当前位置: 仪器信息网 > 行业主题 > >

水飞蓟

仪器信息网水飞蓟专题为您整合水飞蓟相关的最新文章,在水飞蓟专题,您不仅可以免费浏览水飞蓟的资讯, 同时您还可以浏览水飞蓟的相关资料、解决方案,参与社区水飞蓟话题讨论。

水飞蓟相关的资讯

  • 博勒飞粘度计在手机胶水行业的应用
    新闻背景介绍:随着手机发货量越来越大,华为再次为自己敲响了质量警钟。不仅召开了内部质量大会,更于近日罕见向媒体开放了历来保密的华为北京研究所终端实验室。几乎没有手机厂商会不重视质量,但《证券日报》记者在探访过华为北研所终端实验室后发现,手机质量管控是一个庞大复杂的系统,质量底线如何守,守不守得住,得靠硬实力。 曾因为胶水缺陷损失九千多万元马兵还指出,华为现在的强大在于,整个制造体系和测试体系,对于质量的拦截作用很强。基本上很多的质量问题,在研发的测试环节和生产、制造环节基本上都能够拦截到。“我们前年有一个产品,屏幕缝隙的地方在高温的时候有胶水溢出的概率,千分之几的概率,怎么办?后来按照我们的流程决策这批货发不了,那一次就损失了九千多万元。我们经常会面临这样的问题,因为生产中有这样的问题,我们就会想怎么在前端控制避免这样的浪费。” 对华为来说,当前面临的最大挑战是如何与整个产业链共同构建质量。马兵给记者讲了去年碰到的一个问题:在生产测试过程中发现手机对焦模糊,后来发现是摄像头上的马达出了问题,再追究下去,是马达上用的胶水出了问题,因为马达产线那个胶水的工艺出现了一些变化。 胶水?手机里面也有胶水?是的,部分关键零件必须使用到加水来粘合。对于华为这么重视手机质量的大企业,对于胶水的供应商必须严格审核。前年由于胶水之痛损失近一个亿,对于每个企业来说这是很揪心的事情,但是也很现实来看供应的管理是要认真对待。 不仅要管理好供应商,还要管理好供应商的供应商。“这个挑战也需要我们投入庞大的人力和设备。我们在很多提供原件的厂家都要部署测试设备,保证它在出厂前经过我们的测试,才允许进入我们的公司。” 胶水的粘度影响手机摄像头?应用在手机的胶水质量好坏如何判断?如何提高胶水的质量?粘度尤为重要。为什么会胶水溢出?所有的因素还是在于胶水粘度的控制。上述所说的“由于胶水的质量问题,手机摄像头对焦模糊”,追根到底是因为摄像头马达上面用的胶水质量不过关,是否考虑过粘度也会影响手机摄像头的拍照效果? 手机摄像头制作过程中,摄像头粘贴的胶粘度对手机摄像头拍照效果影响尤为重要。 检测来料粘度,实时反映是否合格,是否需要添加溶剂等。对于摄像头粘贴的来料检测,胶水拖尾现象可通过粘度体现。太稀或太稠镜头会有移位,丁点移位严重影响照相效果。 在此过程,手机生产线建设都会用到粘度计,某公司每年会用到美国Brookfield博勒飞粘度计,Brookfield LVDV2T,RVDV2T等机型都会使用到,为了生产出拍摄效果更好的手机,胶水粘度检测也是必不可少的。生产行业中通常使用Brookfield粘度计来检测控制产品粘度。Brookfield粘度计精度可达测量范围的±1%,而重现性在±0.2%,使用Brookfield粘度计可以精准的控制粘度,是生产和产品开发不可或缺的工具。 美国Brookfield粘度计是全球粘度计的泰斗,发明了全球第一台旋转粘度计,率先创造了粘度测量的世界标准。80年的生产经验,使得Brookfield的名字在粘度测量和控制领域成为精确的代名词。Brookfield粘度计已成为粘度计的行业标杆,市场占有率达70%以上。Brookfield粘度计质量稳定可靠,精确度高,重复性好。通过精准的Brookfield粘度计测量后,可以精确的控制在合适的粘度范围,让性能发挥到极致。
  • 飞秒激光直写双刺激协同响应的水凝胶微致动器研究获进展
    在自然界中生物能够对外界刺激做出反应并产生特定的形状变化,这种响应行为对生物体的生存和繁衍至关重要。在众多材料中,水凝胶因其模量适中,刺激响应条件多样以及生物相容性好等因素而引起了广泛关注。随着仿生学以及材料科学的发展,能够感知和响应外部刺激的智能水凝胶致动器在软体机器人、传感和远程操控等领域显示出良好的应用前景。目前,微加工技术已经将响应型水凝胶致动器的尺寸缩小到微米级。然而,如何在微尺度下构建能够对复杂的微环境进行多重响应的水凝胶微致动器仍然是一个挑战。   近日,中国科学院理化技术研究所研究员郑美玲团队在双刺激协同响应的水凝胶微致动器的研究工作中取得进展。团队通过非对称飞秒激光直写加工制备了一种双刺激协同响应的水凝胶微致动器。该水凝胶微结构对pH/温度的双重协同响应是通过添加功能单体2-(二甲基氨基)乙基甲基丙烯酸酯实现的。通过水凝胶微结构的拉曼光谱分析,解释了不同pH和温度下协同响应的产生机制,并且展示了由pH或温度控制的聚苯乙烯微球的捕获。该研究为设计和制造可控的微尺度致动器提供了一种策略,并在微机器人和微流体中具有应用前景。研究成果发表于Small 。   飞秒激光直写加工技术由于具有超高的空间分辨率、三维加工能力和无需实体掩膜等特点,被广泛用于制备各种三维微结构。研究人员利用含有功能单体的光刻胶,通过调整激光功率、扫描速度和扫描策略实现了具有不对称交联密度的双重响应水凝胶微结构的制备(图1)。   进一步地,研究人员制备了含有三个不对称微臂的微致动器来提高对不同环境的刺激响应能力。该微致动器由三个交联密度交替分布的微臂组成。为了更加方便地展示水凝胶微致动器在不同温度及pH条件下的可控性,研究还使用了直径10微米的聚苯乙烯微球作为目标颗粒在不同条件下进行捕获(图2)。   此外,研究人员还描述了一种具有双刺激协同响应特性的微致动器(图3),其具有的更为丰富的形状变化是由温度升高时的氢键断裂与酸性条件下叔胺基的质子化同时作用产生的。该研究提出的双重刺激协同响应特性相较于单一响应刺激赋予了微制动器更大的可操控性,这一特性使其在微操纵和微型软体机器人方面具有潜在应用。图1 双刺激协同响应型水凝胶微致动器的制备与响应机制图2 双重刺激响应型水凝胶微致动器的捕获行为图3 水凝胶微致动器的双重刺激协同响应特性
  • 博勒飞Brookfield粘度计在洗发水行业的应用
    选购洗发水的时候要选择牌子,更重要的是要选择适合自己发质的洗发水,不外乎去油,去屑,柔顺等功能。 小编试用过多个牌子的洗发水,小编发质是属于细顺、微卷;用过某生堂,洗完感觉头发都一团,不适合我这种发质的人,发型duang不起来;某次用了某飞丝的洗发水,去油去屑效果还蛮好,洗完真的duang duang的!洗头,最怕的是感觉怎么没把洗发水冲洗干净,一直还粘乎乎的感觉?洗完就是要一种清爽的感觉! 洗发水是指一种具有去头屑功能、 焗油功能和染发等功能的护发产品。洗发水中含有多种成分,这些成分的综合作用能起到清洁头皮和头发的功能。通常洗发露中最能起作用的成份是表面活性剂,表面活性剂起着清洁头发和头皮的作用,当洗发液与水混在一起时能产生泡沫,不过泡沫的多少并不能反映出清洁能力的强弱。 洗发水我们每天都接触到,但是你真正了解它的内涵吗? 洗发水的生产工艺配方结构:表面活性剂部分、调理剂部分、增稠剂部分、功能性助剂、香精防腐剂色素,洗发水其实就是以上几个部分的物理混合物 增稠剂部分洗发水增稠剂可以包括以下几种类型:电解质类,如NaCl、NH4Cl及其他盐类,它的增稠原理添加电解质后,表活的胶束溶胀,运动阻力增大,表现为粘度的增加,达到最高点后,表活盐析,体系粘度下降,此类增稠体系的粘度受温度影响大,且容易出现果冻现象;纤维素类如羟乙基纤维素、羟丙基甲基纤维素等,属于纤维素聚合物类,此类增稠体系受温度影响不大,但当体系PH低于5时聚合物会水解,粘度下降,因此不适用于低PH体系;高分子聚合物类:包括各种丙烯酸、丙烯酸酯类、如卡波1342、SF-1、U20等,以及各种高分子量的聚氧化乙烯,这些成分在水中形成三维网状结构,将表活胶束包裹在里面,从而使体系出现高粘度。 其他常用增稠剂:6501、CMEA、638、DOE-120等,这些增稠剂应用的都非常普遍。增稠剂通常不是单独只用一种就够了,而是同时将多种增稠剂配合使用来达到一个理想的粘度状态,来弥补不同增稠剂自身的不足。增稠剂的使用,这个量必须要控制好,不然会造成洗发水过于粘稠或者稀,这样生产出来的洗发水品质不够好,也会造成用户体验效果,各方面的效果功能无法完全展示出来。 有些洗发水广告打得好,有些时候不是吹嘘的,确实去油去屑的功能蛮好的。因为生产的过程中用到了它,保证了洗发水的品质与效果。 洗发水在生产过程中,洗发水的粘度对洗发水质量效果影响尤为重要。生厂商可以通过内部生产制造标准化严格进行洗发水粘度的控制,确保每个批次的洗发水粘度参数是一致的,避免成品质量上的差异。某洗发水生产商生产线建设都会用到粘度计,某公司每年会用到美国Brookfield博勒飞粘度计,Brookfield LVDV2T,RVDV2T等机型都会使用到,为了生产质量更好的洗发水,洗发水粘度检测也是必不可少的。 生产行业中通常使用Brookfield粘度计来检测控制产品粘度。Brookfield粘度计精度可达测量范围的±1%,而重现性在±0.2%,使用Brookfield粘度计可以精准的控制粘度,是生产和产品开发不可或缺的工具。 美国Brookfield粘度计是全球粘度计的泰斗,发明了全球第一台旋转粘度计,率先创造了粘度测量的世界标准。80年的生产经验,使得Brookfield的名字在粘度测量和控制领域成为精确的代名词。Brookfield粘度计已成为粘度计的行业标杆,市场占有率达70%以上。Brookfield粘度计质量稳定可靠,精确度高,重复性好。通过精准的Brookfield粘度计测量后,可以精确的控制在合适的粘度范围,让性能发挥到极致。
  • 非水反相色谱法
    反相色谱法中有种特殊的模式非水反相色谱法(NARP),色谱柱是非极性(如C18),流动相顾名思义非水全部由有机相组成。非水反相色谱(NARP)中主要用来分离疏水性很强的样品,这些样品的保留能力很强,如脂类、合成聚合物等。非水反相色谱中的流动相是由极性较强的有机溶剂A和极性较弱的有机溶剂B组成。通常A溶剂常用的是乙腈或甲醇,B溶剂是四氢呋喃、异丙醇、二氯甲烷、甲基叔丁基醚或者其他极性较弱的有机溶剂。样品保留是通过改变%B或B溶剂的极性来控制的。反相色谱法的保留机制长久以来都是研究重点。溶质分子在固定相的定位可能有几种形式存在,如疏溶剂作用、吸附作用、分配作用等。疏溶剂相互作用假定了溶质分子与配合基对齐并且附着在它上面。吸附意味着溶质分子并没有渗透到固定相里面而是保留在固定相和流动相液体之间。分配作用为固定相和液体类似,溶质分子溶解在里面。见下图:其中疏溶剂的作用是接受比较广的理论:相对而言,疏水性的溶质分子比较喜欢吸附在疏水性的烷基基团上,因此也叫疏水性保留。反相色谱法中键合的烷基等非极性固定相,流动相为水、有机溶剂、缓冲液等极性溶剂。键合相链越长、疏水性越强,溶质的保留值越大;流动相表面张力越大、介电常数越大、极性越强,溶质与键合相的作用越强,流动相的洗脱能力越差,溶质保留值越大。溶质的极性越弱,疏水性越强,保留值越大。对于非水反相色谱法,原理和反相色谱法一致。固定相为非极性固定相。样品由于疏水性较强,保留较大,不采用强极性水溶液作为流动相,全部由有机溶剂组成。非水反相色谱法方法优化同反相色谱法,主要通过改变%B或B溶剂的极性来调节,等度或梯度都能使用,同时柱温对样品的分离也有影响。一般采用shou选采用ACN(A)和THF(B)的混合溶剂为作为初始流动相。若用1OO%THF样品保留仍太强,可以用极性较弱B溶剂(如二氯甲烷或氯仿)来替换,但是应考虑使用二氯甲烷或氯仿的检测波长。非水反相色谱法为反相色谱法的一种特殊模式,色谱柱同反相色谱法常用的非极性色谱柱,流动相全为有机相,样品保留是通过改变极性较弱溶剂的极性来控制;主要分离疏水性很强、不溶于水的样品。在平时工作中,遇到类似物质可以考虑使用非水反相色谱法。
  • 技术消息:常见氨氮废水的处理方法
    氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3-N)以及亚硝态氮(NO2-N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。常见氨氮废水处理方法:1、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下:Mg2++NH4﹢+PO43-=MgNH4P04化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理 化学沉淀法去除效率较好,且不受温度限制,操作简单 形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本 如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用 药剂使用量大,产生的污泥较多,处理成本偏高 投加药剂时引人的氯离子和余磷易造成二次污染。2、吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。3、催化氧化法催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。4、生物法传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐 第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。5、膜分离法膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。6、离子交换法离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
  • UNEP:废水是一种被低估且不该被浪费的资源
    2015年8月26日联合国环境规划署(UNEP)发布题为《规范调整污水处理的良好实践:法律、政策和标准》(GoodPractices for Regulating Wastewater Treatment: Legislation, Policies andStandards)的报告。该报告详细介绍了阿根廷、芬兰和新加坡将废水高效处理并取得经济收益的案例,证明了污水处理是一个可靠的投资项目,同时表明了污水处理不仅有益于人类健康,而且已延伸到林业灌溉、工业、沼气、家庭用水、热能、电力以及肥料等各个领域。美国每年在废水处理上的投资高达300亿美元。例如,在北美有75%的废水经过处理,而处理过的废水只有3%被重复利用,然而在低收入国家只有8%的废水经过处理。报告以墨尔本为例说明了废水利用的状况,其最大的废水处理设施同时是一个受湿地拉姆萨公约保护的自然保护区。墨尔本通过一个超一万公顷的泻湖系统利用自然过程每天处理超过一半的城市废水,大约5000万立方米。这个处理系统的副产物是沼气,它可以被收集起来用于发电,这将有助于减少温室气体排放、减缓气候变化等。这项研究也展示了如何利用法律影响水质及其可用性。例如,177个国家的宪法明确规定人类享有健康环境的权利,也已经促进了阿根廷的马坦萨-里亚丘埃洛河流域水质的净化。流经阿根廷首都布宜诺斯艾利斯的河流正在被未经处理的生活废水和来自3000多家工厂(占国家GDP的24%)的工业废水所污染,使得儿童死亡率比相邻的省份高达2倍之多。阿根廷最高法院下令建立一个多部门参与的公民社会监督委员会,这个委员会已经确保清除了河流内的7万吨垃圾和24.3万立方米的垃圾代谢产物。报告也探索了不同类型废水处理措施的可能性。例如,芬兰的联合动力协作系统,城市依赖工厂提供自给自足的热能和自身所需的50%的电力,然后他们在偏远的农村建立合作企业来处理工厂产生的废水。约旦的As-Samra工厂,可以提供农业生产用水和提供95%自给自足的沼气。目前,新加坡40%的淡水资源靠进口,他们也正在寻找水质处理的创新解决方案,以达到在2060年实现用水独立的目标。经过两年多的试验,现在新加坡已经建立了4家水回收工厂,每天处理54.72万立方米的废水。本报告发布在斯德哥尔摩举办的世界水资源周活动上,同时也是对河流、湖泊和湿地水质恶化而引起的生物多样性减少三分之一所做出的及时反应。牛艺博 编译. UNEP报告称废水是一种被低估且不该被浪费的资源. 资源环境科学动态监测快报, 2015, (18):1.原文题目:Good Practices for RegulatingWastewater Treatment: Legislation, Policies and Standards
  • 理化所飞秒激光双光子聚合水凝胶3D微结构分辨率研究获进展
