当前位置: 仪器信息网 > 行业主题 > >

塑料杯装酸奶盖膜

仪器信息网塑料杯装酸奶盖膜专题为您整合塑料杯装酸奶盖膜相关的最新文章,在塑料杯装酸奶盖膜专题,您不仅可以免费浏览塑料杯装酸奶盖膜的资讯, 同时您还可以浏览塑料杯装酸奶盖膜的相关资料、解决方案,参与社区塑料杯装酸奶盖膜话题讨论。

塑料杯装酸奶盖膜相关的资讯

  • 关爱地球|一台能让塑料样品“仅小剩微”的研磨仪
    塑料:被称为20世纪人类“最糟糕的发明”。基本上都是不可再生、不可降解材料制成的,其结构稳定,不能够被天然微生物菌降解,在自然环境中长期不分离。对土地和海洋有非常大的危害,会改变土地的酸碱度,减少海洋生物的多样性,影响农作物吸收养分和水分和海洋吸收二氧化碳或产生氧气的能力,导致农业和水产品减产,影响资源的可持续利用。而焚烧所产生的有害烟尘和有毒气体,同样也会造成对大气环境造成污染。因此现在塑料的可回收利用是一件非常棘手的科学难题。 曾有人计算过,到2050年,海洋中的塑料可能会超过鱼类总和。塑料,正在蚕食着人类和所有地球生物的生存环境。 微塑料:是指粒径很小的塑料颗粒以及纺织纤维。现在在学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料;对海水、土壤、甚至水中生物样品中的微塑料进行研究,获得颗粒数量、粒径分布、种类分布等数据,是衡量某一区域微塑料污染程度的关键过程,同时也是研究塑料迁移等研究的基础工作。在我们看不到的角落,其实奋战着无数科研人员,为了人类和千万生命宝贵的生存环境而坚持研究。 但是,要想统计浩大环境中“微观”尺寸的颗粒谈何容易?耗时费力,效率底下是多年来让科学家头疼不已,并严重影响科研进程的大难题;如果能够利用研磨仪来获得塑料的纳米级数据和微观架构就能有效的检测出某一地区的微塑料污染情况。 塑料类制品的粉碎研磨一直是比较热门的话题,环境保护中固废处理的问题?“毒跑道事件”中塑胶跑道样品的检测?以及后续固体废物的再生与治理等都是亟待解决的问题?无论是哪个议题,都离不开自上而下的样品制备过程,而塑料本身的热敏特性以及聚合物带来的韧性与弹性,使得塑料的研磨是衡量研磨仪好坏的“标尺”之一。 JXFSTPRP-II-01是专用于研磨热敏感性物质、多种动植物组织、微生物、橡胶、塑料、食品、药品、煤炭、油页岩、蜡制品、PE、PS、纺织品、树脂等及在常温下呈韧性、难以粉碎的物质的全自动液氮冷冻研磨机;具备高 准确性和重现性;拥有五大系统,液氮流量可以全程控制,在操作的过程中随时随意可以充入;人性化设计,使用寿命高耐用性强,是实验室研磨的好助手。 净信全自动液氮冷冻研磨机JXFSTPRP-II-01 研磨实例:塑胶跑道和塑料杯的研磨 为满足研磨在常温下进行,使用液氮预先脆化后再研磨, 将塑胶材料剪碎放入钢罐中,把专用研磨珠加入钢罐后把钢管拧紧,然后把钢罐放置液氮中泡制几分钟,把研磨仪相关参数调整完毕,最后把带样品钢罐放入研磨仪里进行研磨。 研磨效果对比图:
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 塑料生物降解测试用样品该如何制备
    在塑料生物降解测试中,对于塑料材料原料或制品的前处理制样是一个非常重要的步骤,但也一直是广大测试人员最头疼的问题之一。由于塑料材料普遍具有较低的软化温度、较高的粘度,对于样品的研磨、剪切都造成了极大的障碍。塑料材料原料或制品通常主要以粉末、颗粒、薄膜、片材、空心管状、块状等几种形态呈现。在降解测试中,为了确保样品能够以最大的接触面积充分接触接种物底物,使微生物和所分泌的各种不同解聚酶容易进攻塑料材料,我们一般都会将塑料样品处理成更细小的颗粒或更薄的片材。常见生物降解标准所要求样品形态(参考GB/T 38787-2020《塑料 材料生物分解试验用样品制备方法》)其中:(1)对于吸管类制品,一般需将其剖开,并剪成不大于2 cm的片状材料。(2)对于非薄膜、非粉末状样品,一般参考GB/T 38787-2020《塑料 材料生物分解试验用样品制备方法》,采用干冰或液氮冷却并机械研磨制成粉料。(3)对于要求采用薄膜样品的方法,需采用平板硫化机将塑料颗粒热压成约几十μm的薄膜,再按照要求进行裁片。湖北洛克泰克是国内少有的通过完全自主研发,提供材料生物降解测试仪器和服务全解决方案的供应商。我们为广大不同需求的客户提供RTK PBDA塑料生物降解分析仪、RTK PBD 全自动塑料崩解分析仪、RTK CRM密闭呼吸计、RTK BMP全自动甲烷潜力测试系统、RTK-BRE微生物降解呼吸仪等产品,可适用于各类塑料生物降解性能评估标准方法的测试。湖北洛克泰克仪器股份有限公司成立于2013年,是国家级高新技术企业(证书编号GR202042003741),拥有包括生物降解领域的近30余项专利证书(含发明专利)。为中国农业大学厌氧发酵联合实验室、华中农业大学产学研合作基地。作为中国科学测试仪器研究型制造商,洛克泰克努力为全球客户提供专业的科学测试仪器、测试方法、培训及技术服务。洛克泰克秉承“技术推动科学进步”的使命,致力于我国的“碳达峰、碳中和”目标,为政府、大学、研究机构及企业提供服务,实现更健康、更安全、更环保的高质量发展。欢迎垂询!
  • 客户案例 | 挪威Norner公司新型环保塑料的研究与开发
    krüss于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力top100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。krüss研究背景挪威公司norner位于欧洲北部,公司业务始终聚焦在聚合物研究和创新—是全球塑料行业研发服务供应商中的市场领导者之一。在本案例中,我们介绍了norner公司以及工程师iselin grauer moen的工作,她正在使用krüss的接触角仪研究聚合物材料的润湿性。norner关注的是聚合物行业的未来:开发可持续的、可回收的塑料,同时在生产过程中节约资源,或者从另外一个角度出发,研究涂层,从而使其他材料更有效、更持久,如太阳能电池板的防水膜。实验介绍iselin grauer moen是norner的一名高级工程师,她在实验室里进行显微镜和其他光学仪器进行分析。她通过使用krüss公司的光学法液滴形状分析仪-dsa30进行表面分析,样品是可注射成型的塑料和薄膜材料,用于产品包装。她将润湿性优化作为实验室的一项重要任务:“根据材料的应用,增加或减少润湿性,来获取最佳的材料综合利用率”。获得稳定涂层或印刷的塑料的必要条件是具有良好的润湿性。但是对于可回收性,情况恰恰相反:粘附的污垢会阻碍回收过程,因此对于材料而言,润湿和粘附性必须尽可能低。对于与食品直接接触的包装,例如酸奶罐或果汁容器,尤其如此。对于这类应用,norner专门开发了一种易滑表面的改性工艺,并获得了许可授权。低润湿性和粘附性对于永久性与水接触的材料特别重要。经过优化的聚合物和涂料是norner光学实验室的典型样品。分析讨论通过dsa30,iselin grauer moen发现了材料与水和其他液体(包括油性液体)接触时的行为。为此,她可以采用标准的液滴形状分析方法:用几种测试液体测量接触角,确定表面自由能以及塑料的表面极性。在实验过程中也经常需要研究人员的创造力:“我想将酸奶直接滴在塑料表面来研究润湿性。” 在测量技术方面无疑是一项挑战,但可以通过灵活的测量系统实现测量目的。过去、现在、未来:在乌尔德(urd)、维丹迪(verdandi)和斯库尔德(skuld)这三位诺尔人中,哪一位最重要的问题对于神话学家来说是毫无意义的。然而,对于iselin grauer moen和她来自诺norner的同事来说,答案很清楚:他们的工作是面向未来的。
  • 塑料一次性餐饮具新标准实施
    据悉,自从国家质检总局对食品用塑料制品实行市场准入制度之后,一次性塑料餐具质量有了明显提高,劣质餐盒也因为消费者食品安全意识的不断提高而慢慢淡出市场,一次性快餐餐盒向着密封性、透明性、防烫性等多功能方向发展。业内人士指出,《塑料一次性餐饮具通用技术要求》新国标的实施,使一次性塑料餐饮具行业的分类和管理有了可依据的标准,便于各有关部门顺利开展监管工作,逐步规范行业秩序,对生产者、销售者、使用者做出三方规定,淘汰不符合标准的生产企业,规范中小型企业。同时,有关部门也将根据相关法规,对市场进行严格监管。安全性能好、回收利用价值高的一次性塑料餐饮具将在未来市场更具竞争力。   新的国家标准gb18006.1-2009《塑料一次性餐饮具通用技术要求》从2009年12月1日起实施。据了解,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。新国标的施行将彻底结束这一现状,为进一步规范塑料一次性餐饮具的生产及使用起到重要的作用。   明确界定范围   《塑料一次性餐饮具通用技术要求》规定了塑料一次性餐饮具的定义和术语、分类、技术要求、检验方法、检验规则及产品标志、包装、运输、贮存要求,并对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,也包括有外托的一次性内衬餐具,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。而塑料一次性餐饮具指树脂或其他热塑性材料通过热塑成型加工得到的一次性餐饮具。   据了解,新标准对塑料一次性餐饮具的技术要求更加严格和规范,主要表现在严把“两关”上:一是严把原材料关。新标准对塑料一次性餐饮具的原料制定了专门的规定,如使用的树脂等应为食品级 添加剂的用量应符合gb9685的规定 在感官上不得有异嗅 色泽正常 成型品不能有裂缝口及填装缺陷 无油污、尘土、霉变及其他异物 表面平整洁净、质地均匀,无划痕,无皱褶,无剥离,无破裂,无穿孔等。二是严把使用性能关。新标准主要对塑料一次性餐饮具的容积偏差、负重性能、跌落性能、盖体对折性能等方面提出了一系列规范性要求,尤其对塑料一次性餐饮具的耐温性能,如耐热水、耐热油方面制定了具体的要求。   根据新标准,塑料一次性餐饮具按照其材质可以分为通用塑料一次性餐饮具、植物纤维模塑一次性餐饮具、淀粉基塑料一次性餐饮具、其他覆塑一次性餐饮具 按照其使用时的耐温程度,可以分为耐温和不耐温一次性餐饮具 按照降解性能可以分为非降解一次性餐饮具和可降解一次性餐饮具 还可以分为可微波炉用和非微波炉用一次性餐饮具。   同时,该标准对一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作出了具体的规定。例如,标准规定,一次性餐饮具耐热水试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应变形、阴渗及渗漏 一次性餐饮具耐热油试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应阴渗及渗漏 对盛装液体功能的盒、碗、杯等一次性餐饮具,试验后不应漏水 一次性餐盒、碗、杯等餐饮具,其负重前后高度变化应不大于5% 微波炉试验应无变形、缺陷、渗漏和异常……这些规定为消费者科学选购、安全使用餐饮具提供了指南。   “可降解”不可随意标注   伴随着新国标的实施,执行了近十年的gb18006.1-1999《一次性可降解餐饮具通用技术条件》标准被替代。《塑料一次性餐饮具通用技术要求》不适用于一次性纸餐具、纸杯、木筷子、竹筷子等非热塑性材料制作的一次性餐饮具,同时较之原标准,修改了分类办法,修改了对原料的技术要求,增加了感官指标内容中的异嗅等,使用性能检验上明确了适用范围和样品的检验数量。增加了淀粉基塑料一次性餐饮具淀粉含量的要求,明确淀粉含量不小于40%。   增加了对标识可微波炉使用的一次性餐饮具的微波炉使用性能及检验方法,补充了淀粉基塑料一次性餐饮具和其他一次性餐饮具卫生理化指标的新要求,修改了检验规程以及降解性能要求适用范围、检验方法和技术指标。降解性能要求和检验方法也由原标准采用gb/t18006.2-1999《一次性可降解餐饮具降解性能试验方法》改为采用gb/t20197-2008《降解塑料的定义、分类、标志和降解性能要求》。   标准明确规定,对于标称其可生物降解的一次性餐饮具,其生物降解率不得低于60%。据了解,一直以来,市面上一些假冒伪劣的所谓“可降解饭盒”大行其道,因为真正可降解的餐具成本要比不可降解的高出20%,而旧的技术标准难以保证执法力度。根据新标准,一次性塑料餐具不能再随意标注“可降解”字样。《塑料一次性餐饮具通用技术要求》规定,只有能完全降解变成二氧化碳或甲烷、水等物质的一次性餐饮具,才能标注“可降解餐具”,对可降解餐饮具有更为具体、量化的成分要求。   行业监管有标可循   在新国标实施前,一次性塑料餐饮具种类繁多、功能各异,但许多产品的包装标识都过于简单、欠缺规范,多款产品均采用一般的塑料包装袋进行简易封装,外包装上仅仅注明了产地、生产商等信息,而无产品的化学成分、组成物质、卫生标准、耐高温性能等关键信息。新标准的实施将给一次性餐饮具生产企业明确的标准依据、新的机会和挑战。
