当前位置: 仪器信息网 > 行业主题 > >

水吸附研究

仪器信息网水吸附研究专题为您整合水吸附研究相关的最新文章,在水吸附研究专题,您不仅可以免费浏览水吸附研究的资讯, 同时您还可以浏览水吸附研究的相关资料、解决方案,参与社区水吸附研究话题讨论。

水吸附研究相关的资讯

  • “纳米材料的选择性吸附环境污染物机理及水相分离功能调控”获国家自然科学二等奖
    p   1月8日上午,2018年度国家科技奖励大会在人民大会堂隆重举行。中国科学院生态环境研究中心刘景富研究员主持的“纳米材料的选择性吸附环境污染物机理及水相分离功能调控”项目荣获国家自然科学二等奖。项目的主要完成人有中国科学院生态环境研究中心刘景富研究员、蔡亚岐研究员、刘倩研究员、赵宗山研究员、江桂斌院士。 /p p   该项目属于环境科学与技术领域。水环境中的持久性有毒污染物严重危害生态环境与人体健康,高效分离富集和去除这些微量污染物的方法是研究其环境行为与效应并发展污染防治技术的重要基础,也是我国环境与人体健康保护的重大需求。纳米材料在水中污染物的高效吸附去除等方面具有巨大的潜力,选择性吸附目标污染物和水相分离功能是决定纳米材料吸附去除水中污染物性能的关键因子。该项目以纳米材料的选择性吸附污染物原理和水相分离功能调控等前沿科学问题为核心,系统研究了纳米材料吸附污染物的分子作用机制与调控以及纳米材料的水相分离富集和回收等关键难题,取得了以下重要发现: /p p   1.揭示了纳米材料对不同类型污染物的选择性吸附原理。构建了具有不同表面电荷、络合能力和疏水性等表面特性的纳米吸附剂,发现这些吸附剂的表面结构和官能团性质决定了其对不同金属离子和不同类型有机污染物的吸附性能,揭示了纳米材料对污染物的选择性吸附作用机制,为设计制备选择性吸附目标污染物的纳米材料提供了理论依据。 /p p   2.阐明了磁性纳米材料的水相分离性能及选择性吸附功能的调控机制,构建了兼具选择性吸附和水相分离功能的系列磁性纳米材料。发现Fe3O4纳米材料可在重复使用中保持优异的选择性吸附和磁性分离功能 通过改性或表面修饰增加磁性纳米材料选择性吸附目标物的表面官能团,可显著提高其选择性吸附目标污染物的能力,消除水环境中大量共存物质的干扰。构建了选择性吸附去除砷、氟、全氟化合物、烷基酚类内分泌干扰物等典型污染物的系列磁性纳米材料,突破了纳米材料高效选择性吸附水环境中微量污染物和水相分离的难题。 /p p   3.发现了基于浊点萃取调控纳米材料水相分离功能的新原理,创建了基于该原理分离回收纳米材料的新方法。发现了利用浊点萃取调控纳米材料水相分离功能的新途径,并揭示了其通过形成非离子表面活性剂-纳米材料胶团复合结构而实现水相分离的作用原理。基于该原理创建的萃取痕量纳米材料的新方法,可富集不同粒径、化学组成和表面修饰的纳米材料并保持其原有形貌和尺寸特征,为纳米材料的分离回收及环境行为与效应研究提供了关键技术。 /p p   研究成果发表在 Environ. Sci. Technol. 等本领域著名 SCI 期刊,得到国际同行广泛引用,丰富了纳米材料功能化修饰和水相分离调控理论,在国际上引领了磁性纳米材料选择性吸附污染物及纳米材料浊点萃取分离等研究方向,创建的纳米材料浊点萃取分离富集方法在国内外得到广泛应用并取得重要学术成果,推动了环境科学与技术等基础学科的发展。8篇代表性论文被 SCI 他引1552次,其中4篇的单篇 SCI 他引超过200次(单篇最高 SCI 他引428次),6篇入选 ESI 高被引论文,1篇获 J. Chromatogr. A 高引用论文奖。项目获授权发明专利3件。项目完成人获得全国百篇优秀博士学位论文(3人)、国家杰出青年科学基金(2人)、国家优秀青年科学基金(1人),受聘 Environ. Sci. Technol. , Nanolmpact 等4个 SCI 期刊主编和副主编,入选 Elsevier 高引用论文作者榜单(2人)。 /p
  • 兵马俑在守护谁?试问水吸附分析仪
    世人称之为“世界第八大奇迹”的秦始皇兵马俑是为“千古一帝”秦始皇陪葬,这本已是众所周知。可是,随着最近《芈月传》的播出,许多民间研究者又提出异议,认为兵马俑是为秦宣太后陪葬的。最近央视一个节目中,建筑学学者陈景元先生就认为兵马俑陪葬的不是秦始皇,而是秦始皇的祖母秦宣太后(芈月)。在电视节目中,陈景元提出了一个又一个论据,被誉为“秦俑之父”的袁仲一先生则进行了针锋相对的批驳,双方你来我往,唇枪舌战,似乎说得都有道理。那么,真相到底如何? 文史圈儿的事儿,按说科技圈儿不好多嘴,毕竟隔行如隔山。只是,正因为隔行如隔山,可能两位学者对于接下来要提到的这款设备,或许也不是那么了解,虽然,它可能对于评判甚至解决这个争议,的确能扮演非常重要的角色。事实上,在2009年,英国曼彻斯特大学和爱丁堡大学的研究者就已经利用这款仪器,开发出了一项新技术,用于对上千年的古代陶瓷和砖瓦进行年代确定——它就是美国康塔仪器公司的全自动双站水吸附分析仪Aquadyne DVS。当然,我们并不是说国外的招儿在国内也一定有用,但他山之石或许可以攻玉,聊作参考也未为不可。 目前,英国这项基于美国康塔仪器公司水吸附分析仪开发的技术已经成为与碳14断代方法的并行方法,这款水吸附分析仪可以通过精确控制温度和湿度的条件,能将样品质量测量至0.1微克。这项技术不仅使对考古学断代和高度仿真的赝品测年成为可能,也可以通过研究已知年代的标本,为调查气候变化提供帮助。这项研究报告- ' Dating fired-clay ceramics using long-term power law rehydration kinetics' - 已经发表在英国皇家协会会刊(Proceedings of the Royal Society A) 这项断代技术的关键是基于以下事实:烧制粘土类终生都自始至终地从大气环境中吸附水汽,其吸附速率与周边平均温度和粘土性质有关。已经确认,少量样品(通常3-5g)被加热到105°C后,其毛细管中的水即被去除,从而得到“初始接收”质量,然后加热到500°C四小时,即可除去样品一生累积吸附的所有水分。这个“初始接收”质量和最终质量的差值代表了样品终生吸附的水汽。 其次,在样品冷却后,对样品质量在所控温度和相对湿度条件下进行吸湿性监测,能够获得样品重新结合水后的动力学增长曲线。相对湿度通常保持在30.0±0.1% RH,而温度设定为在样品发现地的长期平均温度(经验值)。 对水汽的吸附,这里术语叫做再羟基化(rehydroxylation,RHX),符合1/4幂次方规律。质量数据采集由美国康塔仪器公司Aquadyne DVS 全自动双站水吸附分析仪执行,每30秒采集一次质量数据,一个测量周期一般为2到5天。从图上,我们能够推断出“初始接收”质量,因此我们能测定出样品的年代。当伦敦博物馆提供了一个来自于查尔斯二世在格林威治的建筑中的未知样品时,研究者测定出其原始煅烧年代为1691± 22年。事实上,该建筑建造于1664-1669,新的断代技术所确定的年代与十七世纪九十年代的变化是相符的。其他2000年以前的样品也已成功地进行了分析,研究人员相信,该技术对上万年的样品同样有效。 好吧,根据英国这边的实验表明,利用康塔仪器水吸附分析仪这项技术,断代误差在30年以内(上文写的是22年)。那么,秦始皇和秦宣太后差了大概有55年(具体的,以文史专家给出的数字为准)?如果是这样,其实答案就简单了,一测便知真假。当然,或许事情并不只是这么简单。毕竟如上所说隔行如隔山,对于另一个领域,我们应保佑起码的尊敬,真相以专家结论为准。我们所能解决的,终归只是技术层面的问题,下面要讲到的,就是较为纯粹的技术了,兴趣不大的,可以绕行。Aquedyne DVS 非常适合这个应用有多种原因。 显然,长期稳定地测量质量精确到0.1ug的能力是至关重要的,但严格控制样品室的温度和相对湿度也是重要因素。此外,美国康塔仪器公司的完整的微天平具有双称量盘,这意味着可以同时进行两个样品的平行分析,并提高了生产率。曼彻斯特大学机械、航天和土木工程学院的莫伊拉威尔逊博士(Dr Moira Wilson)认为:比起其它技术,Aquadyne DVS产生的数据要好得多。"起初我们想用传统的顶装盘,但结果表现出太多散点。当我们试用Aquadyne DVS的微天平头,所产生的清晰的图形曲线给我们留下深刻印象。” 虽然Aquadyne DVS不是市场上唯一的水吸附分析仪,威尔逊博士还是没有任何犹豫地选择了它:“我的一位同事以前曾经使用过康塔仪器微天平系统,并认为它是非常优秀的。并且,他在英国布里斯托尔大学的同事也对这种微量天平给出一致好评。实验表明,Aquadyne DVS可以满足我们的所有要求,并且具有明显优势。” 此外,当威尔逊博士和她的团队开发新的断代技术时,他们得到制造商的持续服务和支持,为此受到广泛赞赏。人们很早就知道,陶瓷吸收水分,但测量非常小的应变(扩展)结果是极其困难的。改成基于质量的测量方法不仅创造了为古代陶瓷断代的机会,它也使现代陶瓷中与吸湿性有关的问题-- 如釉料开裂--更容易地调查原因。 新的测年技术之所以出色,原因之一是它仅需的装置是一个小型高温炉炉和水吸附分析仪,用于测量“初始接收”质量和再羟基化之前的最终质量。这使得该技术更简单,更快,比现有的陶瓷断代技术花费低,如热释光方法。 威尔逊博士继成功开发烧制粘土的测年技术后,现在准备进一步用Aquadyne DVS开展工作,如测量胶结材料的水化率和碳化率,调查粒径对粉末陶瓷吸附动力学的影响。 技术介绍 再羟基化(RHX)的测年方法完全是在研究烧制粘土砖水分膨胀的可逆性时获得的意外收获。RHX的过程是由粘土烧制陶瓷对大气水分的化学吸附,这个过程是通过超慢的纳米级固态运输(一维扩散,SFD)进入粘土体内的。这项工作导致发现了一个新的动力学定律:水分膨胀的超慢反应动力学(以及质量增加)服从(时间)?幂律[1]。简单地说,对t?的时间依赖性意味着相等的质量将以1,16,81,256等增加(对应14,24,34,44等)。这些时间单位可以是秒,分,天或年。 因为再羟基化的过程是一个化学反应,其进程主要取决于温度。已证明[2],可根据出土样品的地点对“有效寿命温度”(ELT)进行估计,它是从执行分析到所能看到的近乎样品的终生的可靠温度。 在英国曼彻斯特大学的研究已经率先使用的微重量测量,使用Aquadyne DVS重量法水吸附分析仪(康塔仪器)进行RHX测年[3]。它的有效寿命温度(ELT)主要取决于获取样品的地点,在样品的有效生命周期内,提供一个适合的温度环境使其能顺利的分析样品。图1:这个图表显示了原始实验数据m2,证明了RHX测量方法的精确性。它的成功需要维持持续恒温以及空气中的相对湿度。 根据曼彻斯特大学的研究分析,运用全自动双站水吸附分析仪可以做微重量RHX数据分析。 在原理,RHX测年法的核心就是简单明了;然而,想要成功测出一片烧制陶器的年代还是有些困难的,所以我们尝试用RHX测量超慢速度质量的增加,一般地,每3天增加6mg. 在持续恒温和相对湿度的条件下测量样品(大约0.1ug);全自动动态水吸附分析仪可以做到这点,请看图1. 实验方法 Wilson已经详细说明了RHX测年法的过程。首先,m1样品需要在105摄氏度下脱气,直到达到一个恒定的质量。在这点上所有的物理吸附水分用T0表示,化学吸附脱气可能会超出样品能承受的脱气温度。然后把样品放在天平室,温度控制在ELT,(一般8到11摄氏度),相对湿度需要仔细的控制在可以提供水分子表面的层面。在这些条件下,样品可以保持平衡。当样品达到平衡点,会测量出原始样品质量m2. 在这些温度和湿度的条件下,通过RHX测年法测出陶土的原始质量以及水吸附值。 接着,将样品加热至500摄氏度直到脱尽样品中的所有水分,包括物理吸附和化学吸附(T0,T1,T2)的水。监测m1的质量损失,直到达到恒定质量m3. 然后把样品放置在与之前相同的温度和湿度条件下,得到数据m2。获得原始质量数据后,重新加热到500摄氏度,Savage等【5】描述了特征性的质量增加时的两个阶段过程。 第I阶段是样品从500℃冷却并在未来的环境条件下的平衡。第II阶段的质量增益,只是由于再羟基化过程(T2)。质量增加的这个部分只是来自于M4,从M4可以推断出M2并用于年代测定。 图2:该图显示了原始实验数据。红色划线部分是用来计算RHX速率常数(阶段II)。在这之前看到的质量增加是因为几个过程同时存在(阶段I)。虚线与Y轴相交点就是m4. [4] 样品的再羟基化所引起的归一化质量改变(ya)与样品寿命时间的1/4幂次方成正比:Yα=α(T)t1/4 比例常数α(T)是在温度T所获得的数据,以质量的线性部分相对t?作图时的斜率,如图2所示。Yα=(m2-m4)/m4样品的年代(tα)计算可用公式:tα=(yα/α)4这些关系示于图3。这里可以清楚地看到的三种不同类型的水的质量贡献。图3:再加热到500摄氏度后,质量增加量对时间?的关系。(a) 特征性的二个阶段的质量增加。这是所有3种类型的水分T0+T1+T2(~27,000数据点) 结合。这些成分的结合所贡献的总质量值也可以被分割成(b)和(c),如图所示。(b) 只有T0+T1会影响质量值,并且当样品与周围的环境达成平衡时,质量值就会停止变化。这个质量值的变化可以用于跟踪环境温度和相对湿度的改变。(c) 因T2再羟基化而产生的质量增加。 结论 Aquadyne DVS全自动双站水吸附分析仪可以精确的控制相对湿度和温度,并且超级灵敏的微天平可以使其测出上百年甚至是几千年前的陶瓷、陶器和粘土文物的年代。 袁仲一先生西北大学、西安交通大学教授,秦始皇兵马俑博物馆馆长。现任中国考古学会理事,陕西考古学会副会长,陕西省司马迁研究会会长,秦始皇兵马俑博物馆名誉馆长,陕西省秦俑学研究会会长和秦文化研究会副会长。1998年10月被陕西省人民政府聘任为省文史研究馆馆员。被尊称为“秦俑之父”。(介绍来自百度百科) 陈景元先生毕业于西安建筑工程学院建筑系,后长期在江苏省国土厅工作的建筑学家陈景元1961年曾参与秦始皇陵的保护规划,1984年他发表文章质疑兵马俑的真正主人是否秦始皇,未得到重视。今年,他又在《中国科学探险》杂志(第2期)发表了《兵马俑的主人根本不是秦始皇》一文,遭到学界反驳。为此,陈景元上月到河北至咸阳的崤函故道进行实地考察,确信殁于河北邢台的秦始皇不可能被运回陕西安葬,因而,非但兵马俑不是秦始皇的陪葬,就连陕西骊山脚下的秦始皇陵也值得质疑……(介绍来自百度)
