当前位置: 仪器信息网 > 行业主题 > >

速度场分析

仪器信息网速度场分析专题为您整合速度场分析相关的最新文章,在速度场分析专题,您不仅可以免费浏览速度场分析的资讯, 同时您还可以浏览速度场分析的相关资料、解决方案,参与社区速度场分析话题讨论。

速度场分析相关的论坛

  • 质谱仪分析速度-四级杆质量分析器离子碎片通量及通过速度问题

    想请教一下各位大神,关于质谱仪的四级杆质量分析器,一般情况下允许同时通过质量分析器的离子碎片的量或者说个数是多少呢?同时通过的离子碎片会不会发生碰撞导致撞到四级杆上造成损失?如果提高离子碎片通过四级杆的通量和速度,是不是能提高质谱的分析速度呢

  • 如何快速提高基础分析速度和准确度

    分析化学实验其实操作都是很简单的,结果好坏和使用的仪器和器皿有直接关系。比如加热设备、计量设备(滴定管、天平等)、玻璃器皿等等。都是和我们试验数据相关系的。下面我就简单谈谈如何快速提高基础分析速度和准确度。1. 首先我们把所做的试验的方案一定有熟悉或打印一份,随时可以看,这样做的时候速度才能快。2. 对于试验过程中可以交叉作业的地方,一定要学会安排,合理地布局,这样才能提高效率。3. 抓住试验关键点,关键步骤,宁可时间长点也要控制住,比如发烟,煮沸时间等要求。4. 滴定时一定要注意颜色变化,那些颜色很有意思,大都用语言没法准确描述,没有把握的时候去和比人的颜色取来比对,这很重要,不然你就容易滴定过头或者不到。5. 活学活用标准、文献等,有些东西可以在适当的改动。6. 分析实验对动手能力是长期培养出来的,要求不是那么高,关键是手稳、读数快、计算准确、配制溶液浓度准确就可以了。总结最重要的一点,一定要多做,失败不可怕,可怕是不失败。

  • 如果把火花台改进一下是否可以提高分析速度?

    如今大多数直读光谱火花台基本都是独立固定式,分析样品要靠手工一个一个的调整位置来完成,如果把火花台改进一下是否可以提高分析速度呢?如在火花台上面安装一个可移动的样品夹,样品夹可沿X—Y方向左右移动,分析完一个抬起压杆,样品夹移动一下换成下一个位置,再压下压杆进行分析,这样就可以大大提高分析速度了。据了解纳克的一款直读光谱就有此功能,这应该是是未来智能化分析的一个方向。关键点:就是有一个瓶颈问题,如何完成每次要刷电极的问题。