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 一次性塑料饭盒新标准将被强制执行
    一次性塑料饭盒将有合法身份 新标准将强制执行 一次性塑料饭盒将有“合法地位 (资料图片)   国家《塑料一次性餐饮具通用技术要求》将于12月1日起施行。长期不被认可的一次性塑料饭盒等不可降解餐具将有“合法地位”。这对老百姓意味着什么?记者最近专访了相关的专家。   旧标准太模糊   据悉,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。   现在不少人关注自己用的饭盒是可降解的还是不可降解?对此,国际食品包装协会常务副会长董金狮表示,可降解餐饮具事实上也未必符合“循环经济” 的要求,即易回收、易处置、易消纳。而旧的“可降解餐饮具技术条件”,也只是推荐性而非强制性的,并且缺乏明确的成分标准,因此,市面上假冒伪劣的所谓“ 可降解饭盒”大行其道。   据厂家透露,生产可降解饭盒,其成本要比不可降解的高出20%。而由于旧的技术标准难以保证执法力度,因此,早已明令禁止的一次性发泡塑料,长期难以绝迹。   新标准强制执行   如今,一次性塑料餐具有了技术要求,但会否像以前“禁止发泡塑料”那样,形同虚设呢?对此,董金狮表示,新标准施行后,将对行业进行严格规范,对生产者、销售者、使用者作出三方规定,实行强制性标准,淘汰不合标准的生产企业,规范中小型企业。同时,工商等有关部门也将根据食品安全质量法等相关法规,对市场进行严格监管。   他特别指出,新标准中对可降解餐饮具有更为具体、量化的成分要求,如“淀粉基”塑料一次性餐饮具,其淀粉含量不小于40%,“生物降解”的可降解餐饮具,生物分解率需达到60%等,届时只要严格执行,那些假冒伪劣的“可降解”产品,市场份额可能萎缩。   厂家未有足够准备   新标准将在12月1日实施,涉及到上万家一次性餐具的生产企业。他们做好准备了吗?   昨日(18日),记者就此采访全国最大的一次性餐具生产企业东莞某化学企业,其相关负责人表示“目前还不清楚新标准,要等北京方面的通知”,而另一家广东大型一次性餐具生产商也表示,还在研究新标准。   对此,董金狮表示将在9月1日前后,在北京对各个企业进行培训、教育。另外,他还建言,“从家庭分类、社区分类做起,做好回收利用”是关键。   专家解读新标准:   首次制定了一次性使用塑料餐饮具国家标准,结束了过去不可降解餐饮具无标准可依的混乱状态,减少了每个企业必须制定企业标准的麻烦   首次以国家标准的形式,承认了不可降解塑料餐具的合法身份,对可降解塑料餐具也提出了具体的指标要求,减少了过去企业盲目宣传推广降解塑料餐饮具给市场带来的混乱   对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。   对餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作了具体的规定。
  • 塑料一次性餐饮具新国家标准已正式实施
    新的国家标准GB18006.1-2009《塑料一次性餐饮具通用技术要求》从2009年12月1日起正式实施。据了解,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。新国标的施行将彻底结束这一现状,为进一步规范塑料一次性餐饮具的生产及使用起到重要的作用。   明确界定范围   《塑料一次性餐饮具通用技术要求》规定了塑料一次性餐饮具的定义和术语、分类、技术要求、检验方法、检验规则及产品标志、包装、运输、贮存要求,并对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,也包括有外托的一次性内衬餐具,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。而塑料一次性餐饮具指树脂或其他热塑性材料通过热塑成型加工得到的一次性餐饮具。   据了解,新标准对塑料一次性餐饮具的技术要求更加严格和规范,主要表现在严把“两关”上:一是严把原材料关。新标准对塑料一次性餐饮具的原料制定了专门的规定,如使用的树脂等应为食品级 添加剂的用量应符合GB9685的规定 在感官上不得有异嗅 色泽正常 成型品不能有裂缝口及填装缺陷 无油污、尘土、霉变及其他异物 表面平整洁净、质地均匀,无划痕,无皱褶,无剥离,无破裂,无穿孔等。二是严把使用性能关。新标准主要对塑料一次性餐饮具的容积偏差、负重性能、跌落性能、盖体对折性能等方面提出了一系列规范性要求,尤其对塑料一次性餐饮具的耐温性能,如耐热水、耐热油方面制定了具体的要求。   根据新标准,塑料一次性餐饮具按照其材质可以分为通用塑料一次性餐饮具、植物纤维模塑一次性餐饮具、淀粉基塑料一次性餐饮具、其他覆塑一次性餐饮具 按照其使用时的耐温程度,可以分为耐温和不耐温一次性餐饮具 按照降解性能可以分为非降解一次性餐饮具和可降解一次性餐饮具 还可以分为可微波炉用和非微波炉用一次性餐饮具。   同时,该标准对一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作出了具体的规定。例如,标准规定,一次性餐饮具耐热水试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应变形、阴渗及渗漏 一次性餐饮具耐热油试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应阴渗及渗漏 对盛装液体功能的盒、碗、杯等一次性餐饮具,试验后不应漏水 一次性餐盒、碗、杯等餐饮具,其负重前后高度变化应不大于5% 微波炉试验应无变形、缺陷、渗漏和异常……这些规定为消费者科学选购、安全使用餐饮具提供了指南。   “可降解”不可随意标注   伴随着新国标的实施,执行了近十年的GB18006.1-1999《一次性可降解餐饮具通用技术条件》标准被替代。《塑料一次性餐饮具通用技术要求》不适用于一次性纸餐具、纸杯、木筷子、竹筷子等非热塑性材料制作的一次性餐饮具,同时较之原标准,修改了分类办法,修改了对原料的技术要求,增加了感官指标内容中的异嗅等,使用性能检验上明确了适用范围和样品的检验数量。增加了淀粉基塑料一次性餐饮具淀粉含量的要求,明确淀粉含量不小于40%。   增加了对标识可微波炉使用的一次性餐饮具的微波炉使用性能及检验方法,补充了淀粉基塑料一次性餐饮具和其他一次性餐饮具卫生理化指标的新要求,修改了检验规程以及降解性能要求适用范围、检验方法和技术指标。降解性能要求和检验方法也由原标准采用GB/T18006.2-1999《一次性可降解餐饮具降解性能试验方法》改为采用GB/T20197-2008《降解塑料的定义、分类、标志和降解性能要求》。   标准明确规定,对于标称其可生物降解的一次性餐饮具,其生物降解率不得低于60%。据了解,一直以来,市面上一些假冒伪劣的所谓“可降解饭盒”大行其道,因为真正可降解的餐具成本要比不可降解的高出20%,而旧的技术标准难以保证执法力度。根据新标准,一次性塑料餐具不能再随意标注“可降解”字样。《塑料一次性餐饮具通用技术要求》规定,只有能完全降解变成二氧化碳或甲烷、水等物质的一次性餐饮具,才能标注“可降解餐具”,对可降解餐饮具有更为具体、量化的成分要求。   行业监管有标可循   在新国标实施前,记者走访部分超市时看到,一次性塑料餐饮具种类繁多、功能各异,但许多产品的包装标识都过于简单、欠缺规范,多款产品均采用一般的塑料包装袋进行简易封装,外包装上仅仅注明了产地、生产商等信息,而无产品的化学成分、组成物质、卫生标准、耐高温性能等关键信息。新标准的实施将给一次性餐饮具生产企业明确的标准依据、新的机会和挑战。   据悉,自从国家质检总局对食品用塑料制品实行市场准入制度之后,一次性塑料餐具质量有了明显提高,劣质餐盒也因为消费者食品安全意识的不断提高而慢慢淡出市场,一次性快餐餐盒向着密封性、透明性、防烫性等多功能方向发展。业内人士指出,《塑料一次性餐饮具通用技术要求》新国标的实施,使一次性塑料餐饮具行业的分类和管理有了可依据的标准,便于各有关部门顺利开展监管工作,逐步规范行业秩序,对生产者、销售者、使用者做出三方规定,淘汰不符合标准的生产企业,规范中小型企业。同时,有关部门也将根据相关法规,对市场进行严格监管。安全性能好、回收利用价值高的一次性塑料餐饮具将在未来市场更具竞争力。
  • 德瑞克塑料中空制品抗压试验机填补国内空白
    近日,德瑞克经过数月的科技攻关,塑料行业专用的SLY塑料中空制品抗压试验机在德瑞克试制成功,*国内在此项目的空白。 塑料中空制品,包括塑料瓶、塑料桶、塑料箱、塑料盒、塑料周转箱、塑料罐、塑料托盘、塑料杯、塑料碗等在国内的使用越来越多,他们的抗压性能测试一直没有专用的检测设备,通常有的企业或者质检部们也是在传统的通用的电子万能试验机上做压力试验,量程不恰当,造成测试不准确,更不能打印专用的塑料行业测试报告。 SLY塑料中空制品抗压试验机充分考虑塑料中空制品试验的特殊要求,配备塑料中空制品专用的控制操作软件。*适用于塑料瓶、塑料桶、塑料箱、塑料盒、塑料周转箱、塑料罐、塑料托盘、塑料杯、塑料碗等的抗压强度试验。主要特点:采用微电脑控制技术,触摸屏操作,自动化程序高;强大的数据显示和分析管理能力,可与电脑连接通讯;液晶屏动态显示试样编号、试样形变、实时压力;自动复位,操作简单,安全可靠,性能稳定;*限行程保护、过载保护、以及故障提示等智能配置,保证用户的操作安全;高速微型打印机,打印高速,使用方便,故障低。技术指标:测量范围: 5000N(10000N可选)示值误差: ±1 % 压板面积: 600×600mm 工作行程: 600mm 上下压板平行度: 2mm 变 形 率: 0.1mm;加压速度: 1~99 mm/min 回程速度: ≥200mm/min 显 示: 中文点阵式菜单 打 印 机: 热敏打印机,寿命长,打印高速静环境条件: 温度10~30℃、相对湿度<85% 电 源: 220V 50HZ。 山东德瑞克仪器有限公司,*致力于行业检测仪器的研发与制造。产品在国内外市场上得到了新老客户的亲睐,为品牌赢得了荣誉。
  • 兰光发布C610H智能包装拉力机 塑料拉力机新品