  • “一种用于选择吸附六价铬的吸附剂”获国家发明专利授权
    中国科学院兰州化学物理研究所发明了一种用于选择吸附六价铬的吸附剂,近日获得国家发明专利授权(一种用于选择吸附六价铬的吸附剂,专利号:ZL 201110212531.3,发明人:郑易安 王爱勤)。   铬及其化合物广泛应用于工业生产的各个领域,是冶金工业、金属加工、电镀、制革、油漆、印染、颜料等行业中必不可少的原料。铬在水中的存在形式有两种:铬(VI)和 铬(III)。毒性大的铬(VI) 是重金属中有毒有害污染物的代表,常用的处理方法有沉淀法、氧化还原法、电解法、吸附法、离子交换法等。每种方法各有优劣,其中吸附法因操作简单、见效快、吸附剂可以设计及循环使用等优点在含铬废水处理中得以广泛应用。然而,目前国内常用的吸附法均存在一定缺陷,如材料价格昂贵、再生困难 吸附容量小,容易造成二次污染 选择吸附性有待提高等。   该发明以洋车前子壳粉和苯胺为原料,经过氧化聚合制备了用于选择吸附六价铬的吸附剂。吸附剂可在保持聚苯胺原有吸附性能基础上,进一步降低制备成本,赋予环境友好性,用于工业含铬废水的处理。   与现有技术相比,该发明中吸附剂合成原料廉价易得 吸附剂的制备过程简单,反应条件温和 吸附剂对水中的六价铬具有高的选择吸附性 在不降低聚苯胺原有吸附性能基础上,引入洋车前子壳粉,从理论上讲赋予吸附剂良好的生物可降解性,同时可拓展洋车前子壳粉的应用领域。
  • 康塔公司推出世界第一台双站水吸附分析仪
    美国康塔仪器公司隆重推出世界第一台双站水吸附分析仪 Quantachrome Announces New Water Sorption Analyzer 美国康塔仪器公司(Quantachrome Instruments)2009年10月30日在其位于佛罗里达州的总部发布新闻,隆重推出世界第一台双站重量法水吸附分析仪——Aquadyne DVS。 水吸附特性研究在制造和设计先进材料方面非常重要。许多材料 由于所含水分不同导致性能发生改变,这是由于材料所发生的对空气中的水发生自然吸附、毛细管冷凝或化学反应等作用所致。水分吸附现象和材料 的贮存、处理 或其活性都 有关系。含水量 的百分比是描述材料 含水量 的最简单和最重要的参数。材料 的含水量 取决于材料 所处环境的相对湿度 。水的吸附等温线是描述材料 在吸附水分过程中材料 水分含量 与相对湿度 的关系。其应用包括: 􀁺 粮食的烘干和贮存 􀁺 食品的质地和上架周期(保质期) 􀁺 药物赋形剂的稳定性和药物活性 􀁺 灰浆和其它似水泥材料 􀁺 纸张和涂料 􀁺 疏水表面处理(牙科用牙齿抗污涂料的效力) 􀁺 微孔和纳米结构的碳材料 􀁺 PEM燃料电池成分 Aquadyne DVS是一个全自动双微天平系统,可以同时测定两个样品的水蒸汽吸附量,融合了高精度,高输出和多功能的独特优点,具有充分完整的温度控制和相对湿度发生器,高分辨率(0.1微克)和高负载能力(5g)。 这个双微天平分析仪采用了重量法吸附测量原理结合动态蒸汽发生系统以精确测量吸附等温线,吸附动力学和依赖温度的吸附行为。两个样品可同时测量是这个新型分析仪的规范标准,但是更加奇特的是,如果只测量一个样品,出色的电子微天平系统可承受多达8g的重量,并仍能保持千万分之一(0.0000001g)的灵敏度! Aquadyne DVS设计性能高,操作简单,主要针对医药,食品,干燥剂,建筑材料,燃料电池,炭材料,考古学和材料科学的工业应用和学术研究,使得这些领域的科学工作者有了更加得心应手的分析和研究手段。
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 大连化物所开发新型金属有机框架吸附材料
    近日,我所节能与环境研究部(DNL09)王树东研究员团队与沙特阿拉伯国王科技大学赖志平教授团队合作,提出了一种通过原位氟化合成Fe基金属节点的策略,设计合成了一种新型全氟节点金属有机框架(MOFs)——DNL-9(Fe),该材料是一种具有螺旋氟桥金属节点结构的Fe-MOFs吸附剂,可用于潮湿条件下的C2H2/CO2吸附分离。C2H2/CO2具有相同的动力学尺寸(3.3Å)、相似的极化率(29.1×1025/cm3至33.3×1025/cm3)和相近的沸点(189K至194K),在潮湿的工业环境中吸附分离C2H2和CO2具有挑战。MOFs是一种孔道丰富,结构可调的多孔材料,但是其稳定性、耐水性相比于活性炭和分子筛较差,这也限制了其在C2H2潮湿环境下分子的吸附和C2H2/CO2的分离。相比于在MOFs中引入不饱和金属位点、有机配体功能化等调控手段,构筑含氟阴离子等氢键受体提供了另一种途径来增强客体分子与骨架间的相互作用。该方法通过强化C2H2与MOFs限域孔道内的氢键作用实现C2H2的选择性吸附,同时可以提升材料的耐水性和抗水气吸附干扰能力。然而,在MOFs的合成中难以对金属节点进行原位氟化配位,目前构筑含氟MOFs单元通常采用SiF62-,TiF62-,GeF62-阴离子盐,或含氟有机配体等价格昂贵的商业试剂,这也阻碍了含氟MOFs的低成本生产与实际应用。   本工作中,研究团队另辟蹊径,在DMF溶剂高温分解条件下构造出还原性合成环境,促进了F原子与金属Fe的直接配位络合。团队采用简单的HF试剂,实现了Fe-MOFs的金属节点的原位氟化和螺旋结构拓扑链的生长,从而开发出具有混合变价的[Fe6(μ-F)6F8]配位节点的全氟Fe基材料DNL-9(Fe)。DNL-9(Fe)的结构区别于常见的[Fe3(μ3-O)(μ-OH)3]或[Fe2MII(μ3-O)(μ-OH)3]节点,其由生物质基呋喃二甲酸作为配体合成原料,取代了传统对苯二甲酸等难降解的有机物,是一种环境友好型吸附剂。该材料还具备优异的耐水性和化学稳定性,在潮湿环境中可以高效分离C2H2CO2,一次提浓后的C2H2纯度即可达到99.9%。同时,氟化的金属位点Fe-F-Fe有效降低了H2O和C2H2分子的吸附热,在真空条件下即可循环再生,可以应用于变压吸附(PSA)和真空解吸(VSA)工艺。因此,本工作为多孔材料结构设计、MOFs的氟化改性和吸附分离提供了新的思路。   近年来,王树东团队在C2H2/CO2协同吸附机理探究(Chem. Mater.,2022),潮湿CO2捕集(Fuel,2023;Chem. Eng. J.,2022;J. Energy Chem.,2022),混合配体MOFs调控(Chem. Eng. J.,2022),果糖直接合成MOFs(ACS Sustain. Chem. Eng.,2021)等相关方面开展了多孔材料设计与吸附分离工作,致力于开发低成本、高效、疏水等综合性能的多孔材料吸附剂。   相关研究成果以“Fluorido-Bridged Robust Metal-Organic Frameworks for Efficient C2H2/CO2Separation under Moist Condition”为题,发表在《化学科学》(Chemical Science)上,该工作第一作者是我所DNL0901组博士毕业生顾一鸣。上述工作得到国家自然科学基金等项目的资助。
  • “超级沙”可高效吸附水中重金属离子
    据英国广播公司(BBC)6月24日报道,美国科学家将普通沙子涂上便宜且来源丰富的氧化石墨,使其变身为“超级沙”,能有效地除去水中的汞和染料分子,普通沙子过滤10分钟就会饱和,而“超级沙”吸收重金属可超过50分钟,净水能力提高了5倍。这种成本低廉的实用产品可广泛应用于发展中国家,相关论文发表在美国化学学会出版的《应用材料与界面》杂志上。   参与此项研究的美国莱斯大学的高薇(音译)表示,当水被病原体、有机污染物和重金属离子污染时,普通粗沙的净化效率比细沙低,但细沙存在过滤速度慢的缺点。他们将具有很强吸附能力的氧化石墨同普通粗沙混合在一起放入水中,然后将混合物加热到105摄氏度,待水挥发掉,就得到了这种水流通过量大、净水效率更高“超级沙”。   该研究的领导者、莱斯大学的普利克尔阿加延表示,为了使该“超级沙”能有针对性地吸附污水中的某些有机污染物或特定金属,可对氧化石墨进行修改。   澳大利亚莫纳什大学的梅耐克马巨德表示,这项技术的另一优势是便宜,“超级沙”的性能可与市面上的活性炭相媲美,但却使用的是便宜且储量丰富的氧化石墨,如果能在室温下制造,会更具成本优势。   世界卫生组织(WHO)表示,撒哈拉以南非洲国家仅有60%的居民、大洋洲仅有50%的居民能方便地获得饮用水。用沙子净化水已有6000多年的历史了,这种涂了氧化石墨的“超级沙”有望让这些国家和地区的人民更方便地获得饮用水。
  • 吸附等温线及典型吸附理论浅析
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong 本文对气体吸附研究中最常用到的概念——吸附等温线进行了科普和分类,并对Langmuir吸附等温理论、BET理论给出了自己的分析和见解,深入浅出的专业文章即将到来,以飨读者。 /p p style=" text-align: justify text-indent: 2em " strong 吸附等温线小科普 /strong /p p style=" text-align: justify text-indent: 2em " 对于给定的固体-气体体系,在温度一定时,可以认为吸附作用势一定,这时候,吸附量是压力的函数,这个关系叫做吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体在固体表面的吸附状态多种多样,目前,把等温线分为六类,实际的各种吸附等温线大多是这六类等温线的不同组合。设固体表面与第一层(单分子层)吸附分子的吸附作用能为E1,第n层与第n+1层的作用能为En。 /p p style=" text-align: justify text-indent: 2em " (1)I型等温线 /p p style=" text-align: justify text-indent: 2em " I-A型(E1& gt & gt En) /p p style=" text-align: justify text-indent: 2em " 由于单分子层的吸附作用力很大,表面吸附位的反应活性高,属电子转移型吸附互相作用,这时候的吸附大多数不可逆,我们认为是化学吸附。在金属与氧气、金属与一氧化碳、金属与氢气的表面反应体系中常见,这种等温线是由Langmuir研究,所以也叫做Langmuir型。等温线如下图所示。 span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/91952d99-a96e-444f-b86b-f98a78a8e437.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " I-B型 /p p style=" text-align: justify text-indent: 2em " 活性炭和沸石常呈现这种类型,这些固体具有微孔,外表面积比孔内表面积小很多。在相对压力较低时,吸附曲线迅速上升,发生微孔内吸附。如上图所示。 /p p style=" text-align: justify text-indent: 2em " (2)II型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线一般为非多孔性固体表面发生多分子层吸附,比如非多孔性金属氧化物粒子吸附氮气或者水蒸气,此外,发生亲液性表面相互作用时也为此类型。在相对压力约为0.3时,第一层吸附大致完成,随着相对压力增大,开始形成第二层,在饱和蒸气压时,吸附层数无限大。Brunauer、Emmet和Teller从理论导出这种等温线,故这种类型的等温线也被称作BET等温线。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/11476386-c8ca-4d9f-a9b2-bd2c87e56d2c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " (3)III型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 在憎液性表面发生多分子层吸附,或者固体和吸附质的吸附相互作用小于吸附质之间的相互作用时呈现这种类型。比如,水蒸气在石墨表面上吸附,或者,水蒸气在进行过憎水处理的非多孔性金属氧化物上的吸附。因此,这种吸附在低压区的吸附量较少,相对压力越大,吸附量越多。如下图。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/931c7ce4-fbdd-4933-bf7a-3a53890d9de5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " (4)IV型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 氮气、有机蒸汽和水蒸气在硅胶上吸附属于这一类型。在相对压力约为0.4时,吸附质发生毛细凝聚,等温线迅速上升,脱附等温线与吸附等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后,形成一个“吸附滞后环”。在相对压力较大时,由于中孔内的吸附已经结束,吸附只在外表面上发生,曲线平坦,在相对压力接近1时,在大孔上吸附,曲线上升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f555414b-be52-465d-9be6-977a773a7321.