 0.2 香蕉 0.02 苹果 0.05* *: 因该数值为方法的最低检出限,该限量为临时限量,下同。   4.1.5 检测方法:按SN 0340规定的执行。   4.2 苯丁锡(fenbutatin oxide)   4.2.1 主要用途:杀螨剂   4.2.2 ADI: 0.03 mg/kg bw   4.2.3 残留物:苯丁锡   4.2.4 最大残留限量:应符合表2的规定。  表 2 食品名称 最大残留限量(mg/kg) 柑橘 1   4.2.5 检测方法:参照SN 0592规定的方法测定。   4.3 苯菌灵(benomyl)   4.3.1 主要用途:杀菌剂   4.3.2 ADI: 0.1 mg/kg bw   4.3.3 残留物:苯菌灵和多菌灵的总和   4.3.4 最大残留限量:应符合表3的规定。   表 3   食品名称 最大残留限量(mg/kg) 柑橘 5** 梨 3** **: 因无相关的监测方法,该限量为临时限量,下同。   4.3.5 检测方法:参照GB/T 23380、NY/T 1680规定的方法执行。   4.4 苯醚甲环唑(difenoconazole)   4.4.1 主要用途:杀菌剂   4.4.2 ADI: 0.01 mg/kg bw   4.4.3 残留物:苯醚甲环唑   4.4.4 最大残留限量:应符合表4的规定。   表 4 食品名称 最大残留限量(mg/kg) 茶叶 10 大蒜 0.2 柑橘 0.2 荔枝0.5   3.4.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 1975规定的方法执行。   4.5 吡蚜酮(pymetrozine)   4.5.1 主要用途:杀虫剂   4.5.2 ADI: 0.03 mg/kg bw   4.5.3 残留物:吡蚜酮   4.5.4 最大残留限量:应符合表5的规定。   表 5 食品名称 最大残留限量(mg/kg) 小麦 0.02   4.5.5 检测方法:按JAP-018规定的方法执行。   4.6 丙森锌(propineb)   4.6.1 主要用途:杀菌剂   4.6.2 ADI: 0.007 mg/kg bw   4.6.3 残留物:丙森锌(以CS2计)   4.6.4 最大残留限量:应符合表6的规定。   表 6 食品名称 最大残留限量(mg/kg) 大白菜 5 番茄 5 黄瓜 5   4.6.5 检测方法:按GB/T 20769规定的方法执行。   4.7 草甘膦(glyphosate)   4.7.1 主要用途:除草剂   4.7.2 ADI: 1 mg/kg bw   4.7.3 残留物:草甘膦   4.7.4 最大残留限量:应符合表7的规定。   表 7 食品名称 最大残留限量(mg/kg) 茶叶 1 柑橘 0.5 苹果 0.5   4.7.5 检测方法:茶叶、柑橘按SN/T 1923规定的方法执行 苹果按GB/T 23750、NY/T 1096规定的方法执行。   4.8 虫酰肼(tebufenozide)   4.8.1 主要用途:杀虫剂   4.8.2 ADI: 0.02 mg/kg bw   4.8.3 残留物:虫酰肼   4.8.4 最大残留限量:应符合表8的规定。   表 8 食品名称 最大残留限量(mg/kg) 结球甘蓝 1   4.8.5 检测方法:按GB/T 20769 规定的方法执行。   4.9 除虫脲(diflubenzuron)   4.9.1 主要用途:杀虫剂   4.9.2 ADI: 0.02 mg/kg bw   4.9.3 残留物:除虫脲   4.9.4 最大残留限量:应符合表9的规定。   表 9   食品名称 最大残留限量(mg/kg) 茶叶 20   4.9.5 检测方法:按JAP-055或参照GB/T 5009.147规定的方法执行。   4.10 春雷霉素(kasugamycin)   4.10.1 主要用途:杀菌剂   4.10.2 ADI: 0.113 mg/kg bw   4.10.3 残留物:春雷霉素   4.10.4 最大残留限量:应符合表10的规定。   表 10 食品名称 最大残留限量(mg/kg) 糙米 0.1** 番茄 0.05**   4.11 敌百虫(trichlorfon)   4.11.1 主要用途:杀虫剂   4.11.2 ADI: 0.002 mg/kg bw   4.11.3 残留物:敌百虫和敌敌畏的总和。   4.11.4 最大残留限量:应符合表11的规定。   表 11 食品名称 最大残留限量(mg/kg) 糙米 0.1 结球甘蓝 0.1 普通白菜 0.1   4.11.5 检测方法:糙米按SN 0493规定的方法执行 甘蓝、普通白菜按GB/T 20769、NY/T 761规定的方法执行。   4.12 地虫硫磷(fonofos)   4.12.1 主要用途:杀虫剂   4.12.2 ADI: 0.002 mg/kg bw   4.12.3 残留物:地虫硫磷   4.12.4 最大残留限量:应符合表12的规定。   表 12 食品名称 最大残留限量(mg/kg) 花生 0.1 甘蔗 0.1   4.12.5 检测方法:花生按GB/T 19649规定的方法执行 甘蔗按GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.13 丁硫克百威(carbosulfan)   4.13.1 主要用途:杀虫剂   4.13.2 ADI: 0.01 mg/kg bw   4.13.3 残留物:丁硫克百威、克百威、3-羟基克百威的总和。   4.13.4 最大残留限量:应符合表13的规定。   表 13 食品名称 最大残留限量(mg/kg) 糙米 0.5 柑橘 1 苹果 0.2 花生 0.05 黄瓜 0.2 节瓜 1 结球甘蓝 1   4.13.5 检测方法:柑橘、苹果、黄瓜、节瓜、甘蓝按NY/T 761规定的方法执行 花生、糙米按LFGB §64规定的方法执行。   4.14 毒死蜱(chlorpyrifos)   4.14.1 主要用途:杀虫剂   4.14.2 ADI: 0.01 mg/kg bw   4.14.3 残留物:毒死蜱   4.14.4 最大残留限量:应符合表14的规定。   表 14 食品名称 最大残留限量(mg/kg) 荔枝 1   4.14.5 检测方法:按GB/T5009.145、GB/T 19648、GB/T 20769、NY/T 761、SN/T 2158规定的方法执行。   4.15 多菌灵(carbendazim)   4.15.1 主要用途:杀菌剂   4.15.2 ADI: 0.03 mg/kg bw   4.15.3 残留物:多菌灵   4.15.4 最大残留限量:应符合表15的规定。   表 15 食品名称 最大残留限量(mg/kg) 柑橘 5 西瓜 0.5 韭菜 2   4.15.5 检测方法:按GB/T 23380、NY/T 1453、NY/T 1680规定的方法执行。   4.16噁草酮(oxadiazon)   4.16.1 主要用途:除草剂   4.16.2 ADI: 0.0036 mg/kg bw   4.16.3 残留物:噁草酮   4.16.4 最大残留限量:应符合表16的规定。   表 16 食品名称 最大残留限量(mg/kg) 糙米 0.05 花生 0.1 棉籽 0.1   4.16.5 检测方法:糙米按GB/T 19649规定的方法执行 花生、棉籽按LMBG §35规定的方法执行。   4.17噁霉灵(hymexazol)   4.17.1 主要用途:杀菌剂   4.17.2 ADI: 0.2mg/kg bw   4.17.3 残留物:噁霉灵   4.17.4 最大残留限量:应符合表17的规定。   表 17 食品名称 最大残留限量(mg/kg) 糙米 0.1**   4.18二嗪磷(diazinon)   4.18.1 主要用途:杀虫剂   4.18.2 ADI: 0.005 mg/kg bw   4.18.3 残留物:二嗪磷   4.18.4 最大残留限量:应符合表18的规定。   表 18 食品名称 最大残留限量(mg/kg) 花生 0.5   4.18.5 检测方法:按GB/T 5009.107、GB/T 19649或参照NY/T 761规定的方法执行。   4.19氟虫腈(fipronil)   4.19.1 主要用途:杀虫剂   4.19.2 ADI: 0.0002 mg/kg bw   4.19.3 残留物:氟虫腈母体。   4.19.4 最大残留限量:应符合表19的规定。   表 19 食品名称 最大残留限量(mg/kg) 结球甘蓝 0.02 糙米 0.02   4.19.5 检测方法:甘蓝按GB/T 19648、GB/T 20769规定的方法执行 糙米按GB/T 19649、SN/T 1982规定的方法执行。   4.20氟硅唑(flusilazole)   4.20.1 主要用途:杀菌剂   4.20.2 ADI: 0.007 mg/kg bw   4.20.3 残留物:氟硅唑   4.20.3 最大残留限量:应符合表20的规定。   表 20 食品名称 最大残留限量(mg/kg) 黄瓜 1 刀豆 0.2 葡萄 0.5 香蕉 1   4.20.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 2236规定的方法执行。   4.21氟氯氰菊酯(cyfluthrin)   4.21.1 主要用途:杀虫剂   4.21.2 ADI: 0.04 mg/kg bw   4.21.3 残留物:氟氯氰菊酯   4.21.4 最大残留限量:应符合表21的规定。   表 21 食品名称 最大残留限量(mg/kg) 蘑菇 0.3   4.21.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.22腐霉利(procymidone)   4.22.1 主要用途:杀菌剂   4.22.2 ADI: 0.1 mg/kg bw   4.22.3 残留物:腐霉利   4.22.4 最大残留限量:应符合表22的规定。   表 22 食品名称 最大残留限量(mg/kg) 番茄 2   4.22.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.23 甲胺磷(methamidophos)   4.23.1 主要用途:杀虫剂   4.23.2 ADI:0.004mg/kg体重   4.23.3 残留物:甲胺磷(乙酰甲胺磷的代谢物)   4.23.4 最大残留限量:应符合表23的规定。   