    C610H智能包装拉力机 塑料拉力机C610H智能电子拉力试验机,专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。产品特点:1、专业程序,满足多样化需求:仪器集成拉伸、剥离、撕裂、热封、定伸抗拉、下压等专业独立的测试程序,为用户提供了多种试验项目支持拉压双向试验模式,试验速度可自由设定限位保护、过载保护、自动回位等智能设计,保证操作安全2、卓越的测试机构,精度全面升级:配置全球知名品牌的力值测试系统,提供优于0.5级的力值精度,重复性更佳,多量程选择,测试更灵活配置全球知名品牌的伺服运行系统,搭配精密滚珠丝杠多轴定位技术,提供优于0.5级的位移精度,无极调速,使用便利,运行更平稳配置全球知名品牌的气动夹持系统,防止试样打滑,保证测试数据的准确性3、高端嵌入式计算机系统平台,安全易用:大尺寸触控平板,视图清晰, 触控灵敏,易于操作全新软件系统,流程精练,操控流畅,简单易学支持成组试验数据比对分析,具有多单位转换功能内嵌USB接口和网口,方便系统的外部接入和数据传输兰光独有的数据安全性设计,测试数据与电脑分离,避免由计算机病毒等引起的系统故障造成数据丢失符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选) 参照标准:GB 8808、GB/T 1040.1-2006、GB/T 1040.2-2006、GB/T 1040.3-2006、GB/T 1040. 4-2006、GB/T 1040.5-2008、GB/T 4850-2002、GB/T 12914-2008、GB/T 17200、GB/T 16578.1-2008、GB/T 7122、GB/T 2790、 GB/T 2791、GB/T 2792、GB/T 17590、ISO 37、ASTM E4、ASTM D882、ASTM D1938、ASTM D3330、ASTM F88、ASTM F904、JIS P8113、QB/T 2358, QB/T 1130测试应用:C610H拥有丰富的应用,配置了100种以上不同的试样夹具供用户选择,可满足超过1000种材料的测试要求;针对用户材料的不同,Labthink还提供定制服务,满足不同用户的测试需求。部分应用举例:基础应用——抗拉强度与变形率、拉断力、热封强度性能、抗撕裂性能、180度剥离、90度剥离、定伸抗拉测试、下压试验扩展应用(需特殊附件或改制)——安瓿折断力、薄膜穿刺力、带袋输液袋盖穿刺力、软橡胶瓶塞穿刺/拔拉力、组合盖开启力、ZD型瓶盖撕开力、口服液盖撕开力、口服液盖穿刺/拔拉力、 倾斜90度输液袋盖拉拔力 带袋输液袋盖拉拔力、倾斜23度瓶盖拉拔力、带瓶瓶盖和胶塞穿刺/拉拔力、胶带90度剥离力、胶订书页撕开力、90度水性膏药剥离力、胶粘物撕开力、黏附强度测试(软)、黏附强度测试(硬)、软管盖剥开力、导管和导管接头脱离力、化妆刷刷毛拉拔力、牙刷刷毛拉拔力、绳类拉断力、果冻杯和酸奶杯开启力、奶杯杯膜剥离力、胶塞拔出力、瓶膜45度剥离力、自封袋袋口拉力、磁卡磁心剥离力、磁卡90度剥离力、热封膜撕开力、保护膜分离力、离型纸分离力、裤型撕裂力、胶带解卷力、塑料瓶抗压力、20度斜面剥离力、135度插销剥离力、浮辊剥离夹具、偏心夹具、宽试样夹具、日式夹具、英式夹具、隐形眼镜拉断力、果冻杯耐压力测试 容器抗压缩力、海绵抗压缩力、模拟皮肤抗穿刺力技术参数:传感器规格:500 N(标配);50 N 、100 N 、 250 N 、1000 N(可选)力值精度:示值±0.5%(传感器规格的2%-100%);±0.01%FS(传感器规格的0%-2%)显示分辨率:0.001N试验速度:0.05~500mm/min 速度精度:示值±0.5%(最大速度的 1% 到 100%)试样数量:1件试样宽度:30 mm(标配夹具);50 mm(可选夹具)试样夹持:气动气源:空气(气源用户自备)气源压力:0.5 MPa~0.7 MPa (72.5psi~101.5psi)行程:1000 mm外形尺寸:365mm(L) × 472mm(W) × 1740mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:约110kg产品配置:标准配置:主机、专业软件、平板电脑、薄膜气动夹具选购:标准压辊、试验板、取样刀、打印机(激光)、空压机GMP计算机系统要求、DataShieldTM数据盾备注:本机气源接口系Ф4mm聚氨酯管;气源用户自备创新点:C610H智能电子拉力试验机是Labthink兰光公司2019年7月上市的一款新型号拉力试验机,专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。 (1)卓越的测试机构,精度全面升级——配置全球知名品牌的力值测试系统、伺服运行系统、气动夹持系统,确保测试的精度、稳定性和数据的准确性; (2)一体机多功能化设计——仪器集成拉伸、剥离、撕裂、热封、定伸抗拉、下压等专业独立的测试程序,为用户提供了多种试验项目; (3)高端嵌入式计算机系统平台,安全易用——大尺寸触控平板,视图清晰, 触控灵敏,易于操作;全新软件系统,流程精练,操控流畅,简单易学; C610H智能包装拉力机 塑料拉力机
  • 一包袋装茶,百亿微塑料
    泡茶是很多人都有的生活习惯,尤其是在办公或外出时,会喜欢用袋装的茶叶来代替散装的茶叶。近日据CNN报道,加拿大研究人员们对四种不同塑料茶包放入开水中的效果进行了研究。结果发现,仅一个塑料茶包就释放出116亿个微塑料颗粒,以及31亿个更小的纳米塑料颗粒。微塑料的来源微塑料的检测随着人类频繁地使用塑料,除了袋装茶,在海盐、鱼类、贝类等食物中不经意间也会累积许多微塑料,甚至于我们日常的饮食水中也能发现微塑料,这些微塑料的组成是什么,数量有多少,这些都值得我们去关注和研究。利用中红外反射成像得到的微塑料的可见图像微塑料的危害喝进这么多微塑料,对人体到底会产生什么影响呢?虽然对于微观污染物的生物危害性研究占到了微观污染物研究的一半左右,但总体而言,微观污染物的生物毒性和健康风险尚不明确。理论上讲,只要微塑料的尺寸足够小,无论其本体还是其吸附的有害物质,都可能会通过某种途径进入到生物体的器官、组织甚至细胞当中,对健康造成威胁。但学界仍需要足够的证据来证明这一点。珀金埃尔默提供一整套针对食品微塑料方案,包括针对食品中微塑料的检测,红外定性、原位表征等,还有针对食品微塑料的从分子到细胞到活体,从试剂到仪器到数据分析的毒理学整体解决方案,让您的研究更具体系化与说服力。识别下方二维码获取更多珀金埃尔默微塑料方案
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 出口童装需注意塑料装饰安全
    7月5日,欧盟委员会非食品类快速预警系统对中国产婴儿服装组合品牌“1.MOMO STAR 2.SWEET KATTY”发出消费者警告。本案的通报国为西班牙。由于该婴儿服装组合帽子上以及裤子上都带有脱落的装饰,这些小装饰(零件)容易发生分离并被孩子尤其是婴幼儿吞噬,存在窒息的危险,不符合相关的国家标准UNE40902。目前,西班牙已对该产品采取拒绝进口的强制措施。   塑料装饰因其物美价廉且易塑造出各种美丽的造型而被服装企业所青睐,但易脱落的塑料装饰所隐含的窒息危险需引起服装企业,特别是童装企业的高度重视。类似于欧盟相关法规已明确规定儿童服装不得构成绞勒风险或因空气阻塞导致的窒息,童装中塑料装饰因缝制不良易脱落存在儿童舔食的可能也应引起相关部门和出口企业的高度重视。   我国产儿童服装近年来被通报或召回比例呈逐年上升趋势,欧美国家对中国产品实施的强制性措施,不仅给出口企业造成直接经济损失,也损害了中国制造的国际声誉。为此,检验检疫部门提醒相关出口企业:一是密切关注进口国童装质量安全标准及召回动态,重视儿童服装绳带、小部件等机械安全的要求,加强企业自检自控能力,消除出口安全隐患 二是强化企业责任意识,主动对产品开展风险评估、监测和管理,充分评估产品设计存在的缺陷,避免在儿童嘴部易接触到的手臂、领口等部位使用塑料装饰,切忌盲目组织生产,埋下安全隐患 三是加强与检验检疫联系沟通,获取RAPEX和CPSC召回信息和技术支持。对于新产品或者有疑问的产品,及时联系检验人员,将隐患消灭在萌芽中,确保出口产品质量安全。
  • 海底沉积微塑料廿年增两倍
    在过去20年中,沉积在海底的微塑料总量增加了两倍,其数量与塑料产品的消费类型和数量相对应。这是西班牙巴塞罗那大学环境科学与技术研究所和丹麦奥尔堡大学建筑环境系开展的一项研究的主要结论,该研究首次高分辨率重建了地中海西北部沉积物造成的微塑料污染。尽管海底被认为是漂浮在海面上的微塑料的最终沉淀池,但这种污染源在海底的历史演变,特别是较小的微塑料在海底的封存和埋藏率,尚不清楚。近日发表在《环境科学与技术》杂志上的这项新研究表明,微塑料在海洋沉积物中保持不变,这些微塑料的质量模拟了1965年至2016年的全球塑料产量。研究人员应用了最先进的成像技术来量化尺寸为11微米的颗粒,调查了被埋藏颗粒的降解状态。他们发现,一旦微塑料被困在海底,它们就不再降解。研究表明,自2000年以来,沉积在海底的塑料颗粒数量增加了两倍,而且随着这些材料的生产和全球使用,累积的塑料颗粒数量一直在增长。研究人员解释说,过去20年里,包装、瓶子和食品薄膜中聚乙烯和聚丙烯颗粒的积累,以及服装面料中合成纤维中的聚酯颗粒的积累不断增加。采集的每公斤沉积物中,这3种颗粒的含量均达到1.5毫克,其中聚丙烯含量最高,其次是聚乙烯和聚酯。
  • 老酸奶与旧皮鞋?!-迪马为您提供检测解决方案
    近两天, 一则关于&ldquo 果冻,老酸奶是由破皮鞋做成的&rdquo 消息在网上疯传,因破皮鞋可以提炼出明胶。明胶是一种极为常见的食品添加剂,是从牛、猪等动物骨和皮中的胶原通过变性而制得的变性蛋白质,其化学组成与胶原基本相同,主要成分是胶原蛋白。老酸奶等乳制品为了保持其口感和外观,会适当添加明胶等食品添加剂,这是国家允许使用的。而皮革制成的明胶透明,无味,消费者根本无法将正规的食用明胶和皮革制成的明胶区分开来。 如何区分老酸奶等乳制品中添加的是食用明胶还是皮革废料提炼出来的工业明胶,这一难题一直困扰着广大分析工作者。迪马科技独辟蹊径,探索是否可以通过检测皮革水解蛋白来确认老酸奶等乳制品中明胶的来源。皮革水解蛋白是皮革废料或动物皮毛、脏器等水解生成的一种蛋白粉,对于乳与乳制品中皮革水解蛋白的鉴定,主要是通过对L-羟脯氨酸含量的测定。L-羟脯氨酸是胶原蛋白(皮革水解蛋白)特有的氨基酸,在乳酷蛋白中则没有,所以一旦检出,则可认为可能含有皮革水解蛋白,即可判断该乳制品中有可能含有由废弃皮革而来的成分。 迪马科技实验室开发了两种L-羟脯氨酸衍生方法,利用氨基酸分析柱,对L-羟脯氨酸进行分析检测。该方法检测结果准确,可靠,方法稳定性好,可用于老酸奶等奶制品中是否含有皮革成分的鉴别,两种衍生化方法,方便您根据实际情况进行选择。 以下是老酸奶中L-羟脯氨酸的测定的详细检测方法: 老酸奶中L-羟脯氨酸的HPLC测定 1 仪器与试剂 1.1 仪器、器皿 1.1.1 HPLC+紫外检测器 1.1.2 Diamonsil AAA氨基酸分析柱 1.1.3 11 mL水解瓶 1.1.4 1.5 mL塑料离心管 1.1.5 20 mL玻璃具塞刻度试管 1.1.6 5 mL玻璃具塞刻度试管 1.1.7 0.22 &mu m针头式过滤器 1.1.8 2 mL样品瓶 1.2 试剂 1.2.1 甲醇 1.2.2 乙腈 1.2.3 正己烷 1.2.3 三乙胺 1.2.4 冰醋酸 1.2.5 磷酸氢二钠 1.2.6 磷酸二氢钠 1.2.7 L-羟脯氨酸 1.2.8 蛋白水解试剂:称取0.1 g苯酚置于100 mL容量瓶,加入50 mL浓盐酸(36%-38%,摩尔浓度约为12 mol/L),然后加水定容至100 mL。 