当前位置: 仪器信息网 > 行业主题 > >

水分胁迫测量

仪器信息网水分胁迫测量专题为您整合水分胁迫测量相关的最新文章,在水分胁迫测量专题,您不仅可以免费浏览水分胁迫测量的资讯, 同时您还可以浏览水分胁迫测量的相关资料、解决方案,参与社区水分胁迫测量话题讨论。

水分胁迫测量相关的仪器

  • Agro作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用 Agro成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。根据水分胁迫值,可以进行近似的作物产品制图。显然,受干旱影响越大的作物产量就越低。Agro成像仪配套的Agro分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。您可以通过Agro成像仪的航测作业,快速获取作物水分胁迫数据;或者使用收集的数据创建概览地图,通过比较不同年份的水分胁迫状况及产量,进而根据当前水分胁迫状况进行作物估产。根据Agro成像仪的数据,可以有效地规划补救措施,特别是评估与植物水分和干旱管理有关的措施。使用Agro成像仪,可以直接发现水分管理对作物生长的重要影响。Agro在水资源管理方面比NDVI更有价值Agro和NDVI是两个非常不同的指数,它们都基于一个事实,即有关作物状态的信息。到目前为止,NDVI可能是使用最广泛的指数,不过它只基于光谱中不同波段的作物颜色(包括近红外);而Agro提供了关于作物如何受到干旱影响的额外信息,因此,具有专利技术的 Agro成像数据比NDVI技术更能提供作物胁迫和水分管理方面的重要信息。配套的Agro Analyzer是一款用于处理Agro图像的软件。它允许设置正确计算Agro所需的参数,该软件包括预定义的常见作物,其最大优势是能够同时处理数百幅图像(海量数据处理)。丰富的接口Agro成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。具有Wi-Fi低延迟实时视频流和命令链路。还具有以下接口:S.BusCAN总线(兼容DJI M600和A3控制器)以太网(RJ 45)MavLink外部GPS连接外部触发
    留言咨询
  • CWSI作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用CWSI成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。根据水分胁迫值,可以进行近似的作物产品制图。显然,受干旱影响越大的作物产量就越低。CWSI成像仪配套的CWSI分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。您可以通过CWSI成像仪的航测作业,快速获取作物水分胁迫数据;或者使用收集的数据创建概览地图,通过比较不同年份的水分胁迫状况及产量,进而根据当前水分胁迫状况进行作物估产。根据CWSI成像仪的数据,可以有效地规划补救措施,特别是评估与植物水分和干旱管理有关的措施。使用CWSI成像仪,可以直接发现水分管理对作物生长的重要影响。上图:使用案例,灌溉优化--优化传感器位置马铃薯田基于土壤传感器的数据优化灌溉作业。然而,正如右侧CWSI成像仪的图像所示,灌溉控制不是最佳的,一些区域灌溉饱和,而其他区域灌溉不足,因此需要根据获取的CWSI图像,更好地重新定位土壤传感器。 CWSI在水资源管理方面比NDVI更有价值CWSI和NDVI是两个非常不同的指数,它们都基于一个事实,即有关作物状态的信息。到目前为止,NDVI可能是使用最广泛的指数,不过它只基于光谱中不同波段的作物颜色(包括近红外);而CWSI提供了关于作物如何受到干旱影响的额外信息,因此,具有专利技术的CWSI成像数据比NDVI技术更能提供作物胁迫和水分管理方面的重要信息。 配套的CWSI Analyzer是一款用于处理CWSI图像的软件。它允许设置正确计算CWSI所需的参数,该软件包括预定义的常见作物,其最大优势是能够同时处理数百幅图像(海量数据处理)。CWSI成像仪的主要用途及优点:?状态监控,监控水分胁迫:使用彩色CWSI地图表述作物的水分问题; ?管理灌溉管理:灌溉系统优化,优化土壤传感器的位置和分布;?植物表型:CWS成像仪可获取不同的植物种类对水分状况的不同反应。 丰富的接口CWSI成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。具有Wi-Fi低延迟实时视频流和命令链路。还具有以下接口:S.BusCAN总线(兼容DJI M600和A3控制器)以太网(RJ 45)MavLink外部GPS连接外部触发 技术指标 CWSI作物水分胁迫指数成像仪CWSI探测器640 x 512 像素FPA有效尺寸1.088 x 0.8705 cm灵敏度0.03 °C (30 mK)光谱范围LWIR波段CWSI图像4种彩色地图,用于CWSI和水资源管理评估镜头FOV45° 校准具有不同环境温度的校准数字变焦1 ~ 14 x可持续变焦可见光相机空间分辨率1920 x 1080像素(FHD)自动白平衡、宽动态范围、背光补偿、曝光和Gamma曲线控制视角 / 焦距6.9°~ 58.2°/ 焦距33.0 mm ~ 3.3 mm光学变焦10 x光学变焦,具有防抖功能对焦方式自动对焦且变焦同步降噪特殊的3D降噪功能内存与数据存储存储方式内置高速SSD 128GB固态硬盘USB可外接U盘、SD卡插槽数据记录方式CWSI JPEG图像和数码相机全高清JPEG图像数码相机视频高清录制、全帧CWSI视频录制(原始数据)GPS信息外接GPS时可将GPS数据直接记录在图像或者视频内文件存储与传输飞行图像与视频数据分类存储,可通过USB导出数据测量功能设备功能在线CWSI评估、现场CWSI评估、区域CWSI估(最大、最小值)同时捕捉CWSI图像和可见光图像 显示模式全屏模式、画中画、全双屏、双屏图像规格1280 x 720像素(720p),16 : 9物理指标输入电压9 ~ 36 V DC功耗12 W尺寸83 mm x 85 mm x 68 mm重量 430 g安装孔位2 x 1/4” - 20 UNC 操作温度-10°C ~ +55°C储存温度-30°C ~ +60°C产地:欧洲
    留言咨询
  • 作物水分胁迫指数(CWSI)是1981年发展起来的一项标准化指标,用以量化胁迫,克服其他环境参数对胁迫与植物温度关系的影响,该指数对植物生理生态研究意义非凡。WIRIS Agro相机是由Workswell公司长期与中欧领先的生命科学研究机构:作物研究所和捷克布拉格生命科学大学合作开发的一款专用于精准农业领域测量大面积水胁迫的专利产品。该相机由LWIR长波红外传感器(640×512)和10倍光学变焦RGB镜头(1920×1080)组成。该相机可直接测量得到作物水分胁迫指数图及高清RGB图,通过这些信息可用于确定产量分布、优化灌溉或控制水管理等补救措施,也可实时测量温度并通过软件将CWSI图像转换为可视化温度图像,为精准农业研究提供非常重要的技术支撑,革新了农业和生命科学研究手段。在旱季,人们通常感兴趣的是干旱对作物的实际影响。该影响不仅取决于气候条件,而且还取决于地下水干旱、植物根系大小等。用CWSI相机测量植物的水分胁迫可帮助我们快速确定干旱对作物的真实影响。CWSI Analyzer软件与CWSI相机密切配合,能在很短的时间内从海量图像生成潜在的产量图。使用无人机平台搭载CWSI相机,即可获得飞行过程中作物水分胁迫的实际值,或使用收集到的数据创建概览地图。通过对比不同年份不同水分胁迫下的产量,可绘制当前水分胁迫下潜在产量图。 一、主要应用l 水状况监测-监测水分胁迫:作物在生长季节的缺水状况。无论作物是否灌溉。特殊彩色地图“Crop”和“CropStep”可用。l 灌溉管理:灌溉系统优化既包括确定合适的土壤传感器位置,也包括结构优化。特殊彩色地图“Water”和“WaterStep”可用。l 表型研究:不同的植物品种对可用水量敏感程度。CWSI相机将帮助您确定与其他物种的植物相比,特定物种的植物处于水胁迫的频率。l 生物量覆盖指数:实时计算大田植物百分比。l 基于温度和CWSI测量的其他应用:土壤水分监测保墒、精准农业、智慧农业、森林资源管理等。二、技术参数Agro相机主要功能描述CWSI机上实时处理机上实时评估作物水分胁迫指数,最大、最小、中心点温度测量机载操作系统WIRIS OS操作系统,用于在飞行过程中进行实时数据流传输和评估——确保相机全部功能可用——易于通过S.Bus、CAN bus、MavLink、RJ-45或触发器控制生物量覆盖指数(%)RGB图中实时计算植被定量百分比Agro相机规格传感器分辨率640×512像素CWSI实时评估Agro相机技术基于作物水分胁迫指数(归一化值为0到1),提供了关于大面积作物胁迫和作物水分管理的信息。这些信息可用于确定产量图、管理灌溉或执行与水管理有关的补救措施。FPA传感器尺寸1.088×0.8705cm传感器类型LWIR长波红外传感器CWSI评估范围0-100%(100%表示严重受迫)温度敏感度0.03℃(30mK)视场角45°(13mm)CWSI彩色地图提供4种彩色地图,用于CWSI和水管理评估CWSI范围设置自动、手动CWSI数字变焦1-14倍连续Coreplayer软件包含3D制图软件兼容性Agisoft和Pix4D数码可见光相机分辨率1920×1080像素(全高清画质),1/3″传感器,自动白平衡,宽动态范围,背光补偿,曝光和Gamma控制,3D降噪功能光学变焦10倍光学减震变焦视场角超变焦6.9°-超宽58.2°,焦距33.0mm-3.3mm生物量覆盖指数调用阈值函数实时计算指数聚焦自动对焦与直接变焦同步存储和数据记录存储内置128GB高速SSD,用于存储影像和视频记录外部卡槽为微型SD卡和U盘,用于存储影像影像和视频格式CWSI JPEG、TIFF和全高清画质数码JPEG影像数码相机h.264编码高清视频全帧CWSI视频(原始数据记录)GPS地理标签(影像和视频)MavLink或外部GPS或兼容DJI A3控制器(通过CAN bus连接)接口&实时远程控制10-pin数字端口S.BUS、CAN bus、MavLink、外部GPS连接、外部触发以太网(RJ-45)端口视频流媒体和相机控制(有特殊需求时可选)微型USB2.0端口大容量存储相机控制和视频流(有特殊需求时可选)USB 2.0端口连接键盘用于室内相机控制远程控制系统CWSI OS确保飞行过程中实时控制相机所有功能远程控制选项S.BUS协议CAN bus用于DJI M600实时控制和GPS地理标记RJ-45用于无线上行链路安装(视频流和相机控制)镜头保护滤波片滤光片在飞行过程中保护镜头不受外部损伤相机功能测量功能:——CWSI在线评估,包含4种不同彩图——CWSI单点评估(中心),基于温度信息——生物量指数实时百分比评估——实时温度测量(最大、最小、中心点)定时拍摄:——同步拍摄CWSI图像,CWSI视频和可见光图像相机可视化模式画中画模式、全屏RGB分割模式、双屏显示微型HDMI视频输出1280×720像素(720p),纵横比16:9,微型HDMI视频输出软件&SDK桌面软件先进的CWSI数据评估软件,可将CWSI图像转换为温度图像电源,重量&尺寸输入电压9-36V DC, 同轴2×6.4mm,外壳-GND,平均功耗12W重量<430g尺寸(长×宽×高)83mm×85mm×68mm安装2×1/4-20UNC螺孔(1个位于底部,1个位于顶部)外壳材质经久耐用的铝制机身,长期测量稳定可靠环境参数工作温度-10℃至﹢50℃存储温度-30℃至﹢60℃三、应用案例(1)作物干旱的实际影响研究在旱季,人们通常感兴趣的是干旱对作物的实际影响。