当前位置: 仪器信息网 > 行业主题 > >

水分吸附

仪器信息网水分吸附专题为您整合水分吸附相关的最新文章,在水分吸附专题,您不仅可以免费浏览水分吸附的资讯, 同时您还可以浏览水分吸附的相关资料、解决方案,参与社区水分吸附话题讨论。

水分吸附相关的资讯

  • AQUALAB VSA 水分吸附测定仪(等温吸湿线测定仪)在烟草行业的应用
    水分含量和水活度是烟叶以及烟草制品的一个重要质量指标。对于原材料烟叶,水分活度的高低决定了烟叶的耐储藏性。水分含量和保水性能与烟卷的加工工艺以及烟草产品的口感有者密切的关系。 众所周知,香烟产品一旦暴露在空气中,水分会很快逸散,造成品质的严重下降,特别是在北方气候干燥的地方,这种现象尤为严重。目前多家烟草研究机构就烟草保润性能展开研究,该课题成为烟草行业的一个前沿课题。为了使烟草的保润性能有所提高,烟草研究机构,烟草添加剂生产厂家在烟草保润剂领域做了大量的尝试,并开发出许多新的品种。但是,就目前情况来看,对于保润剂保润效果的评价还缺乏有效地方法。很多情况下是依赖于研发人员的感官或者是个人经验来评价,这样就造成了标准不一无法比较的情况。 DECAGON公司推出的 AQUALAB VSA水分吸附测定仪(等温吸湿线测定仪) 是专门应用于食品、烟草、化妆品行业的一款针对于水分吸附(脱附)能力评价和研究的仪器。通过其精密的湿度传感器、温度控制模块以及天平组件,可以实现对烟草在干燥环境中的水分散失过程进行模拟。并绘制出水分散失动力学曲线、等温吸湿曲线。根据动力学曲线在一定条件下,样品的失重量与时间有特定的关系,该特性可用于保润剂保润性能的评价。 TIPS: 1.将AQUALAB VSA做好的等温吸湿线导入AQUALAB 4TE DUO后可利用AQUALAB 4TE DUO进行烟草产品水分含量的测试,结果平行性很好。 2.AQUALAB VSA也可作为一个水活度仪使用,并具备AQUALAB 4TEV的所有功能。 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • Decagon公司水分吸附等温线自动生成器公司荣获国际食品技术IFT大奖
    Decagon公司的最新水分吸附等温线自动生成器 AquaSorp Isotherm Generator获2007国际食品技术创新大奖"2007 IFT Innovation Award"。 水分吸收等温线将复杂的、特定产品的水分和水活度之间的关系描绘出来。考虑到食品&ldquo 指纹图谱&rdquo ,这个曲线(通常是S型)可以显示出随着水分的增加或减少,水活度是如何变化的。 AquaSorp Isotherm Generator采用动态露点吸附等温线方法(DDI )DDI,可将特定产品水分以及水活度之间的关系自动生成曲线图。AquaSorp Isotherm Generator利用动态露点吸附等温线方法,可以在24小时之内给出高精确度的吸附和去吸附等温曲线。(手动生成一条等温线需要2-5周的时间)。等温曲线对理解及控制产品配方、稳定性、潮湿敏感度,温度效应、干燥特性等具有非常重要的意义。 吸湿等温线自动测绘仪 详情请浏览:http://www.ift.org/cms/?pid=1001636,www.pynnco.com 或咨询培安公司:010-65528800。
  • 大昌华嘉“吸附仪在新材料上的应用”全国巡讲
    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。   在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。   日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。     会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。   物理吸附同步连接XRD、GC、磁悬浮天平   化学吸附仪链接质谱、红外、低温脉冲和TPR   高压吸附仪在储氢材料的应用
  • 华嘉公司“吸附仪在新材料上的应用”研讨会将在全国巡回展开
    华嘉(香港)有限公司具有200年历史的瑞士国际贸易公司,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在国内的总代理,负责其所有产品、技术的推广销售和服务。 为进一步在国内推广吸附技术的应用,华嘉特邀请BEL公司资深专家参加3月22日在广州以及3月24日在厦门举办的&ldquo 吸附仪在新材料上的应用&rdquo 研讨会,并在会上介绍最新应用技术。吸附测包括物理吸附仪(低压常压、高压)和化学吸附仪,蒸汽吸附仪等,是研究固体材料表面性能的重要检测仪器。具体会议日程安排将在近期公布,欢迎您届时光临! 日本BEL公司:专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。第一双站微孔吸附仪在2006年就面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 同期华嘉公司将介绍以下产品: 美国Microtrac公司:世界最著名的激光应用技术研究和制造厂商,近半个世纪以来,一直领先着激光粒度分析的前沿技术,为众多行业指定的质量检测和控制分析仪器。 德国Kruss公司:1796年成立,是研究表面和界面技术的开创者,表面张力仪的发明者,现拥有15种不同类型的产品线,在全球占有率60%以上,是当之无愧的第一品牌。 回执表 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 感兴趣的产品: BEL 系列吸附仪 Microtrac 激光粒度仪 Kruss 接触角测量及表面张力仪 研究领域: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜小姐 电话:4008210778 电子邮箱:helen.jiang@dksh.com
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 应用麦克仪器,表征金属有机框架中的水蒸气吸附
    金属有机框架的混合特性提供了金属簇和有机配体之间几乎无限可能的组合,使这些多孔材料具有很大的应用前景,例如甲烷储存1、二氧化碳捕获2、氢气储存3和气体分离4。由于金属有机框架(MOFs)在空气除湿6、低湿度捕水7和储水8等方面的潜在应用,MOFs 的水吸附5引起了越来越多的关注。随着越来越多的具有动力学和热力学水稳定性的 MOFs9,10 的设计和合成,通过水蒸气吸附仪器对材料进行表征的需求变得至关重要。Micromeritics 的 3Flex 三站多用气体吸附仪是公认的气体吸附材料表征领域先进的仪器,广泛应用于研究型大学、政府实验室和私营部门的研发机构。除了惰性气体(如氮气、氩气和氪气)的物理吸附、静态化学吸附、动态化学吸附(TCD 或质谱仪作为检测器),蒸汽吸附是 3Flex 三站多用气体吸附仪上另一个广泛使用且值得信赖的选项。* Micromeritics 3Flex 三站全功能型多用气体吸附仪蒸汽吸附分析具有以下优点:1.实验速度更快:重量吸附分析仅需数小时或数天即可完成实验,而不需要数周;2.更高的吞吐量:3Flex 具有多达三个工作站,即使是不同的压力表,也可以同时分析三个样品;3.样品处理更容易:对于湿敏材料,只需使用手套箱里的密封块即可简单地将样品从瓶中转移到样品管中。样品无需暴露在空气中,这在重量吸附分析仪上很难实现。在此,我们给出了 HKUST-1(Cu-BTC)11 和 MIL-1019 这两种典型 MOFs 的水蒸气吸附等温线,该等温线在 Micromeritics 3Flex 三站多用气体吸附仪上获得。HKUST-1,Cu3[C6H3(COO)3]2,是由均苯三酸三阴离子连接的铜(II)桨轮二聚体组成,可商购。图1. HKUST-1的氮吸附等温线(红色),HKUST-1 的水蒸气吸附等温线(蓝色)图 2. MIL-101 的氮吸附等温线(红色),MIL-101 的水蒸气吸附等温线(蓝色)图 3. HKUST-1 在 77K 时的氮等温线对数图图 4. MIL-101 在 77K 时的氮等温线对数图MIL-101,Cr3XO[C6H4(COO)2]3 (X = F, OH), 具有三核铬(III)金属簇和对苯二甲酸二价阴离子。之所以选择这两个 MOFs,是因为 HKUST-1 和 MIL-101 都具有配位不饱和金属位点,在保持其结构完整的同时,对水分子具有很高的亲和力。在 298K 的温度下,在同一台 3Flex 仪器上,采用不同的压力表设置(P/P0 = 0.001- 0.90),同时进行两种材料的水蒸气吸附实验。HKUST-1 材料由 NuMat 科技公司的科学家提供,MIL-101 材料的结晶度由供应商确认。SEM 图像是在颗粒测试机构使用 Phenom ProX 台式扫描电镜获得的(图 5 及图 6)。样品在 170℃ 下进行真空脱气过夜。图 5. HKUST-1 的 SEM 图图 6.MIL-101 的 SEM 图HKUST-1 和 MIL-101 的 BET 比表面积分别为 1574 m2/g 和 1379 m2/g。图1中低 P/P0 区域的陡峭吸附和随后的氮气吸附等温线表明了 HKUST-1 的微孔性。图 3 中 HKUST-1 的氮气等温线对数图表现出阶跃特征,显示了 HKUST-1 与具有强四极性气体分子间的相互作用12,13。而图 2 的氮气吸附等温线表明,MIL-101 中存在两种类型的介孔,内径分别接近2.9 nm 和 3.4 nm9。在 3Flex 上精确注气 10 cm3/g STP 后,HKUST-1 在配位不饱和金属位点和随后的微孔吸附在图 1 的水蒸气吸附等温线(P/P0 0.35,这与其介孔性质相一致。MIL-101 在 P/P0 = 0.3 时的水容量为 96.2 cm3/g STP (7.7 wt. %),在 P/P0 = 0.90 时 的水容量为 850.5 cm3/g STP (68.3 wt. %)。尽管 MIL-101 可能不适合于低湿度环境下的水捕集应用,但它可以用于静态条件下的除湿,例如用于干燥剂中。回滞环是由于毛细管凝聚引起的孔填充造成的。在 P/P0 = 0.35 到 0.5 的较窄的相对湿度范围内,630cm3/g STP (50.6 wt. %) 吸水量的巨大差异揭示了其在吸附式热泵或冷水机的潜在应用14。在较高的压力和温度下,可以消除滞后现象,从而产生更窄的相对湿度范围,使其更适合上述应用。除了典型的水蒸气吸附和解吸等温线外,带有蒸汽选项的Micromeritics 3Flex 配备了广泛的常用蒸汽的流体性质的数据库,用于进行吸附剂的再生性和循环性研究、吸附热研究等。Micromeritics 3Flex 三站全功能型多用气体吸附仪是广大高校及学术机构的可靠合作伙伴。想以更具优势的价格体验领先的气体吸附技术,欢迎关注 Micromeritics 2023 学术奖助计划。