1.2.9 0.1 mol/L HCl水溶液:量取8.3 mL浓盐酸,然后用纯水定容至1000 mL。 1.2.10 衍生剂PITC溶液:将250 &mu L异硫氰酸苯酯(PITC)用乙腈定容至10 mL。 1.2.11 三乙胺溶液:将1.4 mL三乙胺用乙腈定容至10 mL。 1.2.12 衍生剂DNFB溶液:0.5 mL 2,4-二硝基氟苯(DNFB)溶于50 mL乙腈。 1.2.13 Na2B4O7缓冲溶液:称取1.91 g Na2B4O7· 10 H2O,用50 mL纯水溶解。 1.2.14 氨基酸储备液:称取一定量L-羟脯氨酸,用0.1 mol/L HCl水溶液溶解,得到浓度为 0.05 mol/L的储备溶液。 1.2.15 氨基酸使用液:将储备液用0.1 mol/L HCl水溶液稀释,得到浓度为0.0003 mol/L的L-羟脯氨酸溶液。 1.2.16 磷酸盐缓冲溶液:0.02 mol/L Na2HPO4 和NaH2PO4水溶液。 2 实验方法 2.1 样品水解 称取奶粉0.1 g或牛奶0.68 g置于蛋白水解瓶中(1.1.3),加入蛋白水解试剂(1.2.8),旋紧盖子,振荡混匀,110 ° C下反应24 h。 反应完毕,将反应液全部转移至100 mL蒸馏瓶中,75℃下减压蒸馏至近干。 用12 mL0.1 mol/L HCl水溶液(1.2.9)分三次溶解残渣,并转移到20 mL玻璃具塞刻度试管(1.1.5),再用纯水定容至20 mL,待衍生。 2.2 样品衍生 2.2.1 异硫氰酸苯酯(PITC)衍生方法 (1)样品水解溶液衍生 量取200 &mu L样品水解溶液,置于1.5 mL塑料离心管中,加入100 &mu L三乙胺溶液(1.2.11)和100 &mu L衍生剂PITC溶液(1.2.10),混匀,室温反应1h,加入400&mu L正己烷(1.2.3),旋紧盖子后剧烈振荡5~10 s,静置分层,取200 &mu L下层溶液与800 &mu L水混合,经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。 (2) 标准溶液衍生化 量取200 &mu L L-羟脯氨酸使用液*(1.2.15),置于1.5 mL塑料离心管中,加入100 &mu L三乙胺溶液(1.2.11)和100 &mu L衍生剂PITC溶液(1.2.10),混匀,室温反应1h,加入正己烷400 &mu L(1.2.3),旋紧盖子后剧烈振荡5~10 s,静置分层,取200 &mu L下层溶液与800 &mu L水混合,经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。 *根据实际情况,氨基酸使用液浓度可进行调整,本方法中氨基酸使用液浓度仅供参考。 2.2.2 2,4-二硝基氟苯(DNFB)衍生方法 (1) 样品溶液衍生 取0.5 mL样品水解溶液置于5 mL玻璃具塞刻度试管(1.1.6)中,加入0.5 mL Na2B4O7缓冲溶液(1.2.13)和0.5 mL衍生剂DNFB溶液(1.2.12),具塞摇匀,于60 ° C下避光反应1 h。反应完毕将试管置于冷水中冷却,用磷酸盐缓冲溶液(1.2.16)定容至5 mL,混匀后经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。 (2) 标准溶液衍生 取0.5 mL L-羟脯氨酸使用液(1.2.15)置于5 mL玻璃具塞刻度试管(1.1.6)中,加入0.5 mL Na2B4O7缓冲溶液(1.2.13)和0.5 mL衍生剂DNFB溶液(1.2.12),具塞摇匀,于60 ° C下避光反应1 h。反应完毕将试管置于冷水中冷却,用磷酸盐缓冲溶液(1.2.16)定容至5 mL,混匀后经0.22 &mu m针式过滤器(1.1.7)过滤,待分析。乳品中L-羟脯氨酸检测相关产品信息(现货) 货号 名称 规格 样品前处理 55354 11 mL水解瓶含实心盖Telfon垫 11mL 50D-A5513-25ML 异硫氰酸苯酯[103-72-0] 25mL 56-42080-50G 2.4-二硝基氟苯[70-34-8] 50g 37177 针头式过滤器 Nylon 13mm,0.22&mu m 100/pk 37180 针头式过滤器 Nylon 13mm,0.45&mu m 100/pk 标准品 46587 L-羟脯氨酸[51-35-4] 1g 色谱柱及保护柱 99751 氨基酸分析柱 Diamonsil AAA 250 × 4.6mm, 5&mu m 6201 EasyGuard C18 保护柱 10 × 4.0mm 1/pk 2个柱芯+1个柱套 HPLC溶剂&Yuml 缓冲盐&Yuml 离子对试剂 50102 甲醇 HPLC级 4L 50101 乙腈 HPLC级4L 50132 冰醋酸 HPLC级 50mL 50115 正己烷 HPLC级 4L 50131 三乙胺 HPLC级 50mL 50157 磷酸二氢钠,无水 HPLC级 100g 50158 磷酸氢二钠,无水 HPLC级 100g 通用色谱产品 52401B 瓶架/蓝色(现货) 50孔 52401A 瓶架/白色(现货) 50孔 5323 样品瓶(棕色/螺纹) 2mL, 100/pk 5325 样品瓶盖/含垫(已经组装) 100/pk H80465 HPLC 进样针 25&mu L
  • 美研究人员:每升瓶装水约含24万个塑料微粒
    据悉,美国哥伦比亚大学气候学院研究人员首次对瓶装水中的微小塑料颗粒进行了计数和识别。结果发现,平均每升水中含有约24万个可检测到的塑料微粒,比之前主要基于较大尺寸塑料微粒的计数高出10倍到100倍。这项研究8日发表在《美国国家科学院院刊》上。微塑料被定义为尺寸从5毫米到1微米的碎片。作为参考,人类的头发直径约为70微米。纳米塑料是指小于1微米的颗粒,以十亿分之一米为单位测量。纳米塑料可以通过肠道和肺直接进入血液,并从那里到达包括心脏和大脑等在内的器官。它们可以侵入单个细胞,并通过胎盘进入未出生的婴儿体内。全球每年塑料产量接近4亿吨,有超过3000万吨的塑料垃圾被倾倒在水中或陆地上。许多由塑料制成的产品在使用过程中会产生微小颗粒。与天然有机物不同,大多数塑料不会分解成相对无害的物质。它们只是简单地分解成化学成分相同的、越来越小的颗粒。除单分子外,理论上它们可以变得多小是没有限制的。这项新研究使用了受激拉曼散射显微镜技术。针对7种常见的塑料,研究人员创建了一种数据驱动的算法来解释结果。他们测试了在美国销售的3个受欢迎的瓶装水品牌,分析了尺寸仅为100纳米的塑料微粒。他们在每升水中发现了11万到37万个微粒,其中90%是纳米塑料,其余是微塑料。许多水瓶都是用聚对苯二甲酸乙二醇酯(PET)制成的。当瓶子被挤压或暴露在高温下时,这种材料可能会随着塑料碎片脱落而进入水中。最近一项研究表明,当反复打开或关闭瓶盖时,许多塑料微粒会随之进入水中。研究人员指出,纳米塑料与微塑料相比,它们尺寸更小,更容易进入人体内。
  • 最新研究:微塑料在人胎盘中的发现率高达100%,这一种含量尤其高!心脏、大脑等多器官均存在
    随着塑料品的消费量逐年增加,塑料污染已然成为全球面临的最紧迫的环境威胁之一。而这些塑料制品释放出的塑料碎片,又会在物理、化学和生物的进一步降解后分解成为“更微小但更严重”的威胁,即「微塑料」或「纳米塑料」。 微塑料(Microplastic),是指直径在1μm至5mm之间的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。事实上,越来越多的实验表明,塑料聚合物的碎裂并未止步于“微米级”,而是进一步形成了纳米塑料,数量上更是比预期高出了好几个量级。 纳米塑料(Nanoplastics),则是目前已知最小的微塑料,尺寸在1μm以下。与微塑料相比,纳米塑料更易进入人体,其体积小到可以穿过生物屏障(比如细胞膜)并进入生物系统,包括血液、淋巴系统,甚至全身。 胎盘中微塑料检出率高达100% 微/纳米塑料可能会遍布全身并产生损害? 这并非空穴来风,Toxicological Sciences上最新刊登的研究,采用了一种新的分析工具测量了人类胎盘中存在的微塑料,得到的结果令人震惊!在接受测量的62个胎盘样本中100%地检测出了微塑料,浓度为每克组织中6.5-790微克。 微克,听起来不多?但正如毒理学中的基本原理“剂量决定毒性”所述,积少成多聚沙成塔,如果剂量不断增加,很可能带来一定的健康危害。“如果连胎盘中都存在微塑料,那么地球上所有哺乳动物的生命均可能受到影响,说明事态很严峻了!”美国新墨西哥大学的Matthew Campen博士强调。 图源:https://hsc.unm.edu/news/2024/02/hsc-newsroom-post-microplastics.html 人类胎盘由贝勒医学院数据库提供,收集时间为2011-2015年,最终有62个符合条件的胎盘被用于Py-GC-MS分析。 为了能更精准地确定和量化纳米和微塑料(NMPs)在人体组织中的累积程度,研究者开发了一种新方法:通过皂化反应和超速离心从人体组织样本中提取出固体材料,从而可以采用热裂解-气质联用(Py-GC-MS)来对塑料进行高度特异性和定量分析。 具体来说,研究者首先对样本进行化学处理,使得脂肪、蛋白质进一步水解和皂化成小分子。接着,将样品放入超速离心机中,最终在试管底部观察到一小块塑料。 再然后,研究者采用Py-GC-MS对收集到的塑料块儿进行处理,将其加热到600℃后,从而捕捉不同类型的塑料在特定温度下燃烧时释放出的气体。“很酷的是,气体进入质谱仪后,会留下属于自己的印迹。”Campen解释道。 实验流程 Py-GC-MS分析显示,纳入分析的62个胎盘样本中均存在微塑料,每克胎盘组织中的NMPs浓度从6.5µg到685µg不等,均值为126.8±147.5µg/g。 其中,胎盘组织中最常见的聚合物是聚乙烯(PE),几乎所有样本中都存在。按重量计算,PE占NMPs总量的54%,平均浓度为68.8±93.2µg/g。事实上,生活中聚乙烯的使用率非常高,主要用于食品包装和塑料瓶,比如水果、蔬菜、超市采购回来的半成品都是用PE保鲜膜。 聚氯乙烯(PVC)和尼龙紧随其后,各占总量的10%左右。而剩余的26%,由其他9种聚合物组成。 胎盘中的NMPs含量 研究者表示,在胎盘中发现如此高浓度的微塑料,是一件非常令人担忧的事儿!胎盘是孕期母体和胎儿循环系统之间的接口,约在怀孕后一个月开始形成。时间跨度上来说,胎盘组织仅有8个月左右的生长期,就能囤积如此之高浓度的NMPs;那么,这些微塑料也会在人体内其他器官进行更长期的积累。 警惕!微塑料已入侵人类心脏及全身 而这绝不是杞人忧天。去年,来自中国首都医科大学的研究学者们竟然在与外部环境没有接触的器官——心脏及其周围组织中发现了微塑料的存在! 研究者从心脏收集来的5种不同类型的组织中,包括心包、心外膜脂肪组织(EAT)、心包脂肪组织(PAT)、心肌和左心耳(LAA),检测到直径20-469μm不等的微塑料颗粒。 doi: 10.1021/acs.est.2c07179. 为了获得人体内器官存在微塑料的“直接证据”,研究者招募了15名正在经历心脏手术的参与者,最终收集到6个心包样本、6个EAT样本、11个PAT样本、3个心肌样本和5个LAA样本。最终,在所有的5类样本中均检测到了微塑料的存在,直径从20到469μm不等。 其中,最常见的微塑料类型是聚对苯二甲酸乙二醇酯(PET),约占总数的77%,在心包、EAT、PAT和心肌中的具体占比分别高达96%、83%、49%和43%;其次为占12%的聚氨酯(PU),主要存在于LAA样本中。 