表 23 食品名称 最大残留限量(mg/kg) 糙米 0.5   4.23.5 检测方法:按GB/T 5009.103。   4.24甲基毒死蜱(chlorpyrifos-methyl)   4.24.1 主要用途:杀虫剂   4.24.2 ADI: 0.01 mg/kg bw   4.24.3 残留物:甲基毒死蜱   4.24.4 最大残留限量:应符合表24的规定。   表 24 食品名称 最大残留限量(mg/kg) 棉籽 0.02 结球甘蓝 0.1   4.24.5 检测方法:棉籽按GB/T 19649规定的方法执行 甘蓝GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.25甲基硫菌灵(thiophanate-methyl)   4.25.1 主要用途:杀菌剂   4.25.2 ADI: 0.08 mg/kg bw   4.25.3 残留物:甲基硫菌灵和多菌灵之和   4.25.4 最大残留限量:应符合表25的规定。   表 25 食品名称 最大残留限量(mg/kg) 小麦 0.5 糙米 1   4.25.5 检测方法:按GB/T 20769、NY/T 1680规定的方法执行。   4.26甲基异柳磷(isofenphos-methyl)   4.26.1 主要用途:杀虫剂   4.26.2 ADI: 0.003 mg/kg bw   4.26.3 残留物:甲基异柳磷   4.26.4 最大残留限量:应符合表26的规定。   表 26 食品名称 最大残留限量(mg/kg) 玉米 0.02   4.26.5 检测方法:按GB/T 5009.144或参照NY/T 761规定的方法执行。   4.27甲萘威(carbaryl)   4.27.1 主要用途:杀虫剂   4.27.2 ADI: 0.008 mg/kg bw   4.27.3 残留物:甲萘威   4.27.4 最大残留限量:应符合表27的规定。   表 27 食品名称 最大残留限量(mg/kg) 普通白菜 1******: 因膳食暴露评估依据的数据不充分,该限量为临时限量,下同。   4.27.5 检测方法:按GB/T 5009.21、GB/T 5009.145、GB/T 20769、NY/T 761规定的方法执行。   4.28甲氧虫酰肼(methoxyfenozide)   4.28.1 主要用途:杀虫剂   4.28.2 ADI: 0.1 mg/kg bw   4.28.3 残留物:甲氧虫酰肼   4.28.4 最大残留限量:应符合表28的规定。   表 28 食品名称 最大残留限量(mg/kg) 结球甘蓝 2 苹果 3   4.28.5 检测方法:按GB/T 20769规定的方法执行。   4.29腈苯唑(fenbuconazole)   4.29.1 主要用途:杀菌剂   4.29.2 ADI: 0.03 mg/kg bw   4.29.3 残留物:腈苯唑   4.29.4 最大残留限量:应符合表29的规定。   表 29 食品名称 最大残留限量(mg/kg) 糙米 0.1   4.29.5 检测方法:按GB/T 19648、GB/T 20769规定的方法执行。   4.30喹啉铜(oxine-copper)   4.30.1 主要用途:杀菌剂   4.30.2 ADI: 0.02 mg/kg bw   4.30.3 残留物:喹啉铜   4.30.4 最大残留限量:应符合表30的规定。   表 30 食品名称 最大残留限量(mg/kg) 苹果 2** 黄瓜
  • 上海交通大学魏新林团队: 茶叶中农药残留检测方法、迁移规律及对健康的影响
    2023年5月11日,上海交通大学:苗思葳(第一作者)、韦阳(共同一作)、魏新林*(通讯作者)等在国际Top期刊Comprehensive Reviews in Food Science and Food Safety(Q1,IF: 15.786)发表题为“Detection methods, migration patterns, and health effects of pesticide residues in tea”的综述性论文。该研究得到了国家自然科学基金、十四五国家重点研发计划、中国博士后创新人才支持计划和上海市超级博士后激励计划等项目资助。成果简介饮茶由于其丰富的保健功效和独特的文化魅力,在现代社会越来越受到大众欢迎。茶叶安全是影响茶产业发展和消费者健康的头等大事。在茶叶生长过程中,为防止病虫害的侵袭,在保持茶叶品质和稳产的同时而使用农药。热水冲泡是传统的茶叶消费方式,水是茶叶中农药残留进入人体的主要载体并伴随着潜在的风险。本文将茶园中使用的农药根据其溶解度分为两类,其中水溶性农药风险较大,并总结了茶叶样品前处理和农药残留检测方法,阐述了茶叶在生长、加工、储存和消费过程中的迁移规律及其影响因素。此外,还分析了农药残留的毒性和安全性以及人体摄入而引起的疾病。对茶叶中农药残留进行了风险评估和可追溯性研究,并提出了潜在的生态改善策略。本文有望为降低茶叶中农药残留风险,保障茶叶消费安全提供有价值的参考。图文赏析图 1. 世界茶叶生产分布和农药使用分布。图2. 茶叶中常用农药的结构式(A:六氯化苯(BHC) B: 二氯二苯三氯乙烷(DDT) C: 有机磷农药(OPPs) D: 氯菊酯 E: 溴氰菊酯 F: 氰戊菊酯 G: 氨基甲酸酯类农药(CBPs) H: 吡虫啉 I: 啶虫脒。图 3. 茶叶中农药的预处理方法及检测方法。图 4. 茶叶中农药不同检测方法示意图。图 5. 茶叶生产、加工和消费过程中农药残留的迁移规律。图6. 茶叶中常见农药对不同器官的潜在危害。图7. 茶园生态系统建设。结论展望目前,茶叶的质量安全问题仍然是社会普遍关注的重大食品安全问题。农药在很大程度上可以保证茶树的正常生长,但是一些茶农由于对农药的危害认识不清而误用农药,导致茶叶中农药残留超标。因此,为了保证饮茶者的健康,有必要进行农药残留检测。本文综述了目前茶叶中农药残留的检测方法。然而,目前还没有一种有效手段可以同时分析茶叶中所有农药残留。由于茶叶基质的复杂性,痕量农药残留的分析仪器和方法尚不成熟,有待进一步发展。新型检测技术在新分析技术的发展中起着至关重要的作用,可以通过量子点、光子晶体和石墨烯等纳米材料提高灵敏度。此外,该方法还可以应用于多个目标的同时检测。各类转接传感器,包括电化学转接传感器、比色转接传感器、荧光转接传感器、化学发光转接传感器、基于SERS的转接传感器等,在无需大型精密仪器分析的情况下,均表现出较高的灵敏度和特异性,部分可用于现场快速分析。然而,由于农药品种繁多,且农药的分子结构和理化性质差异较大,无法通过一次检测对其进行分析,导致这些传感器大多只能检测一种农药或某一类农药。此外,代谢组学和高分辨率MS结合专业软件也被用于茶叶农药残留的分析,但分析软件的开发和信号解释精度的提高仍有待解决。尽管准确、快速的新检测技术成为研究热点,但这些技术的商业应用仍有很长的路要走。本文对茶叶生长、加工、贮藏和冲泡过程中农药的迁移规律进行了研究,表明高效、低水溶性、高Kow值的农药更适合茶叶种植。需注意的原则是:降低泡茶温度,缩短泡茶时间和泡茶间隔和控制茶水比。农药的摄入可能会对机体各器官造成一定损害,引起呼吸系统疾病、心血管疾病、自身免疫性疾病等,甚至危及生命。茶的慢性或急性风险评估可以预测消费者潜在的饮食摄入风险。风险可追溯性为农药防控提供了科学前提,有利于茶叶产品的安全控制,提高茶叶产品的安全性。随着科技进步,研究人员应该开发和推广无毒农药,并开展无农药保护替代,例如使用生态方法来提高茶叶的风险评估和可追溯性。同时,推广有机耕作方法和加工前清洗茶叶可以减少农药摄入的风险。正确防治方法可以有效减少茶叶中的农药残留,极大地限制农药残留进入人体,确保茶叶仍然是世界上最受欢迎的天然健康植物饮料。魏新林,上海交通大学农业与生物学院食品系特聘教授、博士生导师。国家十三五“食品安全关键技术”重点研发计划项目首席科学家、国家十四五“食品制造与农产品物流科技支撑”重点研发项目首席科学家、上海市优秀学术技术带头人、上海市农业领军人才。长期从事茶和食品加工与质量安全方面的研究工作,主持国家十三五和十四五重点研究计划项目、863计划、国家自然科学基金等30多项。以第一完成人获2016年和2020年上海市科技进步一等奖、2020年中国轻工联合会科技进步一等奖,在Coordination Chemistry Reviews、Trends in Food Science and Technology、Biosensors and Bioelectronics等期刊发表论文100余篇,制订国家食品安全标准5项,获国家授权专利20余项。
  • 《食品农残国标GB 23200系列汇编》手册合集发布
    《食品农残国标GB 23200系列汇编》发布民以食为天,食以安为先。农药进入粮食、蔬菜、水果、鱼、虾、肉、蛋、奶中 ,造成食物污染,危害人体健康。由于农药残留对人和生物危害很大,各国对农药的施用都进行严格的管理,并对食品中农药残留容许量作了规定。根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,2017年6月23日将执行食品安全GB 23200系列标准。截止目前GB 23200标准已更新至GB 23200.121。为了方便查找,仪器信息网资料 库 特别整理了一份《食品农残国标 GB 23200系列汇编 》手册(以下简称手册)。手册里分析了新旧标准号及其名称、新标准的变更内容,整理了从GB 23200.1-2016至GB 23200.121-2021全部标准。为了方便从业者查询,我们还给手册增加了书签,方便阅读查看。扫描/识别图片二维码就可一次性打包收藏。为了方便用户下载单条标准,我们也特意整理了一份单条标准列表,欢迎下载。