当前位置: 仪器信息网 > 行业主题 > >

水化热

仪器信息网水化热专题为您整合水化热相关的最新文章,在水化热专题,您不仅可以免费浏览水化热的资讯, 同时您还可以浏览水化热的相关资料、解决方案,参与社区水化热话题讨论。

水化热相关的资讯

  • ChromCore T3色谱柱上市啦!极性&亲水化合物反相分析利器!
    在液相色谱分析中,极性和亲水化合物的有效保留和分离是一个难点和热点。常见的应对手段是使用亲水分离模式(HILIC),但该模式平衡时间较长、作用机理复杂以及分离能力有限。反相(RPLC)是应用最多的一种分离模式:1.优异普适性;2.柱效高,重现性好;3.平衡时间快。目前常见的C18色谱柱对极性化合物的保留较弱,导致分离能力有限。开发一款能够有效提升极性和亲水化合物保留和分离的C18色谱柱,具有重要的应用价值。因此,纳谱分析研发团队凭借深厚的专业知识以及对色谱分析技术领域的不懈的创新精神,经过精心研发与严格测试,推出了全新的ChromCore T3色谱柱!下面跟着小编,一起来目睹下纳谱分析的这款重磅新品吧!纳谱分析ChromCore T3色谱柱基于孔道结构特殊设计的单分散、多孔、硅胶微球,表面键合十八烷基,优化装填而成,适用于反相模式下极性和亲水化合物的保留和分析。 对极性和亲水化合物表现优异的反相保留耐受100%水相柱流失低,质谱兼容性良好柱间一致性佳由以上测试数据和应用案例可知,ChromCore T3色谱柱表现出良好的100%水相耐受性和批次间一致性,能够有效实现极性和亲水化合物保留,对三种中药配方颗粒的分析结果完全满足国家标准要求,表面该款色谱柱在极性和亲水化合物在内的小分子化合物分析方面具有广阔的应用前景。产品名称粒径(µ m)柱长(mm)内径 (mm)4.6ChromCore T3 5250A711-050012-04625S150A711-050012-04615S100A711-050012-04610S50A711-050012-04605SGuard Cartridge510A711-050012-04601SGuard Holder (Stand-alone)/10 Guard-04601S-C1*更多产品详情,欢迎咨询我司当地销售人员或拨打400 808 3822服务热线,纳谱分析将竭诚为您服务。
  • 一个人的水化监测站 20年只有23天没值守
    每天清晨6点30分,张家口怀来地震台后郝窑水化监测站观测员程德庆准时下到了监测井的地下一层,猫下腰,看看水位仪运转是否正常,检查机器、预热机器、 下热井、采水样、保存水样、化验水样、收集数据,守着两口高温监测井,上井、下井,一天6次,在怀来郊外人迹罕至的地震监测站里,仅有一人值守的地震监测 站,在河北省是唯一一个,在全国也少见。42岁的程德庆就这样独自一人工作了20年。  上世纪90年代,程德庆从当了30年观测员的老父亲程有增手中接过接力棒,登上了后郝窑这个地震监测的预报前哨,开始他的漫长而枯燥的工作。后郝窑水化监测站位于怀来县桑园镇郊外,地下是歪头山---万家窑等3条地质断裂带的交会处。这里地壳活动频繁、地热温泉资源丰富,是开展地震水化监测的理想场所。  监测站承担的主要任务是水化观测,靠的就是院里的两口高温自流井(即怀3#和怀4#)。监测站通过井上架设的自动化仪器设备和人工观测项目,每天测量地下水中的氡、汞等物理量的变化,为研究、监测、预报地震提供数据积累和支撑。每天将精准的数据记录下来送传到上级部门。  在这里没有节假日,自接班起,20年里,程德庆只有23天没在站里值守,其中结婚占了2天,自己生病住院4天,3次外出培训共10天,其余7天是去开会领奖。  谈到丈夫,妻子勾丽娜深情地说:“十几年前,经朋友介绍认识了程德庆,第一次见面就在这里,他的工作岗位上,别人谈恋爱去电影院、公园,可我们只能在这里陪着机器、看着设备,因为他的肩上担负着责任,我能理解他。”
  • 【ISCO 制备色谱仪】快速色谱法在简单碳水化合物纯化中的应用
    01 摘要碳水化合物化合物可利用 RediSep Gold Amine 色谱柱结合蒸发光散射检测(ELSD)进行简便的纯化。该色谱柱采用亲水相互作用液相色谱(HILIC)梯度洗脱法,以乙腈或丙酮与水的梯度进行操作。将待纯化的样品溶解于 DMSO 中,不仅允许大量样品加载,同时还能保持良好的分辨率。02 背景碳水化合物通常采用氨基柱进行分析,该方法具有良好的分辨率。这种分析方法一般使用乙腈和水作为流动相,样品通常溶解在水中。由于样品注射量较小,样品有机会吸附在固定相上。在制备色谱中,相对于色谱柱尺寸而言,样品负载和注射体积要大得多,因此将样品溶于水中注射可以防止碳水化合物吸附在柱子上,导致它们在空隙处洗脱。干法加载样品到固体装载小柱上通常用于快速色谱,但用户需要自己用氨基介质填充他们的小柱。样品仍然溶解在水中进行加载,这需要很长时间才能在运行样品前蒸发。二甲基亚砜(DMSO)常用于反相色谱的样品溶解,因为它能溶解大多数化合物。DMSO 能够溶解碳水化合物,但在 HILIC 中是一种弱溶剂,因此它允许样品吸附在柱子上。在使用氨基柱时,DMSO 在洗脱早期被洗脱;然而,在采用非氨基介质的其他 HILIC 运行中,它可能在梯度洗脱的后期才被洗脱。03 结果与讨论虽然亲水相互作用液相色谱(HILIC)属于正相色谱,但它使用的溶剂通常适用于反相色谱,因此需要根据表 1 中的设置调整蒸发光散射检测器(ELSD)的参数,以保持基线稳定的同时维持灵敏度。表1. 纯化碳水化合物的蒸发光散射检测器(ELSD)设置。ELSD控制设置值Spray Chamber20℃Drift Tube60℃Gain1SensitivityHigh样品均溶解于 DMSO 中。如有必要,将样品在热水浴中加热以促进溶解。使用 PeakTrak Flash Focus 梯度生成器在系统上开发方法。运行了一个亻贞查梯度以验证样品能够被洗脱,并证明化合物之间有足够的分辨率以实现成功的纯化。所需化合物的保留用于计算聚焦梯度的溶剂组成。所有运行均使用 RediSep Gold 氨基柱。运行完成后,用2-丙醇洗涤并储存柱子,2-丙醇与有机溶剂混溶,可实现较少极性化合物的快速纯化。第一个实例使用了核糖和葡萄糖。亻贞查梯度和聚焦梯度都使用乙腈作为弱溶剂。亻贞查运行只用了少量几毫克,并且为了提高这个小样品负载的灵敏度,ELSD 增益被调高到 3。第二个洗脱峰用于聚焦梯度;计算梯度后,ELSD 增益被重置为 1 以保持 ELSD 响应在量程内。总样品负载为 100 毫克,使用 50 克 RediSep Gold Amine 柱。果糖和蔗糖通常一起出现在样品中。图 2 展示了从葡萄糖杂质中纯化果糖的过程。该混合物以与核糖-葡萄糖样品类似的方式运行,梯度聚焦于葡萄糖。在约 1.8 柱体积(CV)出现的峰是用于溶解样品的 DMSO。图1. 核糖和葡萄糖在 5.5 克 RediSep Gold Amine 柱上运行亻贞查方法(上图),并聚焦到 50 克 RediSep Gold 胺柱上。样品总负载量为核糖和葡萄糖各 50 毫克。聚焦梯度中约 1.8 柱体积处的小峰是 DMSO。图2. 使用 RediSep Gold Amine 柱和乙腈/水梯度从蔗糖中纯化不纯的果糖。04 丙酮作为弱溶剂丙酮也是 HILIC 的弱溶剂,可以替代乙腈使用。尽管醇类可以用于 HILIC,但这些溶剂对于在胺柱上纯化碳水化合物来说太强了。使用丙酮纯化了一个果糖和葡萄糖的样品。该混合物的纯化方式与之前的例子相似,除了亻贞查梯度使用了一根 15.5 克的 RediSep Gold Amine 柱,因为 PeakTrak 允许使用任何尺寸的 Teledyne ISCO 柱进行亻贞查运行。聚焦梯度使用了一根 50 克的 RediSep Gold Amine 柱,但计算出的梯度需要较低的水浓度来纯化葡萄糖,这表明对于这些化合物,丙酮是比乙腈更强的溶剂。图3. 使用丙酮/水梯度纯化的果糖和蔗糖。亻贞查运行使用了一根 15.5 克的 RediSep Gold 胺柱。05 结论使用 NextGen 300+ 配备蒸发光散射检测器(ELSD)和 RediSep Gold 胺柱,通过 HILIC 梯度方法可以高效纯化碳水化合物。使用 DMSO 溶解样品既保证了高样品负载量,又保持了良好的分辨率。PeakTrak Flash Focus 梯度生成器使得 Teledyne ISCO 制造的所有色谱柱都能快速开发和放大方法。
  • 蛋白质、碳水化合物和脂肪可以预测你的寿命
    来自悉尼大学的一项新的全球研究着眼于大量营养物质(蛋白质、碳水化合物和脂肪)如何与不同年龄段的死亡风险联系在一起。这是迄今为止最广泛的宏观营养素供应、生存统计和经济数据分析。悉尼大学查尔斯珀金斯中心(Charles Perkins Centre)和悉尼大学科学院(University of Science)的研究员Alistair Senior博士领导的这项研究发现,即使在2016年全球数据中,营养不足的证据也很普遍;尤其是在蛋白质供应方面,“最佳”供应量随着年龄的增长而变化。Senior博士说:“我们发现,在脂肪和蛋白质供应相对较高(分别占能量的40%和16%)的地方,早年死亡的风险会降至最低。然而,在晚年,减少脂肪的能量供应并用脂肪代替碳水化合物,死亡率最低。”这项研究发表在今天的《PNAS》上。“这是一个引人入胜的故事,从国家粮食供应的层面反映了一个事实,即宏观营养需求随年龄而变化,”Senior博士说。“考虑到各国的粮食安全,以及供应的变化如何转化为死亡率的模式,这也可能是一个有趣的问题。”合著者Stephen Simpson教授补充说:“这项研究很吸引人。我们可以看到从中年到晚年碳水化合物比蛋白质比率的增加与死亡率的减少有关,对应了实验室的衰老生物学研究。”与Simpson合著《像动物一样吃》的David Raubenheimer教授指出:“虽然食物供应数据并不是饮食的直接指标,但它们能很好地衡量各国食物环境的差异。令人难以置信的是,我们在这个水平上也看到了个人饮食的详细研究的影响。这证明了食物环境对饮食和健康的影响,这是我们新书的中心主题。”为什么大量营养物质很重要大量营养素是我们所吃食物的主要能量来源,并分为三大类:蛋白质、脂肪和碳水化合物。研究发现,随着年龄的增长,与最低死亡率相关的人均总热量供应相对稳定(约3500kcal/cap/天),但就饮食蛋白质、脂肪和碳水化合物而言,热量摄入的组成并不稳定。在50岁之前,40%到45%的能量来自脂肪和碳水化合物,16%来自蛋白质,可以最大限度地降低死亡率。然而,对于晚年,脂肪和蛋白质的供应量分别为22%和11%,而用碳水化合物来代替这些与死亡率最低有关。Senior博士说:“真正令人高兴的是,我们看到了一个明显的变化,这使得50岁以上的死亡率降至最低,高碳水化合物的供应似乎变得很重要。”我认为有必要指出的是,尽管这并不是一个个人应该吃什么的指南——我们研究了一个国家在人均水平上的供应量。这在理论上设定了人们吃什么的上限,但有一系列因素可以将一个国家的粮食供应转化为最终实际消费的粮食。”从方法论的角度来看,这篇论文也很有趣。研究人员利用全球供应数据和来自103个国家的1879个生命表,在宏观层面测试了能量摄入(卡路里的数量)和宏观营养素的平衡:在国家的营养供应和它们的年龄别死亡率之间。他们发现,即使在校正了时间和经济因素后,宏观营养供应仍然是年龄别死亡率的有力预测因子。Senior博士说:“我们在这里应用的相同的统计方法可以重新应用于研究死亡风险的模式和各种饮食方面,包括不同的食物类型(例如植物和动物蛋白质),或者更广泛的饮食模式(例如‘地中海式饮食’)。”
  • 中国碳水化合物动物营养研究中心成立
    7月2日,中科院大连化学物理研究所与四川农业大学动物营养研究所、中泰和(北京)科技发展有限公司在四川农业大学成都校区签署三方协议,共同成立“中国碳水化合物动物营养研究中心”。   合作中,中科院大连化物所将承担碳水化合物分离、分析、检测和规模化制备等相关研究工作,四川农业大学动物营养所将负责对结构明确的碳水化合物进行动物营养学评价,以求筛选出优质的可应用于畜牧饲养的碳水化合物,中泰和(北京)科技发展有限公司除负责新产品的设计和市场推广外,还将为该中心提供必要的科研经费支持。   四川农业大学动物营养研究所1986年成立,主要从事猪、禽、反刍动物和水生动物的营养物质代谢、营养需要、营养调控、饲料营养价值等评定。先后承担完成了国家973、国家自然科学基金等部省级科研项目近三百项,获得国家科技进步二等奖3项、四川省科技进步一等奖3项、以及其它省部级奖励共计二十余项。已出版教材及专著40余部,每年发表论文130余篇。   中泰和(北京)科技发展有限公司是专注于糖工程技术在畜牧业应用研发、推广的专业服务商,以“前沿智慧,成就客户”的核心价值观,为商业饲料企业和饲料养殖一条龙企业提供动物营养/健康的解决方案。
  • 老朋友新合作 安谱实验携LGC助力环境检测——LGC能力验证八月篇之水化学AQUACHECK
    国土资源部组织修订的《地下水质量标准》(GB/T14848-2017),经国家质检总局、国家标准化管理委员会批准发布。该标准于2018年5月1日正式实施。此标准规定了地下水质量分类、指标及限值,地下水质量调查与监测,地下水质量评价等内容。新版《地下水质量标准》的主要修改点:①水质标准由GB/T 14848-1993的39项增加至93项,增加了54项。②参考GB749-2006《生活饮用水卫生标准》,将地下水质量指标划分为常规指标和非常规指标;③感官性状及一般化学指标由17项增至20项,增加了铝、硫化物、钠3项指标;其中,高锰酸盐指数的名称变更为耗氧量,对总硬度、铁、锰、氨氮4项指标的限值或计量分子量进行了修订;④毒理学指标中无机化合物指标由16项增加至20项,增加了硼、锑、银和铊4项指标;对亚硝酸盐、碘化物、汞、砷、镉、铅、铍、钡、镍、钴和钼11项指标的限值进行了修订。⑤毒理学指标中有机化合物指标由2项增加至49项,将原滴滴涕和六六六的名称分别修改为滴滴涕(总量)和六六六(总量),并对相应限值进行了修订。⑥放射性指标中修订了总α放射性的限值;⑦修订了地下水质量综合评价的有关规定。另外新标准增加了地下水样品保存和送验要求,特别是对地下水定期监测频率进行了规定,潜水监测频率不应少于每年2次(丰水期和枯水期各一次),承压水监测可以根据质量变化情况确定,宜每年1次。LGC作为全球最大的能力验证提供商,在地下水能力验证项目经验丰富,不但基本涵盖了标准中的项目,而且采用多轮次发样的形式,完全满足监管和外部质控的要求。为答谢新老客户,此次安谱实验与LGC为您隆重推出LGC PT八月份AQUACHECK能力验证计划,每个样品测试均减免国际运费和清关服务费(共计RMB1850元)。LGC PT 八月份水化学能力验证AQUACHECK项目如下:注:①上表中价格已经减免国际运费和清关服务费。②本次LGC PT 八月份水化学能力验证AQUACHECK项目轮次为AQ552。相关标准品推荐活动说明1)本次活动于2018年8月27日前和安谱实验签订合同并付款才能享受减免运费和清关服务费的优惠。2)仅针对从未参加过LGC AQUACHECK PT的新客户。3)原价+国际运费+清关服务费,促销期间减免国际运费和清关服务费。额外增加重复样品1500元/个(可以用作质控样)。4)体验趋势分析的功能最少需要参加两个轮次。如需了解此促销活动或更多LGC能力验证项目,请联系安谱实techservice@anpel.com.cn。关于LGC能力验证LGC是全球知名的能力验证提供商,有着其他品牌无可比拟的独特优势,就像LGC标准品一样,始终致力于为客户提供卓越价值和最佳体验。为什么选择LGC作为您的实验室能力验证提供方?项目多、周期短、报告全面全球领先的数据分析系统PORTAL报告生成周期快速-平均报告生成周期5天可以对一个分析物的不同分析人员、不同方法或者不同仪器的结果进行比对,生成多种样式的报告智能导入之前需要录入的数据,节省数据录入时间多种样式的报告格式,包括主体报告(体现所有实验室结果),个体报告(您实验室特有)和能力趋势报告提供的方法总结可以与其他方法的结果进行比较每一轮截止日期前,提交结果完全自控支持提取所有数据转化为Excel格式所有的报告均存放于您的安全网络账户,方便您随时存取在线数据趋势分析工具提供各种形式的图表类型在英国和您所在地的员工提供免费支持和指导LGC可以提供多种形式的报告,保证您能够获得所有能够您的质量管理体系提供支持的信息。主体报告个体报告性能趋势报告集团报告
  • 上海光谱参与辽宁省水处理协会举办城镇供水化验员和净水工上岗证培训
    2017年12月15日—2017年12月17日辽宁省水处理协会在沈阳建筑大学逸夫楼举办城镇供水化验培训课程,培训主要为了贯彻落实“十九大”提出的“建设知识型、技能型、创新型劳动者大军,弘扬劳模精神和工匠精神”,进一步规范城市供水管理工作,确保饮水卫生安全,保障人民生命健康。培训期间所使用上海光谱生产的分光光度计为培训过程保驾护航,培训还正在进行中,我司预祝本次培训课程圆满成功!