值得注意的是,虽然PE只占到微塑料颗粒总数的1%,但在所有的组织样本中均检测到。同时,在9号患者的心肌样本中也能找到PE,说明微塑料的污染已达到了人体最深的解剖结构! 微塑料在人体中的分布情况 由于此次样本是接受心脏手术的患者,研究者还发现了另一个微塑料的来源途径——没错,就是心脏手术本身。 在手术过程中,患者会接触到各种带有塑料成分的医疗器械,这也使得手术前后患者血液样本中的微塑料类型以及直径分布出现了改变。举例来说,手术前血液中检测到的最常见的微塑料类型为PET,占67%;而聚酰胺(PA)则是手术后血液样本的含量最高的微塑料颗粒类型。 因此,研究者强调,侵入性医疗程序很有可能成为被忽视的微塑料暴露途径,值得重视! 心脏中的各种微塑料类型分布 先前,加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。 按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量!还真是活到老,吃微塑料到老呢。 微/纳米塑料的“温水煮青蛙”式健康危害 不夸张地说,NMPs对人的影响往往是“温水煮青蛙式”的——很容易被忽视,但对健康的危害或是积年累月的。 去年,维也纳医科大学等多院校联合开展的研究,揭示了一个令人惊讶的现象:仅摄入后2小时,纳米塑料便会穿过血脑屏障(BBB)抵达大脑,而这可能会增加炎症、神经系统疾病以及神经退行性疾病的风险。 本研究中,研究者选择了聚苯乙烯(PS)来模拟塑料微粒通过血脑屏障后的转移。PS属于热塑性塑料,经常被用来制作各种需要承受开水温度的塑料杯、一次性泡沫饭盒;因其使用广泛,污染环境的程度较高,而被纳入了本次的重点研究对象。 令研究学者意想不到的事情发生了!在灌胃的仅仅2小时后,小鼠脑组织中便出现了特定的纳米级绿色荧光信号。这表明,0.293µm的PS微粒能在很短的时间内被胃肠道吸收,并穿透BBB进入脑组织中。 有意思的是,脑组织中只检测到了绿色荧光颗粒(即0.293µm的纳米塑料),而没有更大颗粒的信号。也就是说,塑料微粒的大小或是影响其穿透BBB能力的关键因素。 给药的2小时后,小鼠脑内检测到纳米级PS塑料微粒 此外,Science Advances上最新刊登的研究揭露了微塑料的另一大新罪证——纳米塑料能够进入大脑,与神经元中的蛋白纤维发生作用,从而加剧帕金森病的风险。 这些“狡猾”的塑料微粒不仅仅是进入大脑这么简单,还诱导了严重的神经毒性,成为某些疾病的“铺路石”。 DOI: 10.1126/sciadv.adi8716 帕金森病(PD)的病理特征是α-突触核蛋白在脆弱的脑神经元中病理性积聚,可以说α-突触核蛋白是PD发病中的中心环节。 为了探明塑料微粒与帕金森病之间的关系,第一步,研究者先在体外将高浓度的野生型人类α-突触核蛋白单体蛋白(~1 mg/ml)与聚苯乙烯纳米塑料(平均直径~39.5±0.7nm的1nM)进行混合。 结果显示,在阴离子纳米塑料污染物的催化下,α-突触核蛋白发生了聚集。具体来说,在α-突触核蛋白与纳米塑料污染物持续混合的6天后,产生了浑浊的白色泡沫界面,整体也出现了浑浊。使用负染色透射电镜(TEM)观察溶液中的产物发现,早在第3天就有多条α-突触核蛋白纤维从单个微塑料中发出。纳米塑料污染物与α-突触核蛋白的混合过程 第二步便是探究“how”——具体来说,阴离子纳米塑料是如何加速α-突触核蛋白的聚集的呢? 分子动力学(MD)模拟表明,α-突触核蛋白与阴离子纳米塑料形成了相当稳定的复合物,其特点是在两亲结构域和邻接非淀粉样成分(NAC)结构域中具有很强的静电吸引和压实作用。然而,如果使用中性或阳离子纳米塑料来取代阴离子纳米塑料时,则未能形成类似的复合物。 仔细观察发现,阴离子纳米塑料能够置换水,插入α-突触核蛋白的两亲结构域和NAC结构域,并与之形成强烈的相互作用。正是两亲结构域和NAC结构域的存在,促成了阴离子纳米塑料与α-突触核蛋白的特异性结合,从而促进α-突触核蛋白成核。 与此同时,阴离子纳米塑料还会导致神经元的轻度溶酶体损伤,减缓α-突触核蛋白聚集体的降解。生成的增多,降解的减少,自然会导致“不平衡”的发生。 阴离子纳米塑料与α-突触核蛋白共同形成了稳定的复合物 第三步便是追踪真实的脑内链路,研究者构建了小鼠模型,将不同浓度的人类α-突触核蛋白纤维滴定在小鼠的初级神经元上。光片显微镜和共聚焦分析表明,α-突触核蛋白纤维很容易扩散开来,在大脑皮层、丘脑和杏仁核的神经元以及黑质紧密区(SNpc)的多巴胺能神经元中积聚。 当共同注射纳米塑料与α-突触核蛋白纤维时则出现了更令人惊讶的情况——注射3天后,SNpc中大约20%的多巴胺能神经元的α-突触核蛋白纤维和纳米塑料均呈阳性,且有75%的α-突触核蛋白纤维信号与纳米塑料共定位。 事实上,当给小鼠同时注射纳米塑料和α-突触核蛋白纤维时,会在多巴胺能神经元中观察到成熟的胞质磷酸化Ser129-α-突触核蛋白包涵体,同时在整个皮质幔、杏仁核和SNpc中均出现了pS129-α-突触核蛋白病理变化的大幅增加。 总结而言,在较高的纳米塑料浓度下,这些大脑中的阴离子纳米塑料污染物会与α-突触核蛋白纤维发生协同作用,上调pS129-α-突触核蛋白包涵体在相互连通的大脑区域中的传播,进而增加了小鼠大脑皮层、杏仁核和SNpc中的病理沉积。 纳米塑料在小鼠脑内聚集并形成包涵体 最后一步,也是与人类关联性最强的一步——研究者采用裂解气相色谱-质谱法在人脑中检测到清晰的苯乙烯纳米塑料。 聚苯乙烯并非止步于血液中,其纳米塑料颗粒可穿透哺乳动物的血脑屏障。在先前的研究中,研究者在路易体痴呆症患者的额叶皮层脑组织中观察到很强的α-突触核蛋白种子活性,同时也发现了强烈的苯乙烯离子痕迹。 这些数据首次测量了纳米塑料可能作为污染物进入人脑组织中,但其浓度与作用还需要更进一步的人体试验进行探究。 神经元α-突触核蛋白和纳米塑料污染物之间的病理相互作用 综上,纳米塑料污染能够促进帕金森病以及痴呆症相关的α-突触核蛋白的聚集。具体来说,阴离子纳米塑料污染物能够进入大脑组织,通过与α-突触核蛋白的两亲和NAC结合域的高亲和相互作用,导致α-突触核蛋白病理学的传播和积聚,进而诱导帕金森等神经性疾病的发生。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。 为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 机械接触式塑料薄膜测厚仪如何实现多点测试
    在塑料薄膜的生产与质量控制中,准确测量薄膜的厚度是至关重要的环节。机械接触式塑料薄膜测厚仪以其高精度、高可靠性和自动化程度,成为了行业内的首选工具。本文将深入探讨机械接触式塑料薄膜测厚仪如何实现多点测试,从原理、操作到应用进行全面解析。一、机械接触式测厚仪的基本原理机械接触式塑料薄膜测厚仪主要由测量传感器和测量电路组成,其工作原理基于机械接触式测量技术。测量过程中,传感器与薄膜表面直接接触,通过感受薄膜厚度的变化并转化为电信号输出,再由测量电路进行处理和分析,最终得出精确的薄膜厚度值。这种测量方式具有高精度和稳定性,能够有效避免因非接触式测量可能带来的误差。二、多点测试的必要性在塑料薄膜的生产过程中,由于原料、工艺、环境等多种因素的影响,薄膜的厚度可能会存在不均匀性。为了确保薄膜的质量,需要对不同位置进行多点测试,以获取全面的厚度数据。多点测试不仅有助于提高测量的准确性,还能及时发现生产过程中的问题,为工艺调整提供数据支持。三、实现多点测试的具体步骤1. 设备准备与检查首先,确保机械接触式塑料薄膜测厚仪电量充足或已正确连接电源,检查外观是否完好,显示屏是否清晰可见。同时,根据被测材料的类型和特性,选择合适的测量探头。对于塑料薄膜,通常选用接触面积为50mm² 的探头,以确保测量的准确性。2. 样品准备与摆放被测样品表面应平整、无污垢、油脂、氧化层或其他可能影响测量精度的杂质,确保表面干燥且无残留物。将截取好的薄膜样品平整地铺放在测量台面上,保持试样整洁、干净、平整无褶皱。为了进行多点测试,可以通过人为挪动试样,选择不同位置进行测试。3. 设定测试参数机械接触式塑料薄膜测厚仪通常具有自动化程度高的特点,用户可以根据需要设定进样步距、测量点数和进样速度等参数。在多点测试中,可以根据样品的尺寸和测试要求,合理设定这些参数,以确保测试的全面性和准确性。4. 进行多点测试启动测厚仪后,测量头会在机械装置的驱动下,按照预设的进样步距和速度,自动或手动地移动到薄膜样品的不同位置进行测试。每次测量时,传感器都会与薄膜表面紧密接触,瞬间捕捉并记录下该点的厚度数据。同时,测厚仪内部的测量电路会实时处理这些电信号,转换成直观的厚度值显示在屏幕上。5. 数据记录与分析完成多点测试后,测厚仪通常会提供数据记录功能,用户可以将所有测试点的厚度数据保存下来,以便后续的数据分析。通过对比不同位置的厚度值,可以评估薄膜的均匀性,并识别出潜在的厚度偏差区域。此外,一些高级测厚仪还具备数据分析软件,能够自动生成厚度分布图、统计报告等,帮助用户更直观地了解薄膜的质量状况。6. 结果反馈与工艺调整基于多点测试的结果,生产人员可以及时发现薄膜生产过程中的问题,如原料配比不当、挤出机温度控制不准确等。针对这些问题,可以迅速调整生产工艺参数,如改变挤出速度、调整模具间隙等,以改善薄膜的厚度均匀性。同时,这些测试数据也为后续的产品质量控制和工艺优化提供了宝贵的参考依据。综上所述,机械接触式塑料薄膜测厚仪通过其高精度、高可靠性和自动化程度,实现了对塑料薄膜的多点测试。这一技术的应用,不仅提高了薄膜厚度测量的准确性和效率,还促进了生产工艺的改进和产品质量的提升。在未来的发展中,随着技术的不断进步和创新,机械接触式塑料薄膜测厚仪将在更多领域发挥重要作用,为塑料薄膜行业的发展贡献更多力量。
  • 保鲜膜、塑料等一次性餐饮具新国标今起实施
    PVC保鲜膜在微波炉加热后会析出有害物质氯化氢、汉堡的包装纸可能会析出油墨、一次性纸杯可能是来源不明的回收废纸生产出来的……随着近半年来一系列与食品包装安全密切相关标准的陆续实施,人们逐步认识到,食品“贴身衣物”安全的重要性丝毫不亚于食品本身的安全。从明天开始,保鲜膜、塑料一次性餐饮具的新国标开始实施,今后消费者选购保鲜膜等食品包装材料将更加一目了然。   纸杯过白、过软、图案模糊都是劣质表现   劣质纸杯用料 来源不明回收废纸   在此之前,国家质检总局还要求从9月1日起,所有食品纸用包装、容器等必须通过“QS”市场准入才能上市销售,这些食品“贴身衣物”包括:纸袋、纸杯、纸餐具,汉堡、三明治等熟食的包装纸,曲奇饼的烤盘纸,甚至小小袋泡茶的包装纸……   当中一次性纸杯的安全性至今没能引起消费者的足够重视,不少市民告诉记者:“有些纸杯一加水就软塌塌的,如果装热水还有股味,但也没有特别在意,叠起两个纸杯一起用就是了。”还有很多消费者认为印刷在纸杯表面的文字图案不会有害,但他们忽略了纸杯都是重叠包装的,纸杯的外层直接和另外一个纸杯的内层紧密接触,劣质油墨很可能就因此留在纸杯内侧,成为威胁人们健康的“隐形杀手”。   据悉,由于目前纸杯还没有统一的国家标准,纸杯质量参差不齐,有的使用来源不明的回收废纸生产,有的为了掩盖纸的颜色,人为加入具有致癌作用的荧光增白剂,特别是目前行业标准对油墨没有要求,企业为了省钱就会使用苯及重金属超标的劣质油墨进行印刷。对此专家提醒:一次性纸杯过白、过软、图案模糊都是劣质表现,选购有“QS”的纸杯也就显得更为重要。   “可降解”一次性餐具并不等于环保产品   能否降解不重要 关键要卫生无毒   同样是接触食品的包装容器,明起实施的还有《塑料一次性餐饮具通用技术要求》。新国标对塑料一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等都作了具体的规定。