这些影响不仅取决于所谓的气候干旱条件,而且还取决于地下水干旱、植物根系的大小等。利用WIRIS Agro测量植物的水分胁迫将有助于用户确定干旱对作物的实际影响,如下图所示,田间作物CWSI值普遍在0.5一下,说明整体干旱程度较低。 (2)生物量覆盖指数计算BCI(生物量覆盖指数)与RGB场景中植被数量的评价有关。基于RGB相机的可见光数据,对包含绿色植被的地面进行评估,并将这些区域与RGB图像中被白色掩盖的其他(非植被)区域的百分比进行比较。BCI可由用户通过简单的阈值调整,植物百分比实时测量显示,如下图所示甘蓝占比为65%。 易科泰公司凭借多年在农业、林业、生态环境领域仪器技术研发集成及推广经验,结合Agro成像仪的优势特点,率先将该相机引入EcoDrone专业无人机遥感平台和陆基水分胁迫测量监测平台,通过选配多光谱、高光谱及叶绿素荧光成像技术,并配合土壤水分、空气温湿度、茎流等监测网络,组成完整的陆空双基作物数字化系统,为大田作物及森林植被水分胁迫监测、作物产量预估、表型研究及指导灌溉方面,提供方便、快速、一体化的解决方案。
    留言咨询
  • Agro作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用 Agro成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。
    留言咨询
  • OS-30P+ 快速植物胁迫荧光测量仪 产品介绍:OS-30P+ 快速植物胁迫荧光测量仪 广泛应用于植物生理、生态、农学、园艺和生物技术等学科的叶绿素荧光相关研究,特别是对植物胁迫的相关研究中OS-30p+采用的是先进的调制-饱和-脉冲技术测量时,先将叶片暗处理一段时间,然后再在饱和光强下暴露短暂的时间,测量这段时间内荧光强度随时间的变化的荧光动力学曲线曲线的形状和重要的瞬时值可以用于指示环境胁迫对光合器官的损伤产品特点:“JIP" Test – OJIP:通过OS30p+可直接读取以下数据:O、J、I、P、t100μs、t300μs (或K)、tFm (或到达Fm的时间)、A (曲线上方的 面积)、MO (或 RC/ABS)、PIABS (或performance Index)、FO/FM、FV/FM及FV/FO。更重要的是,OS-30p+直接 测量Fo,而不是通过计算获得。同时 ,它还可以直接显示设置,以及彩色的使用对数坐标轴的测量曲线,并直接读 取使用很多的测量参数。设备使用的红色光化光的光 强可以调节FV/FM、FV/Fo:相对于OS-30p,OS-30p+具有自动的程序,使用8个点的均值、确保仅25ms内达到很大值的叶绿素荧光被测量,因此 ,对于陆地植物 或海藻来说,饱和脉冲的持续时间问题将不存在,确保将误差控制在很小的范围内操作简单、测量快速USB数据输出彩色显示屏坚固、耐用、适于野外使用的设计手持式操作、提供野外便携箱技术参数:FV/FM、FV/FO:饱和强度 600- 6000μmols ,设定从10%到100%饱和光源红色点阵660 nm的LEDs调制光源红色0.2到1.0 umols检测方法调制脉冲检测器与过滤器 具有700-750 nm波段过滤器的Pin光电二很管测试时间0.1s到1.5 s,默认的饱和脉冲持续时间是1s,;但是仪器软件采用取每25ms测量值的平均值的方式计算FO和FM,可作为陆生和海藻植物理想的测量工具。调制光调节10%到100%手动调节测量和作图参数 FO、FM、FV/FM、FV/FOJIP测量:光化光强度6000 umols, 4500umol, 3500 umols, 3000umols, 2500 umols,1000 umols, 875 umols, 525 umols, 300 umols, 200 umols, 100 umols, & 50 umols. 一个650nm点阵LEDs用于光化光照明检测方法 具有700-750nm波段过滤的Pin光电二很管;使用红色脉冲调制光源,取样时间在10us 到1s测量时间JIP测量3 - 300sJIP测量参数 O, t100us, t300us (or K), t2ms (or J), t30ms (or I), P, tFM, A (area above the curve), MO(or RC/ABS), PI/ABS (or performance index) FO, FM, FV/FM, FV/FO, Fo为实测值。S, M, T也是实测值 但他们只记录于数据文件中,并不再测量屏上显示。每个数据文件可存储20个曲线数据。通用参数:显示彩色图形显示存储 JIP测量中,每个数据文件可存储160000次测量及20个曲线;使用多个数据文件,可存储上百个曲线。数字输出 USB端口电池 工作时间8小时的镍氢充电电池尺寸 18cm×7 cm× 6cm.重量 2 lbs.便携箱 包含于标准配置
    留言咨询
  • AP4植物污染胁迫监测仪名称:植物污染胁迫监测仪 型号:AP4 产地:英国用途:AP4植物污染胁迫监测仪用来定量测量各种因素对气孔行为的影响,可方便、重复、准确地计算出气孔阻力。植物叶片气孔是植物体水分散失和光合作用所需CO2进入的通道。气孔特性是植物生理生态状态的一个十分重要的指标,它对于研究植物物种的特性和环境因子,如土壤水分状况、太阳辐射强度、污染物对植物的影响具有重要价值。AP4植物污染胁迫监测仪在数据采集的精度、方便性和仪器的整体设计、价格都在原有气孔计的基础上有很大突破。 测量原理:根据循环扩散原理,由植物叶片表面湿度的变化来进行测量计算。特点:AP4植物污染胁迫监测仪整机设计十分合理,全机由三部分组成:主机、传感器和附件(充电器、校准板等),仪器仅重3kg;在野外和实验室条件下,随时能进行标定,保证测定数据的高精度、高分辨率;自动快速的测量回路,温度补偿测定结果,测定时间小于15秒;使用的方便性:AP4植物污染胁迫监测仪的运行由内置微处理器控制,有十分便捷的操作程序。液晶屏上菜单式操作过程使用户极易完成仪器的标定,数据的获取,浏览和存储过程,系统帮助按钮能为用户适时提供操作帮助;便捷安全的数据处理系统:存储单元能存储1500个读数,可通过RS232连线传输到计算机、打印机或其它小型终端设备。其数据格式适宜于直接输入一些通用数据处理软件,如Excel;数据采集的多样化:该机能够同时采集植物叶片气孔导度、气孔阻力、光照强度、大气相对湿度、温度等多种指标; 应用范围:植物蒸腾作用特点的研究;环境条件(光、温、水)对植物蒸腾作用的影响;逆境条件下,应用植物气孔导度,评价城市大气污染状况;全球变化,特别是在温室气体浓度升高情况下植物生理生态反应;目的植物筛选,应用植物气孔导度筛选抗旱植物、抗污染植物等。 技术规格: 气孔导度(mmol/m2/s)测量范围:5.0~1200 mmol/m2/s;分辨率:0.01~0.1mm/s;精度:±10%(5~800 mmol/m2 /s),±20%(800~1200 mmol/m2 /s)气孔导度(mm/s)测量范围:0.25~ 30.0 mm/s;分辨率:0.01~0.1mm/s;精度:±10%(0.25 ~20.0 mm/s),±20%(20.0 ~30.0 mm/s)气孔阻力测量范围:0.2 ~ 40 s/cm;分辨率:0.01~0.1;精度:±0.2 s cm-1(0.2~0. 5 s/cm),±10%(0. 5~40 s/cm)相对湿度测量范围:0~100%;分辨率:0.1;精度:±4%样品室温度测量范围:-5~+55℃;分辨率:0.1;精度:±0.7℃(0~+50℃)样品室和叶子温度差测量范围:-5~+5℃;分辨率:0.1;精度:±0.2℃(0~+50℃)光量子通量测量范围:0~2500 μmol/m2 /s;分辨率:10;精度:±15%测量单位气孔导度:mmol/m2 /s、mm/s、cm/s;气孔阻力:s/cm、s/m、m2 s/mol传感器样品室槽状:2.5×17.5毫米;圆形:直径6毫米相对湿度传感器Vaisala 16663HM温度传感器高精度100K热电偶光传感器未滤光GaAsP光电二极管电缆长度1.2米尺寸110×30×27毫米重量130克(包含电缆)数据处理存储容量约1500个读数数据接口RS232接口,波特率9600软件用于windows操作系统,记录的数据可下载为逗号分隔的ASCⅡ数据文件(CSV)控制单元显示8行×40个字符LCD按键13个功能键,标准键盘尺寸300×200×140毫米重量3公斤供电电池内置电池,可连续工作20个小时充电器12~15V DC,0.5A,110、220或240AC电源(订购时指定)充电时间14个小时基本组成主机含有气路系统及分析计算系统传感头传感头包括两个叶室,一个槽状,另一个圆形。可针对不同形状的叶片来选择适当的叶室,传感头中含有微型电热调节器、RH传感器和PAR传感器校正盘一个特别铸造的有六组有精确直径的小孔的聚丙烯塑料盘,校正盘用潮湿的滤纸覆盖,提供了在已知速率下以扩散方式通过小孔的水蒸气源 产地:英国点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • OS30p+快速植物胁迫测量仪一、概述OS30p+是一款经济、轻便、精确、可靠的调制式叶绿素荧光测量系统。二、用途广泛应用于植物生理、生态、农学、园艺和生物技术等学科的叶绿素荧光相关研究,特别适用于植物胁迫的相关研究。三、原理OS30p+采用的是先进的调制-饱和-脉冲技术。测量时,先将叶片暗处理一段时间,然后再在饱和光强下暴露短暂的时间,测量这段时间内荧光强度随时间变化的荧光动力学曲线。曲线的形状和重要的瞬时值可以用于指示环境胁迫对光合器官的损伤。四、特点 “JIP” Test – OJIP:通过OS30p+可直接读取以下数据:O、J、I、P、t100μs、t300μs (或K)、tFm (或到达Fm的时间)、A (曲线上方的面积)、MO (或RC/ABS)、PIABS (或performance Index)、FO/FM、FV/FM及FV/FO。更重要的是,OS30p+直接测量Fo,而不是通过计算获得。同时,它还可以直接显示设置,以及彩色的使用对数坐标轴的测量曲线,并直接读取使用最多的测量参数。设备使用的是红色光化光,光强可以调节。 