  • 燃烧吧,卡路里!经典膨化食品热量的科学测试——自动氧弹量热仪 ATC300A
    摘要本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品(薯片、仙贝、小馒头、干脆面)的燃烧热值,测试结果与其包装上营养成分表的能量值差值在0.16~0.53 kcal/g之间,RSD(相对标准偏差)均在0.2%以内。图1测试样品展示前言卡路里(calorie)作为一种热量单位被广泛应用于营养计量和健身指导中,它和食品包装上营养成分表里单位为焦耳(joule)的能量值一样,都反映了食品氧化过程中所释放的热量,我们可以根据 1 cal= 4.1868 J对其进行换算。那么食物能提供给我们的热量与其完全燃烧后所释放的热量有什么区别?食物在人体内的消化吸收过程是非常复杂的,对于一些食物组分例如蛋白质中的氮元素等,人体无法消化吸收,在代谢产物(尿素、尿酸、肌酐等)中仍存在一定能量。但尽管人体氧化的方式与氧弹量热仪有所不同,食物完全氧化所释放出的总热量却是相同的。为了得到食物的生理热值,我们可以在氧弹量热仪燃烧测试的基础上进行一些代谢校正。例如,不考虑人体基础代谢等复杂因素,分别测量食物的燃烧热值以及排泄物热值,就可以确定某种食物的有效热值。食品营养成分表中的能量值就是三大营养素的能量系数(脂肪37 kJ/g、碳水化合物17 kJ/g,蛋白质代谢校正后17 kJ/g)与其含量的乘积之和。本文利用ATC 300A自动氧弹量热仪测得四种膨化类食品的燃烧热值并与营养成分表中的能量值进行了对比,同时计算了不考虑蛋白质代谢校正(能量系数为22 kJ/g)时的能量值;可以发现代谢校正所带来的总体偏差不大,但不同食品样品的燃烧热值偏差不同。除了蛋白质含量的因素,可能还因为相同营养素有着不同来源;像牛肉、牛奶中脂肪的燃烧热值实际是不同的,但营养素归类下却有着相同的能量系数。图2 自动氧弹量热仪 ATC 300A实验方法1. 实验条件&bull 测试仪器:之量科技 ATC 300A自动氧弹量热仪&bull 测试方法:GB/T 213-2008&bull 环境温度:24.4~ 26.3 oC&bull 实验样品:薯片、仙贝、小馒头、干脆面2. 测试过程&bull 打开ATC 300A自动氧弹量热仪;&bull Step1:在样品池中称取一定质量样品,用棉线连接点火丝与样品并固定;&bull Step2:安装氧弹,并设置实验参数,填写样品质量等;&bull Step3:开始实验,在测试环境准备好后,仪器自动进行测试;&bull Step4:实验结束,取下氧弹并进行清理;&bull Step5:重复三组测试,记录实验数据。实验结果在实验开始前,我们对每种样品分别进行了碾碎与压片处理以保证测试样品的均匀性与一致性,如图3所示。在压片过程中需控制压片力度,如薯片含油量较高,力度过大会导致油分析出影响测试结果。图3样品预处理(a)碾碎后样品(b)小馒头压片展示(c)压片后样品(d)装样薯片、小馒头、仙贝和干脆面每种样品进行3次重复测试,燃烧热测试结果汇总见表1。测试结果重复性较好,RSD均在0.2%以内。表1 燃烧热测试结果汇总燃烧热J / g薯片小馒头仙贝干脆面123935.0 16548.921535.522750.7223925.716558.121505.322766.8323995.116544.921505.222771.6平均值23951.9 16550.6 21515.3 22763.0 包装能量值22666.715870.0 20620.0 20550.0 无代谢校正能量值22967.6 16017.3 20860.7 21018.1 RSD(%)0.1570.0410.0810.078燃烧热平均值与包装上营养成分表(如图4所示,蛋白质能量系数17 kJ/g)里的能量值相比,差值在680.6~2213.0 J/g之间,不考虑蛋白质代谢校正(能量系数22 kJ/g)的差值在533.3~1745.0 J/g之间。图4(a)薯片(b)小馒头(c)仙贝(d)干脆面样品包装上的营养成分表由于本次选择的样品为膨化类食品,成分以脂肪和碳水化合物为主,蛋白质含量较低,代谢校正对测试结果的影响相对较小,更多考虑为营养素能量参数对不同来源的相同营养素存在一定偏差导致的。根据上述测试结果,燃烧热值一定程度上可以代表我们能够从食物中获取的“卡路里”。除了人体代谢外,不同来源的相同营养素用同样的能量参数去计算也会带来一定误差;以本文测试的膨化类食品为例,不考虑蛋白质代谢修正的燃烧热值与包装能量值差值为12.7~41.7 kcal(大卡)/100g,对“卡路里”摄入严格的人群可能需要考虑该影响。结论本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品的燃烧热值,测试结果与其包装上营养成分表的能量值较为接近,其差值可能包含了营养学上对于不同营养素的燃烧热值基于人体代谢的修正,以及不同来源的相同营养素能量参数的差异。 仪器推荐自动氧弹量热仪 ATC 300A符合GB 384、GB/T 213、ASTM 4809、ASTM D240等标准,测试时间<10min(快速法),热容量波动≤0.20%,功能高度自动化,能快速准确地测试各种可燃物的燃烧热值。欢迎联系我们,了解更多技术亮点、参数规格及应用案例。
  • 全球首台红外微定量分析仪Direct Detect问世
    - Bradford、BCA太过繁琐? UV测蛋白结果不准确? - 全球第一台红外微定量分析仪Direct Detect - 2ul样本、1分钟检测、无需染色,准确读取蛋白定量结果 Direct DetectTM全球第一台基于红外原理的生物分子微定量分析系统,只需要2ul样本及空白对照(Blank),就可以直接获取结果。无需样品处理,无需每次制作标准曲线,无需比色杯、没有废液。 Direct DetectTM系统直接基于酰胺区在红外吸收光谱分析,无需考虑氨基酸的组成、染料性质、氧化还原电位这些因素,避免了比色法分析的缺陷,可以获得更加准确的结果。 蛋白、脂肪、碳水化合物以及核酸都有可被区分的特定红外吸收光谱,所以您可以很轻松实现复杂混合物各种组分浓度的准确分析。 浏览Direct Detect中文产品手册 更多详情,请访问:www.millipore.com/directdetect 产品技术支持热线:400-889-1988 Email: china.marketing.online@merckgroup.com
  • RephiLe华东区经销商春季培训圆满结束
    2016年4月16日,为期2天的RephiLe华东地区经销商培训圆满落幕。从筹备这次培训开始,就有许多经销商积极响应踊跃报名。经过筛选整合,由来自上海、南京、苏州、四川等地的近30名合作伙伴参加这次培训活动。 4月15日,由RephiLe的讲师向在场的经销商们介绍了我们RephiLe的企业文化和发展历史,并进行了水化学及水纯化技术基础的培训,随后进行了RephiLe纯水产品的介绍,就其所应用领域与经销商进行了交流。让经销商最感兴趣的是RephiLe的工程师对Millipore密理博水机兼容耗材产品的概况、安装、维护展开的详细介绍, RephiLe的工作人员还带着经销商们参观了新装修的实验室,让他们直接动手操作水机产品,积累实践经验。 第二天还进行了过滤纯化产品(实验室针头式过滤器,过滤膜等)的介绍。RephiLe有经验的销售人员同他们一起分享了经典销售案例,带领经销商们以角色扮演的形式对部分案例进行了场景再现,气氛活跃。 通过这次培训活动,拉近了RephiLe与经销商们的距离,经销商对RephiLe品牌有了更进一步的了解,他们称赞RephiLe不愧是国货中的精品,对今后的合作充满了信心。关于上海乐枫生物科技有限公司 上海乐枫是一家具有深厚的技术背景,专业提供水纯化和实验室分离纯化产品制造商和供应商。发展之初,上海乐枫就树立了尊重知识产权,自主创新的理念,积极建立自己的品牌,目前上海乐枫已经成为全球密理博纯水系统兼容耗材产品线最齐全的供应商,同时提供实验室纯水系统和实验室样品制备前处理针头式过滤器等。产品品质和服务被市场认可,产品销往全球80多个国家和地区。更多 RephiLe 产品信息,请登陆:www.rephile.cnRephiLe 企业微信名:乐枫纯水
  • 国产量热计研制也有春天——微量化发展的量热技术与应用
    p style=" text-align: left " strong   本文作者为西南科技大学环境友好能源材料国家重点实验室金波老师,彭汝芳老师和楚士晋老师。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/baf28e06-4e00-4250-9149-2308407544ca.jpg" title=" 1.png" alt=" 1.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/4c15335f-36ba-4d5d-965f-425f649686a8.jpg" title=" 2.png" alt=" 2.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/3148f83c-ef56-4024-a3f2-8ffb0d48c8fd.jpg" title=" 3.png" alt=" 3.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/22b6d866-77aa-4597-976c-65b55c8259b5.jpg" title=" 4.png" alt=" 4.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a7bb790e-54a6-4dfc-bbf8-3f09d9794c81.jpg" title=" 5.png" alt=" 5.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/6037df3d-122e-41c5-be5d-74d4c501f953.jpg" title=" 6.png" alt=" 6.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/87880764-6282-4ed5-8570-1af1670c3aa2.jpg" title=" 7.png" alt=" 7.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/898f2b84-2a26-4c60-9833-db440633fe0e.jpg" title=" 8.png" alt=" 8.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/79077550-5f8b-48b5-b323-d7e0dbf46da5.jpg" title=" 9.png" alt=" 9.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/71bfc17a-449e-4792-80ea-23a1f65d9f83.jpg" title=" 10.png" alt=" 10.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/9cb424b8-ffc8-41f4-89dd-84779c918e6a.jpg" title=" 11.png" alt=" 11.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/f52b38a3-bea9-4139-b93b-e027c1fdb5f4.jpg" title=" 12.png" alt=" 12.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/5781a803-8c45-4eaf-94cc-caa45025f3b4.jpg" title=" 13.png" alt=" 13.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/e12a4fb2-b31b-43e0-a6bb-04a45fa8b68f.jpg" title=" 14.png" alt=" 14.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/e00bea37-9974-4973-9f28-7ce15e55fb02.jpg" title=" 15.png" alt=" 15.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/bfc09b6e-3e6f-437a-b20b-1d929ddecb56.jpg" title=" 17.png" alt=" 17.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/67110ae6-63bb-42ed-b6b3-8ab5e9a74fa4.jpg" title=" 18.png" alt=" 18.png" / /p p   参考文献 /p p   [1] Calvet E. Experimental Thermochemistry. Vol. 1. New Yoek: Interscience-Wiley, 1956 /p p   [2] Calvet E. Experimental Thermochemistry. Vol. 2. New Yoek: Interscience-Wiley, 1962 /p p   [3] Calvet E, Prat H. Recent Progress in Microcalorimentry. New Yoek: Pergamon Press Ltd., 1963 /p p   [4] 楚士晋. 炸药热分析. 科学出版社, 1994 /p p   [5] Tian A. Utilisation de la mé thode calorimé trique en dynamique chimique: emploi d’unmicrocalorimé tre à compensation. Bull Soc Chim Fr, 1923, 33: 427-428 /p p   [6] 田安民, 秦自明, 曾宪诚. 热导式自动量热计的研制. 石油冶炼, 1979: 11–17 /p p   [7] 田安民, 秦自明, 曾宪诚, 詹曙光, 邓郁. RD-I 型热导式自动量热计的研制. 高等学校化学学报, 1981, 2: 244–250 /p p   [8] 陈学林, 楚士晋, 胡荣祖, 李楠. 微热量热法测定导热系数的原理及其理论推导. 含能材料, 1993, 1: 31–36 /p p   [9] 陈学林, 楚士晋, 唐水花, 秦蛟. 炸药导热系数的非补偿微热量热法测定. 爆炸与冲击, 1996, 16: 266–269 /p p   [10] 陈学林, 楚士晋, 秦蛟, 唐水花. 含能材料导热系数热扩散率的微热量热法测定. 含能材料, 1995, 3: 26–33 /p p   [11] Chen XL. An absolute method for determination of thermal conductivities of thermal insulators by microcalorimetry. J Thermal Sci, 1996, 5: 92-98 /p p   [12] 胡荣祖, 梁燕军. Calvet 微热量热计在含能材料及其相关物中的应用. 火炸药, 1985: 15–24 /p p   [13] 帅琪, 高胜利 陈三平, 刘明艳, 胡荣祖, 史启祯. 用微量热法测定稀土含硫有机配合物的比热容. 化学学报, 2005, 63: 1962–1966 154 /p p   [14] Song WM, Hu QL, Chen SP, Gao SL. Thermodynamic investigation on the reactions of formation of the compounds RE(C5H8NS2)3(C12H8N2) (RE = Eu, Tb). J Chem Thermodyn, 2006, 38: 1327–1334 /p p   [15] 帅琪, 陈三平, 高胜利, 孟祥鑫, 杨旭武. 三元配合物 Tm[(C5H8NS2)3 (C12H8N2)]的热化学性质研究. 无机化学学报, 2005, 21: 1333–1340 /p p   [16] 武向红, 郑丹星, 何信菊, 荆树宏. 微量量热法测定生物柴油和菜籽油的比热容. 工程热物理程学报, 2007, 28: 737–740 /p p   [17] 田涛, 郑丹星, 武向红, 蒋翼然. 室温离子液体[Emim]BF4 及其水溶液体系的比热容测定. 北京化工大学学报, 2008, 35: 27–30 /p p   [18] Li N, Zhao FQ, Luo YJ, Mo H, Gao HX, Xiao LB, Yao E, Hu RZ. Study on curing reaction thermokinetics of azide binder/bispropargyl succinate by micro-calorimetry, Propell. Explos. Pyrot., 2015, 40: 808–813 /p p   [19] XiaoYY, Jin B, Peng RF, Zhang QC, Liu QQ, Guo PL, Chu SJ. Kinetic and thermodynamic analysis of the hydroxyl-terminated polybutadiene binder system by using microcalorimetry. Thermochimica Acta, 2018, 659: 13–18 /p p   [20] Tao JJ, Jin B, Peng RF, Chu SJ. Isothermal curing of the glycidyl azide polymer binder system by microcalorimetry. Polymer Testing, 2018, 71: 231-237 /p p   [21] Chen JJ, Jin B, Luo G, Liu HH, Zhang QC, Huang Q, Peng RF. Thermodynamics and kinetics of polyglycidyl nitrate-based urethane network formation by microcalorimetry. J. Chem. Thermodynamics, 2019, 132: 397–404 /p p   [22] Xiao LB, Zhao FQ, Xing XL, Huang HF, Zhou ZM, An T, Pei Q, Tan Y. Dissolution properties of ammonium dipicrylamide in dimethyl sulfoxide and N-methyl pyrrolidone, Thermochim Acta, 2012, 546: 138–142 /p p   [23] Xing XL, Xue L, Zhao FQ, Gao HX, Hu RZ. Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta, 2009, 491: 35–38 /p p   [24] Yin GY, Yao Y, Jiao BJ, Chen SP, Gao SL. Enthalpies of dilution of aqueous Li2B4O7 solutions at 298.15 K and application of ion-interaction model. Thermochim Acta, 2005, 435: 125–128 /p p   [25] Wang ZJ, Chen SP, Di YY, Yang Q, Gao SL. Enthalpy of solution of 5-R-Na2bdc· nH2O at 298.15 K. J Chem Eng Data, 2010, 55: 5786–5790 /p p   [26] 杨奇, 陈三平, 谢钢, 刘向荣, 刘明艳, 朱之轮, 贾青生, 高胜利. RD496 微热量计的研制及其应用. 中国科学: 化学, 2014, 44: 819-914 /p p br/ /p
  • 喜讯| ChromCore AQ C18色谱柱助力中药配方颗粒山东省标准方法
    纳谱分析ChromCore AQ C18色谱柱写入山东省药品监督管理局 中药配方颗粒标准龙眼肉配方颗粒 Longyanrou Peifangkeli龙眼肉配方颗粒为无患子科植物龙眼 Dimocarpus longan Lour.的假种皮经炮制并按标准汤剂的主要质量指标加工制成的配方颗粒。【性状】 本品为黄色至棕黄色的颗粒;气微香,味甜。【功效】补益心脾,养血安神。用于气血不足,心悸怔忡,健忘失眠,血虚萎黄。检测方法本方法依据《中国药典》2020 年版要求,采用高效液相色谱 (HPLC)检测,选用纳谱分析ChromCore AQ C18 5μm,4.6 × 250mm色谱柱,对系统适用性溶液和供试品溶液进行分离和检测。理论板数按尿苷和果糖峰计算应都不低于5000。色谱检测条件及谱图如下:Column: ChromCore AQ C18,5 μmDimension: 4.6 X 250 mmMobile Phase: A:甲醇 B:0.01%磷酸溶液Flow Rate: 0.8 mL/minTemperature: 20 ℃Injection: 10 μLDetection: UV 260 nmGradient:供试品色谱中应呈现与对照药材参照物色谱相对应的5个特征峰,其中3个峰应分别与相应对照品参照物峰的保留时间相对应,以尿苷参照物峰相对应的峰为S峰,计算峰1、峰3与S峰的相对保留时间,应在规定值的±10%范围之内,规定值为:0.63(峰 1)、1.17(峰 3)。 ChromCore AQ C18色谱柱 ChromCore AQ C18系列液相色谱柱基于单分散硅胶微球,精准控制孔道结构,采用先进的表面键合和修饰技术,经优化的装填工艺而成,可以提供常规C18需要的分离选择性,亦可耐受100%纯水相,增强极性化合物和亲水化合物的保留。特性单分散硅胶微球,机械强度高,柱床层稳定性好精准控制孔道结构,耐受100%纯水相对酸性、碱性和中性化合物提供良好峰形柱流失低,兼容质谱等通用型检测器良好柱间一致性 ChromCore AQ C18色谱柱订购信息常规规格货号产品描述货号ChromCore AQ C185μm,4.6 × 250mmA201-050018-04625SChromCore AQ C183μm,4.6 × 150mmA201-030018-04615S保护柱芯及卡套产品描述货号ChromCore AQ C185μm,4.6 × 10mmA201-050018-04601SChromCore AQ C183μm,4.6 × 10mm;进口A201-030018-04601S-B1保护柱卡套(分体式,带连接件)Guard-04601S-CS*更多产品详情,请咨询当地销售工程师或拨打服务热线400-808-3822,纳谱分析将竭诚为您服务。
  • 促进糖组学研究,安捷伦科技与PREMIER Biosoft联合推出硬件-软件平台
    促进糖组学研究,安捷伦科技与PREMIER Biosoft联合推出硬件-软件平台 技术的互补最大限度提高分析能力,推进研究人员对肿瘤及其他复杂疾病的早期发现 2014年7月9日,北京——安捷伦科技公司(纽约证交所:A)与PREMIER Biosoft公司近日联合宣布,安捷伦的一系列高分辨率质谱仪和液相色谱仪现可支持PREMIER Biosoft的SimGlycan软件。双方此举使得安捷伦产品卓越的分析性能与PREMIER Biosoft的聚糖和糖肽数据分析软件功能充分结合,将疾病生物学机理研究推进至全新的高度。 糖组学研究的是分子和有机体内的糖组结构(糖、改性糖和糖类),这是一类错综复杂的碳水化合物、蛋白质和脂质,其能够调节细胞功能并在肿瘤、细菌和病毒性疾病以及聚糖特异性遗传性疾病中发挥重要作用。这些结构由于具有复杂性和动力学特性,因此对其的研究难度难以想象。 PREMIER Biosoft公司CEO Arun Apte表示:“安捷伦和PREMIER Biosoft专注于解决生物制药分析领域的聚糖和糖肽鉴别问题。强大的仪器与软件的结合使研究人员能够获取、处理和分析高度复杂的数据,从而将其应用于药物开发中。” 安捷伦液质联用高级营销总监David Edwards也表示:“将我们强大的仪器与软件配合使用,我们双方共同致力于满足生物制药研究与开发实验室客户未能解决的主要需求。” 了解有关安捷伦液质联用解决方案的更多信息,请单击此处(http://www.chem.agilent.com/en-US/Products-Services/Instruments-Systems/Mass-Spectrometry/Pages/default.aspx)。了解更多SimGlycan软件的信息,请访问 http://premierbiosoft.com/glycan/index.html。 安捷伦与PREMIER Biosoft还提供针对脂质组学研究的组合式硬件-软件解决方案。关于PREMIER Biosoft PREMIER Biosoft公司成立于1994年。该公司由计算机科学家、统计学家和生物学家领导,致力于开发用于生命科学研究的尖端、直观软件。公司的目标是研究生命科学领域最新的创新成果并将其转化到软件产品中,以促进研究的开展。了解公司更多信息,请访问 www.premierbiosoft.com。关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有20,600名员工,遍及全球100多个国家,为客户提供卓越服务。在2013财年,安捷伦的净收入达到68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • 四大微量热仪品牌大PK 谁的产品强?