  • 吸附等温线及典型吸附理论浅析
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong 本文对气体吸附研究中最常用到的概念——吸附等温线进行了科普和分类,并对Langmuir吸附等温理论、BET理论给出了自己的分析和见解,深入浅出的专业文章即将到来,以飨读者。 /p p style=" text-align: justify text-indent: 2em " strong 吸附等温线小科普 /strong /p p style=" text-align: justify text-indent: 2em " 对于给定的固体-气体体系,在温度一定时,可以认为吸附作用势一定,这时候,吸附量是压力的函数,这个关系叫做吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体在固体表面的吸附状态多种多样,目前,把等温线分为六类,实际的各种吸附等温线大多是这六类等温线的不同组合。设固体表面与第一层(单分子层)吸附分子的吸附作用能为E1,第n层与第n+1层的作用能为En。 /p p style=" text-align: justify text-indent: 2em " (1)I型等温线 /p p style=" text-align: justify text-indent: 2em " I-A型(E1& gt & gt En) /p p style=" text-align: justify text-indent: 2em " 由于单分子层的吸附作用力很大,表面吸附位的反应活性高,属电子转移型吸附互相作用,这时候的吸附大多数不可逆,我们认为是化学吸附。在金属与氧气、金属与一氧化碳、金属与氢气的表面反应体系中常见,这种等温线是由Langmuir研究,所以也叫做Langmuir型。等温线如下图所示。 span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/91952d99-a96e-444f-b86b-f98a78a8e437.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " I-B型 /p p style=" text-align: justify text-indent: 2em " 活性炭和沸石常呈现这种类型,这些固体具有微孔,外表面积比孔内表面积小很多。在相对压力较低时,吸附曲线迅速上升,发生微孔内吸附。如上图所示。 /p p style=" text-align: justify text-indent: 2em " (2)II型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线一般为非多孔性固体表面发生多分子层吸附,比如非多孔性金属氧化物粒子吸附氮气或者水蒸气,此外,发生亲液性表面相互作用时也为此类型。在相对压力约为0.3时,第一层吸附大致完成,随着相对压力增大,开始形成第二层,在饱和蒸气压时,吸附层数无限大。Brunauer、Emmet和Teller从理论导出这种等温线,故这种类型的等温线也被称作BET等温线。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/11476386-c8ca-4d9f-a9b2-bd2c87e56d2c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " (3)III型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 在憎液性表面发生多分子层吸附,或者固体和吸附质的吸附相互作用小于吸附质之间的相互作用时呈现这种类型。比如,水蒸气在石墨表面上吸附,或者,水蒸气在进行过憎水处理的非多孔性金属氧化物上的吸附。因此,这种吸附在低压区的吸附量较少,相对压力越大,吸附量越多。如下图。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/931c7ce4-fbdd-4933-bf7a-3a53890d9de5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " (4)IV型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 氮气、有机蒸汽和水蒸气在硅胶上吸附属于这一类型。在相对压力约为0.4时,吸附质发生毛细凝聚,等温线迅速上升,脱附等温线与吸附等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后,形成一个“吸附滞后环”。在相对压力较大时,由于中孔内的吸附已经结束,吸附只在外表面上发生,曲线平坦,在相对压力接近1时,在大孔上吸附,曲线上升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f555414b-be52-465d-9be6-977a773a7321.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " (5)V型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 发生在多孔固体上,表面相互作用同III型,例如水蒸气在活性炭或憎水化处理过的硅胶上的吸附。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2900e13b-5186-4bfc-90dc-13e79adb4bdd.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: justify text-indent: 2em " (6)VI型等温线 /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线又称为阶梯型等温线。非极性的吸附质在化学性质均匀的非多孔固体上吸附时较为常见。如将炭在2700℃以上进行石墨化处理后,再吸附氮气、氩气、氪气。这种阶梯型等温线是先形成第一层二维有序的分子层后,再吸附第二层,第二层显然受第一层的影响,因此成为阶梯型。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2f1b1b14-d591-4786-98e0-0eef916902cd.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 典型吸附理论浅析 /strong /p p style=" text-align: justify text-indent: 2em " 不同的固体表面与吸附质组合得到各种不同的吸附等温线,这些等温线的形状反映了固体表面结构、孔结构和固体-吸附质的相互作用,通过解析这些等温线就能知道吸附相互作用和表征固体表面。对于常见的等温线,提出许多吸附相互作用的理论。下面仅介绍目前具有代表性的理论。 /p p style=" text-align: justify text-indent: 2em " Langmuir方程是常用的吸附等温线方程之一,是由物理化学家朗格缪尔于1916年根据分子运动理论和一些假定提出的。这个理论认为,在固体表面的分子或原子存在向外的剩余价力,可以吸附分子,吸附位可以均匀的分布在整个表面,但是只是吸附在表面的特定位置,称之为特异吸附。 /p p style=" text-align: justify text-indent: 2em " Langmuir吸附等温方程如下式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/81e08f48-a1ad-4e98-9589-7ca91cac2197.jpg" title=" a.png" alt=" a.png" / /p p style=" text-align: justify text-indent: 2em " 其中,P为氮气压力、V为实际吸附量、Vm为单层饱和吸附量、b为与吸附热相关的常数。在不同的氮气压力P下测出氮气的实际吸附量V,用Langmuir方程作图得到一条直线,该直线的斜率的倒数即为单层吸附量Vm,进而计算出比表面,称为Langmuir比表面,Langmuir比表面对于微孔具有重要的意义。 /p p style=" text-align: justify text-indent: 2em " 布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在Langmuir方程基础上提出的描述多分子层吸附理论,通过对气体吸附过程的热力学与动力学分析,推出氮吸附量随氮气分压而变的BET方程: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e4e5d7-cb69-473d-84f0-ceda0cf74951.jpg" title=" b.png" alt=" b.png" / /p p style=" text-align: justify text-indent: 2em " 分析得出,P/P0在0.05~0.35范围中,BET是一个线性方程,该直线的斜率与截距之和的倒数是单层饱和吸附量,从而算出比表面积。通过BET方程求出比表面积成为目前国际通用的方法,被称为BET比表面。 /p p style=" text-align: justify text-indent: 2em " 根据材料不同,特别是微孔材料,由于在很低的压力下就完成了单层吸附,因此,BET方程的线性范围会向低压方向移动。对于孔径极小的分子筛,线性范围应取0.005~0.01;微孔材料的线性范围应取0.005~0.1;介、微孔复合材料线性范围应取0.01~0.2;介孔、大孔材料的线性范围取0.05~0.35。但是根据实际材料的不同,线性范围的取点应根据实际情况进行调整,使BET直线的线性良好才具有一定的参考价值。对于微孔材料,更接近于单层吸附的特征,Langmuir比表面值应具有更大的参考意义。 /p p style=" text-align: right " strong 作者:精微高博 /strong /p p style=" text-align: justify text-indent: 2em " (本文由精微高博团队供稿,不代表仪器信息网本网观点) /p
