当前位置: 仪器信息网 > 行业主题 > >

水动力学推进机理

仪器信息网水动力学推进机理专题为您整合水动力学推进机理相关的最新文章,在水动力学推进机理专题,您不仅可以免费浏览水动力学推进机理的资讯, 同时您还可以浏览水动力学推进机理的相关资料、解决方案,参与社区水动力学推进机理话题讨论。

水动力学推进机理相关的资讯

  • 中国唯一空气动力学国家重点实验室揭牌成立
    中国唯一国家级空气动力学重点实验室二十三日在四川绵阳空气动力研究基地正式揭牌成立,将为大飞机、新一代列车、风力发电机等国家重大专项研制提供技术支撑,并推动中国空气动力学基础研究,为国家经济社会发展和国家安全战略提供重要保障。   中国科学技术部副部长曹健林向新成立的空气动力学国家重点实验室授牌,他说,空气动力学是航空航天事业和国家安全战略的重要基础支撑,当前中国日新月异的建设发展对空气动力学的战略需求愈加强烈。成立空气动力学国家重点实验室,是加强国家科技基础条件平台建设的重要举措。依托空气动力研究基地建设空气动力学重点实验室,能够充分利用空气动力研究基地的人才、设备、技术、信息、成果等优势资源,提供一个一流的科学研究和学术交流平台,有利于针对空气动力学的基础性、前沿性关键问题进行长期、系统、深入的研究,从而取得更大突破。   空气动力学国家重点实验室相关负责人介绍,该实验室将充分发挥其开放共享的独特优势,吸引中国空气动力学研究领域的优秀人才和领先技术资源,紧盯世界空气动力学发展前沿和中国航空航天技术发展需求,重点开展以大飞机研制为核心的气动噪声、减阻技术和结冰机理等方面的技术研究,为大飞机、新一代列车、风力发电机等国家重大专项、高速轨道交通和高效风能利用中涉及的关键气动问题提供技术支撑,为复杂流动机理问题研究搭建高精度、高效率、高可信度的数值模拟研究平台。   据悉,长期以来,四川绵阳空气动力研究基地依托亚洲最大风洞群和中国最先进的风洞试验研究技术,大力推进空气动力学与其它学科交叉渗透,构建起科学合理的空气动力学基础理论体系,为空气动力学国家重点实验室的成立完成了大量技术储备。该基地广大科技人员致力于解决制约中国航空航天、地面交通、风能利用等领域发展的瓶颈问题,围绕计算空气动力学及飞行器流动机理、低速空气动力学和国家大型空气动力学基础条件平台关键技术开展集中攻关,先后发展了数百项风洞试验新技术,为包括“歼十”战机、“神舟”飞船等多项重点飞行器的研制攻克了上千个技术难题,形成一大批具有国际先进水平的重大研究成果。
  • 中国化学会第七届全国热分析动力学与热动力学学术会议顺利闭幕
    p strong 仪器信息网讯 /strong   2019年4月21日,由中国化学会主办、中国化学会第七届全国热分析动力学与热动力学学术会议中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办的中国化学会第七届全国热分析动力学与热动力学学术会议于合肥顺利闭幕。21日上午的大会由桂林电子科技大学的孙立贤、河北师范大学的张建军、天津科技大学的邓天龙联合主持。在闭幕式上,颁发了“最佳张贴报告奖” 并发布2021年第八届全国热分析动力学与热动力学学术会议筹备的最新消息。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/b77b6d53-6fc5-4cf5-9718-398f495537a8.jpg" title=" 孙立贤_副本.jpg" alt=" 孙立贤_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" /    /p p style=" text-align: center " 桂林电子科技大学孙立贤 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/f0a1c4e0-09b9-4d96-b3ce-745c45ed36de.jpg" title=" 张建军_副本.jpg" alt=" 张建军_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" /    /p p style=" text-align: center " 河北师范大学张建军 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/90a6779e-fa06-42d5-bd4d-122190562706.jpg" title=" 邓天龙_副本.jpg" alt=" 邓天龙_副本.jpg" style=" width: 400px height: 294px " width=" 400" vspace=" 0" height=" 294" border=" 0" /    /p p style=" text-align: center " 天津科技大学邓天龙 /p p   中国科学院化学研究所院士韩布兴首先作了题为“绿色溶剂体系热力学、催化材料合成与化学反应中的溶剂效应”的主题报告。当前,70%以上的化学化工过程都会使用到溶剂,尤其是有机溶剂,但也同时面临着效率低、功能有限和环境污染等问题,因此无法满足当代化工可持续发展的要求,开发利用绿色溶剂是必然发展趋势。绿色溶剂应具有无毒、无害、便宜易得、容易循环利用和具有特定功能等特性。其中,具有代表性的绿色溶剂包括水、超临界流体、离子液体和生物质基溶剂等。韩布兴课题组目前的主要研究工作就是围绕超临界CO2、离子液体和水等绿色溶剂,通过化学热力学研究以及发展实验方法,实现绿色功能介质创制、催化材料合成等应用。报告中,韩布兴介绍了其目前的研究成果,包含超临界流体体系局域热力学模型、离子液体与超临界流体/离子液体乳液体系、超临界CO2中表面活性剂自组装及组装体催化功能、配合物催化剂稳定的CO2包水型微乳液光催化CO2还原、MOF稳定CO2/水乳液及MOF界面组装、超临界CO2/IL乳液制备有序介孔MOF纳米球、多孔金属制备及生物质基资源转换、离子液体/有机盐体系制备介孔无机盐、离子液体制备负载型纳米催化材料等。韩布兴课题组还尝试了用离子液体解决CO2反应中的热力学问题,实现了两相体系的甲酸合成 利用CO2形成碳酸解决动力学问题和用于纳米催化等,并介绍了溶剂效应在化学反应中的应用。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c173d718-ce88-4413-bc02-5cf5159d12aa.jpg" title=" 韩布兴_副本.jpg" alt=" 韩布兴_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " 中国科学院化学研究所院士韩布兴 /p p   武汉大学刘义作了题为“蛋白纤维化纳米抑制剂的设计及其作用机制”的主题报告。阿尔兹海默症近年来受到人们的普遍关注 研究表明,其与蛋白纤维化关系密切。目前,主要的蛋白纤维化抑制剂分为多肽类抑制剂、小分子抑制剂和新型纳米材料三种。新型纳米材料由于其稳定性强、比表面积大和表面易修饰的特点,受到广泛青睐。碳点是一类生物相容性很好的纳米材料,刘义通过设计一系列表面改性的碳点(如氧化改性),并以与阿尔兹海默症相关的胰岛素蛋白为研究对象,利用等温滴定量热、荧光光谱、圆二色谱和显微分析等仪器,证实了其对与疾病相关的HI蛋白的聚集和生长有抑制作用。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/b8ca13a8-ab38-466b-8635-f03976de0064.jpg" title=" 刘义_副本.jpg" alt=" 刘义_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " 武汉大学刘义 /p p   桂林电子科技大学孙立贤作了题为“新型储能材料设计与热力学调控”的主题报告。我国对可再生能源的需求迫切,氢能源利用是支持可再生能源大规模应用的重要途经,但目前缺乏安全高效的氢储运技术,制约了氢能的发展。孙立贤介绍了其在可控形貌低维催化剂制备及配位氢化物储氢、金属与配体调变以及符合纳米化MOFs储氢等工作。此外,还分享了孙立贤课题组首次创建的国内储氢材料数据库基本情况。 /p p   陕西师范大学的刘志宏作了题为“热化学在硼酸盐功能材料制备及其性能研究中的应用”的主题报告。报告主要介绍了硼酸盐微孔晶体材料的液-固相吸附热动力学、硼酸盐纳米阻燃材料应用的研究和多级孔硼酸盐材料制备及其吸附性能的研究等。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8c4c8e97-1587-41d4-aae8-d3bbbb67608b.jpg" title=" 刘志宏_副本.jpg" alt=" 刘志宏_副本.jpg" / /p p style=" text-align: center " 陕西师范大学刘志宏 /p p   河北师范大学张建军作了题为“稀土超分子配合物的晶体结构、热分解反应动力学及热力学的研究“的主题报告。报告中,张建军主要阐释了稀土超分子配合物中第一系列配合物、第二系列配合物和第三系列配合物的热分解机理 并提出了简单反应处理的改进双等双步法,从而确定了活化能E、指前因子A以及其他热力学参数。 /p p   中国科学技术大学丁延伟作了题为“仪器间差异对于热分析动力学结果影响的研究“的主题报告。报告中对影响热分析曲线的多种因素进行了分析讨论,其中包含样品量、制样方式、样品状态、样品前处理条件、温度控制程序、支架类型、仪器结构、实验气氛及流速、仪器状态、仪器间差异、人员差异等。丁延伟特别强调,要不定期进行仪器的校准,尤其在进行重要的实验前,最好一定要做仪器的校准。 /p p   在报告中,对“仪器间差异”这一重要因素进行了深入、全面的分析和解读。理化科学实验中心先后与美国赛默飞、美国珀金埃尔默公司、美国TA公司等6家仪器厂商共建联合实验室,目前已经装备不同型号热分析仪器近30台。除了考察不同实验室中仪器对同一样品的测试差异之外,利用理化科学实验中心的优势,特别补充同一测试条件下、不同仪器对同一样品的测试差异分析。报告中以三家公司(匿名)的DSC数据说明了仪器间差异对最终测试结果的影响较大。通过比对了不同公司仪器、相同型号仪器、不同类型仪器的热重分析结果,丁延伟发现相同型号仪器对比差别不大,不同类型仪器对比差别较大。通过考察同一公司不同型号仪器之间的差异,发现数据结果并不吻合 丁延伟认为,不一定是仪器的质量问题,而是有可能是校准方法差异的问题。通过对比同一公司不同类型的仪器,测试结果也会产生差异,这可能是由于仪器结构的影响。报告还指出,即使是同一公司的同一产品,测得的结果也可能不同,这可能是由于仪器状态不同导致的。因此,校准方法、结构和仪器状态都可能对热分析动力学结果产生影响。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/4c89254e-800e-422a-82dc-54ab6200f331.jpg" title=" 丁延伟_副本.jpg" alt=" 丁延伟_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " 中国科学技术大学丁延伟 /p p   大会闭幕式由张建军主持。闭幕式上颁发了“最佳张贴报告奖” 获奖名单由辽宁大学房大维宣布:山东农业大学的兰孝征、西北大学的陈湘、南京师范大学的刘浩、南京大学的谢科峰、北京理工大学的钟野、河南师范大学的邢肇碧、辽宁大学的宋宗仁、广西师范大学的陈志凤、中国科学院上海硅酸盐研究所的张赵文斌和北京理工大学的任杰。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/7d1e3620-9c8a-41fd-afec-4c28560cda4b.jpg" title=" 房大维_副本.jpg" alt=" 房大维_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" /   /p p style=" text-align: center " 辽宁大学房大维 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/fac4c8ae-f987-4091-8f1d-4c6662013f46.jpg" title=" 大会颁奖.jpg" alt=" 大会颁奖.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 颁奖现场 /p p   随后,大会合作厂商、美国TA公司的经理王健女士发表了讲话 武汉大学刘义对大会进行了总结发言。最后,大会特别通告,2021年第八届热分析动力学与热动力学学术会议由陕西师范大学承办,并邀请下一届会议主办方代表刘志宏登台发言。诸多参会代表纷纷组团在即将关闭的大会主屏幕前合影留念,为本次大会圆满结束留下了最后的注脚。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/ad559fe0-de58-41b8-9275-132c4800061b.jpg" title=" 大会留影.jpg" alt=" 大会留影.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 组团合影留念 /p p br/ /p
  • 新世纪“材料之王”——石墨烯在空天推进和动力领域的应用
    太空环境由极端温度、真空、微流星体、太空碎片和太阳黑子活动引起的大变化组成。航天器和航天系统的设计和建造很大程度上依赖于这些参数。暴露在这些恶劣环境下的系统表面由于原子氧的存在而产生破损。因此,高强度和刚度的先进工程材料使20世纪的月球探索时代成为可能,人类探索火星和更远的目的地将需要新一代的材料。20多年来,在纳米尺度(一维小于100nm)合成和加工材料的独特性能吸引了各行各业的关注,这些特性包括大表面积、高纵横比、高各向异性、可定制的电导率和导热系数以及独特的光学特性等。这些特性可用于制备高强度、轻量化和多功能结构、新颖的传感器以及具有高度可靠的环境控制能力、能够屏蔽辐射的储能系统。可持续技术改进的交织性质使纳米材料成为航空航天应用的理想材料。纳米材料可以集成到复杂的航空几何结构中,减少制造技术中的废物产生。这也可用于轻量化和无需耗时维护的机身和结构的设计。石墨烯结构由单层厚度的六方晶格碳原子组成,具有高强度、高刚度、低密度、高电导率和导热率。石墨烯具有高的载流子传输速率,表现出比铜导体好的导电性,比硅半导体更好的材料。石墨烯基复合材料应用于航空航天工业,能有效地减轻重量,提高材料强度,从而减少排放,减少燃料消耗,最终实现更绿色和更清洁的环境。以石墨烯为基础的先进纳米材料在航空工业中,得到了广泛的认可和应用。本文主要从以下三方面进行综述: (1)简述石墨烯结构及其性能特征;(2)主要介绍石墨烯在空天推进和动力领域的热门应用方向,例如复合推进剂,热管理,电极材料,光帆材料等方面;(3)石墨烯未来在空天领域的应用前景和挑战。一、石墨烯结构及其特性石墨烯由单原子厚度的sp₂杂化碳原子同素异形体组成,呈二维(2D)平面蜂窝状晶格。也是构成石墨、碳纳米管、富勒烯等多种碳的同素异形体的基本单元。如图1所示,具有二维碳原子结构的石墨烯,可以通过堆叠形成三维的石墨,也可通过卷曲形成一维的碳纳米管,或者通过包裹形成零维的富勒烯。图1 (a)石墨烯及碳的同素异形体;(b)石墨烯的晶格结构,属于相邻两个碳格A和B的碳原子以圆点表示;(c)石墨烯的能带结构;(d)石墨烯起伏表面模型图。早在1940年,就有理论认为,二维的石墨烯处于非稳定热力学状态,无法在有限温度下自由存在。因此,一直仅是一个学术概念。直至2004年,曼彻斯特大学利用简单的机械剥离方法成功获得单层石墨烯,从而证实它可以稳定存在。石墨烯的蜂巢晶格结构由密集分布在六边形点阵上的碳原子构成,原子排列十分紧密。碳原子以sp₂电子轨道杂化,在平面内形成3个σ键,键角120°,键长约为0.142nm(图 1(b)),2pz轨道电子在垂直于平面方向形成大π键。石墨烯具有特殊的能带结构,由简单的紧束缚模型可以计算得出,它的导带(π*带)和价带(π带)在布里渊区的两个锥顶点K和K´交于一点,称为Dirac点,进而形成圆锥状的低谷。同时,通过观测发现,石墨烯并不是一个完美的平整的二维结构,而是在微观状态下表现出一定的起伏(图 1(e)),这也被认为是石墨烯能够在室温下自由稳定存在的原因。由于其优异的化学稳定性、高载流子迁移率、低密度和光学透明度等特性,在传感器、光子和电子器件等领域被认为是一种很有前景的材料。