    p    strong 仪器信息网讯 /strong 微量热仪是测量微小热量的实验装置。它不但能测量系统在过程中放出的热量、还能检测出过程中放热的速率。实验测得的温升对时间的曲线称为热谱曲线。从热谱曲线可以计算出反应的平衡常数和反应的速率常数,特别是对速率非常小的反应。 /p p   微量热仪主要有塞塔拉姆、美国TA、林赛斯、英国THT四大知名品牌。 /p p    span style=" color: rgb(255, 0, 0) " strong 塞塔拉姆 /strong /span /p p   主要仪器型号BT2.15、C80、Sensys TG、uSC、C600、MS80等。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/b62e1aac-53ac-4bd1-9db0-8c558eb51464.jpg" title=" BT2.15.jpg" alt=" BT2.15.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C24028.htm" target=" _self" 塞塔拉姆& nbsp BT2.15 /a /p p   使用了SETARAM独有的卡尔维3D检测器技术,可以作为开放体系进行内、外部的固-固、气-固、液-固、液-液等二相间的交换反应实验,实现真正的原位混合,如用微热测量表征混合物组分间相互作用、相容性、液体比热和催化剂的吸附/解吸等。可以在很低的温度下研究不同物质(石油、聚合物、水合物、建筑材料和超导体)的所有冷冻和结晶现象。 /p p   这个量热仪可以使用不同的样品池,如压力控制、混合池等。应用:油品、聚合物、水合物、超导体和建材等。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201907/uepic/f13fd98e-efb1-43dd-b808-d8630b15b038.jpg" title=" c80.jpg" alt=" c80.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" style=" text-align: center max-width: 100% max-height: 100% width: 300px height: 300px " / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C24029.htm" target=" _self" 塞塔拉姆& nbsp C80 /a /p p   C80微量热仪是法国塞塔拉姆公司研发,享誉业界的经典微量热仪。借助卡尔维量热原理的三维传感器,全方位探测样品热效应。全面突破普通平板DSC量热效率低、样品量小且形态单一、无法原位混合等技术瓶颈,完全真实反映样品的物理化学性质,并提供无与伦比的测试精度。 /p p   C80集等温与扫描功能于一身,配备多种样品池,具有混合、搅拌、定量加样等功能。另外C80拥有超大样品量(可达12.5ml)的反应釜,并可实时监控压力最大为 1000bar。特别适用于催化反应、水泥水化、润湿和吸附反应、CO2捕获与封存、储氢材料、过程安全的评价及火炸药、推进剂等含能材料的研究。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ed746051-b8da-4622-931f-e4af25c677c3.jpg" title=" Sensys TG.jpg" alt=" Sensys TG.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C107127.htm" target=" _self" 塞塔拉姆& nbsp Sensys TG /a /p p   不同于业内其他公司基于平面传感器结构的DSC产品(测试效率仅为20%~50%),法国塞塔拉姆公司的SENSYS Evolution DSC系统得益于塞塔拉姆公司独有的、基于卡尔维量热原理的“三维传感器”技术,能够更真实地反映样品的热性质(效率高达94%),并提供无以伦比的测试精度。而独特的三维传感器结构提供了更大的样品室容量(320uL),使得很多在其它仪器上无法实现的研究变为可能。样品室(坩埚)内加压,对传感器没有影响,使得基线稳定,并且节约气体 仪器高度模块化,可随时与热重(TG)及气体分析仪(FT-IR, MS)联用。整个量热仪所形成的隔热环境可保持恒温稳定性达到± 0.001~0.00001℃,可以作为开放体系进行气-固反应实验,如液体比热和催化剂的吸附/脱附等。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/312070b9-1b69-4f84-992e-0232eb7a2a00.jpg" title=" uSC.jpg" alt=" uSC.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C23933.htm" target=" _self" 塞塔拉姆& nbsp uSC /a /p p   uSC作为塞塔拉姆仪器研究团队的智慧制作,是法国塞塔拉姆仪器公司新一代量热仪。采用Setaram基于卡尔维量热原理的“三维传感器”技术,能够完全真实反映样品的热性质。提供传统DSC难以企及的测试灵敏度、精度及准确性,同时兼具恒温及温度扫描模式。配备多种样品池,具有搅拌、混合、定量加样等功能,模拟固液、气液及液液混合等实际反应过程。可以实现搅拌、定量加样等操作,模拟固液混合、流体混合、润湿溶解等反应过程。非常适合于医药、生命科学、食品、聚合物等领域的研发应用。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/aa5e3851-4b89-45cb-b9b2-7744e93dafdb.jpg" title=" MICRO DSC7.jpg" alt=" MICRO DSC7.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C58151.htm" target=" _self" 塞塔拉姆& nbsp MICRODSC7 /a /p p   法国塞塔拉姆公司又一量热仪力作,MICRODSC3的姐妹作品,可自动制冷到-45度的微量热仪,可满足多种领域的应用要求,尤其是用于药物,生命科学,食品安全,冷冻研究,气体水合物研究等领域,如液态、固态或凝胶太蛋白质的变性、聚集,酶促反应,多糖得融合、凝胶化,凝胶等 并且可研究水泥、色素等的润湿反应。 /p p   /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/3a9c1ffb-5fc6-440a-bba1-4ef612457374.jpg" title=" c600.jpg" alt=" c600.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C142002.htm" target=" _self" 赛塔拉姆& nbsp C600 /a /p p   C600是法国赛塔拉姆公司近期研究开发的一款用于高温分解领域的量热仪,用于样品在高温下恒温或变温且标准压力及高压条件下的化学组分稳定性研究。温度范围从室温至600度,适用于核工业过程及工业废物化学组分分解时的吸放热研究。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/79b00c0a-bc9f-4de1-9caf-1e7c76d6c72c.jpg" title=" MS80.jpg" alt=" MS80.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C142000.htm" target=" _self" 赛塔拉姆& nbsp MS80 /a /p p   MS80是法国赛塔拉姆公司卡尔维量热产品线中灵敏度最高极端的一款仪器,可以测试到极端微小的吸放热量,如电池的自放电,粉末的自分解,微生物的生热,及混合物或气体的吸热等领域。 /p p   通常使用等温模式,温度范围:室温~200° C。MS80同卡尔维的其他量热产品相同,均有多种样品池可供选择。MS80有2只样品池版本及4只样品池版本可供选择。样品量:15ml或100ml可选。 /p p    span style=" color: rgb(255, 0, 0) " strong 美国TA /strong /span /p p span style=" color: rgb(0, 0, 0) "   主要仪器型号:Nano ITC、TAM IV、TAM 48、TAM AIR等。 /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/2d24cd6f-4f85-4b50-a5d4-757f0d05c9cf.jpg" title=" NANO ITC.jpg" alt=" NANO ITC.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" 美国TA& nbsp Nano ITC /a /p p   TA仪器Nano ITC是专为来源有限的、纯的、释释的生物样品的结合与动力学研究设计的。使用Nano ITC,可以在1纳摩尔或更少量的生物聚合物中检测到低至120纳焦耳的热量。Nano ITC采用一个固态的热电加热和冷却系统来精确地控制温度,并用独特的抽取式注射器来有效精确的进行滴定。Nano ITC内置且准确的等温功率补偿设计,能在最快的响应时间(12秒)内进行及时的补偿。 br/ /p p   Affinity ITC和Affinity ITC Auto是专为最具挑战性的生命科学实验室所设计的,满足了需要高灵敏度、高生产力和最先进ITC技术的需求。Affinity ITC的先进工艺考量了所有测试关键因素,能确保获得最高质量的ITC数据。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ca8e66a1-ab3d-4021-a757-cf169ff8d4da.jpg" title=" TAM IV.jpg" alt=" TAM IV.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" 美国TA& nbsp TAM IV /a /p p   最新的TAM IV是目前全球最灵敏、最稳定且最灵活的多功能微量热平台之一。它是完全的模块化并且以最高灵敏度和无与伦比的长期温度稳定性来量测反应程序还是其他技术手段无法实现的。响应更灵敏温度控制提供快速的温度平衡并且扩展工作温度4° C到150° C,以实现低温冷藏的应用;新的即插即用的量热计,实现快速且简易的安装;全新的附件接口盒能够搭载多达8个模块;新的模块最多可接三个独立的探头或者输入源,例如pH探针或者导入光源等;在TAM辅助仪器控制、数据采集和数据处理软件上的新的特色。 /p p   TAM IV可检测多种不同形态及尺寸的样品,广泛应用于生物制品和药物、材料科学、食品科学、含能材料(电池,爆炸物以及推进剂)、环境样品(水和土壤)等领域。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/80b1ca14-b252-4148-87e4-615681a8ba12.jpg" title=" TAM 48.jpg" alt=" TAM 48.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C34054.htm" target=" _self" 美国TA& nbsp TAM 48 /a /p p   TAM 48是TA仪器出品的新一代多通道微量热仪。TAM 48的设计在不牺牲数据质量的前提下,达到样品测试高通量。在TAM 48中,多达48个独立的微型量热计可以同时工作,在每个通道中既可同时进行不同的实验,也可同时进行重复性的实验。它在设计上将每12个微型量热计作为一组。TAM 48使用专利技术的恒温槽,可以将水浴的温度变化精确地控制在0.0001° C以内,能够运用于等温、步阶恒温或者温度扫描模式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/295767af-fda7-48f9-8a4f-03403cab1ce4.jpg" title=" TAM Air.jpg" alt=" TAM Air.jpg" /    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C34055.htm" target=" _self" 美国TA TAM AIR /a /p p   通过监控化学程序、物理程序和生物程序的热活性或热流,可以得到其他技术所不能提供的信息。等温量热法是一种研究热量变化的强大技术,不会对样品造成任何损坏或侵害。TAM Air具有无与伦比的灵敏度及长期的温度稳定性,可满足样品的多种分析要求。 /p p   TAM Air是适用于大规模量热实验的理想工具,它能够在等温条件下同步测量多个样品。此外,该仪器尤其适用于测量耗时数天或数周的热量变化过程(如水泥和混凝土的水化过程、食物腐败、微生物活性等等)。 /p p strong span style=" color: rgb(255, 0, 0) "   林赛斯 /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/94db9401-2a0f-465d-a3d1-b34ed727429d.jpg" title=" Chip-DSC-10.jpg" alt=" Chip-DSC-10.jpg" /    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C291170.htm" target=" _self" 林赛斯& nbsp Chip-DSC 10 /a /p p    span style=" color: rgb(84, 141, 212) " 变革性传感器概念 /span & nbsp /p p   全芯片DSC传感器将DSC、炉体、传感器和电子器件的所有基本部件集成在一个小型化的外壳中。芯片布置包括加热器和温度传感器,其在具有金属加热器和温度传感器的化学惰性陶瓷装置中。 这种布置允许更高的再现性,并且由于低质量的出色的温度控制和加热速率高达300℃/min。集成传感器易于用户可交换并且可用于低成本。 芯片传感器的集成设计能够在没有热流数据的预处理或后处理的情况下进行直接分析。 /p p   上市时间:2018年6月 /p p    strong span style=" color: rgb(255, 0, 0) " 英国THT /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/e10ffdc2-c2b5-4555-82b4-b33bf87f9353.jpg" title=" uRC.jpg" alt=" uRC.jpg" /    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C13789.htm" target=" _self" 美国THT& nbsp uRC /a /p p   uRC是在由THT美国公司制造的,其中有两个型号:化学高灵敏度级、生物灵敏度级。它都带有2ml的小瓶和电脑控制的注射器。使用了功率补偿技术,灵敏度高达uW级以下,并具有卓越的基线稳定性。传统测试方法或大体积量热仪上能测量的样品中大约有90%都可以在µ RC上完成,其测试速度更快,成本更低,并且没有安全问题。 br/ /p p   uRC中集成了5种量热仪的功能分别为:反应量热仪、等温量热仪、扫描量热仪、滴定量热仪、安全量热仪。所以它是一台性价比极高,应用面极广的反应量热仪。 /p p   作为量热仪它可以做下列用途: /p p   1、反应量热 – 过程研究开发和优化 /p p   2、滴定量热 – 相容性研究 /p p   3、恒温量热 – 针对相容性,动力学和稳定性研究 /p p   4、等温步进量热 – 针对动力学,稳定性和比热研究 /p p   5、扫描量热 – 相当与大剂量的DSC /p p   6、物性量热 – 测量比热,溶解热等 /p p   仪器的这些模块特性,加上由于反应规模小,响应迅速,定量特征和多样性,使它可在很多领域得到都非常理想应用。 /p p br/ /p