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " (5)V型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 发生在多孔固体上,表面相互作用同III型,例如水蒸气在活性炭或憎水化处理过的硅胶上的吸附。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2900e13b-5186-4bfc-90dc-13e79adb4bdd.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: justify text-indent: 2em " (6)VI型等温线 /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线又称为阶梯型等温线。非极性的吸附质在化学性质均匀的非多孔固体上吸附时较为常见。如将炭在2700℃以上进行石墨化处理后,再吸附氮气、氩气、氪气。这种阶梯型等温线是先形成第一层二维有序的分子层后,再吸附第二层,第二层显然受第一层的影响,因此成为阶梯型。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2f1b1b14-d591-4786-98e0-0eef916902cd.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 典型吸附理论浅析 /strong /p p style=" text-align: justify text-indent: 2em " 不同的固体表面与吸附质组合得到各种不同的吸附等温线,这些等温线的形状反映了固体表面结构、孔结构和固体-吸附质的相互作用,通过解析这些等温线就能知道吸附相互作用和表征固体表面。对于常见的等温线,提出许多吸附相互作用的理论。下面仅介绍目前具有代表性的理论。 /p p style=" text-align: justify text-indent: 2em " Langmuir方程是常用的吸附等温线方程之一,是由物理化学家朗格缪尔于1916年根据分子运动理论和一些假定提出的。这个理论认为,在固体表面的分子或原子存在向外的剩余价力,可以吸附分子,吸附位可以均匀的分布在整个表面,但是只是吸附在表面的特定位置,称之为特异吸附。 /p p style=" text-align: justify text-indent: 2em " Langmuir吸附等温方程如下式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/81e08f48-a1ad-4e98-9589-7ca91cac2197.jpg" title=" a.png" alt=" a.png" / /p p style=" text-align: justify text-indent: 2em " 其中,P为氮气压力、V为实际吸附量、Vm为单层饱和吸附量、b为与吸附热相关的常数。在不同的氮气压力P下测出氮气的实际吸附量V,用Langmuir方程作图得到一条直线,该直线的斜率的倒数即为单层吸附量Vm,进而计算出比表面,称为Langmuir比表面,Langmuir比表面对于微孔具有重要的意义。 /p p style=" text-align: justify text-indent: 2em " 布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在Langmuir方程基础上提出的描述多分子层吸附理论,通过对气体吸附过程的热力学与动力学分析,推出氮吸附量随氮气分压而变的BET方程: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e4e5d7-cb69-473d-84f0-ceda0cf74951.jpg" title=" b.png" alt=" b.png" / /p p style=" text-align: justify text-indent: 2em " 分析得出,P/P0在0.05~0.35范围中,BET是一个线性方程,该直线的斜率与截距之和的倒数是单层饱和吸附量,从而算出比表面积。通过BET方程求出比表面积成为目前国际通用的方法,被称为BET比表面。 /p p style=" text-align: justify text-indent: 2em " 根据材料不同,特别是微孔材料,由于在很低的压力下就完成了单层吸附,因此,BET方程的线性范围会向低压方向移动。对于孔径极小的分子筛,线性范围应取0.005~0.01;微孔材料的线性范围应取0.005~0.1;介、微孔复合材料线性范围应取0.01~0.2;介孔、大孔材料的线性范围取0.05~0.35。但是根据实际材料的不同,线性范围的取点应根据实际情况进行调整,使BET直线的线性良好才具有一定的参考价值。对于微孔材料,更接近于单层吸附的特征,Langmuir比表面值应具有更大的参考意义。 /p p style=" text-align: right " strong 作者:精微高博 /strong /p p style=" text-align: justify text-indent: 2em " (本文由精微高博团队供稿,不代表仪器信息网本网观点) /p
  • CaCl2基吸附储热材料制备及性能研究
    HS系列试验箱、高、低温试验箱能模拟各种温湿度环境,适用于检测电子、汽车、橡胶、塑料胶、金属等产品满足GJB150A3/4各种恶劣环境下的可靠性及稳定性能等参数。将提供给您预测和改进产品的质量和可靠性的依据。CaCl2基吸附储热材料制备及性能研究【苏程志 哈尔滨工业大学】CaCl2基吸附储热材料制备及性能研究HS系列恒温恒湿试验箱
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 应用麦克仪器,表征金属有机框架中的水蒸气吸附
    金属有机框架的混合特性提供了金属簇和有机配体之间几乎无限可能的组合,使这些多孔材料具有很大的应用前景,例如甲烷储存1、二氧化碳捕获2、氢气储存3和气体分离4。由于金属有机框架(MOFs)在空气除湿6、低湿度捕水7和储水8等方面的潜在应用,MOFs 的水吸附5引起了越来越多的关注。随着越来越多的具有动力学和热力学水稳定性的 MOFs9,10 的设计和合成,通过水蒸气吸附仪器对材料进行表征的需求变得至关重要。Micromeritics 的 3Flex 三站多用气体吸附仪是公认的气体吸附材料表征领域先进的仪器,广泛应用于研究型大学、政府实验室和私营部门的研发机构。除了惰性气体(如氮气、氩气和氪气)的物理吸附、静态化学吸附、动态化学吸附(TCD 或质谱仪作为检测器),蒸汽吸附是 3Flex 三站多用气体吸附仪上另一个广泛使用且值得信赖的选项。* Micromeritics 3Flex 三站全功能型多用气体吸附仪蒸汽吸附分析具有以下优点:1.实验速度更快:重量吸附分析仅需数小时或数天即可完成实验,而不需要数周;2.更高的吞吐量:3Flex 具有多达三个工作站,即使是不同的压力表,也可以同时分析三个样品;3.样品处理更容易:对于湿敏材料,只需使用手套箱里的密封块即可简单地将样品从瓶中转移到样品管中。样品无需暴露在空气中,这在重量吸附分析仪上很难实现。在此,我们给出了 HKUST-1(Cu-BTC)11 和 MIL-1019 这两种典型 MOFs 的水蒸气吸附等温线,该等温线在 Micromeritics 3Flex 三站多用气体吸附仪上获得。HKUST-1,Cu3[C6H3(COO)3]2,是由均苯三酸三阴离子连接的铜(II)桨轮二聚体组成,可商购。图1. HKUST-1的氮吸附等温线(红色),HKUST-1 的水蒸气吸附等温线(蓝色)图 2. MIL-101 的氮吸附等温线(红色),MIL-101 的水蒸气吸附等温线(蓝色)图 3. HKUST-1 在 77K 时的氮等温线对数图图 4. MIL-101 在 77K 时的氮等温线对数图MIL-101,Cr3XO[C6H4(COO)2]3 (X = F, OH), 具有三核铬(III)金属簇和对苯二甲酸二价阴离子。之所以选择这两个 MOFs,是因为 HKUST-1 和 MIL-101 都具有配位不饱和金属位点,在保持其结构完整的同时,对水分子具有很高的亲和力。在 298K 的温度下,在同一台 3Flex 仪器上,采用不同的压力表设置(P/P0 = 0.001- 0.90),同时进行两种材料的水蒸气吸附实验。HKUST-1 材料由 NuMat 科技公司的科学家提供,MIL-101 材料的结晶度由供应商确认。SEM 图像是在颗粒测试机构使用 Phenom ProX 台式扫描电镜获得的(图 5 及图 6)。样品在 170℃ 下进行真空脱气过夜。图 5. HKUST-1 的 SEM 图图 6.MIL-101 的 SEM 图HKUST-1 和 MIL-101 的 BET 比表面积分别为 1574 m2/g 和 1379 m2/g。图1中低 P/P0 区域的陡峭吸附和随后的氮气吸附等温线表明了 HKUST-1 的微孔性。图 3 中 HKUST-1 的氮气等温线对数图表现出阶跃特征,显示了 HKUST-1 与具有强四极性气体分子间的相互作用12,13。而图 2 的氮气吸附等温线表明,MIL-101 中存在两种类型的介孔,内径分别接近2.9 nm 和 3.4 nm9。在 3Flex 上精确注气 10 cm3/g STP 后,HKUST-1 在配位不饱和金属位点和随后的微孔吸附在图 1 的水蒸气吸附等温线(P/P0 0.35,这与其介孔性质相一致。MIL-101 在 P/P0 = 0.3 时的水容量为 96.2 cm3/g STP (7.7 wt. %),在 P/P0 = 0.90 时 的水容量为 850.5 cm3/g STP (68.3 wt. %)。尽管 MIL-101 可能不适合于低湿度环境下的水捕集应用,但它可以用于静态条件下的除湿,例如用于干燥剂中。回滞环是由于毛细管凝聚引起的孔填充造成的。在 P/P0 = 0.35 到 0.5 的较窄的相对湿度范围内,630cm3/g STP (50.6 wt. %) 吸水量的巨大差异揭示了其在吸附式热泵或冷水机的潜在应用14。在较高的压力和温度下,可以消除滞后现象,从而产生更窄的相对湿度范围,使其更适合上述应用。除了典型的水蒸气吸附和解吸等温线外,带有蒸汽选项的Micromeritics 3Flex 配备了广泛的常用蒸汽的流体性质的数据库,用于进行吸附剂的再生性和循环性研究、吸附热研究等。Micromeritics 3Flex 三站全功能型多用气体吸附仪是广大高校及学术机构的可靠合作伙伴。想以更具优势的价格体验领先的气体吸附技术,欢迎关注 Micromeritics 2023 学术奖助计划。
  • 浅谈比表面积分析方法之气体物理吸附技术
    固体表面积分析测试方法有多种,其中气体吸附法是最成熟和通用的方法。其基本原理是测算出某种气体吸附质分子在固体表面物理吸附形成完整单分子吸附层的吸附量,乘以每个分子覆盖的面积(分子截面积,molecular cross-sectional area),即得到样品的总表面积。吸附剂的总表面积除以其质量称为比表面积(specific surface area,m2/g),它是表面积的常用表示方式。实验测定吸附等温线的原则是,在恒定温度下,将吸附剂置于吸附物气体中,待达到吸附平衡后测定或计算气体的平衡压力和吸附量。基于在恒定低温下测量气体的吸附和脱附曲线,并通过对等温线的进行计算,可获取样品的孔径分布、比表面积、孔隙度和平均孔径等固体材料性质。测定方法分为静态法和动态法。前者有容量法(体积法)、重量法等;后者有重量法、流动色谱法等。在此介绍常用的静态容量法和动态流动色谱法。静态容量法需要测量气体体积的压力变化。将已知的气体量注入到恒定温度下的装有吸附剂的样品管中,当吸附发生时,样品内的压力降低直到平衡状态;平衡压力下气体吸附量为注入到样品内气体的量和平衡压力下样品管内剩余气体量的差值。吸附等温线通常使用进气技术将气体注入到体系内,再应用气体定律等到连续的数据点。需要精确知道死体积(自由空间),可以通过校正样品管体积再减去吸附剂的体积(通过密度计算)得到,也可以通过在一定程度上不在吸附剂上发生吸附的气体(如氦气)来测量。容量法气体吸附装置示意动态流动色谱法为在大气压力下,吸附气体和惰性气体的混合物在样品上连续流动,通过热传导检测器(TCD)监测样品对吸附物的吸收。首先,在环境温度下监测从样品管流过的气体,作为建立基线的参考;接下来,降低样品所处温度以促进吸附,并检测随着由于发生吸附导致的气体混合物热导率的变化,当吸附平衡建立时,出口气原始混合物的比例恢复,TCD信号恢复到基线;然后将样品温度提高到环境温度,这时因为被吸附的气体从样品脱附,并再次改变气体混合物中组分的比例。将任一信号(通常是脱附)与校准信号进行积分,可以得到样品吸附的气体量,混合物中吸附气体的分压除以饱和压力就是吸附发生时的相对压力。流动色谱法系统总之,无论什么方法,所使用的气体都是在固体表面形成物理吸附的气体,例如氮气、氩气、二氧化碳等,常使用的冷浴温度一般为氮气@77K(液氮温度),氩气@77K(液氮温度)/87K(液氩温度),二氧化碳@273.15K(冰水混合物温度)/298.15K(室温)/195K(干冰温度)。参考文献《现代催化研究方法新编》 辛勤 罗孟飞 徐杰 主编,科学出版社2018年本文作者:钟华 博士,毕业于中国科学院大连化学物理研究所。在粉体与颗粒表征仪器行业工作10多年,多年在高校研究所开展不同技术讲座和培训,对颗粒表征仪器有丰富的理论知识和仪器应用、市场实践经验。
  • 听大咖讲氮吸附孔径分析 脱附与吸附曲线该选who?