  • 兵马俑在守护谁?试问水吸附分析仪
    世人称之为“世界第八大奇迹”的秦始皇兵马俑是为“千古一帝”秦始皇陪葬,这本已是众所周知。可是,随着最近《芈月传》的播出,许多民间研究者又提出异议,认为兵马俑是为秦宣太后陪葬的。最近央视一个节目中,建筑学学者陈景元先生就认为兵马俑陪葬的不是秦始皇,而是秦始皇的祖母秦宣太后(芈月)。在电视节目中,陈景元提出了一个又一个论据,被誉为“秦俑之父”的袁仲一先生则进行了针锋相对的批驳,双方你来我往,唇枪舌战,似乎说得都有道理。那么,真相到底如何? 文史圈儿的事儿,按说科技圈儿不好多嘴,毕竟隔行如隔山。只是,正因为隔行如隔山,可能两位学者对于接下来要提到的这款设备,或许也不是那么了解,虽然,它可能对于评判甚至解决这个争议,的确能扮演非常重要的角色。事实上,在2009年,英国曼彻斯特大学和爱丁堡大学的研究者就已经利用这款仪器,开发出了一项新技术,用于对上千年的古代陶瓷和砖瓦进行年代确定——它就是美国康塔仪器公司的全自动双站水吸附分析仪Aquadyne DVS。当然,我们并不是说国外的招儿在国内也一定有用,但他山之石或许可以攻玉,聊作参考也未为不可。 目前,英国这项基于美国康塔仪器公司水吸附分析仪开发的技术已经成为与碳14断代方法的并行方法,这款水吸附分析仪可以通过精确控制温度和湿度的条件,能将样品质量测量至0.1微克。这项技术不仅使对考古学断代和高度仿真的赝品测年成为可能,也可以通过研究已知年代的标本,为调查气候变化提供帮助。这项研究报告- ' Dating fired-clay ceramics using long-term power law rehydration kinetics' - 已经发表在英国皇家协会会刊(Proceedings of the Royal Society A) 这项断代技术的关键是基于以下事实:烧制粘土类终生都自始至终地从大气环境中吸附水汽,其吸附速率与周边平均温度和粘土性质有关。已经确认,少量样品(通常3-5g)被加热到105°C后,其毛细管中的水即被去除,从而得到“初始接收”质量,然后加热到500°C四小时,即可除去样品一生累积吸附的所有水分。这个“初始接收”质量和最终质量的差值代表了样品终生吸附的水汽。 其次,在样品冷却后,对样品质量在所控温度和相对湿度条件下进行吸湿性监测,能够获得样品重新结合水后的动力学增长曲线。相对湿度通常保持在30.0±0.1% RH,而温度设定为在样品发现地的长期平均温度(经验值)。 对水汽的吸附,这里术语叫做再羟基化(rehydroxylation,RHX),符合1/4幂次方规律。质量数据采集由美国康塔仪器公司Aquadyne DVS 全自动双站水吸附分析仪执行,每30秒采集一次质量数据,一个测量周期一般为2到5天。从图上,我们能够推断出“初始接收”质量,因此我们能测定出样品的年代。当伦敦博物馆提供了一个来自于查尔斯二世在格林威治的建筑中的未知样品时,研究者测定出其原始煅烧年代为1691± 22年。事实上,该建筑建造于1664-1669,新的断代技术所确定的年代与十七世纪九十年代的变化是相符的。其他2000年以前的样品也已成功地进行了分析,研究人员相信,该技术对上万年的样品同样有效。 好吧,根据英国这边的实验表明,利用康塔仪器水吸附分析仪这项技术,断代误差在30年以内(上文写的是22年)。那么,秦始皇和秦宣太后差了大概有55年(具体的,以文史专家给出的数字为准)?如果是这样,其实答案就简单了,一测便知真假。当然,或许事情并不只是这么简单。毕竟如上所说隔行如隔山,对于另一个领域,我们应保佑起码的尊敬,真相以专家结论为准。我们所能解决的,终归只是技术层面的问题,下面要讲到的,就是较为纯粹的技术了,兴趣不大的,可以绕行。Aquedyne DVS 非常适合这个应用有多种原因。 显然,长期稳定地测量质量精确到0.1ug的能力是至关重要的,但严格控制样品室的温度和相对湿度也是重要因素。此外,美国康塔仪器公司的完整的微天平具有双称量盘,这意味着可以同时进行两个样品的平行分析,并提高了生产率。曼彻斯特大学机械、航天和土木工程学院的莫伊拉威尔逊博士(Dr Moira Wilson)认为:比起其它技术,Aquadyne DVS产生的数据要好得多。"起初我们想用传统的顶装盘,但结果表现出太多散点。当我们试用Aquadyne DVS的微天平头,所产生的清晰的图形曲线给我们留下深刻印象。” 虽然Aquadyne DVS不是市场上唯一的水吸附分析仪,威尔逊博士还是没有任何犹豫地选择了它:“我的一位同事以前曾经使用过康塔仪器微天平系统,并认为它是非常优秀的。并且,他在英国布里斯托尔大学的同事也对这种微量天平给出一致好评。实验表明,Aquadyne DVS可以满足我们的所有要求,并且具有明显优势。” 此外,当威尔逊博士和她的团队开发新的断代技术时,他们得到制造商的持续服务和支持,为此受到广泛赞赏。人们很早就知道,陶瓷吸收水分,但测量非常小的应变(扩展)结果是极其困难的。改成基于质量的测量方法不仅创造了为古代陶瓷断代的机会,它也使现代陶瓷中与吸湿性有关的问题-- 如釉料开裂--更容易地调查原因。 新的测年技术之所以出色,原因之一是它仅需的装置是一个小型高温炉炉和水吸附分析仪,用于测量“初始接收”质量和再羟基化之前的最终质量。这使得该技术更简单,更快,比现有的陶瓷断代技术花费低,如热释光方法。 威尔逊博士继成功开发烧制粘土的测年技术后,现在准备进一步用Aquadyne DVS开展工作,如测量胶结材料的水化率和碳化率,调查粒径对粉末陶瓷吸附动力学的影响。 技术介绍 再羟基化(RHX)的测年方法完全是在研究烧制粘土砖水分膨胀的可逆性时获得的意外收获。RHX的过程是由粘土烧制陶瓷对大气水分的化学吸附,这个过程是通过超慢的纳米级固态运输(一维扩散,SFD)进入粘土体内的。这项工作导致发现了一个新的动力学定律:水分膨胀的超慢反应动力学(以及质量增加)服从(时间)?幂律[1]。简单地说,对t?的时间依赖性意味着相等的质量将以1,16,81,256等增加(对应14,24,34,44等)。这些时间单位可以是秒,分,天或年。 因为再羟基化的过程是一个化学反应,其进程主要取决于温度。已证明[2],可根据出土样品的地点对“有效寿命温度”(ELT)进行估计,它是从执行分析到所能看到的近乎样品的终生的可靠温度。 在英国曼彻斯特大学的研究已经率先使用的微重量测量,使用Aquadyne DVS重量法水吸附分析仪(康塔仪器)进行RHX测年[3]。它的有效寿命温度(ELT)主要取决于获取样品的地点,在样品的有效生命周期内,提供一个适合的温度环境使其能顺利的分析样品。图1:这个图表显示了原始实验数据m2,证明了RHX测量方法的精确性。它的成功需要维持持续恒温以及空气中的相对湿度。 根据曼彻斯特大学的研究分析,运用全自动双站水吸附分析仪可以做微重量RHX数据分析。 在原理,RHX测年法的核心就是简单明了;然而,想要成功测出一片烧制陶器的年代还是有些困难的,所以我们尝试用RHX测量超慢速度质量的增加,一般地,每3天增加6mg. 在持续恒温和相对湿度的条件下测量样品(大约0.1ug);全自动动态水吸附分析仪可以做到这点,请看图1. 实验方法 Wilson已经详细说明了RHX测年法的过程。首先,m1样品需要在105摄氏度下脱气,直到达到一个恒定的质量。在这点上所有的物理吸附水分用T0表示,化学吸附脱气可能会超出样品能承受的脱气温度。然后把样品放在天平室,温度控制在ELT,(一般8到11摄氏度),相对湿度需要仔细的控制在可以提供水分子表面的层面。在这些条件下,样品可以保持平衡。当样品达到平衡点,会测量出原始样品质量m2. 在这些温度和湿度的条件下,通过RHX测年法测出陶土的原始质量以及水吸附值。 接着,将样品加热至500摄氏度直到脱尽样品中的所有水分,包括物理吸附和化学吸附(T0,T1,T2)的水。监测m1的质量损失,直到达到恒定质量m3. 然后把样品放置在与之前相同的温度和湿度条件下,得到数据m2。获得原始质量数据后,重新加热到500摄氏度,Savage等【5】描述了特征性的质量增加时的两个阶段过程。 第I阶段是样品从500℃冷却并在未来的环境条件下的平衡。第II阶段的质量增益,只是由于再羟基化过程(T2)。质量增加的这个部分只是来自于M4,从M4可以推断出M2并用于年代测定。 图2:该图显示了原始实验数据。红色划线部分是用来计算RHX速率常数(阶段II)。在这之前看到的质量增加是因为几个过程同时存在(阶段I)。虚线与Y轴相交点就是m4. [4] 样品的再羟基化所引起的归一化质量改变(ya)与样品寿命时间的1/4幂次方成正比:Yα=α(T)t1/4 比例常数α(T)是在温度T所获得的数据,以质量的线性部分相对t?作图时的斜率,如图2所示。Yα=(m2-m4)/m4样品的年代(tα)计算可用公式:tα=(yα/α)4这些关系示于图3。这里可以清楚地看到的三种不同类型的水的质量贡献。图3:再加热到500摄氏度后,质量增加量对时间?的关系。(a) 特征性的二个阶段的质量增加。这是所有3种类型的水分T0+T1+T2(~27,000数据点) 结合。这些成分的结合所贡献的总质量值也可以被分割成(b)和(c),如图所示。(b) 只有T0+T1会影响质量值,并且当样品与周围的环境达成平衡时,质量值就会停止变化。这个质量值的变化可以用于跟踪环境温度和相对湿度的改变。(c) 因T2再羟基化而产生的质量增加。 结论 Aquadyne DVS全自动双站水吸附分析仪可以精确的控制相对湿度和温度,并且超级灵敏的微天平可以使其测出上百年甚至是几千年前的陶瓷、陶器和粘土文物的年代。 袁仲一先生西北大学、西安交通大学教授,秦始皇兵马俑博物馆馆长。现任中国考古学会理事,陕西考古学会副会长,陕西省司马迁研究会会长,秦始皇兵马俑博物馆名誉馆长,陕西省秦俑学研究会会长和秦文化研究会副会长。1998年10月被陕西省人民政府聘任为省文史研究馆馆员。被尊称为“秦俑之父”。(介绍来自百度百科) 陈景元先生毕业于西安建筑工程学院建筑系,后长期在江苏省国土厅工作的建筑学家陈景元1961年曾参与秦始皇陵的保护规划,1984年他发表文章质疑兵马俑的真正主人是否秦始皇,未得到重视。今年,他又在《中国科学探险》杂志(第2期)发表了《兵马俑的主人根本不是秦始皇》一文,遭到学界反驳。为此,陈景元上月到河北至咸阳的崤函故道进行实地考察,确信殁于河北邢台的秦始皇不可能被运回陕西安葬,因而,非但兵马俑不是秦始皇的陪葬,就连陕西骊山脚下的秦始皇陵也值得质疑……(介绍来自百度)
  • 听大咖讲氮吸附孔径分析 脱附与吸附曲线该选who?