  • 直通式调节阀内部流场分析

    0.前言调节阀是一种起控制作用的阀门,由控制机构和增减流量的阀体够成。调节阀一般情况下为直通式的,分为2种:单座式和双座式调节阀,双座式的最大流通量大,在运行过程做更为稳定,故所能使用的场合更多。如今,在流体机械和工程领域,调节阀在诸多问题中起到重要作用。调节阀的基本工作原理是:通过感知动作信号,然后更具信号做出相应动作,即机械位移(如直线、转角等),由此改变阀门开度,达到控制相关参数的目的。现今我国对调节阀的性能研究工作比较少,由于起步晚,目前可用的理论知识和科技手段比较匮乏,而且进入科技人员和经费的投入也很少,主要依赖经验设计,参考国外的一些理论资料和样品进行产品开发,而自主产品研发工作很少。随着计算机技术和硬件设备的日新月异,流体力学研究也越来越多的基于这一优势,逐步形成计算流体力学,计算机数值模拟已成为研究流体力学的三大方法之一,它不仅不受人力和实际工程环境制约,更重要的是可以得到整个负荷变化范围内的流动信息。基于计算机技术和计算流体力学,几十年来,也衍生了很多流体流动前后处理的适用软件,如techplot,grapher,gambit,ansys以及cfx等除了功能齐全经济适用的专业软甲开发,在数值算法方面,进展也越来越显著,除了传统的TVD差分算法和SIMPLE算法,很多研究者也正专注于一些新观点以及新概念,计算机数值模拟的优势必将更加突。相比于从传统的机械角度出发,数值模拟更大程度上提高了调节阀的技术含量与产品质量,对于调节阀的不断优化和使用性能有深远意义。1.数值模拟控制方程湍流流动的瞬时控制方程如下:http://www.klevalve.com/up_files/month_1509/201509010016418139.jpg标准k-ε两方程模型中湍动耗散率ε表示为:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.81.jpg(5)湍动黏度μt是k和ε的函数:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.82.jpg(6)在标准k-ε模型中,常数C1ε、C2ε、Cμ、σk、σε为经验值,可通过试验得到:1ε=1.44,C2ε=1.92,Cμ=0.09,σk=1.0,σε=1.3当流动为不可压,且不考虑用户自定义的源项时,Gb=0,TM=0,Sk=0,Sε=0,这时,标准k-ε模型为:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.83.jpg(7)http://www.klevalve.com/up_files/image/article/2015/09/01/166263.84.jpg(8)方程(7)及(8)中的Gk展开式为:http://www.klevalve.com/up_files/image/article/2015/09/01/166263.85.jpg(9)2.直通式调节阀计算模型图1为某一型号的直通式调节阀结构图,本文的主要工作是应用AutoCAD软件对该调节阀的不同开度建立模型,然后导入fluent软件的gambit模块划分网格,通过设置合适的计算方程,边界条件等进行网格节点上的数值迭代计算,最后得出该直通式调节阀25%,5%两种开度下的速度云图,压力云图,速度矢量图,并对图进行分析,以便对后续的流道优化做准备。其中边界条件为:阀前(密封面处)介质压力约为4.85MPa,温度260℃;阀后管道压力为0.5MPa,温度为260℃。http://www.klevalve.com/up_files/month_1509/201509010018015127.jpg图1 直通式调节阀结构图2.1 流道几何模型的建立本文利用autoCAD建模软件,对图1所示的直通式调节阀内部流道建立不同开度下的模型,经验证本模型在三维模拟和二维模拟下得出的结论对计算结果影响不大,故简化为二维模型。图2是调节阀开度25%时流道模型的二维图,图2中对阀芯和阀杆进行了简化,计入2种不同开度对流态影响的范围之内。http://www.klevalve.com/up_files/month_1509/201509010018289915.jpg图2 25%开度下的流道二维简化模型2.2 网格划分本算例的流道模型简化为二维模型,所以直接使用gambit一体化生成四边形非结构化网格。图3是25%开度下调节阀流道模型的网格结构图,总共有90531个网格。其中,通过网格无关性验证发现当网格个数达到9万多时网格疏密对技术结果影响不大,数值模拟计算结果已满足要求。http://www.klevalve.com/up_files/month_1509/201509010018583377.jpg图3 25%开度下流道模型的网格结构图3.流场可视化分析当残差曲线收敛后,进行流场可视化分析,主要是流道压力分布云图,速度分布云图及速度矢量图的分析。3.1 25%开度下流场可视化分析该调节阀25%开度下的压力分布云图和速度分布云图如图4、图5所示。由图可知,整个流场主要在水流通过节流处(即阀瓣处流通截面很小处,通过改变此处截面大小控制流量)时,压力和速度梯度发生剧烈变化,这是由于流通面积突然减小,根据伯努利方程可知速度迅速增大,并且从图中可知阀前后压力变化极大,变化梯度集中在节流处;在阀门管道进出口处,压力和速度又趋向均匀。由于进出口高度差相对很小,且进出口截面积相同,故流道的压降主要用于克服调节阀前后的阻力。http://www.klevalve.com/up_files/month_1509/201509010019248490.jpg图4 25%开度下压强分布云图(单位:Pa)http://www.klevalve.com/up_files/month_1509/201509010019489761.jpg图5 25%开度下速度分布云图(单位:m/s)在25%开度下的速度矢量图、局部放大图如图6和图7所示。阀门进口处流速大小变化很小,且不出现径向的脉动现象。当水流经过节流处时,速度值变化很大,随着流通面积的减小,速度随之增大;水流通过节流处后,出现一段喷射现象,然后流束慢慢扩大,靠近出口处管径又逐渐均匀,流动状态也随之平稳。水流从节流处喷射进入阀腔中时,产生明显的涡旋现象,同时在出口处也同样生成漩涡,结合压力云图和总流方程可知,漩涡处能量损失很大。其中如图7,靠近出口处的漩涡,最为强烈,对比图4可知,此处也是流道中压强最低的区域。http://www.klevalve.com/up_files/month_1509/201509010020409291.jpg图6 25%开度下速度矢量图(单位:m/s)http://www.klevalve.com/up_files/month_1509/201509010021014477.jpg图7 25%开度下靠近出口漩涡区速度矢量放大图(单位:m/s)3.2 5%开度下流场可视化分析如图8、图9分别是5%开度下该直通式调节阀的压力云图和速度云图。从图中可看出,由于开度很小,阀芯与阀座间的节流段过流