FV/FM、FV/FoOS30p+具有自动的程序,使用8个点的均值、确保仅25ms内达到最大值的叶绿素荧光被测量,因此,对于陆地植物或海藻来说,饱和脉冲的持续时间问题将不存在,确保将误差控制在最小的范围内。 Y(II)、ETR等测量模块为适应更多胁迫测量的需求,提供额外的Y(II)测量模块,可测量叶温、空气相对湿度、Y(II)、ETR、叶片对PAR吸收比例、PAR等参数。 操作简单、测量快速 USB数据输出 彩色显示屏 坚固、耐用、适于野外使用的设计 手持式操作、提供野外便携箱五、组成主机、10个暗适应叶夹、电池充电器、USB数据线、野外便携箱。六、技术参数 FV/FM、FV/FO:饱和强度:600- 6000μmols ,设定从10%到100%饱和光源:红色点阵660 nm的LEDs调制光源:红色0.2到1.0 umols检测方法:调制脉冲检测器与过滤器:具有700-750 nm波段过滤器的Pin光电二极管测试时间:0.1s到1.5 s,默认的饱和脉冲持续时间是1s,;但是仪器软件采用取每25ms测量值的平均值的方式计算Fo和Fm,可作为陆生和海藻植物理想的测量工具。调制光调节10%到100%手动调节测量和作图参数FO、FM、FV/FM、FV/FO JIP测量:光化光强度6000 umols, 4500umol, 3500 umols, 3000umols, 2500 umols,1000 umols, 875 umols, 525 umols, 300 umols, 200 umols, 100 umols, & 50 umols. 一个650nm点阵LEDs用于光化光照明检测方法具有700-750nm波段过滤的Pin光电二极管;使用红色脉冲调制光源,取样时间在10us 到1s测量时间JIP测量3 - 300sJIP测量参数O, t100us, t300us (or K), t2ms (or J), t30ms (or I), P, tFM, A (area above the curve), MO (or RC/ABS), PI/ABS (or performance index) FO, FM, FV/FM, FV/FO, Fo为实测值。S, M, T也是实测值 但他们只记录于数据文件中,并不再测量屏上显示。每个数据文件可存储32个曲线数据。 Y(II)测量:光化光强度7000 umols白色LEDs,具有PAR叶夹检测方法具有700-750nm波段过滤的Pin光电二极管;使用红色脉冲调制光源,取样时间在10us 到1s测量时间小于3sY(II)测量参数Y(II)或ΔF/Fm‘、ETR、PAR、T、FMS或FM’、Fs、α(叶片吸收)。 通用参数:显示:彩色图形显示存储JIP测量中,每个数据文件可存储160000次测量及32个曲线;使用多个数据文件,可存储上百个曲线。数字输出USB端口电池工作时间8小时的镍氢充电电池尺寸18cm×7 cm× 6cm.重量1.25lbs.便携箱包含于标准配置 36cm×28cm×15cm六、产地:美国七、参考文献Kautsky H., Hirsch A. (1931) Neuw Versuche zur Kohlensaureassimilation. Naturwissenshaften 19, 964.Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105-115Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340Vredenberg Wim (2011) Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems, BioSystems Contents lists available at journal
    留言咨询
  • PSK植物胁迫测量套件 400-860-5168转2933
    应用Y(II)或ΔF/FM’ 或 (FM’ – FS )/FM’) 是经受时间考验的光适应测量参数,比FV/FM对更多类型的植物胁迫更加敏感。已有的大量证据表明FV/FM对许多种植物胁迫和健康植物的光系统II的测量十分出色,而Y(II)或光量子产额则可测量实际光照下光适应环境和生理状况的光系统II的效率。原理 采用调制饱和脉冲原理,测量植物的叶绿素荧光,通过相关文献的研究成果,计算植物的光量子产额及相对电子传递速率,同时可测量PAR、叶温、相对湿度等环境参数。 特点叶片吸收测量:提供叶片吸收测量及随环境变化导致的叶片吸收变化。根据Eichelman (2004) 叶片吸收在健康植物的变化范围在0.7~0.9 之间。因此,为获得准确的ETR或“J”,Y(II)测量仪提供了一个可靠的测量方法,FV/FM测量单元:可额外选配FV/FM测量仪,用于暗适应测量。具有暗适应叶夹阳光下屏幕可见图形显示FV/FM曲线2GB存储空间USB通讯数据Excel查看 先进的PAR叶夹:采用底部叶夹打开装置,防止测量时误操作打开叶夹。对传感器进行余弦校正,确保叶片相对测量光的角度不变。 FM’校正:对于具有高光照强度历史的植物,完全关闭光反应中心是一个问题,Y(II)测量仪使用Loriaux &Genty 2013的方法进行FM’校正,确保误差最小。自动调制光设定:快速准确自动的调整合适的调制光强,避免人工操作的误差。先进算法避免饱和脉冲NPQ:采用25ms内8点的平均值确定FM’,消除饱和脉冲NPQ的影响。更精确的叶温测量:采用非接触式红外测量,测量精度可达±0.5℃。直接测量相对湿度:含有测量气体交换使用的固态传感器,可测量相对湿度。降低叶片遮挡的设计:倾斜的角度减少对叶片的遮挡,可以测量拟南芥等小叶。 系统组成标配:Y(II)光量子产额测量仪、充电器、USB电缆、便携箱、2个吸收测量单元、U盘(包含说明书)。可选:FV/FM测量仪及10个暗适应叶夹、三脚架。 技术指标测量参数:Y(II)或ΔF/Fm‘、ETR、PAR、T、FMS或FM’、Fs、α(叶片吸收)。监测模式:可使用电脑,长时间监测Y(II)、ETR、叶片吸收、PAR、叶温、相对湿度、及计算NPQ。相对湿度:5%~95%,±2%。可选参数:FV/FM、FV/FO,FO, FM, FV。可使用AC或USB供电,可配三脚架。技术参数:光源饱和脉冲:白色LED具有PAR时7000μmols调制光:红色LED 660nm,具有690nm短波过滤。光化光源:仅可使用外部光源检测方法:调制脉冲法检测器&过滤器:具有700~750nm带通过滤的PIN光电二极管取样速率:1~10000点/秒自动切换。测量时间:3s或长期监测存储空间:2GB输出:USB尺寸:便携箱尺寸为14”x 11”x 6”,仪器为9’’长质量:Y(II) 测量仪0.45 kgFV/FM测量仪0.36 kg.总重1.95 kg.产地美国文献Adams & Demming-Adams 2004 – Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams, From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pages 598 -599Adams WW III, Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp365-3376 Bios Scientific Publishers, OxfordBall MC., Butterworth JA., Roden JS., Christian R., Egerton JJG., (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Bukhov & Carpentier 2004 – Effects of Water Stress on the Photosynthetic Efficiency of Plants, Bukhov NG., & Robert Carpentier, From Chapter 24, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by GeorgePapaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay, Plant Physiology, Jan. 2007, Vol 143, pp108-121Burke J., Franks C.D. Burow G., Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm, Agronomy Journal 102:1118-1122 May 2010Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npqCazzaniga S, Osto L.D., Kong S-G., Wada M., Bassi R., (2013) “Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal, Volume 76, Issue 4, pages568–579, November 2013 DOI: 10.1111/tpj.12314Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.”Adams WW III, Demmig-Adams B., Vernhoeven AS., and Barker DH., (1995) Photoinhibition during winter stress – Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany, 55(403):1607-1621Journal of Experimental Botany, 52(362):1865-1872Crafts-Brandner S. J., Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1, 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74all’Osto L, Cazzaniga S, Wada M, Bassi R. (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil. Trans. R. Soc. B 369: 20130221.da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3, Pages 409 – 420 2008Eichelman H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Niinemets O., Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density, Plant Biology 6 (2004):307-318Eyodogan F., Oz M. T. (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant (2007) 29:485-493Flexas 1999 – “Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines”J. FLEXAS, J. M. ESCALONA & H. MEDRANO Plant, Cell & Environment Volume 22 Issue 1 Page 39-48, January 1999Flexas 2000 – “Steady-State and Maximum Chlorophyll Fluorescence Responses to Water Stress In Grape Vine Leaves: A New Remote Sensing System”, J. Flexas, MJ Briantais, Z Cerovic, H Medrano, I Moya, Remote Sensing Environment 73:283-270 Physiologia Plantarum, Volume 114, Number 2, February 2002 , pp. 231-240(10)Gonias E. D. Oosterhuis D.M., Bibi A.C. & Brown R.S. (2003) YIELD, GROWTH AND PHYSIOLOGY OF TRIMAX TM TREATED COTTON, Summaries of Arkansas Cotton Research 2003Hendrickson L., Furbank R., & Chow (2004) A simple alternative approach to assessing the fate of absorbed Light energy using chlorophyll fluorescence. Photosynthesis Research 82: 73-81Kramer D. M., Johnson G., Kiirats O., Edwards G. (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79: 209-218Krause G.H., Weis E. (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. 5, 139-157.Krupa Z., Oquist G., and Huner N., (1993) The effects of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiol Plant 88, 626-630 D Edwards GE and Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102Laisk A and Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Ribulose-1,5-bisphosphate carboxylase / oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110: 903–912Photosynthesis in the water-stressed C grass is mainly limited by stomata with both rapidly and slowly imposed water deficits. Flexas (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C plants Flexas J., Escalona J. M., Evain S., Gulías J., Moya I., Charles Barry Osmond C.B., and Medrano H. 4 Setaria sphacelataEarl H., Said Ennahli S., (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research 82: 177186, 2004.Laisk A., Oja V, Eichelmanna H., Luca Dall' Osto L. (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1, Biochimica et Biophysica Acta 1837 (2014) 315–325Loriaux S.D., R.A Burns,Welles J.M., McDermitt D.K. Genty B. (2006) “Determination of Maximal Chlorophyll Fluorescence Using A Multiphase Single Flash of Sub-Saturating Intensity”. Abstract # P13011 August 1996.American Society of Plant Biologists Annual Meetings, Boston MA LORIAUX S.D, AVENSON T.J., WELLES J.M., MCDERMITT D.K., ECKLES R. D., RIENSCHE B. & GENTY B. (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity Plant, Cell and Environment (2013) 36, 1755–1770 doi: 10.1111/pce.12115Maai E., Shimada S., Yamada M.,, Sugiyama T., Miyake H., and Taniguchi M., (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid Journal of Experimental Botany, Vol. 62, No. 9, pp. 3213–3221, 2011, doi:10.1093/jxb/err008 Advance Access publication 21 February, 2011Moradi F. and Ismail A. (2007) Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice Annals of Botany 99(6):1161-1173Nedbal L. Whitmarsh J. (2004) Chlorophyll Fluorescence Imaging of Leaves and Fruits From Chapter 14, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, TheNetherlands, page 389 -407Netondo G., Onyango J., and Beck E., (2004) Sorghum and Salinity I. Response of Growth,Water Relations, and Ion Accumulation to NaCl Salinity, Crop Science 44:797-805Siffel P., & Braunova Z., (1999) Release and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynthesis Research 61: 217-226Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340 Tripathy BC, Bhatia B., Mohanty P., (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim Biophys Acta 638:217-224Vredenberg W., Kay J. and Russotti R. (2013) The instrumental implementation of a routine for quantitative analysis of photochemical-induced variable chlorophyll fluorescence in leaves: Properties and prospects. ISPR conference in St. Louis, Poster e-mail: e-mail: ?iv ák M., Bresti M., Ol?ovská K., Slamka P.(2008) Performance index as a sensitive indicator of water stress in PLANT SOIL ENVIRON., , 2008 (4): 133–139Oquist G., and Huner N., (1991) Effects of Cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring serials: A fluorescence analysis. Functional Ecology 5: 91-100
    留言咨询
  • 一.设备概述:加热部件柔性外罩耐热性工装用于检测医用电热加热毯、加热设备的机械防护性能。二.适用标准:符合YY9706.235-2021《医用电气设备第235部分:医用毯、垫或床垫式加热设备基本安全和基本性能的专用要求》标准中条款第201..9.1.101章节和图201.104的要求。三.主要技术参数:1. 滑行长度:1000mm(或指定)2. 试件重量:≤30kg(或指定)3. 试验次数:1~999999次触摸屏可预设4. 冲击速度范围:1.0~2.0m/s(可调节)5. 冲击速度误差:±5﹪6. 斜坡台面尺寸:800×800mm7. 冲击面板尺寸:1000×1200mm(宽*高)8. 斜坡角度:70°9. 限位装置及冲击板表面材料为实木板10. 工作电压:AC220V/50HZ GS-YRT703医用加热垫碰撞试验斜坡(加热部件柔性外罩耐热性工装)
    留言咨询