    p style=" text-align: justify text-indent: 2em " 让公益传播科学知识,用教育安抚技能焦虑。2018年11月15日,“比表面与孔径分析原理及应用”系列精品在线讲座第四弹成功举办。中国氮吸附仪的开拓者、国务院特殊津贴专家钟家湘教授与广大网友再度相聚仪器信息网。用内容丰富、深入浅出的精彩讲解,在2小时的滴答中,带大家继续畅游于比表面与孔径分析的世界。该系列讲座共分6讲,在此前的三讲中,钟老先后为大家讲解了氮吸附法、连续流动色谱法和静态容量法比表面及孔径分析仪原理及应用。本期的讲座则聚焦于氮吸附法介孔和大孔的测试与分析。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d94345d7-5843-42ff-96d2-b7fe28d449cf.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p /p p style=" text-align: center text-indent: 2em " strong 仪器信息网仪颗通平台直播现场 /strong /p p style=" text-align: justify text-indent: 2em " 在学术界,介孔与大孔的测量范围一般在2nm-500nm之间。钟老先为大家讲解了氮吸附法BJH孔径分析的基本方法。该方法通过控制和调节吸附质的压力,由低向高逐级变化,测量出每个压力下产生的吸附或脱附量,利用压力和孔径之间的定量关系,从而计算得到孔体积随孔径的变化,测试的压力点越多,孔径分布的描述就越精确。在该方法中,等温吸、脱附曲线的测定是孔径分析的唯一实验依据。钟老详细讲解了BJH法测量的介孔体积测量和计算方法,以及孔径分析的各种参数来源。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/f1cabf20-a28f-4d7e-ba1c-f1bbe4099dbe.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p /p p style=" text-align: center text-indent: 0em " strong 钟家湘教授 /strong /p p style=" text-align: justify text-indent: 2em " 而在孔径分布的表征中,除了总表面积(BET)和总孔体积外,积分分布、微分分布和最可几孔径是最重要的参数。其中积分分布反应的是孔增量的累计叠加、微分分布反应的是孔体积随直径变化的变化率,最可几孔径则是微分分布最大值对应的孔径,代表着孔径密度最大的等效孔径值,该数据在多孔材料的制备、检测、及实际应用中具有重要的参考意义。 /p p style=" text-align: justify text-indent: 2em " 另外,钟老还认为,吸附平均孔径缺乏实用的意义和价值,虽然仪器会得出相关数据,但是很少会成为主要分析参数。 /p p style=" text-align: justify text-indent: 2em " 氮吸附法比表面与孔径分析仪的精确测量上限在哪里?钟老表示,虽然仪器上标注的上限在500nm左右,但是高点追求接近于1并无实质意义,在0.99及以下才较为适当,这样相对应的孔径测试上限在200nm是合理的。另外,在前几年相关研究的论文中,研究者常采用等温吸附线中的脱附曲线进行分析,钟老表示,由于“张力强度效应”会导致脱附曲线很容易出现假峰(常出现在0.3-0.4nm左右),因此选取吸附分支可以获得更为真实的孔径分布。 /p p style=" text-align: justify text-indent: 2em " 讲座还对孔径分析设备要求、预处理注意事项、P0确定的经验等内容进行了传授,并分析了影响孔径分析测试精度的因素。钟老的精彩讲解赢得了网友们的满堂彩,在随后的问答环节,网友们积极留言互动,钟老也对大家提出的孔壁吸附层厚度选择、脱附曲线异常变动、BJH方法使用范围等内容进行了耐心地一一解答。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/7a054509-c45b-4ed7-b41e-78e9f84680e0.jpg" title=" 企业微信截图_15422713207930(1).png" alt=" 企业微信截图_15422713207930(1).png" / /p p /p p style=" text-align: center text-indent: 0em " strong 网友感谢弹幕 /strong /p p style=" text-align: justify text-indent: 2em " 虽然年逾80,但是钟老精神矍铄,幽默的谈吐,渊博的学识,以及鞭辟入里的条分缕析无不让听众如沐春风,讲座结束后,留言板上满是对钟老真诚感谢的弹幕。“时间过得太快了,希望下次讲座能够讲更多的东西。”钟老憨厚地笑着说。 /p p style=" text-align: justify text-indent: 2em " 作为仪器信息网仪课通平台打造的精品系列讲座之一,“比表面与孔径分析原理及应用”讲座的下一讲将于12月20日与网友们见面,有兴趣的用户可随时关注仪器信息网了解报名详情。仪课通是仪器信息网旗下的在线教育平台,专注于科学仪器与检测行业用户职场技能的提升。千里仪缘一网迁,平台邀请行业资深专家开讲授课,为行业用户提供丰富、高质量的自我提升内容,在知识互通,交流互助的学习环境下完成专业知识的系统化储备与升级。平台在线讲座包罗万象,涉及色、质、谱,物性检测、食品药品检测、环境检测、仪器开发与设计等诸多领域。讲座的直播采取公益形式,用户可免费报名参加。错过直播的用户也可在仪颗通平台购买讲座课程进行学习。 /p p style=" text-align: justify text-indent: 2em " 仪课通平台网址( a href=" https://www.instrument.com.cn/ykt/" target=" _self" https://www.instrument.com.cn/ykt/ /a )。 /p p style=" text-align: justify text-indent: 2em " 仪课通公众号二维码 /p p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/1072b0b6-b309-4496-b53b-914bde7d2b04.jpg" title=" 仪课通.jpg" alt=" 仪课通.jpg" / /p
  • “一种用于选择吸附六价铬的吸附剂”获国家发明专利授权
    中国科学院兰州化学物理研究所发明了一种用于选择吸附六价铬的吸附剂,近日获得国家发明专利授权(一种用于选择吸附六价铬的吸附剂,专利号:ZL 201110212531.3,发明人:郑易安 王爱勤)。   铬及其化合物广泛应用于工业生产的各个领域,是冶金工业、金属加工、电镀、制革、油漆、印染、颜料等行业中必不可少的原料。铬在水中的存在形式有两种:铬(VI)和 铬(III)。毒性大的铬(VI) 是重金属中有毒有害污染物的代表,常用的处理方法有沉淀法、氧化还原法、电解法、吸附法、离子交换法等。每种方法各有优劣,其中吸附法因操作简单、见效快、吸附剂可以设计及循环使用等优点在含铬废水处理中得以广泛应用。然而,目前国内常用的吸附法均存在一定缺陷,如材料价格昂贵、再生困难 吸附容量小,容易造成二次污染 选择吸附性有待提高等。   该发明以洋车前子壳粉和苯胺为原料,经过氧化聚合制备了用于选择吸附六价铬的吸附剂。吸附剂可在保持聚苯胺原有吸附性能基础上,进一步降低制备成本,赋予环境友好性,用于工业含铬废水的处理。   与现有技术相比,该发明中吸附剂合成原料廉价易得 吸附剂的制备过程简单,反应条件温和 吸附剂对水中的六价铬具有高的选择吸附性 在不降低聚苯胺原有吸附性能基础上,引入洋车前子壳粉,从理论上讲赋予吸附剂良好的生物可降解性,同时可拓展洋车前子壳粉的应用领域。
  • 康塔公司推出世界第一台双站水吸附分析仪
    美国康塔仪器公司隆重推出世界第一台双站水吸附分析仪 Quantachrome Announces New Water Sorption Analyzer 美国康塔仪器公司(Quantachrome Instruments)2009年10月30日在其位于佛罗里达州的总部发布新闻,隆重推出世界第一台双站重量法水吸附分析仪——Aquadyne DVS。 水吸附特性研究在制造和设计先进材料方面非常重要。许多材料 由于所含水分不同导致性能发生改变,这是由于材料所发生的对空气中的水发生自然吸附、毛细管冷凝或化学反应等作用所致。水分吸附现象和材料 的贮存、处理 或其活性都 有关系。含水量 的百分比是描述材料 含水量 的最简单和最重要的参数。材料 的含水量 取决于材料 所处环境的相对湿度 。水的吸附等温线是描述材料 在吸附水分过程中材料 水分含量 与相对湿度 的关系。其应用包括: 􀁺 粮食的烘干和贮存 􀁺 食品的质地和上架周期(保质期) 􀁺 药物赋形剂的稳定性和药物活性 􀁺 灰浆和其它似水泥材料 􀁺 纸张和涂料 􀁺 疏水表面处理(牙科用牙齿抗污涂料的效力) 􀁺 微孔和纳米结构的碳材料 􀁺 PEM燃料电池成分 Aquadyne DVS是一个全自动双微天平系统,可以同时测定两个样品的水蒸汽吸附量,融合了高精度,高输出和多功能的独特优点,具有充分完整的温度控制和相对湿度发生器,高分辨率(0.1微克)和高负载能力(5g)。 这个双微天平分析仪采用了重量法吸附测量原理结合动态蒸汽发生系统以精确测量吸附等温线,吸附动力学和依赖温度的吸附行为。两个样品可同时测量是这个新型分析仪的规范标准,但是更加奇特的是,如果只测量一个样品,出色的电子微天平系统可承受多达8g的重量,并仍能保持千万分之一(0.0000001g)的灵敏度! Aquadyne DVS设计性能高,操作简单,主要针对医药,食品,干燥剂,建筑材料,燃料电池,炭材料,考古学和材料科学的工业应用和学术研究,使得这些领域的科学工作者有了更加得心应手的分析和研究手段。
  • Markes吸附管的优势
    为什么Markes的热脱附吸附管更好?装填有吸附剂的 3&half " × 1/4" 吸附管是进行热解吸分析的主要样品收集装置。我们发现市场上存在众多吸附管品牌,那么选择哪个品牌的吸附管?基本需要考虑的因素包括产品质量、成本和交货速度等。在本文中,我们将探讨Markes吸附管的优势,并强烈建议您选择Markes的吸附管产品!对分析工作者来说,采样是分析过程中至关重要的一步。即使拥有灵敏的仪器、先进的软件和完善的分析方法,如果样品收集过程未被优化,分析结果的可靠性会受到很大的影响。对我们来说,安全可靠的采样始于产品质量。虽然购买较便宜的吸附管产品看似节省了成本,但如果产品未能达到预期性能,这种节省就没有意义。“产品质量”可能是一个模糊的概念,因此我们将重点讨论吸附管的洁净度。因素1:吸附管的洁净度吸附管若不足够洁净,其背景信号会出现在色谱图中,影响目标化合物的定性和定量分析。随着应用检测限要求的不断降低,吸附管的洁净度在疾病生物标志物的呼吸监测和空气中优先污染物的处理等领域变得格外重要。因此,吸附管产品质量的核心之一就是洁净度。Markes的预老化吸附管在发货前都经过严格的质量检查。以下三张图显示了10根Markes预老化吸附管和其他两个友商的同等数量吸附管,在相同条件下进行两次连续解吸的平均背景差异(友商2没有类似于我们的“空气有毒物专用吸附管”和“通用吸附管”产品,因此未作比较)。结果显示,在每种测试条件下,Markes的吸附管第一次和第二次解吸的背景都显著低于其他友商。事实上,在某些情况下,其他友商的吸附管第二次解吸的结果仅略低于Markes[预老化吸附管第一次解吸的水平,这清楚地证明了吸附管洁净度对结果的重大影响。因素2:吸附管类型的正确选择吸附管产品质量的另一个关键因素是选择适合分析要求的吸附管。通过与客户和合作伙伴的紧密合作,我们不断了解分析热脱附市场的新趋势,并致力于为各种采样挑战寻找合适的吸附剂组合。我们不仅提供多种类型的吸附管,而且设计了一系列符合特定要求和应用的吸附管。凭借近25年的行业经验,我们还能根据需要帮助客户开发定制吸附管。然而,除了吸附管本身,我们更向客户提供与热脱附相关的技术经验和知识。与其他友商不同,我们将吸附管与合适且经过验证的吸附剂以及聚焦冷阱相结合,确保分析作为整体进行。此外,我们庞大的应用案例库能够为多种方法的开发提供有力的支持。因素3:产品一致性最后,同样重要的是产品批次间的一致性。确保您去年购买的吸附管,与今年购买的性能完全相同。因此,Markes的吸附管制造过程在严格的质量控制下进行,每根管的填充重量误差控制在±2.5%以内。发货前,每根管都会经过严格的物理测试,而预老化管在出厂前会进行色谱测试。我们的目标是在每个阶段都为您提供可靠且高品质的产品。
  • 一文带你走入物理吸附的天地