    p style=" text-align: justify text-indent: 2em " 让公益传播科学知识,用教育安抚技能焦虑。2018年11月15日,“比表面与孔径分析原理及应用”系列精品在线讲座第四弹成功举办。中国氮吸附仪的开拓者、国务院特殊津贴专家钟家湘教授与广大网友再度相聚仪器信息网。用内容丰富、深入浅出的精彩讲解,在2小时的滴答中,带大家继续畅游于比表面与孔径分析的世界。该系列讲座共分6讲,在此前的三讲中,钟老先后为大家讲解了氮吸附法、连续流动色谱法和静态容量法比表面及孔径分析仪原理及应用。本期的讲座则聚焦于氮吸附法介孔和大孔的测试与分析。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d94345d7-5843-42ff-96d2-b7fe28d449cf.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p /p p style=" text-align: center text-indent: 2em " strong 仪器信息网仪颗通平台直播现场 /strong /p p style=" text-align: justify text-indent: 2em " 在学术界,介孔与大孔的测量范围一般在2nm-500nm之间。钟老先为大家讲解了氮吸附法BJH孔径分析的基本方法。该方法通过控制和调节吸附质的压力,由低向高逐级变化,测量出每个压力下产生的吸附或脱附量,利用压力和孔径之间的定量关系,从而计算得到孔体积随孔径的变化,测试的压力点越多,孔径分布的描述就越精确。在该方法中,等温吸、脱附曲线的测定是孔径分析的唯一实验依据。钟老详细讲解了BJH法测量的介孔体积测量和计算方法,以及孔径分析的各种参数来源。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/f1cabf20-a28f-4d7e-ba1c-f1bbe4099dbe.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p /p p style=" text-align: center text-indent: 0em " strong 钟家湘教授 /strong /p p style=" text-align: justify text-indent: 2em " 而在孔径分布的表征中,除了总表面积(BET)和总孔体积外,积分分布、微分分布和最可几孔径是最重要的参数。其中积分分布反应的是孔增量的累计叠加、微分分布反应的是孔体积随直径变化的变化率,最可几孔径则是微分分布最大值对应的孔径,代表着孔径密度最大的等效孔径值,该数据在多孔材料的制备、检测、及实际应用中具有重要的参考意义。 /p p style=" text-align: justify text-indent: 2em " 另外,钟老还认为,吸附平均孔径缺乏实用的意义和价值,虽然仪器会得出相关数据,但是很少会成为主要分析参数。 /p p style=" text-align: justify text-indent: 2em " 氮吸附法比表面与孔径分析仪的精确测量上限在哪里?钟老表示,虽然仪器上标注的上限在500nm左右,但是高点追求接近于1并无实质意义,在0.99及以下才较为适当,这样相对应的孔径测试上限在200nm是合理的。另外,在前几年相关研究的论文中,研究者常采用等温吸附线中的脱附曲线进行分析,钟老表示,由于“张力强度效应”会导致脱附曲线很容易出现假峰(常出现在0.3-0.4nm左右),因此选取吸附分支可以获得更为真实的孔径分布。 /p p style=" text-align: justify text-indent: 2em " 讲座还对孔径分析设备要求、预处理注意事项、P0确定的经验等内容进行了传授,并分析了影响孔径分析测试精度的因素。钟老的精彩讲解赢得了网友们的满堂彩,在随后的问答环节,网友们积极留言互动,钟老也对大家提出的孔壁吸附层厚度选择、脱附曲线异常变动、BJH方法使用范围等内容进行了耐心地一一解答。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/7a054509-c45b-4ed7-b41e-78e9f84680e0.jpg" title=" 企业微信截图_15422713207930(1).png" alt=" 企业微信截图_15422713207930(1).png" / /p p /p p style=" text-align: center text-indent: 0em " strong 网友感谢弹幕 /strong /p p style=" text-align: justify text-indent: 2em " 虽然年逾80,但是钟老精神矍铄,幽默的谈吐,渊博的学识,以及鞭辟入里的条分缕析无不让听众如沐春风,讲座结束后,留言板上满是对钟老真诚感谢的弹幕。“时间过得太快了,希望下次讲座能够讲更多的东西。”钟老憨厚地笑着说。 /p p style=" text-align: justify text-indent: 2em " 作为仪器信息网仪课通平台打造的精品系列讲座之一,“比表面与孔径分析原理及应用”讲座的下一讲将于12月20日与网友们见面,有兴趣的用户可随时关注仪器信息网了解报名详情。仪课通是仪器信息网旗下的在线教育平台,专注于科学仪器与检测行业用户职场技能的提升。千里仪缘一网迁,平台邀请行业资深专家开讲授课,为行业用户提供丰富、高质量的自我提升内容,在知识互通,交流互助的学习环境下完成专业知识的系统化储备与升级。平台在线讲座包罗万象,涉及色、质、谱,物性检测、食品药品检测、环境检测、仪器开发与设计等诸多领域。讲座的直播采取公益形式,用户可免费报名参加。错过直播的用户也可在仪颗通平台购买讲座课程进行学习。 /p p style=" text-align: justify text-indent: 2em " 仪课通平台网址( a href=" https://www.instrument.com.cn/ykt/" target=" _self" https://www.instrument.com.cn/ykt/ /a )。 /p p style=" text-align: justify text-indent: 2em " 仪课通公众号二维码 /p p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/1072b0b6-b309-4496-b53b-914bde7d2b04.jpg" title=" 仪课通.jpg" alt=" 仪课通.jpg" / /p
  • 气体吸附仪“世界杯”你会pick谁?3Flex三管齐下, 引领全功能豪门盛宴
    世界杯已烽烟过半,法国、比利时神佛难挡,英格兰、克罗地亚力挽狂澜̷̷比赛精彩纷呈,球迷如痴如醉,激情盛夏,哪只球队最能撩拨心弦,捧得你心中的大力神杯?确认过眼神,要遇见对的人, 不止是足球世界杯,对于从事材料表征等研究的科研人员来说,如何在气体吸附仪“世界杯”上pick最合适的帮手,才是最重要的选择。而美国麦克仪器公司的3Flex三站全功能型多用气体吸附仪可满足你对高性能、全功能气体吸附仪的所有想象,选择它,就是选择了品质和冠军。美国麦克仪器公司(以下简称“麦克仪器”)成立于1962年,始终保持着细微颗粒分析仪器领域的世界领先地位,堪称该领域的“豪门球队”。公司于2011年成立了独资公司-麦克默瑞提克(上海)仪器有限公司,总部设在上海,并在北京、广州等地分设办事处。麦克仪器在比表面与孔隙度分析、压汞分析技术、密度测试和化学吸附等众多领域的技术研究极具前沿性及创新性,在全球享有盛誉。此外,在自动样品传递、TPD/TPR化学吸附、表面积吸附平衡、DFT数据处理等领域也保持着前沿地位,拥有大量专利。值得一提的是, 今年6月,美国麦克仪器公司正式收购了英国富瑞曼科技有限公司,进一步丰富了自身的产品线。富瑞曼科技有限公司是一家专注于提供粉体流动性及其他物性检测仪器的公司。麦克仪器的业务也将百尺竿头,更进一步。 作为麦克仪器产品的佼佼者, 3Flex三站全功能多用吸附仪正是麦克仪器植根半个世纪技术与经验,自主研发的多年心血结晶,是一款真正的“全能型”气体吸附仪。利用分子间作用力进行物理吸附分析,get √;利用化学键力进行化学分析,get √;且两者之间的切换在几十秒内即可完成,同时3Flex也可实现蒸汽吸附功能。买来测微孔还是测介孔?3Flex可实现从微孔到介孔的全范围孔径分析。先测样品1还是样品2、3?不必纠结,3Flex具有三个独立分析站, 可组合配置介孔分析、微孔分析、氪气吸附功能,并针对三个样品同时进行三种不同气体的吸附,这一技术为全球首创。 3Flex三站全功能型多用气体吸附仪气体吸附法研究微孔信息,低压力下的高精度等温吸附线是关键,3Flex可测量相对压力低至10-9的等温吸附线。新的超净歧管设计抗化学腐蚀性极强,排气性和密封性都远胜同类仪器,与嵌入式的操作系统相配合,为压力和温度的测试提供了稳定的环境,其等温夹套技术则保证了分析过程中样品管和P0管的热稳定性。独立的多级传感器与麦克仪器专利的伺服控制真空技术交相辉映,再加上最先进的金属膜片-PCTFE(聚三氟氯乙烯)阀座焊接技术,使得3Flex在进行化学吸附时,能够在高真空环境下提供原位活化。多种新技术、新工艺共同塑造了3Flex—一款高性能、高分辨率、高重复性的多功能吸附仪,更值得称道的是,3Flex功能全面而强大,体积却十分小巧,对节省用户实验室宝贵的空间大有裨益。 除了硬件性能的更新换代,3Flex的软件系统也可谓锦上添花。创新的控制面板只需轻轻一点,便能实时显示一系列运行状态。先进的自诊断功能对仪器动态和记录实时监控,并能提供及时的记录和提示功能。3Flex的进气模式也十分先进,可支持用户自主组合定压和定体积增量模式,该仪器拥有一个常用气体以及蒸汽的流体性质数据库,获得等温线数据轻而易举。 除此之外,MicroActive交互式数据处理软件也是麦克仪器产品的一大亮点,具有分析速度快、性能强、模型多、个性化操作等特点。速度快:简单移动计算条,即可快速选择/排除实验数据,对话框数量大大降低;性能强:能够将压汞法得到的孔隙分布与气体吸附等温线得到的孔径分布图叠加,最多可叠加25个数据文件进行对比;模型多:可通过图形界面直接在BET、t-plot、Langmuir、DFT等模型中选择数据范围,另外还包含了NLDFT双等温线拟合模型计算孔径分布;个性化操作:软件支持用户使用python语言编写自己所需要的报告。MicroActive交互式数据处理软件不仅如此, 麦克默瑞提克(上海)仪器有限公司也在全国各地配备了专业的服务工程师队伍,为广大用户提供多渠道的及时安装与维护支持。公司总部在上海、在北京、广州等地设有办事处,并辐射全国,对用户需求进行及时的快速响应,热线电话、应用支持邮箱、在线留言、上门服务,总有一款适合您。另外,公司专业资深的服务工程师进行定期回访,对用户进行培训和答疑。美国麦克仪器公司总部与麦克默瑞提克(上海)仪器有限公司提供的操作培训与各类短期理论课程是用户理解仪器操作细节与获得最佳实验结果必不可少的。除培训课程以外,公司的资深科学家与应用技术人员随时与广大用户讨论研究中与仪器使用过程中遇到的各类问题。公司也经常发表应用文章、简讯、介绍业内最新进展, 并于今年隆重推出了“麦克讲堂”系列讲座, 我公司会不定期地在微信公众号、官方微博、官网等平台发布理论知识、常见问题、操作技巧、数据处理等方面的知识分享、小问答与讲座视频内容等,增强与用户间的技术沟通与交流。 高性能、全功能的特点,及时、专业的服务,让3Flex驰骋于广阔的应用领域,也在业内享有盛誉。该款仪器满足多项ASTM标准和药典标准,在制药、化妆品、陶瓷、涂料、燃料电池、航空航天等领域都有广泛应用。3Flex的用户群体也遍布全球,不仅得到了中国科学院金属研究所、浙江大学、大连理工大学、天津大学、北京化工大学等著名高校和科研院所的垂青,更是在麻省理工大学、爱荷华州立大学等全球知名学府发光发热。“3Flex性能优良,样品测试通量高,具有极高的可靠性和准确性。”诺丁汉大学实验室主任Matthew Hall在谈到3Flex时赞不绝口,其观点也在用户中颇为具有代表性。 绿茵场上,球员的球鞋合不合适只有脚知道,而在科研和检测工作领域, 高性能全功能仪器也是必不可少的。沉浸于材料表征分析领域的你或许无法预测下一场的获胜球队,但有了3Flex三站全功能型多用吸附仪,你的科研之路定会如虎添翼,划出美丽的弧线,直中鹄的! 如果您对我公司的3Flex系列三站全功能型多用吸附仪感兴趣,请浏览详情:http://www.instrument.com.cn/netshow/C154445.htm。
  • 德发现一物质可吸附甲醛 环保家具不是空话