GB 23200.1-2016食品安全国家标准 除草剂残留量检测方法 第1部分:气相色谱-质谱法测定 粮谷及油籽中酰胺类除草剂残留量 GB 23200.2-2016食品安全国家标准 除草剂残留量检测方法 第2部分:气相色谱-质谱法测定 粮谷及油籽中二苯醚类除草剂残留量 GB 23200.3-2016食品安全国家标准 除草剂残留量检测方法 第3部分:液相色谱-质谱/质谱法测定 食品中环己酮类除草剂残留量 GB 23200.4-2016食品安全国家标准 除草剂残留量检测方法 第4部分:气相色谱-质谱/质谱法测定 食品中芳氧苯氧丙酸酯类除草剂残留量 GB 23200.5-2016食品安全国家标准 除草剂残留量检测方法 第5部分:液相色谱-质谱/质谱法测定 食品中硫代氨基甲酸酯类除草剂残留量 GB 23200.6-2016食品安全国家标准 除草剂残留量检测方法 第6部分:液相色谱-质谱/质谱法测定 食品中杀草强残留量 GB 23200.7-2016食品安全国家标准 蜂蜜、果汁和果酒中497种农药及相关化学品残留量的测定气相色谱-质谱法 GB 23200.8-2016食品安全国家标准 水果和蔬菜中500种农药及相关化学品残留量的测定气相色谱-质谱法 GB 23200.9-2016食品安全国家标准 粮谷中475种农药及相关化学品残留量的测定气相色谱-质谱法 GB 23200.10-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中488种农药及相关化学品残留量的测定 气相色谱-质谱法 GB 23200.11-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中413种农药及相关化学品残留量的测定 液相色谱-质谱法 GB 23200.12-2016食品安全国家标准 食用菌中440种农药及相关化学品残留量的测定 液相色谱-质谱法 GB 23200.13-2016食品安全国家标准 茶叶中448种农药及相关化学品残留量的测定 液相色谱-质谱法 GB 23200.14-2016食品安全国家标准 果蔬汁和果酒中512种农药及相关化学品残留量的测定 液相色谱-质谱法 GB 23200.15-2016食品安全国家标准 食用菌中503种农药及相关化学品残留量的测定 气相色谱-质谱法 GB 23200.16-2016食品安全国家标准 水果和蔬菜中乙烯利残留量的测定液相色谱法 GB 23200.17-2016食品安全国家标准 水果和蔬菜中噻菌灵残留量的测定液相色谱法 GB 23200.18-2016食品安全国家标准 蔬菜中非草隆等15种取代脲类除草剂残留量的测定 液相色谱法 GB 23200.19-2016食品安全国家标准 水果和蔬菜中阿维菌素残留量的测定液相色谱法 GB 23200.20-2016食品安全国家标准 食品中阿维菌素残留量的测定液相色谱-质谱/质谱法 GB 23200.21-2016食品安全国家标准 水果中赤霉酸残留量的测定液相色谱-质谱/质谱法 GB 23200.22-2016食品安全国家标准 坚果及坚果制品中抑芽丹残留量的测定液相色 谱法 GB 23200.23-2016食品安全国家标准 食品中地乐酚残留量的测定液相色谱-质谱/质谱法 GB 23200.24-2016食品安全国家标准 粮谷和大豆中11种除草剂残留量的测定 气相色谱-质谱法 GB 23200.25-2016食品安全国家标准 水果中噁草酮残留量的检测方法 GB 23200.26-2016食品安全国家标准 茶叶中9种有机杂环类农药残留量的检测方法 GB 23200.27-2016食品安全国家标准 水果中4,6-二硝基邻甲酚残留量的测定 气相色谱-质谱法 GB 23200.28-2016食品安全国家标准 食品中多种醚类除草剂残留量的测定气相色谱-质谱法 GB 23200.29-2016食品安全国家标准 水果和蔬菜中唑螨酯残留量的测定液相色谱法 GB 23200.30-2016食品安全国家标准 食品中环氟菌胺残留量的测定气相色谱-质谱法 GB 23200.31-2016食品安全国家标准 食品中丙炔氟草胺残留量的测定气相色谱-质谱法 GB 23200.32-2016食品安全国家标准 食品中丁酰肼残留量的测定气相色谱-质谱法 GB 23200.33-2016食品安全国家标准 食品中解草嗪、莎稗磷、二丙烯草胺等110种农药残留量的测定 气相色谱-质谱法 GB 23200.34-2016食品安全国家标准 食品中涕灭砜威、吡唑醚菌酯、嘧菌酯等65种农药残留量的测定 液相色谱-质谱/质谱法 GB 23200.35-2016食品安全国家标准 植物源性食品中取代脲类农药残留量的测定液相色谱-质谱法 GB 23200.36-2016食品安全国家标准 植物源性食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定液相色谱-质谱/质谱法 GB 23200.37-2016食品安全国家标准 食品中烯啶虫胺、呋虫胺等20种农药残留量的测定 液相色谱-质谱/质谱法 GB 23200.38-2016食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定液相色谱-质谱/质谱法 GB 23200.39-2016食品安全国家标准 食品中噻虫嗪及其代谢物噻虫胺残留量的测定液相色谱-质谱/质谱法 GB 23200.40-2016食品安全国家标准 可乐饮料中有机磷、有机氯农药残留量的测定气相色谱法 GB 23200.41-2016食品安全国家标准 食品中噻节因残留量的检测方法 GB 23200.42-2016食品安全国家标准 粮谷中氟吡禾灵残留量的检测方法 GB 23200.43-2016食品安全国家标准 粮谷及油籽中二氯喹磷酸残留量的测定气相色谱法 GB 23200.44-2016食品安全国家标准 粮谷中二硫化碳、四氯化碳、二溴乙烷残留量的检测方法 GB 23200.45-2016食品安全国家标准 食品中除虫脲残留量的测定液相色谱-质谱法 GB 23200.46-2016食品安全国家标准 食品中嘧霉胺、嘧菌胺、腈菌唑、嘧菌酯残留量的测定气相色谱-质谱法 GB 23200.47-2016食品安全国家标准 食品中四螨嗪残留量的测定气相色谱-质谱法 GB 23200.48-2016食品安全国家标准 食品中野燕枯残留量的测定气相色谱-质谱法 GB 23200.49-2016食品安全国家标准 食品中苯醚甲环唑残留量的测定气相色谱-质谱 法 GB 23200.50-2016食品安全国家标准 食品中吡啶类农药残留量的测定液相色谱-质谱/质谱法 GB 23200.51-2016食品安全国家标准 食品中呋虫胺残留量的测定液相色谱-质谱/质谱法 GB 23200.52-2016食品安全国家标准 食品中嘧菌环胺残留量的测定气相色谱-质谱法 GB 23200.53-2016食品安全国家标准 食品中氟硅唑残留量的测定气相色谱-质谱法 GB 23200.54-2016食品安全国家标准 食品中甲氧基丙烯酸酯类杀菌剂残留量的测定气相色谱-质谱法 GB 23200.55-2016食品安全国家标准 食品中21种熏蒸剂残留量的测定 顶空气相色谱法 GB 23200.56-2016食品安全国家标准 食品中喹氧灵残留量的检测方法 GB 23200.57-2016食品安全国家标准 食品中乙草胺残留量的检测方法 GB 23200.58-2016食品安全国家标准 食品中氯酯磺草胺残留量的测定液相色谱-质谱/质谱法 GB 23200.59-2016食品安全国家标准 食品中敌草腈残留量的测定气相色谱-质谱法 GB 23200.60-2016食品安全国家标准 食品中炔草酯残留量的检测方法 GB 23200.61-2016食品安全国家标准 食品中苯胺灵残留量的测定气相色谱-质谱法 GB 23200.62-2016食品安全国家标准 食品中氟烯草酸残留量的测定气相色谱-质谱法 GB 23200.63-2016食品安全国家标准 食品中噻酰菌胺残留量的测定液相色谱-质谱/质谱法 GB 23200.64-2016食品安全国家标准 食品中吡丙醚残留量的测定液相色谱-质谱/质谱法 GB 23200.65-2016食品安全国家标准 食品中四氟醚唑残留量的检测方法 GB 23200.66-2016食品安全国家标准 食品中吡螨胺残留量的测定气相色谱-质谱法 GB 23200.67-2016食品安全国家标准 食品中炔苯酰草胺残留量的测定气相色谱-质谱法 GB 23200.68-2016食品安全国家标准 食品中啶酰菌胺残留量的测定气相色谱-质谱法 GB 23200.69-2016食品安全国家标准 食品中二硝基苯胺类农药残留量的测定液相色谱-质谱/质谱法 GB 23200.70-2016食品安全国家标准 食品中三氟羧草醚残留量的测定液相色谱-质谱/质谱法 GB 23200.71-2016食品安全国家标准 食品中二缩甲酰亚胺类农药残留量的测定气相色谱-质谱法 GB 23200.72-2016食品安全国家标准 食品中苯酰胺类农药残留量的测定气相色谱-质谱法 GB 23200.73-2016食品安全国家标准 食品中鱼藤酮和印楝素残留量的测定液相色谱-质谱/质谱法 GB 23200.74-2016食品安全国家标准 食品中井冈霉素残留量的测定液相色谱-质谱/质谱法 GB 23200.75-2016食品安全国家标准 食品中氟啶虫酰胺残留量的检测方法 GB 23200.76-2016食品安全国家标准 食品中氟苯虫酰胺残留量的测定液相色谱-质谱/质谱法 GB 23200.77-2016食品安全国家标准 食品中苄螨醚残留量的检测方法 GB 23200.78-2016食品安全国家标准 肉及肉制品中巴毒磷残留量的测定气相色谱法 GB 23200.79-2016食品安全国家标准 肉及肉制品中吡菌磷残留量的测定气相色谱法 GB 23200.80-2016食品安全国家标准 肉及肉制品中双硫磷残留量的检测方法 GB 23200.81-2016食品安全国家标准 肉及肉制品中西玛津残留量的检测方法 GB 23200.82-2016食品安全国家标准 肉及肉制品中乙烯利残留量的检测方法 GB 23200.83-2016食品安全国家标准 食品中异稻瘟净残留量的检测方法 GB 23200.84-2016食品安全国家标准 肉品中甲氧滴滴涕残留量的测定气相色谱-质谱法 GB 23200.85-2016食品安全国家标准 乳及乳制品中多种拟除虫菊酯农药残留量的测定气相色谱-质谱法 GB 23200.86-2016食品安全国家标准 乳及乳制品中多种有机氯农药残留量的测定气相色谱-质谱/质谱法 GB 23200.87-2016食品安全国家标准 乳及乳制品中噻菌灵残留量的测定荧光分光光度法 GB 23200.88-2016食品安全国家标准 水产品中多种有机氯农药残留量的检测方法 GB 23200.89-2016食品安全国家标准 动物源性食品中乙氧喹啉残留量的测定液相色谱法 GB 23200.90-2016食品安全国家标准 乳及乳制品中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱法 GB 23200.91-2016食品安全国家标准 动物源性食品中9种有机磷农药残留量的测定 