    p style=" text-align: justify text-indent: 2em " 在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。 /p p style=" text-align: justify text-indent: 2em " 影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 325px " src=" https://img1.17img.cn/17img/images/201906/uepic/d35f3ecb-de71-46ec-ad8f-94fe24a2882c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 325" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。 /p p style=" text-align: justify text-indent: 2em " 在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。 /p p br/ /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/184f6781-8d9a-4823-94c9-62247baceeb6.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " 根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。 /p p style=" text-align: justify text-indent: 2em " 在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。& nbsp 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。 /p p style=" text-align: justify text-indent: 2em " 多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。 /p p style=" text-align: justify text-indent: 2em " 物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。 /p p style=" text-align: justify text-indent: 2em " 下面是静态体积法的物理吸附仪器示意图:真空泵、一个或多个气源、连接样品管的金属或玻璃歧管、冷却剂杜瓦、样品管、饱和压力测定管、压力测量装置(压力传感器)。其中歧管的体积经过校准,并含有温度传感器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a23586e-b60b-4eb0-bb98-11447a4bcf39.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " 1 :样品管 & nbsp 2:低温杜瓦 & nbsp 3:真空泵 & nbsp 4:压力传感器 & nbsp 5: 歧管 /p p style=" text-align: center text-indent: 2em " 6: 饱和蒸汽压测定管 & nbsp 7 : 吸附气体 & nbsp 8 :死体积测定气体He /p p style=" text-align: justify text-indent: 2em " 静态体积法测试主要流程(以氮气吸附为例):首先将样品进行脱气净化处理,之后测量死体积(样品池)空间,然后将样品冷却到液氮温度,将氮气注入到已知体积的歧管中,记录压力与温度,之后样品池与歧管之间的阀门打开,氮气扩散到样品池,由于空间体积增大和样品对氮气的吸附作用,压力下降,通过压力的下降来计算气体吸附量。计算过程基于克拉柏龙方程:PV = nRT。其中P是气体的压强,V为气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度; R为理想气体常数。吸附量由下面公式得到: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/81d0c349-bbb5-414a-ad42-095759c73754.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 如果温度和压力恒定,气体(吸附质)和表面(吸附剂)的作用能是不变的,在一个特定表面的吸附量也是不变的,因此在恒定温度下,可以用平衡压力对单位重量吸附剂的吸附量作图。而这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体是作为吸附探针来分析材料比表面积和孔径分布的,它应该满足几个条件: 1) 气体相对惰性,不与吸附剂发生化学反应; 2) 物理吸附一般是弱的可逆吸附,为了使足够气体吸附到固体表面,测量时固体须冷却到吸附气体的沸点; 3) 符合或满足理想气体方程的使用条件。 /p p style=" text-align: justify text-indent: 2em " N2(77 K)是最常见的吸附气体,可满足常规分析;Ar(87 K)为微孔分析提供更准确的分析结果、更快的分析速度、更高的起始压力;CO2(273 K)对微孔碳材料具备最快的分析速度,分析孔径可低至0.35 nm;Kr (77 K)适用于超低比表面积分析;Kr(87 K)适用于薄膜样品的孔径分析。我们可根据样品特点来选择最合适的吸附气体。 /p p style=" text-align: justify text-indent: 2em " 在进行比表面积分析时,我们经常会用到Langmuir 和BET方程,其中Langmuir 方程是基于单分子层吸附理论,而BET 方程式基于多层分子吸附理论,也是目前最流行的比表面分析方法,适合于大部分样品。 /p p style=" text-align: justify text-indent: 2em " 在进行孔径孔容分析时,可选择的理论模型会更多,不同的理论模型假设条件不同,给出的计算结果也是不同的,所以我们应选择最适合样品性质的理论模型。根据经验,BJH、DH模型适用于介孔材料分析, DA、DR、 HK、SF模型适用于微孔材料分析,NLDFT、QSDFT适用于微孔/介孔材料分析。NLDFT 是非定域密度泛函理论,研究表明,NLDFT 计算出的比表面值最接近真实值,并且该理论适用于微孔和介孔材料。 /p p style=" text-align: right text-indent: 2em " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
  • 物理吸附检测方法分类大全
    p style=" text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201906/uepic/554eae64-8ff0-4d72-ab23-5ceee57b8ef8.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 180" height=" 198" style=" max-width: 100% max-height: 100% float: right width: 180px height: 198px " border=" 0" vspace=" 0" / 吸附,是在界面层中的组分的浓度与它们在体相中的浓度不同的界面现象;物理吸附,通常是指气体或蒸汽在固体界面的吸附。当气体或蒸汽在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。吸附于固体表面的气体/蒸汽分子,不与固体产生化学反应,吸附热小 , span style=" text-indent: 2em " 吸附速度 /span span style=" text-indent: 2em " 快,在一定程度上是可逆的。 /span span style=" text-indent: 2em " 物理吸附分析方法有单组气体/蒸汽分吸附、多组分气体/蒸汽选择性竞争吸附、低压段吸附、高压气体吸附等(详细分类见下条)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 物理吸附分析方法常被应用于催化剂、吸附剂等固体材料的比表面积分析、孔容孔径分析、气体吸附能力评价、蒸汽吸附能力评价、多组分选择性竞争吸 /span img src=" https://img1.17img.cn/17img/images/201906/uepic/a3caaf5d-8f20-43af-b5fe-fc999b763b94.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 250" height=" 82" border=" 0" vspace=" 0" style=" text-align: justify text-indent: 32px max-width: 100% max-height: 100% width: 250px height: 82px float: left " / span style=" text-indent: 2em " 附评价等分析内容,具体领域如工业催化领域的催化剂性能检测、气体净化提纯的吸附剂评价、氢气甲烷的高压吸附存储等领域。 /span 物理吸附仪为采用物理吸附现象、原理来进行材料表面特性分析表征的仪器。物理吸附仪的原理和类型,根据不同的分析目的、材料、原理、压力范围、吸附质种类等而不同,下文对物理吸附分析方法的分类介绍,基本也适用于物理吸附仪的分类。 /p p style=" text-align: justify text-indent: 2em " 按照如下三种分类方法,对物理吸附进行分类,由该分类图表可清晰的对物理吸附分析方法有总体的框架性的了解,是物理吸附的入门级基础知识。 /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法一:根据吸附质类型分类 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 298px " src=" https://img1.17img.cn/17img/images/201906/uepic/88ae3670-c353-47a9-a4ce-d29bab432ab1.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 500" height=" 298" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法二:根据吸附质定量方式分类 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 340px " src=" https://img1.17img.cn/17img/images/201906/uepic/a2d24a38-06fc-45a6-a32d-9519649b7e53.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 500" height=" 340" border=" 0" vspace=" 0" / /strong /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法三:根据测试内容或数据分析理论分类 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 352px " src=" https://img1.17img.cn/17img/images/201906/uepic/31898eb8-8b30-4539-9f56-87ebfa58a0e8.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 352" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 以上物理吸附的三种分类方式,基本涵盖了目前国际上物理吸附分析方法的全部内容,也是目前已经普及应用的物理吸附仪的功能涉及范围。了解清楚并掌握该三种分类方法中的各种物理吸附分析方法的原理、特征、优劣势与适用范围,是正确应用物理吸附这种分析方法进行材料表征的基础,是让物理吸附这种分析方法服务与科研和工业生产过程的关键。 /p p style=" text-align: right " strong 作者:柳剑锋 /strong /p p style=" text-align: right " strong 贝士德仪器科技(北京)有限公司总经理 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由贝士德供稿,不代表仪器信息网本网观点) /p
  • 麦奇克拜尔气体和蒸汽吸附仪Belsorp-Max II于2016ICC全球首发
    2016年7月3-8日,被学术界誉为“催化领域奥运会”的第十六届国际催化大会(ICC 16)首次在中国北京国家会议中心举行。本次大会以“可持续发展的催化科学研究与技术”为主题,吸引了来自50多个国家的近3000人出席了本次会议。国际催化大会是催化领域规模最大、水平最高、影响最广的国际学术会议,大会涉及许多催化相关的科学分析仪器,如:化学吸附仪、激光粒度仪、比表面积分析仪等。大昌华嘉携手旗下相关代理品牌 - 麦奇克拜尔借此契机在大会展区亮相,麦奇克拜尔公司重磅推出的新品:高精度气体和蒸汽吸附仪Belsorp-Max II得以在ICC 2016上实现全球首发,非常应时应景。Belsorp-Max II集众多‘黑科技’于一身,满足了用户精确测试与高效率工作的需求,因此一经亮相就获得了现场众多专业观众的关注与认可。作为Belsorp家族中的新晋旗舰产品,Belsorp-Max II采用静态容量法及AFSMTM校准方式,适用于绝大部分有机溶剂的蒸汽吸附和水蒸气吸附;同时,Belsorp-Max II具备“自动优化测量”功能,自动调用合适的吸附测量程序,这使得仪器测试速度提升了一倍;此外,Belsorp-Max II可一次性同时精确测定4个样品,并在预处理全程、从预处理切换至分析过程实现了全程全自动运行,最大限度地从自动化应用中解放了用户。麦奇克拜尔有限公司(MicrotracBEL Japan,Inc.)是一家研究生产容量法气体吸附分析仪的专业制造厂商。推出第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪/颗粒图像分析仪--美国麦奇克(Microtrac)公司比表面及孔隙度分析仪/化学吸附仪--日本麦奇克拜尔(MicrotracBEL)公司视频光学接触角测量仪、表面/界面张力仪--瑞典百欧林(Biolin)公司堆密度计--英国康普利(Copley)公司密度计/旋光仪/折光仪/糖度仪--美国鲁道夫(Rudolph)公司全自动氨基酸分析仪--英国百康(Biochrom)公司元素分析仪、TOC总有机碳分析仪、快速氮测定仪--德国Elementar公司薄层色谱扫描仪、点样仪--德国Biostep公司水份活度仪--瑞士Novasina公司火焰光度计/氯离子分析仪--英国Sherwood公司X射线荧光光谱仪-荷兰帕纳科(PANalytical)公司凯氏定氮仪--德国贝尔(Behr)公司全自动化学反应器/量热仪--瑞士Systag公司 大昌华嘉商业(中国)有限公司服务电话:4008210778邮箱地址:ins.cn@dksh.com大昌华嘉网站:www.dksh-instrument.cn 扫描关注“大昌华嘉科学仪器部”公众号