    德国Wilhelm-Klauditz-Institut(WKI)Fraunhofer木材研究所和Fraunhofer硅酸盐研究所的研究人员表示,他们已经发现使用改良后的硅酸盐可以吸附甲醛,这是一种可以将刨花板中有害物质释放量减少40%的方法。   研究人员称,这种硅酸盐属于铝硅酸盐,其拥有一种多孔结构,内表面面积非常大,正是由于其这些特点,所以其可以起到像分子筛一样的作用,能够有效地“吃掉”甲醛。   Fraunhofer硅酸盐研究所的项目经理Katrin Bokelmann介绍说:“目前我们已经将硅酸盐用作刨花板的一种填充材料,在木质材料中使用硅酸盐吸附污染物,这是一种全新的创意。”   如果Fraunhofer研究所的理念在商业上具有可操作性,那么其就可以进行大规模的工厂生产,对于木材产品的生产商和使用者来说具有深远的意义。   自从20世纪50年代开始,甲醛特别是尿素甲醛一直是在刨花板、中纤板和胶合板生产中使用的树脂和胶水的主要成分。在这几十年中,在减少甲醛的释放量方面,板材生产商和胶水生产商都有很大的改进。但是世界卫生组织(World Health Organization,简介WHO)下属的国际癌症研究署(International Agency for Research on Cancer,简称IARC)已经认定甲醛为致癌物质。   IARC的认定已经帮助加利福尼亚空气资源委员会(California Air Resources Board)和美国环境保护署(U.S. Environmental Protection Agency)规范了有关燃料方面具体事项。   WKI的项目经理Jan Gunschera说,“通过我们的短期实验和一个月的长期实验都证明了这种硅酸盐能让板材甲醛的释放量减少40%。换句话说,在日常生活中,我们也会检测我们居室内的空气质量。我们的实验显示这种物质也能降低室内污染物的水平。研究人员还强调实验显示人工硅酸盐不会对复合木制板材的特性产生任何负面影响。   这种新技术已经申请了专利。研究人员表示,改良后的硅酸盐用在家具、天花板和其他木制产品中不仅可以大大降低甲醛的释放量,而且也可以降低室内其他醛类物质的含量。
  • AQUALAB VSA 水分吸附测定仪(等温吸湿线测定仪)在烟草行业的应用
    水分含量和水活度是烟叶以及烟草制品的一个重要质量指标。对于原材料烟叶,水分活度的高低决定了烟叶的耐储藏性。水分含量和保水性能与烟卷的加工工艺以及烟草产品的口感有者密切的关系。 众所周知,香烟产品一旦暴露在空气中,水分会很快逸散,造成品质的严重下降,特别是在北方气候干燥的地方,这种现象尤为严重。目前多家烟草研究机构就烟草保润性能展开研究,该课题成为烟草行业的一个前沿课题。为了使烟草的保润性能有所提高,烟草研究机构,烟草添加剂生产厂家在烟草保润剂领域做了大量的尝试,并开发出许多新的品种。但是,就目前情况来看,对于保润剂保润效果的评价还缺乏有效地方法。很多情况下是依赖于研发人员的感官或者是个人经验来评价,这样就造成了标准不一无法比较的情况。 DECAGON公司推出的 AQUALAB VSA水分吸附测定仪(等温吸湿线测定仪) 是专门应用于食品、烟草、化妆品行业的一款针对于水分吸附(脱附)能力评价和研究的仪器。通过其精密的湿度传感器、温度控制模块以及天平组件,可以实现对烟草在干燥环境中的水分散失过程进行模拟。并绘制出水分散失动力学曲线、等温吸湿曲线。根据动力学曲线在一定条件下,样品的失重量与时间有特定的关系,该特性可用于保润剂保润性能的评价。 TIPS: 1.将AQUALAB VSA做好的等温吸湿线导入AQUALAB 4TE DUO后可利用AQUALAB 4TE DUO进行烟草产品水分含量的测试,结果平行性很好。 2.AQUALAB VSA也可作为一个水活度仪使用,并具备AQUALAB 4TEV的所有功能。 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • vocs冷凝吸附回收法设备安全使用建议
    vocs冷凝吸附回收法是目前vocs气体处理比较多的方法,无锡冠亚vocs冷凝吸附回收法的设备——vocs气体冷凝回收装置专门处理各种有机废气,那么,在使用vocs冷凝吸附回收法的时候的安全建议要注意哪些呢?  在vocs冷凝吸附回收法中,压缩机质量的好坏决定着vocs冷凝吸附回收法的工作效率是否优良,同时压缩机在vocs冷凝吸附回收法的今后售后维修中也占有很重要的位置,一旦出现故障,将会提高企业维修冷水机的费用提高。  正常工作情况下,vocs冷凝吸附回收法制冷压缩机应该吸入制冷工质的干蒸汽,若是制冷工质流量大、热负荷变化太快、操作不当都可能吸入湿蒸汽,或者液体工质,如果进入的液体太多,来不及从排气阀排出,高压形成的液击会造成气缸、气阀、活塞、连杆等零件损坏。  如果vocs冷凝吸附回收法排气压力超过给定值,高压控制部分切断压缩机电源,压缩机停机;吸气压力低于给定值,低压控制部分切断压缩机电源,使其停机,并发出报警信号。为防止制冷剂泄漏至大气,一般采用闭式安全阀,安全阀设置在vocs冷凝吸附回收法压缩机排气腔和吸气腔之间的管路上。  vocs冷凝吸附回收法安全膜片安装在吸气、排气腔之间,吸排气压力差超过规定值时,膜片破裂,排气压力降低(需在吸气腔侧装滤网,防止破碎膜片落入吸气腔)。vocs冷凝吸附回收法把液压泵入口与液压泵出口分别和润滑油压差控制器上的低压入口、高压出口接通,当液压泵出、入口之间的压力差过高或过低时,控制器就会切断压缩机电源,电动机停止运转,保护压缩机。  vocs冷凝吸附回收法内置电动机的保护,为更进一步确保电动机不过热,除了正确使用,注意维修外,建议可以安装过热继电器。vocs冷凝吸附回收法常用的三相电动机缺相的话会导致电动机无法起动或过载,可采用过载继电器避免电动机因缺相损坏。  vocs冷凝吸附回收法在环保严查的当下是比较好的方法之一,无锡冠亚在不断在行业趋势下不断生产研发新的设备,促进行业发展。
  • 酶联免疫吸附法检测瘦肉精
    摘 要:介绍了竞争酶联免疫吸附法测定猪肉中的盐酸克伦特罗的方法。利用盐酸克伦特罗试剂盒,对猪肉组织中残留的盐酸克伦特罗经抽提、竞争后,用酶标仪进行检测分析。此法较适用于现场检验,检测速度快、灵敏度高,是保证肉品卫生安全的较好监控方法。 酶联免疫吸附法是目前最佳的检测方法。ELISA 检测方法有双抗体夹心法测抗原、间接法测抗体、竞争法测抗体等。该文是利用酶联免疫吸附法中的竞争法测抗体,其原理是利用多克隆抗体既能与盐酸克伦特罗结合,也能与包被抗原结合。这些包被抗原被固定在酶标板孔壁上,当样品中含有瘦肉精时,它与包被抗原竞争结合抗体中有限量的结合位点。由于每一个孔中抗体的结合位点数相同,当样品中瘦肉精浓度低时,就有更多抗体的位点与包被抗原结合,更多的抗体被固定在酶标板壁上,就会与更多的酶标二抗结合,所以结果就呈现深兰色。相反,样品的瘦肉精浓度高,结果就呈现浅兰色。加入终止液后,兰色相应变成黄色,然后用酶标仪进行测定。利用竞争酶联免疫吸附法检测瘦肉精,具有速度快,灵敏度高的特点,适用于现场检测,对以后瘦肉精检测工作的发展具有指导作用。 1  实验材料与方法 1.1  原料的准备 抽取具有一定批量的有代表性的无皮猪肉,剔除杂质、脂肪。将精肉用高速捣碎机捣碎混合均匀,放置冰箱冷冻备用。取捣碎的样品5g ,加入25mL ,50mmolHCl 振动1.5h ,以达到均质。称取5g均质物(相当于1g 肝脏或肌肉),加入离心管中,10000r/min 离心15min。取上清液至另一个离心管中, 加1mol NaOH 300ul , 混合15min。加入4mL ,500mmol KH2PO4 (pH3.0),迅速混匀置于4摄氏度的冰箱内保存至少1.5h。10000 r/min 离心15min ,分离上清液。 1.2  试剂 盐酸克伦特罗&mdash 酶联免疫试剂盒 1.3  仪器 电热恒温水浴锅、酶标仪、离心机、匀浆机(HFJ系列内切式匀浆机,厂家:天津恒奥)、微量加样器。 1.4  方法 1.4.1  洗板 所有试剂回温至室温。将浓缩洗涤液用蒸馏水稀释10 倍。将酶联免疫板取出,放在室温下平衡5min。每孔加入300uL 洗液,放置1min ,再甩掉洗涤液,重复3 次,将板内残留洗涤液在吸水纸上甩干。 1.4.2  竞争 试剂盒中的抗体按1∶1000 倍稀释。加样时在板上按1 到3 的顺序加入标样,每孔100uL ,重复两次,其它孔加入待测样品,每孔100uL 抗体,注意加入抗体时不要让枪头沾染孔里的样品与标准样,然后将酶标板放入湿盒里,在37摄氏度下竞争30min。 1.4.3  加二抗 试剂盒中的二抗标记酶按1 :1000 稀释。在酶联板上每孔加200&mu L 配制好的二抗标记酶,将其放入湿盒,置37摄氏度、30min。 1.4.4  加底物显色 取底物A、底物B 按等体积混匀,在酶标板上每孔加200&mu L 配好的底物显色板显色,显色后每孔加入50uL 的终止液终止反应。在酶标仪上测定各标准样和各样品450nm 处的光密度(OD)值,用瘦肉精标准液200ng/mL 孔作为0孔。 2  讨论 2.1  试剂盒的贮存 试剂盒在4摄氏度贮存。抗体和酶标二抗(IGg-HRP)在常温下容易变性,须冷冻保存,使用时直接拿出按比例稀释。 2.2  加样 实验中有3 次加样步骤,即加标本、酶结合物和底物。加样时应将所加物用微量加样器加在ELISA板孔的底部,可用左手扶住微量加样器的中部,避免加在孔壁上部,并防止溅出和产生气泡,导致实验误差。加酶结合物应用液和底物应用液时可用定量多道加液器,使加液过程迅速完成。 2.3  保温 在实验中有两次抗原抗体反应,即加标本和加酶结合物后。抗原抗体反应的完成需要有一定的温度和时间,这一保温过程称为温育(incubation)或孵育。因为ELISA 属固相免疫测定,抗原、抗体的结合只在固相表面上发生,加入板孔中的标本,其中的抗原并不是都有均等的和固相抗结合的机会,只有最贴近孔壁的一层溶液中的抗原直接与抗体接触。这是一个逐步平衡的过程,因此需经扩散才能达到反应的终点。在其后加入的酶标记抗体与固相抗原的结合也同样如此。温育的温度通常是37摄氏度,也是大多数抗原抗体结合的合适温度。两次抗原抗体反应一般在37摄氏度经1~2h ,产物的生成可达顶峰。为加速反应,可提高反应的温度,但最高不要超过43摄氏度。保温的方式采用水浴,将板置于不锈钢电热恒温水浴锅中,注意可将ELISA 板置于水浴箱中,ELISA 板底应贴着水面,使温度迅速平衡。为避免蒸发,板一次不宜多于两块板同时测定。 2.4  洗涤 洗涤在ELISA 法过程中是很关键的一步。ELISA 就是靠洗涤来达到分离游离的和结合的酶标记物的目的。通过洗涤以清除残留在板孔中没能与固相抗原或抗体结合的物质,以及在反应过程中非特异性地吸附于固相载体的干扰物质。聚苯乙烯等塑料对蛋白质的吸附是普遍性的,而在洗涤时又应把这种非特异性吸附的干扰物质洗涤下来。如果洗板被污染或洗涤用水被游离的酶标记物污染、洗涤次数不够或注水量不足、洗板后间隔时间太久致使板孔干燥等都会直接影响检测的最终结果,严重者实验不产生颜色致使实验失败。 2.5  显色和比色 显色是ELISA 中的最后一步温育反应,此时酶催化无色的底物生成有色的产物。反应的温度和时间仍是影响显色的因素。在一定时间内,阴性孔可保持无色,而阳性孔则随时间的延长而呈色加强。适当提高温度有助于加速显色进行。在定量测定中,加入底物后的反应温度和时间应按规定力求准确。酸性终止液H2SO4 会使蓝色转变成黄色,此时可用特定的波长(450nm)测读吸光值。比色前应先用洁净的吸水纸拭干板底附着的液体,然后将板正确放入酶标比色仪的比色架中。以软板为载体的试验,需先将板置于标准96 孔的座架中,才可进行比色。并在加底物液显色前将软板边缘剪净,以使软板完全平妥坐入座架中。比色时应以200ng/mL 校零点,且孔在边缘。然后依次测量不同浓度下的OD 值。
  • 一文带你走入物理吸附的天地