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • Nature重磅:“饿死”癌细胞,又添新线索
    近年来,随着国家工业化、城市化迅速发展,随之而来的环境污染以及人口老龄化加剧,导致我国癌症发病率持续上升。  2020 年全球最新癌症负担数据显示,2020 年全球新增癌症病例 1929 万例,其中中国新增癌症病例 457 万例,占到了全球的 23.7%。 同时,由于目前人们健康意识普遍较低,癌症筛查不到位,我国绝大多数癌症患者确诊时已处于晚期,治疗方案有限,预后较差。2020 年中国癌症死亡人数更是突破了 300 万。因此,亟需研发新的治疗,来改善癌症患者生存。  近日,美国麻省理工科赫综合癌症研究所 Matthew G. Vander Heiden 博士带领的研究团队和丹娜-法伯癌症研究中心的科研人员合作,在小鼠研究中发现,脂肪含量高、碳水化合物含量低的饮食,可以抑制小鼠肿瘤生长。  同时,研究人员还找到了其中的具体机制,癌细胞需要脂肪构建细胞膜,当组织中没有脂肪时,癌细胞可以通过 SCD 酶来将饱和脂肪酸转化为不饱和脂肪酸供癌细胞利用。而生酮饮食和热量限制饮食均可抑制 SCD 酶活性,但生酮饮食会同时提供大量的脂肪。相比之下,热量限制饮食既减少了脂肪含量,又抑制了 SCD 酶活性,从而会使得肿瘤生长显著减慢。  相关研究成果,发表在最新一期的顶级期刊 Nature 杂志上。  对此,本文主要作者麻省理工科赫综合癌症研究所 Evan C. Lien 博士表示,“热量限制不仅会使肿瘤缺少脂肪而饿死,还会抑制 SCD 酶,损害癌细胞对此的适应过程。这两个机制的结合可以显著抑制肿瘤生长。”  “不过,本研究的目的并不是推荐饮食,而是真正了解潜在的生物学机制。本研究揭示了热量限制饮食如何抑制癌细胞生长的机制,为未来新药的研发提供了方向。例如,改变癌症患者饮食中不饱和脂肪酸的比例,同时开发新药抑制 SCD 酶活性,或许是一个不错的方向。”  限制糖摄入“饿死”癌细胞,不太靠谱  众所周知,我们身体的其他正常细胞在分裂增殖到一定次数后,就会停止分裂增殖,体内的细胞逐渐衰老、减少,最终影响器官组织的功能,导致衰老和与衰老有关疾病。  而癌细胞是一种生长增殖非常快速,且可以无限分裂增殖的细胞,理论上只要有足够的营养和适合的环境,癌细胞可以无限制的生长。正是因为癌细胞生长速度快,消耗营养多,所以很多晚期癌症患者会出现消瘦现象。  因此,早在几十年前美国国家科学院院士、美国国家科学院医学研究中心院士、肿瘤血管新生理论之父 Folkman 教授就曾提出“饿死”癌细胞这一设想。简单来说,就是通过切断癌细胞血液和营养供应,来抑制癌细胞增殖。随后,众多科学家在这个方向上进行了大量的探索。  (来源:University of Missouri)  随后的研究发现,癌细胞在生长增殖过程中需要消耗大量的葡萄糖。因此,德国的生物学家约翰内斯• 科伊博士在《抗癌饮食》一书中表示,通过调整饮食,降低糖的摄入,长期依赖葡萄糖糖为营养的癌细胞,在持续的低糖饮食下会快速死亡。  那么,“饿死”癌细胞真的这么简单吗?  答案显然是否定的,约翰内斯• 科伊博士严重低估了癌细胞的能力。后续一系列的研究表明,葡萄糖并不是癌细胞唯一的能量来源。例如,2019 年的时候,来自加州大学洛杉矶分校的 Heather Christofk 和 Bill Lowry 等人就发现,癌细胞在葡萄糖缺乏的时候可以改变代谢方式利用谷氨酰胺提供能量。  不仅如此,对于中晚期,特别是晚期癌症患者,由于经过化疗、手术等一系列的治疗方案后,往往会处于一种营养不良状态,导致患者免疫能力下降。此时,限制患者葡萄糖摄入,不但患者无法忍受,相应的治疗无法完成,还会导致患者免疫力进一步下降,病情迅速恶化而死亡。所以临床上经常要求癌症患者吃高营养、高热量、易消化的食物,就是保证患者治疗过程中体质不过度下降。  因此,单纯从葡萄糖利用角度“饿死”癌细胞是不明智的。  限制脂肪摄入“饿死”癌细胞,或许可行  虽然大量研究表明,癌细胞在没有葡萄糖的情况下,可以改变代谢方式充分利用其他物质供能,仍旧可以快速生长,但是,近年来一系列的证据表明,饮食干预的确可以帮助减缓肿瘤生长。  生酮饮食和热量限制饮食是目前临床上癌症患者经常关心的两种饮食模式。  所谓生酮饮食就是少吃主食多吃脂肪和蛋白质的饮食模式,这种情况下人体会改变代谢利用酮体而不是葡萄糖供能,因此被称为生酮饮食。  (图注:生酮饮食(来源:Epilepsy Foundation))  同样地,所谓能量限制饮食,就是将每顿饭摄入的能量按正常标准减少 25%-50%。初步研究显示,在某些情况下,能量限制饮食或生酮饮食可能可以延长小鼠和其他多种生物的寿命。  那么,饮食干预是如何限制肿瘤生长的呢?为了弄清楚其中的原因,Vander Heiden 博士带领的研究团队在小鼠体内对生酮饮食以及热量限制饮食进行了研究,试图揭示饮食控制抑制癌细胞生长的奥秘。  通过胰腺癌小鼠模型的初步饮食干预,研究人员发现,相比于生酮饮食,热量限制饮食对肿瘤的抑制作用要大的多。  (图注:热量限制饮食(CR),而不是生酮饮食(KD),能够移植肿瘤的生长(来源:Nature)  随后,通过对小鼠胰腺肿瘤组织生长速度和各种营养物质浓度进行系统分析,研究人员发现,相比于正常饮食小时,热量限制饮食和生酮饮食小鼠中葡萄糖浓度均明显下降。不过热量限制饮食小鼠血脂水平也明显下降,但是生酮饮食小鼠血脂水平明显上升。)  这意味着,葡萄糖水平的降低对于癌细胞生长的抑制没有起到很明显的作用。相反,脂肪水平的变化或许是癌细胞生长抑制的关键。  由于癌细胞在增殖过程中需要脂肪来构建细胞膜,因此脂肪水平下降理论上是可以抑制癌细胞增殖的。不过,一般情况下,组织脂肪耗竭时,癌细胞可以通过硬脂酰辅酶 A 去饱和酶(SCD)将饱和脂肪酸转化为不饱和脂肪酸,从而加以利用。  在实验过程中,研究人员也发现,热量限制饮食和生酮饮食均可降低 SCD 酶活性,但是生酮饮食可以为小鼠提供脂肪,而热量限制饮食无法为小鼠提供足够的脂肪,因此肿瘤生长显著减慢。  最后,研究人员还对人类的数据进行了分析,以探索饮食模式和胰腺癌患者生存的关系,结果发现不同类型脂肪摄入似乎也会影响低糖饮食胰腺癌患者的生存。  总的来说,这一研究表明,热量限制饮食可以通过抑制 SCD 酶活性,降低肿瘤组织脂肪含量来抑制肿瘤生长,可能对癌症患者有利。  但是研究人员表示,他们不建议癌症患者使用热量限制饮食,以免产生不良反应。不过,针对 SCD 酶和肿瘤组织脂肪依耐性开发新的药物或许是一个更好的方向。
  • 中国建材总院在低碳水泥研究方面取得新进展
    日前,中国建筑材料科学研究总院有限公司绿色建筑材料国家重点实验室低碳水泥研究团队在《Cement and Concrete Research》发表了题为“Influence of free calcium sulfate levels on the early hydration of sulfate-rich belite sulfoaluminate clinkers: A comparative study with anhydrite and gypsum”(游离硫酸钙含量对富硫型高贝利特硫铝酸盐熟料早期水化的影响:与硬石膏和二水石膏的比较研究)的论文。富硫型高贝利特硫铝酸盐水泥(sulfate-rich BSAC)是在高贝利特硫铝酸盐水泥的矿物组成基础上,提高熟料中SO3含量,并使之以高温煅烧游离硫酸钙形式存在的一种新型水泥。高温煅烧游离硫酸钙对熟料组成、水化有重要影响。同时硬石膏和二水石膏又是调节硫铝酸盐水泥性能的重要组分。因此,研究新型熟料中高温煅烧游离硫酸钙与硬石膏/二水石膏共同作用下,富硫型高贝利特硫铝酸盐熟料的水化机理具有重要意义。为此,绿色建筑材料国家重点实验室张文生团队探讨了sulfate-rich BSAC这种新型水泥熟料中游离硫酸钙含量对熟料水化的影响,研究了石膏种类和掺量对水泥水化过程中的水化放热、水化产物的演变和水泥的物理性能的影响。研究取得的成果如下:1. 不含游离硫酸钙BSA熟料在6h内的水化速度较慢。与硬石膏相比,二水石膏能显著提高BSA熟料的早期水化速度[图1(a)]。2. 随着sulfate-rich BSAC中游离硫酸钙含量的增加,熟料中高活性c-C4A3$含量增加,熟料的早期水化速率也相应提高。此外,游离硫酸钙促进了熟料的水化和AFt的生成。游离硫酸钙含量低时,由于SO42⁻ 离子不足,导致浆体中逐渐形成AFm相,样品抗压强度降低。反之,充足的游离硫酸钙含量可确保C4A3$充分反应,从而提高早期抗压强度[图1(b、c)]。3. sulfate-rich BSAC中的游离硫酸钙溶解较快,可以使溶液中的Ca2+和SO42⁻ 离子快速饱和,从而抑制二水石膏的溶解[图2(a)]。4. 与二水石膏相比,高溶解度的硬石膏能提高溶液中Ca2+和SO42⁻ 浓度,促进C4A3$的水化。因此,硬石膏对sulfate-rich BSAC的早期性能的提高更为明显[图1(d)]。图1 硬石膏(A)/石膏(G)对熟料早期水化放热与抗压强度的影响图2 硬石膏(A)/石膏(G)对熟料水化产物的影响该成果有以下主要创新点:通过对比研究游离硫酸钙sulfate-rich BSAC与BSA熟料早期水化,以及游离硫酸钙与硬石膏/二水石膏协同作用下sulfate-rich BSAC的早期水化特征。发现,sulfate-rich BSAC较BSA水泥具有更好的小时级强度,其6h强度超过15MPa。此外,sulfate-rich BSAC中掺加硬石膏能进一步提高早期水化速度,使6h强度达到20MPa。研究阐明了硬石膏和二水石膏影响sulfate-rich BSAC早期水化的机制,为sulfate-rich BSAC熟料制备水泥时,选择石膏种类和掺量提供了理论支撑。
  • 【瑞士步琦】不同类型化合物应用的最佳条件
    不同类型化合物应用的最佳条件现如今,Flash 及 Prep HPLC 色谱已经成为许多分离应用的首选方式。就像我这种“厨房小白”,黑暗料理界殿堂级人物,在做饭时,如果盐放多了都会不禁在想:是不是可以通过色谱分离的方式去除多余的盐?然而,尽管这些分离技术是化学的基础,但它们仍然难以捉摸,因为没有通用的一种方法可以适用于所有的样品。不同行业研究或感兴趣的化合物是多样性的,这些化合物理化性质差异性很大。幸运的是,前人们已经通过多年的经验总结出了对不同分子类型化合物最有效的纯化条件。所以,如果您在进行样品分离时,对流动相或固定相以及检测器的选择感到迷茫时。或许本篇文章会对您有些许的启发。第一阶段是流动相:样品一定要可溶于待选溶剂;其次是固定相:对您的样品要有保留。有两种色谱类型适用于这里:正相(NP)色谱和反相(RP)色谱。这两大色谱类型也是很多小伙伴在日常科研当中用到最广泛的。接下来是需要确定样品溶解度,判断是否可以液体进样?如果不可以,可以考虑固体上样的方式(Flash色谱)。最后一步是检测,包括需要了解样品是否具有紫外吸收,这将决定哪种检测方法对特定化合物最有效,之前“小步”同学也有给大家分享过关于检测器的选择,没有看过的同学可以点击这里,为了帮助快速进行 Flash 和 Prep HPLC 应用的开发,“小步”同学给出一些化合物类型适用的最佳条件。蛋白质和多肽蛋白质由氨基酸组成,在溶液中形成与它们的生物功能密切相关的高度有组织三维结构。多肽则是蛋白质的小版本,通常由含有 2-50 个氨基酸组成。就流动相而言,它们大多溶于水。反相(RP)色谱法适用于多肽或更小、更稳定的蛋白质,它们在纯化后会重新折叠。这需要含有较少极性溶剂的水混合物,如乙腈、异丙醇或乙醇。乙腈是最受欢迎的溶剂,因为它易挥发,很容易从收集的馏分中去除,除此之外,它还具有低粘度和低紫外线吸收等特点。对于多肽的分离,传统的三氟乙酸(TFA)被添加到流动相来进行pH控制(缓冲)和离子配对(与相反带电的离子团形成复合物以增强保留)。固定相是根据样品的分子量和极性进行选择。Prep HPLC 色谱法由于其可以搭配更小粒径尺寸色谱柱(柱效更高),所以成为分离极性相近或相似或化合物的首选纯化方法。对于 Prep HPLC 来讲,样品进样方式必须为液体进样。所以对于疏水性样品,使用低级性溶剂(乙腈),亲水性样品使用乙醇或丙醇最佳。对于高度亲水的样品,可以适当的加入微量二甲基亚砜(DMSO)或二甲基甲酰胺(DMF)提高整体溶解能力,这使得样品可在最小溶剂体积内溶解,最大化减小溶剂扩散现象。如果需要使用固体上样,则更适用于 Flash 色谱。紫外检测器通常作为检测蛋白质或多肽最常用的方式,检测波长一般设为 280nm。这一波长已被证明特别有用,因为可以直接从蛋白质序列当中预测 280nm 处的摩尔吸收系数(消光系数),当然,这只适用于含有色氨酸或酪氨酸残基的蛋白质。如果芳香族氨基酸含量低或没有芳香族氨基酸,则推荐使用 205nm 作为检测波长。天然产物/提取物活的有机体,如植物、微生物或动物,通过初级或次级代谢途径产生这些代谢产物。初级代谢产物是生物体生长所必需的,次级代谢产物是初级代谢产物的最终产物。流动相的选择基于提取时所使用的溶剂类型,如果采用正相色谱(NP)纯化,则使用正己烷,石油醚,二氯甲烷(DCM),乙酸乙酯(EtAc),或其他与水不互溶的溶剂;反相色谱(RP)则采用乙醇和水进行提取,分离纯化流动相一般为甲醇/水或乙腈/水。对于固定相来说,所有的 NP(硅胶,二醇基,氨基等)和 RP(C18 等)均可被使用。天然产物的样品成分通常非常复杂,所以往往需要采用组合分离技术:通过 Flash 色谱进行前期预处理粗分,再经过 Prep 色谱对样品进行单体化合物分离。样品的载样量取决于天然产物提取物的体积,通常来讲提取物量都比较大。样品可以通过注射器或注射泵的方式注入到 Flash 色谱柱中,如果样品体积过大,则建议采取固体上样的方式,因为如果溶剂体积过大会导致色谱峰谱带变宽,进而影响分辨率。Flash 色谱预分离的样品后续可以在 Prep 上进一步纯化。天然产物样品的多样性和未知性决定了其被检测的方法。通常来讲,蒸发光散射检测器(ELSD)与紫外检测器(UV)的组合可以最大化保证样品检测的全面性。对于 NP 色谱,建议使用二极管阵列检测器(DAD)来对样品进行检测。碳水化合物碳水化合物可分为低分子量(单糖和双糖)和更复杂的重碳水化合物(寡糖和多糖)。单糖(葡萄糖)二糖(蔗糖)多糖(直链淀粉)碳水化合物都是亲水性的,流动相一般选择水/甲醇或水/乙腈进行搭配作为洗脱剂。在 RP 条件下,使用 C18 填料作为固定相可以降低高极性碳水化合物的保留。相反,氨基柱已经被证明是最适合作为分离碳水化合物的固定相。因为它不像 C18 那么非极性。上样方式方面,碳水化合物在 RP 条件下通常是可溶的,所以一般采用液体进样的方式进行上样。碳水化合物和脂类一样,缺乏发色团 目前,ELSD 是主要的检测方法。传统上使用示差折光检测器(RI),低波长 UV (190-205 nm),并通过薄层色谱进行纯化后分析。小分子药物这些化合物被定义为有机化合物,通常通过有机合成的方式获得。具有基本化学结构的小分子,分子量一般在 0.1-1kDA 之间。Flash 和 Prep HPLC 通常都可以在 NP 和 RP 条件下条件。小分子药物的目标通常是使用 RP,因为对它们来说水溶性是至关重要的。NP 只能在 RP 不可能的情况下使用或后续通过结构修饰等方式使其能具有更高的成药性。下表为正相色谱(NP)与反相色谱(RP)的对比:_优点缺点正相色谱(NP)__流动相有机试剂溶剂挥发试剂昂贵,安全与环保问题固定相二氧化硅填料便宜填料仅适合一次性使用最佳反相色谱(RP)__流动相水/醇混合物较便宜浓缩较慢(水沸点较高)固定相C18 填料可重复使用C18 填料较昂贵上样方式由样品的极性和纯化方式有关,高压不锈钢柱和 Flash 色谱柱可以液体和固体上样(只能 Flash 色谱使用)。液体注射进样是首选的方式,但是如果样品在方法的起始流动相梯度时溶解性不好,则需要采取固体上样。检测器方面,紫外检测器依然是首选,因为大多数的小分子药物都具有紫外吸收。然而,在某些情况下,如果化合物紫外吸收较弱,那么 NP 色谱所使用的有机溶剂会给其吸收带来干扰,进而影响实验人员对样品分离效果的判断。其他样品可能会是半挥发性的。基于此,在室温条件下使用 ELSD 检测器是最适的,因为高温条件下有机试剂的挥发顺带将化合物带走的情况时有发生,这会导致样品检测灵敏度降低。维生素/脂质由于维生素/脂质的性质多样性,以及篇幅原因。我们后续会专门出一期关于它们的文章,有相关研究的小伙伴可以持续关注哦。好了,现在您应该知道了不同类型化合物需要使用哪些色谱类型应用方法了吧。希望这篇文章能对您接下来的实验有所帮助!我是“小步”同学,我们下期再见!