这一新型碳材料也从此开辟了一个崭新的研究方向,以其令人兴奋的独特性质,涉及的领域覆盖化学、力学、医学、电子智能及众多交叉学科,并由此创造了潜在的巨大经济价值与广阔的应用前景。二、石墨烯在空天推进领域热门应用方向航空航天应用历来是先进材料的驱动力,从太空飞行器的强化碳-碳热保护系统到先进的推进动力系统。只有工程纳米材料的应用才能满足需求,使得航空航天发展更进一步。(一)复合推进剂石墨烯的应用目前也已经扩展到复合推进剂领域,主要用于提高推进剂的热分解、导热以及力学性能。研究最多的就是复合固体推进剂含能组分的热分解,分解速率的提升对于提高推进剂的燃烧性能至关重要,而热分解又主要依赖于催化剂体系。传统上广泛使用的催化剂主要是一些过渡金属及其氧化物。它们的催化能力依赖暴露出来的金属活性位点的数量,然而其往往容易发生团聚,降低催化活性。为了克服这一问题,纳米碳材料已经被广泛作为催化剂载体,以抑制催化剂颗粒的团聚,提高其催化能力。以石墨烯为基底负载无机纳米颗粒的方法主要有非原位复合和原位复合。非原位复合是将预先制备好的纳米颗粒直接附着在石墨烯上,但是由于兼容性问题以及改性剂可能影响到与含能材料之间的相互作用,所以以原位复合方法制备复合推进剂的方法研究的较多。原位复合是通过在石墨烯表面上由各种前驱体制备出纳米颗粒的方法。根据制备手段不同原位复合可以分为还原法、电化学沉积法、水热法、溶胶-凝胶法。石墨烯原位复合纳米材料的制备方法中,电化学沉积法、溶胶/凝胶法由于工艺复杂或原料昂贵,不适合大规模生产。水热法相对于化学还原法的优势在于避免了还原剂的使用,还可以负载金属氧化物纳米颗粒,纳米颗粒分散度高,粒径小且对负载纳米颗粒的性状调控性更强。在实际应用中,根据负载的燃烧催化剂选择不同的方法制备。DEY等采用微波法制备了直径约20~30nm的Fe₂O₃粒子均匀分散在石墨烯片上的Fe₂O₃/Graphene复合粒子,作为AP的催化剂,并对其催化性能进行研究。研究发现,随着Fe₂O₃/Graphene含量的增加,催化作用也明显增强,同时指出Fe₂O₃/Graphene能够有效加快AP系推进剂的燃烧速率。复合固体推进剂的导热问题是导弹、火箭系统安全性与可靠性研究中的重要问题。一方面,由于推进剂不可避免地需要承受极端恶劣和复杂的温度环境,温度的变化很容易导致内部应力的产生;另一方面,导热系数对推进剂的点火和燃烧性能具有关键性的作用。以高分子粘结剂为基体的复合固体推进剂导热系数通常较低,这使得其在承受大幅度温度冲击时,热量无法快速传递,导致装药内部温度分布不均匀或呈梯度分布,进而产生严重的内部热应力,直接引起内部裂纹甚至结构破坏。石墨烯由于具有极高的导热系数和较轻的质量,目前已经广泛作为导热填料用于复合材料。这种具有二维结构的新型轻质碳材料实际上已经在含能材料导热性能的提升方面发挥了作用,如对于高聚物粘结炸药导热系数的提升。张建侃等总结了石墨烯应用于固体推进剂的研究进展的基础上,提出非氧化石墨烯由于导热系数高,适合经非共价改性后分散于推进剂基体中,增强基体的导热性能。此外,复合固体推进剂力学性能的不足将导致药柱无法承受冲击、振动、过载等复杂载荷的作用,进而产生裂纹,增大燃烧面积,引起发动机内压升高,甚至导致爆炸。为了提高复合推进剂的力学性能,在基体中添加纳米材料已经成为提高推进剂力学性能的重要手段。文献指出,石墨烯应用于复合推进剂,可以有效增强推进剂的力学性质。(二)热管理石墨烯纳米材料目前正被纳入各种航天热防护材料和热管理,以提高在各种气或热流动条件下热稳定性和机械完整性的极限。为特殊航天任务材料系统提供多功能的研究也在进行中。由于航空工业的发展,复合材料基体的耐热性和烧蚀性能提出了更高的要求。由于树脂具有良好的加工工艺等性能,被广泛用作耐烧蚀材料的主要基体。为了进一步改善烧蚀材料的性能,石墨烯由于其独特的结构,表现出优异的热稳定性能、力学性能、导电性能等特点,是制备先进复合材料的理想增强体。这些复合材料用于高超声速飞行器前缘的热保护系统、火箭喷管和固体火箭发动机的内部绝缘以及导弹发射设施结构。研究发现,氧化石墨烯/酚醛树脂/碳纤维复合材料的热稳定性和烧蚀性能得到了显著提高,这是因为GO在聚合物基体中的分散良好,GO与酚醛基体之间的界面相互作用强,以及热解后的层状碳结构。与其他样品相比,GO含量为1.25%的样品在烧蚀率、热扩散率和热稳定性方面表现最佳。该复合材料在不同温度下具有恒定的热扩散率,炭产率和烧蚀率分别提高了10%和51%。MA等为了提高碳纤维/ 酚醛复合材料的烧蚀性能,采用纳米填料对纤维增强体界面进行改性。首先,通过将低浓度的GO(0.1%)加入到碳/酚醛(CF/PR)中,结合实验和计算分析氧化石墨烯(GO)对提高复合材料抗烧蚀性能。氧化石墨烯填充复合材料在热阻方面的优势与氧化石墨烯的加入提高了PR的炭收率和纤维的石墨化。分子动力学模拟表明,即使浓度很小,基体内的氧化石墨烯也可以作为炭化PR石墨化晶体生长的核剂。在极端烧蚀温度下,纤维-基体界面处的氧化石墨烯可以与纤维结合。促进了石墨烯-纤维界面stone-throwing-wales缺陷(xy平面)和sp₂杂化(z方向)的形成,进一步提高了纤维的石墨化程度。文中还研究了两种纳米材料填充 CF/PR复合材料的界面、热性能和烧蚀性能。特别是,氧化石墨烯(GO)和石墨氮化碳(g-C3N4)被用于生产低负载(0.1%)的复合材料。通过氧乙炔火焰试验研究了复合材料的烧蚀性能。石墨烯填充和g-C3N4填充复合材料的抗烧蚀性能比原始复合材料分别提高了62.02%和22.36%,线性烧蚀速率的降低是导热系数、烧焦层和纤维石墨化程度共同作用的结果。氧化石墨烯填充复合材料的机理是氧化石墨烯可以显著提高纤维表面的石墨化程度,并进一步提高其抗高温烧蚀的耐热性。而在g-C3N4填充的复合材料中,较厚的纤维直径和烧蚀区炭化层可以分散可燃气体,提高抗氧化性能。此外,将石墨烯均匀地分散在丁苯橡胶基体中,显著提高了聚合物基纳米复合材料的抗烧蚀性能。多孔结构在烧蚀试验过程中形成,它增强了蒸腾和蒸发过程,降低了背面的温度升高。橡胶复合材料的极限拉伸强度和橡胶的肖氏硬度A得到有效提高,而断裂伸长率随着填料与基体比的增加而降低。与有机硅、天然橡胶和乙丙橡胶纳米复合材料相比,丁苯橡胶复合材料在暴露于超高温和剪切流后显示出很好特性。ARABY等制备了苯乙烯-丁二烯橡胶和石墨烯聚合物纳米复合材料。当纳米颗粒含量达到10.5%阈值时,产生导热和界面通道,此时导热系数最高。此外,如图2所示,辐射冷却正在成为一种越来越有吸引力的被动热管理方法,它利用周围环境中的光谱辐射特性。通过机械可重构石墨烯的选择性中间膨胀发射率控制,其中机械拉伸和释放会引起石墨烯的受控形态变化。利用太阳光谱吸收太阳辐射加热(从200nm~2.5μm,可见到近红外波长)并利用大气透射窗口(从8μm~14μm,中红外波长),通过将热量重新发射到外层空间来冷却表面。用于航空航天应用的系统和表面需要动态温度控制以获得最佳系统性能,同时满足个人舒适度和维护设备功能的热需求,并避免过热。能够在不同光谱范围内加热和冷却否定了使用具有相当均匀的高或低发射率值的传统材料,并且由于缺乏对发射率的动态调制,可调节温度的需要是刚性冷却表面无法实现的。同时,由于石墨烯良好的导热性,基于废热反射导热的石墨烯散热器在空间光伏聚光器上得到了应用,不仅降低了成本,在降低质量密度,比功率的提升方面都起到至关重要的作用。图2 (a)基于皱褶石墨烯的选择性发射;(b,c)褶皱节距的变化可利用太阳辐射和大气窗口来辐射冷却(10 μm)和加热(290nm)。(三)电极材料目前,小型化、自动化、以功能为中心的设备的快速发展,使星际任务和近地空间探索的实现更近一步。先进的纳米结构材料的引入促进了全球智能多样化的平台在电力、仪器和通信方面取得进步。然而,仍然缺乏高效可靠的推力系统,能够在长期部署期间支持小型卫星和立方体卫星的精确机动。此外,航空和空间系统需要可靠的电力生产、存储和传输,无论是短期还是长期活动。现有的能源系统正在被纳米材料创新所取代或补充。以石墨烯为基础的更好的工程纳米材料正在不断改进。MARKANDAN等使用氧化铝增韧氧化锆(ATZ)作为结构材料制造了一个微型推进器,氧化钇稳定氧化锆-石墨烯(YSZ-Gr)作为电极材料。YSZ-石墨烯不仅可以作为电解分解硝酸羟铵溶液的电极,还可以起到阻尼作用。这种微型推进器作为主推进系统具有潜在的应用,可用于卫星星座编队飞行中的快速轨道转移。离子推进器阴极(如图3(a)所示)的关键挑战在于减少或完全消除阴极的推进剂消耗,显著提高阴极的使用寿命,以及减少白炽部分的热损失。通过使用纳米多孔材料、纳米管和石墨烯,可以确保减少气体消耗。这个问题的最佳解决方案是通过使用高发射材料和表面结构完全消除通过阴极的气体通量。垂直排列的石墨烯薄片显著提高推进器效率的,作为无推进剂体系下的良好候选者而备受关注,如图3(b)所示。图3 (a)常用的热发射阴极示意图;(b)纳米多孔材料,垂直排列的石墨烯薄片直接生长在纳米多孔氧化铝上(比例尺:200nm)。(四)光帆材料基于石墨烯的轻型帆的推进系统因其灵活性和无需携带燃料这一特性而成为行星际和星际任务的候选技术。轻型航行也是唯一现存的空间推进技术,可以让我们在人类的一生中访问其他星系。为此举办的蜻蜓计划竞赛,就旨在评估激光驱动的光帆星际探测器发送到另一个恒星系统的可行性。这种大规模光操纵石墨烯光帆对实现星际探索和直接空间运输是具有深远意义的。如图4(a)所示,ZHANG等使用大块石墨烯泡沫在宏观尺度上观察到其直接光推进。这种三维石墨烯材料的新形态,使其不仅能够吸收不同波长的光,而且可以使用瓦级的激光,甚至阳光,按照一种新颖的光致电子喷射机制,直接推进到亚米尺度。如图4(b)所示,GAUDENZI与其合作伙伴制作了由铜网格支撑的石墨烯微膜二维帆叶,并在微重力环境下测试了光诱导位移。提出的材料设计消除了帆所需的光学和机械性能,从而大大降低了帆的总质量,并为利用石墨烯机械强度的高反射2D帆打开了大门。此外,PERAKIS等设计了石墨烯作为夹层的低密度和高反射率的三明治轻帆,达到指定加速度比目前最先进的镀铝的聚酯薄膜太阳帆材料性能更好。图4(a)石墨烯海绵在激光照射下向上推进和光致旋转示意图;(b)帆在激光照射下的垂直位移,显示了帆在微重力和真空中的不同位置(侧视图):释放后(左)和在450nm、100mW的激光下加速350ms后(右) 。(五)其他领域由于太空环境由极端温度、真空、太空碎片和太阳黑子活动引起的大变化构成,那么先进的纳米复合材料被用于航空航天飞机结构和太空环境恶劣气候的涂层以及微电子系统的开发就变得非常的有意义。石墨烯霍尔效应传感器具有低热漂移,适用于航空航天应用的电力电子模块中的电流实时监测,可在高达500K的温度下工作。随着温度的升高,临界电子性质的变化,特别是载流子浓度和载流子迁移率的变化,这些参数是受实现传感器的石墨烯层狄拉克点Dirac点所独特影响的。利用门控优化石墨烯霍尔传感器可以实现低温度系数下的高灵敏度霍尔效应测量。此外,在其他星球上的生境开发受到多种标准的制约,其中之一就是空间碎片的撞击破坏。Kuzhir在纳米级厚度的铜催化剂膜和介质SiO₂基底之间通过催化化学气相沉积工艺合成Ka波段多层石墨烯薄膜,石墨烯薄膜的厚度由原子力显微镜直接表征,仅显示了样品上纳米级的小波动。所研究的薄膜厚度不超过5nm,且有一定的粗糙度。石墨烯只有千分之一的皮肤深度,吸收损耗造成的电磁屏蔽效率非常高,达到35%~43%的入射功率水平上。制造的石墨烯薄膜在室温下具有高度的导电性,在可见的范围内具有非常高的透明性,并具有非常好的热学和力学性能,可能成为制造纳米级厚度的电磁干扰防护涂层的有趣的技术材料。此外,特殊的三维导电链结构对轻质,柔性的导电纳米复合材料具有很强的吸引力,尤其是在降低材料的制造价格和良好的加工性能方面。聚二甲基硅氧烷(PDMS)复合材料通过将石墨烯排列成仿珍珠层状序列三维结构,在石墨烯含量不足的情况下表现出更高的力学性能、各向异性电导率和优越的电磁辐射屏蔽效率。掺杂0.4%质量分数的导电颗粒电磁辐射屏蔽效率达到42dB,沿排列方向的电导率为32S/m。在2500 ℃下热处理气凝胶后,聚合物纳米复合材料的电磁辐射屏蔽效率和电导率分别变化为65dB和0.5S/m。在0.15%的超低浓度,热处理温度800℃条件下,其电磁辐射屏蔽效率可达25dB。表明各向异性石墨烯/PDMS层板在超低石墨烯含量下通过结构调控获得了更高的电磁屏蔽效率。环境控制和生命支持系统技术是纳米材料的沃土,长期的人类太空探索带来了最大的挑战。无论是在相对安全的低地球轨道内的短期任务,还是艰难的长期任务,如前往遥远的星球。可靠的空气、水和食物供应;废物管理系统;功能性的可居住空间都是必不可少的。包括在国际空间站上的低轨道运行,已经为生命支撑技术提供了一个有用的试验场,随着航天国家为前往火星等目的地的长期任务做准备,在低轨道运行中测试技术被认为是一项重要的指标。目前的生命支撑技术的可靠性和性能相对较差,需要采用高比表面积和导电纳米材料作为提高系统整体性能的途径之一。碳纳米管仲胺功能化以实现二氧化碳去除,这是生命支持技术不可或缺的功能,并解决当前系统的局限性,包括可再生性和高功耗。在最好的条件下,水的净化和回收是具有挑战性的,但微重力环境的增加和多年耐用性的必要性推动了基于纳米材料的水过滤系统的几个例子。富勒烯在水净化方面已显示出非常好的前景,美国宇航局赞助的使用碳纳米管的纳米级过滤技术已发展成为一种商业产品。尽管可扩展性仍然存在问题,但多孔石墨烯是一种积极研究的水过滤材料,吸引了大量的关注,如图5所示。图5 (a)纳米多孔石墨烯水脱盐示意图;(b)具有亲水键的纳米孔示意图。三、结束语本文首先对石墨烯的结构和理化性质进行了介绍,并简要阐述各性能在具体应用中的重要作用;然后,综述了石墨烯纳米材料在航空航天领域的各方面(复合固体推进剂、热管理和智能光帆等)前沿领域的应用现状。石墨烯及其复合材料的制备已得到较快发展。其中,石墨烯在复合固体推进剂中的应用目前主要集中在提高推进剂含能组分的热分解和燃烧性能方面,而在导热和力学性能方面的研究则相对较少,且制备方法单一,以简单的共混为主,缺乏针对性的设计和性能的控制。而且对石墨烯的性能增强机理缺乏深入的分析。在热管理方面,导热系数、产炭性能和纳米颗粒分散对聚合物纳米复合材料的烧蚀性能和绝缘性能都有影响。酚醛树脂仍然是这一应用中被广泛研究的聚合物,纳米陶瓷颗粒与碳基的复合纳米填料的结合似乎是下一个热管理趋势。此外,在太空电力推进领域,新型石墨烯基纳米材料和微电子机械系统支持的离子液体推进器解决方案,这是为微加工和纳米结构推进器阵列的实现提出了方案。另外,一种可能的低成本,高时效的纳米制造工艺,用于飞机储能和生命支持设备。与传统解决方案相比,这些纳米复合材料应用了纳米材料的整合,并与太空任务和探索计划相结合,可以节省成本和时间。石墨烯在很多领域的研究仍处于探索阶段,石墨烯材料在极端环境中的行为将扩大我们的基本理解和潜在应用,将促进人类在太空的探索。石墨烯基纳米材料未来的研究重点需要着眼于以下几个方向:(1)一种降低开发成本的潜在解决方案是创新材料-建模和模拟与实验测试和表征方法相结合,可以降低开发和鉴定成本。将有助于跨越纳米工程材料的性能转化为宏观尺度上的现实。(2)大规模构造石墨烯材料的集成方法,以保持在石墨烯纳米尺度上注意到的性能和批量实现。它们占地面积小,功耗低,耐辐射,非常适合太空应用。(3)将纳米石墨烯材料集成到最先进类型的电力推进装置中,利用纳米材料的独特特性,提高其效率和使用寿命。另外,进一步创造出一个自适应(自清洁表面,自愈合修复机制,自我愈合)推进器。
  • 马尔文帕纳科:创新GCI、ITC技术,打造动力学与热力学分析一体化分子互作平台