    p style=" text-align: justify text-indent: 2em " 在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。 /p p style=" text-align: justify text-indent: 2em " 影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 325px " src=" https://img1.17img.cn/17img/images/201906/uepic/d35f3ecb-de71-46ec-ad8f-94fe24a2882c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 325" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。 /p p style=" text-align: justify text-indent: 2em " 在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。 /p p br/ /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/184f6781-8d9a-4823-94c9-62247baceeb6.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " 根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。 /p p style=" text-align: justify text-indent: 2em " 在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。& nbsp 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。 /p p style=" text-align: justify text-indent: 2em " 多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。 /p p style=" text-align: justify text-indent: 2em " 物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。 /p p style=" text-align: justify text-indent: 2em " 下面是静态体积法的物理吸附仪器示意图:真空泵、一个或多个气源、连接样品管的金属或玻璃歧管、冷却剂杜瓦、样品管、饱和压力测定管、压力测量装置(压力传感器)。其中歧管的体积经过校准,并含有温度传感器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a23586e-b60b-4eb0-bb98-11447a4bcf39.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " 1 :样品管 & nbsp 2:低温杜瓦 & nbsp 3:真空泵 & nbsp 4:压力传感器 & nbsp 5: 歧管 /p p style=" text-align: center text-indent: 2em " 6: 饱和蒸汽压测定管 & nbsp 7 : 吸附气体 & nbsp 8 :死体积测定气体He /p p style=" text-align: justify text-indent: 2em " 静态体积法测试主要流程(以氮气吸附为例):首先将样品进行脱气净化处理,之后测量死体积(样品池)空间,然后将样品冷却到液氮温度,将氮气注入到已知体积的歧管中,记录压力与温度,之后样品池与歧管之间的阀门打开,氮气扩散到样品池,由于空间体积增大和样品对氮气的吸附作用,压力下降,通过压力的下降来计算气体吸附量。计算过程基于克拉柏龙方程:PV = nRT。其中P是气体的压强,V为气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度; R为理想气体常数。吸附量由下面公式得到: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/81d0c349-bbb5-414a-ad42-095759c73754.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 如果温度和压力恒定,气体(吸附质)和表面(吸附剂)的作用能是不变的,在一个特定表面的吸附量也是不变的,因此在恒定温度下,可以用平衡压力对单位重量吸附剂的吸附量作图。而这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体是作为吸附探针来分析材料比表面积和孔径分布的,它应该满足几个条件: 1) 气体相对惰性,不与吸附剂发生化学反应; 2) 物理吸附一般是弱的可逆吸附,为了使足够气体吸附到固体表面,测量时固体须冷却到吸附气体的沸点; 3) 符合或满足理想气体方程的使用条件。 /p p style=" text-align: justify text-indent: 2em " N2(77 K)是最常见的吸附气体,可满足常规分析;Ar(87 K)为微孔分析提供更准确的分析结果、更快的分析速度、更高的起始压力;CO2(273 K)对微孔碳材料具备最快的分析速度,分析孔径可低至0.35 nm;Kr (77 K)适用于超低比表面积分析;Kr(87 K)适用于薄膜样品的孔径分析。我们可根据样品特点来选择最合适的吸附气体。 /p p style=" text-align: justify text-indent: 2em " 在进行比表面积分析时,我们经常会用到Langmuir 和BET方程,其中Langmuir 方程是基于单分子层吸附理论,而BET 方程式基于多层分子吸附理论,也是目前最流行的比表面分析方法,适合于大部分样品。 /p p style=" text-align: justify text-indent: 2em " 在进行孔径孔容分析时,可选择的理论模型会更多,不同的理论模型假设条件不同,给出的计算结果也是不同的,所以我们应选择最适合样品性质的理论模型。根据经验,BJH、DH模型适用于介孔材料分析, DA、DR、 HK、SF模型适用于微孔材料分析,NLDFT、QSDFT适用于微孔/介孔材料分析。NLDFT 是非定域密度泛函理论,研究表明,NLDFT 计算出的比表面值最接近真实值,并且该理论适用于微孔和介孔材料。 /p p style=" text-align: right text-indent: 2em " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • 膜分离或变压吸附?氮气发生器的原理对比
    克里斯.哈维,总经理-毕克气体仪器贸易(上海)有限公司众所周知,毕克科技拥有当前市场上最广泛的氮气发生器种类,同时,我们不断地研发出新的产品满足日新月异的氮气的需求,来给新的应用设备供气。我们不仅仅有市面上种类最多的氮气发生器来满足液质联用仪的用气需求,同时,我们给气相色谱仪,总有机碳分析仪,傅里叶红外光谱仪,样品蒸发仪,通风橱,手套式操作箱,电感耦合等离子体光谱仪,核磁共振仪,蒸发光散射检测仪等实验室设备供气的气体发生器种类也很全面和广泛-实际上,你实验室里几乎是所有需要用气的设备,都可以让我们的气体发生器来供气。为什么我们的气体发生器能够覆盖您的实验室里大部分应用设备?因为,我们二十年如一日,专注于实验室里气体发生器的研发和生产,专心于给您提供稳定可靠的实验室气源。另外一个广为人知的事实就是:我们所采用的气体分离技术成熟可靠。在我们的氮气发生器上,我们用膜分离技术和变压吸附技术来生产氮气,如果我们的顾客对某一种技术青睐有加,我们可以根据客户的喜好来推荐合适的型号。但是,对于某些特定的应用设备,使用其中的一种分离技术比另一种更有优势。膜分离技术让压缩空气通过中空纤维膜,当空气通过膜的时候,空气中的氧气,二氧化碳,一氧化碳和水蒸汽 会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大尺寸的氮气分子和惰性气体氩气都收集起来,输送到应用设备。这种氮气分离提取技术简单有效,无需任何移动部件。分离提取出来的氮气最高纯度能达到99.5%,不含任何杂质。变压吸附技术是通过固体介质来分离气体混合物中的单一组分,用变压吸附技术来分离空气中的氮气,所需的固体介质是碳分子筛,碳分子筛对空气中的氧气选择性吸附,从而在加压的情况下分离了空气中的氮气和氧气。 碳分子筛其实就是多孔疏松的棒状碳颗粒,当对填充满了碳分子筛颗粒的氮气纯化密封柱中充入压缩空气(主要成分是氮气,氧气和惰性气体氩气和少量水汽)时,碳分子筛会吸附水汽,氧气,但是,氮气不会被吸附。这主要是因为氮气和氧气的分子尺寸不一样,碳分子筛颗粒上的小孔能让分子尺寸小的氧气进入,却不能让氮气进入,因为氮气的分子尺寸大于氧气;从而,氮气和氧气被分离开了。变压吸附这一过程包含两个步骤和阶段:1.吸附阶段,压缩空气中氧气,水汽,二氧化碳被碳分子筛柱子吸附,氮气被收集起和储藏起来。2.重生阶段,将碳分子筛柱的压力释放到大气中去,吸附了氧气,二氧化碳,水汽的碳分子筛颗粒释放掉吸附的氧气,二氧化碳和水汽,从而为下一次吸附做好准备。变压吸附这一个过程需要维持一个稳定的温度,这个温度通常情况下和实验室的环境温度接近(20-25℃)。变压吸附技术生产出来的氮气,纯度最高能达到99.999%,纯度越高,生产过程中需要消耗的空气就越多。变压吸附技术和膜分离技术来生产氮气,各有利弊。具体使用哪种方法来生产氮气要取决于应用和流速要求。在市面上,某些人说氮气膜和碳分子筛是消耗品,需要定期更换,这是不对的。如果用户的除油和除水过滤器效果不佳,碳分子筛和氮气膜的分离效果会随着使用年限的增加而慢慢失效。液质联用仪应用对于液质联用仪而言,氮气纯度高于95%就可以大多数的质谱仪的用气要求了,即使一些非常高端和灵敏的质谱仪也没有问题。关键是气体里面不能含有任何粉尘,水汽和碳氢化合物及油滴,所以,高性能的过滤系统尤为重要,过滤系统的除尘规格要小于0.01微米,同时,油滴和水汽也必须除掉。由于过滤系统一旦饱和,它们的过滤吸附效果也会大打折扣,所以,每年对过滤器进行维护也十分有必要。对于液质联用仪而言,分别利用膜分离技术和变压吸附技术来生产氮气的产品我们都有,但是,对于一些小型和中型的实验室而言,选用膜分离的氮气发生器有一些非常明显的优势维护和服务膜分离技术涉及到很少的移动部件,通常情况下,一台氮气发生器里面的氮气膜重3公斤(而变压吸附模块的重量能达到100公斤),这就让维护变得十分简单。目前,毕克中国的服务团队能保证在48小时内97%的首次修复率。一旦发生器出了问题,小而轻的氮气膜占用空间小,让发生器的维护以及零配件的更换都非常方便,同时,也降低了维护和维修成本,节约了时间。氮气膜的工作无需很多电子部件的管理和控制,那么,我们可以将更多的电子部件用于监控核心技术参数,同时,让我们的工程师在维修时可以更快找到症结。尺寸和重量由于氮气膜尺寸小,重量轻,这也就意味着我们能设计出更轻盈小巧,结构更紧凑的气体发生器,同时,让发生器能放在标准实验台下,发生器机底脚轮设计,方便移动。这些气体发生器对于那些空间很有限的实验室而言,无疑是完美的选择。噪音水平膜分离技术不产生任何噪音,变压吸附技术在碳分子筛柱泄压放气的时候,会有很大的放气的声音产生,这也就意味着膜分离氮气发生器能放在应用仪器旁边,安静地工作。无需将发生器放在另外一个房间,从而增加了管道延长所产生的额外费用。变压吸附技术对于大型实验室而言,优势十分明显,在我们的iFlow产品里,我们应用变压吸附技术,它能:生产出更高流速的氮气在一些拥有20-30台质谱仪的大型实验室里,我们已经安装了一些利用变压吸附技术来生产氮气的发生器。一台氮气发生器就足够给整个实验室来供气了。将成本降至最低由于一台氮气发生器的氮气流速就足够给实验室里所有的应用设备来供气,这种集中供气方案无疑比单台小流量气体发生器给单台应用设备来供气的性价比要高很多。气相色谱仪应用利用变压吸附技术所生产出来的氮气,非常适合给气相色谱仪来供应载气。给气相色谱仪做载气,不仅要求氮气的纯度特别高,还要求氮气中的碳氢化合物含量特别低。利用碳分子筛变压吸附技术来生产氮气是唯一的选择,在空气进入到碳分子筛之前,空气经过过滤,然后再经过催化裂解炉将所有的微量碳氢化合物催化氧化除掉。所生产出来的氮气纯度特别高,能给所有的气相色谱仪做载气,包括电子捕捉检测器所需要用到的载气。这不是变压吸附技术应用的典型案例,我们所采用的碳分子筛变压吸附技术,能将移动部件的数量降到最低,同时,变压吸附柱在工作时没有噪音,在发生器出现故障时,维修也很方便。毕克在全世界各地售出的气体发生器超过5万台,有4000台在实验室。我们所有的气体发生器都经过知名质谱仪和气相色谱仪生产商的检验和认证,同时,OEM供应商可以销售我们的气体发生器。基于我们对气体发生器的专注和丰富的经验,我们开发出来了很多优秀的产品,诸如NM32LA,NM3G, AB3G,Precision 系列氢气发生器,零级空气和氮气发生器,以及IFlow系列产品。若您想了解与您的应用相匹配的气体发生器和实验室集中供气,欢迎联系我们。
  • EZ6001总溶解砷在饮用水吸附工艺过程控制的应用