    水凝胶具有类似于细胞外基质的理化性质,具备良好力学性能、自愈合能力和响应性,可用于构建组织再生的微纳米仿生结构,并提供微米尺度的表面形态来调节细胞行为,如细胞粘附、迁移或生存增殖分化因子的释放。因此,水凝胶被广泛应用于组织工程和药物递送等领域。然而,制备高精度的三维(3D)任意生物相容性水凝胶支架颇具挑战性。为了适应未来生物医学领域的发展,亟需开发具有精细3D几何结构的新型水凝胶材料。   近日,中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室研究员郑美玲团队在《ACS应用材料与界面》(ACS Applied Materials & Interfaces)上,发表了题为22 nm Resolution Achieved by Femtosecond Laser Two-Photon Polymerization of a Hyaluronic Acid Vinyl Ester Hydrogel的研究成果。该研究提出了真3D高精细任意可设计拓扑结构调控单细胞的新策略。   科研人员采用飞秒激光双光子聚合技术,以乙烯基酯透明质酸(HAVE)水凝胶作为单体材料,P2CK作为高效水溶性双光子引发剂,二硫苏糖醇(DTT)作为硫醇-烯点击化学交联剂和PBS缓冲溶液配制了HAVE前驱体,通过配方优化和激光焦点调控在水凝胶结构分辨率上取得了重要进展即最高分辨率达22 nm,制备了与细胞尺寸相当的水凝胶3D微支架并验证了材料与结构的生物相容性,表明HAVE水凝胶细胞支架可进一步用于研究细胞迁移和操作等行为。   该团队开展了配方优化实验,通过改变单体和引发剂的质量比及控制硫醇-烯官能团比例筛选出溶解性好、易于加工和聚合性能良好的HAVE前驱体配方。   在几十纳米尺度的分辨率中,体素相对于基底的位置是不可忽略的影响因素。为了进一步提高结构分辨率,该团队根据激光焦点体素理论调控焦点与基底相对位置从而获得更高分辨率的线结构。如图2所示,大功率激光焦点光斑明亮,且体素体积较大,不易得到最佳焦点位置,而小功率激光焦点光斑较弱,体素体积更小,更易获得最佳焦点位置,基于此方法获得了更高分辨率的线结构。   通过上述配方优化和焦点调控,科研人员开展了HAVE前驱体C配方的分辨率研究。当扫描速度为6 μm/s时,线结构的质量得到了显著提高(图3a),结构完整致密。研究利用HAVE前驱体C配方实现了22 nm的分辨率(图3c)。   进一步,研究对HAVE前驱体配方进行了3D水凝胶微结构的双光子聚合加工,利用原子力显微镜测量了3D细胞支架的杨氏模量,平均值94 kPa接近体内组织的力学性能。研究对配方中水溶性引发剂P2CK和3D细胞支架进行了生物相容性测试,验证了该材料和结构具有良好的生物相容性。   综上,该团队全面研究了HAVE水凝胶光刻胶的双光子聚合性能,通过优化光刻胶前驱体的配方和调节焦点位置获得了22 nm的特征线宽,并验证了材料和3D水凝胶细胞支架的生物相容性。本研究提出的方案,有望创建复杂的生物相容性3D水凝胶结构,并探索其在个性化微环境调控、组织工程、生物医学和仿生科学领域的潜在应用。   上述成果是该团队前期一系列仿生水凝胶工作的拓展。研究工作得到国家重点研发计划“纳米科技”重点专项、国家自然科学面上基金、中国科学院国际伙伴计划等的支持。图1.3D水凝胶的制备示意图表1 A-E系列HAVE前驱体配方优化及性能比较图2.体素形态和相对基底位置对大功率变化(a)和小功率变化(b)聚合线结构分辨率的影图3.HAVE前驱体C配方双光子聚合性能研究图4.A和C配方制备的3D细胞支架结构的SEM对比图以及水凝胶支架上共培养L929细胞的共聚焦荧光显微镜图像
  • 国产废水氨氮检测试剂配制成功 可替代进口产品
    近日,河南煤业化工集团煤气化公司自行配制成功检测废水氨氮的专用试剂,可使该公司使用的试剂成本从每年的5.5万元降至3300元。   煤气化公司每天都要对废水中的氨氮含量进行测定,由于使用的是美国进口氨氮测定仪,在检测过程中必须每天消耗30包配套的专用试剂。为节约开支,他们组织技术人员用常用药品成功配制出离子强度剂稳定剂,替代了进口氨氮试剂,经过试验对比,检测效果与进口试剂相当。
  • 长江水利委员会水文局452.28万元采购超纯水器,废气/废水处理机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 长江委水文局水资源监测能力建设项目实验室改造公开招标公告 湖北省-武汉市-汉阳区 状态:公告 更新时间: 2022-09-24 招标文件: 附件1 长江委水文局水资源监测能力建设项目实验室改造公开招标公告 2022年09月24日 14:54 公告信息: 采购项目名称 长江委水文局水资源监测能力建设项目实验室改造 品目 工程/其他建筑工程 采购单位 长江水利委员会水文局 行政区域武汉市 公告时间 2022年09月24日 14:54 获取招标文件时间 2022年09月26日至2022年09月30日每日上午:9:30 至 11:30 下午:14:30 至 16:30(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼2楼203室) 开标时间 2022年10月17日 14:30 开标地点 北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼3楼309室) 预算金额 ¥452.280000万元(人民币) 联系人及联系方式: 项目联系人 余可文 项目联系电话 027-82820381 采购单位 长江水利委员会水文局 采购单位地址 湖北省武汉市江岸区解放大道1863号 采购单位联系方式 余可文027-82820381 代理机构名称 北京东方华太工程咨询有限公司 代理机构地址 武汉市汉阳区十里铺特5号,十里和府1号楼2层 代理机构联系方式 辛璞玉、汪美玲027-84871979 附件: 附件1 长江委水文局水资源监测能力建设项目实验室改造招标公告.pdf 项目概况 长江委水文局水资源监测能力建设项目实验室改造 招标项目的潜在投标人应在北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼2楼203室)获取招标文件,并于2022年10月17日 14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DFHT-2022-158 项目名称:长江委水文局水资源监测能力建设项目实验室改造 预算金额:452.2800000 万元(人民币) 最高限价(如有):450.0000000 万元(人民币) 采购需求: 改建实验室基础设施、实验室附属设施和实验室专用系统工程。主要为改建实验室850m2,改建消防工程1项;改建实验室废气收集处理系统1套、实验室通风净化系统1套、纯水系统1套、实验室废水处理系统1项、实验室恒温系统1套、实验室集中供气系统1套、安防监控系统1套、生物洁净室(十万级)1座;购置实验室台柜90m、天平台12m、气瓶柜1个、通风柜6个、货架1套、万向罩10套等(详见施工图纸及工程量清单)。 合同履行期限:合同签订后90日历天 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目需落实政府采购强制、优先采购节能产品政策;政府采购优先采购环保产品政策;政府采购促进中小企业发展(监狱企业、残疾人福利性单位视同小微企业)等政策详见采购文件; 本项目采购标的对应的中小企业划分标准所属行业为: 建筑业 。 3.本项目的特定资格要求:3、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加本项目同一合同项下的政府采购活动(注:按报名顺序只接受一个投标人参与投标,凡相关联企业也只能投标一家)。4、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加本项目的其他招标采购活动。5、未被列入失信被执行人、税收违法黑名单,未被列入政府采购严重违法失信行为记录名单。6、投标人须是在中国境内依法注册的法人、事业单位及其他组织或者自然人;7、投标人须具备建设行政主管部门核发的建筑工程施工总承包三级及以上资质;8、具备有效安全生产许可证;9、拟派团队人员要求:①拟派项目经理应具备建筑工程或机电安装工程二级及以上注册建造师证,工程类中级及以上职称、提供劳动合同、最近6个月在本单位缴纳的养老保险、医疗保险证明材料。②拟派项目经理无在施建设工程且中标后只承担本项目的承诺函(格式自拟);③拟派项目技术负责人须为本单位正式职工,具有中级及以上职称;④施工管理团队配置应完整,至少应包括施工员、质检员、安全员、材料员、资料员。其中施工员、质检员、材料员、资料员应持有相应岗位证书,身份证、劳动合同、近6个月在本单位缴纳的养老保险、医疗保险证明材料,且安全员还须持有安全生产考核合格证(C证);5)信誉要求:①未被责令停业的;②未被暂停或取消投标资格的;③财产未被接管或冻结的;④没有骗取中标或严重违约或重大工程质量问题;出具法定代表人或其委托代理人签字并加盖单位章的书面承诺书;10、投标人提供近三年经营活动中无违法、违规、违纪、违约行为的承诺书;11、在“信用中国网站(www.creditchina.gov.cn)及中国执行信息公开网(http://zxgk.court.gov.cn/)查询‘失信被执行人’和‘税收违法黑名单’和‘政府采购严重违法失信名单’、中国政府采购网(www.ccgp.gov.cn)”及其他相关网站上有关于企业不良行为记录的供应商,将被拒绝参加本次投标(以投标截止当日查询结果为准)。以上资格要求为本次招标投标人应具备的基本条件,参加投标的投标人必须满足资格要求中对应的所有条款,并按照相关规定递交资格证明文件。说明:成立年限不足三年度的投标人,提供成立以来所有年度财务审计报告;成立年限满半年度但不足一年度的投标人,提供该半年度中任一季度的季度财务报告或该半年度的半年度财务报告。依法缴纳税收的证明材料:完税证明、缴款书、印花税票、银行代扣(代缴)转账凭证等均可;依法免税的投标人,应提供相应文件证明其依法免税;如投标人有减免或零申报纳税情况的须递交减免或零报税的截图证明材料;依法缴纳社会保障资金的证明材料:社会保险缴费发票、专用收据、银行代扣(代缴)转账凭证等均可;依法不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法不需要缴纳社会保障资金。 三、获取招标文件 时间:2022年09月26日 至 2022年09月30日,每天上午9:30至11:30,下午14:30至16:30。(北京时间,法定节假日除外) 地点:北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼2楼203室) 方式:符合资格的投标人应当在获取时间内,提供以下材料后领取招标文件。现场领取或网络获取:(1)现场领取:法定代表人自己领取的,凭法定代表人身份证明书及法定代表人身份证原件领取。法定代表人委托他人领取的,凭法定代表人授权书、受托人身份证原件领取。申请人为其他组织的,凭单位介绍信或法定代表人授权委托书及经办人身份证原件领取。(2)网上获取:在公告规定的获取时间内,供应商将以下报名材料发送至邮箱(65343640@qq.com)【邮件主题名称必须为项目简称+供应商名称简称】,以邮箱显示收到的时间为准,工作人员后台确认资料无误的,及时发送采购文件。联系电话:027-84871979。将①法定代表人身份证明书,②单位介绍信或法定代表人授权委托书原件彩色扫描件(单位介绍信或授权书还须加盖法定代表人签章或本人签名)。3)以上两种获取方式,均需提供加盖投标人公章的《采购文件领取登记表》(见公告附件1),《中小企业声明函》(见公告附件2)。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年10月17日 14点30分(北京时间) 开标时间:2022年10月17日 14点30分(北京时间) 地点:北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼3楼309室) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 信息发布媒体:中国政府采购网(http://www.ccgp.gov.cn/)、中国招标投标公共服务平台(http://www.cebpubservice.com/) 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:长江水利委员会水文局 地址:湖北省武汉市江岸区解放大道1863号 联系方式:余可文027-82820381 2.采购代理机构信息 名 称:北京东方华太工程咨询有限公司 地 址:武汉市汉阳区十里铺特5号,十里和府1号楼2层 联系方式:辛璞玉、汪美玲027-84871979 3.项目联系方式 项目联系人:余可文 电 话: 027-82820381 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:超纯水器,废气/废水处理机 开标时间:2022-10-17 14:30 预算金额:452.28万元 采购单位:长江水利委员会水文局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北京东方华太工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 长江委水文局水资源监测能力建设项目实验室改造公开招标公告 湖北省-武汉市-汉阳区 状态:公告 更新时间: 2022-09-24 招标文件: 附件1 长江委水文局水资源监测能力建设项目实验室改造公开招标公告 2022年09月24日 14:54 公告信息: 采购项目名称 长江委水文局水资源监测能力建设项目实验室改造 品目 工程/其他建筑工程 采购单位 长江水利委员会水文局 行政区域 武汉市 公告时间 2022年09月24日 14:54 获取招标文件时间 2022年09月26日至2022年09月30日每日上午:9:30 至 11:30 下午:14:30 至 16:30(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼2楼203室) 开标时间 2022年10月17日 14:30 开标地点 北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼3楼309室) 预算金额 ¥452.280000万元(人民币)联系人及联系方式: 项目联系人 余可文 项目联系电话 027-82820381 采购单位 长江水利委员会水文局 采购单位地址 湖北省武汉市江岸区解放大道1863号 采购单位联系方式 余可文027-82820381 代理机构名称 北京东方华太工程咨询有限公司 代理机构地址 武汉市汉阳区十里铺特5号,十里和府1号楼2层 代理机构联系方式 辛璞玉、汪美玲027-84871979 附件: 附件1 长江委水文局水资源监测能力建设项目实验室改造招标公告.pdf 项目概况 长江委水文局水资源监测能力建设项目实验室改造 招标项目的潜在投标人应在北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼2楼203室)获取招标文件,并于2022年10月17日 14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DFHT-2022-158 项目名称:长江委水文局水资源监测能力建设项目实验室改造 预算金额:452.2800000 万元(人民币) 最高限价(如有):450.0000000 万元(人民币) 采购需求: 改建实验室基础设施、实验室附属设施和实验室专用系统工程。主要为改建实验室850m2,改建消防工程1项;改建实验室废气收集处理系统1套、实验室通风净化系统1套、纯水系统1套、实验室废水处理系统1项、实验室恒温系统1套、实验室集中供气系统1套、安防监控系统1套、生物洁净室(十万级)1座;购置实验室台柜90m、天平台12m、气瓶柜1个、通风柜6个、货架1套、万向罩10套等(详见施工图纸及工程量清单)。 合同履行期限:合同签订后90日历天 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目需落实政府采购强制、优先采购节能产品政策;政府采购优先采购环保产品政策;政府采购促进中小企业发展(监狱企业、残疾人福利性单位视同小微企业)等政策详见采购文件; 本项目采购标的对应的中小企业划分标准所属行业为: 建筑业 。 