  • “先进结构与复合材料”重点专项2021年度“揭榜挂帅”榜单
    5月13日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南及“揭榜挂帅”榜单。为深入贯彻落实党的十九届五中全会精神和“十四五”规划,切实加强创新链和产业链对接,“先进结构与复合材料”重点专项聚焦国家战略亟需、应用导向鲜明、最终用户明确的重大攻关需求,凝练形成2021年度“揭榜挂帅”榜单。一、申报说明本批榜单围绕川藏铁路、高速列车等重大应用场景,拟解决川藏铁路用钢轨/混凝土/缆索、高速列车刹车盘等关键实际问题,拟启动4个项目,共拟安排国拨经费不超过1.32亿元。除特殊说明外,每个榜单任务拟支持项目数为1项。项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名负责人,每个课题设1名负责人。企业牵头申报的项目,配套经费与国拨经费比例不低于1:1。榜单申报“不设门槛”,项目牵头申报和参与单位无注册时间要求,项目(课题)负责人无年龄、学历和职称要求。申报团队数量不多于拟支持项目数量的榜单任务方向,仍按程序进行项目评审立项。明确榜单任务资助额度,简化预算编制,经费管理探索实行“负面清单”二、攻关和考核要求揭榜立项后,揭榜团队须签署“军令状”,对“里程碑”考核要求、经费拨付方式、奖惩措施和成果归属等进行具体约定,并将榜单任务目标摆在突出位置,集中优势资源,全力开展限时攻关。项目(课题)负责人在揭榜攻关期间,原则上不得调离或辞去工作职位。项目实施过程中,将最终用户意见作为重要考量,通过实地勘察、仿真评测、应用环境检测等方式开展“里程碑”考核,并视考核情况分阶段拨付经费,实施不力的将及时叫停。项目验收将通过现场验收、用户和第三方测评等方式,在真实应用场景下开展,并充分发挥最终用户作用,以成败论英雄。由于主观不努力等因素导致攻关失败的,将按照有关规定严肃追责,并依规纳入诚信记录。三、榜单任务1. 川藏铁路用长寿化轨道用钢研制与应用需求目标:针对川藏铁路复杂服役条件下铁路轨道(包括钢轨和辙叉)磨损、腐蚀和疲劳破坏及性能退变等问题,研制川藏铁路用长寿化轨道用钢,并开展应用。具体需求目标如下:(1)长寿命高强度钢轨新钢种。钢轨新产品抗拉强度≥1080MPa、延伸率≥12%、-40℃低温断裂韧性≥35MPam1/2,与现有U71Mn热轧钢轨相比,相对耐蚀性提高25%以上,耐磨使用寿命提高30%以上。(2)长寿命辙叉用新钢种。新型辙叉钢抗拉强度≥950MPa、屈服强度≥450MPa、延伸率≥50%、室温AKU≥200J、-40℃下AKU≥118J,新型辙叉钢的耐磨性能、耐潮湿环境腐蚀性能和抗疲劳性能比普通铸造高锰钢均提高50%以上。(3)新型高强度钢轨间及其与新型辙叉间焊接关键技术。钢轨间焊接接头性能满足TB∕T1632标准要求;钢轨与辙叉间焊接接头满足实际使用要求。(4)开展应用与评价体系研究,编制产品标准和应用设计规范。研制新技术、新产品4项,申请发明专利10件以上,编制相关标准或技术规范2项以上,实现钢轨和辙叉示范应用2项(含)以上。时间节点:研发时限为3年项目执行期满1年:完成复杂服役条件下轨道钢的磨损和腐蚀失效机制研究;完成长寿命高强度钢轨新钢种开发;完成长寿命辙叉用新钢种开发。考核指标:钢轨新产品抗拉强度≥1080MPa、延伸率≥12%、-40℃低温断裂韧性≥35MPam1/2;新型辙叉钢抗拉强度≥950MPa、屈服强度≥450MPa、延伸率≥50%、室温AKU≥200J、-40℃下AKU≥118J;编制技术条件(暂行)2项(钢轨、辙叉);申报发明专利3件以上。项目执行期满2年:完成复杂服役条件轨道钢的疲劳失效机制和性能退变规律研究;完成长寿命高强度钢轨的工业化试制;完成长寿命辙叉制造关键技术开发;完成新型钢轨间焊接技术开发;完成新型钢轨与辙叉间焊接技术开发;完成钢轨和辙叉的试铺。考核指标:钢轨闪光焊接头抗拉强度≥880MPa;钢轨与辙叉间焊接接头满足60kg/m钢轨焊接接头在静弯载荷达到900kN时不断裂;钢轨与现有U71Mn热轧钢轨相比,相对耐蚀性能提高25%;新型固定心辙叉钢耐磨性能、耐潮湿环境腐蚀性能和抗疲劳性能比普通铸造高锰钢均提高50%以上;完成国铁运营线路(西南高原地区)试铺钢轨不少于3公里,辙叉不少于4组;编制技术条件(暂行)1项(焊接);申报发明专利5项以上。项目执行期满3年:完成钢轨及辙叉服役评价体系的建立,完成钢轨及辙叉服役性能评价。考核指标:钢轨与现有U71Mn热轧钢轨相比,耐磨耗使用寿命提高30%以上;编制技术规范(暂行)1项(使用及养护维修);申报发明专利2项以上。榜单金额:不超过3300万元。2. 川藏铁路桥梁用大吨位碳纤维复合材料拉索需求目标:针对复杂高原服役条件下高性能、长寿命川藏铁路桥梁的建设需求,研发轻质、高强、耐腐蚀与抗疲劳的大吨位碳纤维复合材料拉索,并开展示范应用,形成川藏高原铁路桥梁用1000吨级以上大吨位碳纤维复合材料索体与配套锚固体系的设计方法与制备技术。具体需求目标如下:(1)大吨位自监测碳纤维复合材料拉索。拉索用碳纤维复合材料拉伸强度标准值大于2400MPa,拉伸模量大于160GPa,湿热老化1000小时后拉伸强度保留率大于90%;碳纤维拉索索体全长应变自监测测点长度分布密度≤1m,应变精度≤10με;1000吨级以上碳纤维复合材料拉索锚固体系,锚具效率系数≥0.9。(2)碳纤维复合材料拉索的服役性能评价与控制技术。1000吨级以上碳纤维复合材料拉索满足1000小时冻融循环与湿热老化后疲劳循环200万次以上要求,以及循环次数为50次的周期荷载试验要求;川藏高原恶劣环境下碳纤维复合材料拉索服役寿命预期超过50年。(3)开展设计方法与应用技术体系研究,编制产品标准和应用设计规范。研制新技术、新产品、新工法4项,申请发明专利10件以上,编制相关标准或技术规范2项以上,实现碳纤维复合材料拉索示范应用1~3项。时间节点:研发时限为3年项目执行期满1年:实现大吨位碳纤维复合材料拉索研制。考核指标:拉索用碳纤维复合材料拉伸强度标准值大于2400MPa,拉伸模量大于160GPa,湿热老化1000小时后拉伸强度保留率大于90%;碳纤维拉索索体全长应变自监测测点长度分布密度≤1m,应变精度≤10με;1000吨级以上碳纤维复合材料拉索锚固体系的锚具效率系数≥0.9。研制新产品、新技术2项以上,编制碳纤维复合材料耐湿热性能评价方法国家标准1项,申请发明专利2项以上。项目执行期满2年:实现碳纤维复合材料拉索的服役性能评价与控制技术开发。考核指标:1000吨级以上碳纤维复合材料拉索满足1000小时冻融循环与湿热老化后疲劳循环200万次以上要求,以及循环次数为50次的周期荷载试验要求;川藏高原恶劣环境下碳纤维复合材料拉索服役寿命预期超过50年。研制新技术1~2项,申请发明专利3项以上,编制相关标准1~2项,拉索产品形式纳入到结构用纤维增强复合材料拉索国家标准。项目执行期满3年:实现大吨位碳纤维复合材料拉索示范应用。考核指标:实现碳纤维复合材料拉索在跨度100米以上桥梁建设中示范应用1~3项,编制碳纤维复合材料拉索应用行业技术规程1项,研制新技术或新工法2项,申请发明专利5项以上。榜单金额:不超过3300万元。3. 川藏铁路复杂环境结构混凝土关键材料与应用需求目标:针对川藏铁路复杂环境下不同结构部位混凝土开裂、长期性能劣化及冻融破坏等问题,研制川藏铁路高性能结构混凝土关键材料,并开展应用。具体需求目标如下:(1)川藏铁路工程混凝土专用低热硅酸盐水泥。水泥熟料C2S≥40%,3d水化热≤220kJ/kg,28d抗折强度≥8.0MPa,28d干燥收缩率≤0.08%。(2)隧道混凝土用速凝早强材料。隧道单层衬砌混凝土6h抗压强度≥10MPa,24h抗压强度≥20MPa,28d干燥收缩率≤0.02%,喷射回弹率≤10%,28d抗冻性≥F300。(3)隧道混凝土用水化温升调控材料和原位增韧材料。30℃下24h水化热降低率≥50%,隧道二次衬砌混凝土水化温升降低≥15%,收缩率降低≥50%,56d基体拉压比提升≥30%,不开裂保证率≥95%。(4)桥梁混凝土用基体减缩材料与表层防护材料。桥梁混凝土90d徐变度≤20×10-6/MPa,7d干燥收缩率≤0.01%,28d干燥收缩率≤0.025%,56d干燥收缩率≤0.035%;表层防护材料导热系数≤0.04W/(mK),水蒸气透过率≤0.2g/(m2d)。(5)研究川藏铁路结构高性能混凝土制备与应用成套技术,建立相关标准规范,实现工程示范应用。研制新技术、新产品≥5项,形成关键材料生产示范线≥2条,申请发明专利≥20件,编制相关标准或技术规范≥3项,在川藏铁路进行工程示范及应用。时间节点:研发时限为3年项目执行期满1年:实现高围岩等级隧道单层衬砌混凝土和高地热大温差环境下二次衬砌机制砂混凝土收缩开裂机理研究目标,以及川藏铁路工程混凝土专用低热硅酸盐水泥和隧道混凝土用速凝早强材料开发。考核指标:水泥熟料C2S≥40%,3d水化热≤220kJ/kg,28d抗折强度≥8.0MPa,28d干燥收缩率≤0.08%;隧道单层衬砌混凝土6h抗压强度≥10MPa,24h抗压强度≥20MPa,28d干燥收缩率≤0.02%,喷射回弹率≤10%,28d抗冻性≥F300。申请发明专利12件及以上。项目执行期满2年:实现大温差、强紫外、低湿干燥环境下桥梁混凝土长期性能和正负温交变条件下无砟轨道混凝土性能演变规律研究目标,以及隧道混凝土用水化温升调控材料、原位增韧材料和桥梁混凝土用基体减缩材料、表层防护材料开发。考核指标:30℃下24h水化热降低率≥50%,隧道二次衬砌混凝土水化温升降低≥15%,收缩率降低≥50%,56d基体拉压比提升≥30%,不开裂保证率≥95%;桥梁混凝土90d徐变度≤20×10-6/MPa,7d干燥收缩率≤0.01%,28d干燥收缩率≤0.025%,56d干燥收缩率≤0.035%;表层防护材料导热系数≤0.04W/(mK),水蒸气透过率≤0.2g/(m2d)。申请发明专利8件及以上,编制相关标准或技术规范2项及以上。项目执行期满3年:实现川藏铁路结构高性能混凝土制备与应用成套技术的开发,并进行工程示范应用。考核指标:建设关键材料生产示范线2条及以上,编制相关标准或技术规范1项及以上,并在川藏铁路隧道衬砌、桥梁墩身等结构部位进行工程示范应用。榜单金额:不超过3300万元。4. 400km/h高速列车用碳陶(C/C-SiC)制动盘及配对闸片关键技术(共性关键技术)需求目标:制动部件是确保高速列车行车安全的关键。时速400km高速列车纯空气制动时摩擦材料承受的制动能量密度大于1400J/cm2,制动盘表面瞬间温度高达900℃。针对时速400km及以下高速列车在复杂运营条件下,列车制动时制动盘/闸片摩擦性能稳定性、耐磨性、耐高温性、结构稳定性及抗疲劳性等问题,开展碳陶复合材料制动盘及配对闸片的应用研究。具体需求目标如下:(1)高导热高强韧性碳陶(C/C-SiC)复合材料制动盘承载与摩擦功能一体化设计及其近尺寸制备。碳陶复合材料密度≤2.5g/cm3,抗压强度≥180MPa,抗弯强度≥120MPa,可抗25g时速600km/h石头冲击。碳陶轮盘(外径750mm、盘厚46.5mm)≤45Kg/对,碳陶轴盘(外径640mm、盘厚80mm)≤35Kg/个,比钢盘减重60%以上;(2)制动盘结构设计及制动盘与钢质车轮/盘毂高温紧固连接技术。碳陶制动盘技术接口完全匹配现有车辆接口,满足《动车组制动盘暂行技术条件》(TJ/CL310-2014)要求。(3)碳陶制动盘配对闸片开发与1:1台架试验及失效评价。闸片满足《动车组闸片暂行技术条件》(TJ/CL307-2019)要求,初速度400km/h时,紧急制动距离≤6500m,摩擦系数≥0.32,闸片磨耗量≤0.35cm3/MJ,制动盘表面平均温度≤900℃。碳陶制动盘与配对闸片的使用寿命比目前高铁使用的制动盘/闸片提高30%以上。(4)碳陶制动盘工业化关键装备研究及生产线建设。开发碳陶制动盘关键工艺装备,实现低成本工业化制备,原材料和工艺成本低于1.3万元/盘片,制造工艺周期不超过3个月。建设年产10000盘碳陶制动盘的生产线。(5)开展应用与评价体系研究。建立400km/h高速列车碳陶制动盘及配对闸片的技术标准。碳陶制动盘及配对闸片开始进行时速≤350km的装车应用考核,完成时速400km的装车前考核。时间节点:研发时限为3年。项目执行期满1年:实现碳陶制动盘及闸片的选材配型。考核指标:完成台架试验用碳陶制动盘和闸片的制备。项目执行期满2年:实现时速≤350km车辆用碳陶制动盘及配对闸片应用考核。考核指标:完成时速≤350km的装车应用。项目执行期满3年:实现时速400km车辆用碳陶制动盘及配对闸片应用考核。考核指标:完成生产线产能建设,项目结题。榜单金额:不超过3300万元。其他要求:(1)申报团队应就本项目研发内容和目标与用户单位有充分的前期交流,具有碳陶制动盘生产和应用经验,并建立了相应的质量管理体系。(2)本项目对承担任务团队的工程化研发能力要求较高,申报单位团队研发水平和科研装备平台应充分具备相应的基础条件。近期会议推荐:【复合材料性能表征与评价网络研讨会】该网络会议对听众免费,会议日程及报名二维码如下:
  • 岛津高分辨率扫描探针显微镜SPM-8000FM 新品发布
    ——首款可分析固液界面结构的扫描探针显微镜 岛津高分辨率扫描探针显微镜SPM-8000FM 日本岛津制作所于2014年1月6日推出了最新型号扫描探针显微镜——高分辨率扫描探针显微镜SPM-8000FM,不同于现有扫描探针显微镜/原子力显微镜多采用调幅(AM)方式,而采用更高灵敏度、更高稳定性的调频(FM)方式,因此称为高分辨率HR-SPM(High Resolution Scanning Probe Microscope)扫描探针显微镜。并突破了FM方式只能在真空环境中观察这一瓶颈,成为首款可在大气溶液环境下进行原子级的结构观察和物性测定的扫描探针显微镜,并达到真空环境中超高分辨率水平。 SPM-8000FM可在大气˙溶液环境下分析薄膜、结晶、半导体、有机材料等多种样品。首次实现了在固体和液体的临界面(固液界面)进行水化、溶剂化的观察,因此也可以作为固液界面结构的观察分析仪器。例如,可实现锂离子电池中电解液和电极界面发生的结构变化,或者脂类等生物分子溶液中的结构观察等研究,为电子设备、纳米材料、催化剂、生物材料等纳米技术领域的研发工作带来新手段。 在尖端纳米技术领域的研发过程中,不仅要在真空环境中,更需要在实际使用环境中进行原子级的结构观察和物性测定,准确把握样品特性。岛津制作所与京都大学等科研机构共同研发的SPM-8000FM高分辨率扫描探针显微镜充分满足了纳米研究人员的理想。据悉,该款仪器将于3月展开在中国市场的销售应用服务工作。 SPM-8000FM特点1. 突破超高真空瓶颈,实现大气˙溶液中的超高分辨率观察由于SPM检测悬臂位移的光学杠杆检测系统的固有噪音水平较高,所以只能在真空中完成超高分辨率观察。岛津高分辨率扫描探针显微镜SPM-8000FM通过提高光学杠杆检测系统的效率、降低激光干扰等技术研发,将现有光杠杆检测系统的噪音水平降低95%,开创了SPM在大气˙溶液中的超高分辨率观察。因此,利用SPM-8000FM可以清晰的观察到大气中酞菁铅晶体薄膜的分子排列结构、水中氯化钠(NaCl)的原子结构等。还可以进行有机分子在溶液中特定反应的功能性评价、反应评价,所以在有机元件的开发领域将发挥巨大作用。 2. 不再局限于表面观察,实现了固液界面的局部三维结构的观察分析目前已知固液界面会在溶质与水(溶媒)的相互作用下形成复杂的层状结构,称之为水化溶剂化层,可对固液界面的化学反应、电荷移动、润滑、热传导等产生很大的影响。但是水化溶剂化层非常薄,在临界面的垂直方向上呈现不均一的结构,所以水化溶剂化层的显微观察迄今为止都是一个难题。SPM-8000FM利用超高灵敏度的力检测系统实现了水化溶剂化结构的观察分析。通过采用新的扫描方式,首次实现了三维结构的解析。不仅可以观察电极、聚合物在界面活性剂、生物界面等溶液中的表面形态,还可以进行固液界面结构的观察分析。
  • RephiLe水机用户:上海交大分析测试中心为市民提供食品送样检测