气相色谱法 GB 23200.92-2016食品安全国家标准 动物源性食品中五氯酚残留量的测定液相色谱-质谱法 GB 23200.93-2016食品安全国家标准 食品中有机磷农药残留量的测定气相色谱-质谱法 GB 23200.94-2016食品安全国家标准 动物源性食品中敌百虫、敌敌畏、蝇毒磷残留量的测定液相色谱-质谱/质谱法 GB 23200.95-2016食品安全国家标准 蜂产品中氟胺氰菊酯残留量的检测方法 GB 23200.96-2016食品安全国家标准 蜂蜜中杀虫脒及其代谢产物残留量的测定液相色谱-质谱/质谱法 GB 23200.97-2016食品安全国家标准 蜂蜜中5种有机磷农药残留量的测定 气相色谱法 GB 23200.98-2016食品安全国家标准 蜂王浆中11种有机磷农药残留量的测定 气相色谱法 GB 23200.99-2016食品安全国家标准 蜂王浆中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱/质谱法 GB 23200.100-2016食品安全国家标准 蜂王浆中多种菊酯类农药残留量的测定 气相色谱法 GB 23200.101-2016食品安全国家标准 蜂王浆中多种杀螨剂残留量的测定 气相色谱-质谱法 GB 23200.102-2016食品安全国家标准 蜂王浆中杀虫脒及其代谢产物残留量的测定 气相色谱-质谱法 GB 23200.103-2016食品安全国家标准 蜂王浆中双甲脒及其代谢产物残留量的测定 气相色谱-质谱法 GB 23200.104-2016食品安全国家标准 肉及肉制品中2甲4氯及2甲4氯丁酸残留量的测定液相色谱-质谱法 GB 23200.105-2016食品安全国家标准 肉及肉制品中甲萘威残留量的测定 液相色谱-柱后衍生荧光检测法 GB 23200.106-2016食品安全国家标准 肉及肉制品中残杀威残留量的测定 气相色谱法 GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法 GB 23200.109-2018食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法 GB 23200.110-2018食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法 GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法 GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法 GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法 GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联 GB 23200.115-2018食品安全国家标准 鸡蛋中氟虫腈及其代谢物残留量的测定 液相色谱-质谱联用法 GB 23200.116-2019食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定气相色谱法 GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法 GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法 GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法 GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法 GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法 目前仪器信息网资料库 (https://www.instrument.com.cn/download/)有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!近期资料库正则举办“千里“粽”香情 谱图惠万人 ——传谱图 得手机大奖 ”,也诚邀您的参与。
  • 农药残留 食品安全第一威胁
    3.15日,农业部给河南与江苏农牧部门发出指令,令两地严查“瘦肉精”喂出的“健美猪”流入双汇发展。农业部当天成立专案督察组赶赴河南督导查处工作。下午,双汇发展股票跌停。3月16日开始,双汇发展股票停牌,公司公告待相关事件核实清楚后复牌。   早在2002年,国家多个部委就联合发文,严禁在饲料和动物饮用水中添加“瘦肉精”。2008年,最高人民检察院与最高人民法院甚至规定,对使用“瘦肉精”者追究刑事责任。安邦咨询认为,双汇发展爆出“瘦肉精”仅仅是食品安全的冰山一角,每年全国农药中毒者高达上百万人,农药残留才是中国食品安全最大的问题。   农药残留潜规则 年均百万人农药中毒   2008年, “三聚氰胺”中国乳业,威胁数千名婴儿生命。至今两三年间,“三聚氰胺”卷土重来,“激素门” 、“皮革奶”、大米石蜡、苏丹红、孔雀石绿等事件接二连三地冲击着消费者的信心。   近年大量显现的这些问题,并不是中国食品安全问题的全部——它们只是由于事态严重而“被偶然曝光”的问题。迄今,中国政府处理食品安全问题的特点,基本上都是“事件应对型”、“事后弥补型”,这样的处理模式使社会的注意力都集中在已暴露的事件上,而忽略了潜藏的、非事件型的食品安全问题。研究发现,中国食品安全中最大的问题并不是上述这些冰山一角,而是被普遍忽视的农药残留问题!   2010年1月,根据武汉农业局的抽检,来自海南多个地区的豇豆样品均出现了水胺硫磷农药残留超标。随着调查的深入,同样已被严令禁止的甲胺磷等高毒农药实际上一直都在市面销售。根据农业部统计,目前全国农药厂家超过4000家,获得农药登记证的产品3万多个,进入海南农药市场的品种也有上万个。   据了解,农药经销商在应付检查时,通常是两种方式,“迎接一个月4次左右的检查,买烟、买水每次需花两百多元 执法人员突击检查的时候,随便看看,没查出大问题,便象征性地罚500元。”掌管食品安全的政府执法部门如此轻率地工作,这无异于严重的渎职!   令人遗憾的是,农药市场乱象纷呈的局面不止发生在海南。2009年,绿色和平组织曾在北京、上海和广州三地的大型超市和农贸市场,以普通消费者身份采购日常蔬菜,送往青岛一家国家授权的、独立的第三方检测机构化验。结果发现:在45个送检的蔬菜样品中,40 个检测出农药残留 农药种类高达50种,其中5种是世界卫生组织确认的高毒农药。北京一家沃尔玛超市一颗草莓上竟残留有13种农药。   而上述“潜规则”的长期存在,造成了中国的农药残留问题鲜明的处理特点。也正因为如此,中国食品的农药残留,正在威胁着我们的生命。据了解,农药对人体的危害主要表现为三种形式:急性中毒、慢性危害和致癌、致畸、致突变等“三致”危害。   农药在人体内不断积累,短时间内虽不会引起人体出现明显急性中毒症状,但可产生慢性危害。据估计,美国与农药有关的癌症患者数约占全国癌症患者总数的50%,中国更高。同样,农药对其它生物也会形成直接杀伤和慢性危害,植物中的农药可经过食物链逐级传递并不断蓄积,对人和动物构成潜在威胁,并影响生态系统。   如果时间倒推20-30年,中国不会大面积感受到农药带来的危害。因为那时,中国有能力生产的农药尚不足80种,还很难满足农业生产的需要。而上世纪90年代之后,中国逐渐由农药进口国变成出口国,近两年,农药进口量只相当于产量的2%-3%,出口量已是进口量的十几倍。   根据中国农药工业协会前理事长介绍,目前中国农药大约40%左右的产量出口,出口量达到了50万吨以上的水平,如果按照制剂计算数量更多。根据中国统计局发布的数据,2009年中国农药产量为190万吨,2010年为240万吨,产量和增幅均居世界首位。   美国康奈尔大学的数据为此说法提供了佐证:全世界每年使用的600余万吨农药,实际发挥效能的仅1%,其余99%都散逸于土壤、空气及水体之中,中国大陆是最大的毒源。世界卫生组织表示,全球每年有400多万人农药中毒,其中30万人死亡 而中国每年农药中毒事故达近百万人次,死亡约10万多人。   四大环节层层失控 治理陷入“治乱循环”怪圈   一份食品,从田野走向餐桌,按中国现有的规定,要经历农业、卫生、质检、工商、进出口、药监等六部门的监管,为何还屡有问题蔬菜事件发生?擅用高毒、不达标的农药显然是违法的,为何中国对农药残留的治理长期陷入“治乱循环”的怪圈?   农药进入市场后大致经历以下流通环节:原药提供商-制药生产厂家-农药批发商-农药经销商-农户。而在农民买入农药之前的每个环节,都有相关规定来限制厂商的经营资格、收费标准和农药许可等。可以说,监管在所有环节中的把关不可或缺。令人遗憾的是,随着梳理的深入,农药从田间到饭碗隐藏了太多畅通无阻的绿灯。   第一, 源头监管“关口”若有若无。   中国的农药生产以中小企业为主,从产量来看,2000吨/年原药生产厂家不足200家,农药产量在5000吨以上的企业不足20家 从产值来看,中国农药排名前20的企业,其产值只占据行业约32%的份额 从销售来看,年销售量2000吨以下的企业占85%,年销售收入超过10亿的企业只有7家。相比之下,一个拜耳公司的销售额可与中国整个行业相当。   而作为“田间地头”最典型单位的县级蔬果产地中,农药残留的检测几乎缺失。比如,早已列入黑名单的水胺硫磷等并未从此退出江湖,而由于价格便宜、工艺简单,每个县的农药厂都能生产,此类高毒农药一直潜伏于市场,所以才有了海南“毒豇豆事件”。   在2011年“两会”的分组讨论中,华南农业大学副校长温思美居然发表“提高农药化肥价格,让农民用不起,自然会用畜禽粪便”的荒谬提议。如何能让消费者吃上健康、绿色、安全的食物,唯一的解决方案竟是倒逼农民“出去拾粪”?   第二, 农业生产环节出现了严重问题。   中国农业虽然以小农经济为主,但也患上了“大农业病”。反季节果蔬生产,加剧了农产品中的药物残留 动物“速成班”将鸡、鸭、鹅等禽类生命周期缩短至28-45天,猪缩短至2.5-4个月。这些严重违背生物学规律的种植和养殖模式大量泛滥,令各种农药、激素和添加剂充斥城乡食品中。   第三, 农药安全预防体系全面缺失。   2004年,中国取消了农药经营许可制度,农药经营门槛降低,经营单位数量猛增,农药市场秩序更加混乱。这意味着,农药流通环节中的企业、生产厂家,都有机会成为 “毒菜”事件的“策划者”。   一家广州农药经销商曾经“自爆家丑”:一些农药生产厂家在合法登记的农药产品中偷加高毒农药等“隐形成分”已经成为业内潜规则。