  • BEL发布新一代Belsorp-Max三站全自动比表面、孔隙分析和蒸汽吸附仪
    大昌华嘉公司表面吸附分析仪供应商&mdash &mdash 日本拜尔有限公司(Bel Japan,Inc.)于近期推出了最新一代的Belsorp-Max三站全自动比表面、孔隙分析和蒸汽吸附仪,增加更高温度保温歧管的功能。 新一代Belsorp-Max Belsorp-Max最早使用了气动阀,歧管保温40℃和0.1Torr高精度压力传感器用于多站微孔孔分布测试和蒸汽吸附:使用0.1Torr高精度压力传感器,对于低于10-7Pa的压力变化也能精确给出结果,确保高真空度下压力测量的更高精度。仪器内部采用空气浴技术,通过加热将管路、阀和歧管区保温到40℃,确保气体吸附的稳定性和蒸汽吸附的无冷凝;气动阀确保仪器内部的高密封性和长期阀门开闭的无热量产生。 2013年3月,bel公司又提供了max内部歧管加热保温到60℃,确保室温下或者更高温度下的水蒸气等溶剂蒸汽吸附的精度和准确度,为客户提供更好的蒸汽吸附功能,用于MOF,COF, 分子筛,吸水硅胶,活性炭、石墨烯类碳材料,吸附制冷机等材料。具体详情,请联系大昌华嘉公司400-821-0778 大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪-美国麦奇克(MICROTRAC)公司 视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司 多功能粉末流动性测试仪&mdash 英国Freeman Technology公司 比表面/孔隙度分析仪&mdash 日本拜尔BEL公司 粉末流动性分析仪&mdash 英国康普利COPLEY公司 LB膜分析系统&mdash 芬兰Kibron公司 颗粒图像分析系统&mdash 挪威AnaTec公司 密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司 全自动氨基酸分析仪-英国Biochrom公司 元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司 薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司 水份活度仪-瑞士novasina公司 凯氏定氮仪-德国贝尔(behr)公司 全自动反应量热仪-瑞士Systag公司
  • 大连化物所开发新型金属有机框架吸附材料
    近日,我所节能与环境研究部(DNL09)王树东研究员团队与沙特阿拉伯国王科技大学赖志平教授团队合作,提出了一种通过原位氟化合成Fe基金属节点的策略,设计合成了一种新型全氟节点金属有机框架(MOFs)——DNL-9(Fe),该材料是一种具有螺旋氟桥金属节点结构的Fe-MOFs吸附剂,可用于潮湿条件下的C2H2/CO2吸附分离。C2H2/CO2具有相同的动力学尺寸(3.3Å)、相似的极化率(29.1×1025/cm3至33.3×1025/cm3)和相近的沸点(189K至194K),在潮湿的工业环境中吸附分离C2H2和CO2具有挑战。MOFs是一种孔道丰富,结构可调的多孔材料,但是其稳定性、耐水性相比于活性炭和分子筛较差,这也限制了其在C2H2潮湿环境下分子的吸附和C2H2/CO2的分离。相比于在MOFs中引入不饱和金属位点、有机配体功能化等调控手段,构筑含氟阴离子等氢键受体提供了另一种途径来增强客体分子与骨架间的相互作用。该方法通过强化C2H2与MOFs限域孔道内的氢键作用实现C2H2的选择性吸附,同时可以提升材料的耐水性和抗水气吸附干扰能力。然而,在MOFs的合成中难以对金属节点进行原位氟化配位,目前构筑含氟MOFs单元通常采用SiF62-,TiF62-,GeF62-阴离子盐,或含氟有机配体等价格昂贵的商业试剂,这也阻碍了含氟MOFs的低成本生产与实际应用。   本工作中,研究团队另辟蹊径,在DMF溶剂高温分解条件下构造出还原性合成环境,促进了F原子与金属Fe的直接配位络合。团队采用简单的HF试剂,实现了Fe-MOFs的金属节点的原位氟化和螺旋结构拓扑链的生长,从而开发出具有混合变价的[Fe6(μ-F)6F8]配位节点的全氟Fe基材料DNL-9(Fe)。DNL-9(Fe)的结构区别于常见的[Fe3(μ3-O)(μ-OH)3]或[Fe2MII(μ3-O)(μ-OH)3]节点,其由生物质基呋喃二甲酸作为配体合成原料,取代了传统对苯二甲酸等难降解的有机物,是一种环境友好型吸附剂。该材料还具备优异的耐水性和化学稳定性,在潮湿环境中可以高效分离C2H2CO2,一次提浓后的C2H2纯度即可达到99.9%。同时,氟化的金属位点Fe-F-Fe有效降低了H2O和C2H2分子的吸附热,在真空条件下即可循环再生,可以应用于变压吸附(PSA)和真空解吸(VSA)工艺。因此,本工作为多孔材料结构设计、MOFs的氟化改性和吸附分离提供了新的思路。   近年来,王树东团队在C2H2/CO2协同吸附机理探究(Chem. Mater.,2022),潮湿CO2捕集(Fuel,2023;Chem. Eng. J.,2022;J. Energy Chem.,2022),混合配体MOFs调控(Chem. Eng. J.,2022),果糖直接合成MOFs(ACS Sustain. Chem. Eng.,2021)等相关方面开展了多孔材料设计与吸附分离工作,致力于开发低成本、高效、疏水等综合性能的多孔材料吸附剂。   相关研究成果以“Fluorido-Bridged Robust Metal-Organic Frameworks for Efficient C2H2/CO2Separation under Moist Condition”为题,发表在《化学科学》(Chemical Science)上,该工作第一作者是我所DNL0901组博士毕业生顾一鸣。上述工作得到国家自然科学基金等项目的资助。
  • 【ISCO泵】ECBM:在现实条件下的重力吸附测量
    01 摘要煤层气作为传统天然气的有力补充,拥有广阔的开发前景。增强型煤层气(ECBM)技术不仅显著提升了甲烷的采收效率,同时还实现了二氧化碳的地下封存。该技术的研究可通过利用 Rubotherm IsoSORP 系统配备的磁悬浮天平对吸附等温线进行重力测量来深入进行。在策划 ECBM 项目时,精确的气体吸附数据是必不不可少的。02 关键词&bull 天然气&bull 增强型煤层气 (ECBM),二氧化碳 (CO2)&bull 煤层气&bull 重力测量法*图片来自互联网03 引言受能源价格不断攀升的驱动,对油气替代资源的开发探索具有极其重要的经济价值。众多天然气资源以煤层气(CBM)的形态赋存于煤层之中。增强型煤层气(ECBM)技术通过注入二氧化碳来提升从煤层中提取甲烷的效率[1]。除增加天然气提取量外,ECBM 还具备另一项优势:即能将碳捕集与封存(CCS)过程中产生的 CO2 安全地贮存于地下,避免其排放至大气中[2]。但是,甲烷被 CO2 取代的过程极为复杂:气体不仅会在煤的表面发生吸附作用,还会被吸收进入煤的内部结构,导致煤样体积膨胀。因此,发展 ECBM 技术必须在真实条件下,对不同煤样进行细致的研究[3]。本应用说明阐述了如何运用 Rubotherm IsoSORP 系统通过重力测量方法研究 ECBM 过程。04实验Rubotherm IsoSORP 系统采用磁悬浮天平(MSB)技术来精确测定吸附等温线。一套气体定量供应系统用于在特定实验条件下提供纯净或混合气体。煤层气通常存在于压力介于 30 至 300 bar,温度介于 30 至 100℃ 的煤层中。实验室级别的测量必须能够覆盖这些压力与温度范围。在较高压力下用二氧化碳创建一个特定的气体环境并非简单任务:需要通过柱塞泵将二氧化碳从钢瓶压力(60 bar)加压[4],同时需对整个供气系统包括所有阀门和管道加热以防凝结。图 1 展示了完整的 IsoSORP 系统的示意图。图1. 配备 MSB 和 SC HP 静态气体定量系统的 IsoSORP 仪器流程图05结果在意大利南部撒丁岛的苏尔西斯煤田采集的煤样上开展了 ECBM 研究。图 2 展示了在 45℃ 和 60℃ 条件下,二氧化碳的吸附等温线:观察到二氧化碳的吸附量超过了甲烷,这对于 ECBM 技术来说是一个至关重要的条件[5]。图2. 在 45℃ 和 60℃ 下,甲烷和二氧化碳在撒丁岛煤样上的绝对吸附量下一步是测量二氧化碳和甲烷混合物的吸附量。在此过程中,利用磁悬浮天平重力测定总体吸附等温线。依据这些数据,通过对气相中未被吸附的混合气体进行气相色谱(GC)分析,可以得出各单一组分的吸附数据。在降压步骤后,可以将气体样品通过六通气体采样阀采集用于 GC 分析。另一种分析手段是利用质谱(MS)进行分析。图3. 在 45℃ 下,两种甲烷/二氧化碳混合物在撒丁岛煤上的总吸附量和组分选择性吸附量这些实验获得的数据(图3)显示,在混合气体中即使二氧化碳含量较少,其在煤中的吸附量也超过甲烷[6]。这证明了通过注入二氧化碳可以从煤层中置换出甲烷。为了制备成分精确的气体混合物,Rubotherm 开发了MIX-模块作为附加配置选项:MIX 仪器配备了经过校准体积的储罐、一个气体循环泵以及一个带有采样阀的气体采样体积用于分析(图4)[7]。图4. 用于气体混合物高准确度吸附分析的 IsoSORP SC MIX 静态系统06 结论煤层气(CBM)是未来替代传统天然气的宝贵资源。增强型煤层气开采技术(ECBM)通过注入二氧化碳来提高天然气的采收率,并具有长期封存二氧化碳的额外优势。研究表明,Rubotherm IsoSORP 仪器能够为 ECBM 项目的规划和设计提供关键数据,包括气体储存容量以及甲烷被 CO2 置换的动力学过程。Rubotherm为这一应用所需配置:IsoSORP MSB 系统&bull 高测量负载,高达 60 克&bull 流体密度测量&bull 压力范围 HP II 高达 350 bar&bull 温度范围从环境温度到 150℃SC-HP II 静态定量给料系统&bull 加热至 100℃ 以避免凝结&bull Teledyne ISCO 柱塞泵用于输送二氧化碳&bull 可选:MIX 模块参考1. R. Pini, D. Marx, L. Burlini, G. Storti, M. Mazzotti: Coal characterization for ECBM recovery: gas sorption under dry and humid conditions Energy Procedia, Vol. 4 (2011) 2157-21612. Ch. Garnier, G. Finqueneisel, T. Zimny, Z. Pokryszka, S. Lafortune, P.D.C.Défossez, E.C. Gaucher: Selectionof Coals of different maturities for CO2 Storage by modelling of CO2 and CH4 adsorption isotherms Inter-national Journal of Coal Geology, Vol. 87 (2011) 80-863. J.S. Bae, S.K. Bhatia: High-Pressure Adsorption of Methane and Car-bon Dioxide on Coal Energy & Fuels, Vol. 20 (2006) 2599-26074. Supercritical Fluid Applications in Manufacturing and Materials Pro-duction, Teledyne ISCO, Syringe Pump Application Note AN15. S. Ottiger, R. Pini, G. Storti, M. Mazzotti, R. Bencini, F. Quattrocchi, G.Sardu and G. Deriu: Adsorption of Pure Carbon Dioxide and Methane on Dry Coal from the Sulcis Coal Province (SW Sardinia, Italy) Environ-mental Progress, Vol. 25 (2006), 355-3646. S. Ottiger, R. Pini, G. Storti and M. Mazzotti: Competitive adsorption equilibria of CO2 and CH4 on a dry coal Adsorption, Vol. 14 (2008)7. FlexiDOSE Series Gas & Vapor Dosing Systems, Rubotherm 2013作者:Frieder Dreisbach 拥有机械工程热力学博士学位,是德国波鸿 Rubotherm GmbH 的董事总经理。Thomas Paschke 拥有分析化学博士学位,是德国波鸿 Rubotherm GmbH 的应用专员。
  • 美国康塔物理吸附前沿进展讲座成功举办
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,并使之服务于科研、检测,为广大用户提供精确、严谨的数据。   公司应用总监,在学术界享有盛名的Dr. Matthias Thommes于2012年7月来华与广大中国相关领域的科研工作者共同探讨物理吸附、传质等领域的学术问题,并着力将最新的科研成果用于相关的应用领域。   7月24日浙江工业大学的会议室座无虚席,Dr. Matthias Thommes与应邀前来的浙江工业大学、浙江大学、杭州师范大学、浙江电子科技大学等杭州师生共同分享了物理吸附领域科学研究的最新进展,如吸附质低压相变的研究等,获得了各校师生的热烈响应。        会后,与会师生与Dr. Matthias Thommes展开了热烈讨论。     针对物理吸附数据处理的复杂性,Dr. Matthias Thommes与师生一对一的数据分析使广大师生加深了对物理吸附数据的理解,从而更好的对数据进行解析,更准确地对材料进行表征。
  • 500亿空间|VOCs吸附材料评价如何评价?