    【转载:中国化工仪器网】食品安全事件的频发,使越来越多得国外第三方食品安全检测机构瞄准中国市场。美国前任农业部副部长约瑟夫郑博士在上海召开的第六届食品安全国际论坛上呼吁中国建立第三方食品检测机构,挽救消费者对食品的信任危机。而上海交大也正加紧建立第三方食品安全检测机构,构建研发技术平台、制定技术标准、提供第三方检测和培训、信息基地和人才梯队、攻克和解决食品安全行业存在的共性关键工程技术问题。 检测费用:一般约三五百元 据了解,市民如果对日常生活中的大米、奶粉、珠宝等的含量存疑,可以将样本送往分析测试中心自行检测。交大分析测试中心主任梁齐教授告诉记者,中心的业务室在接受市民的样本后,会按照标准检测流程进行检测,并提供大米重金属含量、奶粉蛋白质含量和必需氨基酸配比等数据报告,市民可比对国家标准来判断食品、用品是否合格,或者为具有资质的单位提供数据参考。检测的费用将视检测项目而定,像大米、奶粉等大约在三五百元。  据悉,中心全年测试的样品数量已达到35000余个,是2001年总量的近10倍,并承担上海市纳米生物分析检测平台和远程测试平台等建设项目。 重金属检测:为大米安全护航 含镉毒大米事件曾引起社会广泛关注。“大米安全”成为大家普遍关注的话题。老百姓吃的是不是放心米?国土资源部统计表明,水稻对镉、铅的吸附能力很强,大米中镉含量如果超标会导致骨骼变形、中毒等。  交大分析测试中心以《食品中污染物限量》为依据,用电感耦合等离子体质谱仪为监测设备,将大米酸化溶解后分解为碳水化合物等,其分解过程大约需要1-2个小时,然后将样本稀释、定容,记者在测试中心现场看到,样本溶液会被吸管均匀吸入仪器进行检测,最终通过探测器的计数与浓度的比例关系,测出所含元素的含量或同位素比值,具有极低的检出限,其精确度可以达到“微克/每千克”。  在此之前,交大分析测试中心曾开展对市售主流的20种品牌大米进行检测,结果表明重金属镉含量总体情况良好,无镉超标情况检出。 奶粉检测:计算蛋白质含量 品牌奶粉中的蛋白质含量是否达到国家标准?奶粉中各种氨基酸的配比是否合理?专家表示,衡量奶粉质量高低主要有两个指标:蛋白质含量和必需氨基酸配比。如果奶粉蛋白质氨基酸模式与人体蛋白质越接近时,必需氨基酸被机体利用的程度越高,奶粉蛋白质的营养价值也相对越高。  交大分析测试中心生命科学实验室从日本进口了一台的氨基酸分析仪,按照相关国家标准将奶粉中的蛋白质加酸水解成游离氨基酸,一次进样就可同时获得十七种氨基酸的配比情况,进而准确地计算出奶粉中蛋白质的含量。 蜂蜜辨别:别被“糖浆”欺骗 服用蜂蜜可促进消化吸收,增进食欲,镇静安眠,提高机体的免疫力。纯正的蜂蜜含有大量碳-3的植物糖,不法奸商往往在蜂蜜中掺入大量的碳-4植物糖浆,以次充好。但普通消费者通过外形、颜色、气味和味道等,往往很难辨别真假蜂蜜。  分析测试中心实验室将蜂蜜样品按照相关国家标准方法进行一系列处理后,利用分析测试中心从德国进口的元素分析-同位素比例质谱仪,测定蜂蜜的δ13C值以辨真伪,为保障食品安全、保护消费者权益提供了可靠的手段。  上海交通大学分析测试中心(前身为理化实验中心)正式成立于1983年6月,1999年6月改制成为上海交通大学的直属单位。中心先后通过了国家计量认证和上海市钢结构化学分析计量认证,是一个具备向校内外科学研究和品质鉴定提供公证、权威测试数据能力的重要机构。  上海食品安全工程技术研究中心依托单位现已变更为上海交通大学,提供第三方检测和培训、信息基地和人才梯队、攻克和解决食品安全行业存在的共性关键工程技术问题,为政府决策提供技术支撑,交大农业与生物学院党委书记周培,该检测机构奖属于非赢利性质,将来可能会收取一定的成本来维持运作,但最主要的任务还是通过自主研发创新和引进消化吸收,提高食品安全行业的整体工程技术水平,以推动上海市乃至全国的食品行业的快速、健康发展,把中心打造为国内一流、在国际上具有较大影响力的食品安全重要工程技术研究中心基地。 文章链接:中国化工仪器网 http://www.chem17.com/news/detail/53120.html
  • 天木生物DREM cell设备助力中国农大、清华大学完成蜜蜂肠道微生物单细胞高通量培养,实现菌株级别
    近日,天木生物DREM cell设备助力中国农大、清华大学完成蜜蜂肠道微生物单细胞高通量培养,实现菌株级别功能多样性研究。 各种不同的生态系统都存在微生物群落,典型的微生物群落包括土壤、海洋或江湖等环境微生物以及人体或动物肠道微生物等。其中,肠道微生物群越来越引起人类的重视,越来越多的证据表明人体肠道微生物群的组成和活性变化与多种疾病和生态表型有关,如糖尿病、肥胖、结肠炎和严重抑郁症等。因此,若研究肠道微生物与宿主的关系,则能够更好地了解肠道共生体对疾病的作用机制,指导从肠道微生物角度出发的新的治疗方法和策略的构建,以达到治疗或预防疾病的目的。 今年6月份,中国农业大学的郑浩团队和清华大学的张翀团队在 Microbiome 上发表了名为“Strain-level profiling with picodroplet microfluidic cultivation reveals host-specific adaption of honeybee gut symbionts”的研究论文,使用高通量皮升级液滴微流控细胞分选仪(DREM cell)开发基于液滴的微流控技术培养蜜蜂肠道微生物,验证了微流控液滴平台在肠道微生物培养组学中的可行性,为更复杂微生物群落的大规模研究铺平了道路。 (来源:Microbiome) 传统培养方式限制测序技术深入研究微生物的基因型和表型多样性复杂微生物群由多种微生物组成,这些微生物是多物种复合体的一部分。尽管属于同一属和种的微生物拥有一个共同的、且对于细胞功能和物种的生存至关重要的核心基因组,但它们仍然拥有相当数量的菌株特异性基因,导致它们在生理和毒性特性等方面的不同表型,这些差异菌株可能会在不同程度上改变肠道微生物群的功能,进而影响到宿主健康。 因此郑浩表示:仅在物种水平上研究微生物群落是不够的,需要深入调查基因型和表型的多样性。培养是微生物研究的基础方法之一,但实际上由于培养条件的不适合,或是缺少互利共生的个体,很少有微生物可以在实验室条件下轻松培养,对于复杂群落而言,往往也只能成功实现其中一部分占多数的,或快速生长菌株的有效表征,并且传统的培养方式通常是低通量的,丰富的菌株多样性往往会在这个过程中被掩盖。 幸运的是,越来越强大的测序技术出现了,该技术可更深入、更清楚地了解共生肠道微生物组的结构、功能和多样性。16S rRNA 基因测序(16S rRNA gene sequencing)和鸟枪法宏基因组测序(Shotgun metagenomic sequencing)是当前用于微生物群落分析的两种主要工具。 16S rRNA 基因测序一般用于通过选择性扩增和测序微生物 16S rRNA 基因的高变区来识别和分类微生物,可以通过相对少量的原始读长来获得有代表性的细菌分类学估计。其具有高通量,成本低的特点,并拥有相当多成熟的生物信息学工具。但这种方法的主要限制为分类群是根据基因组的单个区域的序列分配的,这导致了分辨率不足。此外,扩增引物的选择也影响很大,一些引物已被证明会导致特定分类群的代表性过高或过低,这可能导致对分类单元的表示存在潜在偏差。 鸟枪法宏基因组测序对从整个微生物群落中分离出来的所有微生物的基因组进行测序。它的优势在于通过收集有关广泛基因组区域的序列信息,能够支持在物种水平上进行更准确的定义,提供更高的分类分辨率。同时还能支持进一步进行菌株水平的重建,得到新的基因或基因组,并对它们进行功能注释和途径预测以产生微生物群落的详细描述。但这种方法成本较高,需要深度测序获得更高的覆盖度以达到令人满意的分辨率,以及更复杂的下游分析。“虽然基于测序的方法不限于可培养的微生物群,但 16S rRNA 基因测序方法在种内分析的分辨率上仍然极其有限,并且可能会被每个基因组的 16S rRNA 基因的多个不同拷贝混淆,这同样会造成对实际存在于环境中菌株功能的误判;鸟枪法宏基因组测序通过考虑更多标记基因或全基因组来提供更多信息,目前也已经开发了许多工具来分析宏基因组数据来解决这些问题,但来自取样时间的或空间的偏差往往需要更深的测序深度来弥补,但这也带来了急剧升高的成本。”郑浩说道。 液滴微流控平台可克服传统培养方式的缺陷因此,若有一种培养方法可突破传统培养方式的局限,则会大大减轻测序技术的压力。基于液滴的微流控平台或许是个不错的选择。液滴微流控微流控(Microfluidics)是指一种在微米尺度空间对流体进行操控的技术,在该技术下可以将化学、生物等实验室的基本功能微缩到一个几平方厘米芯片上,因此又被称为“芯片实验室”。作为微流控芯片研究中的重要分支,液滴微流控是一种在微尺度的通道内利用流动剪切力或表面张力的改变,将两种互不相溶流体中的离散相流体分割成纳升级及以下体积的微液滴,并驱动微液滴运动对其进行操控的技术。张翀表示:基于液滴微流控的特征,我们可以通过在直径为数十至数百微米并由不混溶的油和工程表面活性剂分割的介质液滴种划分微生物来消除群落培养中过度生长的快速增长种群的影响。由于微制造的物理孔或通道不会限制液滴,因此可以快速创建数百万个独立的培养系统实现单个肠道微生物体的高通量培养。这极大克服了传统培养方式的缺陷,为通过培养来表征来自肠道共生体的稀有类群提供了机会。为了证明微流控液滴平台在肠道微生物群研究中的可行性,郑浩和张翀团队将蜜蜂作为研究对象。原因是与其他动物相比,蜜蜂的肠道细菌简单且稳定,宏基因组分析也表明,虽然蜜蜂肠道由数量有限的细菌系统发育型组成,但仍然存在显著的菌株水平多样性,个别菌株具有独特的基因组潜力和关键能力,这些能力在功能上与宿主的营养代谢和健康相关,为在菌株水平分析肠道共生体与宿主关系提供了很好的模型。具体做法如下:首先,构建了一个微流体液滴平台,并产生了用蜜蜂肠道中的单个细菌细胞包裹的液滴;随后,收集液滴并进行孵育培养,确定了液滴中微生物的生长能力,宏基因组分析揭示了与常规测序方法相比蜜蜂肠道更高的菌株水平多样性,证明了微流体平台在分离和富集稀有微生物菌株方面的潜力。▲图丨微液滴生成(来源:郑浩)最后,结合分箱策略,得到了蜜蜂肠道微生物的大量基因组草图,并进行了功能预测和比较基因组分析。对双歧杆菌属的分析揭示了潜在分类单元的存在,它们在跨膜运输、肌醇利用以及多糖利用方面存在丰富的菌株多样性。研究人员还得到了来自 Lactobacillus panisapium 的新菌株,该菌种在以往的研究中被认为特异性来源于中华蜜蜂;通过进一步的基因组比较,发现来自西方蜜蜂的菌株中独特地含有一组与饮食阿拉伯糖利用相关的代谢基因簇,包括araf43A, rafB, abfA 和abfB,这可能与它对不同蜜蜂宿主的适应密切相关。 ▲图丨微流控液滴中蜜蜂肠道细菌的单细胞封装和培养(来源:研究论文)“总体而言,结果证明了基于液滴的培养在研究蜜蜂肠道微生物多样性方面的适应性,同时这种方法也有潜力适用于其他复杂群落,在稀有类群的获得以及功能鉴定方面发挥作用。”张翀说道。他补充道,对于肠道微生物,当前的研究主要集中在特定培养基质下的微流体液滴培养,结合 16s rRNA 扩增子测序以研究肠道微生物个体的膳食碳水化合物代谢或抗生素耐药性。我们的研究则着重于通过隔离培养以富集在常规状态下难以检测的稀有类群,结合宏基因组的测序和分析,以较高通量实现对肠道稀有微生物的发现,以及代谢途径和功能预测,提供关于宿主和肠道共生体关系的崭新理解。“未来,我们可能会通过调整液滴大小、改善培养条件和测序方法来研究肠道真核微生物,并实现对单胞的高通量识别,这将进一步扩大我们对肠道复杂成员的理解。同时,我们的流程也可以进一步应用于人类肠道共生体的研究,扩展对人类肠道稀有类群以及它们与健康关系的认知和了解。”相关产品 研究团队所使用的液滴微流控细胞分选仪(DREM cell)是天木生物基于液滴微流控技术开发的皮升级液滴微流控单细胞分选平台,可将待筛选细胞进行包被形成单细胞微液滴,结合荧光筛选模型,可以在细胞水平完成微生物的高通量分离、培养、检测、分选等。 ▲图丨液滴微流控细胞分选仪(来源:天木生物) ‍ 高通量皮升级液滴单细胞分选系统(DREM cell)相比于传统筛选方法,筛选效率可提升1万倍,试剂消耗量可下降至百万分之一,在筛选通量显著提升的同时,单克隆筛选成本大幅度降低。该仪器不仅可广泛应用于细菌、酵母、动物细胞等的高通量筛选,还可以应用于蛋白、核酸、抗体等生物大分子筛选等相关研究领域。 项目技术参数液滴体积1-1000pL荧光激发与检测可选波段:(1)激发波长488nm,检测波长525±15nm,灵敏度1μM荧光素/单液滴(2)激发波长532nm,检测波长578±11nm,灵敏度100nM试卤灵/单液滴液滴生产频率0-10000个/s液滴分选频率0-1000个/s微注入速度0-1000个/s样品低温控制系统4℃恒温控制,±0.5℃工作环境常压状态下,室温,30%≤湿度≤80%,洁净暗室整机功率600W应用范围细胞、酵母、细菌、蛋白、核酸等 参考资料:1.https://blog.csdn.net/woodcorpse/article/details/125118043具有菌株分辨率的高通量、单微生物基因组学,应用于人类肠道微生物组|科学 (science.org)
  • 艾力蒙塔 iso CHROM LC技术助力蜂蜜掺假
    p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " Ulrike Burmester是位于德国不来梅的Intertek食品服务有限公司的高级实验室主管,主管真实性稳定同位素和NMR食品服务。她主要负责蜂蜜和糖浆真实性测试业务,这是Intertek为蜂蜜生产者供应链中的每个环节提供的一项主要服务,以确保最终为消费者提供更高质量的产品。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " 多年来,检测蜂蜜掺假的标准方法一直是识别非法添加的C4,但是Intertek在此基础上通过成功地研发出一种新的技术,即通过检测C3和C4糖来识别蜂蜜掺假,并对其进行了商业化。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " 但是Intertek在此基础上通过成功地商业化一种新的技术来检测C3和C4糖对蜂蜜掺假的研究1。该技术利用液相色谱将蜂蜜中的碳水化合物分离,然后将这些碳水化合物氧化形成二氧化碳。从而可以测量这些碳水化合物的13C同位素比例,并检测出任何可能的蜂蜜掺假。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 这项技术可以检测出其他方法无法检测到的掺假,有助于保护企业和消费者。然而,该方法所用到的LC-IRMS分析技术存在维护周期短及仪器停机时间长的问题。由于每年仍需检测约15000个样品,Intertek只能通过增加仪器数量以及周末加班的形式进行检测,以为客户提供可靠、快速的服务。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 面对这些情况,Intertek寻求一种更强大的24/7仪器来降低生产成本和停机时间,这也是其参与2017年Elementar的首个LC-IRMS原型iso CHROM& reg LC的beta测试的原因。Iso CHROM& reg LC是BiovisION Honey LC-IRMS系统的一部分,该系统经过与Intertek紧密合作进行了专门调整,以适应专注于蜂蜜和糖浆样品的高通量分析实验室的需求。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " iso CHROM& reg LC独特地利用高温燃烧将分离的碳水化合物转化为CO2,而不是Burmester女士和她的团队已经使用了几年的湿化学氧化技术。在对iso CHROM& reg LC的各个方面进行了仔细的测试和评估之后,该团队对仪器的性能极为满意,并意识到该仪器为Intertek实验室实施了功能更强大的系统提供了机会。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 谈到自己使用Intertek安装的iso CHROM& reg LC的经历时,Burmester女士说:“到目前为止,Elementar LC-IRMS仪器对于C4和C3蜂蜜掺假分析一直非常高效。高温燃烧方法意味着不需要腐蚀性化学物质(如过硫酸钠),这避免了管子堵塞,基线嘈杂和仪器停机等问题。此外,仪器硬件易于维护,并提供自动例行程序,可在一夜之间进行性能检查。我们现在更接近24/7全天候运行样品。” /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " br/ /span /p p style=" text-indent: 2em line-height: 1.75em " strong span style=" font-family: 宋体, SimSun " 关于elementar /span /strong /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " elementar在元素分析领域具有超过110年的专业经验,公司源于德国Heraeus,专注于制造专业元素分析仪器,蜚声国际。早在1923年,FritzPregl就利用该设备在微量元素分析上取得成就,获得了诺贝尔化学奖。公司自成立以来采用家族自营的管理模式,公司的员工均为提高产品的质量和服务而不断努力。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " br/ /span /p p style=" text-indent: 2em line-height: 1.75em " strong span style=" font-family: 宋体, SimSun " 关于Intertek食品服务 /span /strong /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " Intertek食品服务公司是全球各行业领先的全面质量保证提供商,其网络由1000多个实验室和办事处组成,在100多个国家/地区拥有46000多名员工。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 宋体, SimSun " Intertek为客户的运营和供应链提供创新的定制保证,测试,检查和认证解决方案,并以精确,快速和热情的方式提供全面的质量保证专业知识,以使客户能够安全地前进。 /span /p p br/ /p