3.本项目的特定资格要求:3、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加本项目同一合同项下的政府采购活动(注:按报名顺序只接受一个投标人参与投标,凡相关联企业也只能投标一家)。4、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加本项目的其他招标采购活动。5、未被列入失信被执行人、税收违法黑名单,未被列入政府采购严重违法失信行为记录名单。6、投标人须是在中国境内依法注册的法人、事业单位及其他组织或者自然人;7、投标人须具备建设行政主管部门核发的建筑工程施工总承包三级及以上资质;8、具备有效安全生产许可证;9、拟派团队人员要求:①拟派项目经理应具备建筑工程或机电安装工程二级及以上注册建造师证,工程类中级及以上职称、提供劳动合同、最近6个月在本单位缴纳的养老保险、医疗保险证明材料。②拟派项目经理无在施建设工程且中标后只承担本项目的承诺函(格式自拟);③拟派项目技术负责人须为本单位正式职工,具有中级及以上职称;④施工管理团队配置应完整,至少应包括施工员、质检员、安全员、材料员、资料员。其中施工员、质检员、材料员、资料员应持有相应岗位证书,身份证、劳动合同、近6个月在本单位缴纳的养老保险、医疗保险证明材料,且安全员还须持有安全生产考核合格证(C证);5)信誉要求:①未被责令停业的;②未被暂停或取消投标资格的;③财产未被接管或冻结的;④没有骗取中标或严重违约或重大工程质量问题;出具法定代表人或其委托代理人签字并加盖单位章的书面承诺书;10、投标人提供近三年经营活动中无违法、违规、违纪、违约行为的承诺书;11、在“信用中国网站(www.creditchina.gov.cn)及中国执行信息公开网(http://zxgk.court.gov.cn/)查询‘失信被执行人’和‘税收违法黑名单’和‘政府采购严重违法失信名单’、中国政府采购网(www.ccgp.gov.cn)”及其他相关网站上有关于企业不良行为记录的供应商,将被拒绝参加本次投标(以投标截止当日查询结果为准)。以上资格要求为本次招标投标人应具备的基本条件,参加投标的投标人必须满足资格要求中对应的所有条款,并按照相关规定递交资格证明文件。说明:成立年限不足三年度的投标人,提供成立以来所有年度财务审计报告;成立年限满半年度但不足一年度的投标人,提供该半年度中任一季度的季度财务报告或该半年度的半年度财务报告。依法缴纳税收的证明材料:完税证明、缴款书、印花税票、银行代扣(代缴)转账凭证等均可;依法免税的投标人,应提供相应文件证明其依法免税;如投标人有减免或零申报纳税情况的须递交减免或零报税的截图证明材料;依法缴纳社会保障资金的证明材料:社会保险缴费发票、专用收据、银行代扣(代缴)转账凭证等均可;依法不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法不需要缴纳社会保障资金。 三、获取招标文件 时间:2022年09月26日 至 2022年09月30日,每天上午9:30至11:30,下午14:30至16:30。(北京时间,法定节假日除外) 地点:北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼2楼203室) 方式:符合资格的投标人应当在获取时间内,提供以下材料后领取招标文件。现场领取或网络获取:(1)现场领取:法定代表人自己领取的,凭法定代表人身份证明书及法定代表人身份证原件领取。法定代表人委托他人领取的,凭法定代表人授权书、受托人身份证原件领取。申请人为其他组织的,凭单位介绍信或法定代表人授权委托书及经办人身份证原件领取。(2)网上获取:在公告规定的获取时间内,供应商将以下报名材料发送至邮箱(65343640@qq.com)【邮件主题名称必须为项目简称+供应商名称简称】,以邮箱显示收到的时间为准,工作人员后台确认资料无误的,及时发送采购文件。联系电话:027-84871979。将①法定代表人身份证明书,②单位介绍信或法定代表人授权委托书原件彩色扫描件(单位介绍信或授权书还须加盖法定代表人签章或本人签名)。3)以上两种获取方式,均需提供加盖投标人公章的《采购文件领取登记表》(见公告附件1),《中小企业声明函》(见公告附件2)。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年10月17日 14点30分(北京时间) 开标时间:2022年10月17日 14点30分(北京时间) 地点:北京东方华太工程咨询有限公司(汉阳区十里铺十里和府1号楼3楼309室) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 信息发布媒体:中国政府采购网(http://www.ccgp.gov.cn/)、中国招标投标公共服务平台(http://www.cebpubservice.com/) 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:长江水利委员会水文局 地址:湖北省武汉市江岸区解放大道1863号 联系方式:余可文027-82820381 2.采购代理机构信息 名 称:北京东方华太工程咨询有限公司 地 址:武汉市汉阳区十里铺特5号,十里和府1号楼2层 联系方式:辛璞玉、汪美玲027-84871979 3.项目联系方式 项目联系人:余可文 电 话: 027-82820381
  • 中国科大研制非贵金属电解水制氢高效催化剂取得重要进展
    氢能是有望替代传统化石燃料的可再生清洁能源。其中,通过电化学析氢反应(HER)制备“绿氢”是实现氢能社会的最佳策略之一。由于贵金属铂独特的电子结构,铂和铂基材料是目前唯一商用的电制“绿氢”催化剂;然而,贵金属铂昂贵的价格和地壳中稀有的储量限制了其大规模商业化应用。未来氢能社会对于氢气的大量需求使得必须降低电制“绿氢”催化剂的成本,同时提升其催化活性和稳定性。对催化剂进行电子结构优化,能够提高材料的本征性能。其中,离子掺杂能够通过在材料晶格中引入杂原子,改变局域配位结构进而调控电子结构,实现产物催化性能的提升,是一种有效的性能优化手段。   二硒化钴具有与铂类似的电子结构,因此他们常被研究作为贵金属铂的替代材料用于催化HER反应。但是其活性和稳定性与铂和铂基材料相比仍有差距。通过材料微观结构的设计制备新型高效电制“绿氢”催化剂是当前的研究热点。近日,中国科大俞书宏院士团队报道了一种普适的合成策略用于制备十种单原子掺杂的CoSe2-DETA(CoSe2=二硒化钴,DETA=二乙烯三胺)纳米带。研究人员通过改变掺杂元素,调控掺杂产物的电子结构,进而实现产物电解水制氢性能的优化;最优产物活性与商业贵金属材料接近,表明其在电制“绿氢”领域的潜在应用。该研究成果以“Dopant triggered atomic configuration activates water splitting to hydrogen”为题发表在Nature Communications上。吴睿特任副研究员、许杰、赵川林、苏晓智为论文的共同第一作者,高敏锐教授和俞书宏院士为通讯作者。图1. 单原子掺杂的CoSe2-DETA纳米带产物表征。a,十种单原子掺杂合成方法示意图。b,产物的扫描透射电子显微镜元素分布图。c,d,Pb、Cr、Mn、Fe、Zn、Mo掺杂元素扩展X射线吸收精细结构谱的R空间(c)和k空间(d)。   研究人员成功制备了多种离子掺杂型电催化材料,例如阴离子磷掺杂的二硒化钴纳米带。正如预期,由于磷的引入优化了材料电子结构和局域配位环境,产物显示出令人印象深刻的电解水制氢性能。但是,由于缺乏普适合成的方法,单一磷元素对于产物微观结构调控不够充分,材料性能与结构的关系仍较为模糊。因此,通过设计更多种类元素的掺杂以实现产物电子结构的可控是至关重要的,进而调控产物电催化性能,并总结构效关系用以设计新型高效的HER材料。   研究人员利用他们在前期开发的具有优异电制“绿氢”性能的CoSe2-DETA纳米带材料为研究对象,结合阳离子掺杂的手段,发展了能够一次性制备十种单原子掺杂产物的普适合成方法学(图1)。在该工作中,研究人员借助不同的掺杂原子系统调控产物的局域配位结构,实现了材料的电子结构和HER性能在较大范围内的可控调节。   研究结果表明,所得最优掺杂产物的催化活性与商业铂碳(铂质量分数为40%)相近,其电流密度达到-10mA cm-2所需过电势仅为74mV,由极化曲线计算得到的塔菲尔斜率为42dec mV-1 该产物活性在1000圈循环伏安测试保持几乎不变,还可以在-10mA cm-2电流密度下稳定运行20小时。同步辐射谱学数据表明不同掺杂原子会导致产物中钴原子的配位环境(钴氮配位数与钴硒配位数之比)发生变化,该参数可与产物的HER活性展现出较为匹配的“火山型”曲线关系,展示了掺杂型二硒化钴的构效关系(图2)。   此外,本文还通过理论计算证实了产物性能随局域配位结构的变化规律,为设计制备新型高效催化材料提供了一种新的途径。而最优产物的性能使得该产物有望取代商业铂碳成为电制“绿氢”的理想电极材料。图2. 产物电解水制氢活性、局域配位结构及二者“火山型”构效关系表征。a,不同电极材料的HER极化曲线。b,不同电极材料HER性能对比。c,不同电极材料中Co的X射线吸收近边精细结构谱。d,e,不同材料中Co的扩展X射线吸收精细结构谱的R空间(d)和k空间(e)。f,掺杂产物HER活性随产物中Co配位结构变化的“火山型”曲线示意图。   该工作受到国家自然科学基金重点项目、国家自然科学基金青年基金、科技部国家重点研发计划“变革性技术关键科学问题”重点专项项目、合肥大科学中心卓越用户基金等资助。
  • TOC分析仪用于废水监测
    概要废水泛指使用过的水,其中会包含有人类排泄物、食品废渣、油污、肥皂和化学物等。所有制造业及市政废水厂都必须符合国家及当地地区的相关规定,以美国为例,美国国家环境保护局(USEPA)颁布清洁水法CWA(Clean Water Act)。为了确保排放的污水符合CWA法案,企业必须具备由EPA或EPA授权代理审核批文的国家污水排放控制系统NPDES(National Pollutant Discharge Elimination System)。只有企业能确保每天排放的污染物低于CWA设置的最低限值,才有可能获得此批文。限值根据当地权威单位的规定,或者经处理废水所排入的支流情况而互不相同。为使成本最小化,必须对废水处理过程最优化。为帮助实现优化,很多工厂使用总有机碳(TOC)监测来确保水质,同时显著降低费用。处理过程废水处理厂的处理过程必须同时满足国家及当地地区的规章制度。在生产过程或废水处理厂中,一旦净水补给时的水被污染或者不经处理就被排放,会对人体健康或者环境造成不良影响。水处理的最终目的在于确保排放的水质中污染物的含量符合规定,或者废水能被处理成可再回收使用的水质。此时的处理及净化过程同时包含物理和化学处理。净化水的第一步是去除可疑的固体杂质,第二步是化学处理以确保危险化学成本或细菌最小程度地被排放至环境。如果处理的过程未被适当地控制住,可能会对公司造成一定的影响。未被正确处理的水会对其接触物料产生损伤,例如输送管道或储水罐。未被有效处理的水还可能造成工厂的停产,废水水流的导流,或再返工处理。这些后果都会带来不必要及昂贵的费用。为什么要使用TOC来优化处理过程?对于废水流或负载水在源头就开始进行TOC检测,可以作为基线读数,这样水处理厂就知道处理前原始的有机物含量。确定水中大致的总有机碳含量,可以推算出需要多少量的化学药剂及过滤过程来进行处理。被排出的水或者处理后的净水再次进行TOC检测,通过对排出水的监控,处理工厂可以知道化学给药否有效。处理工厂还可以渐渐地减少或调整化学药剂的使用,实时比较其对出水质量的影响。EPA(美国国家环境保护局)确定了五类污染物必须受到控制,包括耗氧性物质、病原体、营养物、无机物及合成有机化合物、热量。所有这些污染物都会影响生态系统并对水质产生负面影响。这其中可以通过TOC监测的污染物是耗氧性物质。过去,很多公司通过一个需要耗时5天的BOD(生物需氧量)测试或需要耗时2个小时的COD(化学需氧量)来对耗氧性物质进行监控。目前TOC设备的优势及便利性渐渐体现,EPA已经允许使用TOC对耗氧性物质进行监控。TOC的分析过程仅需几分钟即可完成,相比之前的几个小时甚至几天,速度有很大的提升。EPA 40 CFR,取样及测试程序,133.104章节中提到“可以用TOC方法取代BOD5,只要BOD:COD或者BOD:TOC的长期关联性能被证实。”1当需要快速确定废水流的组成时,TOC的快速检测时间就是很大的优势。一但TOC数值显示排放水符合规定,立刻就能节约水处理成本。相反,如果由于未知的工艺污染,最初测出的废水TOC值开始上升,处理工厂可以立刻同步进行TOC分析,校正化学给药量。这种“实时”纠正,能帮助终端客户避免因排放不合格的废水而造成违规及不必要的成本。2009年因违反EPA2制定的CWA(Clean Water Act)而遭受罚款的案例马萨诸塞州的某公司“因排放受污染的雨水,面临高达$157,500的罚款处罚”。阿拉斯加州的某公司“因被指控违反CWA法,最终与USEPA达成了$30,600的罚款处理”。俄勒冈州的某公司位置在“联邦CWA法案禁止建厂的湿地上,被勒令立即搬迁,否则将因违反CWA而面临每天高达$32,500的民事罚款”。EPA向某德克萨斯州的公司颁布了一项行政诉讼和$157,500的民事罚款,“因为其违反了CWA法案”。爱达荷州的某公司“同意支付$47,700的罚金,以解除其因违反CWA法案而受到的USEPA的指控”。加利福尼亚的某公司被罚“$15,000,因为向与附近小河相通的雨水道排放了受污水的雨道排放了受污水的雨水,违反了CWA法案”。波多黎各某公司接到了“USEPA的$137,500的罚款指控,并勒令他们立即停止频繁的污水和工业废水排放”。向上滑动查看更多案例真实案例图1:废水处理厂的流程示意图(点击查看大图)图1显示了如何在整个水处理过程中多点使用TOC分析:点1:监控总有机碳(TOC),以深入了解澄清步骤,保护设备资产并管理您的进水有机负荷点2:监控TOC,通过TOC∶COD相关性优化生物处理和控制工艺过程点3:监控TOC以进行法规监测,符合排放标准并避免高额罚款点4:监控TOC以优化三级处理点5:监控TOC以符合回用标准若在此流程中不使用TOC检测控制,费用可能会很高而且可能会导致因不合规产生的违法费用。Sievers® InnovOx实验室TOC分析仪使工厂可以监控他们的处理过程,确保他们的处理设施是合法合规的,同时还可以优化化学处理。优化包括避免废水的处理不足或过度处理。若不考虑废水在处理过程中的停留时间,能够根据实时的情况对废水进行化学给药可以帮助企业最优化成本,最大化利润。Sievers InnovOx实验室/在线TOC分析仪Sievers InnovOx方法论Sievers分析仪在TOC分析方法上有了创新性的突破,为极其困难的样品提供了稳定的分析仪。InnovOx使用了高效率的超临界氧化(SCWO)技术,能够连续检测几百个废水样品而无需校准、无需系统维护并不需要更换备件。Sievers InnovOx的运行原理基于化学湿法氧化技术,通过在样品中加入酸剂及氧化剂进行氧化。无机碳通过吹扫被去除,样品在高温下通过过硫酸盐被氧化,生成的二氧化碳通过非色散红外光度计进行测定。InnovOx会提高样品的温度,并加入试剂确保充分氧化,并把液体水样转换成超临界水。一旦进入这一状态,超临界水氧化(SCWO)现象便会发生。这一创新技术可以使氧化效率达到99%,因此检测精确度和准确度极高。Sievers InnovOx还能在每个检测结束后自动清除有问题的样品基体污染。因此,在仪器内部例如反应器、管路或者阀门内都不会有盐分或氧化副产物的累积问题。结论InnovOx TOC实验室及在线分析仪能够对废水进行非常准确、精确及快速的检测。若水厂能够在处理之前和之后都对水质有清晰了解,那么优势就是,能够提高处理效率并最小化风险,最重要的还在于保证合规。对分析仪器的投资能够很快在处理过程优化中收回成本,也降低了违反规范的风险。参考文献1.EPA, CFR 40 Section 133.104 Sampling and Test Procedures, pg. 548, 7-1-07 Edition.EPA, 40 CFR,133.104章,取样及检测规程,548页,7-1-07版2.Environmental Protection Agency. www.EPA.org (accessed March 2009).环境保护局,www.EPA.org (2009年3月)◆ ◆ ◆联系我们,了解更多!