    p style=" text-indent: 2em text-align: justify " VOCs(VolatileOrganicCompounds)学名挥发性有机物,按照世界卫生组织的定义,沸点在50—250℃的化合物,室温下饱和蒸气压超过133.32Pa,在常温下以蒸气形式存在于空气中的一类有机物为挥发性有机物(VOCs)。 /p p style=" text-indent: 2em text-align: justify " VOCs危害大,不容小觑:VOCs成分复杂,目前已经监测出的VOCs有300多种,主要来自建筑装饰、有机化工、石油石化、包装印刷、表面涂装等行业。VOCs四大大气污染物之一,属于形成PM2.5和光化学烟雾的重要因素,能够损害人体神经系统、血液成分和心血管系统,对人体健康和社会环境影响极大。 /p p style=" text-indent: 2em text-align: justify " VOCs污染源监测需求市场空间将达468亿元,受益于法律法规重视度增加、排污费的征收以及政府部门补贴的激励作用,最高激活539亿市场空间;截至目前,VOCs治理行业已发生空间约为50亿元,主要集中在石油化工业以及印刷行业。到2020年VOCs治理行业的剩余市场空间约为500亿元,具有相当大的增长潜力。 /p p span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/60ce5a25-b35c-4199-9e1d-7a7ff6bb148c.jpg" title=" AAA.jpg" alt=" AAA.jpg" / /p p /p p style=" text-indent: 2em text-align: justify " 物理吸附法是目前去除VOC的重要方法,因此吸附材料对VOC的吸附性能评价就成为其中重要的一环。传统方法采用测试材料比表面积的方法,即通过在低温下吸附氮气的方法来计算材料比表面积,比表面积越大吸附能力越强,此方法只能给出定性的方向性分析,弊端是不能定量分析吸附材料对某种VOC的吸附量。对于目前客户越来越严格的要求,传统方法已经无法满足客户的需求,而进口仪器能满足要求的也很少,而且价格昂贵,测试缓慢,又由于使用复杂,真正能正常使用的用户少之又少。 /p p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 417px " src=" https://img1.17img.cn/17img/images/201906/uepic/b928f466-182f-4aee-a1f0-4a4a0b02a45c.jpg" title=" BBB.jpg" alt=" BBB.jpg" width=" 500" height=" 417" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 针对目前的市场现状,贝士德仪器的研发人员在2013年投入大量人力物力,联合复旦大学龙英才教授(龙老师是中国分子筛材料吸附VOCs应用的专家和先驱)共同开发,历经三年时间,推出国内首款重量法蒸气吸附仪,这也是全球唯一一款超过三分析站同时测试的重量法蒸汽吸附仪。他的主要优势特点是: /p p style=" text-indent: 2em text-align: justify " 1. 相比容量法,不采用任何折中近似处理,不存在无温区分布、气体非理想化校正等误差来源。 /p p style=" text-indent: 2em text-align: justify " 2.弥补了容量法无法测试实时等压吸附速度、无法准确描述材料吸附动力学特性的缺陷。 /p p style=" text-indent: 2em text-align: justify " 3.作为多站真空重量法蒸汽吸附仪,可支持1-8个分析站同时分析。 /p p style=" text-indent: 2em text-align: justify " 经过三年的市场检验,3H-2000PW重量法蒸汽吸附仪通过优良的性能和高效率的测试能力获得了用户的肯定,这其中包括:复旦大学,北京交通大学,西安交通大学,天津理工,中国石化南京催化剂分公司等等,此外,它也作为科研工作者的有力助手,多次出现在国内外高水平期刊中,其中最为引人注目的就属郑州大学臧双全课题组发表在顶级期刊《Nature-Chemistry》的文章,其中有应用我公司两种类型的物理吸附仪,3H-2000PS1比表面及孔径分析仪和3H-2000PW重量法蒸气吸附仪测试的数据,这也从侧面说明顶级期刊对国产仪器测试数据的认可。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 198px " src=" https://img1.17img.cn/17img/images/201906/uepic/add57183-e9fb-4545-8f24-1c5bda47212d.jpg" title=" CCC.jpg" alt=" CCC.jpg" width=" 500" height=" 198" border=" 0" vspace=" 0" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 226px " src=" https://img1.17img.cn/17img/images/201906/uepic/03cf6f1b-eca9-43fd-bf64-bb4f53c0d01d.jpg" title=" DDD.jpg" alt=" DDD.jpg" width=" 500" height=" 226" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 贝士德仪器的研发团队没有满足于眼前的成果,因为更多的客户提出了更高的要求,比如在实际应用中,VOCs不是纯组分气体,而是多种组分的混合,多组分蒸汽的竞争吸附这一更加复杂的难题摆在了我们的面前,令人振奋的是贝士德仪器在2018年将多组分竞争吸附分析仪+联用在线质谱系统正式推出,将为更多用户的科研,实验提供强有力的解决方案。 /p p style=" text-indent: 2em text-align: justify " 2019年国际贸易摩擦升级,美国的技术壁垒和技术封锁手段再次抬头,虽然没有在风口浪尖上的华为那么直面巨大压力的挑战,但是作为国产仪器厂家的我们也是感同身受,国产仪器需自强,贝士德仪器一直在努力,我们以实际行动来打动用户,只要用户愿意了解我们的仪器,我们将提供完善的售前服务,提供不逊色于国外仪器的测试结果和解决方案。 /p p style=" text-indent: 2em text-align: right " strong 作者:贝士德研发团队 /strong /p p style=" text-indent: 2em text-align: left " (注:本文由贝士德供稿,不代表仪器信息网本网观点) /p
  • 恒泰尚合高温高压等温吸附仪顺利交付使用
    日前,由恒泰尚合能源技术(北京)有限公司代理的GAI-100型进口高温高压等温吸附仪顺利交付甲方使用。甲方研究院院长、实验室主任等领导高度重视,亲临安装培训现场,并与公司技术人员进行了广泛的交流和探讨。经过4天安装与培训,甲方对该设备的宽测试范围、高采集精度、高稳定温控、人性化操作与方便快捷的数据处理、以及完善的售后服务给予了高度的评价和认可。 (现场安装与培训) GAI-100型进口高温高压等温吸附仪技术参数:1)材料: 316 不锈钢;2)工作压力:达 10,000 psi,精度0.01%;3)工作温度:达 350°F (177°C),精度0.01%;4)电源: 110 VAC 60 Hz 单相或 220/240 VAC 50 Hz 单相;5)尺寸: 36” x 36” x 72”(宽 x 深 x 高);6)供应要求: 最低 80 psig、最高 120 psig 的气体,每次一种;7)测试气体最低为 125 psig;8)用于油槽的油; 标准配置:1)油槽;2)3 个测试室;3)气体升压泵;4)地面安装的仪器架,带历新 (Lexan) 防溅保护装置;5)工具包;6)笔记本电脑
  • Autosorb IQ物理吸附仪培训会
    美国康塔仪器公司(Quantachrome Ins)40余年专注于多孔材料科学表征仪器的生产、制造,相继推出了7代适应不同分析需求的物理吸附仪器。其中Autosorb IQ是我公司2010年面向高端用户的物理吸附划时代研究级仪器,因其具有高分辨、高精度、大通量的特点,一经推出就收到全球众多用户的青睐。 美国康塔仪器公司始终以为用户提供准确地数据、科学严谨的应用支持为己任。在定期为全国各地研究者提供理论培训的基础上,我公司针对Autosorb IQ的用户特点及使用特性,将于2012年9月21日在上海科学会堂举办Autosorb IQ物理吸附仪培训会。为操作者详细介绍这一系列仪器的操作、并帮助操作者理解物理吸附数据的解析。 会议内容将包括: Autosorb IQ功能全解析 如何有效地进行样品前处理 如何理解、设置分析条件 如何判断等温线的可信度 如何对数据进行完整的解析 如何理解不同数据处理方法之间的关系 详情请与美国康塔仪器公司北京办事处联系。 联系电话:010-64401522 传真:010-64400892
  • 号称黑科技的气体吸附仪问世 全球首发在中国
    仪器信息网讯 2016年7月3-8日,被学术界誉为“催化领域奥运会”的第十六届国际催化大会(ICC 16)在北京国家会议中心举行。这是国际催化大会首次在我国举办,来自50多个国家的近3000人出席了本次会议。  借此盛会,大昌华嘉旗下代理品牌——麦奇克拜尔重磅推出了一款高精度气体和蒸汽吸附仪Belsorp-Max II。大昌华嘉吸附产品经理樊润高兴地表示:“Belsorp-Max II能够在ICC 16上实现全球首发,非常应时应景。”Belsorp-Max II新品  随着用户对测试要求及实验效率的提高,科学仪器的精确测试与自动化操作成为研发热点,“Belsorp-Max II集众多‘黑科技’于一身,满足了用户精确测试与高效率工作的需求,因此一经亮相就获得了现场众多专业观众的关注与认可。”樊润介绍说。  作为Belsorp家族中的新晋旗舰产品,Belsorp-Max II采用静态容量法及AFSMTM校准方式,适用于绝大部分有机溶剂的蒸汽吸附和水蒸气吸附;同时,Belsorp-Max II具备“自动优化测量”功能,自动调用合适的吸附测量程序,这使得仪器测试速度提升了一倍;此外,Belsorp-Max II可一次性同时精确测定4个样品,并在预处理全程、从预处理切换至分析过程实现了全程全自动运行,最大限度地从自动化应用中解放了用户。大昌华嘉展位
  • 【视频全录】 “iQ"的气体吸附功能有多强?