  • 一、沥青混凝土斜坡流淌值试验仪LSY-1产品简介:沥青混凝土斜坡流淌值试验仪是检测仪器,用于测定沥青混凝土斜坡流淌值。适用于骨料A 大粒径不大于26.5mm室内成型的试件和现场钻取的芯样。符合DL/T5362-2006水工沥青混凝土试验规程。 二、沥青混凝土斜坡流淌值试验仪LSY-1组成:★钢板制成:主机1台,可放置6个试件。★万用电表1个。★位移计:精度0.01mm6个。三、沥青混凝土斜坡流淌值试验仪LSY-1试验步骤:★按规定制备沥青混合料,按规定成型马歇尔试件,每组6个,高度63.5mm±1.3mm。从现场钻取的芯样,应加工成直径为100mm±3mm,高度为63.5mm±1.3mm的试件。★试件成型后,在室温条件下放置24h,测量试件高度。★采用耐高温的高强度黏结剂将每个试件粘贴的斜坡流淌仪上,在距试件底部50mm处用高强度黏结剂粘贴8mm×3mm×1mm的铜片,在铜片的一根导线,在流淌仪板面上有一根公用导线:各铜片的导线及公用导线分别与万用表两**连接,调整位移计位置,使位移计测头与铜片接触,检验电路是否接通。位移计距离斜坡面垂直距离50mm。★将斜坡坡度调整至设计规定的坡度,如无规定,斜坡坡度科采用1:1.7。★将烘箱升至试验温度,温度误差控制在±1℃。试验温度可按工程实际情况确定,如无规定,可采用70℃。★斜坡流淌仪放入烘箱前,调整位移计,读取各试件的初读数Uo,然后将斜坡流淌仪平稳放入已升温至试验温度的烘箱内。★恒温48h,读取各试件的变形值Ue。点击搜索:土工布有效孔径测定仪干筛法湿筛法
    留言咨询
  • ◆设备型号:CZY-01◆设备品牌:泉科瑞达◆关键词:初粘仪,初粘性测试仪,初粘力测试仪,斜面滚球法初粘性试验仪,药典初粘性测试仪,不干胶初粘力测试仪,压敏胶带初粘性检测仪,GBT4852初粘性试验仪,贴膏剂初粘测试仪,水凝胶退热贴剂初粘试验仪◆设备报价:欢迎致电咨询!滚球斜坡停止法初粘性测试仪是一种专业的测试设备,主要用于评估材料表面的粘附力,特别是压敏胶带、医用贴剂、不干胶标签、保护膜等产品的初粘性测试。该设备通过斜面滚球法进行测试,即利用钢球在斜坡上滚动,当滚球达到一定速度时,其惯性力将克服材料表面的粘附力,从而实现对初粘性的测量。滚球斜坡停止法初粘性测试仪工作原理测试仪的核心原理是利用滚球在斜坡上滚动,当滚球达到一定速度时,其惯性力将克服材料表面的粘附力,从而实现对初粘性的测量。测试时,钢球和测试试样粘性面之间以微小压力发生短暂接触,通过胶粘带、标签等产品对钢球的附着力作用来测试试样初粘性。滚球斜坡停止法初粘性测试仪结构组成滚球斜坡停止法初粘性测试仪主要由以下部分组成:斜面滚球装置:包括倾斜板、放球器、支架、底座及接球盒等部分。钢球:通常由GCr15轴承钢制造,精度不低于GB 308-77《钢球》规定的0级,直径范围为1/32英寸至1英寸的29种钢球,可作为测试用钢球。技术指标可调倾角:0~60°,以适应不同的测试需求。台面宽度:120mm。试区宽度:80mm。标准钢球:直径范围为1/32英寸至1英寸。使用方法准备工作:包括清洁斜面滚球装置和测试材料,以及清洗和准备钢球。测试段的设置:将胶粘带试样粘性面向上放置在倾斜板上,并在规定部位覆上聚酯薄膜作为助滚段。预选最大钢球:通过观察不同球号的钢球在测试段的表现,找到能粘住的最大球号钢球。正式测试:使用最大球号钢球对3个试样进行测试,并记录结果。
    留言咨询
  • 斜坡法防滑测试仪FH-2000荣计达仪器该装置满足GB/T 23458-2009《广场用陶瓷砖》中5.9防滑性和GB/T 23266-2009《陶瓷砖》中6.17防滑坡度、GB/T37798-2019“陶瓷砖防滑等级评价”中的附录C斜坡法临界角试验方法,防滑性能等级划分及试验方法对陶瓷防滑系数的检测要求。斜坡法防滑测试仪FH-2000荣计达仪器1试验原理:试验人员在用试件铺成的有一定坡度的斜而上来同行走,行走过程中逐渐增加斜坡的角度直至能 够在斜坡上安全行走的极限角度,以此作为临界角反映试件表面的防滑程度。斜坡法防滑测试仪FH-2000荣计达仪器2试验装置与材料2.1试验装置试验装置主要由一个上面能安放试件、两旁有护栏、上方有安全带等安全装置的宽约600 mm、长 约2 000 mm的平台构成。平台受试验人员控制,能以水平位置开始在0°“45°之回连续转动、转角精 度士0.2,因试验人员在!:面行走而对角度的影响不应超过十0,5平台还配套有在试验期间能以(6.0+LO)L/min的流觉将洗涤剂溶液大致均匀喷洒在试件表而的喷水装置。试验装置示意图见图C.1.3 洗涤剂溶液:用符合GB/T9985S 要求的洗涤剂配制,浓度为1g/L 4 20号机油。5 P400碳化硅砂纸。 6软毛刷。7测试用鞋:符合GB21148的II类全聚合材料中聚氨酯底(PU)低帮鞋,邵氏硬度(A型)为73±5,鞋底纹路与图C2类似。*使用之前,用P400碳化硅砂纸将鞋底全部均匀打磨一遍,使整个鞋底露出新面,用干净的软毛刷将粉末制干净。8试件试件的面积大约为100 crnX50 cm。斜坡法防滑系数测定装置,陶瓷检测仪校准测试之前,两个测试人员都应按C.5的步骤测地并计算出在三块赤脚试验用校准板上和三块穿鞋 试验用校准板上的临界角平均值,若该平均值与该校准板的标准值之极差不大于表C.1或表C.2中的 极限偏差值.则可继续进行测试.否则应寻找原因甚至更换测试人员。
    留言咨询
  • KOUDX 肯鼎 安全柜斜坡 配合油桶安全柜使用,便于装卸油桶,压菱纹路增大表面摩擦,方便油桶进入柜体落位。KOUDX肯鼎(上海肯鼎工业科技有限公司)是一家专业的工业安全类产品和环境保护产品的提供商,拥有完整、科学的质量管理体系,并通过ISO9001:2015质量管理体系认证。我们秉承以市场需求为导向,以客户需求为中心的理念,研发的防火安全柜系列产品符合美国OSHA 29 CER 1910.106和NFPA CODE30标准,并广泛应用于石油化工,工业制造,高校实验室,食品工业,汽车工业制造,新能源等行业。公司的诚信、实力和产品质量获得业界的普遍认可,我们真诚希望在不断发展壮大中,能够得到各位分销商伙伴的鼎力支持,同时能够拥有更多的长期战略合作伙伴,共同发展,共创双赢。
    留言咨询
  • TDR350/TDR150 土壤水分温度电导率测量仪一、用途TDR350/TDR150土壤水分温度电导率测量仪,对土壤水分变化全量程的进行准确测量。同时,能够对土壤EC进行测量,修正土壤水分数据。多种探针长度可选满足不同测量区域需求。 二、原理采用时域反射原理(TDR)。三、特点高精度土壤水分测量(体积含水量)能够测量EC值可测量土壤表面温度背光显示屏内置蓝牙模块保存50000个测量数据可选红外温度传感器,方便与TDR350连接,快速获取草坪等植被冠层的热量和萎蔫胁迫情况移动APP方便管理和读取数据,支持苹果和安卓系统四、技术指标原理TDR(时域反射)电导率测量范围:0-5ms/cm分辨率:0.01ms/cm精度:0.1ms/cm水分测量范围:0-饱和(体积含水量)分辨率:0.1%VWC精度:±3.0%(当EC<2ms/cm)温度范围:-30℃-60℃分辨率:0.1℃精度:±1℃测量模式VWC(体积含水量)探针尺寸直径0.5cm,间距3.3cm,长度3.8、7.5、12、20cm可选数据存储50000个测量数据电池4节AA碱性电池五、套件组成主机、探针、数据下载线,便携袋各一个,温度传感器为可选件。产地:美国
    留言咨询
  • 上海全扶SCS系列不锈钢电子平台秤,具有优异的计量性能,能够应对各种复杂严酷的工业场合。所有的部件在出厂前都经过了严格的制造和检验,来确保各部件始终如一的高品质,从而保证了稳定可靠的计量精度和计量重复性。 SCS系列电子平台秤两边自带斜坡,手推车可轻松推上磅称重。广泛应用于食品、化工、制药和其他有腐蚀的工业场合。本系列电子平台秤包含了各种规格、各种容量和各种选购件来满足不同应用需求。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求Plantarray系统技术参数测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。根系生理表型测量根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。图1.干旱点测量模型:在土壤高水量条件下,水并非限制因子,因此植物1(P1) 和植物2 (P2)并未限制其冠层对水的需求。在水缺乏情况下,植物根很难获得水,因此P1植物比P2更快受到水限制。Gosa et al., Plant Science (2018)今天,多数根胁迫相关特征是形态学上的。但是,可在胁迫下鉴别并比较植物根系的生理特征系统更有价值。 为何如此重要?界定干旱的一个农艺指标是土壤水含量变成植物蒸腾的限制节点。干旱起始点与根利用任何可获取水的能力高度相关。因此,具有更好根系性能的植物可能是由于根结构、解剖形态结构、生物化学或物理机制所致,干旱点值会较低(见图2),韧性更佳(再次浇水后蒸腾恢复速率)。另外的根性能功能表型鉴定基于根日常流动速率,据报道,具有高导水率的根在良好灌溉和盐条件下具有更高的蒸腾速率,从而增强光合作用以及增加产量。 近年来,科研主要研究精力都投入到植物胁迫反应上面。但是,尽管基因工具有了可观的改进,在研究投资和实际耐胁迫作物市场投放之间还有巨大的鸿沟。主流观点接受根在植物胁迫反应中扮演了重要角色。除了经典的根表型研究方法(主要基于根形态学),鉴别根生理标记在有效过程中很重要,也便利了胁迫理想型植物的培育。图2.全部期间2种西红柿栽培种的全植物蒸腾-土壤水含量的函数: (a) 夏天和(b) 冬天干旱实验。在两个栽培种之间和不同环境条件中发现了显著差异干旱关键点(?crit) 。Halperin et al., The Plant J. 20162016年出版的一篇文章(Halperin et al., The Plant J. 2016) 介绍了Plantarray功能生理表型方法如何在鉴别关键点 (?crit),土壤水含量在胁迫下,成为植物蒸腾的限制因子。研究使用了土壤湿度探针持续、精确测量究竟何种水流入单株植物的根部(Jr) 。同时进行流速、其它环境信号以及生理参数测量,允许对不同功能性状包括?crit进行比较。该方法为用户提供了选择性能佳的根系的能力,特别是干旱条件下,按照生理性状进行比较。
    留言咨询