同时要求:一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等一次性餐具,不能乱标“可降解”等字样,因为可降解餐具并不等于环保产品。   新国标最大的亮点是承认了不可降解塑料餐具的合法身份,因为现阶段一些企业过于追求餐具的可降解性,导致产品反而达不到卫生要求。可降解的餐具往往使用光敏剂,稳定性差的餐具就会产生对人体有害的酮类。此外,降解餐具的使用性能也差,容易吸水渗油,使用不方便。   PVC、PE等不同材质保鲜膜要清楚标明警示性语言   用PVC保鲜膜减肥 增塑剂会沁入皮肤   明起实施的《食品用塑料自粘保鲜膜》规定:可用于包装食品的保鲜膜将标志“食品用”字样 PVC保鲜膜仅适合用于包装生鲜食品,应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等警示性语言 其他类别的保鲜膜,如可用于微波炉加热,应注明“可微波炉使用”、加热方式及最高耐热温度。   对此规定消费者很是欢迎,因为PVC、PE等材质不同的保鲜膜适用范围不同,有的只能用作冰箱保鲜纸,有的可以冰箱、微波炉两用,但普通消费者根本记不住区分要领。此次新国标给了消费者一个一目了然。   但记者昨天走访广州部分商场、超市看到,还有不少去年、年初生产的食品保鲜膜未按新规定标注,对此有关部门表示,对这些产品给予了一定的市场消化期,但明起生产的食品保鲜膜就必须严格遵照新国标。   采访中记者也看到,不少路边小店仍在使用不可加热或包裹油炸食品的塑料袋盛放滚烫的食物,但鲜有消费者提出抗议,目前监管部门也未介入。不仅如此,国际食品包装协会常务副会长兼秘书长董金狮近期还提醒消费者注意:有些美容院使用PVC保鲜膜包裹身体进行减肥也是很危险的,因为PVC保鲜膜含有大量增塑剂,而有些增塑剂通过皮肤进入人体会对健康有害,甚至影响内分泌。
  • 凝胶膏剂塑料背膜剥离力测试:180度剥离方法与T型剥离方法之比较
    在凝胶膏剂塑料背膜剥离力测试中,180度剥离方法和T型剥离方法均为常用的测试手段。它们各自具有独特的特点和适用场景,下面将进行详细对比,以便更好地理解和选择适当的测试方法。一、180度剥离方法180度剥离方法是一种广泛应用的剥离力测试方法,其原理是将凝胶膏剂的塑料背膜固定在试验机的一端,另一端则固定在可移动的夹具上。在测试过程中,夹具以恒定的速度移动,使背膜沿180度方向从凝胶膏剂上剥离。这种方法的主要优点是操作简单、直观明了。它适用于评估凝胶膏剂与塑料背膜之间的粘附性能,尤其是在大面积剥离的情况下。此外,180度剥离方法还可以用于比较不同凝胶膏剂之间粘附力的差异,以及评估生产工艺对粘附力的影响。然而,180度剥离方法也存在一定的局限性。由于剥离角度固定为180度,它可能无法全面反映凝胶膏剂在实际使用过程中的复杂剥离情况。此外,该方法对于初始粘附力和剥离过程中的粘附稳定性评估可能不够精确。二、T型剥离方法T型剥离方法是一种模拟凝胶膏剂在实际使用中从皮肤上剥离情况的测试方法。在测试中,凝胶膏剂的一端被固定,另一端则沿T形夹具的垂直臂方向剥离。这种方法能够更真实地模拟凝胶膏剂在实际使用中的剥离过程,从而更准确地评估其剥离性能。T型剥离方法尤其适用于评估凝胶膏剂在不同方向上的剥离性能,以及在不同剥离速度下的剥离稳定性。然而,T型剥离方法相对于180度剥离方法来说,操作更为复杂,需要更高的试验技能。此外,T型剥离夹具的设计和制作也需要一定的精度和成本投入。三、两种方法的比较与选择在凝胶膏剂塑料背膜剥离力测试中,180度剥离方法和T型剥离方法各有优缺点。180度剥离方法操作简便、直观明了,适用于大面积剥离和粘附性能评估;而T型剥离方法则更贴近实际使用情况,能够更准确地评估凝胶膏剂在不同方向上的剥离性能。在选择测试方法时,应根据具体的测试需求和目的进行权衡。如果主要关注凝胶膏剂与塑料背膜之间的整体粘附性能,且对操作简便性要求较高,那么180度剥离方法可能更为合适。而如果需要更精确地模拟凝胶膏剂在实际使用中的剥离情况,并评估其在不同方向上的剥离性能,那么T型剥离方法可能更为适用。
  • 海洋生物微塑料检测方法及污染现状研究进展
    来源:《农业资源与环境学报》2022 年 06 期作者:李娟1,季超2,张芹1,汪星宇1,伍志强1,解玉鑫1,李嘉晴1,张皓森1,臧桐宇1, 郑文杰1*单位:1. 天津师范大学生命科学学院;2. 云南农业大学云南生物资源保护与利用国家重点实验室摘要海洋微塑料污染问题是全球研究热点,现有研究表明微塑料在海洋环境中无处不在,对海洋生态的威胁逐渐加重,伴随着海洋食品的兴起,人们也越来越重视微塑料污染对人体健康的危害。本文通过对海洋生物体内微塑料污染情况的概述,系统分析了微塑料对海洋生物造成的影响。主要针对微塑料检测的前处理方法以及组分的鉴定方法展开综述,对不同方法的优缺点进行比较,指出在微塑料检测研究中多种方法综合应用效果最佳。基于现阶段海洋微塑料的研究状况,从科学研究和管控方面讨论了目前研究中存在的问题,展望了未来的研究方向。结论与展望:微塑料已经成为全球海洋环境中的新兴污染物之一,获取海洋环境中微塑料丰度等信息的标准程序方案对于确定微塑料对海洋环境的污染情况和潜在影响至关重要。本文总结了海洋微塑料污染的现状,详细阐述了对样品进行消解和分离的常用方法,认为对于海洋生物体内微塑料的提取分离而言,碱液(KOH、NaOH 等)提取相较于其他提取液的回收效果更好。针对微塑料的鉴定分析方法,本文重点介绍了显微观察法、傅里叶变换红外光谱法、拉曼光谱法和热分析法,并讨论了多种分析方法的优缺点及各自的适用特点。目前而言,单一的分析方法很难对复杂的环境样品中的微塑料进行准确定性和定量研究,尤其对于尺寸小于1 mm 的微塑料,建议采用显微观察和光谱分析相结合的方法;而对于截距小于10 μm 的微塑料,拉曼光谱是更好的选择。微塑料的来源与人类活动息息相关,人类产生的塑料垃圾会通过排水系统、河流以及风的作用进入海洋生态系统,在其中产生累积效应,已有相关研究表明,微塑料可能是海洋生物多样性降低的重要因素之一。这一方面由于微塑料体积相对较小,易被海洋生物摄取并在其体内富集,对海洋生物的组织、循环系统造成有害影响;另一方面由于微塑料自身的物理和化学性质特殊,其表面易吸附污染物,成为污染物进入海洋生物体的载体,并可通过食物链进入人体,对人类产生潜在危害,但其作为载体的具体机制和转移途径鲜见报道。未来,微塑料相关研究可从以下几个方面进行:(1)目前塑料颗粒检测技术多样且发展迅速,但随着新产业新科技的发展,一些新的材料会产生微米级、纳米级等更小的塑料颗粒,因此,针对这些新材料的检测需要探索新的检测方法来实现。(2)现阶段微塑料的检测方法良莠不齐,各种方法检测结果的准确性有待进一步验证。为了更加全面准确地监测微塑料污染情况,应建立检测微塑料、评估微塑料污染风险的标准体系,标准化、规范化的微塑料检测流程,可保证微塑料污染风险评估的准确性,为维护海洋环境和生态安全提供理论支撑。(3)人们普遍认为粒径小于100 μm 的微塑料对海洋生物和人体的影响最大,但是微塑料不同的形态、大小及聚合物类型对海洋生物的风险仍缺少具体的参考标准,故建立评估微塑料污染风险的标准体系非常必要。微塑料危害并不仅限于微塑料本身,其表面富集的各类污染物的风险更大。通过微塑料摄入将有毒化学物质转移到生物群是一个值得重视的问题,然而现有的研究鲜少使用微塑料载体进行毒性研究。为进一步明确微塑料的物理性质和污染物的连锁效应,应加强对微塑料的吸附作用和污染物(如放射性重金属和抗生素)之间相互作用的研究。(4)目前全球不同区域的食品种类繁多,而大多数微塑料研究是针对鱼类、贝类等水生生物体内微塑料浓度、形态、大小和聚合物类型所开展,对加工食品中微塑料的研究不多,这使得人类通过食物摄入的微塑料总体数量很难估计。因此,今后的研究应加强对各类食品中微塑料提取鉴定方法以及定量分析方法的研究,为食品安全检测提供途径。
  • 好可怕,微塑料成“达摩克利斯之剑”,监控微塑料颗粒,迫在眉睫!
    热点聚焦图片来源于http://www.mnn.com显微镜下微塑料4月7日,一篇发表在《Science of the total Environment》期刊上的研究论文显示,来自英国赫尔大学领导的研究团队在活人的肺部深处发现了微塑料;3月25日,发表在另一环境科学领域《Environment International》期刊上的研究论文显示,来自荷兰阿姆斯特丹自由大学领导的研究团队在人类志愿者的血液中发现了微塑料;不久前,南京大学环境学院污染控制与资源化利用国家重点实验室团队在《Environmental Science & Technology》发表研究论文,通过调查来自中国11个省市参与者的粪便样本发现了一个令人担忧的证据:咱们经常喝瓶装水、吃外卖食品以及工作性质为粉尘暴露的参与者,其粪便中的微塑料更多… … 可怕,在这个被微塑料浸染的环境里,微塑料已经不仅仅存在于山川和河流中,存在于空气和食物中,竟然已经存在于人类的血液和器官里。 什么是微塑料?微塑料指直径小于5毫米的塑料颗粒,是形状多样的非均匀塑料颗粒混合体,属于新型污染物之一。它体积小,比表面积大,吸附污染物能力强,可以在环境中到处游荡,严重影响人类健康。 如何进入人体?人类摄入微塑料的主要来源是饮用水,如瓶装水、自来水、地表和地下水;再就是食物,主要是甲壳类海鲜、啤酒和盐;还有如牙膏、磨砂洗面奶及日用品中的塑胶颗粒以及衣物、地毯等制品中释放出的微纤维,通过呼吸摄入人体等。 如何检测?无论从《进一步加强塑料污染治理的意见》还是《生态环境监测规划纲要(2020-2035年)》文件中不难看出,微塑料作为一类重要的新污染物,已经引起国家重视。在微塑料监测中,检测方法主要分为热分析法和光谱分析法两大类。热分析法主要是裂解气相色谱-质谱联用(Pyr-GCMS)、热萃取解析-气质联用(TED-GCMS),光谱分析法主要是傅立叶红外光谱法(FT-IR)、拉曼光谱法以及其它方法等。 GC-MS或成为微塑料分析关键在微塑料检测中,光谱分析法主要用于根据颗粒数量、颗粒大小和形状来评估微塑料污染,并不能给出聚合物组成的指示,也不能识别添加剂。而Py-GC-MS为微塑料分析领域提供了一个有前景的选择,可用于微塑料颗粒的聚合物类型以及相关的有机塑料添加剂的识别和定量,这里气相色谱-质谱联用仪起到关键的作用。东西分析作为国内较早成立的科学分析仪器生产厂商之一,在2007年推出自主研发的商品化气质联用仪GC-MS3100,是中国分析仪器发展史上的一个里程碑。经过十几年的发展,东西分析推出多款GC-MS系列产品。可以为微塑料检测方面提供相关解决方案及产品服务。 产 品GC-MS3200气相色谱(四极)质谱联用仪国内商品化气质联用仪第二代产品;DC补偿技术,进一步改善了信噪比;高速直流补偿技术,有效地改善了分辨率;可调正化学电离源(PCI)功能,拓展了应用领域。 GC-MS3100气相色谱(四极)质谱联用仪离子源:EI源,独立加热系统;检测器:带高压转换打拿极电子倍增器;色谱部分:EPC全自动气路,可连接多种前处理设备及进样装置。GC-MS3110车载气相色谱(四极)质谱联用仪 气路EPC电子流量控制;可配置如NIST\WILEY\DRUG等谱图库;符合《移动实验室仪器设备通用技术要求》;车载减震系统设计、专用气源、专用电源系统。GC x GC TOF MS 3300全二维气相色谱-飞行时间质谱联用仪 采用GC x GC消除扰动四喷口调制器,减少对柱温箱的干扰;独立控温双柱温箱结构,使仪器控制更灵活,适用面更广;飞行时间质量分析器具有可选择性去除背景离子功能;系统集成运行控制。 最 后微塑料静静入侵,精确有效的分析方法变得迫在眉睫。抗击微塑料污染的道路道阻且长,需要我们一起努力!