    p style=" text-align: justify text-indent: 2em " Autosorb-iQ 是一款设计灵活、用途广泛的气体吸附分析仪。Autosorb-iQ自带脱气站,不仅可以进行气体的物理吸附,还可以进行气体的化学吸附以及蒸汽吸附。 /p p style=" text-align: justify text-indent: 2em " Autosorb-iQ最低可以探测到孔径为0.35nm的微孔并计算获得样品的孔径分布情况以及孔的容量,使用氪气吸附模式可精确测定低至 0.0005 m2/g 的比表面积。其优秀的物理吸附测试能力来源于其优异的质量以及精湛的技术。Autosorb-iQ配备隔膜泵-分子泵系统保证样品在预处理或者分析时处于高真空状态;0.1torr的压力传感器,可以辨别极低压力下微小的压力变化;独有的RTD技术(液位探头)可以保证测试过程中浸入冷却剂(例如,液氮或者液氩)的区域体积最小并且始终保持稳定;最全面的DFT核心文件库,准确表征每个样品的孔径分布情况。 /p p style=" text-align: justify text-indent: 2em " script src=" https://p.bokecc.com/player?vid=AE7648702EE50E369C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-align: right " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
  • 煤层气等温吸附仪隆重发布
    浙江泛泰仪器有限公司经过多年研发,在今年正式投产全自动煤层气等温吸附仪产品。即等温吸附解吸仪。 该仪器能够单组分或多组分等温吸附或解吸。 其主要流程如下图所示。
  • 日开发吸附土壤放射性物质新方法
    新华社东京7月14日电 人工沸石在水质净化和土壤改良等领域早有应用,它还有吸附放射性铯的功能。日本研究人员日前宣布,他们在人工沸石的这一性能基础上,通过化学合成使其带有磁性,这一技术可在清除土壤放射性物质时派上用场。   据日本《每日新闻》报道,人工沸石可由火电站发电副产品粉煤灰制成,原料价廉易得。爱媛大学农学部教授逸见彰男等研究人员在人工沸石的合成过程中混入铁化合物,成功地获得了带有磁性的人工沸石。将这种沸石铺敷在被放射性物质污染的土壤上,沸石会吸附放射性物质,由于这种沸石带有磁性,最后可用磁铁将吸附了放射性物质的沸石与土壤分离。   据介绍,这一技术可以将每千克被污染土壤中的放射物污染程度从数千至1万贝克勒尔降低到每千克500贝克勒尔以下。他们期望两年内将这一技术实用化。
  • 更低吸附+黄金标准 多肽生物分析的两大护法!
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 多肽一般是由100个以内氨基酸通过肽键连接而成的一类化合物,通常具有二级结构。自上世纪20年代胰岛素疗法问世以来,多肽药物一直在医药领域发挥了重要的作用,相比于小分子药物,多肽药物在生物活性和特异性方面比较高,同时稳定性方面比蛋白质药物较好。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着生物技术的不断发展,越来越多的多肽药物被开发并应用于临床,因适应证广、安全性高且疗效显著,多肽药物目前广泛应用于肿瘤、糖尿病、艾滋病、细菌真菌感染、免疫、心血管、泌尿等方面。& nbsp /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/70a59597-0454-4c23-9f57-c07be703dbbe.jpg" title=" 7.png" alt=" 7.png" / /p p br/ /p p style=" line-height: 1.75em text-indent: 2em text-align: center " span style=" font-size: 14px " strong span style=" font-family: 宋体, SimSun " 糖尿病药物利拉鲁肽的氨基酸序列图和药物产品图 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 早在2017年FDA发布的“Impact Story”栏目中的一篇文章 sup [1] /sup 就提到, strong 目前全球将近有100种上市的多肽药物,全球销售额约在150-200亿美元 /strong 。研发新的多肽药物以及多肽类仿制药都面临着巨大的机遇和挑战。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " FDA收到的关于多肽药物新的适用症申请正在快速增加,同时仿制药的出现也正加速多肽药物的发展。然而为了确保仿制药与原研药的质量和疗效一致性,开发稳定的多肽药物分析和表征方法变得尤为重要。 strong FDA的药品评价和研究中心(CDER)的专家们认为质谱(MS)技术是分析多肽药物非常关键的一项技术 /strong 。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 结合液相的色谱分离和质谱的检测,LCMS方法因其良好的专属性、高灵敏度、更宽的动态范围、以及更高的准确度和精密度,现已广泛用于多肽药物的分析方法开发中,尤其是含有生物基质的分析方法开发。 strong 同样LCMS方法也适用于多肽药物临床使用阶段的药物监测 /strong 。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 7月16日 岛津发布新品 LCMS-8060NX /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/954c26fd-dac2-47fd-9684-914e7741b31c.jpg" title=" 8.png" alt=" 8.png" / span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /p p style=" line-height: 1.75em text-indent: 2em text-align: center " a href=" https://www.instrument.com.cn/netshow/C239206.htm" target=" _self" style=" color: rgb(84, 141, 212) text-decoration: underline " span style=" color: rgb(84, 141, 212) " strong span style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun font-size: 14px " 三重四级杆液相色谱质谱联用仪 /span /strong /span /a span style=" font-family: 宋体, SimSun " br/ /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 但是相比于其他小分子药物,多肽因其具有吸附性以及分子量较大的特点,因此在样品的储存、预处理以及色谱柱的选择、仪器方法的开发等方面带来了更大的挑战。尤其像多肽容易吸附到固体表面,最终可能导致浓度测量的偏差,通常推荐低吸附的材质产品来保存多肽药物。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/13f40756-2a0e-4c5f-b3dd-5a8e4bf6602e.jpg" title=" 9.png" alt=" 9.png" / /p p style=" line-height: 1.75em text-indent: 2em text-align: center " span style=" font-size: 14px " strong span style=" font-family: 宋体, SimSun " 岛津SHIMSEN低吸附PP样品瓶/板 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " SHIMSEN低吸附PP材质系列样品瓶、样品板,利用专利技术对PP材质进行特殊化处理,从而达到大大降低吸附量的效果,以保障在分析检测中数据更高的准确性,也可有效避免由于吸附等原因带来的线性差、响应低、浓度改变等问题。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b044a896-f4b1-426e-a731-784812a78a84.jpg" title=" 10.png" alt=" 10.png" / /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 在多肽药物的生物分析方法开发中,还有一个非常重要问题就是内标(IS)的选择。内标在保证LCMS方法的准确度和方法稳健性方面起着至关重要的作用,选择稳定同位素内标用于LCMS生物分析方法也逐渐成为“金标准”。考虑多肽药物生物分析方法的复杂性,选择稳定同位素内标时更是优先推荐含13C标记及标记数量更多的内标! /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 岛津在药物生物分析领域除了提供仪器和消耗品外,还开发了高品质稳定同位素内标产品。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/4adb6562-e107-4ab7-aaee-cc3287f837a6.jpg" title=" 11.png" alt=" 11.png" / /p p style=" line-height: 1.75em text-indent: 2em text-align: center " strong span style=" font-family: 宋体, SimSun font-size: 14px " 岛津Alsachim稳定同位素内标 /span /strong span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 除了以上产品,岛津还提供多肽药物定制合成稳定同位素内标产品。所有内标均提供HPLC、LCMS、NMR详细检测数据。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " [1]参考文献: /span span style=" font-family: 宋体, SimSun text-decoration: none " https://www.fda.gov/drugs/regulatory-science-action/impact-story-developing-tools-evaluate-complex-drug-products-peptides /span /p p style=" line-height: 1.75em text-indent: 2em " br/ /p p style=" line-height: 1.75em text-indent: 0em text-align: right " span style=" text-indent: 2em font-family: 宋体, SimSun " 供稿人: /span span style=" text-indent: 2em font-family: 宋体, SimSun " 岛津(上海)实验器材有限公司 市场部 周可鹏 /span /p p br/ /p
  • BET是比表面及孔径吸附的缩写吗
    BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。1983年,三位科学家对Langmuir 理论进行修正,提出著名的BET理论,其正式名称是多分子层吸附理论,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。多分子层吸附理论所采用的模型的基本假设是:一、固体表面是均匀的,发生多层吸附;二、除第一层的吸附热外其余各层的吸附热等于吸附质的液化热。该理论放弃了单分子吸附层的观点,认为在物理吸附中,固体与气体间的吸附是依靠分子间引力而发生的;而且已被吸附的分子仍有引力,因此在第一吸附层之上还可以吸附第二层,第三层,… … 也就是多分子层吸附。从多分子层吸附理论得到的BET吸附等温式,可用于测试颗粒的比表面积、孔容、孔径分布以及氮气吸附脱附曲线。运用 BET方法的物理吸附等温线对吸附表面积进行测定,主要包含两个步骤:第一步,做出BET图,从中导出单层吸附量;第二步,根据单层吸附量计算比表面积。由于BET 法适合大部分样品,被广泛应用于许多多孔及无孔材料BET面积α的确定。其最大优势是考虑到了由样品吸附能力不同带来的吸附层数之间的差异,这是与以往标样对比法最大的区别。BET吸附等温式是行业中应用最广泛,测试结果可靠性最强的方法,几乎所由国内外的相关标准都是依据BET吸附等温式建立起来的。但BET 法并不适用于所有样品,因此按介孔材料的分析方法分析微孔材料时,由物理吸附分析仪自动生成的BET 比表面值是错误的。ISO9277-2010 和 IUPAC都对含微孔材料的BET比表面分析方法及判断BET 结果的方法做出了规定。
  • 物理吸附理论系列在线讲座视频日前已对公众开放
    有别于美国康塔仪器公司特色的&ldquo 操作培训&rdquo 及&ldquo 短期理论课程&rdquo ,我公司举办的物理吸附理论系列讲座,由公司首席科学家Dr Matthias Thommes发起,将着重探讨物理吸附领域新的理论进展,以及由此对传统的吸脱附等温线分析带来的挑战和帮助,从而得到材料表面性质、结构的更全面的信息,并且开展更有针对性的一对一的分析讨论。该系列讲座第一讲,&ldquo 微-介孔材料孔径分布的数据处理&rdquo 成功举行,来自世界各地的60余名科研工作者参与了讨论。会上,与会研究工作者针对数据分析时的理论问题及试验中的遇到的困扰与公司首席科学家Dr Matthias Thommes进行了详细的讨论,解决了大量困扰研究工作者的实际问题。 为使更多研究者从中受益,日前该讲座的视频已对公众开放。如有需要,请登录https://quantachrome.webex.com/quantachrome/ldr.php?AT=pb&SP=MC&rID=5077112&rKey=5a0333d447039dbf 观看。登录密码为acf9BDE
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制