而在这个链条上,零售商、经销商和农药厂家都难辞其咎。“许多山寨厂家一方面为了本身利益,另一方面也为迎合零售商的需求,把各种农药成分随意加减,然后冠以悦耳的商品名或者借以合法的标签,推出所谓的特效产品,给某些零售商独家经销。甚至直接把配置好的产品以大包装给某些零售商,任由零售商处置。”   “有毒豇豆”事件之后,业内人士算了一笔账,海南豇豆1亩喷一次药的用药成本是60-90元,平均3-5天用一次药,一季豇豆种植下来一亩地至少250元。与常规农药相比,水胺硫磷和甲胺磷等高毒禁用农药价格便宜,300毫升包装的每瓶7-8元,1瓶兑3-4桶水,可以喷1亩地。如果换成水胺硫磷,成本至少减掉三分之二以上,每亩用药成本不到100元。 倘若取消个体经营,又会出现怎样的局面呢?   广东农业县徐闻曾上演了一出管理者“借机敛财”的闹剧。在该县工商局没有任何通知的情况下,全县的药品进行了一次“紧急召回”:所有个体农药经营者的工商营业执照全部被收回,这次行动不是为了更换执照,而是要求个体经营者重新办理。一时间,徐闻个体农药经营者全部成了黑户。   而办理的程序是:农药店只要加盟供销社,每年上缴5000元管理费和5000元保证金,就可告别“个体户”,转为集体性质。与此同时,供销社根据农药店的经营规模制订了不同的收费价码:县城徐城镇的农药零售店需交管理费5000-8000元/年,保证金为5000-15000元不等。据农药店老板介绍,大的农药批发商则须交纳50000元的保证金。通过“收编”的方式获取巨额保证金,农药的经营实际上换汤不换药。在这类事件中,寻租意识强烈的政府部门成为了问题的重要制造者。   第四,“最后一关”形同虚设。   政府监管部门的工作失效,也是导致农药残留问题大行其道的重要原因。   2009年湖北省工商局对武汉、荆州、黄冈、天门、潜江五个地区的农资市场进行的抽检中,共抽检农药样品78组,合格57组,有21组不合格,合格率仅为73.08%,比2008年同期下降22.25%。   农药产品的合格率不但没有增加,反而下降。这意味着,农药残留的把关令人担忧。农业部种植管理司司长叶贞琴曾表示,“在影响蔬菜、水果等鲜食农产品质量安全诸多因素中,最突出的是农药残留超标,特别是禁限用高毒农药残留超标问题。”   对生鲜蔬菜进行检测效率是个现实的大问题。在蔬菜批发市场,检测和销售同时进行。如果检测速度过慢,蔬菜都卖完了,结果可能才会出来,那检测也就失去了意义,极易导致不合格蔬菜流入社会。正如济南农业监察支队工作人员所说,蔬菜批发市场的农药检测设备,都是属于“快速检测”设备。   快速检测的结果没有法律效力,即使查出蔬菜农药残留超标,也不能作出处罚。按照常规,市场检出蔬菜农药残留不合格的蔬菜后,一边让蔬菜商停售,一边上报市农业局,再由农业部门做精确检测 一旦确认蔬菜确实农药残留超标,农业部门就会出具检测报告,再由工商部门实施处罚。这个过程走下来,至少得两天的时间。   如何投入人力、技术、设备进行农药检测的把关,如何行之有效地设置流程、标准,将对农药残留物检测环节在农产品生产链条中向前设置,成为目前中国政府监管农药市场最迫切需要解决的问题。   807项残留标准把关 四大弊病缠绕农药结构   与众多食品安全问题一样,农药残留问题之所以得不到很好解决,与政府的监管不到位有很大关系。   2010年,农业部农药检定所宋稳成博士公开中国食品农药残留标准,发现现有的标准仅有807项。而相比之下,国际食品法典委员会有3338项,欧盟14.5万项,美国1万多项,日本5万多项。差距之大,不可以道里计!   直到2010年4月,在第一届国家农药残留标准审评委员会成立大会上,农业部副部长危朝安对下一步农药残留标准工作提出了具体要求,“3年内,中国的农药残留标准要从目前的807项达到7000项,探索建立由国家标准、临时标准、豁免物质名单和一律限量标准等组成的农药残留限量框架,基本形成具有中国特色的农药残留标准体系,切实保障农产品消费安全和公众身体健康。”   根据国家统计局的数据,作为世界最大的农药生产国,中国的农药出口基本覆盖了全球农药市场,涉及全球150多个国家和地区。国内每天上市的蔬菜水果分别达到上千万公斤,由于检测标准不同,中国人每年要多吃多少农药?想想都让人心惊肉跳。   以黄瓜为例,根据2010年《农药电子手册》统计,在黄瓜上登记的农药有效成分达到111种。但根据2002年中华人民共和国农业行业标准《无公害食品——黄瓜》公布的标准,只要检测中不含有敌敌畏、乐果、三唑酮等8种农药和铅、镉、亚硝酸盐等3种重金属或致癌物质,就可以达到“无公害”的标准。而剩余的上百种农药成份,均不被纳入检测的范围。 正是基于此,果蔬消费市场上“有机”、“绿色”等概念应运而生。据了解,有机蔬菜的概念出现在20世纪初,首先由欧洲国家提出,2000年,中国有机食品市场启动。在部分消费者心中,为了保证安全,往往愿意花上多好几倍的价钱去购买“有机”农产品,基于此,全球的有机食品市场每年以20%-30%的速度增长。   但在中国,截止到2007年底,有机食品产值仅30亿元,其中出口2亿多美元,占当年全球有机食品销售额的1% 中国境内有机食品仅占食品销售总额的0.02%,与发达国家有机食品国内消费总额2%相比,相差达100倍。更值得关注的是,在信息严重不对称的食品消费市场中,在巨大的利润诱惑下,“有机”真的能等同于“放心”吗?“有机”又是如何验证的呢?   安邦研究人员发现,有众多认证咨询机构收取高额的认证费,“收了钱之后如果检测不合格,那就需要整改,肯定就会通过的,我们一定会帮你过关拿证。”实际上,关于“有机食品”是否更安全、更营养的争论,美国农业部一直公开申明,不对有机产品是否更有营养和更安全发表评论,也不允许宣传有机产品对常规产品的优势。他们的逻辑是:没有可靠的证据,不允许想当然地乱说。   据统计,自1995年以来,中国已连续15年成为全球反倾销措施的最大受害者,食品和农药是其中涉及的重点行业。据中国农药工业协会预测,受欧盟REACH法规的影响,中国农药产品将部分退出欧盟市场,每年将减少出口额7000万美元以上,随着欧盟东扩,中国农药出口所受到的损失将超过8000万美元。   不久前,欧盟发布了新法规(EC)NO.901/2009用来代替(EC)NO.1213/2008法规,内容涉及到2010年、2011年和2012年动植物源性食品农药残留监控计划。该法规已于2010年1月1日开始生效。欧盟认为,农药的使用每3年会发生很大的变化。因此每次欧盟都会制定一个3年的食品监控计划。   而根据中国农药工业协会的报告,中国农药结构存在巨大的弊端:   1.品种数量少。世界上已注册的农药化合物有2800多种,其中商业化应用的有1300多种,常用的有500多种,而中国能够生产的尚不足300个品种,且产量较大的主要集中在十几个品种,大多还是老品种。   2.杀虫剂、杀菌剂、除草剂的比例不尽合理,高效、低毒、无公害的新品种短缺,而传统农药产品严重过剩。   3.部分高毒品种如灭多威、氧化乐果等还在大吨位生产,影响出口量。   4.农药制剂品种少,剂型不合理。发达国家农药制剂品种多达几千种,中国只能生产800多种,具体到1个原药品种,发达国家可制成30多种剂型,而中国只能做出5-6种。在剂型上,国外以无溶剂、水剂、固体化为主,而中国仍以乳油、粉剂、可湿性粉剂和颗粒剂为主,其中乳油约占50%,大量的甲苯、二甲苯、纯苯以及溶剂造成环境污染。   监管的失控,跟中国本身的管理体系有关。美国管农药的只有三个部门,分工明确:环保局,主要管农药的注册登记、安全使用最大残限的标准制定,开发农药残留的分析方法 农业部,专门有一个部门,专门做国内的残留抽样 FDA,则做国际和州之间的进出口检测。三部门工作协调,分工明确。相比之下,中国的农药监管多头并出,但在农药使用方面几乎毫无控制和限制。   中国已提出经济发展方式转型,又强调以人为本。从食品安全角度来看,这意味着食品安全标准应该不断提高,食品安全保障的压力将持续加重,对农药残留等问题的监管制度应该不断完善。然而,在此背景下,国内迄今对于农药污染环境、危害人类及生物等方面似乎仍未被列入系统防治的范畴。倘若中国仍然允许盲目使用农药化肥,对农药残留的监管继续放任,隐性的农药残留物问题,将继续悄悄地吞噬中国人的健康,这对整个中国将是个巨大的不幸!
  • 农残国标发布一年,它做农残也有奇效?
    上一期飞飞为各位老师带来了LC-MS/MS应对GB23200.121-2021的方法。本次向老师们介绍飞飞家农残检测的另外一个绝招,这一招应对比较难处理的强极性农药残留有很好的效果!谈起强极性农药,老师们首先能想到什么呢?1是那些响当当的名字:● 百草ku、敌草快、甲哌鎓、矮壮素、草甘膦、乙烯利… … 2还是那些听了就吓人的危害:● 百草ku与敌草快进入体内超过承受的剂量后,对呼吸与代谢系统的危害均可危及生命;甲哌鎓与矮壮素若使用不当,进入体内过量会造成重及致死的后果。3前处理流程繁琐:● 是在农残检测中繁琐而又稳定性不佳的衍生化前处理流程。4潜在高成本:● 还是使用亲水色谱柱,勉强用含盐流动相调节pH,但保留时间不稳定,又造成色谱柱效下降快同时影响仪器寿命的潜在高成本。哎真可谓是危害大,检测烦。国内外监管机构对百草ku等强极性农药有很强的监管,对食品监管部门,还是对消费者,强极性农药的检测与筛查无疑是保障食品安全的重要一环!那么飞飞这里应对强极性农药残留的绝招到底是什么呢?那就是:离子色谱质谱联用法(IC-MSMS法) 极性阳离子农药残留采用IC-MSMS法对草莓基质进行检测,同时分析百草ku、敌草快、甲哌鎓、矮壮素和TMS这五种极性阳离子农药。前处理过程参照欧盟实验室QuPPe提取方法增加了SPE净化步骤,在满足回收率的要求的同时增强了系统的耐受性,经过赛默飞ICS-6000离子色谱与TSQ Quantis Plus三重四极杆质谱的联用系统检测,灵敏度,回收率与重复性均能够充分满足对强极性阳离子农残检测的要求。检测具体细节,前处理方法,色谱与质谱条件,请点击阅读原文来免费获取吧!1整体检测流程:● 样品经过自动进样器,进入色谱柱分离后,再进入质谱仪进行分析,获得最终数据。2样品前处理(QuPPE提取+SPE净化):● 取均质后的草莓样品10g,经过甲酸甲醇溶液提取,涡旋振荡,静置,离心,稀释,SPE净化方式,进行前处理,最终滤液收集在进样小瓶中待测。3检测(IC-MSMS):● 经优化梯度程序,草莓样品种的五种化合物在10分钟内分离,其色谱图及内标物如图所示:五种阳离子型农药和三种内标物IC-MS/MS色谱图对应的五种化合物在0.005mg/kg加标量下的响应峰形如下图所示,可见,方法的灵敏度完全可以满足国标和欧盟的需求。