  • 微塑料影响黄羽肉鸡产肉和肉品质性状研究获进展
    近日,华南农业大学动物科学学院家禽遗传育种研究团队首次在饲养的肉鸡肌肉组织中发现微塑料残留,并揭示出微塑料残留会引发转录组和代谢组变化、诱导肌肉肥大、降低鸡肉品质。相关研究在线发表于Science of the Total Environment。该论文第一作者是陈家辉和陈庚华,通讯作者为罗文,张细权和聂庆华为共同作者。微塑料污染是全球性的环境问题,近年来相继在人类肺部和血液发现微塑料残留,引起广泛关注。禽肉是全球消费最多的肉食品之一,禽肉的安全对人类健康至关重要。前期研究发现家禽养殖场普遍存在微塑料污染,但尚未有研究报道微塑料会沉积到禽肉或其他组织器官中。该研究中,研究人员利用LDIR和PyGCMS两项先进的微塑料检测手段,首次在鸡场饲养的商品肉鸡肌肉、小肠和肝脏中发现微塑料残留。其中,残留量最高的是PA-6(尼龙),在肌肉中平均浓度达到约722.5mg/kg。进一步研究发现尼龙主要来自于饲料袋内膜,启示养殖场和饲料生产企业应提高饲料封装工艺,采用更环保安全的袋装技术,避免饲料被微塑料污染。通过系统的体内体外实验研究,研究人员发现微塑料暴露会刺激成肌细胞增殖、诱导细胞凋亡;长期的微塑料暴露则会引发肌肉和肝脏的慢性炎症,诱导肌肉肥大、降低肉质品质;结合转录组和代谢组学方法,发现长期微塑料暴露可显著改变宿主基因表达、影响组织的代谢进程。因此,微塑料残留会引发一系列严重后果,畜禽作为人类肉食品的重要来源,应从源头处预防微塑料的污染。上述研究得到国家重点研发计划项目、国家自然科学基金、广东“特支计划”科技创新青年拔尖人才项目、国家肉鸡产业体系、广东特支计划畜禽种业自主创新团队项目的支持。
  • 中药口服液迎来新“外衣” 用“塑料袋”代替玻璃瓶盛装
    科技日报记者近日从中药制药共性技术国家重点实验室(以下简称共性技术实验室)得到消息:由该实验室为主体研制的国内首条中药口服液条包生产线已建成投产。该项目最大的特点是以新型“塑料袋”代替了传统玻璃瓶用来盛装口服溶液。由此,该生产线每年可处理中药材2.5万吨,年产口服液30亿条包。对中药行业来说,此举尚属首次。作为国内中药制药共性技术领域唯一的国家重点实验室,共性技术实验室依托鲁南制药集团而建,立足中药产业发展需求,集聚了130余名高精尖人才团队,联动百余所高校院所,在国内形成了“产—学—研”一体化应用研究与可实施科研成果迅速产业化的优势地位。复合膜包装用于中药口服液长期以来,“口服液+玻璃瓶”组合被视为液体类药品的黄金搭档。后者也因为其透明性、美观度、化学性质稳定等优点,一直被认为口服液包装的首选,但其重量大、运输存储成本高、不耐冲击、易破碎、吸药难等短板也为市场诟病。同时,中药成分也有与玻璃瓶发生反应的风险。在鲁南制药集团党委书记、董事长、总经理、共性技术实验室主任张贵民看来,市场的痛点便是国家重点实验室的攻关课题。复合包装膜是指由多层薄膜经过印刷复合等工艺形成的包装膜。但将复合膜包装用于中药口服液在业内尚无先例,需要解决一系列技术难题。为此,鲁南制药依托共性技术国家重点实验室,以小儿消积止咳口服液为示范载体,与四川省食品药品检验检测院及相关包材、设备生产单位开展协同技术攻关。2020年5月,国家药品监督管理局批准同意复合膜包材用于中药口服液体制剂生产。就此,国内首家将药用复合膜包装材料用于中药口服液药品包装的企业诞生了。将国家重点实验室建在企业里,前者便深深地接了地气。该实验室副主任关永霞向记者介绍:“与玻璃瓶装相比,一支药的内包材能节省约0.14元,一条生产线节省的资金数以亿计;同时,过去的瓶装需要包材、吸管、洗瓶机、灯检等复杂工序,现在仅需内包复合膜、外包材纸就可以了。这就意味着不仅工序简化了,人工和配套设备需求也更少了。”这并不是该实验室唯一的首创级别的技术。记者在采访中了解到,该实验室还研发了国内首条中药口服液灭菌条包生产线,采用全自动液体条包灌装设计,单条生产线灌装速度为660袋/分钟,可同时实现40万袋产品灭菌。大剂量的中药材变成一粒粒小药片汤剂是中药最为传统的一种运用形式,熬制汤药大有学问,弊端在于个体操作(煎煮)带来的质量差异,储存携带的不便,剂量较大,口感较差等,现代生活的快节奏也呼唤着中药的变革。于是,将大剂量的中药材变成一粒粒药片、胶囊、口服液等方便服用、计量统一的中成药便成了共性技术实验室的重要使命。现代生活中,便秘问题颇为常见。对共性技术实验室副主任杨梅和同事们来说,如何用中药治疗便秘便成为新课题。海量的筛选之后,何首乌、芦荟、决明子、枸杞、阿胶、人参、白术、枳实等药材参与了此次研制。而她们的目的是找到一种有效成分调节肠道微生物菌群,从而达到顺肠通便的目的。得益于现代化仪器的支持,科研人员对上述药材效果的分析实现了数据化、可视化。通过对成分的追踪,对效果的追踪,新药“首荟通便胶囊”由此诞生。作为国家科技创新体系的重要组成部分,国家重点实验室是国家组织高水平基础研究和应用基础研究、聚集和培养优秀科学家的重要基地。记者了解到,已组建了11年的共性技术实验室诞生了一项国家科技进步二等奖,两项山东省科技进步一等奖。
  • 中科院化学所:废旧塑料转化制备汽油,收率达80%!
    现代生产生活中,塑料制品具有不可替代的作用。塑料制品促进了社会经济的发展,但产生了大量的较难自然降解的废旧塑料垃圾。这对生态环境与人类健康造成危害,并引起了世界性关注。因此,废弃塑料的资源化利用对解决塑料污染问题、实现绿色可持续发展意义重大。废弃塑料中,聚乙烯的非极性的碳碳键难以活化和断裂,故转化难度较大。目前,已有的聚乙烯转化策略主要依赖高反应温度、贵金属催化剂和外加氢源,限制了聚乙烯化学回收的工业化。如何低成本且高效地转化聚乙烯是塑料转化领域的难点。中国科学院化学研究所胶体、界面与化学热力学重点实验室/北京分子科学国家研究中心韩布兴课题组,在二氧化碳、生物质、废弃塑料、有机垃圾等可循环碳资源催化转化利用方面取得了系列成果。近日,该课题组与北京师范大学、北京大学等的科研人员合作,利用层状自支撑分子筛作为催化剂,实现了低温、无贵金属、无氢气、无溶剂条件下聚乙烯塑料转化制备高品质汽油,收率达80%。该策略利用层状自支撑分子筛丰富的外比表面积和介孔孔道,使得聚烯烃大分子与催化剂活性位点充分接触;同时,这种层状自支撑分子筛具有独特的开放骨架三配位铝位点,有助于活化碳氢键,形成碳正离子,促进聚烯烃碳碳键发生β-裂解。自支撑分子筛高效催化部分聚乙烯芳构化,为产生的小分子烯烃转化为烷烃提供氢源,从而以自供氢的方式产生汽油。该研究制备的汽油组分中能够提升辛烷值的支链烷烃含量是商用汽油的近两倍。上述成果为废弃聚乙烯催化转化制备高品质汽油提供了新路线,具有良好的应用前景。4月9日,相关研究成果发表在《自然-化学》(Nature Chemistry)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。层状自支撑分子筛催化聚乙烯转化制备汽油
  • 安捷伦:覆盖三方面的微塑料检测解决方案
    p   微塑料,是指粒径很小的塑料颗粒以及纺织纤维。现在学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。微塑料还会吸附多氯联苯、双酚A等POPs,从而加速这些物质的迁移和生物富集。 /p p   目前,在海洋水体、海洋生物、人类器官以及人类排泄物都检出了微塑料。但在监测、观测和微分析上,尚缺乏可被广泛接受的适合我国海洋及海岸环境的微塑料调查与监测分析技术规范,导致调查结果不具可比性。 /p p   随着微塑料的大量检出,微塑料的研究人员和国家监测技术也在增多,为适应市场需求,各仪器公司纷纷推出了微塑料的检测方法。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/62746982-f1c5-4fc5-8b5d-71478d5e130f.jpg" title=" 全产品解决方案_副本.jpg" alt=" 全产品解决方案_副本.jpg" / /p p   为帮助相关用户学习、了解微塑料检测的方法、仪器等内容,仪器信息网特别策划了“ a href=" https://www.instrument.com.cn/zt/wsl" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " strong span style=" color: rgb(255, 0, 0) " 微塑料的危害及检测方法 /span /strong /a ”专题并邀请仪器公司分享微塑料的检测方法。安捷伦技术人员为我们分享了安捷伦针对微塑料检测的看法以及整体解决方案。 /p p    strong 仪器信息网: /strong 您认为目前的微塑料污染在环境保护中处于什么地位?从全球角度或者中国的角度来看,微塑料未来是否会成为重点管控的污染物之一? /p p    strong 安捷伦: /strong 微塑料(microplastics MPs)是一种环境新型污染物,通常认为其尺寸范围在 1mm~5mm 之间。据估计,全球塑料产量为 3 亿吨,而大约 10% 的塑料最终会进入环境,并碎裂成微塑料。许多报告显示,海洋、淡水水域、大气颗粒、陆地环境和生物体中均发现了微塑料,而在食物链富集作用下,微塑料会对人体健康产生不可估量的危害。此外,纳米尺寸的聚合物颗粒(Nanoplastics NPs)也会形成。与MPs相比,NPs足够小,可能对环境和人体健康造成更大的危害。 /p p   我国开展环境微塑料污染防治研究既必要又迫切。 2020 年 1 月,国家发改委与生态环境部发布关于《进一步加强塑料污染治理的意见》,要求强化与微塑料污染防治相关的科技支撑,开展不同类型塑料制品全生命周期环境风险研究评价,加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。 /p p    strong 仪器信息网: /strong 在微塑料污染的科研工作中,一般会检测微塑料的哪些特性?一般从哪些项目来检测微塑料的这些特性?这些项目的技术难点主要在哪儿? /p p    strong 安捷伦: /strong 微塑料相关研究主要分为对环境的影响以及对人体健康的影响两大类,具体包括:环境微塑料的污染特征 源解析 环境微塑料的降解及表面变化 环境微塑料的环境迁移行为与预测模型 环境微塑料的生物积累、毒性效应和生态安全 微塑料与污染物的相互作用及健康风险等。 /p p   微塑料本身的定性与定量分析,以及微塑料添加剂和吸附污染物的检测,是微塑料研究的基本工作之一。为收集关于微塑料在环境中的丰度、分布、迁移和归趋等详细信息,通常需要对微塑料粒子数目,粒子丰度,浓度丰度等方面进行定量分析,对聚合物种类鉴别的分析,以及粒径分布等形貌分析。 /p p   目前常用的微塑料检测方法包括红外成像等光谱方法和热裂解-气质联用法(Py-GC/MS)等手段。对于微塑料在合成过程中使用化学品和添加剂(稳定剂、抗氧化剂等)、微塑料表面吸附或吸收的污染物质的检测,往往需要色谱质谱联用及原子光谱技术。而对于微塑料对生物及人体健康影响的研究,高端质谱和细胞分析等技术是非常有力的研究手段。 /p p   传统方法主要难点在于:微塑料样品收集提取的前处理方法,手动挑取颗粒的方式对方法可操作性和检测方法的重复性带来的挑战 检测效率局限性等方面。目前科学界正在努力寻找合适和可靠的方法来检测和量化分散在环境和生物样品中的微塑料。 /p p    strong 仪器信息网: /strong 请介绍贵公司在微塑料检测方法开发的方法?这些方法用到哪些仪器或产品?贵公司开发的方法在微塑料检测方面有哪些优势? /p p    strong 安捷伦: /strong 在微塑料对环境影响的研究领域,安捷伦推荐的 8700 LDIR 激光红外成像全自动工作流程、久经考验的 GC/MS 产品以及独特的 Q-TOF GC/MS 系统,为微塑料定性定量分析提供了完备的方案,并将微塑料分析的效率和准确度大大提升。另外,安捷伦 GC/MS/MS、LC/MS/MS、ICP-MS 等产品,在微塑料添加剂,或吸附有害物质的分析提供了更多有效手段。在环境微塑料的生物积累、毒性效应和生态安全,微塑料与污染物的相互作用及健康风险等微塑料与人类健康相关的方向,安捷伦高端 LC/MS 产品 Seahorse,xCELLigence,NovoCyte 细胞分析技术结合的解决方案帮助您在微塑料相关毒理学研究取得成功。 /p p    a href=" https://www.instrument.com.cn/news/20200522/539172.shtml" target=" _blank" span style=" color: rgb(0, 176, 240) " 安捷伦微塑料检测整体解决方案 /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/sh100320/s927504.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/752e64c5-8cd7-47d3-8b93-5a817b4eba0f.jpg" title=" QQ截图20200528095102.jpg" alt=" QQ截图20200528095102.jpg" / /a /p p   其中8700LDIR产品是一款比较特色的产品。 /p p style=" text-align: center " span style=" border: 1px solid rgb(0, 0, 0) " 8700 LDIR 激光红外成像的微塑料全自动测试流程 /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/sh100320/s927504.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/fff51966-d299-47cf-b908-fc6c85f3fbd4.jpg" title=" QQ截图20200528095312.jpg" alt=" QQ截图20200528095312.jpg" / /a /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   -QCL 量子级联激光器光源,比传统 FTIR 成像能量高 104 倍,可获得更可靠、更灵敏的微塑料测试结果 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   –Clarity 全自动工作流程,只需点击“play”,海量微塑料统计结果自动获取 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   –超快速大面积成像,2 小时完成 5 mm * 5 mm 面积中上千个微塑料颗粒全测试,比传统红外成像快数个数量级。 /span /p p style=" text-align: center " span style=" border: 1px solid rgb(0, 0, 0) " 定性定量结果和海量统计数据全自动获得 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b21d8d4b-f46f-4ed9-95e8-03469beb259d.jpg" title=" 定性定量.jpg" alt=" 定性定量.jpg" / /p p 更多内容详见专题:   /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/wsl" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/26bca28d-0630-4eea-a70f-01dcfa06fc92.jpg" title=" 企业微信截图_15906459669401.png" alt=" 企业微信截图_15906459669401.png" / /a /p p br/ /p
  • 微塑料登上世界最高峰|上海净信冷冻研磨仪解决塑料难题
    珠峰是一个遥远、纯净的地方,在世界之巅却发现了微塑料的痕迹!    据英国《新科学家》周刊网站11月20日报道,首次在珠峰上发现直径不足5毫米的塑料微粒。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。       报道称,“污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。“    在过去的几年里,我们在全球各地收集的样本中都发现了微塑料,足迹遍布从北极到河流、深海。那么,什么是微塑料?    微塑料是指粒径很小的塑料颗粒以及纺织纤维。由于学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。相比于“白色污染”塑料,因微塑料体积小,意味着就有更大的比表面积(比表面积是指多孔固体物质单位质量所具有的表面积)。而比表面积越大,吸附污染物的能力越强,这就是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因。    它的污染分布如何呢?这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。    大气中:纺织产品生产使用过程中产生的超细合成纤维、工业上材料切碎和磨削等加工产生;质轻,可作为污染物载体,通过呼吸道进入人体。    水域中:塑料污染主要来源,海洋、地表河流、湖泊、水库、居民饮用水中均已发现;市政污水排放、大气微塑料干湿沉降、工业产生塑料废弃物、纺织行业废水排放、个人日用护理品及其包装等。    土壤中:市政污泥的土地利用、有机肥的长期施用、农用地膜的残留分解、大气微塑料的沉降、地表径流和农用灌溉水的带入等;通过食物链传递并富集。    上至世界之巅,下至世界最深的海沟,微塑料可谓无处不在。有研究指出,每年每人平均会摄入70000颗微塑料。目前微塑料对人体的危害如何还需要深入的研究,但这类无孔不入的物质无疑为我们人类敲响了警钟!我们必须加强对微塑料的研究,尽早提出可行的塑料减排和处理方案。    提到塑料研究,不得不提塑料的前处理。由于塑料制品对温度极其敏感,且加热后会变形、变性,只有在超低温环境下,才能保证样品的完整性。所以,在样品前处理这块着实让科研工作者头疼,因为常规的仪器根本搞不定它。    上海净信浸入式液氮冷冻研磨仪(JXFSTPRP-MiniCL),却完全可以做到!    这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻,全程-196度低温下研磨粉碎。保持了生物物质活性,确保易挥发物质的保留;防止热不稳定化合物的受热降解,对热和机械压力敏感的代谢物、异构体和复杂化合物保持原有的敏感特性物质。传统需要五分钟的粉碎研磨,而本设备只需要三十秒,称得上是研磨界的终极手段!