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到马尔文帕纳科生命科学业务发展经理、微量热技术&分子互作技术产品经理韩佩韦谈一谈马尔文帕纳科的创新分子互作分析技术及他对该技术应用及市场的看法。仪器信息网:贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。韩佩韦:马尔文帕纳科公司不断致力于为基础科研与药物研发领域提供更先进的分析仪器和解决方案,在分子互作分析领域我们公司主推的产品是一种将动力学分析与热力学分析整合为一体的非标记分子互作平台,包括Creoptix WAVE系列分子相互作用仪和MicroCal PEAQ-ITC系列等温滴定量热仪等。众所周知,深入全面研究分子间相互作用需要借用多种原理互补的技术进行多角度分析,其中,动力学分析技术能够准确描述分子间的识别能力与结合的稳定性和半衰期,是一种实时、动态检测的手段;而热力学分析则深入探究分子互作的能量学本质,即分子间互作的机理,包括特异性相互作用驱动、疏水相互作用以及构象变化驱动。我们Creoptix WAVE分子相互作用仪拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)的光学生物传感器,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。另外,Creoptix WAVE产品采用了waveRAPID动力学检测方式和创新性微流控技术。不同于传统力学的检测方式,只需一个浓度的样品,无需稀释,能够更快地得到动力学数据(waveRAPID 比传统动力学检测约快10倍),解决了市面部分分子互作技术的低灵敏度、无法捕获快速动力学、表观亲和力偏离、流路易堵塞以及动力学分析中需要配制大量浓度梯度等问题。Creoptix WAVE 分子相互作用仪MicroCal PEAQ-ITC 是一款高灵敏度、低容量的等温滴定量热仪,可用于生物分子相互作用的无标记溶液内研究。它可以在单次实验中直接测量所有结合参数,并且可使用低至10μg容量的样品对无论是高亲和力还是低亲和力的结合剂进行分析。MicroCal PEAQ-ITC可用于多种应用,包括表征小分子、蛋白质、抗体、核酸、脂质和其他生物分子的分子间相互作用等。MicroCal PEAQ-ITC 等温滴定量热仪仪器信息网:请回顾一下贵公司分子互作分析仪技术的发展历程。韩佩韦:分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。其中,采用热力学代表技术的MicroCal ITC系列成立于1977年,是最早商业化的微量热技术品牌,在业界拥有众多粉丝,其先后多款经典产品如VP-ITC, ITC200以及PEAQ-ITC都有众多的用户群和文献支持;动力学代表技术Creoptix WAVE系列则成立于其他技术如SPR/BLI等相对成熟的时期,正是在发现了现有技术的某些局限和不足后,Creoptix开发并成功商业化了新一代动力学分析技术——光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)。目前,MicroCal和Creoptix品牌都是马尔文帕纳科旗下分子互作分析的中坚力量,与MicroCal DSC和Light Scattering一起打造了从样品质量控制直至动力学与热力学全面分析的Label-Free分析平台。仪器信息网:贵公司分子互作分析仪的主要应用领域有哪些?韩佩韦:马尔文帕纳科旗下的非标记分子互作平台几乎应用于分子互作相关研究的各个领域:在药物研发领域包括药靶确认,片段药物、小分子药物、肽段和核酸药物的筛选、表征与优化,抗体药物筛选、表位分析、结构改造,制剂开发、稳定性、可比性和生物相似性研究等;诊断试剂开发与优化、生理条件下(如血清、血浆等复杂体系)测试等等;在基础科研中则包括癌症、神经科学、免疫科学、膜蛋白、环境科学等领域。目前,研究者应用我们的技术和产品组合来研究分子互作相关的定性与定量信息,包括有无结合、结合特异性和选择性、结合强弱、结合快慢与稳定性以及部分非生物和非水相体系,如超分子组装、有机溶剂环境等。比如在冠状病毒(COVID-19)疫苗研发过程中,Creoptix WAVE system为病毒蛋白和抗体的结合动力学研究提供了有力支持。WAVE system系统将高信号和高时间分辨率与ELISA(酶联免疫吸附测定)才能实现的样品稳定性结合起来。实时分析广泛的生物流体样品的相互作用,提供完整的动力学数据,包括亲和力和高精度的结合和解离常数。由于整个微流体都包含在外置的传感器芯片WAVEchip中,可将实验中交叉污染的风险降至最低。WAVE system可用于表征病毒样颗粒(VLPs)的动力学,为研发疫苗的诱导免疫反应提供一个有效的平台。一种单克隆抗体结合嵌入VLPs中的蛋白质仪器信息网:您如何看待当前分子互作分析仪市场及前景?未来看好哪些细分领域?韩佩韦:我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。我的个人观点是当今的分子互作分析市场百花争艳,百家争鸣。各种不同原理的技术和产品层出不穷,研究者可以更好的根据自己的需求和问题来找到适合的技术,这对于技术发展和研究者而言都无疑是件好事,无论是进口的还是国产的技术,每种技术都有其各自的优点和局限,能够解决自己问题的才是最好的。随着市场的竞争,我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。马尔文帕纳科 韩佩韦韩佩韦,中科院生物物理所生物物理学博士,马尔文帕纳科生命科学业务发展经理、微量热技术和分子互作技术产品经理。长期负责蛋白质稳定性以及分子间相互作用技术如DSC,ITC,SPR等的技术支持和市场拓展。在2014年加入马尔文帕纳科之前,多年任职于通用电气(中国)医疗集团生命科学部(现Cytiva),曾任技术经理、Biacore & MicroCal产品经理和Label-Free技术资深应用科学家等职位。韩佩韦博士长期活跃于生命科学领域和生物制药行业,组织和举办过相关的几百场技术交流会和培训班,并在多个大型会议上做分会技术报告,在分子相互作用领域和微量热应用领域具有丰富的经验。
  • 气固反应动力学分析方法与仪器研讨会召开
    仪器信息网讯 2011年3月25日上午,由中科院计财局条件装备处组办、中科院过程工程研究所承办的“气固反应动力学分析方法与仪器研讨会”在中科院过程工程研究所举行。会议邀请了煤炭、生物质、矿产资源、环境、石由加工、航天材料、多晶硅等涉及气固反应的重要领域的近20名国内专家学者参加,科技部、科学院、北京市科委和过程所的相关领导出席并致词或介绍了有关政策。此次研讨会的目的在于回顾气固反应动力学分析方法与仪器的发展,把握不同领域的需求,分析尚存问题并探讨解决办法,以期形成自主新型的反应动力学分析方法与分析仪,推动学科发展和分析水平升级,填补方法与仪器的空白。 研讨会现场 中科院过程工程研究所所长张锁江研究员   中科院过程工程研究所所长张锁江研究员在研讨会前的致词中对各位领导和专家的参会表示感谢和欢迎,并介绍了近年来中科院过程工程研究所在仪器研制、基本建设、人才引进等方面的工作进展。最后,张锁江研究员希望,在座的领导与专家能够对“微型流化床反应动力学分析仪”研制项目以及过程所其它方面的工作提出宝贵的意见。 西安近代化学研究所胡荣祖教授 报告题目:关于气固反应热分析动力学的几个问题   研讨会首先由《热分析动力学》著者、原西北大学教授胡荣祖先生,《应用化工动力学》译者、原太原理工大学教授郭汉贤先生作了专题报告。胡荣祖教授介绍了气固反应动力学的反应机理、关键参数以及半导体脉冲补偿式量热测试单元的结构原理,最后,胡荣祖教授重点向大家展示了自己多年的研究成果,如经验级数自催化分解反应动力学参数计算系统、含能材料感度估算系统以及自加速分解温度-热点火速度-绝热至爆时间计算系统等。 太原理工大学煤化工研究所原所长郭汉贤教授(由过程所余剑博士代讲) 报告题目:非催化气固反应动力学分析方法概述   郭汉贤教授的报告由中国科学院过程工程研究所的余剑博士代讲,报告对非催化气固反应化工动力学的研究进行了简要分析,指出:研究非催化气固反应动力学,需要有良好的反应设备和科学的数学模型,硬件、软件同时并举才能事半功倍。而动力学的研究具有层次性的特点,故热重装置和流化固定床反应装置缺一不可。 中科院过程工程研究所许光文研究员 报告题目:微型流化床反应分析方法、仪器及典型应用   上午,中科院过程工程研究所的许光文研究员还系统汇报了其团队自主研发微型流化床反应分析方法与仪器的过程和已经实现的典型应用。在报告中他介绍到:气固反应分析动力学是化学、化工、能源、材料、环境等众多领域的研发工作的起点,但是,现有的气固反应分析动力学方法几乎均采用非等温加热方法,无法在线供给反应试料,存在着难以测定非稳定物质及快速反应的动力学、受传热及扩散的影响严重等缺点。他团队研发的微型流化床反应动力学分析方法以分析仪(MFBRA:Micro Fluidized Bed Analysis)可克服这些缺陷,提供有效的等温微分反应分析方法和测试工具。 微型流化床反应动力学分析仪(MFBRA)   MFBRA首次利用微型流化床作为反应器,构建了气固反应分析方法与分析仪。利用流化床反应器有效抑制了扩散影响,实现了对反应物快速的加热 通过集成微型流化床反应器和脉冲微量反应物进样,实现了流化床中气固反应的等温微分化,形成了定点温度下的气固反应动力学参数的等温微分测试方法与仪器,填补了快速升温条件下等温微分反应测试方法与仪器的空白,可望与热重分析仪器形成互补性科学工具,实现气固反应的等温微分、快速原位(升温)和低扩散影响等技术特点。   经过三年多的应用实践,MFBRA分析方法与各部件结构均得到了很大程度的优化,颗粒反应物供给时间0.1s,测量重复性误差3.0%。通过应用于石墨燃烧过程中的等温微分反应特性的分析测试,成功证实了MFBRA的等温微分特性 运用MFBRA首次成功测试了Ca(OH)2捕集CO2的动力学特性,展示了仪器拥有的原位反应特性;该仪器对生物质及煤热解等快速复杂反应显示了很好的适应性,剔提供揭示反应机理的有效基础数据;比较热重测试的CO还原CuO反应特性,MFBRA对该反应显现了明显了低扩散影响。   最后,许光文研究员提出了进一步研发基于微型流化床的气固反应分析方法与分析仪的计划:将通过集成质谱等分析仪和提高仪器自控及美观水平,希望MFBRA能成为国际先进水平的我国自主创新仪器,与程序升温脱附(TPD)设备、程序升温还原(TPR)设备、热重分析(TG)设备等并驾齐驱,成为国内外市场中的反应分析高端产品。 北京市科委政策法规处李萍女士 报告题目:北京市支持成果转化及产业化相关政策解读   会议也邀请了北京市科委政策法规与体制改革处的李萍女士通过专题报告,系统介绍北京市对科技创新与科技成果产业化的支持政策,重点解读了北京市支持自主创新与成果转化的12个重点政策,并现场回答了与会者问题。   基于上午的主题报告,研讨会的下午针对“气固反应动力学分析方法与仪器发展”、“自主分析方法与分析仪器及应用”、“不同行业领域对气固反应分析的需求特性”等主题,与会专家展开了积极的讨论与交流互动,各位专家结合自身的研究工作经历,提炼了各行业中在气固反应分析方面尚存的难题,希望的分析方法与测试工具,对中科院过程工程研究所研发的微型流化床等温微分反应分析方法与分析仪的功能扩展和解决尚存问题积极建言献策。   通过总结与会专家的讨论意见,许光文研究员总结了进一步发展等温微分反应分析方法、解决各行业尚存问题或满足各行业特定需求的技术方向。在近四个小时的讨论中,现场气氛十分热烈。   相关报道:   微型流化床反应动力学分析仪研制成功   “微型流化床反应分析方法与分析仪”鉴定会在京召开   先进能源关键技术与仪器装备亟需强化——访中科院过程工程研究所许光文研究员
  • 中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕
    p strong 仪器信息网讯 /strong   2019年4月20日,中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕。本次会议由中国化学会主办,中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/4f08b216-cd0f-4748-a3eb-0af93ce157c6.jpg" title=" huichang.jpg" alt=" huichang.jpg" style=" width: 600px height: 147px " width=" 600" vspace=" 0" height=" 147" border=" 0" / /p p style=" text-align: center "   大会现场 /p p   本次会议的主旨是就近些年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。此次会议邀请到了来自清华大学、北京大学、南京大学、中国科学技术大学、西北工业大学、中科院研究所等多所知名高校及科研院所长期从事热分析动力学和热动力学的著名专家、中青年学者,以及珀金埃尔默、梅特勒-托利多、日立高新等多家仪器生产厂商,会议盛况空前,4百多位学者注册参会。仪器信息网作为报道媒体出席了本次会议。 /p p   大会组委会主席、合肥微尺度科学国家实验室教授罗毅主持了本次开幕式。中国科学技术大学副校长罗喜胜和大会主席王键吉在开幕式上致辞。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/3bfb1960-feae-4474-a5f0-70a30ed6e48e.jpg" title=" 罗毅.jpg" alt=" 罗毅.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center "   中国科学技术大学教授罗毅主持会议 /p p   罗喜胜首先作开幕致辞,从中国科学技术大学创新立项的办学理念,谈到办学60年的丰硕成果 同时强调了本次会议的基础性意义和战略性意义,并坚信热力学作为基础学科将对科学界做出巨大的贡献,希望通过本次会议促进学者之间的沟通和交流 并预祝大会圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/30acd465-5a7c-4bf7-9722-e4ebbdb229c0.jpg" title=" 罗喜胜.jpg" alt=" 罗喜胜.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 中国科学技术大学副校长罗喜胜致辞 /p p   王键吉在开幕致辞中强调了热分析和热动力学在环境、能源、化学化工和生命科学等领域具有不可替代的重要意义。王键吉教授表示,本次大会有三个方面的重要意义:(1)有助于青年学者更好地相互交流 (2)有助于多学科之间的学科交叉互动 (3)希望在热力学研究方面,年轻学者后继有人。作为大会主席,王键吉教授感谢主办单位中国科学技术大学会务组的辛勤付出,感谢为大会做出贡献的老师、同学,并预祝大会召开圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/08e905b2-27f1-448a-b4c0-e45f0b4cca18.jpg" title=" 王键吉.jpg" alt=" 王键吉.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 大会主席王键吉致辞 /p p   随后开始的大会报告环节,武汉大学教授刘义、大会主席王键吉、清华大学教授尉志武先后主持了会议。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8b410aa4-9c55-41c7-a7d0-fde1b9d2edba.jpg" title=" 刘义.jpg" alt=" 刘义.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center "   武汉大学教授刘义 /p p   中国化学会理事、中国化学会化学热力学专业委员会主任王键吉作题为“CO2响应离子液体的设计和性能调控”的主题报告。王键吉由溶剂/催化剂引出了成本、效率和环境问题,分别介绍了CO2响应离子液体的设计和性能调控的研究方向,即从功能化的离子液体转变成智能化的离子液体,从而实现多功能介质及材料的制备以及产物分离、催化剂和介质循环利用。接着,介绍了通过特定基团嫁接离子液体,实现低浓度CO2的捕集、可逆相分离、可逆相转移、可逆乳化和破乳、光电化学转化等应用。最后,王键吉展望了该研究在酸性气体的选择性吸收、CO2捕集/转化的耦合、离子液体相转移催化和CO2响应离子液体性能强化四个方面新的发展。 /p p   清华大学化学系、生命有机磷重点实验室教授尉志武作题为“关于热分析动力学的思考与若干生物分子体系相变研究进展”的主题报告。报告中,主要谈到了DSC技术在蛋白质变性二态性问题、混合磷脂相变、离子液体杀菌机理和构筑不对称囊泡等研究中的应用。尉志武教授认为,热分析动力学和热动力学内容丰富、应用广泛,特别是在化学反应和物理变化机理研究方面有重要的应用 在做热动力学和热分析动力学时,定量分析一定要考虑对原始数据进行校正。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/df5e6910-bbae-41d2-b89b-18eece44918d.jpg" title=" 尉志武.jpg" alt=" 尉志武.