    EZ6001总溶解砷在饮用水吸附工艺过程控制的应用EZ6001总溶解砷在饮用水吸附工艺过程控制的应用——改进砷处理系统控制的在线监测哈希公司 安道尔共和国一条源水供应是来自于比利牛斯山的Birena山脉。与其他水源不同的是在春季总砷的含量高达10~20ppm(总溶解性砷14~18ppb)。砷是一种有毒的化学物质,摄入剂量过大会对身体健康产生严重危害。WHO在1983年制定了饮用水中砷最 大摄入剂量为10µg/L。2001年WHO声明为了人类生命健康该限值应该进一步降低。在2015年,当地政府投资了超过50万欧元设计一家新车间去除从Birena泉水中取水引入的砷,砷去除工艺是基于一种选择性的氧化铁介质吸附技术。考虑到砷的性质包括它本身的化学组成和它的处理过程,当局制定了完整的方案确保工艺效果及可能遇到的挑战:(1)厂区监测包括日常外部实验室检测,结果至少要3~4天,利用在线仪表得到实时数据就显得尤为重要。(2)精确的砷浓度监测控制,优化除砷系统旁路的安全使用,并对吸附系统的表现提供可靠的信息。在线砷仪表和手工测量有着相似的最 低检出限。(3)可以得到处理后进入蓄水池水的砷浓度实时数据(对于任何突发事件的安全响应和快速反应)。当地主管部门对哈希的产品线非常了解,他们在不同工艺段已经使用了浊度仪、pH探头和电导率在线测量装置。图1 Birena饮用水厂图2&3 Birena饮用水厂内吸附过滤装置选择性介质由于其很高的吸附去除率被普遍应用在去除砷的工艺中,吸附单元操作简单,整个过程只需要一台泵即可操作运行。然而正如普通的过滤/吸附过程,最重要的是建立和控制运行过程,(滤池反冲洗和再生过程)并保持在可行的水利设计范围内。因此,在线砷监控对于Birena饮用水厂旁路控制、吸附单元和饮用水过程水质量控制非常关键。符合客户要求的仪器为 EZ6001.99003302总溶解性三价和五价砷在线分析仪:该泉水中只检测出了五价砷作为砷的来源;过程中布置了三个监测点(原水、滤出水、出厂水);源水非常干净,没有预处理装置;作为 PLC 连接的 x3 模拟输出。EZ6001 分析仪的特性和精度允许在饮用水当中通过伏安法来监测砷;在线监砷分析仪提高了除砷装置的利用效率,确保出厂水砷浓度不超标;能够对过滤器可能发生的突发工艺变化进行预警;便于更好地监测过滤器过滤介质表现、穿透情况和生命周期。在本案例中, 被应用于饮用水厂过程中砷监测,仪表运行稳定,实时数据可以指导控制吸附除砷装置工作,对水厂优化去除特征污染物起到了很好的帮助,确保当地居民能够喝到放心安全的饮用水。 END
  • 引领化学吸附技术前沿-美国麦克仪器公司AutoChem II 2920
    自美国麦克仪器公司AutoChem系列研究级高性能全自动程序升温化学吸附仪问世以来,凭借其过硬的技术优势引领化学吸附技术发展方向,解决用户化学吸附测试中的难题,并逐渐成为化学吸附分析的领导者。麦克仪器公司始终追随客户的需求,不断升级改进自己的技术, AutoChem 系列仪器已经经过了几代的升级演变。自AutoChem II 2920发布至今,它已经成为全球各个著名大学以及研究结构的首选仪器。其中不乏中国知名学府和研究院,华东理工、华南理工、天津大学、复旦大学、厦门大学、北京科技大学、北京工业大学、北京化工研究院、中石化石油化工科学研究院、中科院大连化物所、中海油天津化工研究院、兰州石油化工研究院、上海石油化工研究院等等都是AutoChem II2920的用户。 AutoChem II 2920具有如下技术特征: 4个内部温度控制区可独立加热,最高达250 ℃(TCD)。这样可以防止气体在流动过程中凝结与吸附。 小体积的内部管路保证了高分辨率与快速探测器响应,并在计算气体体积时减少错误。 高度敏感的线性热传导检测器(TCD )确保校准体积在整个峰范围内保持恒定,从而峰面积与反应气体体积成正比关系 四个高精度的质量流量控制器提供非常准确、可程序控制的气体流量控制,保证了稳定的基线和气体体积的准确测定。 镀金TCD具有超强抗氨腐蚀性和抗氧化性,从而尽可能降低检测器损耗。 开合式加热炉能加热石英样品反应器到1100℃ 。可设定任意数量的升温速率和内置方法,方便定制的实验。 KwikCool功能冷却炉可使炉内温度迅速下降到环境温度,减少分析时间,提高测试量。 分别用于制备、载气和LOOP气的十二路进气口允许连接更多的气体,进行更为复杂的实验。例如TPR / TPO循环。 质谱仪端口和集成软件允许同时在热导检测器和质谱仪上进行检测。 蒸汽发生器允许蒸汽吸附反应,例如吡啶、苯和水。 CryoCooler冷浴槽可以在-110℃低温条件下开始进行反应,满足贵金属催化反应研究。 同时AutoChem II 2920也可以根据客户实际需要进行各种定制。 AutoChem II 2920被引用的文章列表(注:由于篇幅的限制,只列出一小部分供参考) 文章标题 作者 刊物 Supported bimetallic AuRh/γ-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene Licheng Liu, Xiao Guan, Zhimei Li, Xuehong Zi, Hongxing Dai, Hong He Applied Catalysis B: Environmental,90(1-2), Pages 1-9, 2009 Catalytic combustion of styrene over copper based catalyst: Inhibitory effect of water vapor Hongyan Pan, Mingyao Xu, Zhong Li Chemosphere,76(5),721-726,2009 Thermally Stable CeO2–ZrO2–La2O3 Ternary Oxides Prepared by Deposition–Precipitation as Support of Rh Catalyst for Catalytic Reduction of NO by CO Fulan Zhong, Yihong Xiao, Ximing Weng, Kemei Wei, Guohui Cai, Yong Zheng and Qi Zheng, Catalysis Letters,133(1-2), 125-133, 2009 Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream Qinghong Zhang, Xianhong Liu, Wenqing Fan, Ye Wang Applied Catalysis B: Environmental, 102(1-2),207-214,2011 Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid Licheng Liu, Ting Wei, Xuehong Zi, Hong He Hongxing Dai Catalysis Today, 153(3-4),162-169,2010 Co/Pillared Clay Bifunctional Catalyst for Controlling the Product Distribution of Fischer− Tropsch Synthesis Qing-Qing Hao, Guang-Wei Wang,hao-Tie Liu, Jian Lu, and Zhong-Wen Liu Ind. Eng. Chem. Res., 49 (19), 9004–9011, 2010 Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: Effect of metal loading Guoqi Cui, Jifeng Wang, Hongfei Fan, Xiaoyan Sun, Yan Jiang, Shaojun Wang, Dan Liua, Jianzhou Gui Fuel Processing Technology,92(12), 2320-2327,2011 Influence of Noble Metals on the Direct Oxidation of Ethylene to Acetic Acid over NM/WO3-ZrO2 (NM = Ru, Rh, and Pd) Catalysts Lixia WANG, Shuliang XU, Wenling CHU,Weishen YANG Chinese Journal of Catalysis, 30(12), 1281-1286,2009 Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface Zhijuan Zhang, Shikai Xian, Hongxia Xi, Haihui Wang, Zhong Li Chemical Engineering Science,66(20), 4878-4888,2011 Highly efficient Pd/Al2O3-Ce0.6Zr0.4O2 catalyst pretreated by H2 for low-temperature methanol oxidation Yongjin Luo, Yihong Xiao, Guohui Cai, Yong Zheng and Kemei Wei Catal. Sci. Technol., 1, 1362-1366,2011 Palladium-Based Catalyst without Interlayer Film Prepared by Electroless Plating for Catalytic Combustion of Toluene Yong Feng Li, Yu Li, Yan Ting Huang, Lin Yu, Qian Yu, Rong Jian Mai Advanced Materials Research, 957,197-198, 2011 Hydrodealkylation of C9+ Heavy Aromatics to BTX over Zeolite-Supported Nickel Oxide and Molybdenum Oxide Catalysts Qunbing Shen, Xuedong Zhu, Jiaojiao Dong and Zibin Zhu Catalysis Letters , 129(1-2), 170-180, 2009 Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst Guangquan Yia, Zhongning Xub, Guocong Guob, Ken-ichi Tanakac, Youzhu Yuan Chemical Physics Letters,479(1-3), 128-132,2009 Palladium supported on hierarchically macro–mesoporous titania for styrene hydrogenation Tian-Ying Zeng, Zhi-Ming Zhou , Jun Zhu, Zhen-Min Cheng, Pei-Qing Yuan, Wei-Kang Yuan Catalysis Today,147(S41-S45), 2009 Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts Min Jia, Guili Chena, Junhu Wangb, Xinkui Wanga, Tao Zhang Catalysis Today,158( 3-4), 464-469, 2010 Diffusion-enhanced hierarchically macro-mesoporous catalyst for selective hydrogenation of pyrolysis gasoline Zhiming Zhou, Tianying Zeng, Zhenmin Cheng,Weikang Yuan AIChE Journal,57( 8), 2198–2206, 2011 Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts Weiping Deng, Mi Liu, Xuesong Tan, Qinghong Zhang ,, Ye Wang Journal of Catalysis,271(1), 22-32 2010 Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane Jizhe Zhang, Miao Sun, Chuanjing Cao, Qinghong Zhang , Ye Wang, Huilin Wan Applied Catalysis A, 380(1-2),87-94,2010 Dimethyl Ether Catalytic Combustion over Manganese Oxides with Different Structures Lin Yu, Gui Qiang Diao, Fei Ye, Ming Sun, Yue Liu, Qian Yu Advanced Materials Research, 1482, 146-147,2010 更多产品详情,请咨询400-630-2202或登录我们的网站www.micromeritics.com.cn www.micromeritics.com
  • 【ISCO泵】ECBM:在现实条件下的重力吸附测量