  • 中量元素水溶肥料行标发布
    农用中元素水溶肥料等行标通过审定,相关行业发展迎契机。日前,国家化肥质量监督检验中心审定完成了农业用中量元素水溶肥料等农业行业标准。2012年12月24日,农业部予以颁布。 农业部发布《中量元素水溶肥料》等50项标准 中华人民共和国农业部公告第1878号   《中量元素水溶肥料》等50项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准。其中,《中量元素水溶肥料》和《缓释肥料 登记要求》两项标准自2013年6月1日起实施 《农业用改性硝酸铵》、《农业用硝酸铵钙》、《肥料 三聚氰胺含量的测定》、《土壤调理剂 效果试验和评价要求》、《土壤调理剂 钙、镁、硅含量的测定》、《土壤调理剂 磷、钾含量的测定》、《缓释肥料 效果试验和评价要求》和《液体肥料 包装技术要求》等8项标准自2013年1月1日起实施 其他标准自2013年3月1日起实施。   特此公告。   附件:《中量元素水溶肥料》等50项农业行业标准目录   农 业 部   2012年12月24日 附件:《中量元素水溶肥料》等50项农业行业标准目录 序号 项目编号 标准名称 替代 1 NY 2266-2012 中量元素水溶肥料 2 NY 2267-2012 缓释肥料 登记要求 3 NY 2268-2012 农业用改性硝酸铵 4 NY 2269-2012 农业用硝酸铵钙 5 NY/T 2270-2012 肥料 三聚氰胺含量的测定 6 NY/T 2271-2012 土壤调理剂 效果试验和评价要求 7 NY/T 2272-2012 土壤调理剂 钙、镁、硅含量的测定 8 NY/T 2273-2012 土壤调理剂 磷、钾含量的测定 9 NY/T 2274-2012 缓释肥料 效果试验和评价要求 10 NY/T 2275-2012 草原田鼠防治技术规程 11 NY/T 2276-2012 制汁甜橙 12 NY/T 2277-2012 水果蔬菜中有机酸和阴离子的测定 离子色谱法 13 NY/T 2278-2012 灵芝产品中灵芝酸含量的测定 高效液相色谱法 14 NY/T 2279-2012 食用菌中岩藻糖、阿糖醇、海藻糖、甘露醇、甘露糖、葡萄糖、半乳糖、核糖的测定 离子色谱法 15 NY/T 2280-2012 双孢蘑菇中蘑菇氨酸的测定 高效液相色谱法 16 NY/T 2281-2012 苹果病毒检测技术规范 17 NY/T 2282-2012 梨无病毒母本树和苗木 18 NY/T 2283-2012 冬小麦灾害田间调查及分级技术规范 19 NY/T 2284-2012 玉米灾害田间调查及分级技术规范 20 NY/T 2285-2012 水稻冷害田间调查及分级技术规范 21 NY/T 2286-2012 番茄溃疡病菌检疫检测与鉴定方法 22 NY/T 2287-2012 水稻细菌性条斑病菌检疫检测与鉴定方法 23 NY/T 2288-2012 黄瓜绿斑驳花叶病毒检疫检测与鉴定方法 24 NY/T 2289-2012 小麦矮腥黑穗病菌检疫检测与鉴定方法 25 NY/T 2290-2012 橡胶南美叶疫病监测技术规范 26 NY/T 2291-2012 玉米细菌性枯萎病监测技术规范 27 NY/T 2292-2012 亚洲梨火疫病监测技术规范 28 NY/T 1151.4-2012 农药登记卫生用杀虫剂室内药效试验及评价 第4部分:驱蚊帐 29 NY/T 2061.3-2012 农药室内生物测定试验准则 植物生长调节剂 第3部分:促进/抑制生长试验 黄瓜子叶扩张法 30 NY/T 2061.4-2012 农药室内生物测定试验准则 植物生长调节剂 第4部分:促进/抑制生根试验 黄瓜子叶生根法 31 NY/T 2293.1-2012 细菌微生物农药 枯草芽孢杆菌 第1部分:枯草芽孢杆菌母药 32 NY/T 2293.2-2012 细菌微生物农药 枯草芽孢杆菌 第2部分:枯草芽孢杆菌可湿性粉剂 33 NY/T 2294.1-2012 细菌微生物农药 蜡质芽孢杆菌 第1部分:蜡质芽孢杆菌母药 34 NY/T 2294.2-2012 细菌微生物农药 蜡质芽孢杆菌 第2部分:蜡质芽孢杆菌可湿性粉剂 35 NY/T 2295.1-2012 真菌微生物农药 球孢白僵菌 第1部分:球孢白僵菌母药 36 NY/T 2295.2-2012 真菌微生物农药 球孢白僵菌 第2部分:球孢白僵菌可湿性粉剂 37 NY/T 2296.1-2012 细菌微生物农药 荧光假单胞杆菌 第1部分:荧光假单胞杆菌母药 38 NY/T 2296.2-2012 细菌微生物农药 荧光假单胞杆菌第2部分:荧光假单胞杆菌可湿性粉剂 39 NY/T 2297-2012 饲料中苯甲酸和山梨酸的测定 高效液相色谱法 40 NY/T 1108-2012 液体肥料 包装技术要求 NY/T 1108-2006 41 NY/T 1121.9-2012 土壤检测 第9部分:土壤有效钼的测定 NY/T 1121.9-2006 42 NY/T 1756-2012 饲料中孔雀石绿的测定 NY/T 1756-2009 43 SC/T 3402-2012 褐藻酸钠印染助剂 44 SC/T 3404-2012 岩藻多糖 45 SC/T 6072-2012 渔船动态监管信息系统建设技术要求 46 SC/T 6073-2012 水生哺乳动物饲养设施要求 47 SC/T6074-2012 水族馆术语 48 SC/T 9409-2012 水生哺乳动物谱系记录规范 49 SC/T 9410-2012 水族馆水生哺乳动物驯养技术等级划分要求 50 SC/T 9411-2012 水族馆水生哺乳动物饲养水质
  • 实时在线监测工业废水重金属
    p style=" text-indent: 2em text-align: left " 科研新发现:工业废水重金属可实时在线监测 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f21563ff-5403-443b-895f-14a7a7b41682.jpg" title=" 201812101132205080.jpg" alt=" 201812101132205080.jpg" / /p p style=" text-indent: 2em text-align: left " 在线监测示范运行。(科研人员供图) /p p style=" text-indent: 2em text-align: justify " 从中科院安徽光学精密机械研究所获悉,该所科研人员研发出工业排放废水重金属实时在线监测“利器”,将为工业排放废水重金属实时管控装上“安全闸门”。 /p p style=" text-indent: 2em text-align: justify " 赵南京研究员承担的安徽省科技计划项目“工业排放废水重金属在线监测技术系统”日前已通过专家验收。该系统在国际上首次实现了工业排放废水重金属的实时在线自动监测。 /p p style=" text-indent: 2em text-align: justify " 随着我国经济的迅猛发展,重金属污染事件时有发生。其中,铅(Pb)、镉(Cd)、铬(Cr)、汞(Hg)、砷(As)等对生态环境及人体健康有较重危害。目前,水体重金属在线测量主要采用比色法和电化学分析方法。比色法受技术本身限制,不能实现多种离子同时测定,且灵敏度较低;电化学方法主要适用于“相对”干净水体,对于工业废水重金属的测量易受检测条件等影响,准确度降低甚至引起二次污染等问题。 /p p style=" text-indent: 2em text-align: justify " “工业排放废水重金属在线监测技术系统”基于激光诱导击穿光谱技术,以石墨基片为水样载体,通过自动加载与卸载石墨基片、水样自动进样与精确滴定、样品烘干、光谱测量与分析,从而实现废水重金属含量的连续在线自动检测,可同时测量铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、Ni(镍)、锌(Zn)等多种重金属元素。 /p p style=" text-indent: 2em text-align: justify " 项目设计了样品专用工作台和电磁加热富集装置,开发了基片自动装卸载模块、样液添加模块、样品加热模块及光谱检测模块,研制了基于激光击穿光谱技术的废水重金属自动在线监测系统。该项目在激光诱导等离子体光谱增强技术、废水重金属自动富集方法及数据定量处理算法等方面取得了创新性成果。2017年10月,样机在某金属冶炼厂开展了为期两周的外场示范运行试验。结果显示,样机测量稳定性误差在5%以下,相对误差在0.02%-9.1%之间。连续在线运行期间,无人值守,运行稳定、可靠。 /p p style=" text-indent: 2em text-align: justify " 该系统是在行业重金属污染减排实施中,针对污染源监督性监测和重点污染源在线监测技术和设备的需求而研发,突破了一系列关键技术。 /p
  • 水和废水中的有机物监测
    总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业 挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers® M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!
  • 水质无小事!废水检测清单和选型指导
    水,是生命之源,是人赖以生存的重要物质。然而随着人口膨胀和工农业的迅猛发展,人对水源的需求量激增,对水体污染逐渐加剧,水资源危机也愈演愈烈。因此,对废水的检测和处理就显得尤为重要!一、废水需要检测哪些项目呢? 废水污染物监测项目有:PH、生化需氧量、化学需氧量、总有机碳、悬浮物、氨氮、总氨、总铜、总锌、总钡、总磷、总汞、总铬、总砷、烷基汞、总银、总镍、总铍、总铅、六价铬、氰化物、氟化物、苯并芘、浑浊度、氯化物等。 然而,对于不同的企业、使用单位而言,水质检测的要求也不一样,市面上的水质检测仪多种多样,改如何选择呢?希望这篇文章能对您有所帮助!二、废水检测相关设备清单1、分光光度计 2、紫外分光光度计3、气相色谱仪 4、电感耦合等离子体质谱仪5、原子吸收分光光度计 6、电感耦合等离子体发射光谱仪7、电位滴定仪 8、电子比色检测仪9、电子比色检测仪 10、原子荧光光谱仪11、液液萃取仪 12、固相萃取仪13、高效液相色谱仪 14、酸度计15、浊度计 16、水质重金属检测仪17、废水处理系统 18、地下水导拍系统三、废水检测方法以及方法标准如下表 水质检测仪型号多种多样,有的只能检测某些参数,有的能检测上百项参数,该如何选择呢?专业的问题交由专业人士解答! 我们有专业的客户经理给您一对一选型指导,根据您使用的场景和要求、需要检测的项目,给您推荐相应的型号。有选型、报价需求的客户,欢迎直接来电沟通,或者给我们留言讨论~
  • 工业废水集中治 园区管理助力减排常态化 l
    p   工业废水一直是水处理领域“难啃的硬骨头”,近年来,园区模式为集中科学管制工业污水带来了契机。为了不留隐患,工业集聚区污水治理重在监管,智慧转型也有望成为常态,走一条工业废水治理的长效之路。 /p p   工业废水集中治 园区管理助力减排常态化 /p p   来自环境保护部的消息显示,截至2018年1月底,全国已有2205家工业集聚区全面完成了污水集中处理设施建设,2148家完成自动在线监控装置安装。据悉,京津冀、长三角、珠三角等是重点区域,目前已经基本完成任务。 /p p   当然,环保部相关负责人也明确,工业集聚区的水污染防治工作仍将继续强化和落实,完成“水十条”任务只是硬性标准之一,也只是开始。业内相关人士更是指出,工业废水,作为最难“啃”的水处理“硬骨头”之一,长效治理必不可少。 /p p   而从目前我国工业污水治理的进程来看,工业集聚区的形成有利于统筹管控工业污水排放,并且对工业污水处理进行科学统筹规划。这也是为什么,近年来,不少工业园区相继落成,分散的企业开始向工业园区聚集,污水治理也在总量和质量上获得阶段性进展。 /p p   总体而言,全国各地都在鼓励重污染企业搬迁入园,工业集聚区发展形态初成。但是,这也是存在先决条件的,即:坚守底线,不留隐患。进入工业园区并不意味着排污不受限,反而更看中节能减排的集约化管理效应。 /p p   因此,工业集聚区水污染治理如何管好是关键。环保部水环境管理司相关负责人表示,“园内工业废水和生活污水要应纳尽纳,一滴不能漏,杜绝偷排、漏排等情况发生。”那么,工业园区水处理将如何过关斩将呢? /p p   首先,环保监管绷紧弦。按照环保部的规划,工业集聚区将逐步实现“一园一档”,推进数据化、信息化步伐。同时,中央环保督查的目标也会继续指向工业园区的绿色发展,肃清超标排放、违规操作、设施缺位等问题。 /p p   其次,智慧转型加速。一个生态园区,一个智慧园区,二者之间的契合点值得推敲。监管重在施压,转型志在求变,更多人开始相信,“生态智慧型”将成为工业聚集区的未来选项。水污染治理自然不例外,高效、便捷,360度无死角,24小时全天候,全覆盖采集,智能化解析,这是清洁生产下的大势。 /p p   再者,关系网统筹维系。纵观工业集聚区关系网,污水处理总避不开园区管理部、污水处理企业和污水处理厂三方。例如,管理部门要把好环评关,企业要把好生产制造关,处理厂要把好工艺关,如此才能做好园区内部的工业污水治理工作。 /p p   总结起来一句话,自觉是基础,监管是手段,责任是动力,实效是核心,工业集聚区污水治理正是要兼顾这几点。截至目前,全国各地都针对工业集聚区污水展开了重点监管,诸如广西、江苏、吉林、四川等地频频传来捷报,示范试点快速建立,新老工业园区齐步治污。 /p p   工业污水成分复杂,治理难度大,“散乱污”更是严重阻碍了水污染治理进程。有鉴于此,依托污水处理厂,集中高效治水的园区模式有了用武之地。紧接着,管好工业集聚区污水治理就成为了重中之重。 /p
  • “十二五”工业废水治理投资需求超1200亿元
    据中国水网最新发布的《中国水业市场研究报告(2012版)——中国水业政策与市场分析》(以下简称《报告》)研究数据显示,“十二五”期间,工业废水治理领域投资需求将超过1200亿。   “十二五”期间,工业废水治理成为水污染治理中备受关注的领域,据国家统计局数据显示,2010年全国工业废水排放总量为237.47亿吨,占全国废水排放总量的38.47%。工业废水排放的达标率为95.3%,比2005年提高4.1个百分点。从排放标准来看,不仅常规污染物面临着进一步削减,氨氮的总量控制也被提上了议事日程。   随着我国工业化和城市化水平的不断发展,工业废水待处理将持续增加的同时,水质排放标准也将越来越严格,环保监管政策也将进一步加强。在此背景下,工业废水处理市场对投资的需求将进一步加大。   《报告》分析认为,“十一五”期间,全国工业废水治理实现总投资821亿元,约占全国环境污染治理投资总额的3.8%。根据“十二五”环保规划,“十二五”期间全社会环保投资需求约3.4万亿元,如果按相同比例估算,则2011年至2015年全国工业废水治理领域的投资需求将达1292亿元。
  • 环保部有意提高味精工业废水排放标准
    8月2日从国家环境保护部获悉,环保部有意提高味精工业废水排放标准,并要求生产企业增加污染治理方面的投入。   环保部表示,新标准实施后,味精工业废水治理工程吨废水的投资成本可控制在2500-4500元/立方米之间 综合废水处理工程直接运行费用为1.41-6.08元/立方米,都在企业的可承担范围内。   据记者了解,环保部正着手编制《味精工业废水治理工程技术规范》,参编单位有北京工商大学、山东十方环保能源股份有限公司和河南莲花味精股份有限公司。   环保部介绍称,目前国内所有味精企业均建成了废水处理设施,但由于设计、工艺、运行及管理等方面均不够规范,导致许多废水治理工程的处理效果并不理想,一些治理工程甚至无法进行正常运行、达标排放。   据《味精工业废水治理工程技术规范》编制组介绍,新标准对味精工业废水治理工程系统设计、主要工艺设备制造和验收、检测与过程控制、施工与验收及工程管理运行与维护等都提出了更严的要求。   我国是味精生产与消费大国,也是我国发酵工业中的最大污染源。环保部门的统计显示,2007年味精行业产生高浓度有机废水总量为2850万吨,年COD产生总量为142万吨,每吨味精产品产生高浓度废水15吨左右。
  • NA8000在石化行业废水氨氮监测中的应用
    一、背景介绍石化行业生产废水来自各个生产装置,其中常减压蒸馏、催化裂化、重整和加氢装置均会产生大量含硫污水。由于含硫污水含有较多的硫化氢、氨、酚、氰化物和油等污染物,不能直接排至污水处理场。一般污水处理场对进水中硫化氢和氨的浓度要求分别小于 50mg/L 和100mg/L,因此,该股污水需经过气提装置处理达标后才能排放到污水处理场。为了监测气提外排净化水的氨氮含量,石化厂常采用在线氨氮分析仪对排放废水氨氮进行内控监测,保障排放废水氨氮不超标,同时通过废水氨氮的含量变化也可反映装置运行的稳定情况。酸性水气提外排净化水染物物浓度较高,含油、腐蚀性强,对在线氨氮分析仪的稳定运行有比较高的挑战。中石化南京某石化企业脱硫装置排放废水之前采用国外某品牌氨氮分析仪,由于该氨氮分析仪采用的是气敏电极法测量原理,电极容易被污染,维护比较频繁——换膜、换电解液等,仪器测量不准确时维护也繁琐,因此客户更换了 HACH 的 NA8000 新款氨氮分析仪。 二、应用情况主要仪器:NA8000(主机)+CYQ-004P(预处理器)。现场安装照片如图1所示。 NA8000 在线氨氮分析仪安置在正压防爆柜内,为分析仪的正常稳定运行提供了良好的工作环境的同时满足现场防爆要求。考虑到废水水质较为复杂,水样先经换热器降温处理后再进入 CYQ-004P 预处理系统除去水样中油、悬浮物等易堵塞管路的成分,经膜过滤后再送至 NA8000 分析仪溢流杯供分析仪采样分析。 图 2 截取了 2019.8.30~2019.10.8 时间段内 NA8000 连续监测的数据结果。从结果看,NA8000 能够很好的监测废水氨氮的变化情况,且未出现较大的波动。据客户反馈,NA8000性能较好,运行期间质控样比对结果较好,数据偏差小于 10%,满足客户需求;用户对 NA8000的操作和维护等性能均非常满意。三、总结NA8000 在监测脱硫装置外排废水的应用效果比较理想,性能稳定,质控样比对结果达到客户要求,操作和维护得到客户认可,尤其在触摸大彩屏设计、量程自动切换等特点和功能设计方面便于用户学习、操作和维护。 CYQ-004P 预处理器与 CYQ-104C 预处理器相似,采用 PVDF 平板膜对水样进行精密过滤,适用于水质较差的应用工况,能够保障 NA8000 氨氮分析仪的正常稳定运行。此外,CYQ-004P 预处理器适用于工业正压防爆柜或仪表柜内安装要求,便于集成。