草莓基质中0.005 mg/kg加标量对应的五种化合物定量离子和定性离子色谱图(点击查看大图)通过对草莓基质中五种极性阳离子型农药的低、中、高三个加标水平的回收率和重复性验证,基于IC-MS/MS系统可以为复杂食品基质中极性阳离子型农药分析提供高灵敏度、高选择性以及更可靠的分析方法。该方法免除了衍生化反应,直接进行分析,减少影响结果的不确定因素,节约成本,节约时间。系统耐受性良好,可以为日常分析提供长期稳定的系统支持。极性阴离子农药采用IC-MSMS法对面粉和葱进行取样分析,同时分析三乙膦酸铝(Fosetyl-Al)、双丙氨膦(Bialphos)、草铵膦(Glufosinate)、N-乙酰草铵膦(N-acetyl Glufosinate)、草甘膦(Glyphosate)、N-乙酰草甘膦(N-acetyl glyphosate)、AMPA、HEPA、MPPA、N-乙酰 AMPA(N-acetyl AMPA)、氯酸盐(Chlorate)、膦酸(Phosphonic acid)、乙烯利(Ethephon)、三聚氰酸(Cyanauric Acide)、高氯酸盐(Perchlorate)、抑芽丹(Maleic hydrazide)16种极性阴离子物质。1整体检测流程:(点击查看大图)2样品前处理(QuPPE提取):● 样品提取是基于QuPPe 方法优化,面粉样品用水分散均匀后,用甲醇进行提取,提取后的样品经过冰箱放置后进行离心,稀释,过滤后上机。3检测(IC-MSMS):IC-MSMS检测16种阴离子化合物检测结果(点击查看大图)● 由图可见,采用本方法,16种阴离子待测物均得到很好的色谱保留时间,分辨率和峰形。在面粉基质中,除青鲜素以外的15 种待测物灵敏度都足够在4 ng/g 甚至更低的浓度下被测定。本方法可以满足对极性阴离子物质检测的需求。检测具体细节,前处理方法,质谱条件请扫码或点击阅读原文来免费获取吧!愿对您的检测工作有所帮助!One More Thing:其实,原本是想要向老师们介绍GC-MS/MS应对农残检测的方法的。但是,飞飞家的气相产品全线在3月8日迎来了巨大的更新!从自动进样器,到单气相分析仪,再到单杆与三重四极杆气相质谱仪全体“焕芯”。为什么用“芯”字呢?飞飞这里卖个关子,请老师们移步我们的气相新品专题一窥究竟吧!▲点击图片查看详情咱们GC-MS/MS的应用介绍放到下次,配合强大的新品再向各位老师介绍。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 【培训】食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 【培训】要开班啦——食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 百灵威农药残留标准品助您鉴别毒茶
    我g作为茶叶生产、消费和输出的大g,有着悠久的茶文化,但是茶叶中农药残留c标却时刻威胁茶文化的传承和人们的身体健康。研究表明,饮用农残c标茶叶,可致癌、损害生育能力和胎儿发育,甚至损害人的神经系统和遗传基因。y边是农残c标质量堪忧的茶叶,y边是浑然不觉、盲目饮用消费,茶叶是否正悄悄成为&ldquo 荼叶&rdquo &mdash &mdash 荼毒生灵之叶?百灵威提供与g家检测标准相符合的农残标准品,帮助各质检单位及时发现有害茶叶,以保障大家饮茶安全与身体健康。 百灵威大型标准品库产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照品都达到或c过美g化学会z新的分析试剂标准。所有分析标准品都符合ISO34以及ISO 17025认证,并可溯源到NIST、BAM或IRMM等g立计量科学研究院,可满足z高质量控制体系要求。每份标准样品均附带原批次质检报告和材料安全数据卡,并且可以为用户提供专业标准品的定制服务。 ■ 茶叶中常检农残标准品 产品编号 产品名称 包装 目录价 P-445N 联苯菊酯 Bifenthrin 10 mg ¥590 P-595N 噻嗪酮 Buprofezin 10 mg ¥450 P-577N 杀螟丹 Cartap 10 mg ¥730 P-447N 苯醚甲环唑 Difenoconazole 10 mg ¥309 P-377N 除虫脲 Diflubenzuron 10 mg ¥169 P-091N &alpha -硫丹 Endosulfan I 10 mg ¥309 P-092N &beta -硫丹 Endosulfan II 10 mg ¥309 P-015N 草甘膦 Glyphosate 10 mg ¥169 P-057N 三氯杀螨醇 Kelthane 10 mg ¥309 P-032S 灭多威 Methomyl 1 mg/mL in MeOH 1 mL ¥518 ■ 其他相关分析耗材产品 产品编号 产品名称 包装 目录价 116481 甲醇, 99.9% [HPLC/ACS] 4 L ¥180 134752 乙腈, 99.9% [HPLC/ACS] 4 L ¥400 187553 水 [HPLC] 4 L ¥375 S02302 J&K C18柱(250 mm× 4.6 mm, 5 &mu m) 1 支 ¥2,800 S010125-3002 AB-1气相柱, 30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 ZTLMGL-4.1 针筒式滤膜过滤器 Ф13 0.2 &mu m(有机) 100 片/包 ¥150 WKLM-3 微孔滤膜 Ф50 0.45 &mu m(水相) 100 片/包 ¥380 901275 J&K瓶口分配器(5.0-50.0 mL) 1 支 ¥2,000 958945 J&K单道手动可调移液器(100-1000 &mu L) 1 支 ¥340 928429 J&K磁力搅拌器(数显、加热、不锈钢) 1 台 ¥3,112 5182-0553 螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫) 100 个/包¥527 5182-0728 聚丙烯螺纹瓶盖(无隔垫) 100 个/包 ¥109 5183-4759 高j绿色隔垫(带预穿孔) 50 个/包 ¥699 CER-001-1 1.5 mL标准毛细储存瓶 1 个 ¥240 以上价格仅供参考,详情请致电400-666-7788!
  • 美国公布某些农药残留限量标准
    美国环境保护部(EPA)于2009年3月初公布了一些除草剂和杀菌剂的残留量限制标准。   主要内容:   1. 丙苯磺隆(Propoxycarbazonehe)及其代谢物Pr-2-OH   美国环境保护部根据Bayer Crop Science公司的申请制定了丙苯磺隆(Propoxycarbazonehe)及其代谢物Pr-2-OH在一些商品上的残留限量标准,该申请提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的丙苯磺隆(Propoxycarbazonehe)及其代谢物Pr-2-OH的综合残留限量为:牧草25ppm;干草20ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   2. 精吡氟禾草灵(Fluazifop-P-butyl)   美国环境保护部根据Syngenta Crop Protection, Inc.公司的申请制定了精吡氟禾草灵(Fluazifop-P-butyl)在一些商品上的残留限量标准,该申请提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的精吡氟禾草灵(Fluazifop-P-butyl)的综合残留限量为:干豆种子50ppm;胡萝卜根2.0ppm;牛脂肪、山羊脂肪、猪脂肪、马脂肪、家禽脂肪和绵羊脂肪0.05ppm;牛肉、山羊肉、猪肉、马肉、家禽肉和绵羊肉0.05ppm;牛肉副产品、山羊肉副产品、猪肉副产品、马肉副产品、家禽肉副产品和绵羊肉副产品0.05ppm;棉油0.2ppm;未脱绒棉籽0.1ppm;鸡蛋0.05ppm;菊苣6.0ppm;核果类水果0.05ppm;牛奶0.05ppm;澳洲坚果0.1ppm;洋葱球茎0.5ppm;花生1.5ppm;花生饼粉2.2ppm;美洲胡桃0.05ppm;大豆种子2.5ppm;菠菜6.0ppm;甘薯0.05ppm;芦笋3.0ppm;咖啡豆0.1ppm;塔巴斯科辣椒1.0ppm;大黄0.5ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   3. 恶唑酮菌(Famoxadone)   美国环境保护部根据第4 (IR-4) 号地区间研究项目要求修订了恶唑酮菌(Famoxadone)在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的恶唑酮菌(Famoxadone)的综合残留限量为:蔓越莓亚组13-07A 10ppm;芫荽叶25ppm;洋葱球茎亚组3-07A 0.45ppm;绿色洋葱亚组3-07B 40ppm;菠菜50ppm;多叶蔬菜 芸苔除外、组4 菠菜除外25ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   4. 戊唑醇(Tebuconazole)   美国环境保护部根据第4 (IR-4) 号地区间研究项目要求修订了戊唑醇(Tebuconazole)在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的戊唑醇(Tebuconazole)的综合残留限量为:甜樱桃采收前后5.0ppm;酸樱桃采收前后5.0ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   5. 烯酰吗啉(Dimethomorph)   美国环境保护部根据第4 (IR-4) 号地区间研究项目要求修订了烯酰吗啉(Dimethomorph)在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的烯酰吗啉(Dimethomorph)的综合残留限量为:高丽参0.90ppm;葡萄干6.0ppm;马铃薯0.05ppm;去皮马铃薯0.20ppm;青萝卜20.0ppm;多肉利马豆0.60ppm;葡萄3.5ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   6. 百菌清(Chlorothalonil)及其代谢物4-hydroxy   美国环境保护部根据美国农业部(USDA)的要求修订了百菌清(Chlorothalonil)及其代谢物4-hydroxy在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的百菌清(Chlorothalonil)及其代谢物4-hydroxy的综合残留限量为: 荔枝15ppm;杨桃3.0ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。