  • 《食品安全国家标准 预包装食品营养标签通则》(征求意见稿)主要修改内容
    1、范围增加了 “本标准适用于直接提供给消费者的预包装食品营养标签 。非直接提供给消费者的预包装食品和给消费者的预包装食品食品储运包装如需标示营养签应按本准实施”。2、术语和定义能量有标准中用于计算食品能量的供成分有四大类,其转换系数( kJ/g)包括: 白质17,脂肪37,碳水化合物17,膳食纤维8。考虑到食品样中各类成分的含量水平和检测必需性,略去了乙醇,有机酸醇,有机酸 ,糖醇类(包括 ,糖醇类(包括 ,糖醇类(包括,糖醇类(包括D-甘露糖醇、麦芽糖乳山梨、木糖醇糖醇)等单体成分。碳水化合物本标准给出不同条件下可采用的碳水化合物计算方法。即:当营养标签中标示膳食纤维时, 碳水化合物=100-水分-灰分-蛋白质-脂肪-膳食纤维;当营养标签中不标示膳食纤维时,碳水化合物=100-水分-灰分-蛋白质-脂肪 当食品中蛋白质、脂肪含量达到 0 界限值时,碳水化合物= 糖+淀粉 。糖 食品中单糖、双糖之和(不包含糖醇)。用于营养标签标示的糖特指食品中葡萄糖、果糖、蔗糖、麦芽糖的总和。 营养素参考值(NRV) 修订 1.NRV 适用 于 37 月龄以及以上人群食用的预包装食品营养标签。 2.说明了对 NRV 制定的依据3.增加了使用方式。份量 本标准中的预包装食品的份量参考值也是根据消费者一次性消费习惯制定,适用于营养成分表中用“份”标示食品营养成分含量值的食品,并由此给出了对每份食品质量或体积的参考建议值(以可食部计)。3、基本要求增加 3.7 进口预包装食品的营养标签标示内容应符合本标准的规定。4、强制标示内容增加强制标示内容,修订为:4.1 所有预包装食品营养标签强制标示的内容包括:能量、蛋白质、脂肪、饱和脂肪(或饱和脂肪酸)、碳水化合物、糖、钠的含量及其占营养素参考值百分比(NRV%)。 增加警示语:儿童青少年谨慎选择高脂高盐高糖食品。5、可选择标示内容增加可选择标示成分:增加 n-3 脂肪酸、ɑ-亚麻酸、EPA、 DHA“0”界限值和修约间隔 增加份量标示,明确了使用方法:按份标示预包装食品中能量和营养成分的含量时,每份食品的质量或体积可按类别参考附录 E 推荐的食品份量参考值。增加 5.5 其它补充信息,包括可以使用消费者熟悉的“油盐”替代脂肪和钠,用“卡”等替代“千焦”等说明。可以使用膳食指南宝塔图形和核心推荐,宣传合理膳食和三减。 6、营养成分的标示和表达方式6.4 营养成分含量标示值的确定,可以采用现行有效的国家标准方法测定获得,也可根据配方原料组成利用《中国食物成分表》及其他来源可信的数据计算获得。判定营养成分标示值准确性时,宜综合考虑确定标示值的方法。对表 1 中部分营养素的名称、表达单位、修约间隔和“0”界限值进行修订。 1.增加 n-3 多不饱和脂肪酸、α-亚麻酸、EPA、DHA 的表达单位、修约间隔及 “0”界限值; 2.糖和乳糖分别标示,且符合相应单位及“0”界限值; 3.维生素 A、维生素 E、维生素 B12、烟酸(烟酰胺)、锌大的修约间隔及“0” 界限值 对表 2 中能量及营养成分的允许误差进行修订。 食品的蛋白质,多不饱和及单不饱和脂肪(多不饱和及单不饱和脂肪酸),碳水化合物,乳糖,总的、可溶性或不溶性膳食纤维及其单体,维生素,矿物质(不包括钠),强化的其他营养成分的允许误差范围≥ 80 %标示值。 食品中的能量以及脂肪,饱和脂肪(饱和脂肪酸),反式脂肪酸,胆固醇,钠,糖的允许误差范围≤ 120 %标示值。7、豁免强制标示营养标签的预包装食品1.增加了豁免简单处理或清洗的单一生干制品。 2.删除对现制现售以及通过计量方式销售预包装食品的豁免 3.规定豁免“最大表面积≤40cm2的食品”。
  • 岛津扫描探针SPM-8000FM 获得"十大新产品奖"
    岛津高分辨率扫描探针显微镜SPM-8000FM荣获日刊工业新闻社主办的2014年第57届 “十大新产品奖 ”制造奖。该奖项是从当年度开发并投放到市场的产品中,评选出能够促进制造业发展,并提升日本国际竞争力的产品。2014年共有60家公司的65款产品参加角逐,共17款产品获得此奖项。岛津产品已经连续3年荣膺此奖项。 2014年第57届 “十大新产品奖 ”制造奖 岛津高分辨率扫描探针显微镜SPM-8000FM 日本岛津制作所于2014年1月6日推出了最新型号扫描探针显微镜——高分辨率扫描探针显微镜SPM-8000FM,不同于现有扫描探针显微镜/原子力显微镜多采用调幅(AM)方式,而采用更高灵敏度、更高稳定性的调频(FM)方式,因此称为高分辨率HR-SPM(High Resolution Scanning Probe Microscope)扫描探针显微镜。并突破了FM方式只能在真空环境中观察这一瓶颈,成为首款可在大气溶液环境下进行原子级的结构观察和物性测定的扫描探针显微镜,并达到真空环境中超高分辨率水平。 SPM-8000FM可在大气溶液环境下分析薄膜、结晶、半导体、有机材料等多种样品。首次实现了在固体和液体的临界面(固液界面)进行水化、溶剂化的观察,因此也可以作为固液界面结构的观察分析仪器。例如,可实现锂离子电池中电解液和电极界面发生的结构变化,或者脂类等生物分子溶液中的结构观察等研究,为电子设备、纳米材料、催化剂、生物材料等纳米技术领域的研发工作带来新手段。 在尖端纳米技术领域的研发过程中,不仅要在真空环境中,更需要在实际使用环境中进行原子级的结构观察和物性测定,准确把握样品特性。岛津制作所与京都大学等科研机构共同研发的SPM-8000FM高分辨率扫描探针显微镜充分满足了纳米研究人员的理想。据悉,该款仪器已于2014年3月展开在中国市场的销售应用服务工作。 SPM-8000FM特点1. 突破超高真空瓶颈,实现大气˙溶液中的超高分辨率观察由于SPM检测悬臂位移的光学杠杆检测系统的固有噪音水平较高,所以只能在真空中完成超高分辨率观察。岛津高分辨率扫描探针显微镜SPM-8000FM通过提高光学杠杆检测系统的效率、降低激光干扰等技术研发,将现有光杠杆检测系统的噪音水平降低95%,开创了SPM在大气溶液中的超高分辨率观察。因此,利用SPM-8000FM可以清晰的观察到大气中酞菁铅晶体薄膜的分子排列结构、水中氯化钠(NaCl)的原子结构等。还可以进行有机分子在溶液中特定反应的功能性评价、反应评价,所以在有机元件的开发领域将发挥巨大作用。2. 不再局限于表面观察,实现了固液界面的局部三维结构的观察分析目前已知固液界面会在溶质与水(溶媒)的相互作用下形成复杂的层状结构,称之为水化溶剂化层,可对固液界面的化学反应、电荷移动、润滑、热传导等产生很大的影响。但是水化溶剂化层非常薄,在临界面的垂直方向上呈现不均一的结构,所以水化溶剂化层的显微观察迄今为止都是一个难题。SPM-8000FM利用超高灵敏度的力检测系统实现了水化溶剂化结构的观察分析。通过采用新的扫描方式,首次实现了三维结构的解析。不仅可以观察电极、聚合物在界面活性剂、生物界面等溶液中的表面形态,还可以进行固液界面结构的观察分析。
  • 仪器表征,科学家揭示铁基催化剂稳定性与性能的提升新方法!
    【科学背景】铁基费托合成(FTS)催化剂是广泛用于合成气转化的重要催化剂,由于其产品分布灵活、反应条件广泛且成本低廉,因而成为了研究热点。然而,铁基催化剂在反应过程中,其铁碳化物活性相容易被生成的水氧化成Fe3O4,这导致催化性能逐渐下降,成为该领域面临的一大挑战。有鉴于此,武汉大学定明月教授、Yanfei Xu等课题组在“Nature Communications”期刊上发表了题为“Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis”的最新论文。科学家们提出了通过表面疏水化来保护铁碳化物活性相的策略。疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制水对铁物种的氧化。这一策略不仅增强了催化剂的C-C偶联能力,还促进了长链烯烃的形成。此外,研究进一步表明,适当的壳层厚度在稳定铁碳化物活性相、避免Fe3O4的生成以及实现良好催化性能方面发挥了关键作用。这一研究为开发高效、稳定的铁基FTS催化剂提供了新的思路。【科学亮点】(1) 本研究首次采用表面疏水化的方法,对铁基费托合成(FTS)催化剂进行改性,成功保护了铁碳化物活性相。通过实验发现,疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制了水对铁物种的氧化,保持了铁碳化物的稳定性。(2) 通过调控催化剂表面的疏水壳层厚度,实验进一步揭示了壳层厚度在稳定铁碳化物活性相中的关键作用。结果表明,适当厚度的疏水壳层不仅有效防止了Fe3O4的形成,还显著增强了催化剂的C-C偶联能力,促进了长链烯烃的生成,最终实现了优良的催化性能。这一研究为铁基FTS催化剂的性能优化提供了新的思路和方法。【科学图文】图1:结构表征与催化性能。图2:亲水性和疏水性催化剂的相变行为。图3:通过表面疏水化抑制水对碳化铁的氧化图4:壳层厚度对相结构与催化性能的影响。。图5:氯对相变行为及CO吸附行为的影响。【科学结论】本文揭示了通过表面疏水化策略有效保护铁基费托合成催化剂中铁碳化物活性相的重要性。传统铁基催化剂在合成气转化过程中,铁碳化物活性相容易受到生成的水的氧化,从而导致Fe3O4的形成,严重影响催化性能。而通过在催化剂表面引入疏水层,可以显著减少水在催化剂核心区域的浓度,抑制铁物种的氧化过程,进而稳定铁碳化物活性相,增强催化剂的C-C偶联能力,促进长链烯烃的生成。此外,本文强调了壳层厚度在这一过程中的关键作用,适当的壳层厚度不仅能有效防止Fe3O4的形成,还能在保持催化剂良好性能的同时,确保其活性相的稳定性。此研究为开发高效、稳定的铁基FTS催化剂提供了新的思路和方法。原文详情:Xu, Y., Zhang, Z., Wu, K. et al. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis. Nat Commun 15, 7099 (2024). https://doi.org/10.1038/s41467-024-51472-w
  • 绿色智能装备改造将推动生物发酵技术升级
    3月初,“2024中国生物发酵产业技术大会”在山东济南隆重召开。本次大会由中国生物发酵产业协会主办,华熙生物科技股份有限公司协办。中国生物发酵产业协会理事长于学军主持 中国轻工业联合会会长张崇和在致辞中说,2023年,生物发酵行业通过中国轻工业联合会科技成果鉴定9项、获得科学技术一等奖2项,完成了蛋白酶、纤维素酶等8项酶制剂的筛选方法研究,建立了酶制剂特性评价关键技术,实现了药用氨基酸培养基国产替代。生物发酵行业科技水平的大幅提升,为保证行业产业链供应链的韧性和安全贡献了重要力量。他从三个方面对我国生物发酵行业的发展提出了要求:一是补短板,推动行业创新发展。去年11月29日发布的《轻工业共性关键技术目录》提出了 55项急需攻克和18项急需推广应用的共性关键技术,其中涉及食品行业19项。生物发酵行业要加大研发经费投入,培育科技创新平台,集聚产学研用资源,围绕基因改造、菌种构建、高效酶制剂、非粮生物质利用、智能化生物反应器、分离纯化装备等短板,开展联合攻关,突破技术瓶颈,加强成果转化,不断推动行业创新发展。二是固长板,夯实行业竞争优势。2023年,工信部等11个部门发布了《培育传统优势食品产区和地方特色食品产业指导意见》。《意见》提出,要打造“百亿龙头、千亿集群、万亿产业”的地方食品产业集群。生物发酵行业要强化生物合成技术,改造优化菌种,提升原料利用率,巩固氨基酸、有机酸、淀粉糖产量居世界第一的优势产业;要加大绿色智能装备改造力度,减污降碳,提质增效,不断提升行业创新能力,进一步形成和夯实行业竞争新优势。三是铸新板,布局行业未来发展。习近平总书记指出,要积极培育未来产业,加快形成新质生产力,增强发展新动能。生物发酵行业要加强前瞻谋划,聚焦前沿科技,利用合成生物技术,在未来食品、微生物替代蛋白、营养化学品、微生态制剂、医药中间体、生物材料等方面,加强技术创新,强化研发应用,不断抢占行业发展制高点。 中国轻工业联合会党委书记、会长张崇和 济南市商务局王志刚副局长在致辞中说,本次大会搭建了生物发酵产业合作交流平台,是对济南生物制造产业发展的大力支持。济南市在促进生物经济发展、推动我国生物制造产业由大变强等方面提供了较适宜的基础和环境。近年来,济南出台了一系列产业政策,鼓励和扶持生物产业的发展,并把“生物医药与大健康”列为济南市四大支柱产业之一,这也为生物发酵产业在济南发展营造了得天独厚的发展环境。真诚希望社会各界支持济南生物发酵产业发展,为中国生物发酵产业发展贡献济南力量。 济南市商务局王志刚副局长 中国工程院院士陈坚在《生物制造:前沿技术实现新质生产力》报告中指出,生物经济是第四次产业浪潮,生物制造是实现生物经济的主要途径,而发酵产业是生物制造的主要部分。目前,生物制造存在升级次数少、提高速度慢、产业链短、产品覆盖面少等问题,需要加快产品的更新迭代速度。合成生物学(技术)是生物制造的核心,其应用研究从高附加值向大宗产品(淀粉、蛋白等食品)转变。高通量筛选技术、高效微生物细胞工厂设计和构建可实现微生物菌株的快速迭代升级。而精密发酵和智能化制造,譬如连续反应的微纳反应器则可实现制造过程的快速迭代升级。他总结说,我们要以前沿技术实现发酵产业过程与产品的快速迭代升级,贯彻落实“时不我待推进科技自立自强 只争朝夕突破“卡脖子”,解决技术“卡点”、产业“痛点”、体制机制“难点”,畅通创新链、产业链、供应链的利益链条,实现重要产业“自主可控”、重点技术“并跑领跑” 、重大产品“特色优势”。 中国工程院院士陈坚 中国工程院院士吴清平在《重要健康微生物菌种定向选育及功能产品研发》报告中指出,微生物资源的研发和利用是推动生命科学领域发展的重要组成部分,是支撑生物经济发展和应对全球挑战的重要基础。随着技术的不断发展,微生物健康产品已得到广泛开发,在肠道菌群、平衡营养等方面发挥重要的作用。鉴于微生物产业在农产品安全、食品安全、环境保护、经济发展等方面的重要性,各国纷纷制定战略措施,推动微生物领域的研发。自2004年以来,《Nature》、《Science》等顶级学术刊物报道了大量有关肠道微生物与疾病和健康关系的研究论文,包括肥胖、糖尿病、癌症、自闭症等在内的超过50种疾病,都与肠道微生物失调有关系,其因果关系也在逐步阐明中。因此,人体微生物,特别是肠道微生物在未来医疗方面的应用广阔。他还对基于组学技术的新功能安全性评价方法、健康功能微生物科学大数据库构建功能基因勘探和新制剂合成创制进行了详细阐述。 中国工程院院士吴清平 中国工程院院士黄和在《功能性优质生物制造的现状与发展趋势》报告中指出,油脂健康是人类膳食中的“关键”。油脂是重要的能量来源,具有维护机体的心血管健康、缓解炎症、调节胆固醇作用。然而,不健康的油脂摄入是疾病发生和死亡的最主要危险因素。作为油脂消耗大国,我国是不健康饮食“重灾区”。然而,功能性油脂植物来源面临优良品种选育周期长、分子调控机制不清晰、基因编辑技术不成熟等挑战,未来需要借助机械化生产缩短优良品种选育周期,同时借助多组学分析技术进行大数据关联分析以及开发基因组编辑技术。本团队进行了长达 20年的DHA生物制造研究,从源头菌种挖掘、基因组解析、精准调控到工业化集成,实现了DHA的智能产业化。 中国工程院院士黄和中国工程院院士金征宇的《碳水化合物与人体健康》报告,对碳水化合物的生理功能、功能性碳水化合物(膳食纤维、淀粉基膳食纤维、抗性淀粉、抗性糊精等)、甜味剂的感知与健康、碳水化合物与健康饮食的关系进行了详细的分析和阐述。他指出,碳水化合物是人类最重要的供能物质,碳水化合物摄入与人体健康密切相关,碳水饮食是国民营养关注的焦点,碳水化合物饮食引发的相关健康问题已成为社会关注焦点。碳水化合物结构与功能调控一直是国际研究热点,近年来碳水化合物在结构解析、人工合成、营养调控等领域不断取得新突破。中国工程院院士金征宇大会同期还召开了2024合成生物学与生物制造论坛、2024年生物发酵美妆原料创新与应用论坛、生物发酵产业高质量知识产权保护论坛。
  • 【雅马拓科学】食品安全和质量检测实验室解决方案,一步到位!