  • 赛默飞:提供完整解决方案提高地表水监测质量
    p   地表水作为人类生活用水的重要来源之一,关系着人们的饮用水安全和国民经济的可持续发展。有效地检测地表水环境对于水资源的保护工作意义重大,地表水的各项检测数据可以反映出地表水的污染情况,也是环境监测的重要指标。近日生态环境部发布的四项国家环境保护标准征求意见稿中就有一项是《地表水监测技术规范》,这意味着国家可能有新的标准发布。那么,目前我国地表水的检测现状是什么样的?未来又将如何发展呢?为了帮助相关用户学习、了解地表水的分析方法与检测技术的最新进展等内容,仪器信息网特别策划了“ strong 地表水检测与分析技术进展 /strong ”专题,并邀请到赛默飞世尔科技(中国)有限公司水质分析仪器产品经理步万里就相关问题发表看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/43c3bdde-7427-4a70-a21e-c36a5d37927e.jpg" title=" 产品经理步万里.png" alt=" 产品经理步万里.png" / /p p style=" text-align: center " 步万里:赛默飞世尔科技,水质分析仪器产品经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请您介绍一下地表水检测与分析技术的相关情况、主要检测内容和行业现状。 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 目前地表水检测依据的主要技术标准是《地表水环境质量标准》(GB 3838-2002),涉及的监测项目共109项。其中主要的测量参数如下表,标黄的是必测项目,蓝色的是选测项目。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" margin-left: 10px border-collapse: collapse border: none " align=" center" tbody tr style=" height:2px" class=" firstRow" td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 常规五参数 /span /strong strong /strong /p /td td width=" 435" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" span style=" background-color: rgb(255, 255, 0) " strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " pH /span /strong strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " 、电导率、溶解氧、浊度、水温 /span /strong /span strong /strong /p /td /tr tr style=" height:1px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 营养盐及有机污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:yellow background:yellow" 高锰酸盐指数 span COD sub Mn /sub /span 、化学需氧量 span COD sub Cr /sub /span 、氨氮、总磷、总氮 /span /strong strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 、 span style=" background:aqua background:aqua" 硝酸盐氮 /span /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 无机阴离子 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 氰化物、氟化物、硫化物、氯化物、硫酸根 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 重金属类 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 铜、铅、锌、镉、砷、汞、六价铬、铁、锰、钴、镍、锑 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 有机类污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 石油类、阴离子表面活性剂、以及苯、卤代烃、芳香烃等 span 18 /span 种挥发性有机物 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 细菌学指标 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 粪大肠菌群 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 其它 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 叶绿素、藻密度 /span /strong /p /td /tr /tbody /table p   《地表水自动监测技术规范(试行)》(HJ 915-2017)则定义了地表水水质自动监测系统建设、运行和管理等方面的技术要求。 /p p   关于地表水监测行业的情况,最近几年地表水监测行业发展迅速。2015年,国务院办公厅发布了《生态环境监测网络建设方案》,明确提出坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局 2016年,环保部发布了《“十三五”国家地表水环境质量监测网设置方案》,新增1795个国控断面,调整后新国控断面(点位)共2767个,包括河流断面2424个,湖库点位343个,共监测1366条河流和139座湖库。据我了解,现在全国从事在线自动水质监测仪器生产企业约300家,有近200家的产品拥有CCEP认证。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:目前在地表水相关检测项目中哪些值得重点关注?检测的特点和难点在哪里? /strong /span /p p    strong span style=" color: rgb(255, 0, 0) " 步万里: /span /strong 目前在地表水的检测中我认为有高锰酸钾指数、COD sub Cr /sub 和重金属测量这3个项目值得重点关注。 /p p   高锰酸盐指数:市场上大部分为两种测量原理,高锰酸盐氧化-比色法和高锰酸盐氧化-电位滴定法两种,后者更接近国标法《水质-高锰酸盐指数的测定》GB 11892-89。但目前考核高锰酸盐指数数据时,使用葡萄糖还是草酸钠会得出完全不同的结果,因此急需国家对此方法做一定程度的明确规定。 /p p   COD sub Cr /sub :主要是废液的二次污染问题,目前是根据新标准HJ 35X-2019来进行废液分离,但如何判定清洗废液是否完全无害还没有统一的标准,在数次清洗后,我们发现清洗废液仍能检测出痕量重金属,因此建议此检测项目使用独立的废液回收系统。 /p p   重金属测量:由于现有技术的局限性,目前的难点是如何找到测量准确度、运维成本小的方法,且能够满足国标要求。以阳极溶出伏安法为例,用这种方法检测重金属存在维护量大,试剂有毒有害,运行不稳定等技术成熟度的问题。 /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:贵公司在地表水检测方面可以提供哪些产品组合和解决方案?相比于同类产品,优势在哪里? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 赛默飞世尔科技作为科学服务领域的世界领导者,始终以帮助客户“使世界更健康、更清洁、更安全”为使命。在地表水检测方面赛默飞有多款仪器可以满足需求,并且可以提供完整的地表水监测方案: /p p style=" text-indent: 2em " strong 6800微型水质在线自动监测系统 /strong ,占地仅需1平米,可测量五参数和高锰酸盐指数、氨氮、COD sub Cr /sub 、总铜、总镍、六价铬、总磷、总氮、氰化物等参数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/965278ba-7a12-41c8-b4a6-7ad901e50ec8.jpg" title=" 6800_300.jpg" alt=" 6800_300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" strong 6800微型水质在线自动监测系统 /strong /a /p p style=" text-indent: 2em " strong 3106 COD化学需氧量自动监测仪 /strong ,可自动切换量程,无需重复校准 IP66防护等级。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a055647e-b9a8-4bfc-bb57-8fc0b7126529.jpg" title=" 在线 Orion 3106 COD.jpg" alt=" 在线 Orion 3106 COD.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _blank" strong 3106 COD化学需氧量自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3131 高锰酸盐指数自动监测仪 /strong ,氧化还原电位滴定法,不受浊度计色度的影响 油浴加热,安全、均匀 双高精度注射泵,1/10000精度。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/65ba7005-38d0-4a7c-a430-5928b8bd8808.jpg" title=" 3131.png" alt=" 3131.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" strong 3131 高锰酸盐指数自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3150 总磷/总氮水质在线自动监测仪 /strong ,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a9ee1662-9b8a-44fc-afa4-18ece49c0e3a.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" strong 3150 总磷/总氮水质在线自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 2240 氨氮自动监测仪 /strong ,氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2f915c3d-814c-4dfe-85c6-f718a9f91fe3.jpg" title=" 2240.jpg" alt=" 2240.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" strong 2240 氨氮自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 8010cX 氨氮自动监测仪 /strong ,水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/debbbd89-2cde-449d-9b63-29ef3bc15c4a.jpg" title=" 8010.jpg" alt=" 8010.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" span & nbsp 8010cX 氨氮自动监测仪 /span /a /p p style=" text-indent: 2em " strong 3300重金属水质在线自动监测仪 /strong ,可自动切换量程 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c37245d-5a68-429e-9e67-ed6b06305048.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" strong span 3300重金属水质在线自动监测仪 /span /strong /a /p p style=" text-indent: 2em " strong MPC 20在线多参数通用控制器 /strong ,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a90a8649-20d0-4cd2-a92c-1a45472a895f.jpg" title=" MPC 20 正面.jpg" alt=" MPC 20 正面.jpg" / /p p style=" text-align: center " img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/77478974-1f45-463e-9712-de3175b53ce6.jpg" title=" MPC 20 下.jpg" / /p p style=" text-align: center " strong span MPC 20在线多参数通用控制器 /span /strong /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:生态环境部在6月1日发布了《地表水监测技术规范(征求意见稿)》,原《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及 /strong /span span style=" color: rgb(0, 112, 192) " strong 地表水监测的部分将会废止,您觉得新标准实施后将会带来怎样的变化?请问从厂商角度会怎么应对呢? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 此次《征求意见稿》内容更新了地表水监测项目分析方法、完善了监测数据处理、质量控制与质量保证,这些对仪器的测量性能和稳定性都提出了更高的要求,这些都会促进厂商改进仪器的设计,以满足将来新的现场要求。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您觉得在地表水检测与分析技术方面,未来的发展趋势有哪些?会出现哪些新的需求? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 我认为地表水自动监测站和分析仪器未来的发展趋势是主机更加紧凑、小型化 试剂使用量减少、维护量减少 为了应对上面提到的新法规带来的变化,未来相关仪器会增加自动质控功能、废液分离功能等。 /p p   随着技术和市场的发展,将会涌现更多创新技术,以提高分析仪器/系统的智能化、网络化、无人化。检测方面可能会新增测量参数,如水中油、叶绿素、藻密度等。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结: 此次仪器信息网就地表水检测与分析技术方面的问题咨询了步万里经理,他和我们分享了在地表水检测中需要关注的检测项目,以及《地表水监测技术规范(征求意见稿)》将给仪器厂商和市场带来的变化。面对标准上对测量性能和稳定性要求的提升,厂商们也在积极跟进,升级相关检测仪器的性能来满足地表水检测的需要。他还对地表水检测技术的发展做了展望,预测随着环境的变化以及对地表水质要求的提高,未来在检测项目中可能会出现新增的测量参数。 /span /p
  • “农药废水低排放技术开发”重点项目课题申请指南