    01 摘要煤层气作为传统天然气的有力补充,拥有广阔的开发前景。增强型煤层气(ECBM)技术不仅显著提升了甲烷的采收效率,同时还实现了二氧化碳的地下封存。该技术的研究可通过利用 Rubotherm IsoSORP 系统配备的磁悬浮天平对吸附等温线进行重力测量来深入进行。在策划 ECBM 项目时,精确的气体吸附数据是必不不可少的。02 关键词&bull 天然气&bull 增强型煤层气 (ECBM),二氧化碳 (CO2)&bull 煤层气&bull 重力测量法*图片来自互联网03 引言受能源价格不断攀升的驱动,对油气替代资源的开发探索具有极其重要的经济价值。众多天然气资源以煤层气(CBM)的形态赋存于煤层之中。增强型煤层气(ECBM)技术通过注入二氧化碳来提升从煤层中提取甲烷的效率[1]。除增加天然气提取量外,ECBM 还具备另一项优势:即能将碳捕集与封存(CCS)过程中产生的 CO2 安全地贮存于地下,避免其排放至大气中[2]。但是,甲烷被 CO2 取代的过程极为复杂:气体不仅会在煤的表面发生吸附作用,还会被吸收进入煤的内部结构,导致煤样体积膨胀。因此,发展 ECBM 技术必须在真实条件下,对不同煤样进行细致的研究[3]。本应用说明阐述了如何运用 Rubotherm IsoSORP 系统通过重力测量方法研究 ECBM 过程。04实验Rubotherm IsoSORP 系统采用磁悬浮天平(MSB)技术来精确测定吸附等温线。一套气体定量供应系统用于在特定实验条件下提供纯净或混合气体。煤层气通常存在于压力介于 30 至 300 bar,温度介于 30 至 100℃ 的煤层中。实验室级别的测量必须能够覆盖这些压力与温度范围。在较高压力下用二氧化碳创建一个特定的气体环境并非简单任务:需要通过柱塞泵将二氧化碳从钢瓶压力(60 bar)加压[4],同时需对整个供气系统包括所有阀门和管道加热以防凝结。图 1 展示了完整的 IsoSORP 系统的示意图。图1. 配备 MSB 和 SC HP 静态气体定量系统的 IsoSORP 仪器流程图05结果在意大利南部撒丁岛的苏尔西斯煤田采集的煤样上开展了 ECBM 研究。图 2 展示了在 45℃ 和 60℃ 条件下,二氧化碳的吸附等温线:观察到二氧化碳的吸附量超过了甲烷,这对于 ECBM 技术来说是一个至关重要的条件[5]。图2. 在 45℃ 和 60℃ 下,甲烷和二氧化碳在撒丁岛煤样上的绝对吸附量下一步是测量二氧化碳和甲烷混合物的吸附量。在此过程中,利用磁悬浮天平重力测定总体吸附等温线。依据这些数据,通过对气相中未被吸附的混合气体进行气相色谱(GC)分析,可以得出各单一组分的吸附数据。在降压步骤后,可以将气体样品通过六通气体采样阀采集用于 GC 分析。另一种分析手段是利用质谱(MS)进行分析。图3. 在 45℃ 下,两种甲烷/二氧化碳混合物在撒丁岛煤上的总吸附量和组分选择性吸附量这些实验获得的数据(图3)显示,在混合气体中即使二氧化碳含量较少,其在煤中的吸附量也超过甲烷[6]。这证明了通过注入二氧化碳可以从煤层中置换出甲烷。为了制备成分精确的气体混合物,Rubotherm 开发了MIX-模块作为附加配置选项:MIX 仪器配备了经过校准体积的储罐、一个气体循环泵以及一个带有采样阀的气体采样体积用于分析(图4)[7]。图4. 用于气体混合物高准确度吸附分析的 IsoSORP SC MIX 静态系统06 结论煤层气(CBM)是未来替代传统天然气的宝贵资源。增强型煤层气开采技术(ECBM)通过注入二氧化碳来提高天然气的采收率,并具有长期封存二氧化碳的额外优势。研究表明,Rubotherm IsoSORP 仪器能够为 ECBM 项目的规划和设计提供关键数据,包括气体储存容量以及甲烷被 CO2 置换的动力学过程。Rubotherm为这一应用所需配置:IsoSORP MSB 系统&bull 高测量负载,高达 60 克&bull 流体密度测量&bull 压力范围 HP II 高达 350 bar&bull 温度范围从环境温度到 150℃SC-HP II 静态定量给料系统&bull 加热至 100℃ 以避免凝结&bull Teledyne ISCO 柱塞泵用于输送二氧化碳&bull 可选:MIX 模块参考1. R. Pini, D. Marx, L. Burlini, G. Storti, M. Mazzotti: Coal characterization for ECBM recovery: gas sorption under dry and humid conditions Energy Procedia, Vol. 4 (2011) 2157-21612. Ch. Garnier, G. Finqueneisel, T. Zimny, Z. Pokryszka, S. Lafortune, P.D.C.Défossez, E.C. Gaucher: Selectionof Coals of different maturities for CO2 Storage by modelling of CO2 and CH4 adsorption isotherms Inter-national Journal of Coal Geology, Vol. 87 (2011) 80-863. J.S. Bae, S.K. Bhatia: High-Pressure Adsorption of Methane and Car-bon Dioxide on Coal Energy & Fuels, Vol. 20 (2006) 2599-26074. Supercritical Fluid Applications in Manufacturing and Materials Pro-duction, Teledyne ISCO, Syringe Pump Application Note AN15. S. Ottiger, R. Pini, G. Storti, M. Mazzotti, R. Bencini, F. Quattrocchi, G.Sardu and G. Deriu: Adsorption of Pure Carbon Dioxide and Methane on Dry Coal from the Sulcis Coal Province (SW Sardinia, Italy) Environ-mental Progress, Vol. 25 (2006), 355-3646. S. Ottiger, R. Pini, G. Storti and M. Mazzotti: Competitive adsorption equilibria of CO2 and CH4 on a dry coal Adsorption, Vol. 14 (2008)7. FlexiDOSE Series Gas & Vapor Dosing Systems, Rubotherm 2013作者:Frieder Dreisbach 拥有机械工程热力学博士学位,是德国波鸿 Rubotherm GmbH 的董事总经理。Thomas Paschke 拥有分析化学博士学位,是德国波鸿 Rubotherm GmbH 的应用专员。
  • 美国康塔物理吸附前沿进展讲座成功举办
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,并使之服务于科研、检测,为广大用户提供精确、严谨的数据。   公司应用总监,在学术界享有盛名的Dr. Matthias Thommes于2012年7月来华与广大中国相关领域的科研工作者共同探讨物理吸附、传质等领域的学术问题,并着力将最新的科研成果用于相关的应用领域。   7月24日浙江工业大学的会议室座无虚席,Dr. Matthias Thommes与应邀前来的浙江工业大学、浙江大学、杭州师范大学、浙江电子科技大学等杭州师生共同分享了物理吸附领域科学研究的最新进展,如吸附质低压相变的研究等,获得了各校师生的热烈响应。        会后,与会师生与Dr. Matthias Thommes展开了热烈讨论。     针对物理吸附数据处理的复杂性,Dr. Matthias Thommes与师生一对一的数据分析使广大师生加深了对物理吸附数据的理解,从而更好的对数据进行解析,更准确地对材料进行表征。
  • 达标仅靠化学吸附?汽车尾气“年检神器”被批非常不靠谱
    “网闻”回放  一段时间以来,一种叫“火莲花”、自称“年检神器”的汽车尾气过滤产品在网上热销。按销售方的说法,无论汽车尾气状况如何,只要安装了这款产品,在尾气年度检测中保准能通过。然而,某电商平台及在该平台上销售“年检神器”的商家日前被中国生物多样性保护与绿色发展基金会(以下简称中国绿发会)提起民事环境公益诉讼,要求被告承担生态环境修复费用1.5亿元人民币。  汽车尾气“年检神器”到底是什么,有用吗?记者就此采访了有关专家。  中国绿发会副秘书长马勇说,“火莲花”就像是刷锅用的钢丝球,该产品号称能够帮助尾气不合格车辆规避汽车尾气年检,在商家的销售页面上还公然声称:“更换三元催化器成本高,金属软载体辅助或替代三元催化器治理尾气,可重复使用3次左右,单次过检成本低至15元,超高性价比”。  据了解,“火莲花”表面有少量的化学附着物,安装后汽车尾气中的化合物部分可被“火莲花”上的化学附着物所吸附,从而达到通过尾气检测的目的,但“火莲花”的有效公里数仅有50公里左右,远未达到国家标准。相比之下,三元催化器是一种安装在汽车排气系统中最重要的机外净化装置,可将汽车尾气排出的一氧化碳、碳氢化合物等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气。  “正规的三元催化器是以贵金属为活性物质,市场价格大约在两千元以上,超过使用寿命后极容易导致汽车尾气超标,需及时更换,因此成本相对较高。”北京建筑大学机电与车辆工程学院的姚圣卓博士解释道。“但三元催化器需要经过国家环保认证后,才能生产销售,未经认证就使用的属于违法行为。”他强调。  “‘火莲花’临时把有害废物吸附了,但堵住排气孔后造成排气不畅,不仅会大大增加汽车油耗,还会对发动机整体造成损害,给行车安全带来一定隐患。”因此,姚圣卓建议尾气超标的汽车应及时进行规范的故障诊断,并有针对性地维修。  “其实汽车尾气排放超标并非都是催化器损坏的缘故。如果商家不顾具体原因便混淆视听,让尾气超标车辆的车主安装自己公司生产销售的产品,不仅涉嫌违反广告法,也与国家关于车辆的检查维护管理制度相违背,对科学解决超标车污染、科学减排有百害而无一利。”机动车汽车尾气研究领域一位不愿透露姓名的专家提醒道。
  • Autosorb IQ物理吸附仪培训会
    美国康塔仪器公司(Quantachrome Ins)40余年专注于多孔材料科学表征仪器的生产、制造,相继推出了7代适应不同分析需求的物理吸附仪器。其中Autosorb IQ是我公司2010年面向高端用户的物理吸附划时代研究级仪器,因其具有高分辨、高精度、大通量的特点,一经推出就收到全球众多用户的青睐。 美国康塔仪器公司始终以为用户提供准确地数据、科学严谨的应用支持为己任。在定期为全国各地研究者提供理论培训的基础上,我公司针对Autosorb IQ的用户特点及使用特性,将于2012年9月21日在上海科学会堂举办Autosorb IQ物理吸附仪培训会。为操作者详细介绍这一系列仪器的操作、并帮助操作者理解物理吸附数据的解析。 会议内容将包括: Autosorb IQ功能全解析 如何有效地进行样品前处理 如何理解、设置分析条件 如何判断等温线的可信度 如何对数据进行完整的解析 如何理解不同数据处理方法之间的关系 详情请与美国康塔仪器公司北京办事处联系。 联系电话:010-64401522 传真:010-64400892
  • 俄科学家研制出净化油污土壤的生物吸附剂
    p   据俄塔斯社消息,西伯利亚列舍特涅夫国立大学的科学家研制出一种用于净化油污土壤、恢复植被层的生物吸附剂。 /p p   该吸附剂由多孔聚合材料制成。1立方米吸附剂能吸收1吨石油,是同类产品的7-10倍。吸附剂内含从石油污染地区土壤中分离而得的石油氧化微生物,能将石油分解为无毒简单化合物。 /p p   西伯利亚国立大学专家表示,只需将生物吸附剂粉末撒在被石油污染的土壤表面,石油产品就会与吸附剂粘合(被吸附剂“吸收”),随后微生物利用石油产品和吸附剂中的有机成分积极繁衍。一个暖季内,土壤中所有石油或石油产品均分解为二氧化碳和水,与此同时植被层得以恢复。而在自然条件下,该恢复过程则需耗费几十年,尤其在北方地区。 /p p   俄北方地区对该种吸附剂的需求迫切。今后拟在生产中利用树皮或锯木屑,这恰好是克拉斯诺亚尔斯克边疆区木材加工废料问题的解决方法之一。 /p p /p
  • 俄科学家研制出新型生物吸附剂,能净化油污土壤
    p   据俄塔斯社消息,西伯利亚列舍特涅夫国立大学的科学家研制出一种用于净化油污土壤、恢复植被层的生物吸附剂。 /p p   该吸附剂由多孔聚合材料制成。1立方米吸附剂能吸收1吨石油,是同类产品的7-10倍。吸附剂内含从石油污染地区土壤中分离而得的石油氧化微生物,能将石油分解为无毒简单化合物。 /p p   西伯利亚国立大学专家表示,只需将生物吸附剂粉末撒在被石油污染的土壤表面,石油产品就会与吸附剂粘合(被吸附剂“吸收”),随后微生物利用石油产品和吸附剂中的有机成分积极繁衍。一个暖季内,土壤中所有石油或石油产品均分解为二氧化碳和水,与此同时植被层得以恢复。而在自然条件下,该恢复过程则需耗费几十年,尤其在北方地区。 /p p   俄北方地区对该种吸附剂的需求迫切。今后拟在生产中利用树皮或锯木屑,这恰好是克拉斯诺亚尔斯克边疆区木材加工废料问题的解决方法之一。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制