  • 人参、黄芪、甘草配方颗粒“其他有机氯类农药残留量”应对方案上线
    10月31日,国家药品监督管理局发布公告“批准颁布第二批中药配方颗粒国家药品标准”。11月2日,国家药典委发布公告,转发第二批36个配方颗粒国家标准文件。 经岛津技术人员查询和整理,2020版药典“人参、黄芪、甘草”药材在【检查】项目处对“其他有机氯类农药残留量”有检测规定,两批配方颗粒国家标准中对“人参(第二批品种)、黄芪(蒙古黄芪)、甘草(甘草)”也有“其他有机氯类农药残留量”检测要求,同品种检测方法、项目、限量要求保持一致。 中药“其他有机氯类农药残留量”检测解决方案 面对配方颗粒国家标准和2020版药典中人参、黄芪、甘草“其他有机氯类农药残留量”检测要求,岛津向广大用户提供全整体解决方案,包括分析仪器、色谱柱和应用方案。 分析仪器和色谱柱ECD-2010 Exceed 电子捕获检测器全新设计的内部结构带来更持久的耐用性、更优异的灵敏度、更宽泛的线性范围,实现良好的ECD性能。ECD池的结构优化,达到卓越的灵敏度。 人参“其他有机氯类农药残留量”应用实例 岛津按照人参品种“其他有机氯类农药残留量”检测标准建立了应用方案,结果如下:9种有机氯混合对照品溶液(100ppb)色谱图9种有机氯混合对照品溶液(1ppb)色谱图 参照《中国药典》的分析方法,采用色谱柱SH-1701 (30 m, 0.32 mm × 0.25 μm )分析 9 种有机氯类农药残留,两个相邻色谱峰的分离度均大于1.5,峰形和重现性良好,且在低浓度下(1 ppb)也能得到较好的峰形,满足《中国药典》需求。此方法可为9 种有机氯类农药残留测定提供参考。 六六六(BHC)(α-BHC,β-BHC,γ-BHC, δ-BHC)、滴滴涕(DDT)(p,p' -DDE,p,p' -DDD,o,p' -DDT,p,p' -DDT)八个化合物属于禁用农药,可使用本方案对植物类药材和饮片中8个禁用农药化合物做初步筛查。 “12 种有机磷类农药残留量” 和“22 种有机氯类农药残留量”测定应用方案 岛津(上海)实验器材有限公司同时参照《中国药典》四部2341通则“第二法 有机磷类农药残留量测定法(色谱法)”、“22种有机氯类农药残留量测定法”分别建立了应用方案,为广大客户检测相应项目提供参考。12 种有机磷类农药混合对照溶液(1ppm)色谱图22 种有机氯类农药混合对照溶液(100ppb)色谱图
  • 干货|农药残留检测的13种常用前处理方法
    振荡漂洗法将待测样品浸泡于提取溶剂中,若有必要可加以振荡以加速扩散,适用于附着在样品表面的农药以及叶类样品中的非内吸性农药。匀浆萃取法将一定量的样品置于匀浆杯中,加入提取剂,快速匀浆几分钟,然后过滤出提取溶剂净化后进行分析。有时为了使样品更具代表性,需加大样品量,这时可先将大量样品匀浆,然后称取一定量的匀浆后的样品用萃取溶剂萃取。 尤其适用于叶类及果实样品,简便、快速。索氏提取法大多数农药是脂溶性的,所以一般采取提取脂肪的方法,将经分散而干燥的样品用无水乙醚或石油醚等溶剂提取使样品中的脂肪和农残进入溶剂中,再净化浓缩即可分析。适用于谷物及其制品、干果、脱水蔬菜、茶叶、干饲料等样品。无水乙醚或石油醚等溶剂,提取效率高,操作简便。需要注意:提取时间长,消耗大量的溶剂必须考虑被测物的稳定性;含水量过高的水果蔬菜不宜作为分析对象。液-液萃取法向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质由原溶液转移到萃取剂的过程。向溶液试样加入非极性或水溶性的溶剂,用振荡等方法来辅助提取试样中的溶质。适合液态样品,或经过其他方法溶剂提取后的液态基质。常用非极性的溶剂有正己烷、苯、乙酸乙酯;常用的水溶性溶剂有二氯甲烷、甲醇、乙、丙酮以及水。 注意:不需要昂贵的设备和特殊仪器,操作简便;常用到大体积的溶剂,而在振荡分配过程中则要控制溶剂体积,费时费力,容易引起误差。超声波提取方法(超声波辅助萃取法,Ultrasonic extraction)超声波是一种高频率的声波,利用空化作用产生的能量,用溶剂将各类食品中残留农药提取出来。 将样品放在超声波清洗机,利用超声波来促进提取适合液态样品,或经过其他方法溶剂提取后的液态基质。适用溶剂包括甲醇,乙醇,丙酮,二氯甲烷,苯等,简便,提取温度低、提取率高,提取时间短。注意:超声波提取器功率较大,噪音比较大,对容器壁的厚薄及容器放置位置要求较高,目前仅在实验室内使用,难以应用到大规模生产上。固相萃取法利用吸附剂对待测组分与干扰杂质的吸附能力的差异,在层析柱中加入一种或几种吸附剂,再加入测样本提取液,用淋洗液洗脱。适用于分离保留性质差别很大的化合物;常用吸附剂包括氟罗里硅土,氧化铝,硅藻土等。优缺点:操作简单,适用面广;有机溶剂的使用量较大,且不适于大批量样品的前处理。固相微萃取法①固相微萃取装置主要由手柄和萃取头两部分构成,萃取头是涂有不同吸附剂的熔融纤维,选择的基本原则是“相似相溶原理”;②用极性涂层萃取极性化合物,用非极性涂层萃取非极性化合物。集采集、浓缩于一体,简单、方便、无溶剂,不会造成二次污染;③若在样品中加入适当的内标进行定量分析,其重现性和精密度都非常好。超临界流体萃取利用超临界流体高密度、粘度小、渗透能力强等特点,能快速、高效将被测物从样品基质中分离,先通过升压、升温使其达到超临界状态,在该状态下萃取样品,再通过减压、降温或吸附收集后分析,对热不稳定、难挥发性的烃类,非极性脂溶化合物,二氧化碳,水,乙烯,丙酮,乙烷等可进行族选择性萃取,萃取物不会改变其原来的性质,萃取过程简单易于调节,萃取装置较昂贵,不适合分析水样和极性较强的物质。自制提取装置将超声波的空化效能与固相萃取的特性结合起来。超声波提取后,再通过固相萃取柱来纯化。适用于浓缩样品中的物质、分离保留性质差别很大的化合物,或经过其他方法溶剂提取后的液态基质,常用试剂水,乙烯,丙酮,乙烷等;吸附剂氟罗里硅土,氧化铝,硅藻土等,集合了超声波提取和固相萃取两种方法的优点,适合多样品的同时处理需要定时清洗。微波辅助萃取法①微波能是一种非离子辐射,它使分子中的离子发生位移和偶极矩,其中有机物受微波辐射使其分子排列成行,又迅速恢复到无序状态。这种反复进行的分子运动,让样品液迅速加热;②微波穿透力强,能深入机体内部,辐射能迅速传遍整个样品液,而不使其表面过热。内部的分子运动溶剂与样品液充分作用,加速了提取过程。适用于土壤、食品、饲料等固体物中的有机物,植物及肉类食品中的农残提取简便、快速。 该法在缩短萃取时间和提高萃取效率的同时也使萃取液中干扰物质的浓度增大,加重了净化步骤的负担。加速溶剂萃取法方法(ASE,acceleratedsolvent extraction)该法是在较高温度(20~2000C)和压力条件(10.3~20.6MPa)下,用有机溶剂萃取。①适用于固体和半固体样品;②在食品分析中有广泛的应用;③提取复杂的生物基质中有机氯农药;④处理中毒样品;⑤有机溶剂用量少(1g样品仅需1.5ml溶剂);⑥样品处理时间短(12~20min);⑦回收率好;⑧处理中毒样品,如氟乙酰胺、毒鼠强,更显示出其萃取快速的优越性,能为及时抢救赢得时间。基质固相分散萃取法(MSPD,matrixsolid phase dispersion)此技术使分析者能同时制备、萃取和净化样品。该技术包括在玻璃研钵中将键合相载体和组织基质混合,用玻璃杵将其研碎成近乎均质分散的组织细胞和基质成分。组织与涂以C18或C3、C8的硅胶迅速混合产生半固体物质,将半固体物质填充于柱中。根据不同分析物在聚合物/组织基质中的溶解度不同进行洗脱。这样获得的萃取物在仪器分析前不需要再处理。 ①特别适合于食品中药物、污染物及农残分析;②几乎囊括了所有的固体样品;③对于很难匀浆和均质的样品,尤其适于处理。衍生化技术通过化学反应将样品中难以分析检测的目标化合物定量转化成另一易于分析检测的化合物,通过后者的分析检测对可疑目标化合物进行定性和定量分析。
  • 酸性矿山废水中微生物分布影响因素
    随着全球工业化的迅速发展, 矿产资源的开发进一步加剧, 由此而产生的酸性矿山废水( AMD) 已经成为许多国家水体污染的主要来源之一。酸性矿山废水若不经处理任意排放就会造成大面积的酸污染和重金属污染, 它能够腐蚀管道、水泵、钢轨等矿井设备和混凝土结构, 还危害人体健康。另外, 酸性水会污染水源, 危害鱼类和其他水生生物 用酸性水灌溉农田, 会使土壤板结, 农作物发黄, 并且随着酸度提高, 废水中某些重金属离子由不溶性化合物转变为可溶性离子状态, 毒性增大。 对于酸性矿山废水的处理主要有这几种方法: 中和法、人工湿地法、硫化物沉淀法和微生物法。其中微生物法就是利用硫酸盐还原菌( SRB) 在厌氧条件下将AMD 中的硫酸盐还原为硫化物, 生成的硫化物再与废水中的重金属发生反应生成难溶解的金属硫化物。由于微生物技术的处理效果较好, 成本也较低, 且无二次污染, 因而受到广泛关注。 国内科学家对中国东南部14个地区的59个AMD样本进行了微生物群落分布的研究。通过对AMD样本中的微生物16SrRNA基因进行454测序,对测序结果进行了物种分布和聚类的分析,最终发现,影响微生物群落的主要因素并不是地域,而是环境的变化,如铁离子、硫酸根离子、有机物含量等等,相关学术论文发表在《自然》子刊ISME(International Society for Microbial Ecology)上。 通过对不同环境的微生物群落分布的研究,加深了人们对极端环境下微生物多样性的了解,为将来利用微生物技术对AMD进行处理和控制具有一定的理论和现实意义。 参考文献:ISME J. 2012 Nov 22. doi: 10.1038/ismej.2012.139. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage.Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS.