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 清华大学教授尉志武 /p p   华南理工大学材料科学与工程学院教授张广照作题为“溶液中高分子的单链构象变化热力学”的主题报告。报告中主要介绍了热分析与热动力学在多种单链高分子构象变化中的应用,提出了通过外推法得到热力学平衡状态下高分子单链的相关参数的新方法。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8c1765fe-aea8-475b-8228-aae8da2b5df8.jpg" title=" 张广照.jpg" alt=" 张广照.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 华南理工大学教授张广照 /p p   西北工业大学教授刘峰作题为“金属材料非平衡相变的热动力学协同效应与调控”的主题报告。报告中提出,传统研究缺乏对转变过程的研究,忽略了加工工艺的重要性,希望通过研究热动力学相关性,实现成分和工艺的定量化,并介绍了动力学模型在多种钢铁材料中的实际应用。刘峰还提出了大驱动力大能垒设计的概念,可以同先进高强钢相结合,用于设计纳米相变体系,发展出具有优良力学性能的双相双峰组织。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/261b0d7a-2f06-475c-b322-849f4d76bc4d.jpg" title=" 刘峰.jpg" alt=" 刘峰.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center "   西北工业大学教授刘峰 /p p   西北大学教授陈三平作了题为“镝单分子磁体的磁弛豫动力学”的主题报告。高性能单分子磁体构筑要考虑金属离子的选择、单轴各向异性和晶体场的对称性 镧系金属离子具有磁矩大、奇数电子和强轴向性等特点 在此基础上,陈三平构建了D4d构型、D5h镝单分子磁体。陈三平还介绍了弱化面各向异性的Dy-I单核体系和Dy-X双核体系。最后,陈三平提出了构建热容和低温磁弛豫动力学关系的展望。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c5ad46bc-4b58-44d3-bdbe-7bb658b2b5ec.jpg" title=" 陈三平.jpg" alt=" 陈三平.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 西北大学教授陈三平 /p p   南京大学教授胡文兵作题为“高分子结晶动力学的Flash DSC研究”的主题报告。目前,全球超过三分之二产量的合成高分子是可结晶的,高分子加工需要控制结晶,但加工成型的冷却速度通常比较快。传统DSC技术需要的样品量较多,且升降温速度不够快。因此,超快扫描芯片量热仪应运而生。超快DSC技术是研究动力学的有力工具,推动着高分子结晶学进入低温区域,并有助于帮助理解高分子化学结构与结晶动力学的关系。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/907f7dbb-0e27-40e0-9f37-ee03042a2010.jpg" title=" 胡文兵.jpg" alt=" 胡文兵.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 南京大学教授胡文兵 /p p   下午,大会分为热分析动力学方法、热分析动力学应用、热分析动力学应用与热分析、热动力学与热力学四个专题,开设了四个分会场。其中,热分析动力学方法分会场,作报告的专家有南京理工大学的成一教授、西安建筑科技大学的酒少武教授、南京师范大学的王昉教授以及邯郸学院的任宁教授等。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c8009021-8440-4775-8044-ef43fd9ad66c.jpg" title=" 热分析动力学方法专题会场.jpg" alt=" 热分析动力学方法专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center "   热分析动力学方法专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/df522974-aa72-4581-add4-71d885afbe80.jpg" title=" 热分析动力学应用专题会场.jpg" alt=" 热分析动力学应用专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center " 热分析动力学应用专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/721f5c24-3f68-4f0f-af25-8e3afa8fcd63.jpg" title=" 热分析动力学应用与热分析专题会场.jpg" alt=" 热分析动力学应用与热分析专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center " 热分析动力学应用与热分析专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/86184f2d-c57a-4d4b-98b1-25e8af0bb90b.jpg" title=" 热动力学与热力学专题会场.jpg" alt=" 热动力学与热力学专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center " 热动力学与热力学专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/f2f76146-9def-49ef-a46a-42674df93166.jpg" title=" 铂金埃尔默.jpg" alt=" 铂金埃尔默.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-美国铂金埃尔默公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/231d5013-a502-4cfb-836c-efb470ba0d08.jpg" title=" 梅特勒.jpg" alt=" 梅特勒.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-梅特勒-托利多 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/0243fa12-8bf7-4513-a5b6-7b7e15c17e49.jpg" title=" 耐驰.jpg" alt=" 耐驰.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-德国耐驰仪器制造有限公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/116cfd6a-f1aa-40b0-a710-8e6aaf969f89.jpg" title=" TA仪器.jpg" alt=" TA仪器.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-美国TA仪器公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8e5e18cf-bf0a-4649-a0f8-8e823f144319.jpg" title=" 林赛斯.jpg" alt=" 林赛斯.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-德国林赛斯仪器公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/fb2af071-a5fb-4e2b-968d-4ed698e9d797.jpg" title=" 日立高新.jpg" alt=" 日立高新.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-日立高新技术(上海)国际贸易有限公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/27e4e2bb-4abc-4bf0-ba9b-6cc4b1e95c54.jpg" title=" 塞塔拉姆.jpg" alt=" 塞塔拉姆.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-法国塞塔拉姆仪器公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/7f27dcd8-af4d-4570-94b0-bda11b1a6d23.jpg" title=" 仰仪.jpg" alt=" 仰仪.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-杭州仰仪科技有限公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/fe1b89a3-ebf8-4f47-9e7b-51da980c5376.jpg" title=" 凯正.jpg" alt=" 凯正.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-上海凯正仪器有限公司 /p p br/ /p
  • 厉害了,康宁在光反应动力学的又一大突破!!!
    摘要近日康宁AFR欧洲技术团队,基于紫外-可见光下(E)-偶氮苯的光异构化,开发了一种高效、低成本的多波长化学光量测量方法。由量子产率估算和1H NMR核磁共振分析表明,对于从紫外光到可见光范围的各种波长,结果都非常准确。研究者还通过对光化学反应器中光子通量密度的测定,核算N2-苯腙在405nm波长下的量子产率,对该方法进行了验证。小贴士量子产率:每吸收一个量子所产生的反应物的分子数,通常是对于特定的波长而言,即量子产率=(生成产物的分子数)/(吸收的量子数)。量子产率是进行光化学学动力学研究的重要参数。光子通量密度:表示单位时间单位面积上在特定波长范围内入射的光量子数。背景相对于批次间歇反应釜,连续流光化学反应器具有持液体积小、透光均匀、反应安全且重现性好等优点。随着单色度高、寿命长且能耗低的LED光源的发展,市场上涌现出了新一代高效的连续流光化学反应器,产能通量包括从实验室级(克/小时)到工业生产级(吨/天)。在上述背景下,为了量化通过光反应器的光子通量密度,帮助理解光化学反应机理,并能精确地描述光反应器在生产率变化时如何随时间变化和操作,迫切需要开发低成本和多功能的光量测量方法。然而,现有方法大多数都是基于昂贵的光量光度计和繁琐的程序,且极少有测定连续流微通道光化学反应器中接收光子通量密度的光量测量方法被报道。研究过程:一、理论模型与结果化学家们曾研究了大量一级光化学反应物质,这些物质在光的诱导下转化为另一种物质的速率可以被精确测量,并与入射的绝对光子通量密度相关联。在这类光化学反应体系中,光子被反应物R和产物P以不同的摩尔消光系数吸收,吸光度随时间而变化。作者在前人的研究基础上,建立了理论模型。并考虑到康宁Lab光化学反应微通道的几何形状,呈现了两个垂直于光源的平行壁,由于光路在通道的每个点上都是恒定的,到光源的距离也是固定的和恒定的。利用康宁连续流光学反应器来研究化学光量测量方法所面对的主要问题,是要对康宁微通道反应器的玻璃模块的玻璃层和换热层的光透射进行修正。图1.康宁LAB光化学反应器剖面图2017年,作者的团队报道了一种简单的方法,在溶剂中使用偶氮苯作为一种方便的光度计。该方法的主要优点在于偶氮苯的成本低和使用核磁共振作为一种定量光谱技术来简化动力学测量。图2. 偶氮苯的光异构化研究者展示了应用此方法在具有四个不同波长(365、385、405和475nm)的康宁® Lab光化学反应器进行光量测量,并给出了数据和拟合结果(以405 nm为例):图3.康宁Lab光化学反应器中405 nm下的化学光量测量结果特定波长下(405nm),反应路径内的光子通量密度与光强之间的拟合公式如下:【编者语】康宁反应器不只是应用于工艺开发或者工业化生产,也适用于化学研究领域。不管是动力学理论研究,新的测量方法研究,还是新化合物的发明与发现,康宁反应器都有可能是您的得力助手。二、方法应用与验证:为了证明这种方法在连续流光化学反应动力学研究中的适用性,作者按照本文方法重新计算了isatin N2-phenylhydrazone的光量子产率(已知最近的文献中其光化学量子产率(ΦZ ≈ 1 × 10–3))。图3. 康宁实验室光化学反应器。前面铝箔覆盖包裹避免自然光照图4. isatin N2-phenylhydrazone 405nm异构化的光动力学研究 考虑到康宁Lab光化学反应器的通道极细(0.4mm),为了保证足够的量进行1H NMR分析,浓度增加到2×10−3mol.L−1。在上述浓度条件下,吸收约为99% (ε z=12270L.mol−1.cm−1),光子几乎全部吸收,可以通过核磁共振波谱进行非常精确的测量。由于康宁® Lab光化学反应器中良好的传热性能,温度可以保持在20°C,因此可以忽略热异构化的影响。由于Z-构型的氢键,E和Z异构体的浓度可以轻易的通过1H NMR进行定量。利用长停留时间确定了光静止状态。(Z)-异构体的甲醇溶液在405nm的不同停留时间照射,光功率为100%。 图5.isatin N2-phenylhydrazone的光异构化反应EPSS(0.20)被用作一个参数来绘制图ln (EPSS−E) 与时间的关系,它与相关系数表现出线性关系并具有良好的平方相关系数(R2=1.00) 。该图的斜率(0.070s−1)对应于公式:通过公式换算可以很容易的计算出量子产率ΦZ(1.1 × 10–3),这一数据与文献数值非常接近。结果与讨论康宁欧洲技术团队开发的此光量测量方法为应用连续流光化学反应器进行光反应动力学研究提供了参考。鉴于此方法安全、简单易操作,它的应用可以扩展到更大规模的连续流光反应器(如康宁G1和G3光化学反应器)中作为例行分析测试手段。参考文献:Photochemical & Photobiological Sciences. 8 January 2022
  • 2015第一届药代动力学朝阳论坛成功举行
    仪器信息网讯 为期三天的&ldquo 2015年南京生物医药发展论坛暨第一届药代动力学朝阳论坛&rdquo 于2015年4月11日至13日在风景秀丽的南京珍珠泉畔明发珍珠泉大酒店成功举办。本届会议由由南京生物医药谷主办,南京高新生物医药公共服务平台承办,中国药物和化学异物代谢专业委员会协办,近400位来自国内外高校、科研院所、制药企业等单位人员参加了本届会议。   本届会议举办目的主要是在新时代下为药代动力学研究和新药研发在中国长远健康的发展培养和储备一批具有国际竞争力的青年人才。朝阳论坛会议日程采用会前专题研讨会、大会报告和主题会场的形式,有针对性地为相关专业人才提供充分交流的平台。会议特邀1个大会报告、10个主题会场共38个主题报告,阐述中国药代动力学研究的现状和挑战、药物代谢研究中的前沿和热点、生物分析法规与技术进展、药物分析和代谢组学研究中的新技术等10个相关领域,并专为青年学者特设职业发展专场和青年学者专场,职业发展专场讲解中国学生撰写药代动力学研究文章出现的主要问题及写作技巧、以及如何回答编辑和审稿人问题等方法,介绍药代动力学的职业发展 青年学者专场邀请国内药代动力学研究相关实验室的优秀青年学者就各自研究方向、进展及经验进行介绍,搭建和提供青年学者学术交流合作的机会和平台,促进我国DMPK的发展。 会议现场   大会开幕式由南京高新区的管委会副主任许扬汶主持,南京市副市长储永宏,南京高新区管委会常务副主任闵一峰出席开幕式并致辞。 大会组委会主席军事医学科学院毒物药物研究所庄笑梅研究员介绍会议基本情况。 发言人:储永宏 南京市副市长 发言人:庄笑梅 研究员 军事医学科学院毒物药物研究所   会议特邀中国药科大学王广基院士做题为&ldquo 细胞药代动力学及成药性研究探讨&rdquo 报告,报告结合精准医学对经典药代动力学的挑战,从宏观的血浆药物浓度监测,深入至微观的细胞层面,提出细胞药代动力学的新概念。阐述了全细胞吸收、亚细胞分布、细胞药效动力学的研究平台建立过程,从细胞药代动力学的角度揭示微观层面药物在细胞内靶点的作用,及其对药物筛选、纳米靶向制剂、ADC(Antibody Drug Conjugate, ADC) 药物细胞内释药机制以及临床联合用药等领域的指导意义。通过综述不同药物在细胞核内,线粒体以及胞浆的研究结果,为精准医学的长远目标,提供药效、毒理以及药代方面的指南性研究。 报告人:王广基院士 中国药科大学报告题目:细胞药代动力学及成药性研究探讨   在随后一天半的分会报告涵盖新药研发申报中的PK/PD问题,生物大分子药物分析及药代动力学研究现状及挑战,中药PK/PD研究中药活性成分与作用机理,药物分析与代谢组学研究中的新技术,代谢组学与生物标志物发现等多个药代动力学的多个关键领域。来自海内外的38位资深专家为参会人员带来内容详实,深入全面的报告, &ldquo 呈现精彩纷呈的学术大餐&rdquo 。   多家仪器及耗材生产代理企业参加了本届会议。(撰稿:杨改霞) 安捷伦科技(中国)有限公司 沃特世科技(上海)有限公司 岛津企业管理(中国)有限公司 赛默飞世尔科技(中国)有限公司 SCIEX 公司   第一届药代动力学朝阳论坛官方网站:http://www.bpisunrise.com