  • STA 449F3 同步热分析的最大自然降温速度

    STA 449F3 同步热分析的最大自然降温速度

    去年底因测试需要,试验了一下耐驰公司的 STA 449F3 同步热分析仪的最大自然降温速度。近几天看到有网友问哪儿可以做从1200度,每分钟40度降温的高温DSC。今天想起做过这个方面的仪器性能测试,因此将结果发上来,以供没有配置自动冷却装置的版友参考。(寻求DSC设备测试_http://bbs.instrument.com.cn/shtml/20150422/5763295/)测试炉体为1500℃高温炉,铂坩埚,环境温度12-15℃,氮气扫气流量60ml/min,保护气20ml,恒温水浴温度20℃,检测信号不做修正。测试步骤:先以20℃/min升温到1000℃,然后以50℃/min降温到50℃,(因为该仪器最大升降温速度只能设置为50)再用 Isothermal 50℃ for 60min。测试得到的结果如下,冷却降温曲线图附后(去掉了升温段):温度范围(℃) 平均降温速度(℃/min)1000-600 51.0600-500 40.5500-400 32.9400-300 25.6300-200 18.3200-100 12.3以上数据可能会随环境温度、扫气流量、恒温水浴温度、坩埚类型变化而改变,因此仅供参考。图1 控温程序设置http://ng1.17img.cn/bbsfiles/images/2015/04/201504280956_543752_1633752_3.jpg图2 降温测试曲线(红色线为50℃/min控温段,蓝色为Isothermal段)http://ng1.17img.cn/bbsfiles/images/2015/04/201504280956_543753_1633752_3.jpg

  • 求电子的侧位移、速度及OP的长

    如图所示,水平放置的两块平行金属板长l =5cm,两板间 距d=1cm,两板间电压为U=90V,且上板带正电,一个电子沿水平方向以速度v0=2.0×107m/s,从两板中央射入。已知电子质量m=9.1×10-31电荷量e=1.6×10-19,求:1、电子偏离金属板的侧位移y0是多少?2、电子飞出电场时的速度是多少?3、电子离开电场后,打在屏上的P点,若s=10cm,求OP的长。

  • 【讨论】匀场的速度

    老师说调节Z2和Z1的速度一定要连续和快速,但我看到有人慢慢地点两下就好了。这个对速度有要求么?