    国家高技术研究发展计划(863计划)新材料技术领域 “农药废水低排放技术开发”重点项目 课题申请指南 一、指南说明 农药废水是非常典型的难降解有机废水,处理难度大,对生态环境的危害严重,已成为环保治理的重点和难点。研究开发农药废水低排放技术对于农药工业可持续发展具有十分重要的意义。 本项目拟通过农药骨干品种清洁生产技术开发和废水预处理技术、深度处理技术以及综合治理集成技术开发,为农药行业实现清洁生产、减少废水排放提供技术支撑,提升农药行业废水处理技术水平,满足农药行业节能减排的迫切需求,为农药行业实现可持续发展奠定基础。 本项目拟支持草甘膦、百草枯、菊酯类农药、阿维菌素、吡虫啉、氯代吡啶类除草剂、毒死蜱等骨干农药品种清洁生产与废水低排放技术开发。项目国拨经费控制数5000万元,执行期为2008年12月到2010年12月。 二、指南内容 课题一、草甘膦废水低排放及母液回收利用技术开发 研究目标: 针对草甘膦原药生产中存在的废水排放量大的问题,开发草甘膦及其重要中间体亚氨基二乙腈和双甘膦的清洁生产工艺及废水低排放成套技术,并在20000吨/年以上草甘膦原药生产装置上进行集成应用。 主要研究内容: 通过反应器、催化剂等的创新提高亚氨基二乙腈的反应收率,研究开发亚氨基二乙腈母液回收利用及废水处理技术;优化双甘膦合成工艺,脱除双甘膦废水中的盐和甲醛,实现双甘膦废水循环利用;开发草甘膦母液的无害化、减量化技术;集成草甘膦废水综合处理技术并应用于20000吨/年以上规模的原药生产装置。 主要考核指标: (1) 草甘膦吨产品废水产生量减少50%,降低到11吨以下。 (2) 草甘膦吨产品末端废水排放量减少80%,不高于18吨(COD≤100mg/l)。 (3) 草甘膦吨产品COD排放量不高于1.8公斤。 (4) 草甘膦吨产品废水处理成本降低40%,不高于500元。 说明:本课题国拨经费控制数1150万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内草甘膦原药生产企业,鼓励产学研合作。 课题二、百草枯废水资源化成套技术开发 研究目标: 开发百草枯清洁生产工艺和废水资源化成套技术,应用在2000吨/年以上原药生产装置上。 主要研究内容: 通过催化剂及工艺条件的优化提高百草枯反应总收率,分离回收废水中残量百草枯、氰根离子和氨,实现中水回用和残液高效焚烧处理。 主要考核指标: (1) 百草枯吨产品工艺废水产生量减少50%,不大于3吨。 (2) 废水中氰根离子去除率≥95%。 (3) 焚烧炉排放尾气符合国家GB18484-2001《危险废弃物焚烧污染物控制标准》一级排放标准,处理每吨废水耗燃料油100kg以下,焚烧炉使用寿命不低于10年。 (4) 百草枯吨产品废水处理成本降低50%,不高于1500元。 说明:本课题国拨经费控制数1000万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内百草枯原药生产企业,鼓励产学研合作。 课题三、菊酯类农药废水综合治理技术开发 研究目标: 开发菊酯类农药的清洁生产工艺和废水综合治理技术,并在3000吨/年以上菊酯类农药生产装置上获得应用。 主要研究内容: 优化菊酯类农药反应工艺,回收废水中的有效成分,有效集成活性污泥生物系统及其它废水深度处理技术,应用于3000吨/年以上菊酯类农药生产装置上。 主要考核指标: (1) 菊酯类农药吨产品废水产生量减少50%,不高于20吨。 (2) 菊酯类农药吨产品末端废水排放量减少95%,不高于20吨。 (3) 菊酯类农药吨产品COD排放量减少95%,不高于2公斤。 (4) 菊酯类农药吨产品废水处理成本降低20%,不高于2600元。 (5) 回收中间体异戊烯醇生产废水中的醋酸钠,回收率大于90%。 (6) 环化工艺产生的废水中N,N-二甲基乙酰胺(DMA)回收率大于80%,环化废水处理后DMA含量小于0.5%。 说明:本课题国拨经费控制数800万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内菊酯类农药原药生产企业,鼓励产学研合作。 课题四、阿维菌素新工艺及废水低排放技术开发 研究目标: 针对阿维菌素生产废水排放量大的问题,提高阿维菌素发酵效价,开发阿维菌素废水的催化氧化预处理技术、废水深度处理及回用技术,在80吨/年以上原药生产装置上进行集成应用。 主要研究内容: 开发阿维菌素菌种基因改造、诱变育种以及多尺度发酵等创新技术,提高提取收率,开发废水双膜处理及回用技术,开发废渣成肥应用技术。 主要考核指标: (1) 阿维菌素吨产品废水产生量减少50%,不高于400吨。 (2) 阿维菌素吨产品末端废水排放量减少50%,不高于360吨。 (3) 阿维菌素吨产品COD排放量减少80%,不高于30公斤。 (4) 阿维菌素吨产品废水处理成本降低45%,不高于5300元。 (5) 阿维菌素的平均效价达7000μg/ml。 (6) 发酵废渣灭活后制备的有机肥料达到国家相关标准。 说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例不低于1:1。课题牵头申请单位必须是国内阿维菌素原药生产企业,鼓励产学研合作。 课题五、吡虫啉创新工艺研究与废水治理技术开发 研究目标: 针对吡虫啉原药生产废水排放量大的问题,开发吡虫啉创新生产工艺和废水综合处理技术,在5000吨/年以上原药生产装置上进行集成应用。 主要研究内容: 优化催化剂和反应工艺条件,提高反应总收率,综合回收利用废水中的二甲基甲酰胺(DMF),集成废水催化氧化预处理技术和双膜生物反应器等深度处理技术,应用于5000吨/年以上原药生产装置。 主要考核指标: (1) 吡虫啉吨产品废水产生量减少65%,不高于10吨。 (2) 吡虫啉吨产品末端废水排放量减少85%,不高于100吨。 (3) 吡虫啉吨产品COD排放量减少85%,不高于10公斤。 (4) 吡虫啉吨产品废水处理成本降低55%,不高于1200元。 (5) DMF综合回收利用率80%以上。 说明:本课题国拨经费控制数600万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内吡虫啉原药生产企业,鼓励产学研合作。 课题六、氯代吡啶类除草剂废水综合治理与低排放技术 研究目标: 开发氯代吡啶类除草剂的创新生产工艺和废水综合处理技术,在2000吨/年以上原药生产装置上集成应用。 主要研究内容: 开发专用催化剂,改变反应溶剂,提高反应总收率;研究开发废水物理—化学相结合的综合处理技术,开发高氨氮废水中氨的回收利用技术。 主要考核指标: (1) 氯代吡啶类除草剂吨产品废水产生量减少60%,不高于12吨。 (2) 氯代吡啶类除草剂吨产品末端废水排放量减少70%,不高于30吨。 (3) 氯代吡啶类除草剂吨产品COD排放量减少80%,不高于3公斤。 (4) 氯代吡啶类除草剂吨产品废水处理成本降低50%,不高于3000元。 说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内氯代吡啶类除草剂生产企业。 课题七、毒死蜱清洁生产与废水低排放技术开发 研究目标: 开发毒死蜱的清洁生产工艺及废水综合处理技术,集成应用于5000吨/年以上原药生产装置。 主要研究内容: 研究提高原子利用率的新合成方法和高效催化剂,提高毒死蜱及其中间体乙基氯化物、三氯吡啶酚钠的反应收率,开发副产物单质硫的回收利用技术、废水综合治理技术和废水回用技术。 主要考核指标: (1) 毒死蜱吨产品废水产生量减少50%,不高于30吨。 (2) 毒死蜱吨产品末端废水排放量减少50%,不高于30吨。 (3) 毒死蜱吨产品COD排放量减少80%,不高于3公斤。 (4) 毒死蜱吨产品废水处理成本降低60%,不高于900元。 (5) 回收的单质硫含量大于95%。 说明:本课题国拨经费控制数450万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内毒死蜱原药生产企业。 三、注意事项 1、本项目申请者应根据申请指南的规定和要求,按研究课题进行申请。 2、课题申请者应根据申请指南提出的研究课题、主要研究内容和研究目标、主要考核指标等要求,编写《国家高技术研究发展计划(863计划)项目课题申请书》。 3、课题必须由法人(单位)提出申请,申请单位与协作单位不得超过5家,并确定申请课题的依托单位和课题负责人。 4、课题依托单位应符合的基本条件:在中华人民共和国境内登记注册一年以上、过去两年内在申请和承担国家科技计划项目中没有不良信用记录的企事业法人单位,包括:大学、科研机构等事业法人;中方控股的企业法人。 5、课题负责人应符合的基本条件: (1)具有中华人民共和国国籍; (2)年龄在55岁(含)以下(按指南发布之日计算); (3)具有高级职称或已获得博士学位; (4)每年(含跨年度连续)离职或出国的时间不超过6个月; (5)过去三年内在申请和承担国家科技计划项目中没有不良信用记录。 6、课题负责人及主要参加人员不得违反以下限项申请的规定: 为保证科研人员能够高质量地开展研究工作,国家科技计划实行限制申请及承担课题数量规定。每人同期只能主持1项国家主要科技计划(包括863计划、973计划、支撑计划)课题,作为主要参加人员同期参与承担的国家主要科技计划课题数(含负责主持的课题数)不得超过2项。申请者应按照上述要求进行申请,且在同一批发布的申请指南中只能申请1项863计划课题或项目。 7、申请者提出的申请经费不得高于申请指南规定的经费控制额,并应按照申请指南的要求提供相应的配套经费,否则不予受理。 8、申请者要遵守科学道德,以严谨的科学作风和实事求是的科学精神填写项目申请书,保证项目申请书的真实性,避免出现夸大和不准确的内容。同时,不得将研究内容相同或者近似的项目进行重复申请。863计划对申请者在申报过程中进行信用记录,对于故意在课题申请中提供虚假资料、信息的,一经查实,记入信用档案,并对单位在两年内取消其申报863计划资格、对个人在三年内取消其申报863计划资格。 9、申请程序和要求:课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。有关申请的程序、要求和其他注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。 10、课题申请受理的截止日期为2008年12月12日17时。 11、咨询联系人及联系方式 联系人: 卞曙光 010-88372105 蒋志君 010-68338919 电子邮件: jeanbsg@htrdc.com 863计划新材料技术领域办公室     二〇〇八年十月二十三日
  • “工业含糖废水超低排放技术”重点项目课题申请指南
    国家高技术研究发展计划(863计划)新材料技术领域 “工业含糖废水超低排放技术”重点项目 课题申请指南 一、指南说明 本项目选择废水排放量和COD排放量大的淀粉、味精、维生素C、啤酒、乳酸、赖氨酸等典型发酵行业,针对行业废水中含糖有机质浓度高、色度高、有臭味而难以治理的特点,重点开发含糖有机质废弃物转化为生物油脂工程化技术、高级氧化-生物强化-膜分离等集成的废水深度处理技术、节水型生产新工艺等废水超低排放的关键共性技术,并进行工程化开发、集成优化及应用验证,实现工业含糖废水超低排放成套技术及核心工艺的突破。 本项目拟设置6个课题: 1.年处理60万吨淀粉废水超低排放关键技术开发 2.年处理150万吨味精废水超低排放关键技术开发 3.年处理150万吨维生素C废水超低排放关键技术开发 4.年处理100万吨啤酒废水超低排放关键技术开发 5.年产1000吨乳酸生产新工艺中试开发 6.年处理1500吨高含盐赖氨酸废水近零排放中试关键技术开发通过公开发布课题申请指南方式落实课题承担单位,鼓励产学研联合申请。项目国拨经费控制数为3500万元,执行期为2008年12月到2010年12月。 二、指南内容 课题一、年处理60万吨淀粉废水超低排放关键技术开发 研究目标: 针对高浓度淀粉废水资源化利用问题,突破废水中含糖有机质转化为生物油脂的关键核心技术,并与废水生物处理等技术集成;在年产20万吨以上淀粉的企业建成年处理规模60万吨以上的淀粉废水超低排放工业化装置并完成运行考核。 主要研究内容: 研究适用于高糖浓度下的降解COD生产油脂的菌种选育,开发微生物油脂发酵处理工艺并进行油脂提取工艺优化;开展废水深度处理及回用技术的集成及工程化研究。 主要考核指标: 1、建成废水处理规模60万吨/年以上的淀粉废水超低排放工业化装置,进水COD不低于20000mg/L,出水COD不高于70mg/L,装置稳定运行半年以上;废水回用率不低于90%,减排COD不低于100吨; 2、吨淀粉的废水排放量不大于0.3吨,吨淀粉的COD排放量不大于0.021公斤; 3、吨废水处理后(不额外添加碳源)副产的生物油脂不低于5公斤。 说明:本课题国拨经费控制数为940万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。 课题二、年处理150万吨味精废水超低排放关键技术开发 研究目标: 针对高浓度味精废水的资源化利用及废水超低排放问题,通过废水中含糖有机质转化为微生物油脂的工程化技术与膜法深度处理等技术的集成创新,在年产30万吨以上的味精企业建成年处理规模150万吨以上的味精废水超低排放工业化装置并完成运行考核。 主要研究内容: 研究适用于高氮高盐浓度下的降解COD生产油脂的菌种选育,开发微生物油脂发酵处理工艺并进行油脂提取工艺优化;开发长周期稳定运行的双膜法味精废水深度处理及回用工艺;开展油脂转化与废水处理集成技术的工程化研究。 主要考核指标: 1、建成废水处理规模150万吨/年以上的味精废水超低排放工业化装置,进水COD不低于80000mg/L,出水COD不高于70mg/L,装置稳定运行半年以上;废水回用率不低于80%,减排COD不低于120吨; 2、吨味精的废水排放量不大于1吨,吨味精的COD排放量不大于0.07公斤; 3、吨废水处理后(不额外添加碳源)副产的生物油脂不低于8公斤。 说明:本课题国拨经费控制数为850万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。 课题三、年处理150万吨维生素C废水超低排放关键技术开发 研究目标: 基于维生素C废水水质特点,通过工程化技术开发及集成创新,突破难降解污染物与色度共生等制约维生素C废水超低排放的关键技术难题,研究开发集成废水降解COD、脱色、脱氮功能的维生素C废水超低排放成套技术,在年产7500吨以上维生素C生产线配套建成年处理规模150万以上吨维生素C废水超低排放工业化装置并完成运行考核。 主要研究内容: 针对维生素C废水中发色化合物与难降解污染物共生的特点,研究开发以脱色为核心的废水深度处理技术;研究维生素C废水生物强化处理过程中碳源结构、温度等关键工程参数对COD降解和脱氮效果的影响,开发废水处理超低排放设施的稳定降碳、脱氮、脱色季节性控制技术;技术集成后应用于废水处理规模150万吨/年以上的维生素C废水超低排放工业化装置。 主要考核指标: 1、建成废水处理规模150万吨/年以上的维生素C废水超低排放工业化装置,装置稳定运行半年以上;废水回用率不低于80%,减排COD不低于240吨; 2、吨维生素C的废水排放量不大于40吨,吨维生素C的COD排放量不大于3.2公斤。 说明:本课题专项经费控制数550万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。 课题四、年处理100万吨啤酒废水超低排放关键技术开发 研究目标: 开发基于低温厌氧发酵及高效生物反应器集成的啤酒废水深度处理技术,在年产10万吨以上啤酒生产线上配套建成废水处理规模100万吨/年以上的啤酒废水超低排放工业化装置并完成运行考核。 主要研究内容:开发包括低温厌氧优势菌群的筛选、培育及其固定化等在内的低温厌氧处理工艺及技术装备,构建高效低温厌氧反应器及其监控体系;研究多级好氧生物处理实现高效除磷脱氮及其与低温厌氧处理工艺的合理组合、衔接及优化控制技术,构建连续高效的含糖啤酒废水深度处理装置,显著降低出水有机物、氮和磷等主要污染物浓度以实现超低浓度排放;进行废水处理技术集成及其应用验证并制定相应的技术应用规程。 主要考核指标: 1、建成废水处理规模100万吨/年以上的啤酒废水超低排放工业化装置,装置稳定运行半年以上;废水回用率不低于80%,减排COD不低于90吨; 2、吨啤酒的废水排放量不大于2吨,吨啤酒的COD排放量不大于0.1公斤。 说明:本课题国拨经费控制数560万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须已经完成相应的中试研究。 课题五、年产1000吨乳酸生产新工艺中试开发 研究目标: 针对乳酸钙盐法生产工艺的高耗水高污染的现状,采用膜分离耦合技术,开发乳酸生产新工艺,着重解决氢氧化钠中和发酵和后提取的关键技术,大幅度降低我国乳酸生产过程中用水量和废水排放量;建成膜法乳酸生产新工艺及中试装置,为工程化研究提供依据。 主要研究内容: 研究采用氢氧化钠中和发酵法制备乳酸技术,开发出适合于乳酸发酵液体系过滤的新型结构陶瓷滤膜及其成套装备;研究发酵过程对膜分离效果的影响,获得合适的工艺条件;研究双极膜提取乳酸的电化学特性和工艺参数;开发发酵法乳酸生产用水的资源化回用膜集成技术;建成千吨级乳酸生产新工艺中试装置。 主要考核指标: 1、开发膜法乳酸生产新工艺并建成千吨级的中试装置,装置稳定运行半年以上,与乳酸钙盐法相比节水80%; 2、乳酸收率由80%提高到90%,乳酸纯度高于99%; 3、吨乳酸的废水排放量不大于3吨,吨乳酸的COD排放量不大于0.3公斤,无二氧化碳和硫酸钙废渣排放。 说明:本课题专项经费控制数400万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须完成了相应的小试研究。 课题六、年处理1500吨高含盐赖氨酸废水近零排放中试关键技术开发 研究目标: 针对赖氨酸生产产生的高硫酸铵废液治理的问题,开发硫酸铵再生循环技术,实现有机质的资源化及水的循环利用;在年产赖氨酸盐酸盐150吨以上的中试线配套建设废水处理规模1500吨/年以上的高含盐赖氨酸废水近零排放中试装置并完成运行考核。 主要研究内容: 研究开发脱盐/酸碱再生技术;研究酸碱再生的膜污染防治技术和工艺(包括对膜污染物质的预处理方法);优化废液培养饲料酵母的有机质资源化技术;开发末端治理及废水回用技术。 主要考核指标: 1、建成废水处理规模1500吨/年以上的高含盐赖氨酸废水近零排放中试装置,装置稳定运行半年以上;吨产品(赖氨酸盐酸盐)蒸汽消耗降到11吨,吨产品耗硫酸铵降到20公斤,吨产品耗硫酸降到14公斤; 2、吨产品(赖氨酸盐酸盐)副产蛋白饲料不低于60公斤; 3、吨产品(赖氨酸盐酸盐)的高含盐废水排放量不大于0.5吨, COD排放量不大于0.05公斤。 说明:本课题专项经费控制数200万元,配套经费与国拨经费的比例不低于1:1,支持年限不超过2年。申请单位必须完成了相应的小试研究。 三、注意事项 1.课题申请者应根据本项目申请指南提出的课题名称、研究目标、研究内容、主要指标等要求,编写《国家高技术研究发展计划(863计划)项目课题申请书》。 2. 课题申报时必须由法人(单位)提出申请,该法人是当然的课题依托单位,且必须指定1名自然人担任课题负责人。每个课题申请时只能有1个课题负责人和1个依托单位,课题的协作单位不能超过5家。 3.课题依托单位应符合的基本条件:在中华人民共和国境内登记注册一年以上、过去两年内在申请和承担国家科技计划项目中没有不良信用记录的企事业法人单位,包括:大学、科研机构等事业法人;中方控股的企业法人。 4.课题负责人应符合的基本条件:(1)具有中华人民共和国国籍;(2)年龄在55岁(含)以下(截止指南发布之日);(3)具有高级职称或已获得博士学位; (4)每年(含跨年度连续)离职或出国的时间不超过6个月; (5)过去三年内在申请和承担国家科技计划项目中没有不良信用记录。 5.课题负责人及主要参加人员不得违反以下限项申请的规定: 为保证科研人员能够高质量地开展研究工作,国家科技计划实行限制申请及承担课题数量规定。每人同期只能主持一项国家主要科技计划(包括863计划、973计划、支撑计划)课题,作为主要参加人员同期参与承担的国家主要科技计划课题数(含负责主持的课题数)不得超过两项。申请者应按照上述要求进行申请,且在同一批发布的申请指南中只能申请一项863计划课题或项目。 6.申请者提出的专项经费申请不得高于项目课题申请指南规定的专项经费控制额,并应按照项目课题申请指南的要求提供相应的配套经费,否则不予受理。 7.申请者要遵守科学道德,以严谨的科学作风和实事求是的科学精神填写项目申请书,保证项目申请书的真实性,避免出现夸大和不准确的内容。同时,不得将研究内容相同或者近似的项目进行重复申请。863计划对申请者在申报过程中进行信用记录,对于故意在课题申请中提供虚假资料、信息的,一经查实,记入信用档案,并对单位在两年内取消其申报863计划资格、对个人在三年内取消其申报863计划资格。 8.申请程序和要求:课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn,有关申请的程序、要求和其他注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。 9.课题申请受理的截止日期为2008年12月12日17时。 10.咨询联系人及联系方式 联系人: 卞曙光 010-88372105 蒋志君 010-68338919 电子邮件:jeanbsg@htrdc.com 863计划新材料技术领域办公室 二〇〇八年十月二十三日