  • 卫星海洋环境动力学国家重点实验室通过验收
    2009年12月9日,科技部组织专家在杭州对卫星海洋环境动力学国家重点实验室进行验收。科技部基础研究司、基础研究管理中心,国家海洋局科技司等单位负责同志参加了验收会。验收专家组由来自全国8所大学及研究机构的专家组成,同济大学汪品先教授担任验收专家组组长。   专家组认真听取了实验室主任陈大可教授的工作报告,现场考察了实验室,并与实验室科研骨干、依托单位代表进行了座谈。专家组认为卫星海洋环境动力学国家重点实验室面向国家战略需求和国际前沿,围绕海洋卫星遥感技术与应用、近海动力过程与生态环境和大洋环流与短期气候变化等三个研究方向,以国家海洋环境安全和海洋生态系统产出与服务中的重大需求为牵引,从揭示海洋环境时空演变的过程和机理入手,利用卫星遥感和Argo等海洋观测新技术,开展卫星海洋环境动力学的多学科交叉与整合研究。   建设期内,实验室主持承担了一批国家重要科研项目,开发了我国自主海洋水色卫星信息处理技术和沿海水质遥感实时监视和速报,在海洋微波遥感技术与应用、太平洋西边界流与中国近海环流、热带海气相互作用与短期气候变化、Argo资料收集分析与共享等方面的研究中取得了重要进展。实验室引进了9位境外知名科学家作为兼职特聘研究员,形成了一个结构合理的学术团队 制定和完善了一系列重要规章制度和设备运行管理办法,重视发挥学术委员会、学术带头人和骨干科技人员的作用。   专家组一致认为卫星海洋环境动力学国家重点实验室在科学研究、队伍建设、实验平台建设、对外开放和运行管理等方面完成了建设计划任务,同意通过验收。同时,专家组就保障实验室人才梯队建设的稳定性和可持续性、将海洋专项和实验室基础研究有效结合等提出了建议。
  • 2015第一届药代动力学朝阳论坛第一轮通知
    会议网站:www.bpisunrise.com   主办单位:南京高新生物医药谷   承办单位:南京高新生物医药公共服务平台   协办单位:中国药物和化学异物代谢专业委员会   由南京高新生物医药谷主办, 南京高新生物医药公共服务平台承办, 中国药物和化学异物代谢专业委员会协办的&ldquo 2015年第一届药代动力学朝阳论坛&rdquo 将于2015年4月11-13日在江苏省南京市召开。   本届论坛是非盈利性的、全国范围的专业学术会议。本次会议的主旨除了由国内外资深专家报告药代动力学研究的最新进展外,特别为从事药动学研究的青年学者和年轻学子提供互动对话、交流学习和锻炼的机会,激发启迪科研兴趣,发掘创新潜能,促进中国药代动力学学科的持续发展。   会议将设会前专题讨论会、大会报告、分会报告及朝阳学者/学子报告、壁报交流等形式,期间将颁发朝阳学者/学子(博士/硕士毕业5年内以及博士后或研究生)杰出奖及优秀奖等奖项。   热诚欢迎从事药物代谢与药代动力学研究的专家、学者及学生以及从事药代动力学研究服务的相关单位和企业参与本次论坛。 会议主题   从IND和NDA申请和新药研发成败的案例中看中国药代动力学研究的现状和挑战   药物代谢研究中的前沿和热点   中国生物分析在法规、管理和技术上与世界接轨的进程   从中药体内物质基础及其PK/PD关系研究中药的活性成分和作用机理   外源性化合物在肝外组织中或由非P450酶介导代谢的机理和应用   药物代谢介导的化学物毒性机制   代谢酶和转运体研究的新技术和新进展   代谢组学与生物标志物发现   建模和模拟在药物发现和临床研究设计中的应用   药物分析和代谢组学研究中的新技术。   会议日程   共同主席:   庄笑梅 军事医学科学院毒物药物研究所   燕 茹 澳门大学中华医药研究院   组委会:   阿基业 中国药科大学药物代谢动力学重点实验室   毕惠嫦 中山大学药学院   邓 泮 中国科学院上海药物研究所药物代谢研究中心   葛广波 中国科学院大连化学物理研究所   姜宏梁 华中科技大学药学院   刘厚甫 葛兰素史克中国公司   吴彩胜 中国医科院药物所国家药物及代谢产物分析研究中心   邢 杰 山东大学药学院 会议地点:南京明发珍珠泉大酒店 投稿方式:网上投稿 投稿截止时间:2015年3月25日   参会费用等会议相关详细信息敬请关注网站:   会议网站:www.bpisunrise.com 下载第一轮通知:2015第一届药代动力学朝阳论坛.pdf
  • 第三届全国热分析动力学与热动力学学术会议(第二轮通知)
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会(第二轮通知)   The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)   受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学工作者和研究生踊跃投稿、与会参加研讨交流。   另外,为配合“国际化学年在中国”活动,会议期间,我们还将举办“国际先进热分析技术讲习班”,特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,比利时天主教Lueven大学化学系、前欧洲热分析协会主席Vincent Mathot教授等人进行讲座,为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。讲习班开班授课时间为:2011年10月20日下午1:30。讲习班结束我们将颁发培训证书,并设立“Mettler-Toledo优秀学员奖”若干名,奖品为500G移动硬盘。   一、会议组织委员会   主 席:陈国祥,韩布兴,尉志武   副主席:赵厚民,张建军,魏少华,张明明,王昉   秘书长:汤伟   二、会议学术委员会   主 任 委员:韩布兴   副主任委员(以姓氏拼音为序):   陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武   委 员(以姓氏拼音为序):   安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起   三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。   大会专题学术报告题目及主讲人:   1、 热分析动力学和热动力学进展 西安近代化学研究所 胡荣祖 教授   2、 生命体系中的热动力学 武汉大学化学与分子科学学院 刘义 教授   3、 含能配合物的热动力学研究 西北大学化学与材料科学学院 高胜利 教授   4、 热分析动力学的研究与应用 南京理工大学化学化工学院 成一教授   5、 新型储氢材料的纳米限域及其热化学研究 中国科学院大连化学物理研究所航天催化与新材料研究室 孙立贤教授   6、 脂质体相平衡与药物释放 南京师范大学化学与材料科学学院 安学勤教授   7、 热分析在药物研究中的作用 中国食品药品检定研究院 杨腊虎教授   8、 一些复杂软物质的热分析研究 北京大学化学与分子工程学院 陈尔强教授   9、 聚合物结晶热分析的现状和挑战 南京大学化学化工学院 胡文兵教授   10、高速扫描高灵敏量热仪的研制与应用 南京大学化学化工学院 周东山教授   11、国内外知名仪器厂商热分析新产品、新技术及其应用报告   四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。   五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他   六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用Times New Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。3、作者中如有学生,请在第一页左下角脚注处说明清楚。4、特别提示:大会论文特设“Mettler-Toledo优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。分设特等奖(奖品ipad),一等奖(奖品itouch),二等奖(500G移动硬盘),三等奖。   七、会议日期 : 2011年10月20-22日   八、会议地点:南京古南都饭店江南春厅(三楼)。(南京市广州路208号)   九、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人   论文审理费:60元/篇。讲习班: 200元/人   邮局汇款:南京市龙蟠路189号 江苏省分析测试协会 汤伟 收 (汇款附言中请注明“TAKT2011”)   银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047   开 户 行:江苏南京交行玄武支行   十、联系方式:   联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)   Email:TAKT2011@126.com   中国化学会第十五届全国化学热力学和热分析专业委员会   江苏省分析测试协会   南京师范大学   河北师范大学   二○一一年四月十八日
  • 梅特勒托利多动力学Kinetics网络研讨会
    2010年4月2日 15:00[Chinese]   反应动力学是研究化学反应速率的一门学科。该方法研究温度、催化剂和其它因素对化学反应的影响并获得反应机理的信息。   例如对于化学工业中的工艺开发和安全性研究以及聚合物工业中理解热固性树脂的固化行为,了解动力学是十分重要的。本网络研讨会(Webinar)将讨论动力学的基本原理和介绍一些值得注意的应用。   反应动力学可追溯到19世纪(1850年的Wilhelmy和1889年的Arrhenius),后来发展为对化学家和物理学家十分有用的方法。它使反应可用数学术语来描述。更重要的是能预测样品在实际测试范围之外的行为。   无需耗时的测试,反应动力学就可获得关于老化、氧化稳定性、产物寿命、保存期和工艺优化的信息。   非模型动力学(Model Free Kinetics)是一种新方法,无需设定反应模型。因此您将避免选择错误的模型,而结果更加可靠。   非模型动力学(Model Free Kinetics)的优势在于:   -- 无需选择反应模型即可进行动力学评估   -- 该方法对简单和复杂反应都适用   -- 可进行模拟研究,例如预测其它条件下的反应动力学   在本网络研讨会(Webinar)上,我们将介绍反应动力学的基本原理并介绍一些值得注意的应用实例。   请点击注册参与本次研讨会   网络研讨会(Webinar)演讲   您注册本网络研讨会(Webinar)后,就会收到关于这个创新性方法的所有信息。   在中文演讲后,您可与梅特勒托利多应用专家直接讨论您感兴趣的问题。   会后每位参加的客户我们将赠送一份小礼品,并随机抽取一份大奖以示感谢!   咨询电话:4008 878 788   本活动最终解释权归梅特勒托利多所有
  • 第三届全国热分析动力学与热动力学学术会议第一轮通知
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会 (第一轮通知)   The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)    受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。本次会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学的科学工作者和研究生踊跃投稿、与会参加研讨交流。   一、会议组织委员会   主 席:陈国祥,韩布兴,尉志武   副主席:赵厚民,张建军,魏少华,张明明,胡卫东,王昉   秘书长:汤伟   二、会议学术委员会   主 任 委员:韩布兴 (中国科学院化学研究所)   副主任委员(以姓氏拼音为序):   陈启元(中南大学) 高胜利(西北大学) 刘义 (武汉大学)   沈伟国(华东理工大学) 孙立贤(中国科学院大连化学物理研究所)   王键吉(河南师范大学) 尉志武(清华大学)   委 员(以姓氏拼音为序):   安学勤(华东理工大学),白同春(苏州大学),陈健(清华大学),陈三平(西北大学),成一(南京理工大学),杜为红(中国人民大学),杜勇(中南大学粉末冶金国家重点实验室),   顾敏芬(南京师范大学),关伟(辽宁大学),李浩然(浙江大学),刘义(武汉大学),李小云(南京工业大学),李武(中国科学院青海盐湖所),刘洪来(华东理工大学),刘义(武汉大学),刘育(南开大学),陆昌伟(中科院上海硅酸盐研究所),卢雁(河南师范大学),孟祥光(四川大学),孙建平(苏州大学),谭卫红(南京林化所),檀亦兵(江南大学食品学院),王保怀(北京大学),汪存信(武汉大学),王昉(南京师范大学),吴昊(扬州大学),王金本(中科院化学研究所),王琦(浙江大学),王晓东(中科院大连化学物理研究所),王毅琳(中国科学院化学研究所),杨家振(辽宁大学),杨腊虎(中国药品生物制品检定所),郁清(南京大学),袁钻如(南京大学),张洪林(曲阜师范大学),张建军(河北师范大学),张建玲(中国科学院化学研究所),张堃(中山大学),朱立忠(南化集团研究院物化检测中心),张同来(北京理工大学),赵凤起(西安近代化学研究所),祝昱(中国药科大学)   三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。   四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。   五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他   六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用TimesNew Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。   七、会议日期、地点:会议将于2011年10月20-22日在江苏省南京市召开(具体地址与日程将在以后的通知中发布)。   八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:350元/人   论文审理费:60元/篇。   九、联系方式:   联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)   Email:TAKT2011@126.com   中国化学会第十五届全国化学热力学和热分析专业委员会   江苏省分析测试协会   南京师范大学   河北师范大学   二○一○年十一月八日   为了便于我们很好地组织此次会议,请抽空填写本会议回执。谢谢!   中国化学会第三届全国热分析动力学与热动力学学术会议 暨江苏省第三届热分析技术研讨会议参会回执   我单位选派下列同志参加: 单位名称 详细地址 联 系 人 手 机 电 话 传 真 姓 名 性别 职 务 手 机 E-mail 参会总人数:( )人 是否提交会议论文: 是否拟做会议报告: 提交会议论文总篇数:( )篇,拟做会议报告总数:( )个报告 是否参加会后考察:参加( ) 不参加( ) 注:   *为了便于我们更好地组织此次会议,请抽空填写本会议回执并请于2011年1月15日前用电子邮件发到TAKT2011@126.com信箱,谢谢合作!