  • 【原创】在线过程分析仪器市场寻求增长

    过程分析仪器市场复杂,应用领域特定,市场增长受一些外部因素的影响。除在生产流水线上用于过程控制的分析仪器外,过程分析仪器还包括批量测定、现场环境测定的便携式分析仪以及运输、边境安检部门用于安全监测的化学、生物及核探测追踪仪。根据行业分析人员的观察,虽然在线分析仪器在安检和环境部门的应用保持了良好的增长势头,但在制药和化工行业的应用情况仍不令人如意,未达到5年前预期的水平。这是因为尽管压力是来自美国食品药品管理局,但适用于工业的培训计划需要由规章制定机构和政府部门制定,而大量的技术开发资金则需要制造企业投入。ABB Ltd (Zurich,Switzerland)是全球最大的专业在线分析仪器供应商,通过其“过程分析解决方案”每年向各类制造企业销售分析仪器2.5-3亿美元;其次为Emerson Electric Co(St Louis,MO)的过程技术部门,其年销售额约为2亿美元;Siemens AG(Munich,Germany)、Yokogawa Electric Corp(Tokyo,Japan)及Sick Maihak Inc(Minneapolis,MN)三家公司以1.5-2亿美元的年销售额紧随其后。其它重要企业还包括年销售额约为1亿美元的Ametek Inc(Paoli,PA)以及年销售额约为0.6-0.8亿美元的Endress&Hauser Group(Reinach,Switzerland)和Honeywell International Inc下属的自动化控制系统集团(Morristown,NJ)。最近的一份研究报告估计:2005年过程分析仪器的世界市场规模约为50亿美元,其中包括了操作成本、维修和综合服务费用。2002年这个数字是47.7亿,预计到2008年就将达到55亿美元。在Frost & Sullivan咨询机构去年一份名为“世界过程分析仪器市场”的报告中,估计过程分析仪器2004年仅仪器销售额一项就约22.8亿美元,并预计到2011年这个数值将突破30亿,年增长率约为4%,这个增长率略低于PAI Partners(Leonia,NJ)三年前一份报告[见Instrumenta 20(17)4]中的4.5%的复合增长率的预计。当时报告认为2003年在线分析仪器市场规模在14.2亿美元。然而以上数据也是有争议的。2005年夏戴安公司成立了过程分析仪器中心[见Instrumenta 22(6/7)15],过程分析中心经理Rich Cooley(原Eli Lilly经理)告诉Instrumenta,随着美国食品药品管理局过程分析技术创新行动计划(PAT)的公布[见Instrumenta 20(11)7],预计在制药和食品行业中过程分析仪器的市场份额将快速增长。根据Cooley的观点,过程分析仪器市场相当巨大而且在各领域应用都在增长,但是需要质疑的是所引用的数据的准确度如何,增长速度是否如市场研究报告所述那样快。Cooley认为至少对制药行业的情况估计过高,尽管市场具有很大潜力,但大多数行业对在线分析仪器的价值认识不足。与Cooley持有相同观点的人并不在少数,去年Control Magazine 的高级技术编辑Rich Merritt 在一篇文章中发表如下评论:大量最新上市的在线过程分析仪器并未提及符合PAT标准的要求。在Merritt看来,制造商似乎对于过程分析中心(CPAC Seattle,WA)的新型取样/传感器的创新[NeSSi,见Instrumenta 19(14)4]闭口不谈。CPAC从2000年就开始寻求推进与生产线一体化的标准化平台的过程分析仪器的小型化和模块化的发展。然而并不是所有的制造企业都对PAT和NeSSi持拒绝态度,还是有大多数的大型制药和生物技术企业已经投入人力专注于实施这两个标准。但是承诺实施并不等于许诺购买过程分析仪器。Cooley说,“PAT initiative实施5年了,虽然制药行业在此方面也有所行动,但是行动比较缓慢。因为制药行业具有谨慎的企业文化,所以人们对此并不感到吃惊。对于新技术的采纳,法律法规是一个很强的推动力,但是PAT并不是法律法规只是一种纯粹自愿的行为。过程分析仪器在环境监测领域的较快增长是因为在此领域法规执行严格并且力度大,在运输行业的安检因为有政府规章的强制,所以发展也很不错。”Cooley总结,“归根到底,虽然法律法规重要,但是财务利益才是关键。市场的真正增长来自于企业认识到在线分析仪器给他们带来经济利益,最大的挑战是要使企业认识到将分析仪器移至生产线的价值。对于制药行业来说,这是一个巨大的范式转变。我想对于我们来说最大的挑战是转变行业文化观念。”Cooley指出,“应对这种变化,制造商将要做的是开发出比当前方法有明显优势的新技术。技术的成本、仪器的简单化和易于维护对于企业来说是至关重要的,而现在的技术在以上方面仍然存在不足,这阻碍了行业的发展。但也表明企业有更大的机会通过技术创新促进市场的增长。分析仪器的小型化即是方向之一,并且在一定程度上使用者也在期待这些新的技术。”Steve Walton(PAI创始人之一,同时也是公司过程分析部门的主要分析专家)告诉Instrumenta :“关于PAT已经谈论很多了,但是人们没有意识到PAT是关于过程控制,分析仪器并不是必须要求的。基于这个原因,分析仪器的需求才没有厂商们预期的那样强烈,同时终端用户也还在观望。与过程分析仪器在制药行业的应用市场发展缓慢相比,NeSSi取得的成绩比较大,企业在技术方面的研究工作使他们认识到增加应用在线分析仪器会带来经济利益。当然与石化行业的巨大市场相比,制药行业的市场相对较小。”Walton指出,“然而,这种情况也并非出乎意料。对于制药行业这个保守的市场,新技术的推广需花很长的时间,但经济利益最终将促进新技术的推广。”新技术可能改变在线分析仪器市场的发展速度吗?Walton认为,“仪器供应商并不能比现在更快地促进市场发展,培训才是市场增长的唯一重要因素。”