  • HMA-TNi 在电子厂排口废水监测中的应用
    HMA-TNi 在电子厂排口废水监测中的应用哈希公司 近几年来,国内电子行业发展迅猛,随之而来的是生产过程中产生了大量的有毒有害废水,包括酸碱废水、含氟废水、金属废水、有机废水、氰化物废水等。这些废水必须经过处理达标后才能排放。目前,电子行业仍没有针对性的污染物排放标准发布,其执行的标准仍为《污染物综合排放标准》,但是,电子厂对废水排放有严格的内控指标。电子厂除了监控 COD、氨氮等常规指标外,也非常重视镍、铜等重金属污染物的监控。 深圳某电子厂于 2016 年采购了一台 HMA 总镍分析仪,用于排口废水总镍的监测,测试数据通过仪表自带的 RS485 通讯传输至 PLC,实时上传至当地环保局。仪表从企业正常生产后开始运行,测量数据稳定,目前已通过验收。主要仪器:HMA 总镍分析仪、CYQ 预处理器,如图 1 所示。HMA 总镍分析仪与 CYQ 预处理器联动,按设定时间定时启动采样泵抽取水样。CYQ 预处理器的作用是自清洗进样管路和提供连续的流速稳定的水样,确保仪表正常运行,减少维护量。初次安装调试时,运维人员采用仪表自动校准功能进行校准,然后测量标液,结果偏差在±3% F.S.之内。该电子厂废水总镍的内控排放标准为HMA 总镍分析仪采用丁二酮肟比色法,测量稳定性较好,与实验室方法比对具有较好的一致性,满足电子厂排口废水监测要求;HMA 总镍分析仪的试剂配方公开,每月更换一次试剂,运行期间维护量较低,有效降低了企业的运行成本。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 赛默飞:以模块化,可定制的污水监测仪器产品线助力中国污废水监测发展
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   中国面临严重的水污染问题,污水废水治理也一直是水环境治理最重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。随着新冠肺炎疫情中病毒存在通过粪便和污水传播的可能,对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。为了帮助相关用户学习、了解污水废水水质监测最新技术及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了“污水废水水质监测”专题并邀请赛默飞世尔科技市场拓展经理马颢珺谈谈他对中国污水废水水质监测现状的看法。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8170ebaa-d191-4232-a6b2-b2adde01a03f.jpg" title=" 赛默飞 马颢珺_450330.jpg" alt=" 赛默飞 马颢珺_450330.jpg" / /p p style=" text-align: center "    strong span style=" font-family: 黑体, SimHei " 赛默飞世尔科技市场拓展经理 马颢珺 /span /strong /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:马经理,您好。据您了解,我国污水废水排放和治理现状呈现怎样的特点?对于我国污水废水监测检测采用的现行标准/方法您认为有哪些需要改进和完善的地方? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 马颢珺: /span /strong 要了解我国污废水治理的现状,我们先来看一组数字:2007年末,我国城市共有污水处理厂883座,污水日处理能力为7,138万立方米,城市污水处理率只有62.8%。而截至2019年6月底,全国设市城市累计建成城市污水处理厂5000多座(不含乡镇污水处理厂和工业),污水处理能力达2.1亿立方米/日,城市污水处理率已超过90%。可见从“十一五”到“十三五”之间的十多年时间里,我国污水处理规模大幅度提高。 /p p   基于环境保护目标和污水处理水平的不断提高,生态环境部始终致力于推动监测技术发展和标准要求的提升,比如2019年底发布了《污水监测技术规范》等一系列污水在线监测新标准/规范,并于2020年上半年开始实施。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f19a21db-2166-46ea-8a6d-617c0d34a718.jpg" title=" 赛默飞 标准列表.png" alt=" 赛默飞 标准列表.png" / /p p style=" text-align: center " strong 国家近期发布的一系列污水在线监测新标准/规范 /strong /p p   而我们现行污水排放标准主要为《污水综合排放标准》(GB8978-1996)和《城镇污水处理厂污染物排放标准》(GB18918—2002),这两个标准已有多年未更新,随着污水在线监测新标准/规范的实施,想必这些标准也要随之变化。 /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:此次新冠肺炎疫情中,病毒可以通过粪便和污水传播。这无疑对包括医疗污水在内的污水废水监测检测能力提出了更高的要求。目前,相关水质监测现状怎么样?除了新冠病毒检测,污水废水监测中还有哪些项目值得关注? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 马颢珺: /span /strong 医疗污水成分复杂,除了一般废水中常见的污染物质外,还含有病原性微生物、有毒、有害理化污染物和放射性污染物等。这其中除了部分理化监测指标——如pH值、悬浮物、氨氮、生化需氧量、化学需氧量和余氯等——可以利用在线监测仪实时监测。对于其它微生物指标(如粪大肠菌群)目前还未有成熟的在线监测方案。 /p p   根据现有的污水废水排放标准,我们主要关注的污水废水监测项目还是化学需氧量CODcr、氨氮、总磷、总氮、重金属、pH等参数。 /p p    span style=" color: rgb(192, 0, 0) " strong 仪器信息网:赛默飞在污水废水水质监测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势? /strong /span /p p    span style=" color: rgb(31, 73, 125) " strong 马颢珺: /strong /span 赛默飞拥有较完整的污水监测仪器产品线,可覆盖生活污水、工业废水处理过程中及排放口需要测量的多种参数,如化学需氧量、氨氮、总磷、总氮、重金属、pH、溶解氧、ORP、电导率、余氯等参数。并且我们可提供一定程度定制化、模块化的测量解决方案,通过灵活的组合帮助用户节省采购和使用成本。 /p p   如6850微型水质在线自动监测系统,6850是6800微型水质在线自动监测系统的子型号。占地仅需0.7平米,可测量常规五参数和比色法双参数(化学需氧量CODcr、氨氮、总磷、总氮、重金属(总铬、六价铬、铅、铜、锰、镍等)、氰化物等任选二)。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0cc39aad-fdbd-4a11-b62a-67797965b62d.jpg" title=" 赛默飞 6850微型水质在线自动监测系统280436.jpg" alt=" 赛默飞 6850微型水质在线自动监测系统280436.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" strong 赛默飞 6850微型水质在线自动监测系统 /strong /a /p p   3150 总磷/总氮水质在线自动监测仪,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/61528309-13e4-475b-8541-37343b148361.jpg" title=" 赛默飞 Orion3150 总磷总氮.jpg" alt=" 赛默飞 Orion3150 总磷总氮.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" strong 赛默飞 Orion 3150 总磷/总氮水质在线自动监测仪 /strong /a /p p   2240 氨氮在线自动监测仪,基于氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/442e4442-581d-4401-8e32-d9c8f33f8ed0.jpg" title=" 赛默飞 2240氨氮自动监测仪.jpg" alt=" 赛默飞 2240氨氮自动监测仪.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" strong 赛默飞 2240 氨氮在线自动监测仪 /strong /a /p p   8010cX 氨氮自动监测仪,采用水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/df36d977-04f6-467c-9cae-a93c8d2e25ae.jpg" title=" 赛默飞 8010cX氨氮自动监测仪.jpg" alt=" 赛默飞 8010cX氨氮自动监测仪.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" strong 赛默飞 8010cX氨氮自动监测仪 /strong /a /p p   3300重金属水质在线自动监测仪,可自动切换量程 定量准确,不受样品色度、浊度干扰 可任意配置总铬、六价铬、铅、铜、锰、镍等中的2个参数。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c62f9c8b-8d2d-4481-b334-de8f77ba2274.jpg" title=" 赛默飞 3300重金属水质在线自动监测仪.jpg" alt=" 赛默飞 3300重金属水质在线自动监测仪.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" strong 赛默飞 3300重金属水质在线自动监测仪 /strong /a /p p   MPC 20在线多参数通用控制器,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/88902ec3-7f0c-4a5a-851c-0245c78d9a5c.jpg" title=" 赛默飞 MPC20在线多参数通用控制器400.jpg" alt=" 赛默飞 MPC20在线多参数通用控制器400.jpg" / /p p style=" text-align: center "   strong  赛默飞 MPC 20在线多参数通用控制器 /strong /p p   Chlorine XP 余氯/总氯分析仪,可测量水中的游离氯、总氯和游离总氯 基于DPD原理,每次分析仅使用0.03mL试剂 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C221987.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/97a82037-828f-4171-b29d-cddf7fca0037.jpg" title=" 赛默飞 Chlorine XP.jpg" alt=" 赛默飞 Chlorine XP.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C221987.htm" target=" _blank" strong 赛默飞 Chlorine XP 总氯/余氯分析仪 /strong /a /p p   3106COD 化学需氧量自动监测仪,采用重铬酸钾氧化消解-比色法原理,符合国标 可自动切换量程,且无需重复校准 IP66防护等级 ,适合较恶劣环境。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/4575177d-7485-4b78-abe2-be93d01b6cca.jpg" title=" 赛默飞 3106COD 化学需氧量自动监测仪.jpg" alt=" 赛默飞 3106COD 化学需氧量自动监测仪.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _self" strong 赛默飞 3106COD 化学需氧量自动监测仪 /strong /a /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:贵公司在污水废水水质监测方面可以提供哪些解决方案? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 马颢珺: /span /strong 目前,赛默飞可以提供包括《市政污水/工业废水综合解决方案》、《污水中总余氯的测量》、《地表水/废水中的固体悬浮物测量》等多种污水废水监测的解决方案,搭配赛默飞丰富的污水监测仪器可以实现对各类污水废水的水质监测。 /p
  • 坛墨质检|肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品目录
    坛墨质检|肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品目录 日前,生态环境部在《关于做好应对新型冠状病毒感染肺炎疫情生态环境应急监测工作的通知》和《应对新型冠状病毒感染肺炎疫情应急监测方案》中要求生态环境监测相关部门积极应对,认真履职,主动作为,全力做好空气、地表水等相关环境应急监测工作。地方生态环境部门应充分利用现有环境空气质量自动监测网络、地表水环境质量自动监测网络、饮用水水源地水质自动监测网络等系统,全天候密切关注空气、水环境质量变化状况和趋势。为保障民生,确保饮用水安全,进一步加强饮用水水源地保护,做好饮用水水源水质预警监测,确保饮用水水源不受污染。 其中,重点开展饮用水水源地监测,地表水参照《地表水环境质量标准》(GB 3838-2002)要求开展监测与评价,地下水参照《地下水质量标准》(GBT 14848-2017)要求开展监测和评价,在61项常规指标的基础上,增加余氯和生物毒性2项疫情防控特征指标的监测。 涉及相关国家标准GB 50014-2006《室外排水设计规范》GB 19193-2015《疫源地消毒总则》GB 3838-2002 《地表水环境质量标准》GB 3095-2012 《环境空气质量标准》GBT 5750.11-2006 《生活饮用水标准检验方法 消毒剂指标》GBT 15441-1995 《水质 急性毒性的测定 发光细菌法》GBT 14848-2017 《地下水质量标准》 坛墨质检为各地方生态环境相关部门迅速有效开展空气、水环境质量监测工作,针对以上7个环境监测国家标准,提供一套完整的肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品方案。坛墨质检环境应急标准品目录咨询北方地区王宏姝:13671388957南方地区汪丽红:13501101929众志成城 抗击肺炎温馨提示多通风 勤洗手 戴口罩 坛墨质检-标准物质中心(www.gbw-china.com),是一家专业致力于研发和生产标准物质标准样品、集敏捷制造、现代营销和现代物流的高科技企业,是标准物质标准样品研发、生产、销售、服务四位一体的综合服务平台。是中国CNAS标准物质标准样品生产者认可实验室(注册号:CNAS RM0024),并通过ISO90012015质量管理体系认证。