  • 做世界一流的药代动力学研究平台——访药代动力学重点实验室王广基院士
    p   span style=" FONT-FAMILY: times new roman"  药代动力学在我国和世界上发展的很快,是创新药物研发中不可或缺的重要研究内容,甚至决定了药物开发的命运。药代动力学是一门多交叉学科,定量研究药物在体内的吸收、分布、代谢、排泄(ADME),也融合了药理学、药物分析、药剂学、中药学、细胞生物学、分子生物学、实验动物学等多门学科的相关知识。药代动力学的应用研究主要包括创新药物临床前的评价和申报、新药的临床药动学研究及评价、中药与生物大分子药物的药代动力学研究等。 /span /p p span style=" FONT-FAMILY: times new roman"   中国工程院院士王广基所带领的江苏省药代动力学重点实验室的研究团队在国内的创新药物药代动力学、中药药代动力学和细胞药代动力学等方面取得了令人瞩目的成就。日前,仪器信息网编辑在中国药科大学药代动力学重点实验室采访了王广基院士。 /span /p p span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)" strong   王广基所带领的药代动力学实验室在国内外取得了令人瞩目的成就 /strong /span /p p span style=" FONT-FAMILY: times new roman"   王广基所带领的药代动力学实验室先后成为了江苏省药物代谢动力学重点实验室、国家科技部临床前药物代谢动力学技术平台建设牵头单位、国家中医药管理局“中药复方药代动力学方法重点研究室”, 天然药物活性组分与药效国家重点实验室核心单元;先后承担了包括国家“863”计划、“973”计划、“国家自然科学基金”重点项目、国家“重大新药创制”科技重大专项、“国家科技支撑计划”等重大研究项目30余项。在国内外核心期刊发表科研论文320余篇,申请发明专利30多项。 /span /p p style=" TEXT-ALIGN: center" img title=" IMG_1417_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/0696db27-0b35-48a5-b151-d8e91f690cc0.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 王广基院士 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   王广基带领的药代动力学重点实验室是国内领先的药代动力学研究实验室,同时在该研究领域也是世界一流的。王广基对国内的药代动力学研究很有信心,他表示:“我国的药代动力学研究水平已经与发达国家接轨。”该实验室的很多研究成果都处于国际领先水平,据介绍该团队撰写了国际上第一篇细胞药代动力学研究综述,并发表于国际药代动力学权威杂志DMR,此文章属国际首次系统提出细胞PK/PD研究理论与技术方法,推动了药代动力学研究从“血浆”到“细胞”、从“宏观”到“微观”的突破。中药药代动力学研究的技术体系也得到了国内、国际上的广泛认可,如国际著名分析化学家Dr.Brack(德国)在Trends AC(国际化学分析顶级期刊)上将他们建立的“诊断离子桥联网络”策略评为复杂基质中未知成分分析的九大创新策略之一。 /span /p p span style=" FONT-FAMILY: times new roman"   药代动力学的基础研究主要包括针对ADME环节的各种体内外模型的建立及优化,药物吸收/代谢机制、调控途径,PK/PD(药动/药效结合研究)模型及由此衍生出来的各类数学模型的建立及评价等。如何将药代动力学的研究理论与技术应用到创新药物研究中是王广基所带领团队一直在深入研究的内容。 /span /p p span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)" strong   探索中药多成分药代动力学研究新技术,实现药代动力学研究从“单成分”向“多成分”的突破 /strong /span /p p span style=" FONT-FAMILY: times new roman"   中药现代化的研究中,需要对中药的一锅汤进行系统研究,包括“汤”里面究竟有哪些成分、成分的比例和量是多少 人服用以后,有多少成分吸收进入体内、有哪些成分进入体内后发生转化、起效的成分是哪些等。 /span /p p span style=" FONT-FAMILY: times new roman"   针对中药成分构成复杂、代谢多样、体内浓度低等难题,王广基及其团队创建了高效普适的中药复杂成分体内过程研究方法学体系。如:“诊断离子桥联网络”、“相对曝露法”、“物质组-代谢组关联网络”等策略。 /span /p p span style=" FONT-FAMILY: times new roman"   王广基介绍说:“诊断离子桥联网络技术即采用多级质谱对复杂组分碎裂分析,得到各成分的多级碎片离子,根据碎片离子进行各组分的桥接,从而实现化合物的快速归属” 。这一技术使得复杂组分,尤其是完全未知的成分的鉴定具有重要意义。目前我们发表的有关该技术的论文在国际期刊上已被引用47次。此技术也被用于多种中药方剂及环境污染物的分析中。”质量亏损过滤技术很早就被提出,并一直被应用于单个西药成分的代谢物鉴定中。对于适用于中药多组分的质量亏损过滤技术,王广基说:“质量亏损过滤用于去除基质相关的大量的背景离子,缩小假阳性的数目,使得目标化合物从背景噪音脱颖而出。这一技术的应用使得中药复杂成分中同一类化合物可以快速同时被检出,分析效率大幅度提高。” /span /p p span style=" FONT-FAMILY: times new roman"   在突破核心技术难题的基础上,王广基带领团队探索中药整体效应,取得了很多成果。例如,在人参皂苷的抗抑郁作用研究方面,该团队发现人参皂苷难以透过血脑屏障,但可调节免疫细胞及内源性神经递质的代谢转运,阻断炎症因子向脑部的传递,发挥脑神经保护作用。 /span /p p span style=" FONT-FAMILY: times new roman"   中药药代相关的研究成果获2009年国家科技进步二等奖、2012年江苏省科技进步一等奖 完成的“十一五”重大专项项目“中药复方药代动力学研究关键技术”获评全国第一。 /span /p p span style=" FONT-FAMILY: times new roman"   对于药效明确、机制不明的中药,可以通过分析内源性小分子物质群的改变等代谢研究手段来考察其药物机制和作用效果。王广基以人参对血压双向的调节作用为例,介绍了有关中药药效和作用机制的研究内容。对于高血压而言,很多西药的降压作用很明显,降压效果很快体现,但是,一旦停药后血压又反弹回原有的水平。人参降压作用比较温和,但是降压作用持久,在停药后反弹速率显著低于西药。王广基说:“通过代谢组学的研究,检测体内的内源性小分子代谢物群,发现高血压与正常人体内的代谢组的分群区分很明显。这说明高血压患者体内的生理生化代谢等机体的功能状态发生了偏移,偏离了正常状态。而人参皂苷具有一定的”纠偏“作用,高血压患者给予人参以后,偏离正常状态的代谢组有向正常状态恢复的趋势。 /span /p p span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)" strong 质谱技术是药代动力学研究的重要手段 /strong /span /p p span style=" FONT-FAMILY: times new roman"   质谱技术、细胞与分子生物学模型、PK/PD模型等都是药代动力学研究的常规手段。质谱主要用于测定血液、尿液、组织等生物样品中的微量药物浓度、代谢物鉴定和内源性成分的分离分析。 /span /p p span style=" FONT-FAMILY: times new roman"   该实验室质谱仪器非常多,其中大多数还是单级四极杆和三重四极杆质谱。王广基说:“定量分析是药物代谢研究的基础,也是我们做的最多的工作。我们目前的药物和代谢物的定量工作主要还是采用四极杆质谱分析。” /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_1361_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/17acd960-08dd-4f10-b7e2-3de02104dfd3.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 正在运行的岛津四极杆质谱仪 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   IT-TOF主要用于代谢物分析及其中药多组分的体内外物质基础的鉴定。王广基说:“2007年,我们开始将岛津LC-IT-TOF/MS(离子阱-飞行时间串联质谱)用于中药复杂未知成分定性和定量分析、中药体内复杂代谢产物分析与体内外物质关联网络分析等新领域。” 通过对中药复杂成分分析研究,王广基团队先后在Anal Chem,J Mass Spectrom, Talanta等国际化学分析领域权威期刊发表论文30余篇。“这些文章在国际上充分展示了LC-IT-TOF/MS在复杂未知成分定性分析中的卓越性能和广阔的应用前景。”王广基说。 /span /p p span style=" FONT-FAMILY: times new roman"   王广基及其实验室的研究者曾多次在国内外学术会议上报告了相关研究成果,基于IT-TOF的研究成果已经产生了深远的影响。马来西亚、新加坡和国内的制药企业正在寻求与王广基带领的药代动力学重点实验室在IT-TOF应用中的合作。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_1382_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/c4879eec-d7a5-47a6-acbc-35382f3c351e.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 正在运行的岛津LCMS-IT-TOF /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   在参观实验室时,王广基告诉编者,实验室在使用MALDI-TOF进行生物大分子生物药物的药代动力学研究及基于质谱成像技术的组织分布研究。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_1380_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/266ad761-b4b7-4a09-b8a5-9e350479ac83.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 正在运行的岛津MALDI-TOF质谱 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   王广基认为质谱技术特别是液质联用技术对于药代动力学研究有着非常重要的意义。他说:“首先,对药物的动力学特征研究一般分为定性研究和定量研究两个方面,对于定性来说,随着各种杂交质谱技术的出现,液质联用可以给出多级碎裂信息和准确分子量,对于化合物及其代谢物的结构推断提供了强有力的工具。此外,定量研究更加需要质谱,由于生物样本中干扰大、药物浓度低,而质谱的专属性强、灵敏度高,目前,大部分药物的药代动力学研究都是用质谱完成的。” /span /p p span style=" FONT-FAMILY: times new roman"   编者看到该实验室岛津的仪器非常多,大部分质谱仪出自岛津。时逢岛津公司成立140周年,在编者问是否对岛津有何期待时,王广基代表中国药科大学祝愿岛津创新不止、扬帆起航,朝着更高的目标不断迈进,取得更加辉煌的成就!王广基说“岛津以科学技术向社会做贡献,愿其早日实现‘为了人类和地球的健康’之愿望!” /span /p p style=" TEXT-ALIGN: center" img title=" DSC_7100_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/7df496f6-f064-4d2a-b9e8-901a67b8a3c4.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 药代动力学实验室合影 /strong /span /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 采访编辑:郭浩楠 /span br/ /p
  • 一文了解材料热动力学概念
    p strong 1.热、动力学概述 /strong /p p   自然界中发生的一切物理、化学和生物代谢反应,通常都伴随着热效应的变化,人们对热本质的认识经历了漫长曲折的探索历程。 /p p   20世纪初,Planck、Poincare、Gibbs等科学家以宏观系统为研究对象,基于热力学第一、二定律,并定义了焓、熵、亥姆霍兹和吉布斯等函数,加上P、V、T等可以直接测定的客观性质,经过归纳与演绎推理,得到一系列热力学公式和结论,用来解决能量、相和反应平衡问题,这便是经典热力学的基本框架。经典热力学研究的对象是系统中的物质和能量的交换,它是不断逼近极限的科学,只讨论变化前后的平衡状态,不涉及物质内部粒子的微观结构。 /p p   Boltzmann等人将量子力学与经典热力学相结合,形成了统计热力学。统计热力学属于从微观到宏观的方法,它从微观粒子的性质出发,通过求统计概率,定义出系统或粒子的配分函数,以此为桥梁建立起与宏观性质的联系。 /p p   时间是热力学中非常重要的独立变量,怎样处理时间变量是区别不同层次热力学的标志,在物理学中利用熵增来描述时间的单向性。热力学研究可能性,动力学研究现实性,即变化速率和变化机理。动力学是反应进度与时间的函数关系,系统的行为状态和输出只取决于起始状态和随后的输入。 /p p   自然界中发生的好多现象都是在非平衡态进行的不可逆过程,这就推动了热力学由平衡态向非平衡态发展。20世纪50年代,Prigogine I、Onsager L等人形成了非平衡态热力学(Non-equilibrium Thermodynamics),局域平衡假设是非平衡态热力学的中心假设。其中,Onsager L于1931年确立了唯象系数的倒易关系,Prigogine 在1945年提出了非平衡定态的最小熵增原理,适用于接近平衡状态的线性非平衡体系。对于远离平衡态的系统,以Progogine为首的布鲁塞尔学派经过多年的努力,建立了著名的耗散结构理论,后来通过云街、贝纳德对流实验等一些自组织现象(见图1)得以证实,耗散结构理论指出远离平衡的开放系统可以形成有序状态,打开了物理科学通向生命科学的窗口。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/436c0be6-c410-4216-9391-914804187287.jpg" title=" 图1 一些自组织现象.png" alt=" 图1 一些自组织现象.png" width=" 400" height=" 313" border=" 0" vspace=" 0" style=" width: 400px height: 313px " / /p p style=" text-align: center " strong 图1 一些自组织现象 /strong /p p   目前,热动力学不再仅仅是研究热现象基本规律的科学,它和系统理论、非线性科学、生命科学、宇宙起源等密切相关,其应用涉及物理学、化学、生物、工程技术,以及宇宙学和社会学科[1]。 /p p strong 2.材料热力学的形成和发展 /strong /p p   现代材料科学的进步和发展一直受到热力学的支撑和帮助,材料热力学是经典热力学与统计热力学理论在材料科学领域的应用,其形成和发展正是材料科学走向成熟的标志之一。 /p p   从1876年Gibbs相律的出现,1899年H. Roozeboom把相律应用到多组元系统,1900年,Roberts-Austen构建了Fe-Fe3C相图的最初形式,为钢铁材料的研究提供了理论支撑 再到20世纪初,G. Tamman等通过实验建立了大量金属系相图,有力推地动了合金材料的开发 50年代初R. Kikuchi提出了关于熵描述的现代统计理论,为热力学理论和第一性原理结合起来创造了条件 60年代初M. Hillert等对于非平衡系统热力学的研究,导致了失稳分解领域的出现,丰富了材料组织形成规律的认识 70年代由L. Kaufman、M. Hillert等倡导的相图热力学计算(CALPHAD),使材料研究逐渐进入到根据实际需要进行材料设计的时代[2]。 /p p   2011年6月,美国宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,核心内容之一是“材料基因组计划(materials genome initiative, MGI)”,其目的是为新材料的发展提供必要的工具集,通过强大的计算分析减少对物理实验的依赖,加上实验与表征方面的进步,显著加快新材料投入市场的种类与速度,开发周期可从目前的10~20年缩短至2~3年,图2比较了传统材料设计与现代材料设计的流程。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1f972848-2ff1-4a22-9f2f-766750dfbfc7.jpg" title=" 图2 传统材料设计与现代材料设计流程对比.png" alt=" 图2 传统材料设计与现代材料设计流程对比.png" width=" 400" height=" 371" border=" 0" vspace=" 0" style=" width: 400px height: 371px " / /p p style=" text-align: center " strong 图2 传统材料设计与现代材料设计流程对比 /strong /p p   材料热力学研究固态材料的熔化与凝固、固态相变、相平衡关系与成分、微观结构稳定性、相变的方向与驱动力等。为了描述各种不同类型物相的自由能、焓、熵等,曾提出过各种唯象的或统计的热力学模型,比如,理想溶体模型、正规溶体模型、亚正规溶体模型、准化学模型、原子缔和模型、中心原子模型、双亚点阵模型、集团变分模型(CVM)、Bragg-Williams近似、Bethe近似、Ising近似、Miedema近似等。扩散是动力学研究的主要内容,包括凝固过程中晶核的形成和长,以及在热处理过程中合金的均匀化、溶质原子的分布与再分配,可通过菲克第一、二定律推导。 /p p   热力学计算的涵盖范围很广,分析和理解材料学问题的重要工具有:Gm-x图、相图、TTT曲线、CCT曲线等。其中,最成功的核心应用是相图计算。相图依据获得的方法可以分为三类: /p p   1、实验相图:利用实验手段(DSC、DTA、TG、X射线衍射、电子探针微区成分分析等),以二、三元系为主。 /p p   2、理论相图,也称第一性原理计算相图,不需要任何参数,利用Ab initio method实现的理论计算相图,只在个别二元和三元体系材料设计方面有少量报道。 /p p   3、计算相图,其核心是理论模型与热力学数据库的计算机耦合。目前国际上流行的软件多采用CALPHAD模式,包括Thermo-Calc、Pandat、FactSage、Mtdata、JMatPro等。CALPHAD模式中对溶体自由能的描述大部分采用亚正规溶体模型,流程如图3所示,它是根据体系中各相的特点,集热力学性质、相平衡数据、晶体结构等信息于一体,建立热力学模型和自由能表达式,然后基于多元多相平衡的热力学条件计算相图,最终获得体系的具有热力学自洽性的相图和描述各相热力学性质的优化参数。 /p p style=" text-align: center "   例如,王翠萍,刘兴军,大沼郁雄等人利用CALPHAD方法评估了Cu-Ni-Sn三元系各相的热力学参数,其计算结果与实验值吻合得很好,如图4所示,他们还计算了该三元系中bcc相的有序无序转变及fcc相的溶解度间隙,对利用析出强化以及Spinodal分解开发高强度和高导电性的新型Cu基合金的组织设计具有一定的指导意义[3]。 br/ strong img src=" https://img1.17img.cn/17img/images/201809/uepic/a0a89f13-1022-49a1-9fd6-5604b5b5b379.jpg" title=" 图3 CALPHAD方法流程图.png" alt=" 图3 CALPHAD方法流程图.png" width=" 400" height=" 401" border=" 0" vspace=" 0" style=" width: 400px height: 401px " / /strong /p p style=" text-align: center " strong 图3 CALPHAD方法流程图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/bae8d53e-6ea5-4648-881d-ddedb81a12f2.jpg" title=" 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" alt=" 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" / br/ 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3] /strong /p p   动力学计算以热力学计算为基础,引入以时间为变量的扩散动力学模型和原子移动性数据库,通过大量的迭代运算,获得材料热力学状态随时间的变化关系。 /p p strong 3.在材料各领域的应用 /strong /p p   任何一个体系,热力学、动力学和物质结构三方面是密切联系的。金属材料的微观结构和热力学性质影响凝固和热处理过程中的生成相和微观组织演变。例如,对于Al-Cu系合金,溶质原子在固溶时过饱和析出,造成球对称畸变 在时效硬化时,首先形成G.P. Zone,接着溶质原子在低指数晶面上发生聚集、有序化,最终生成非共格θ(Al2Cu)平衡相。在凝固或均匀化过程中生成的相尺寸大于0.5μm时,受载时界面出现位错塞积,成为裂纹源 当尺寸介于0.005~0.05μm,并且呈细小弥散分布时,可阻碍再结晶和晶粒长大。当然,热、动力学理论目前已经渗透到了材料各个领域,成为一种有效的理论指导和必要的分析手段。 /p p strong (1)传统钢铁行业 /strong /p p   钢铁研究总院作为国内最大的专业钢铁材料研发机构,是最早引入热力学计算方法和软件的单位之一,先后在节镍型不锈钢设计、V-N 微合金化技术、LNG 用 9 Ni 低温钢等方面都取得了丰硕的研究成果[4]。 /p p strong (2)金属基复合材料 /strong /p p   范同祥、李建国、孙祖庆等人采用热力学、动力学模型,在复合材料增强相与基体界面反应控制、反应自生增强相种类选择、复合材料体系设计以及制备工艺等方面做了大量研究[5]。 /p p strong (3)纳米材料 /strong /p p   2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时用到纳米热力学(Nanothermodynamics)一词,Giebultowica、Hill等人证明了纳米热力学在处理纳米体系的生长和物理化学性能时的巨大作用,中国科学院大连化学物理研究所的谭志诚团队在纳米材料低温热容方面也做了大量研究[6]。 /p p strong (4)形状记忆合金 /strong /p p   Lidija GOMIDZELOVIC等人采用Muggianu模型并结合实验,使用Thermo-Calc软件计算了形状记忆合金Cu-Al-Zn在293K时的相图,并探讨了组织性能[7]。 /p p   此外,在Mg基储氢材料、石墨烯界面及其吸附性能都有热力学计算机模拟的相关应用。 /p p strong 4.热动力学的发展趋势 /strong /p p   几乎没有一种实用材料的结构在热力学上是稳定的,扩散、相变、位错的产生和运动,以及材料的形变和断裂都涉及各种非平衡,这就需要在实际应用中将CALPHAD模式与其他理论相结合,使其更加逼真地模拟现实情形,比如:与第一性原理(First-Principles)、密度泛函理论(Density functional theory,DFT)、相场理论(Multiphase Field Method)相结合 与材料物理冶金模型相结合,对材料硬度、强度、延伸率等做出预测 引入晶胞和析出相的形核、长大、粗化模型,计算材料的CCT、TTT相变曲线、晶粒尺寸、形核率等物性参数。 /p p   在未来,包括热力学和动力学在内的多尺度集成计算模拟配合专业数据库,实现材料设计阶段、模拟材料生产制备和服役的全流程,从而预测材料的组织演变和宏观性能,并在制备过程中对组织性能进行精确调控,是材料热、动力学发展的主要趋势[8,9]。 /p p strong 参考文献 /strong /p p [1]徐祖耀,材料热力学,高等教育出版社,2009 /p p [2]戴占海,卢锦堂,孔纲. 相图计算的研究进展[J]. 材料研究导报,2006,4(20):94-97 /p p [3]王翠萍,刘兴军,马云庆,大沼郁雄,貝沼亮介,石田清仁. Cu-Ni-Sn三元系相平衡的热力学计算[J]. 中国有色金属学报, 2005(11): 202-207. /p p [4]董恩龙,朱莹光,潘涛. LNG用9Ni低温压力容器钢板的研制[C],全国低合金钢年会论文集. 北戴河:中国金属学会低合金钢分会,2008:741-749 /p p [5]范同祥,张从发,张荻.金属基复合材料的热力学与动力学研究进展[J]. 中国材料进展, 2010, 29(04): 23-27 /p p [6]姜俊颖,黄在银,米艳,李艳芬,袁爱群. 纳米材料热力学的研究现状及展望[J].化学进展,2010,22(06):1058-1067. /p p [7]Lidija GOMIDZELOVIC, Emina POZEGA,Ana KOSTOV,Nikola VUKOVIC,Thermodynamics and characterization of shape memory Cu-Al-Zn Alloy [J].Transactions of Nonferrous Metals Society of China, 2015, 25(08): 2630-2636 /p p [8]Liux J, Takaku Y, Ohnuma I, et al. Design of Pb-free solders in electronic packing by computational thermodynamics and kinetics [J]. Journal of Materials and Metallurgy, 2005, 4(2): 122-125 /p p [9]Chen Q, Jeppsson J, Agren J. Analytical treatment of diffusion during precipitate growth in multicomponent systems [J]. Acta Materialia, 2008, 56:1890-1896 br/ br/ /p