  • HydroSense(CD620/CS620)便携式土壤水分测量仪  HydroSense便携式土壤水分测量仪是由CS620土壤水分测量探头和CD620数据显示器组成的,该测量仪具有体积小,携带方便等特点。可以为用户快速准确的的测量土壤水分体积含量。每个测量小于一秒钟的时间,只需要把探头插入土壤并按下显示器上的一个按钮即可完成测量。用户根据测量土壤的深度不同,可选择12cm或者20cm长度的探针。   微处理器控制电路和两线输出电缆密封在一个防水的维护内部,通过两个智能按钮实现系统操作。5英尺的弹性绕圈电缆把显示器和探头连接起来。不锈钢探针的直径为5mm,智能印刷电路密封在环氧探头体内。  HydroSense有两种操作模式,水分含量测量模式使用标准实验室标定提供土壤水分体积含量百分比,测量范围为空气中为干状态到饱和。在水分胁迫模式, HydroSense可以测量下降的水分含量和上升的水分含量,这些数据存储在内存中给用户提供参考。 水分亏欠模式相对水分含量0—100当前标定选择RWC33现场亏欠mm342012 cm探针20 cm探针体积水分含量测量模式体积水分含量探针长度RWC22%12cm周期0.93ms20cm探头输出周期技术性能参数CD620测量参数:体积水分含量(%),水分亏欠(mm)材料:防水材料显示器:16字节,两行LCD显示键盘:两个按钮电源:2节AAA碱性电池电池寿命:大约12个月尺寸:120 x 73 x 24 mm重量:160g,含电池读数时间:<50ms CS620精度:±3%体积水分含量,电导率<2 dS m-1的土壤分辨率:0.25%测量范围:干到饱和输出:方波脉冲序列±2.5Vdc振幅探头体尺寸:105 x 70 x 18 mm探针尺寸:5 mm直径,32mm间距,120mm或200mm长电缆:弹性绕圈电缆,200cm长重量:390g
    留言咨询
  • GroPoint土壤水分温度剖面测量系统是加拿大的GroPoint公司基于时域透射技术(TDT5)研发的,该技术相较于传统的时域反射(TDR)使得水分温度测量系统更加准确和稳定。主要特点---l 高准确性该测量系统的设计将天线穿过电路板每厘米20次,天线的有效长度是其物理长度的5倍。更长的天线可以提高每个样品的分辨率,从而滤除更多的噪音,将精度提高到±1%(VMC在8%至42%之间)。l 重复精度每次测量时,系统通过传感元件发送400,000个脉冲以生成测量数据,然后使用高级滤波技术消除噪声,并将测量结果用SDI-12协议输出发送, 确保在每次测量水分时获得相同的极端精度(±1%)。l 低功耗每次测量的总时间也少于100 ms。这意味着低功耗,使用9V电池供电的数据采集器连接情况下运行数月。GP-Profile土壤水分温度剖面传感器GP-Profile提供了使用单个探头准确高效的测量剖面土壤水分含量和温度的方法,避免了繁重的土壤剖面挖掘和繁琐的传感器埋设。它可以部署在灌溉敏感区域,以精确控制灌溉用水并提供对水分在土壤中移动的完整过程。GP- Profile有六种不同的传感器长度,适用于广泛的农作物监测。根据您的要求,可以选择两种不同的温度传感器配置。 如果您只需要测量水分,则可以不配置温度传感器,或者标准配置每隔1或2段放置温度传感器。选择适合您的应用的15厘米节段的数量。也可以使用自定义长度。主要参数1.测量范围:0% to 100 % of VMC;2.准确度:±1.0%;3.精度: 0.2%;4.测量范围:-20°C to +70°C;5.准确度:±0.5°C;6.输出:SDI-12 V1.3 (RS485可选);GP-DL4数据采集器GroPoint™ 数据采集器提供了一种便宜且简单易用的自动记录和存储GroPoint土壤传感器测量值的方法。模拟版本最多可同时连接4个传感器,而SDI-12版本最多可连接10个传感器(使用连接到2个端口的4端口SDI-12扩展条)。测量以用户选择的时间间隔记录,从每分钟一次到每十二小时。 数据存储在非易失性闪存中,即使电池发生故障也会保留。内存可以容纳32,520个测量值。配置数据记录器是通过包括Logger Config(SDI-12版本)或GroGraph(模拟版本)Windows软件完成的。 将随附的USB电缆插入数据记录器的USB端口和计算机上的USB端口,然后运行软件以设置记录间隔,SDI-12传感器地址等。防水外壳和坚固耐用的IP66 / IP68环境连接器允许户外放置此数据记录器。 使用标准的飞利浦0号螺丝刀即可轻松打开外壳以更换电池(3.0V锂电池CR2032纽扣电池为记录仪供电,而9V碱性电池为传感器供电)。 两种电池都包含在内,并在交付时预装。 正常操作下电池通常将持续约一年。记录的SDI-12传感器数据可以作为标准的CSV文件下载到您的计算机中,或者使用GP-DU手持式SDI-12传感器读取器直接显示在记录仪上。产品特点l 使用标准家用电池(用于记录仪的CR2032和用于驱动传感器的9V);l 传感器与GroPoint EN3恶劣环境连接器连接;l 防水外壳;l 长达一年的电池寿命是典型的;l 即使没有电池,数据也会保留;l 记录器数据以通用CSV格式下载,允许您在您最喜爱的软件(如Microsoft Excel)中存档和绘制数据。技术参数1.输出格式:CSV文本文件通过自带USB线缆导出;2.传感器接口:SDI-12 / RS-485 (SDI-12版本) 或 0-5mA / 4-20 mA (模拟版本);3.传感器接头:4针 (SDI-12 版本) or 3针 (模拟版本) female EN3 connector;4.传感器连接数: SDI-12类型: 10 个(通过 SDI-12专用 4端口扩展槽);5.模拟传感器:4个;6.电脑接口: USB接口;7.存储:1 MB存储空间,当连接单个传感器时,大于 50000 个数据;当连接水分剖面传感器时,大于 20000个数据;8.测量间隔:1分钟到12小时由用户指定;9.操作温度: -20°C to 65°C;10.存储温度: -20°C to 70°C;11.电源:3.0V 锂离子电池用于内存;9V 工业碱性电池用于传感器供电;12.电池寿命:9V电池可使用1年;13.尺寸规格:14.6cm × 8.9cm× 5.1cm;14.重量:272g;15.质保期限:1年;GP-BSP无线传输数据采集器 GP-BSP既是数据采集器又是无线接入点,可在测量现场通过Android设备方便的查看和下载测量数据。免费的GP Reader应用程序(仅适用于Android设备)用于检查当前测量,下载数据并可设置传感器采样间隔(从1分钟到12小时)。 随着智能手机上的应用程序打开,只需按下蓝牙传感器盒上的黑色按钮即可将其唤醒并自动建立无线连接;点击应用程序中的下载按钮可下载所有记录的数据,还可以显示当前的电池电量。该数据采集器可连接多达10个SDI-12 GroPoint传感器(使用带有4端口SDI-12扩展模块)。 数据存储在存储器中,即使电池发生故障也会保留数据;内存可以容纳32,520个测量值。产品特点l 快速访问该网站,将传感器数据无线传输到您的智能手机;l 保持连接长达60米;l 使用AA碱性电池,可6个月;即使没有电池,数据也会保留;l 防水IP65级外壳;主要参数1.传感器接口:1个EN3类型转接口(4针母口);2.存储:当连接单个传感器时,大于50000个数据;当连接水分剖面传感器时,大于20000个数据;3.电源:2节AA碱性电池;4.电池寿命:供电最长可达6个月;5.测量间隔:1分钟到12小时由用户指定;产地与厂家:加拿大 GroPoint
    留言咨询
  • 仪器简介:木质部栓塞是木本植物在遭受水分胁迫时普遍存在的一种现象。研究发现木质部边材抗栓塞能力与树木耗水性和抗旱性之间关系密切,研究树木的耐旱性(耐旱和抗旱),可防止木质部空穴和栓塞的发生,从而保证树木在干旱胁迫下木质部水分运输机能的正常运行技术参数:流量测量: 原理: 热导式质量流量计 量程 : 0.1~5, 0.2~10, 0.4~20, 1~50, 2~100 g/h H2O 精度: ± 1% (全量程); 可调范围: 1~ 50 低压生成与测量: 原理: 水柱 量程: 典型1~7 kPa (最大10 kPa); 精度: ± 0.2 kPa 高压生成与测量: 原理: 压力室 量程:一般可达3 bar,最大7 bar; 精度: ± 1% (全量程) 温度: 传感器: Pt100探针 量程: 0℃~ 50℃;-精度: ± 0.2 ℃ 水分供给: 高压: 容器容量: 1L 低压: 容器容量: 100 mL 最大容器压力: 1m水柱 水过滤: 0.2 &mu m 机械性能: 运输箱: IP65 大小尺寸: 461× 347× 206 mm 重量(空容器): 10 kg 电子性能: 供电:12 V直流 电流消耗: 900mA 接口: 3针插头 电脑接口(可选): 数模转换(15bits分辨率)和RS232数据 线传输数据到计算机 XYL'EM软件可适于DOS和Windows 系统,软件可收集数据,计算修正和 确定栓塞因子主要特点:XYL&rsquo EM测量系统采用参比&lsquo 水压&rsquo 法,先测量一段样品的导水率,然后用脱气水在一定压力下连续灌注样品使之水分饱和,这种灌注排泄或溶解掉包含在栓塞木质部导管中的空气。起始导水率/全饱和导水率的比率给出栓塞水平的定量值。XYL&rsquo EM系统可在低压下工作(最大1m水柱),也可在高压下工作(典型2bar,最大7bar)。
    留言咨询
  • 全自动精准灌溉控制、特别适合模拟干旱研究干旱作为全球性问题,极大地威胁到全球的粮食供应,是影响农业生产的最重要因素之一。为应对农业领域这一主要环境胁迫因子,全球科研人员一直在为筛选和培育抗旱品种而努力。而在干旱胁迫试验中,怎样自动精确控制灌溉量,并能实现可重复性,一直是困扰大家的难题之一。为此荷兰Phenospex公司研发出干旱模拟研究平台DroughtSpotter,特别适合应用于植物抗旱研究、筛选植物抗旱表型或用于其它需要精准灌溉(灌溉精度可高达1 g)的实验当中。干旱模拟研究平台DroughtSpotter可兼容不同大小和形状的花盆,适用于不用株型的植物。在试验过程中,将花盆直接放在内置了灌溉施肥系统的分析天平上,通过DroughtSpotter软件可设置多种灌溉方案,实现定制化服务。例如可通过精确控制灌溉水量保持每盆植物的预设重量,并通过称重得出的水分丧失来计算植物的蒸腾速率。结合移动式激光3D植物表型平台PlantEye使用,可计算生物量的增长。平台设计干旱模拟研究平台DroughtSpotter可提供12或24个独立灌溉称重单元,可同时将多个平台集成到温室或人工气候室中。应用范围耐旱表型筛选筛选可提高水分利用效率的保水剂筛选抗旱节水剂可控并可重复的干旱胁迫实验测量参数高时间分辨率下(以分为单位)计算每盆植物的蒸腾速率水汽压亏缺相对湿度水分利用率水分灌溉方案温度光合有效辐射产品特点高达1g的高精度重量控制;渐进式智能灌溉,防止过度补水可实现单个花盆的蒸腾动力学变化研究——适应不同规格的花盆针对每个花盆可单独设置灌溉方案同步集成环境探头,可监测光合有效辐射、温度和相对湿度可实现对花盆重量和灌溉方案实时监控可图表显示蒸腾作用动力学变化可下载原始数据——通过网络进行远程支持重量控制精度可达 0.02%友好的软件操作界面操作软件通过软件设置灌溉模式通过使用干旱模拟研究平台Drought Spotter,我们可以设置以下不同类型的灌溉模式 技术参数每套系统可提供12或24个独立灌溉称重单元标准重量范围:0-7 Kg,超过该重量范围,可定制标准花盆直径最大:20 cm,高度有10,20,30,40,50cm可选,其他规格可定制称量精度:0.02%(最大重量)渐进式智能灌溉:根据流速等实时计算加水量,控水量精度为≤1g4种灌溉自动模式可选:不灌溉,控制恒定值,预设添加等量水量,在一定值范围内控制花盆重量输出文件为CSV格式,数据包含:花盆重量、灌溉量、蒸腾速率;同时可显示环境气象参数可通过万维网远程控制开放的SSH协议可从外部网络访问数据可支持的操作系统:Windows、Mac OS等存储容量:最大支持10000天的测量数据存储温度:4-40℃相对湿度:40-80%防水等级IP65可兼容其他气象站的接口国际代表用户奥胡斯大学(University Aarhus),丹麦排名第二的大学,用于菊花、小麦和欧洲油菜(Brassica napus)的表型测量。先正达Syngenta,国际知名农业科技公司澳大利亚植物表型组设施,著名的“植物加速器”(Plant Accelerator)