  • 农业农村部发布2020国产水产品兽药残留监测合格率99.1%
    日前,农业农村部发布2020年国家产地水产品兽药残留监控情况,国家产地水产品兽药残留监测合格率为99.1%,连续8年保持在99%以上,养殖水产品质量安全稳定在较高水平。据了解,农业农村部实施《2020年国家产地水产品兽药残留监控计划》,组织30个省、自治区、直辖市及3个计划单列市和新疆生产建设兵团农业农村(渔业)主管部门,检查了水产养殖单位2437家,抽检草鱼、鲤鱼等26种养殖水产品4000批次,发现不合格样品37批次,无害化处理不合格水产品1.9吨,依法查处违法企业和个人20余家,共处罚金13.8万元,有力打击了水产养殖违法用药行为。抽检结果显示,从地方看,北京、山西等17个省、自治区、直辖市及3个计划单列市和新疆生产建设兵团的产地水产品兽药残留监测合格率为100%,另外13个省、自治区、直辖市检出氧氟沙星、硝基呋喃类代谢物、氯霉素、诺氟沙星和孔雀石绿5种禁(停)用药残留超标。从品种看,大黄鱼、大菱鲆等15种水产品监测合格率为100%。农业农村部已将2020年监控情况通报各地,要求各地进一步加强元旦、春节期间以及2021年产地水产品兽药残留监控,加强执法巡查和案件查处,严厉打击违法用药行为,开展规范用药普法培训,确保广大人民群众消费的养殖水产品质量安全。合格率的大幅度提升和相应质检部门的频繁有律食品安全抽检也是分不开的,食品抽检主要是依据国家强制性的标准来判断食品是否合格,标签问题、含量不足、产品等级标准不合格、限量成分超标以及含有违禁成分等都可能成为判定食品不合格的原因。一方面可以确保市场流行食物的安全性,另一方面可以维持社会上的稳定。同样的,只有严格把握食品卫生质量,才能更好为国家社会经济提供物质上的保证,可以进一步提高我国产品质量水平奠定基础。深圳市芬析仪器制造有限公司生产的CSY-JASY水产品兽药残留检测仪可定量快速检测动物疫病、药物残留、抗生素残留、瘦肉精、三聚氰胺等有毒有害物质或非法添加物质残留含量。深芬仪器本着秉承“重合同、守信用、优质服务、互利双赢”的经营理念为核心,以产品技术创新为依托、保障食品、药品、环境、水质安全为己任 ,同时为食药监系统、农业系统、畜牧系统、渔业系统、食品企业等提供专业的检测仪器、先进的技术支持和高效的整体解决方案。
  • 津津有卫丨乳制品质量安全之农残检测
    上周,一则“知名牛奶检测丙二醇”的新闻又上了热搜,乳制品质量安全持续受到各方关注。乳制品质量安全包括很多内容,如营养指标、微生物、内源性及外源性污染物、违禁添加等等。今天先来介绍下乳制品中农残的检测。 制品农残从哪来?牛奶(生乳)中农药残留主要来源于奶牛喂养过程中污染水源、饲料来源,部分农药通过食物链蓄积在奶牛体内,并残存于牛奶中,因此要对生乳中农残进行限量要求。 我国乳制品农药残留限量要求GB2763-2021中生乳的农残限量标准要求有125项,其中68项为临时限量,125项中MRL值范围0.001~1 mg/kg。 岛津乳制品农残解决方案特点1、岛津LC-MS/MS农残数据库针对GB2763-2021中生乳农残的覆盖率超过85%。2、GC-MS/MS和LC-MS/MS相结合全方位覆盖生乳农残检测要求。 应用案例:LC-MS/MS和GC-MS/MS分析牛奶中346种农药残留原理:QueChERs前处理,基质匹配外标法定量分析仪器及条件: 表一 不同仪器分析化合物数量方法结果及特点:1. 高通量分析,不同仪器分析化合物数量见表一,两种仪器可共同分析化合物有44个。2. 分析速度快,LC-MS/MS和GC-MS/MS分析时间均在25min之内。3. 灵敏度高,LC-MS/MS中165个化合物LOQ达到5μg/kg,58个达到10μg/kg GC-MS/MS中108个化合物LOQ达到5μg/kg,49个化合物达到10μg/kg。4. 方法回收率和精密度:加标5和10μg/kg(共同分析化合物为10-20μg/kg),两方法294个化合物在LOQ的回收率在70-120%之间,93个化合物在30-70%之间,所有化合物6次重复测定RSDr和RSDR均小于20%。 图1 LC-MS/MS三个化合物线性(从左到右为三环唑、多杀菌素A、增效醚)和LOQ浓度色谱图 图2 GC-MS/MS三个化合物线性(从左到右为四氯硝基苯、倍硫磷、恶草酮)和LOQ浓度色谱图 详细应用报告下载 长按识别二维码下载 本文内容非商业广告,仅供专业人士参考。
  • 舌尖上的安全--阿尔塔发布51种农业部例行监测农残标准品
    舌尖上的安全蔬菜水果中51种农业部例行监测农残的LC-MS/MS分析方法 为确保国民“舌尖上的安全”,农业部建立了农药残留例行监测制度,每年多次检测全国多个城市的蔬菜水果等农产品。在农业部规定的70多种例行监测农残中,有51种农药适用于液质联用 (LC-MS/MS) 分析 ,本方法可用于同时分析蔬菜水果中51种农业部例行监测的农残。 1. 此方法同时分析51种农药,分析时间仅7.5min,大大节省了样品分析时间。2. 样品前处理采用国际通用的QuEChERS (AOAC 2007.1) 方法,样品处理简单、干净。3. 该方法在Triple Quad™ 3500, 4500仪器上,韭菜、豆角和草莓3种基质中经过验证,真正地可用于实际样品的检测。4. 连续分析120个样品15小时,仪器分析结果稳定可靠。5. 现成方法包括所有样品处理,标准曲线配制,数据采集方法, 定量分析和报告模板。 应用于中文Cliquid® 软件中,简单、易上手,客户省去实验方法开发,直接应用方法分析样品,让初学者很快可以得到专家级的结果。 Figure 1. 韭菜基质中0.01 mg/kg农药的色谱图51种农药:多菌灵、啶虫脒、吡虫啉、毒死蜱、噻虫嗪、烯酰吗啉、苯醚甲环唑、腐霉利、氟虫腈、三唑磷、丙溴磷、二甲戊灵、克百威、辛硫磷、异菌脲、敌百虫、咪鲜胺、氟啶脲、阿维菌素、氧乐果、除虫脲、甲基异柳磷、敌敌畏、甲胺磷、灭多威、乙酰甲胺磷、嘧霉胺、甲萘威、涕灭威亚砜、涕灭威、乐果、3-羟基克百威、涕灭威砜、甲拌磷、甲基对硫磷、杀螟硫磷、倍硫磷、水胺硫磷、对硫磷、三唑酮、二嗪磷、灭幼脲、亚胺硫磷、马拉硫磷、哒螨灵、伏杀硫磷、嘧菌酯、甲氨基阿维菌素苯甲酸盐、虫螨腈、甲氰菊酯、联苯菊酯Figure 2. 连续分析15小时典型农药的峰面积变化图Table 1. 在韭菜基质中,典型农药的回收率和线性相关系数 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M 51种农药混标,10ppm订货信息产品名称订货信息产品名称订货信息产品名称1ST21058多菌灵1ST20348氟啶脲1ST20140甲基对硫磷1ST20297啶虫脒1ST25000阿维菌素1ST20111杀螟硫磷1ST20298吡虫啉1ST20167氧乐果1ST20065倍硫磷1ST20001毒死蜱1ST20345除虫脲1ST20173水胺硫磷1ST20350噻虫嗪1ST20127甲基异柳磷1ST20434对硫磷1ST21145烯酰吗啉1ST20097敌敌畏1ST21202三唑酮1ST21189苯醚甲环唑1ST20093甲胺磷1ST20094二嗪磷1ST21226腐霉利1ST20449灭多威1ST20349灭幼脲1ST20305氟虫腈1ST20144乙酰甲胺磷1ST20189亚胺硫磷1ST20438三唑磷1ST21161嘧霉胺1ST20168马拉硫磷1ST20155丙溴磷1ST20277甲萘威1ST25016哒螨灵1ST22249二甲戊灵1ST20273涕灭威亚砜1ST20172伏杀硫磷1ST20271克百威1ST20375涕灭威1ST21157嘧菌酯1ST20170辛硫磷1ST20098乐果1ST25001甲氨基阿维菌素苯甲酸盐1ST21164异菌脲1ST202593-羟基克百威1ST20222甲氰菊酯1ST20182敌百虫1ST20266涕灭威砜1ST20210联苯菊酯1ST21247咪鲜胺1ST20124甲拌磷1ST20396虫螨腈
  • 曝冰露桶装水被检酸度强 PH值达5.0
    黄女士只好用桶装水来洗衣。 黄女士往冰露纯净水中滴入PH值测试剂,水立刻变成了茶色,PH值比对在5.0左右 左为呈茶色的冰露纯净水,右为滴入试剂的自来水,颜色海蓝偏绿,其PH值在7.5左右。   16元一桶的桶装水拿来洗衣服,这不是奢侈浪费,而是太无奈!最近,家住芳村的黄女士在网上发帖,称自测某品牌桶装水,发现其PH值仅为5.0左右,酸度如此之强让全家人感到担忧,再也不敢喝,全部用来洗衣服。   市民自测:冰露桶装水PH值5.0   去年8月份黄女士在她家所在的小区附近的商场里花费160元钱订购了10桶冰露牌桶装纯净水,因为该品牌属于可口可乐公司,黄女士一家便放心地饮用。去年11月份他们叫了第一桶水,到今年4月26日时又叫了第二桶水。“在喝这个水期间我经常感觉肚子不舒服,就怀疑水有问题,后来拿PH值测试剂测试,结果吓了我们一跳。”黄女士说,经过测试,第二桶水的PH值仅为5.0左右,而同时测试的家里的自来水PH值则为7.5左右,而家里另外的某品牌山泉水PH值则为7.0左右。   黄女士说,比较起来,冰露桶装纯净水的PH值比自来水要低很多,呈现较为明显的酸性,这样的“酸水”他们再也不敢喝了。   为了不浪费水,黄女士决定将剩下的冰露桶装水全部用来洗衣服,“连洗碗都不敢。”   昨日下午,记者来到黄女士家,家里刚好放着一桶当天刚送过来的还未开封的冰露桶装水。记者将这桶水开封,现场做起了PH值的测试。   在装满冰露桶装水的一个小碗里,记者往里面滴入PH值测试液,碗里的水立刻变成了茶色,PH值比对在5.0左右。记者随后又舀来黄女士家里的自来水,滴入PH值测试液后,透明的水立刻变成了海蓝色,其PH值在7.5左右。用同样的方法测得其家中某品牌山泉水的PH值则为7.0左右,加入测试液后水变成草绿色。   三种不同的饮用水,加入PH值测试液后却呈现三种截然不同的颜色,其对比颇为强烈。   代理商:若PH值确实过低可更换   记者随后致电冰露桶装水的广州代理商百川水业,对于记者所测的冰露桶装纯净水的PH值在5.0左右的情况,客服人员表示,一般情况下,冰露桶装纯净水的PH值在7以下,属于弱酸性水。   “虽然这个PH值没有具体的标准,但正常情况下应该不会在5.0这样低的数值内。”客服表示,如果顾客确实对该品牌桶装水存在怀疑,他们可派专人上门检测,若测出数值确实过低,将会考虑给顾客更换其他品牌的桶装水。   专家:可能桶消毒时没洗干净不建议长期饮用弱酸性水   中山大学公共卫生学院营养学系教授蒋卓勤告诉记者,蒸馏水、矿泉水、纯净水的PH值一般都在6点多,PH值为5.0的水属于弱酸性水。   对于黄女士所订购的冰露纯净水PH值在5.0左右的数值,蒋卓勤说,因为是家庭测试,这一数字有可能存在误差。但他同时表示,也有可能是该桶装水在生产环节中装水的桶消毒存在问题,“有可能是桶用酸性消毒剂消毒但没有洗干净。”另外一种可能是,该品牌桶装水微生物超标,微生物代谢产生酸性物质,导致其PH值较低。   蒋卓勤同时补充说,对于弱酸性的水,市民不必过于担忧。“平常我们喝的可乐、雪碧PH值都是酸性的。”蒋卓勤说,长期饮用酸性水会导致钙质流失等问题,对于呈现弱酸性的桶装水他也不建议市民长期饮用。专家表示,对于普通人来讲,PH值在6.0~7.5之间比较适合饮用,PH值为7.0左右的中性水最好。而在选择桶装水时,他建议最好选择水源洁净、周围无污染的品牌。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制