    概要随着消费者对食品安全和健康意识的逐年提高,用于食品检测和成分测量的设备可靠性变得更加重要。 雅马拓科学提供一系列相关仪器设备,从工厂的综合生产到检测、维护和保养,都可以长期放心使用。本次将为您介绍营养成分分析、农药残留检测和微生物检测等每种检测方法所需的检测设备,希望可以帮助到您。注:您可前往资料中心下载完整版电子资料。营养成分标签《中华人民共和国食品安全法》《中华人民共和国进出口食品安全管理办法》明确规定,“预包装食品的包装上应当有标签。”营养标签是预包装食品标签中最重要的组成部分,主要包括表格形式的“营养成分表”,以及在此基础上用来解释营养成分水平高低的“营养声称”、解释健康作用的“营养成分功能声称”。 强制标示 蛋白质、脂肪、碳水化合物、钠 可选择标示 饱和脂肪酸、膳食纤维等注:目前,国家卫健委正在组织修订GB28050,拟增加“糖”和“饱和脂肪”的强制性标示,增加“预包装食品应在营养成分表下方标示ʻ 儿童青少年应避免过量摄入盐油糖’”提示性用语,修改部分营养成分作用声称标准用语,进一步引导消费者科学合理选购食品。 农药残留我国农药在粮食、蔬菜、水果、茶叶上的用量居高不下,而这些物质的不合理使用必将导致农产品中的农药残留超标,影响消费者食用安全,严重时会造成消费者致病、发育不正常,甚至直接导致中毒死亡。农药残留超标也会影响农产品的贸易。*1 微生物检测食品微生物检验方法是食品质量管理必不可少的重要组成部分,它是贯彻“预防为主”的方针,可以有效地防止或者减少食物人畜共患病的发生,保障人民的身体健康。食品微生物检验是衡量食品卫生质量的重要指标之一,也是判定被检食品是否食用的科学依据之一。*2 *1和*2引用自百度百科[农药残留]、[微生物检测]词条,侵删联系。 安装示例下图为一个用户实验室安装示例,为分析营养成分和进行微生物测试使用。左边是营养成分分析实验室,主要测量脂肪、碳水化合物和蛋白质;右边是微生物实验室,配备了用于测试工作的立式压力蒸汽灭菌器和用于培养工作的培养箱。 蛋白质 分析方法:凯氏定氮法、使用自动分析仪器分析通风柜配备湿式废气处理装置; 带有耐热氯乙烯树脂内壁材料的通风柜也可用于处理高氯酸。 脂类 分析方法:醚萃取法、酸水解法、罗兹-哥特里法高温恒温水浴使用条件:温度控制范围50~80℃可以根据容器大小有效地使用,也可以去掉顶盖的情况下使用。型号使用温度范围温度分布精度槽内容量BS200室温+5~沸腾温度(水)±3℃(at 37℃)约4.7LBS401室温+5~沸腾温度(水)±3℃(at 37℃)约9LBS601室温+5~沸腾温度(水)±3℃(at 37℃)约12LBS660室温+5~沸腾温度(水)±3℃(at 37℃)约16L 定温干燥箱使用条件:温度调节范围80~120℃自然对流的加热方式,对于处理容易被风吹走的样品可有效保护。型号使用温度范围温度分布精度内容积方式DVS412C室温+5~260℃±5℃(at 260℃)99L自然对流DVS612C室温+5~260℃±5℃(at 260℃)162L自然对流 旋转蒸发仪使用条件:浴槽温度控制范围30~80℃真空控制器三种运行模式,自动计算和控制操作,以防止未知的样品暴沸。产品名称型号旋转蒸发仪 真空控制器一体化REV212M-B冷却水循环装置CF312L-B真空泵(变频控制)N820G 通过凯氏定氮法进行分析时,在有机成分分解过程中会产生亚硫酸气体,需要搭载排气系统的通风柜,以保障实验人员的安全,此外还要配置废气处理装置,来去除有毒气体。同样的,在使用索氏提取器过程中,使用二乙醚或石油醚来提取食物中的脂类,也需要搭载排气系统的通风柜,以保障实验人员的安全。雅马拓科学出品的实验室仪器及实验室家具,做工精良,配色统一,为您提供整体协调的实验室风景。 碳水化合物(灰分)分析方法:直接灰化法、硫酸灰化法及醋酸镁灰化法 马弗炉使用条件:温度设定550~600±10℃加热器内置的高功能马弗炉,可以有效减少样品污染程度。 型号使用温度范围温度调节精度内容积FP111C100~1150℃±1.5℃(at 1150℃)1.5LFP311C100~1150℃±1.5℃(at 1150℃)7.5L 碳水化合物(水分)分析方法:常压干燥法、减压干燥法 送风定温恒温箱使用条件:采用强制送风循环方式,温度控制范围60~150℃强制送风循环的方式,以确保快速和均匀的干燥时间。型号使用温度范围温度分布精度内容积方式DKM310C室温+10~260℃±2.5℃(at 210℃)27L强制送风循环DKM410C室温+10~260℃±2.5℃(at 210℃)90L强制送风循环DKM610C室温+10~260℃±2.5℃(at 210℃)150L强制送风循环 真空干燥箱减压使氧化和热解保持在低水平。 可配套使用冷却阱和真空泵,用于高水含量处理需求。型号使用温度范围使用真空度范围内容积DP23C室温40~240℃101~0.1kPa10LDP33C室温40~240℃101~0.1kPa27L 常压干燥法适用于许多食品,因其操作及使用设备都相对简单,而且有相当高的精确度,而减压干燥法适用于稠浸膏及热敏性或高温下易氧化物料的干燥。*3雅马拓科学有丰富的干燥箱产品系列供您选择。 *3 引用自百度百科[常压干燥法]、[减压干燥法]词条,侵删联系。 钠 分析方法:原子吸收光谱法马弗炉使用条件:温度设定500±10℃用加热器直接加热确保快速升温时间和快速处理样品。型号使用温度范围温度调节精度内容积FO111C100~1150℃±2℃(at 1150℃)1.5LFO311C100~1150℃±2℃(at 1150℃)7.5L 加热板可直接将样品容器放在上面,进行处理和实验。型号使用温度范围加热板尺寸HK20050~250℃W338×D238×H25 mmHK30050~250℃W388×D288×H25 mm 糖类、饱和脂肪酸、胆固醇 分析方法:气相色谱法 旋转蒸发仪真空控制器三种运行模式,自动计算和控制操作,以防止未知的样品暴沸。产品名称型号旋转蒸发仪 真空控制器一体化REV212M-B冷却水循环装置CF312L-B真空泵(变频控制)N820G 食物纤维 分析方法:酶-重量法冷冻干燥机操作性高的标准冷冻干燥机。型号使用温度范围内容积电源DC401-45℃4LAC100V 6ADC801-85℃4LAC100V 7A 真空干燥箱减压使氧化和热解保持在低水平。 可配套使用冷却阱和真空泵,用于高水含量处理需求。型号使用温度范围使用真空度范围内容积DP23C室温40~240℃101~0.1kPa10LDP33C室温40~240℃101~0.1kPa27L 定温干燥箱自然对流的加热方式,对于处理容易被风吹走的样品可有效保护。型号使用温度范围温度分布精度内容积方式DVS412C室温+5~260℃±5℃(at 260℃)99L自然对流DVS612C室温+5~260℃±5℃(at 260℃)162L自然对流 农药残留分析 分析方法:气相色谱-质谱法分析振荡器水平垂直回旋两面垂直振荡,可广泛应用于大容量的样品抽出、培养、混合、搅拌等。型号振荡方式旋转数振幅SA300水平垂直往复振荡20~300rpm40mmSA400垂直往复两面振荡20~300rpm40mm 旋转蒸发仪这是一个标准系统配置案例(旋转蒸发仪 真空控制器一体化机型+变频真空泵+冷却水循环装置)基础上,搭配有机溶剂回收装置。通过2次回收,在提高回收效率的同时,可以保护环境和控制气味。产品名称型号旋转蒸发仪 真空控制器一体化REV212M-B标准支架(标配废液收集瓶)ORT10排气冷阱套装ORT12冷却水循环装置CF312L-B循环保温软管(软质)OCF12软管OA094真空泵(变频控制)N820G真空控制单元GOVR26真空管- 真空控制器一体化,启动/停止的操作均在本体上进行,操作方便快捷。 在通风柜中安装旋转蒸发仪和有机溶剂回收装置的安装示例。由于其紧凑设计,当REV独立使用时,可以安装多个收纳于1台通风柜内使用,在确保操作性的同时,也节省了空间。 微生物检测(细菌检测)分析方法:试剂制备、培养 立式压力蒸汽灭菌器用于培养基和培养容器的消毒; 多种型号提篮(选购品)对应不同待消毒样品。型号使用温度范围最高使用压力内容积SN210C45~135℃0.26MPa20LSN310C45~135℃0.26MPa32LSN510C45~135℃0.26MPa47L 高温恒温培养箱(IC):非常适合在37°C左右进行培养。 低温恒温培养箱(IN):配备有制冷装置,可编程,方便假期进行培养。型号使用温度范围温度均匀度内容积方式IC412C室温+5~80℃±1.5℃(at 37℃)97L气流式自然对流IC612C室温+5~80℃±1.5℃(at 37℃)159L气流式自然对流IN613C-10~60℃≤2℃(at 37℃)143L强制送风循环IN813C-10~60℃≤2℃(at 37℃)286L强制送风循环 干热灭菌器带程序功能、设定简易的自然对流式干热灭菌器。型号使用温度范围内容积方式SI411C室温+5~260℃77L自然对流SI611C室温+5~260℃159L自然对流 通用仪器 纯水制造装置生产纯水,可用于分析的预处理和清洗容器; WGH201是超纯水级别的高度蒸馏水。型号采水方式蒸馏能力WG205离子→蒸馏1.5L/hWG252离子→蒸馏→过滤1.5L/hWGH201离子→蒸馏→高纯度1.5L/h 器具干燥箱采用大幅观察窗,方便观察; 拥有自诊断回路、停电补偿功能、偏差修正功能、独立过升防止器等安全功能。型号使用温度范围内容积方式DG410C室温+5~70℃92L自然对流DG810C室温+5~70℃445L自然对流 实验室清洗机根据清洗器具的不同,配备多种清洗架(选购品),实现自动清洗,减少工时,缩减劳动成本,更有效地利用时间。型号清洗方式内槽尺寸AWD510上中下段旋转喷嘴喷射
  • 线上讲座:《从糖精到甜菊:甜味剂分析的进展》
    线上讲座:《从糖精到甜菊:甜味剂分析的进展》 2011年9月27日,星期二,美国东部时间上午8时格林威治时间15:00 网络讲堂概述: 天然或人造甜味剂,是一种用于复制糖的味道的化合物,通常包含一部分热量。特别是那些来自碳水化合物或含碳水化合物亚基的甜味剂,由于缺乏高效液相色谱紫外检测的声色团,因而灵敏度很低。此外,天然的甜味剂,如甜叶菊,包含许多结构类似的化合物,这使得分析起来很困难。而使用一根具有三种分离机理的色谱柱配合气溶胶检测器,就可以轻松的解决这个问题。甜菊苷,罗汉果皂苷V,从罗韩郭水果派生的甜味剂,都可以检测。 网络讲堂适用对象: 1. 新型甜味剂研发人员。 2. 开发新的更灵敏的检测技术,用于人工和天然甜味剂的分析人员。 3. 了解如何使用一根色谱柱分析天然甜味剂。 4. 了解提高灵敏度对于监测纯化甜菊糖甜味剂净化副产品的重要性。 5. 找到10分钟以内分析苷的方法。 Register Today! 报告人:Deepali Mohindra 赛默飞世尔科技戴安产品全球市场开发经理。 Deepali自2007年以来,一直负责戴安产品在食品,饮料和保健品行业全球业务发展。同时,她也是分析化学协会(AOAC)的成员。 Deepali具有生物科学学士学位和工商管理硕士学位。 报告人:Christopher Crafts Christopher Crafts目前赛默飞世尔科技戴安产品和应用工程师,研究重点是带电气溶胶检测技术和最新的高效液相色谱技术的方法开发。具有Merrimack College化学系的科学学士学位。毕业后的几年时间里,它主要从事监控同位素标记的化学品。他曾合作撰写论文,同时撰写APIs和反离子一书的其中一章。 报告人:Deanna Hurum Deanna Hurum是赛默飞世尔科技的一名化学家,在原戴安应用实验室从事离子色谱法和高效液相色谱法的分析工作经验超过3年。Deanna Hurum是20年的美国化学学会成员,具有罗切斯特大学获得博士学位,在来到赛默飞世尔科技之前从事环境和制药相关工作十几年。 Register Today! 赛默飞世尔科技戴安产品市场部
  • 默克密理博助力2013AnalytiX
    默克密理博助力2013AnalytiX &mdash 默克密里博Hilic及离子色谱研发经理江文博士将出席2013AnalytiX 2013年3月21日至23日,由中国医药生物技术协会等主办的2013中国苏州生物医药(蛋白质、多肽和分析)海外高层次人才、项目洽谈会第二届分析大会暨展览会将在苏州市会议中心拉开帷幕。许多国内外学术及企业界知名专家学者将就分析化学和生物分析领域共同关注的研究热点及市场趋势做大会报告。 来自默克密理博的亲水作用色谱硅胶研发经理江文博士受邀为参加本次会议,并将于本月21日下午做精彩演讲,与行业专家共同探讨两性离子亲水作用色谱柱技术优势和最新进展。 尽管反相液相色谱是当今应用最广泛的色谱分离技术,它能与各种常规检测方法相结合,解决多种分析应用问题,但对于某些化合物,特别是极性和亲水性化合物却很难获得保留。长期以来,人们采用正相液相色谱,并使用不利于环保的非水溶性流动相(如正己烷)来分析这些化合物。但在这种条件下,很多极性和亲水性化合物往往很难溶解于流动相,从而限制了正相色谱的应用范围。现在,您有了另一种解决途径 --- 亲水作用色谱(HILIC) 。无论是小肽、离子,还是复杂的碳水化合物或者是各种亲水化合物的代谢产物,都可以在通过HILIC 获得良好的分离。 默克密理博始终致力于为用户提供高质量的产品,要了解默克ZIC-HILIC亲水作用色谱柱的详细信息,请您点击: http://www.merckmillipore.com/china/chemicals/zic-hilic/chinese/c_cOOb.s1Oa7EAAAEqPDwk44BT?back=true 要了解此次会议的详细信息,请您点击: http://www.bitlifesciences.com/analytix2013/cn/default.asp 关于默克 默克集团是一家全球化的医药和化学企业,它的历史可以追溯到1668年。目前在全球67个国家的40,000余名员工,共同打造默克集团的未来。 关于默克密理博 默克密理博是德国默克集团旗下的四大业务分支之一,拥有超过40,000种系列产品,是全球生命科学领域最主要的供应商之一。默克密理博由三大业务部组成 -实验室解决方案,过程工艺解决方案和生命科学,每个部门都有各自的核心产品和服务领域。 通过半个多世纪的技术沉淀及不断创新,默克密理博已成为制药工业解决方案顶级供应商之一,可提供从产品到技术,从研发到生产,从工艺到法规全方位服务,药品安全提供支持与保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制