  • 扬大学生在实验室制成“皮革老酸奶”(图)
    [制作流程] ①纯牛奶加入烧杯,准备加热。   ②纯牛奶加入水浴加热器加热。   ③酸牛奶加入烧杯,因为有6%到10%的比例,酸牛奶不是直接加到纯牛奶中,而是先加入到烧杯中,再加入到纯牛奶中。   ④两个分别加入酸牛奶、纯牛奶的锥瓶。   ⑤分别加入微量皮革液(淡黄色)和微量乙基麦芽酚。   ⑥用保鲜膜封住两锥瓶的口,放入培养箱发酵。   ⑦8小时后,老酸奶发酵成功。左边是皮革液老酸奶,右边是正常添加剂老酸奶,中间的是超市买来的品牌老酸奶。比较下来,皮革液老酸奶的透明度不如另两个高,且能看到杂质。而另两种老酸奶肉眼看不见杂质。   央视知名主持人赵普的一段有关老酸奶和果冻“内幕很可怕,不细说”的微博,把老酸奶、果冻一度推上了风口浪尖。一段时间的沉寂之后,工业明胶、“皮革老酸奶”、“皮鞋很忙”等新闻热词似乎逐渐淡出人们视线,但这并不妨碍扬州大学几个有心的大学生对“皮革老酸奶”的兴趣。近日这几个大学生在实验室自制“皮革老酸奶”,试图通过实验来重现问题老酸奶的制作过程,并通过与正常老酸奶的对比,找到两者的区别。有关专家和质监人士对此表示赞赏,并就此作了点评。   成功做出“皮鞋牌老酸奶”   破皮鞋提炼出的工业明胶真的能加入酸奶,做出“皮革老酸奶”吗?网传或许不假,但眼见更能说明问题。扬州大学兽医学院学生文永清等人对“皮革老酸奶”产生了兴趣,他们在实验室自己动手,尝试老酸奶的制作。   为了便于比较,文永清等人制作了两种老酸奶,一种加入了皮革液,制成“皮革老酸奶”,另一种是用乙基麦芽酚替代食用明胶做正常老酸奶。皮革液是用来制作工业明胶的,价格很低 乙基麦芽酚是一种具有凝结性的食品添加物质,可以食用。   “其实老酸奶的制作很简单,只需事先准备好纯牛奶、原味酸奶、皮革液、乙基麦芽酚等原料,以及装酸奶的瓷罐、筷子、保鲜膜等工具,除了皮革液和乙基麦芽酚,其它的东西在一般超市都可以买到。”文永清边做边介绍。  制作开始。首先,将纯牛奶放在热水中加热,加热到60到70℃ 然后,将加热好的牛奶、备用酸奶、少许皮革液倒入已消毒的瓷罐中,酸奶占比6%到10%,用搅拌器拌匀,在罐口覆盖上保鲜膜,保证密封。之后,在大约60℃的环境下,将热水添加到带盖的桶里,放入瓷罐,桶周围包上棉被、衣物等保温。制作程序已经完成大半。   放置6到8小时后,从保温桶里拿出瓷罐,酸奶已经凝固,发酵成功。瓷罐被放入冷水中冷却,然后重新包裹保鲜膜,放入冰箱储藏。   对比结果   皮革老酸奶发现杂质且易碎   将两份自制的老酸奶与第三份市售的品牌老酸奶放在一起,文永清他们发现,加了少许皮革液的老酸奶杂质相对较多,黏度和韧性比较小,用力摇便会出现斑驳痕迹 而另两份则无肉眼可见的杂质,置于容器中摇晃不易破碎。   “表面的现象是我们肉眼可见的,而要弄清楚它们的本质区别,我们还可以进行物质微量测定。通过加热、加重铬酸钾试液与稀盐酸的混合液,看是否生成枯黄色絮状沉淀物,再对沉淀物进行测定等方法,就可以确定老酸奶中是否存在工业明胶。”文永清等同学边做边给大家细细讲解。   为了进一步探明皮革液的成分,学生们进行了物质微量测定,取皮革液1毫升,加水20毫升,加热混合,加重铬酸钾试液4份与稀盐酸1份的混合液,会生成枯黄色的絮状沉淀。进行沉淀试验并测定为阳性,说明皮革制液中存在工业明胶。而皮革液可以作为原料加入老酸奶中,也说明工业明胶完全可以被用到老酸奶制作中。   专家点评   原理对了,但配比不是这样的   这个实验是否科学?文永清等同学请教了江苏省动物营养学科带头人、扬州大学兽医学院动物营养学教授孙镇平。孙教授表示,学生们的制作方法原理是对的,但实际生产中,不法生产商不会完全使用工业明胶,他们将价格低廉的工业明胶与食用明胶掺和在一起,添加比例不会如试验的这么大,但市民若长期食用,积聚起来的影响是很惊人的。   孙教授解释说,食用明胶和工业明胶的很多性质是相同的,它们均为蛋白质,在加工特性、盐析、起泡性、凝胶性方面具有相似性质,因此食品加工过程中选用工业明胶代替食用明胶一般人很难区别。   江苏省质检院食品检测中心主任徐春祥昨天接受扬子晚报记者采访时也指出,如果别有用心的厂商在食品中添加工业明胶,那么他们一定掌握了严格的配比,这也是一项“技术含量很高的活”。简单说来,学生自制“皮鞋老酸奶”时,一定添加了过量的工业明胶,而不法厂商添加的量肯定达不到这么多。因此,不法厂商生产的问题老酸奶不可能像大学生自制出的“皮鞋老酸奶”那样一眼就能看出杂质。   ■新闻延伸   食用明胶工业明胶 混在一起难以检出   “工业明胶与食用明胶在来源、执行标准、生产规范和卫生规范等方面具有不同规定。目前食用明胶原材料大多为健康动物的皮以及一些植物胶原蛋白,植物类胶原蛋白多是从藻类提取的,而工业明胶的原材料则是食用明胶的下脚料或制革工业的副产物,两者价格悬殊。在执行标准方面,食用明胶与工业明胶有着严格的区别,如重金属残留,工业明胶是远远超标的。”江苏省动物营养学科带头人、扬州大学兽医学院动物营养学教授孙镇平说,在重金属残留方面,食用明胶的重金属残留量必须小于或等于百万分之五十,而工业明胶重金属含量远超这一指标,重金属检测是目前我国常用的测量食品中是否含有工业明胶的主要方法,“但是目前存在这样一种令人头疼的问题,有些黑心作坊主按一定比例将工业明胶与食用明胶掺和加入,依据重金属指标可能无法检测出食品有问题,但仍然属于非法添加的违法行为,这种‘潜伏’的伤害往往更可怕,这需要我们执法人员从源头抓起,不能单纯依靠成品抽样检查中几个指标的测定。”   此外,需要说明的是,近年来食品安全问题频出,食品添加剂更是常被提及,不少消费者可能会认为食品添加剂是“罪魁祸首”,其实食品添加剂是为不法厂商背了“黑锅”,因为只要合理使用食品添加剂,并不会影响食用者的健康,很多食品安全事件,添加的并不是食品添加剂,比如说三聚氰胺,它并不属于食品添加剂,完全是一种化工原料 再如工业明胶,它同样不应出现在食品中。   ■消费建议   买老酸奶要“辨色” 冷藏的果冻不要买   扬大兽医学院学生们的实验基本还原了“皮革老酸奶”的做法,扬州市食品药品监管局食品安全协调处周波处长对此表示赞许。他指出,近年来食品安全问题已经成为现在最关乎民生的问题,从毒奶粉、假鸡蛋、瘦肉精到最近的“皮鞋很忙”,越来越多的食品被曝出具有重大的食品安全隐患甚至致病的危险。   周波建议市民在购买老酸奶时,要学会辨成色。通常来讲,含工业明胶的老酸奶一般质量比较差,杂质较多,黏度和韧性较小,易碎。而食用明胶是透明的、白色的,很干净。此外,工业明胶做的东西,为了缩减成本,在材料、工艺等环节上很马虎,所以做成的产品也不精致。   至于果冻,周波建议,不要买冷藏的,因为被冷藏出售的果冻很可能是添加了工业明胶的。由于工业明胶做成的果冻融点低,制备和贮存都需要低温冷藏,才不容易“露馅”。而超市里卖的封装型果冻,基本是用其他食用胶——卡拉胶或魔芋粉制成的。卡拉胶是从藻类海草中提炼出来的糖类胶,用卡拉胶制成的果冻富有弹性且没有离水性,可放心食用。
  • 微生物墨水能3D打印可编程“活材料”
    据英国《自然通讯》杂志23日发表的一项概念验证研究,美国研究团队报告了一种用基因改造大肠杆菌制成的高级微生物墨水,可以用来打印具有功能性和可编程属性的3D材料。该研究同时演示了这项技术的潜在应用,比如隔离在环境中出现的有毒化学物质双酚A。  直接利用微生物制备无须添加其他聚合物或添加剂的打印墨水,为传统物质不可用情况下的材料制造开辟出全新的可能性。与此同时,这种技术还能用于开发可感知周围环境并做出反应的材料。工程师们认为,只要拥有3D打印这种材料的能力,就有望实现材料的定制化并可针对特定用途进行改造。  由活细胞构成的微生物墨水,其实一直是实现这一目标的候选介质,但它们需要将目标材料特性与细胞活性相结合,这是一个技术难点。  此次,包括美国东北大学、弗吉尼亚理工学院暨州立大学、哈佛大学Wyss生物启发工程研究所在内的联合团队,报告了用大肠杆菌制成的一种高级微生物墨水,这种大肠杆菌经过基因工程改造,能产生纳米纤维。这些纳米纤维可以进行浓缩并打印出3D结构。  研究人员随后将这种墨水与其他经过基因工程改造、用来执行特定任务的微生物相结合,发现这种水凝胶可以由此获得功能性。研究团队利用这种水凝胶制备了一种能在遇到化学刺激物时分泌抗癌药天青蛋白的材料,还设计出了一种能隔离在环境中出现的有毒化学物质双酚A的材料。双酚A一度在塑料瓶、塑料杯中广泛应用,但后期研究认为其能导致内分泌失调,威胁人体健康,从2011年3月2日起,欧盟已禁止生产含双酚A的婴儿奶瓶。因此,隔离环境中已存在的双酚A将是一项实用的安全性技术。  研究人员认为,他们的新研究或对空间结构构建具有启示意义,但仍需开展进一步研究探索其未来的定制化用途。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制