  • 【金秋计划】+低场核磁共振技术:油泥含油率分析与回收价值评估

    油泥是石油和化工行业常见的副产品,其含油率直接影响到其回收和处理的经济性和可行性。低场核磁共振技术提供了一种快速、准确的方法来评估油泥的含油率,为油泥的有效利用和环境治理提供了重要工具。 油泥含油率的重要性: 油泥的含油率是衡量其经济价值和处理难度的关键指标。高含油率的油泥具有更高的回收价值,但同时也意味着更高的处理成本。准确测定含油率对于制定合理的油泥处理策略至关重要。 低场核磁共振技术原理: LF-NMR技术通过测量样品中氢原子的磁共振频率,可以区分油泥中的油分和水分。该技术能够提供油泥中油分的精确含量,为油泥的分类和处理提供科学依据。 [align=center][img=,640,232]https://q8.itc.cn/q_70/images01/20240828/c0a03046e6c74c61ad151b052cbe824f.png[/img][/align] LF-NMR技术的优势: 高准确性: 能够精确测量油泥中的油分含量。 操作简便: 无需复杂的样品前处理。 快速响应: 分析速度快,适合大规模样品分析。 环境友好: 非破坏性分析,无需使用有害化学品。 油泥回收价值评估: 通过LF-NMR技术测定的含油率,可以评估油泥的回收价值。高含油率的油泥可以通过物理或化学方法回收油分,转化为可利用的资源。 效果评估: LF-NMR技术不仅可以用于油泥含油率的测定,还可以用于评估油泥处理效果。通过比较处理前后的含油率,可以评估不同处理方法的效率和适用性。 应用案例: 在实际应用中,LF-NMR技术已被用于多种油泥处理流程,包括油泥的脱水、油分回收和最终处置。通过LF-NMR分析,企业能够优化油泥处理流程,提高资源回收率,降低环境风险。 低场核磁共振技术为油泥含油率的准确测定提供了一种高效、环保的方法。通过这项技术,可以有效地评估油泥的回收价值和处理效果,促进油泥资源化利用,实现环境保护和经济效益的双赢。

  • ICP MS 报错1170/1171/1172 涡轮泵2在分析模式下未达到目标速度

    请教一个问题,我们的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]在昨天早上九点半的时候报错了1170(涡轮泵2在分析模式未达到目标速度),仪器自己就卸了真空,我们下午去的时候就发现了这个报错就重新抽真空后点火,点火成功后测了两个样品又熄火并且还是报错1170和1171。我们就重启抽真空,然后四级杆真空度一直没有显示(已经抽了一个多小时了),想请教一下大佬们可能是什么问题呢?[img=,690,162]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151031311626_1897_6020982_3.png[/img]

  • 【第三届原创大赛】扫描速度与吸光值的关系

    【第三届原创大赛】扫描速度与吸光值的关系

    [color=#dc143c]维权声明:本文为anping 原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为,我们将追究法律责任。[/color]7月28日,在本版面里,ghostermen版友写了一篇求助帖,问:在紫外分光光度计上,对一个样品进行定点测试和扫描测试,那么两种方式的吸光值是否有变化?带着这个问题,我今天特意做了一个小实验。仪器型号:U-3010样品名称:钬玻璃仪器条件:狭缝均为2nm,仅改变扫描速度测试结果如下:(1)扫描速度=300nm/min,361nm处的吸光值=0.545Abs;[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008021640_233764_1602290_3.jpg[/img](2)扫描速度=600nm/min,361nm出的吸光值=0.432Abs;[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008021644_233765_1602290_3.jpg[/img](3)扫描速度=1200nm/min,360nm处的吸光值=0.293Abs;[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008021645_233766_1602290_3.jpg[/img](4)为了便于分析,特将上述三张图谱叠加在一起则一目了然[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008021649_233768_1602290_3.jpg[/img](5)改为定波长测定,361nm处的吸光值=0.381Abs;[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008021656_233775_1602290_3.jpg[/img][b][color=#ff483f][size=4]结 论:在采用扫描方式下,在同一波长处,扫描速度越快其吸光值越低。悬 案:为何采用定波长测定的吸光值反而不是最高值?[/size][/color][/b]以上欢迎大家讨论!

  • 移液器错误操作及处理方法-吸液速度和放液速度过快

    [b]错误:[/b]吸液速度和放液速度过快[b]正确:[/b]慢吸慢放[b]分析:[/b]快吸对于1mL及以上量程的[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url],很容易造成液体上冲。过快的放液会增加液体的残留量。

  • TEM明场分析

    TEM明场分析

    大家国庆快乐。有问题需要请教。样品:Fe纳米晶,经退火处理得到的明场相。样品是FIB制作的。图中 标记的1,2,3是大晶粒?还是污染物?最好是对1,2,3区域做衍射或成分分析,但实验当时,没有表征。还请各位从形貌角度给出分析。http://ng1.17img.cn/bbsfiles/images/2015/10/201510011754_568998_2722760_3.png谢谢。

  • 【分享】加速度传感器的特征及应用前景

    加速度传感器是一种能够测量加速力的电子设备,是利用了其内部的由于加速度造成的晶体变形这个特性来测量加速力的。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。 但是差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙、变面积、变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单、动态响应好、能实现无接触式测量、灵敏度好、分辨率强,能测量0.01um甚至更微小的位移,但是由于加速度传感器的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百MΩ,所以对绝缘电阻的要求较高,并且寄生电容不可忽视。 加速度传感器可应用在控制、手柄振动和摇晃、仪器仪表、汽车制动启动检测、地震检测、报警系统、玩具、环境监视、工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制