  • 赛默飞发布地表水和饮用水中痕量生物胺的检测方案
    2015年3月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布的地表水和饮用水中痕量生物胺的检测方案。腐胺、尸胺、组胺、亚精胺和精胺是最常见的五种生物胺,摄入过量将会诱发恶心、心悸、呼吸紊乱等强烈过敏反应,甚至危害生命安全。我国水产品卫生标准GB2733-2005就曾明确限定了市售、非活水产品中组胺的含量。目前生物胺的准确定量测定方法主要有气质联用、液相色谱法和离子色谱法等。其中仅离子色谱法无需将生物胺经过繁琐的柱前衍生或预衍生处理,以离子交换分离为基础,简单而迅捷地实现了这五种生物胺的分离测定。毛细管离子色谱的诞生,标志着离子色谱进入了低消耗、低成本、高效率时代。其微升级的流量,极大地降低了淋洗液的消耗,配合淋洗液自动发生装置使用,有效地保证了各种突发事件发生时,离子色谱总能在第一时间内完成对应的应急样品测定。赛默飞地表水和饮用水中痕量生物胺的检测方案,采用通用高压离子色谱ICS-5000+为依托,选用高效阳离子交换分离柱IonPac CS19,以甲基磺酸淋洗液发生器在线产生甲基磺酸溶液,梯度淋洗,完成了地表水、自来水样品中痕量腐胺、尸胺等五种常见生物胺的分离分析。方法重复性较好,准确性较高,在所选定条件下,可准确完成地表水、自来水中痕量腐胺、尸胺、组胺、亚精胺和精胺的分离测定工作。通用高压离子色谱ICS-5000+产品详情:www.thermo.com.cn/Product6544.html 下载应用纪要请点击:www.thermo.com.cn/Resources/201501/211561786.pdf---------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 《水和废水监测分析方法(第四版)》再版工作启动
    2015年4月16日,中国环境监测总站在北京组织召开了《水和废水监测分析方法(第四版)》再版工作启动会。黑龙江省环境保护厅、江苏、安徽、北京、河南省环境监测中心(站)和常州市环境监测中心的相关人员参加了会议。   会上成立了《水和废水监测分析方法(第四版)》再版编委会,中国环境监测总站刘廷良副总工担任主编。会议就再版的定位、篇章设计、结构调整和编写方式进行了讨论并形成一致意见。   《水和废水监测分析方法(第四版)》再版将进一步总结凝练国内外的监测分析方法,为读者提供一本具有实用性、科学性和先进性重要参考书和工具书。
  • 废水变蛋白粉?多的是你不知道的碳中和技术
    “你们猜猜这是什么?”采访中,中国科学院成都生物研究所研究员李东从盒子里取出了一小袋咖啡色的粉末。 打开袋子,凑近,在袋口上方轻扇,一阵油枯香气扑鼻而来。“见过沼液没?一种有机废弃物经沼气发酵后的含氮废水,这个东西就是沼液‘变’的蛋白粉。”李东介绍,目前已经对其进行了灭菌处理和重金属检测评估,“如果要当蛋白粉吃,是没有问题的。” 这包蛋白粉正是李东关于沼液生产单细胞蛋白饲料研究项目的最新成果。近期,相关研究成果相继发表在了Appl Biochem Biotechnol、Poultry Science、Electronic Journal of Biotechnology期刊上,同时获得了中国发明专利授权。 与植物源蛋白相比,该技术生产出的蛋白饲料合成速率较快,无需日照和大量土地,成本低。更重要的是,生产过程中能有效利用废弃碳源从而减少碳排,在“双碳”背境下的今天,意义凸显。 变“废”为“宝”,有机废弃物资源化利用一直是李东的老本行。如今他致力于在碳“废”中做文章,积极开展多种碳中和技术的研发和推广。变“废”为“肥” 碳中和,即所排放的二氧化碳和吸收利用的二氧化碳达到平衡。为实现国家碳中和目标,不仅要有碳减排技术和碳零排技术,还需要有碳负排技术。“因为不能完全杜绝煤、石油等化石能源的使用,需要对其释放出的二氧化碳在量上进行一个‘抵消’。” 李东解释。 其中,生物能源属于碳零排范畴,指从生物质中得到的能源,只要有太阳,生物能源就会取之不尽。其通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能在使用后又生成二氧化碳和水,形成一个物质的循环过程,所以从理论上看二氧化碳的净排放其实为零,生物能源也被视为可再生的清洁能源。 要实现负排放,那就要阻断循环。“简单来说,在这个循环过程中,如果我们不让这些生物质,例如农林废弃物、牲畜粪便等进行燃烧使用,那就不会再生成二氧化碳并排放到大气中去。”李东找到了另一种变“废”为宝的方法:有机废弃物腐殖化利用。 “做成含腐植酸有机肥,可以理解为一种作为肥料的‘煤’,因为它就封存于地下,很难再被分解。”李东介绍,还有一种是将有机废弃物经过热解炭化或者水热炭化,做成生物炭。“同样是封存在地下,是一种缓释肥。相较于普通肥料,它不会轻易受到降雨影响导致淋溶,从而造成资源的损失和面源的污染。” 他表示,这类腐植酸或生物炭基肥料可用于农业种植生产、土壤改良、生态复绿。“比如在一些荒坡或者废弃矿山,因为土壤没有有机质没法长东西,我们就可以把腐殖酸肥放进去,让荒地变沃土。”一举多得的碳负排技术 李东认为,有机废弃物腐殖化利用技术和生物炭肥的制备都是从面源上,将大气中的二氧化碳进行“固定”利用,达到负排放的目的。而针对大沼气工程、发电厂、燃煤电厂以及炼钢厂等点源碳排问题的解决,他提出了一种新的负排放技术——“POWER TO X”。 “ ‘POWER’ 指的是电,而‘X’可以指天然气(GAS)一类的碳基能源、化学品、材料、饲料甚至食品等。”李东举例,POWER TO GAS(可再生电转生物天然气)这项技术,指的就是先捕获工厂和沼气池产生的二氧化碳,利用可再生电水解制氢,再将氢气用于还原沼气中的二氧化碳,使二氧化碳变为甲烷,替代天然气使用。 在整个环节中,氢气承担了重要的角色。“我们要把二氧化碳生成我们需要的天然气、化学品等,是需要耗能的,而氢就是一种能量。”李东解释。 目前,电解水制氢技术已经相对成熟,只是还未形成安全的氢气输配管网和终端利用设施。“但我们的天然气管网相当完善,所以可以通过‘POWER TO GAS’技术,利用好氢气,生成天然气,这样使用和储存都更方便。” 李东表示,过程中电解水制氢技术的应用,也能解决“电”的储存问题。“电能储存能力有限,但发电又是恒定的,在用电低峰时就会造成资源的浪费。” 李东描绘了一个未来的应用场景:用电低峰时,某水电厂的电就被输送到大型生物天然气工程,经过电解水制氢,将要排放的二氧化碳还原为能够储存的天然气。用电高峰时,又能利用储罐里的天然气进行发电。 “整个过程,类似于水利工程中的蓄洪调峰。”李东提到,中共四川省委十一届十次全会明确了四川要做优做强清洁能源产业,推进水风光多能互补一体化发展,规模化开发利用天然气,有序开发多类型清洁能源,加快提升稳定保供、协同互补和自我调节的能力。“ ‘POWER TO GAS’这项技术的应用在能源的‘稳定保供、协调互补和自我调节’这方面将会尤为突出,还能解决目前氢气和电力运输或储存的问题,可谓是一举多得。”为空间站变“废”为食提供思路 针对“POWER TO GAS”技术的研究已经持续了五年,最新的系列成果于2021年1月,以研究生朱献濮为第一作者,李东为通讯作者发表在了学术期刊上。目前因为受限于电解水制氢的成本问题,李东及其团队做完“POWER TO GAS”技术经济性分析后,才会考虑进一步的商业化。 而“GAS”(天然气)只是“POWER TO X”中“X”的可能性之一,李东对这项技术的拓展和开发不止于此。“我们的社会是一个碳基社会,人们的吃、穿、住、用、行,乃至人类生命体均离不开碳。所以围绕这项技术理念和路线,我们还能转化出化学品、材料、饲料和食品等。” 李东展示出的特殊“蛋白粉”,正是该技术的又一体现。他解释,在这个沼液氨氮生产单细胞蛋白饲料研究项目中,摒弃了传统的硝化-反硝化的处理沼液的方式,将废弃的含有高浓度氨氮的沼液进行饲料化利用,构建“氨氮-蛋白氮”短流程氮循环。利用微生物把沼液氨氮和养分合成蛋白质,变成蛋白粉。 在“蛋白粉”生成过程中,同样可以利用沼气中的二氧化碳作为碳源,电解水制氢的氢作为能源。“POWER TO X”中的“X”,变成了“PROTEIN”(蛋白)。 李东介绍,这项技术在农业领域具有广阔的应用前景,因为生成的蛋白粉可用作饲料使用。“如果未来能够全面推广,不仅解决了沼气生物天然气产业瓶颈,在沼液资源化利用方面实现突破,对我国粮食安全也有重要的战略意义。” 此外,他还设想了一个应用场景:中国空间站。“在空间站内,太阳帆板一展开就有电,航天员们又呼出了二氧化碳,如果再有氢,尿液提供氮源,我们是否就能应用这项技术来实现航天员每天摄入的食物,也就是营养物的循环‘使用’?” 其实这一循环利用的理念已经在空间站实现,李东提到,空间站内航天员喝的水,有一部分就是经过尿和水循坏系统处理而来的。“因为物质是守恒的,我们要的就是提供物质不停的循环变化所需的能量。”
  • 生物纺织酶添绿印染业 助力减少废水排放量
    p   近日,中科院天津工业生物研究所宋诙研究员领先开发了生物纺织酶技术,这一技术在印染材料前处理过程中代替烧碱,将极大减少废水排放,并节水节电,被业界评价为我国印染行业的又一重要技术创新。 /p p   你有没有想过你穿的一件件T恤衫、牛仔裤或者连衣裙是在怎样的环境下生产出来的?事实上,色彩绚丽的服装带来的却是对环境的极大破坏。印染行业一直是高污染、高耗能的落后产能代表,近年来,不少地方尤其是一线城市的印染行业逐渐外迁,甚至关停。 /p p   与此同时,印染又是纺织行业不可或缺的环节,在政策倒逼下,印染行业也在不断寻求技术创新,朝着绿色印染方向前进。 /p p   由中科院天津工业生物研究所宋诙研究员领先开发的生物纺织酶技术,在印染材料前处理过程中代替烧碱,可极大减少废水排放,并节水节电,被业界评价为我国印染行业的又一重要技术创新。 /p p   印染行业迫切需要抵制污染 /p p   “当前中国纺织产业的污染问题已经到了需要刻不容缓解决的地步。传统纺织生产不仅给环境带来污染,更是产生各种有害化学物质,对我们的身体造成损害。全社会应该共同抵制污染性、消耗性的生产过程??” /p p   国际环保地球誓言(EarthPledge)发布的数据显示:“全世界至少有8000种化学品在将原料制成纺织品的过程中,会使用25%的农药用于种植非有机棉。这将导致对人类和环境不可逆转的损害,还有2/3的碳排放量会在服装的购买后继续发生。”在加工服装面料的过程中会耗费几十加仑的水,尤其是面料染色过程,合成材料的染色需要2.4万亿加仑的水。 /p p   中国环境统计数据表明,在重点调查工业行业中,纺织业是排污大户。纺织工业废水排放量在全国41个行业废水排放中位居前列,而其中印染加工过程产生的废水排放占纺织废水排放量的七成以上。 /p p   此外,作为水污染的重要来源,中国的纺织工业还消耗了巨大的水资源,在水资源利用效率方面远远落后于世界其他地区。根据中国环境科学出版社出版的《全国重点行业工业污染防治报告》,在生产同类单位产品的情况下,我国印染废水中污染物平均含量是国外的2—3倍,用水量则高达3—4倍 同时,印染废水不仅是行业主要污染物,印染废水所产生的污泥处理起来存在问题。 /p p   这其中,印染材料的前处理由于使用到大量烧碱,造成的污染尤其严重。“染色前需要用烧碱处理,用蒸汽把它蒸硬,然后,再用盐酸把这些烧碱中和掉,这就排放出大量废水。”曾经在印染企业一线工作多年的河北纺联物资供销有限公司驻津办事处经理高忠强说。 /p p   针对这一现状,中国科学院天津工业生物技术研究所宋诙带领团队首先将目标瞄准可代替烧碱的新酶制剂开发。 /p p   生物酶制剂解决印染难题 /p p   传统的印染前处理工艺流程包括烧毛、退浆、精炼、漂白和丝光五个步骤。虽然此前有国外公司生产用于印染前处理的酶制剂,但仅用于退浆这一环节。 /p p   宋诙介绍道,酶制剂是一种高效、低耗、无毒的生物催化剂,基于酶制剂的生物处理方法是解决印染工业高污染和高消耗的理想途径,但是,此前,酶制剂品种单一成本偏高,酶制剂的复配及与纺织助剂的相容性研究缺乏,完整的酶法染前处理工艺尚未形成。 /p p   此次,宋诙团队与天津天纺集团、河北纺联物资供销有限公司达成密切合作,历经三年,研发出多种性质优良的纺织用生物酶制剂及其生产工艺,包括淀粉酶、碱性果胶酶、木聚糖酶和过氧化氢酶等,可以将退浆和精炼合并成一步完成,大大提高前处理的效率。 /p p   “退浆—精炼复合酶制剂解决了涤棉、纯涤纶坯布混合浆料退浆难的问题。以往的淀粉酶退浆只能解决淀粉上浆的坯布,有PVA混合浆料的坯布只能用高温碱煮去除。”天纺集团总工程师丁学琴说,含阻燃丝、纯涤纶组分的坯布品种不能高温碱煮退浆,否则会皱缩,而使用生物复合酶的退浆效果很好,防止了坯布皱缩,而且退除淀粉、PVA干净,同时处理后布匹手感蓬松、柔软,也为工厂解决了一个技术难题。 /p p   节水节电减少污水排放 /p p   宋诙介绍道,酶法退浆精炼一次完成,不仅省去了传统处理工艺的高温,并且,酶法处理温度在低温下进行,大大降低了前处理过程中的蒸汽用量,显著节约了蒸汽能耗,与传统工艺相比,节约蒸汽25%—50%,节省电量40%。 /p p   生物酶法前处理工艺替代传统工艺中的烧碱退浆和烧碱精炼过程,意味着生物发酵产品可替代烧碱、精炼剂等化学制剂,因此,可大大降低处理后废水的pH值及COD值,精炼剂等化学制剂的有效取代可使前处理废水中得COD值降低60%以上。 /p p   “生物复合酶制剂具有处理条件温和、效率高、专一性好等特点,应用生物酶处理对棉纤维几乎没有损伤,而对于坯布上的淀粉浆料及PVA浆料具有高效的降解作用,可达到良好的退浆效果。”宋诙说,经该技术处理的棉纤维质量较传统方法提高许多。 /p p   对于印染企业关心的价格问题,宋诙表示,生物复合酶酶活效价高、用量少,价格与一般纺织助剂相当,不会提高处理成本,大多数纺织企业可接受。此外,应用生物酶进行前处理可通过降低蒸汽能耗、省去碱性废水处理成本、以及减少多种化学助剂用量,从而达到显著降低前处理成本的目的,提高纺织行业的经济效益。 /p p   “在天纺的酶法前处理工艺应用中,12000米纯棉棉布和11000米芳纶热波卡布的酶法前处理与传统碱法工艺比较,可分别降低成本30%和70%。”丁学琴说。 /p p   预计三年内推广到近20家企业 /p p   今年3月至6月,河北宁纺集团成功完成了16000米布以上的生物酶法前处理工艺的应用示范和推广。 /p p   此前,应用该生物复合酶的生物酶法前处理工艺在天津天纺集团首次试验成功,完成了累计大于300万米布的中试生产实验,实验品种包括军用迷彩、帐篷防水布、芳纶等等。 /p p   宋诙表示,接下来将与河北纺联继续合作完善技术推广工作,组成技术服务小组,服务全国印染企业,以及未来三年可完成10—20家纺织企业的推广应用,累计创造新增利润5000万到1亿元人民币。 /p p   在近日举办的生物纺织酶成果发布会上,前来参会的福建经销商告诉说,他认为该产品会受到印染企业的欢迎,他已决定代理该产品。 /p p   “我们也会进一步完善技术,同时针对印染的其他环节开展研发,开发出更多技术和产品。”宋诙说。 /p
  • 金陵论道 | 精细化工领域的废水监控与处理
    初春的南京,天高云淡远黛青,在美丽的玄武湖畔,今年的精细化工废水、废气处理技术交流会于3月15-16日如期举办。早上8点30分,200余人的会场已经坐无虚席,听众从全国各地专程赶到南京,参与到本届会议中,期待从两天的会议中有所收获。- 中国化工企业管理协会医药专委会副主任何志斌先生对到场的各位嘉宾表示欢迎,并致开幕辞。- 《流程工业》杂志编辑胡静女士介绍了拥有百年历史的弗戈媒体集团及根植中国19年的《流程工业》杂志。- 来自国家环境保护制药废水污染控制工程技术中心的任立人先生,在开幕演讲中,为现场听众详细介绍了目前制药行业污水处理的现状和问题、污染物排放标准、水污染控制技术、企业污染综合预防思路及未来制药废水处理的技术展望。- 北京化工大学传质与分离工程研究中心主任李群生教授介绍了高效分离技术的原理及其在精细化工废气、废水处理中的工业应用。◆ ◆ ◆GE Sievers 总有机碳TOC分析仪在化工废水处理中的应用本次会议特设了展台,方便在场听众随时与知名供应商进行技术交流。GE分析仪器在现场展示了Sievers InnovOx 实验室型总有机碳TOC分析仪。在石油化工行业有机物监控方面,Sievers InnovOx TOC分析仪是GE分析仪器的王牌产品,在检测工艺过程水和废水中的TOC时,突破性地体现出优良的可靠性,并能分析各种复杂的水样。采用专利的超临界水氧化技术(SCWO),InnovOx TOC分析仪十分耐用,能分析大批量的水样。在线使用可以连续检测水样中的有机物浓度,适用于监测各种排入或排出的水流,从蒸汽冷凝水到污水,测量浓度范围极广。具体应用如下:- 蒸汽冷凝水有机物泄漏监测- 冷却水原水污染监测- 热交换器泄漏监测- 生物污水处理厂前后有机物监测及优化- 废水排放监测,COD/BOD相互关系- 高盐海水和卤水有机物监测其优势在于:- 可靠性强:超临界水氧化技术,反应器自清洁,检测器设计简单,无复杂部件- 维护和操作成本低:6个月标定有效期,无需昂贵催化剂及石英管,仅需便宜的化学试剂以及每月半小时的推荐预防性维护- 应用范围广:不限制水样成分,高盐水样及复杂水样可直接进样,无需预处理及稀释,也不会增加仪器维护频率- 测量模式多:多种测量模式, 包括 TOC (TC-IC) 或NPOC- 多流路:最多可同时监测5路水样,仪器内部完成切换,方便布置下列视频,介绍了超临界水氧化技术(SCWO)的工作原理和InnovOx TOC分析仪的优势。如您对有机物监测有任何问题,欢迎与我们联系!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制