    留言咨询
  • 用途:木质部栓塞是木本植物在遭受水分胁迫时普遍存在的一种现象。研究发现木质部边材抗栓塞能力与树木耗水性和抗旱性之间关系密切,研究树木的耐旱性(耐旱和抗旱),可防止木质部空穴和栓塞的发生,从而保证树木在干旱胁迫下木质部水分运输机能的正常运行,XYL’EM-Plus木质部导水率与栓塞测量系统就是可以测量植物导水率和栓塞速率的一款设备。既可以用于实验室,也可以用于野外。配置包括手提便携箱和1套12V的电源供应单元。XYL’EM-Plus木质部导水率与栓塞测量系统可以在低压下工作(最大1米水柱),也可以在高压下工作(最大3 bar)。采用集成的水容器。主机面板上有一套控制阀门,可以用来选择水压的高低。液晶显示屏可以即时显示流速、水压和温度。测量原理:XYL’EM-Plus木质部导水率与栓塞测量系统采用参比“水压”法,先测量一段样品的导水率,然后用脱气水在一定压力下连续灌注样品使之水分饱和,这种灌注排泄或溶解掉包含在栓塞木质部导管中的空气。起始导水率/全饱和导水率的比率给出栓塞水平的定量值。推荐:可配合我公司代理的1505D-EXP型便携式植物水势气穴压力室来测量植物的脆弱曲线。脆弱曲线是表征植物随着木质部压力的增大胁迫环境的加剧发生栓塞的脆弱程度应用范围:在实验室或野外测量木质部导水率与栓塞;植物生理和植物水分的关系;分析植物水分构造体系;评估植物抗干旱抵抗能力;评估植物抗霜冻抵抗能力;木质部病原体的影响。 技术参数:流量测量原理热导式质量流量计测量范围标准50g/h H2O(内部流量计),从 0.5 g/h 到 100 g/h 可选(外部流量计)精度全量程±1%可调范围1~50低压生成与测量原理水柱低压压力传感器测量范围典型1~7 kPa(最大10 kPa)精度±0.2 kPa高压生成与测量原理压力室高压压力传感器测量范围10bar精度全量程±1%温度传感器:Pt100探头量程0~ 50℃精度±0.2℃高压水分供给容器容量0.7升最大容器压力3 bar(安全阀最大可适用5 bar)低压水分供给低压容器容量100ml最大容器压力1m水柱水过滤0.45μm机械性能运输箱防护等级IP65大小尺寸约461×347×206 mm重量10kg(空容器)电子性能电源12 VDC电流消耗900 mA接口DIN 3针插头数据采集器数模转换分辨率15位通讯接口RS232软件适于DOS和Windows系统的XYL’EM软件,软件可采集数据,计算修正和确定栓塞因子
    留言咨询
  • 美国SPECTRUM土壤水分温度电导率测定仪TDR 350利用可靠的时域反射技术,能够对土壤水分变化全量程的进行精确测量。通过新的功能改进,能够为优化草皮提供精准测量和更加稳定的性能表现。能够对土壤EC进行测量,修正土壤水分读数。一键获取土壤水分读数,多种探针长度可以让您更好的测量目标区域数据。 美国SPECTRUM土壤水分温度电导率测定仪TDR 350产品特点:提高土壤水分测量精度(体积含水量)能够测量EC值测量草皮表面温度行业独家背光显示内部集成蓝牙和GPS模块能够保存超过50000条含有GPS的测量记录使用改进后的伸缩固定支架,调整探杆长度。6435 TDR 350 complete with case整套设备 土壤三参数速测仪TDR 350屏幕显示界面美国SPECTRUM土壤水分温度电导率测定仪TDR 350可选附件红外温度传感器行业独家设计将土壤水分仪与红外温度测量相结合,使困难的测量变得更见快捷,简单容易实现。能够与TDR350很方便的连接高度准确的瞬时红外温度测量,能够读到冠层或土壤表面的温度温度数据与土壤水分、地理信息相结合无需测量土壤水分也可以得到目标温度能够快速准确的测量冠层表面的热量和萎蔫胁迫3676T TDR350红外温度传感器美国SPECTRUM土壤水分温度电导率测定仪TDR 350中国总代理:南京铭奥仪器设备有限公司
    留言咨询
  • 南京铭奥为美国Spectrum的正规代理商,可以保障客户产品的维修要求无论您在北京、上海、大连、沈阳、哈尔滨、青岛、济南、西安、郑州、太原;还是兰州、银川、长沙、武汉、合肥、厦门、成都、重庆、杭州、宁波、南京、无锡、苏州、广州、深圳等地,都可以放心选择南京铭奥仪器测土壤水分的仪器土壤水分速测仪TDR——所属品牌:美国Spectrum 测土壤水分的仪器土壤水分速测仪TDR 350是一款便携的土壤水分、温度和电导率三参数速测仪,主要用于测量表层土壤水温盐状况来判断土壤的干旱程度以指导农业、草坪、牧区、高尔夫球等区域的灌溉。该测量仪利用先进可靠的时域反射技术,能够对土壤水分变化进行全量程的精确测量;能够对土壤EC进行测量并修正土壤水分读数。一键获取多参数,可选3.8厘米、7.5厘米、12厘米和20厘米四种探针长度让您更好地测量目标区域数据。广泛地应用于土壤墒情、农田温室、高尔夫草坪等领域的监测和研究。 测土壤水分的仪器土壤水分速测仪TDR 350特点? 提高土壤水分测量精度(体积含水量)? 能够测量EC值? 测量土壤/草皮表面温度? 行业独家大屏幕背光显示? 内部集成蓝牙和GPS模块? 能够保存超过50000条含有GPS的测量记录? 使用改进后的伸缩固定支架,调整探杆长度? 符合人体工程学的设计,站立即可测量土壤参数? 可选红外温度传感器测量冠层或土壤表面的温度 测土壤水分的仪器土壤水分速测仪TDR 350红外温度传感器行业独家设计将土壤水分仪与红外温度测量相结合,使困难的测量变得更见快捷,简单容易实现。能够与TDR350很方便的连接高度准确的瞬时红外温度测量,能够读到冠层或土壤表面的温度温度数据与土壤水分、地理信息相结合无需测量土壤水分也可以得到目标温度能够快速准确的测量冠层表面的热量和萎蔫胁迫 测土壤水分的仪器土壤水分速测仪TDR 350技术指标原理TDR(时域反射)电导率测量范围:0-5ms/cm分辨率:0.01 ms/cm精度:0.1 ms/cm水分测量范围:0-饱和(体积含水量)分辨率:0.1% VWC精度:±3.0% (当EC 2mS/cm)温度范围:-30°C-60°C分辨率:0.1°精度:±1°C测量模式VWC(体积水分含量)探针尺寸直径0.5cm,间距3.3cm,长度3.8、7.5、12、20cm四种规格可选数据存储50000含有GPS的测量记录数据电池4节AA碱性电池
    留言咨询
  • DRL26D树木连续生长测量仪一、简介DRL26D树木连续生长测量仪用于监测树干生长的微变化,是一款野外测量设备,在树木生长与水分关系和水分胁迫等的研究中有着重要意义。与土壤水势测量一起,可以提供干旱胁迫的现实景图和树木对干旱的反应。传感器为不锈钢和防辐射的塑料制作,几乎不需要维护,坚固耐用,适合长期监测,无须外接电池或太阳能板,内置锂电池和数据采集器。仪器具有较高的分辨率,测量茎杆1微米微变化,为研究树木在白天、夜晚等气候条件差异下的生长提供重要数据依据。 二、组成内置记录器的传感器、IrDA/USB 红外数据线、ST20不锈钢带(20m)和Mini32软件三、特色及优势旋转位置传感器无损数据记录红外无线数据传输直径>8cm都可测量非侵入性固定可选温度记录分辨率微米级非易失性存储,100000个数据防水设计长续航锂电池供电系统软件可进行数采采集、回归分析及自定义编程计算两年质保期四、技术指标传感器类型旋转位置传感器量程64mm 线性相关全量程的2%分辨率 <1μm 记录器测量精度 ±0.1 % 钢带强度 15 ~ 20 N 操作范围 - 温度 - 30 ~ 60 °C - 湿度 0 ~ 饱和 温度传感器精度 ± 0.3℃ 数据采集器 - 存储 100,000 个数据 - 测量间隔 10 min to 24 hrs - 存储间隔 10 min to 24 hrs - 内部时钟精度(-10 ~ 40°) ± 1 min/月 - 输入电压分辨率 16 bit 电池 锂电池 LS14250CN 3,6 V 1000 mAh -存储时间/休眠 (停止测试) 约5.5 年 - 当测试间隔为1小时 约 5 年 - 当测试间隔为10 分钟 约 3 年 尺寸大小 100 ×70 × 100 mm 重量(包括电池) 约350 g 产地:捷克
    留言咨询
  • DJ-PG01植物表型平台--植物表型与生长参数协同监测系统名称:植物表型平台--植物表型与生长参数协同监测系统 型号:DJ-PG01 产地:中国产品概述:DJ-PG01植物表型平台可以自动观测植物的生长变化,并同时高效地实现对植物生长过程中土壤环境温湿度、光照强度、叶绿素相对含量等参数自动化采集。配备两个双目相机自动获取的植物图像可以对植株的相关表型,如植株颜色、空间叶面积、植株高度、宽度、植株结构和叶尖角等进行分析,并配有精密的称量系统,监测植物的生长重量和水分蒸发变化。此外可根据客户的需求定制系统,实现3维数字重建植物形态,并能通过可见光、近红外、荧光成像并追踪标记点,也能实现叶绿素含量自动定时量化检测。同时可选土壤传感器,自动记录土壤水分,温度和水势等数值,并得出土壤pF水分特征曲线。 该平台具有小巧方便、操作简单、效率高等优点,可作为科研机构以及温室大棚对植株的生长信息检测及研究。 产品特点: 标准版通过可见光成像可以测量植株的空间叶面积、植株高度、宽度、植株结构和叶尖角等等多个参数, 实时记录环境背景参数,空气温湿度和光照强度等 每一个植株观测位上放置用于采集墒情数据的传感器,如土壤湿度传感器、称重传感器等。转盘通过齿轮传动与步进电动机相连,实现预定的转动动作,整个过程全自动化,可用于植物胁迫研究,蒸腾速率研究,土壤PF水分特征曲线以及盆栽微环境的水文变化研究。 可选近红外成像模块可以分析植物水分分布状态、用于胁迫生理学研究,蒸腾研究等 可选荧光成像系统可以分析植物的荧光生理状态 可选激光扫描模块,实现三维数字重建。 可选叶绿素测量模块,实现叶绿素含量自动定时量化监测记录 可根据客户需求定制系统 应用领域: 植物生理学、农业科学、植物病理学、遗传育种、突变株筛选、植物形态建模、种子生理学、种子病理学、植物胁迫生理学、植物水力学、毒理学等研究领域。 设备主要参数: 设备平台尺寸:长*宽*高:1.2*0.8*1.24(单位米) 最大容量:同时监测8株植物的生长周期信息 植株监测的最大外形尺寸:高*宽:0.2*0.15(单位米) 植株监测参数: 参数测量范围指标精确度(参照标准为非原位测量)无遮挡有遮挡植株高度±1%植株宽度±1%空气湿度0-100%±5%环境温度10-40℃±5%植株重量0-5Kg±0.05%光合有效辐射0~5000μmol/m2/s1±5%方位角(中脉在水平方向摆动角度)3%5%仰角(中脉与水平面夹角)3%5%轴向旋转角3%5%叶片投影面积(单片)1%5%叶片投影面积(整株)3%8%叶片空间面积5%10%叶柄与叶面积比5%8% 植物三维真彩点云3D重构系统 产地:中国点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • POGO便携式多参数土壤监测系统由一款多用途的操作简单,快捷的土壤监测仪器。多可采集17个参数,可同时测量土壤水分、电导率、温度(摄氏,华氏)、介电常数实部(温度校正及未校正的)、介电常数虚部(温度校正及未校正的)和5个电压输出。测量深度深可达30.48米。主要特点无需校准,只需简单选择土壤类型(壤土、沙土、黏土或有机质)即可;简单易用的PDA Windows界面;读数可在PDA上即时快速显示并保存下来;数据接口RS485,PDA与PC连接后能自动下载数据,并在EXCEL中进行分析;PDA与探头通过电缆通讯或通过蓝牙无线通讯(可选);数据方便携带,无需提前安装任何设备,便于进行土壤参数的点采集及土壤参数的分析和研究。基本技术指标测量参数l 介电常数测量范围:1-78(空气为1,蒸馏水为78),精度:±1.5% 或 ±0.2;l 土壤水分测量范围:0-饱和,精度:±3%Vol 典型l 电导率测量范围:0.01-1.5 S/m,精度:优于± 2.0% 或 ±0.005S/ml 温度测量范围:-10 - 65℃,精度:±0.1℃物理及环境指标l 探头尺寸:长124 mm;直径:42mml 测量土壤的体积: 长57 mm;直径:30mml 重量:200g(不包括缆线,缆线80g/米)l 电缆长度:7.62米、22.86米、30.48米任选,抗紫外线,可直接埋在土壤里。l 工作温度:结冰 - 65℃l 存储温度:-40-70℃
    留言咨询
  • TDR 350便携式土壤水分温度电导率速测仪名称:便携式土壤水分温度电导率速测仪 型号:TDR 350 产地:美国 用途:TDR 350便携式土壤水分温度电导率速测仪采用TDR时域反射技术,能够对土壤水分变化全量程的进行精确测量。通过新的功能改进,能够为优化草皮提供准确测量和更加稳定的性能表现。能够对土壤EC进行测量,修正土壤水分读数。通过测量表层土壤水分温度电导率状况来判断土壤的干旱程度,指导农业、草坪、牧区、高尔夫球场等领域的灌溉。设备有3.8厘米、7.6厘米、12厘米和20厘米四种不同长度的探针可供选择,用于测量不同深度土壤层的土壤水分和电导率。广泛应用于土壤墒情、农田温室、高尔夫草坪等领域的监测和研究。 产品特点: 液晶显示屏带背光显示功能,在光线暗的环境下一样可以看清读数; 内置蓝牙和GPS模块,测量数据可以同步记录经纬度; 数据存储容量大,可以存储50000条含GPS信息的数据; 测量杆采用可伸缩式设计,可以根据需要自行调整长度; 通过U盘就可以直接下载数据,无需再需要软件和数据线; 可选配红外温度传感器,高度准确的瞬时红外温度测量,能够测量冠层或土壤表面的温度,快速准确的测量冠层表面的热量和萎蔫胁迫。 技术规格:测量参数土壤体积含水量、表面温度和电导率分辨率土壤水分0.1% VWC,电导率:0.01 mS/cm,温度0.1℃测量精度土壤水分±3.0% VWC(电导率2 mS/cm),电导率:±0.1 mS/cm,温度±1℃测量范围土壤水分0~饱和(饱和典型50%),电导率:0~5 mS/cm,温度-30~+60℃供电4节5号(AA)锂电池存储容量50000个测量值显示屏背光高对比度图形LCDGPS精度<2.5米重量1.9公斤探头尺寸6×3.5厘米测量杆伸缩范围58.4厘米~96.5厘米测量杆宽度3.5厘米探针长度可选3.8厘米、7.6厘米、12厘米和20厘米探针直径0.5厘米探针间距3厘米
    留言咨询
  • Diviner2000便携式土壤剖面水分速测仪一、产品简介Diviner2000便携式土壤水分速测仪采用FDR原理,整合了EnviroSCAN技术,测量各土层水分含量, 可测16个土壤剖面的水分含量,适用于大面积土壤水分的监测。只需在待测地点安装好空PVC管,并保持密封即可。测量时,只需短短几秒即可实现测量点垂直剖面上的多层土壤水分含量的测量(每10cm一层),大大节省了测量时间。Diviner2000非常轻巧、便携,可随时测量,即刻得到数据。 Diviner2000由一个显示器和一个探头组成。显示器是一个小型的数据采集器,采用电池供电,可随身携带。通过显示器或应用软件可在使用前标定探头,还可采集数据、存储数据、分析数据等。 数据分析软件 根据监测的数据进行分析可知不同层次土壤水分含量,确定作物的根系范围,还可监测作物的田间持水量、水分胁迫点、土壤水分渗透率、作物每日的蒸腾动态、土壤冰冻状态、呈现的曲线图可以用于分析土壤水分、降雨、灌溉等等,从而为灌溉作业提供科学依据。二、产品特点高利润有效灌溉,提高农作物的产量和品质省水省肥优化水、肥料和能源的使用减少浪费将水和肥料集中在根部,避免渗滤损失节约时间对整个剖面、多层测量,只需几秒钟灵活读数可用LCD显示屏读取,或下载到电脑上,用IrriMAX软件做进一步分析三、产品参数测量范围干到水分饱和测量精度1%测量深度0.7m、1m、1.6m(任一款)探体总长1.13 m、1.53 m、2.13 m安装管长1.0m、1.5m、2.0m系统供电13.8 VDC充电电源 800 mA工作温度0℃—70℃显示单元RS232端口重量900 g大小190×38×45 mm存储容量99个测点四、产地:澳大利亚
    留言咨询
  • TDR 150便携式土壤水分温度电导率速测仪名称:便携式土壤水分温度电导率速测仪 型号:TDR 150 产地:美国 用途:TDR 150便携式土壤水分温度电导率速测仪采用TDR时域反射技术,能够对土壤水分变化全量程的进行精确测量。通过新的功能改进,能够为优化草皮提供测量和更加稳定的性能表现。能够对土壤EC进行测量,修正土壤水分读数。通过测量表层土壤水分温度电导率状况来判断土壤的干旱程度,指导农业、草坪、牧区、高尔夫球场等领域的灌溉。设备有3.8厘米、7.6厘米、12厘米和20厘米四种不同长度的探针可供选择,用于测量不同深度土壤层的土壤水分和电导率。广泛应用于土壤墒情、农田温室、高尔夫草坪等领域的监测和研究。 产品特点: 液晶显示屏带背光显示功能,在光线暗的环境下一样可以看清读数; 数据存储容量大,可以存储50000条数据; 人体工学手柄设计,体积小,便于携带; 通过U盘就可以直接下载数据,无需再需要软件和数据线; 可选配蓝牙和GPS模块,测量数据可以同步记录经纬度; 可选配红外温度传感器,高度准确的瞬时红外温度测量,能够测量冠层或土壤表面的温度,快速准确的测量冠层表面的热量和萎蔫胁迫。 技术规格:测量参数土壤体积含水量、表面温度和电导率分辨率土壤水分0.1% VWC,电导率:0.01 mS/cm,温度0.1℃测量精度土壤水分±3.0% VWC(电导率2 mS/cm),电导率:±0.1 mS/cm,温度±1℃测量范围土壤水分0~饱和(饱和典型50%),电导率:0~5 mS/cm,温度-30~+60℃供电4节5号(AA)锂电池存储容量50000个测量值显示屏背光高对比度图形LCD重量640克探头尺寸6×3.5厘米测量杆伸缩范围58.4厘米~96.5厘米电缆长度29厘米探针长度可选3.8厘米、7.6厘米、12厘米和20厘米探针直径0.5厘米探针间距3厘米 产地:美国
    留言咨询
  • PIVOT茎杆生长测量仪 Pivot 茎杆生长测量仪是为长期记录树木茎赶在5-40mm之间的生长变化研究而设计的,通过三个压力杆固定在被测物体上;中心悬臂与物体直径成比例地转动旋转位置传感器。每个传感器在整个范围内的3个点上单独校准,以获得所需的传感器线性度,坚固耐用。内置锂电池和数据采集器,可记录50000个数据。红外数据输出,数据可导出为TXT、Excel格式。技术参数:适合直径:5-40mm范围量程:5-40mm线性相关:±0.5%分辨率:1.24μm准确度:0.5mm旋转位置传感器:4.7 kOhm ±20 %紧固强度:1.5~2 N横向操纵杆,2~3 N中央传感臂内部温度精度:±0.3℃内存:128kB数据量:50,000 个数据测量间隔:1min ~ 4 hrs,间隔1Hr,可存储3年的数据电池:SAFT LS14250CNA,测量间隔为1 Hr,大约用5年采集器尺寸大小:21 x 100 mm重量(含电池) :大约160 g防护等级:IP67适用条件:温度:-40~60℃;湿度:0~100% 连接:IrDA/USB(Win 7、8、10和11)PDS40P树木茎秆生长变化传感器 树木径向连续生长测量系统,用于监测树干生长的微变化,是一款野外固定测量设备,在树木生长与水分关系和水分胁迫等的研究中有着重要意义。 PDS40P茎秆生长变化传感器设计用于测量5~40mm范围内的小茎或分支的直径。传感器输出电压与茎直径成正比。该传感器的设计是为了便于快速安装。它通过三个压力杆固定在被测物体上;中心悬臂与物体直径成比例地转动旋转位置传感器。每个传感器在整个范围内的3个点上单独校准,以获得所需的传感器线性度。提供一个模拟电压信号,方便使用者集成和计算数据。技术指标:适合直径:5-40mm范围量程:5-40mm线性相关:±0.5%分辨率:1.24μm准确度:0.5mm旋转位置传感器:4.7 kOhm ±20 %电源:5-12V dc 电流:0.75mA输出:大约1000-1700mV紧固强度:1.5~2 N横向操纵杆,2~3 N中央传感臂重量:160g防护等级:IP67适用条件:温度:-40~60℃;湿度:0~100% PDS40S树木茎秆生长变化传感器 树木径向连续生长测量系统,用于监测树干生长的微变化,是一款野外固定测量设备,在树木生长与水分关系和水分胁迫等的研究中有着重要意义。 PDS40S茎秆生长变化传感器设计用于测量5~40mm范围内的小茎或分支的直径。传感器输出电压与茎直径成正比。该传感器的设计是为了便于快速安装。它通过三个压力杆固定在被测物体上;中心悬臂与物体直径成比例地转动旋转位置传感器。每个传感器在整个范围内的3个点上单独校准,以获得所需的传感器线性度。提供一个SDI-12数字信号,方便使用者集成和计算数据。技术指标:适合直径:5-40mm范围量程:5-40mm线性相关:±0.5%分辨率:1.24μm准确度:0.5mm内置温度精度:±0.2℃时间响应:300ms电源:5-12V dc 电流:6mA输出:SDI12紧固强度:1.5~2 N横向操纵杆,2~3 N中央传感臂重量:160g防护等级:IP67适用条件:温度:-40~60℃;湿度:0~100%
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制