  • 第三届全国热分析动力学与热动力学学术会议在南京召开
    仪器信息网讯 作为“国际化学年在中国”的系列活动之一,“中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会”于2011年10月21日在南京古南都饭店隆重召开。本次会议是受中国化学会委托,由中国化学会化学热动力学和热分析专业委员会及江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办,河北师范大学协办,来自全国各地近240名热分析工作者参与了此次大会。 大会开幕式由江苏省分析测试协会热分析专业委员会主任王昉老师主持 大会主办方之一南京师范大学副校长陈国祥教授致欢迎辞 江苏省分析测试协会理事长、江苏省生产力促进中心胡义东主任致开幕词 中国分析测试协会副理事长、南京大学陈洪渊院士致贺词 中国化学会热分析和热分析专业委员会主任、中科院化学所韩布兴研究员致贺词   本届大会将历时2天,共有28个精彩报告,报告内容涉及热动力学理论研究、材料分析、药物分析、生命科学、仪器研发及最新技术进展等广泛领域,充分体现了本届大会“展现热分析动力学与热动力学以及热分析领域的主要研究成果”的主题。 会议现场   梅特勒-托利多国际贸易(上海)有限公司、铂金埃尔默仪器(上海)有限公司、耐驰科学仪器商贸(上海)有限公司、TA仪器公司、精工盈司电子科技(上海)有限公司、上海精科天美贸易有限公司、法国赛特拉姆仪器公司等热分析相关厂商赞助了此次会议。 热分析仪器厂商纷纷参展   梅特勒-托利多是本届大会最大的赞助商,在会上展示了其2010年底推出的升温速度高达2,400,000K/min的FLASH DSC样机,同时还为本届大会设立了“梅特勒-托利多优秀学生论文奖”,奖励第一作者为学生的优秀论文。 梅特勒-托利多FLASH DSC亮相大会现场
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。   阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。   在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。   这项工作得到了国家自然科学基金委、科技部和中科院的资助。  图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm   图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图   图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 微型流化床反应动力学分析仪研制成功
    近日,过程工程所许光文研究员主持的中科院重大科研装备研制项目“微型流化床反应动力学分析仪研制”通过验收。   化工、冶金、能源、材料、环境等领域涉及大量气固反应,通常通过热重分析仪测试其反应特性,推导反应动力学参数。但是,热重分析不能在线供给固体反应物,升温速度缓慢,受气体扩散影响严重。因此,许光文研究员于2006年提出利用微型流化床作为反应器的气固反应动力学测试思想,以克服上述热重分析方法的弊端,通过检测反应生成气的典型组成随反应时间的变化,测试任意温度下的气固反应速度,分析推导反应动力学。   在中国科学院仪器研制专项资金的支持下,许光文研究员的课题组通过与国产热重分析仪专业企业——北京恒久科学仪器公司合作,经过两年多的努力工作,成功研制了微型流化床反应动力学分析仪(MFBK: Micro Fluidized Bed Kinetic analyzer)的样机(见图),并实现与在线微型质谱检测仪的联用,经系统试验,获得了系列新型测试结果,展现出它的优点和应用潜力。   MFBK适用于颗粒物料参与及颗粒催化剂催化的所有气固反应,包括化工(化学品分解、氧化、还原、加氢) 冶金(矿石还原、焙烧) 能源(煤/生物质热解、燃烧、气化、碳化) 材料(发射药/炸药分解、爆炸) 环境(固废热解/燃烧/气化、废气吸收/氧化/吸附)。它有效克服了热重分析的升温速度慢、扩散影响大等弊端,通过在线颗粒反应物供给,实现了任意温度下气固(颗粒)反应速度的测试,并提供了分析反应参数、揭示反应机理,特别是适合于快速颗粒反应测试的功能。   MFBK作为一种新型固体(颗粒)反应测试仪器,具有快速升温、趋近颗粒反应本征、易于操作,结果准确,重复性好等优点。其良好的功能及其与质谱的匹配性,引起了美国AMETEK质谱分析仪制造公司的兴趣。双方为此签订了合作研发协议,研制偶联AMETEK在线质谱分析仪的集成化微型流化床反应分析仪器,北京科技大学于2009年4月订购了该仪器。
  • 动力学的未来,GCI分子互作技术为药物研发按下“快进键”
    Creoptix公司是光学生物传感器的领军企业,于2022年1月加入马尔文帕纳科,成为旗下提供研究分子间相互作用技术的子品牌。Creoptix总部位于瑞士的苏黎世,致力于提供高质量的动力学数据,研发了高灵敏度的WAVE分子相互作用仪,为研究分子间相互作用力提供分析利器,使科学研究者可以做以前不可能做的事情,看到以前看不见的数据。2022年6月,马尔文帕纳科在线发布Creoptix新品WAVE分子相互作用仪。为了进一步了解新品WAVE分子相互作用仪的创新点与亮点,近日,仪器信息网编辑采访了马尔文帕纳科制药和食品行业中国区销售经理叶飞,同时,也借此机会对马尔文帕纳科在中国的技术支持、售后服务等方面进行深入了解。马尔文帕纳科制药和食品行业中国区销售经理 叶飞新品WAVE亮相,多项参数吸睛叶飞首先向我们介绍了Creoptix 新品WAVE分子相互作用仪核心竞争优势:“分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。不同于传统的基于表面等离子共振(Surface Plasmon Resonance,SPR)技术的解决方案,WAVE采用专利的光栅耦合干涉(Grating-Coupled Interferometry,GCI)技术,以及外置的微流控技术和基于Google AI 技术的自动化软件,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。”Creoptix WAVE 分子相互作用仪亮点1:新一代动力学分析—GCI技术随着科学技术进步和前沿研究的深入,分子互作技术呈现“多元化、互补化”发展态势。叶飞表示:“虽然是分子互作赛道新的参与者,WAVE却是在认真了解和研究了目前市场上存在的多种非标记分子互作技术的局限与问题后发展起来的新原理技术。基于波导干涉测量,WAVE创新提出将传感器表面折射率变化转化为时间依赖的相移信号,通过延长光与样品相互作用的长度(2mm),从而实现优越的信噪比。再结合3 mm 的互作传感区域,信号噪音低于0.01 pg/mm2 (0.01 RU),能够非常稳定的检测低配体活性、低偶联水平下的结合,消除了物质迁移限制效应(MTL)的影响,同时可以稳定的检测长解离信号,这对于具有极强亲和力的抗体分析而言无疑是很重要的。”Creoptix WAVE工作原理示意图亮点2:突破传统动力学检测—waveRAPID技术筛选通量、检测时间以及结合数据可靠性是生物药研发领域十分关注的几个问题。叶飞详细介绍说:“Creoptix创新推出的waveRAPID技术(单浓度动力学测定方法),突破了传统动力学的检测方式,只需一个浓度的样品,无需多次稀释样品和多浓度DMSO校正,不仅大大减轻了用户稀释工作量,节省了样品准备所占用的实验时间,同时单浓度实验还降低了人与人之间的稀释差异;不仅如此,对于目前非标技术中弱相互作用(如片段药物筛选)大多依赖稳态亲和力分析的现状,waveRAPID实现了更短的进样时间和解离时间,让生物药物动力学分析过程的总时间较其他技术大为减少,也让再生条件摸索更加容易;在数据分析上,waveRAPID采用独特的算法提取传感图解离段中的kon和koff信息,既提高了分析速度(waveRAPID 比传统动力学检测约快5-10倍,koff可达10s-1),又完美的避开了让很多研究者都很头疼的溶剂效应(bulk effect),让复杂样品分析更轻松。WAVE还提供专属的Biologic Package,提供配体筛选与CFCA(无需标准曲线的浓度测定方法)等多种生物药物分析工具套装,为用户提供活性浓度等重要评价指标。”亮点3:创新性微流控技术,助力临床样品分析“马尔文帕纳科专注于开发用于药物发现和生命科学的下一代生物分析仪器。WAVE 配置独特的外置微流控设计从而保护传感器表面不受污染或损坏,可在几秒钟内更换。此外,无微流阀的设计有效避免系统线路阻塞问题,较大限度地减少停机时间,也为大颗粒的动力学分析提供了可靠的解决方案。”叶飞补充说:“由于WAVE独特的无堵塞、免维护、可抛弃式流路设计,它将在粗制样品分析、膜蛋白分析、血清血浆等临床样品分析中具有广阔的应用空间,一旦完成相应的方法开发,其未来应用市场应该至少有几十亿美元的规模。”作为中国市场的“新人”,拥有众多全球用户分子间相互作用是生命科学和药物研发中的关键问题之一,也是研究的热点领域。在分子互作技术领域,已经有很多传统的荧光和免疫的方法,如ELISA, CoIP,FRET等,这些传统方法的问题和局限性也被广大研究者所了解。正是如此,非标记分子互作分析技术才在近些年蓬勃发展起来。作为新一代动力学分析技术的代表产品WAVE,由于推向中国市场的时间较短,目前国内的用户还不够多,但在全球却拥有众多忠实用户。叶飞介绍说:“全球用户中有著名的跨国药企如安进,罗氏、诺华等;著名的高校如乌普萨拉大学、苏黎世大学、维也纳生物中心;诊断试剂公司包括Mologic和Idorsia;专业外包服务公司如PepScan, LeadXpro, 2Bind,Domainex等。”“此外,在近三年中,多篇应用WAVE的研究论文发表于Science,Cell和Nature及其子刊,充分地说明了通过WAVE系统获取的数据已经得到了研究者和业内专家的认可和信赖。这些用户使用WAVE的代表领域包括基于片段的药物筛选(FBDD)、针对膜蛋白GPCR的小分子及生物药物开发、多肽药物的研发与优化、针对临床样本的诊断试剂开发、植物功能的分子机理研究等等。”超70%的员工提供安装等一揽子服务“马尔文帕纳科不仅仅致力于提供高性能的产品,更加关注客户的使用体验,超过70%的员工为服务工程师和应用科学家,提供安装、操作培训、方法开发流程培训等一揽子服务,确保用户第一时间掌握产品的使用方法。”叶飞进一步表示,“针对WAVE分子相互作用仪这个新产品,马尔文帕纳科在上海和北京的应用实验室投入了WAVEdelta型号的Demo样机,用于为用户提供测样和培训服务。另外,公司还有两位应用专家,其中韩佩韦博士在分子互作和微量热领域有10多年的技术支持和应用经验,可以把马尔文帕纳科的成功经验用最专业的方式分享给用户。同时国内的售后工程师经过了专业的培训,可以第一时间响应用户的安装和服务需求。我们坚信WAVE分子相互作用仪的高灵敏度、快速响应、样品制备简单、故障率低等特点,能够有效解决用户使用部分技术的痛点。和马尔文帕纳科MicroCal、Zetasizer、NanoSight、OMNISEC等产品线一起为客户的研发工作保驾护航”。后记:在叶飞看来,任何一款新原理技术,市场通常都会有个信息传导、了解和接受的过程。以SPR产品为例,从上个世纪90年代就开始在中国推广,历经10余年才逐渐开始被用户所认知和了解,又过了10余年,该技术才被药典所接受。“因此,作为新一代动力学分析技术的Creoptix WAVE,我们目前的最大瓶颈就是了解的人较少,知名度尚浅,国内用户还较少。然而,随着我们在WAVE发布会,仪器信息网等线上和多个线下会议持续曝光,相信在非标记技术已经逐渐深入人心的今天,Creoptix WAVE会很快得到广大用户的认可和信赖”,叶飞最后讲到。
  • 梅特勒托利多倾情赞助第三届全国热分析动力学与热动力学学术会议
    由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的&ldquo 中国化学会第三届全国热分析动力学与热动力学学术会议&rdquo 于2011年10月20-22日在江苏省南京市召开,会议期间同时召开&ldquo 江苏省第三届热分析技术研讨会&rdquo 。 本次会议以展现热分析动力学与热动力学以及热分析领域的主要研究成果为主题,就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议邀请了国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还展示了一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。 第三届全国热分析动力学与热动力学学术会议开幕式 来自全国各地高校的教授、学生及企事业单位的技术人员近150人参加了本次大会。会议交流形式包括出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲,题材涵盖热分析动力学理论与研究进展;热分析动力学的仪器功能、实验方法和数据处理软件的开发等;热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用;热分析与量热学领域内的研究工作 武汉大学、西北大学、南京理工大学、南京师范大学、清华大学、北京大学、南京大学等高校的教授分别介绍了各自领域的研究成果。大会上的精彩报告不断,提问踊跃。梅特勒托利多公司热分析仪器部技术应用顾问唐远旺先生为大会作了&ldquo 闪速DSC 1-超快速差示扫描量热仪技术与应用&rdquo 的报告,向与会人员介绍了闪速DSC1在材料科学领域的重要应用。 本次大会特设&ldquo 梅特勒托利多杯优秀学生论文奖&rdquo ,奖励那些第一作者为学生的优秀论文作者。 梅特勒托利多公司郭晓群经理为获得优秀学生论文奖的学生颁发证书 梅特勒托利多公司参展此次会议 梅特勒托利多公司是本次大会的最大赞助商。为了让大家更好地了解热分析发展的前沿,梅特勒托利多公司特将全球第一款商品化的超快速差示扫描量热仪-闪速DSC1搬到了会场展台。闪速DSC1是梅特勒托利多公司最新推出的升温速率可达2,400,000K/min,降温速率可达240,000K/min的超快速差示扫描量热仪,会上很多专家、教授、学者表现出了对闪速DSC的极大兴趣,大家也纷纷讨论有关超快速差示扫描量热仪的有关课题。 梅特勒托利多公司技术人员为与会人员讲解闪速DSC1 同时为了配合&ldquo 国际化学年在中国&rdquo 活动,10月20日下午还举办了&ldquo 梅特勒托利多杯国际先进热分析技术讲习班&rdquo 。讲习班特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,苏州大学孙建平老师,梅特勒托利多公司热分析技术应用顾问唐远旺先生为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。Christoph Schick教授为学员介绍了热分析的最新进展;孙建平老师讲解了热分析实验的方法与技巧;唐远旺先生就热分析联用技术及应用进行了详细阐述。课程结束后,每一位学员都参加了课程考试,对于成绩优秀者,颁发&ldquo 梅特勒托利多优秀学员奖&rdquo 证书及奖品。 梅特勒托利多热分析部应用顾问唐远旺在讲习班上做报告 梅特勒托利多公司实验室市场部郭晓群经理为讲习班优秀学员颁奖 会议于10月22日闭幕,大家一致认为,通过这次大会的成功举办既很好地交流了学术,又增进了大家的友谊。与会人员希望今后能有更多的交流沟通热分析的机会,促进国内热分析的蓬勃发展。
  • 5分钟速览热动力学研究方法
    p    strong 仪器信息网讯 /strong 从20世纪30年代初开始,由Tian和Calvet等着手研究了适合于缓慢而微小热变化过程的量热装置,并且得到了满意的结果,即目前的Calvet型微热量计。Calvet 为此研究了30 年,大部分论文发表在J. Chim. Phys.、CR Acad. Sci. Paris和Bull. SocChim. Fr.等期刊中,并有相关专著介绍。 /p p   1923年,世界上第一台热导式热量计是由Tian在设计制作的,它建立在地下7米,使用大地作为恒温环境。 /p p   1948年,法国科学家E. Calvet对Tian的单池设计作了改进,提出参考的理念,并采用孪生式对称的结构。 /p p   随后,瑞典隆德大学(Lund University)的Ingemar Wadso 教授对热导式量热计的发展作了大量的贡献,许多商用热量计,都采用了他的设计思想,像瑞典Thermometric公司的LKB 和 TAM等。 /p p   Calvet型微热量热计它不是直接测量出反应引起量热容器的温度变化,而是记录在每个时间所产生的热功率W与时间 t 的关系即Tian方程: /p p style=" text-align: center "    strong W=f(t) /strong /p p   方程所描述的图形是一条研究过程的动力学曲线,显然,在某一时间间隔内曲线下的面积就是该过程的热效应。 /p p   在热量计中进行的变化过程称为热动力学体系。其中,热量计是一个多参数系统,是输入函数和输出函数的中间体。输入函数即热变速率与时间之间的关系方程称为热动力学方程,Ω-t曲线称为热动曲线 输出函数即温度函数Δ(表现为 t 时热谱高峰)与时间 t 之间的关系方程称为热谱方程,Δ-t 曲线称为热谱曲线。由于输入函数Ω(t)是一切动力学信息的源泉,因此,热动力学方法的关键是如何通过热谱曲线的解析而获得输入函数,这就要依赖于热量计的理论模型了。 /p p   所以,随着热量计设计和结构的不同,热量计的理论模型不同,处理的角度不同,热动力学的方法和方程也就不同。 /p p   热分析动力学处理方法是指应用各种数学方法对所得的实验数据进行分析,从而求出相应的热分解反应的 strong 活化能Ea /strong 、 strong 指前因子A /strong 等动力学参数,以及固体物质反应速率(k)与转化率(α)之间所遵循的函数关系即 strong 反应机理f (α) /strong 。动力学研究的主要任务是通过动力学处理方法设法获得表征某个反应的机理和动力学参数。 /p p   固体物质的热分解通常可用下式表示: /p p style=" text-align: center "    strong A(固)→ B(固)+ C(气) /strong /p p   一般基于下列动力学方程: /p p style=" text-align: center "    strong dα/dt= k (T) f (α) (等温) /strong (1) /p p style=" text-align: center " strong   βdα/dT= k (T) f(α) (非等温) /strong (2) /p p   其中α,β,t ,T 分别为反应转化率,升温速率,时间和绝对温度,f (α)为与反应速率有关的函数。 /p p   机理函数f (α):反应的动力学机理函数f (α)是表示固体物质反应速率(k)与转化率(T)之间所遵循的某种函数关系,直接决定TA曲线的形状. 但由于动力学机理函数是建立在反应物颗粒具有规整的几形状和各相同性的反应活性的假设之上,再按控制反应速率的各种关键步骤推导出来的。由于动力学结果对反应界面的几何因素的依赖性很强,而实际样品颗粒的几何形状的非规整性和非均相反应本身的复杂性,虽然这些动力学机理函数能对许多固相物质的热分解反应过程作出基本描述,但也常会有实际TA曲线和理想模型不相符的情况.在绝大多数均相反应中,分解反应的整个过程遵循某一个动力学规律,但对于复相分解反应来说,分解过程可能是要由2个或者3个甚至更多的表达式来描述。 /p p   动力学参数Ea和A:对于方程(1)和(2)中k (T)一般采用Arrhenius方程: /p p style=" text-align: center "    strong k ( T ) = A exp(Ea/RT ) 或 /strong /p p style=" text-align: center " strong   lnk = - Ea /R T + 常数 /strong (3) /p p   此方程是在均相等温条件下推导出来的,将其用于非等温、非均相体系中的热分解动力学研究,其适用性和可靠性一直是一个有争议的问题。同时,由方程中lnk对1/T 作图,所得的直线的斜率要乘以气体常数R才得到活化能,而且公式中的指前因子也令人费解,目前还没有人对此作出很好的解释。 /p p    strong 动力学处理方法 /strong /p p   对于非等温、非均相过程,将(3)式代入方程(2)中,应用不同的数学方法进行处理而得到的,其基本形式可分为2大类,即微分式和积分式,分别对应的微分法和积分法。 /p p style=" text-align: center "    strong 动力学处理方法 /strong    /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" align=" center" interlaced=" enabled" tbody tr style=" height:18px" class=" ue-table-interlace-color-single firstRow" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height=" 18" align=" left" span style=" font-family: 宋体, SimSun " 积分法 /span /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" left" p style=" line-height:150%" span style=" font-family: 宋体, SimSun " 微分法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Phadnis /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Kissinger /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 冯仰婕 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 陈炜 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 邹文樵法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 微分方程法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Coats-Redfern /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 放热速率方程法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 改良 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Coats-Redfern /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 特征点分析法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Flynn-Wall-Ozawa /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 微分修正法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Gorbatchev /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Newkrik /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Lee-Beck /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Achar-Brindley-Sharp-Wendworth /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Li & nbsp Chung-Hsiung /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Friedman-Rrich-Levi /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Agrawal /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Piloyan-Ryabchihov-Novikova-Maycock /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 冉全印 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 叶素法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Freeman-Carroll /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 冯仰婕 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 袁军 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 洪专 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 邹文樵 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 戴浩良法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Anderson-Freeman /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Zsako /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Vachuska-Voboril /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " MacCallum-Tanner /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Starink /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Satava-Sestak /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Rogers /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 一般积分法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Rogers-Smith /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 普适积分法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Rogers-Morris /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Krevelen-Heerden-Huntjens /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Borham-Olson /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Broido /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Borchardt-Daniels /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Zavkovic /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 通用 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Kissinger /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Segal /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Viswanath-Gupta /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Madhususanan-Krishnan-Ninan /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Achar-Brindley-Sharp-Wendworth /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Horowitz-Metzger /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Friedman /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " McCarty-Green /span span style=" font-family:宋体" 法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 扩展的 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Friedman /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Doyle /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Kissinger-Akahira-Sunose /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Ozawa /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" br/ /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 胡荣祖 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 高红旭 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 张海法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" br/ /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 240" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 唐万军法 /span /p /td td width=" 277" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" br/ /td /tr /tbody /table p   对于非等温过程,经过数学处理可以得到温度积分以下近似式: /p p style=" text-align: center "    strong 温度积分的近似解 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" align=" center" interlaced=" enabled" tbody tr style=" height:18px" class=" ue-table-interlace-color-single firstRow" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Frank-Kameneskii /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Coats-Redfern /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Doyle /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Goebatchev /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Lee-Beck /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Li & nbsp Chung-Hsiung /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Agrawal /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 冉全印 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 叶素近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 冯仰婕 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 袁军 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 洪专 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 邹文樵 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 戴浩良近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Zsako /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " MacCallum-Tanner /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Krevelen-Heerden-Huntjens /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Broido /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Luke /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Senum-Yang /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Sestak-Satava-Wendlandt /span span style=" font-family:宋体" 近似式 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 307" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Tang-Liu-Zhang-Wang-Wang /span span style=" font-family:宋体" 近似式 /span /p /td /tr /tbody /table p   在非等温动力学分析中,相同条件下,不同研究者求得同一物质的动力学参数出入较大,这是由于机理函数和实际发生的动力学过程有差异,逻辑选择较合理的机理函数形式十分重要。 /p p style=" text-align: center "    strong 最概然机理函数的推断方法 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" align=" center" interlaced=" enabled" tbody tr style=" height:18px" class=" ue-table-interlace-color-single firstRow" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Satava /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Bagchi /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 双外推法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 张同来 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 胡荣祖 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 杨正权 /span span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " - /span span style=" font-family:宋体" 李福平法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 三步判别法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Malek /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Dollimore /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Popescu /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Leyko-Maciejewski-Szuniewicz /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Blazejowskji /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-single" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " CRTA /span span style=" font-family:宋体" 法 /span /p /td /tr tr style=" height:18px" class=" ue-table-interlace-color-double" td width=" 263" nowrap=" " valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:150%" span style=" font-family:宋体" 双等双步法 /span /p /td /tr /tbody /table p    br/ /p p    strong 参考文献 /strong /p p    i 沈玉芳,陈栋华, 胡小安. 热分析动力学处理方法现状及进展[J]. 中南民族大学学报自然科学版, 2002, 21(29):11-15. /i /p p i   胡荣祖,高胜利,赵凤起,史启祯,张同来,张建军. 热分析动力学.第2版[M]. 科学出版社, 2016. /i /p p span style=" color: rgb(68, 68, 68) font-family: 宋体, " arial=" " span    /span strong 致谢:本文由西北大学教授高胜利所提供相关资料经编辑整理撰写而成,特此致谢! /strong /span /p p span style=" color: rgb(68, 68, 68) font-family: 宋体, " arial=" " strong   延伸阅读: /strong /span /p p span style=" color: rgb(68, 68, 68) font-family: 宋体, " arial=" " strong    a href=" https://www.instrument.com.cn/news/20190517/485442.shtml" target=" _self" 高胜利:热分析检测技术与相图构筑 /a /strong /span /p p span style=" color: rgb(68, 68, 68) font-family: 宋体, " arial=" " strong    a href=" https://www.instrument.com.cn/news/20190627/487852.shtml" target=" _self" DSC数据处理——基线的校正 /a /strong /span /p p span style=" color: rgb(68, 68, 68) font-family: 宋体, " arial=" " strong /strong /span /p p    a href=" https://www.instrument.com.cn/news/20190628/487912.shtml" target=" _self" strong 分析技术新视野——从热分析到微量热 /strong /a /p p span style=" color: rgb(68, 68, 68) font-family: 宋体, " arial=" " strong /strong /span br/ /p
  • 超快光谱:让皮秒/飞秒时间尺度的动力学过程可视化——访南方科技大学陈熹翰副教授
    相关报道显示,超快光谱测试技术在Nature、Science及子刊上频频出现,吸引越来越多科研工作者的青睐。也有专家评价说,超快光谱的出现,给相关科学领域带来了一场新的革命。那么什么是超快光谱?超快光谱有多快?又能解决哪些关键问题……为了进一步了解超快光谱的技术及应用现状,仪器信息网编辑特别走进了南方科技大学机械与能源工程系,邀请在超快光谱研究应用方面颇有建树的陈熹翰副教授给大家分享他心目中的超快光谱技术。南方科技大学 陈熹翰 副教授超快光谱:向时间更快、空间分辨率更高方向发展据悉,早期的超快光谱空间分辨率没有很高,只有大概几微米或者几百微米的空间,现如今,随着各种显微技术的快速发展,超快光谱的空间分辨率可以达到几百纳米。同时,超快光谱时间分辨率非常高,近年来,发展迅速的超快光谱成为了研究皮秒和飞秒时间尺度内的分子结构与超快动力学行为的强有力手段。通俗来比喻,超快光谱类似超快摄像机一样,让人们能通过一帧一帧的“慢动作”观察到处于化学反应过程中原子与分子的转变状态。当前,超快光谱已被越来越广泛的应用在物理、化学、生物、材料、医疗、能源及环境等众多领域。其中,在物理领域,超快光谱可以应用于半导体磁性材料、超导体、绝缘体、复杂材料、量子结构、纳米和表面体系、太阳能电池等研究领域。对于超快光谱技术当前的研究进展,陈熹翰表示,总体来讲,国内外发展比较均衡,目前主要有两个重要的发展方向:一个是时间更快,即在超快的基础上提出新的概念——阿秒(10-18秒),以便了解更多分子、原子里电子的动力学过程;另一个是空间分辨率更高,以便可以看到更小、更加清楚的动态过程。除此之外,国内外的相关人员也在尝试把超快光谱拓展到不同的波长,例如从X光到太赫兹甚至微波,以持续推动超快光谱前沿技术的应用拓展。“虽然当前在科研研究中得到大家的青睐,但超快光谱更多的情况下是一种研究方法,未来在成为一种通用技术的道路上还有许多局限性。” 陈熹翰在采访中分享了制约超快光谱应用的三个因素:一是采集数据的时间较长。采集一次的时间约10~30分钟,如果需要更高的数据信噪比,则需要一个小时甚至两个小时;二是需要专业人员分析数据。在分析光谱时,要赋予其物理意义,将实验与实际结合,这需要一定的知识背景和经验积累;三是激光器成本较高。飞秒激光器费用可高达百万元以上,加上搭建激光器、光路和探测仪器等费用,一套仪器设备的投入可能需要300万元左右。这些问题在一定程度上限制了当前超快光谱更大规模地应用于市场。超快光谱在光电材料领域的应用优势显著都说热爱源于兴趣,陈熹翰就是如此,他喜欢研究事物背后的机理,特别是物理化学的转化过程。据介绍,陈熹翰在读本科时,就发现常用的化学手段没有办法非常清楚的展现反应的进行过程,例如太阳能的转化过程。之后,他接触到了超快光谱,发现超快光谱能够契合他的想法,并对其产生了极大的兴趣,由此踏入了超快光谱研究领域,并于2017年在美国取得化学博士学位(超快光谱方向),2021年加入南方科技大学,目前主要从事太阳能光电转化材料(如太阳能电池)以及机理研究工作。据介绍,当前,陈熹翰研究团队共有6~7人,在超快光谱技术及应用的相关研究中已经取得了一系列的研究进展。在光电转换材料方面,基于超快光谱的研究方法,陈熹翰团队自己搭建并设计了一些光路、功能、模型和方法,比如与反射光谱、太赫兹光谱等联用,用来研究太阳能转化材料的表界面性质,进而分析表界面动力学和转化效率的关系;在光电化学材料方面,陈熹翰团队在超快光谱技术的基础上开发了原位全反射光谱的方法,直接研究光电化学分解水的过程,他介绍说:“通过超快光谱,就像照相一样可以直接看到制约分解过程的两种反应中间体,并且可以通过pH或者其它方法来调控这两种中间体,进而控制水分解反应的速度。”2022年陈熹翰在《先进功能材料》期刊发布了一篇关于钝化钙钛矿界面处缺陷的文章,受到了极大的关注。特别值得一提的是,在这项成果的研究过程中,陈熹翰应用了大连创锐光谱科技有限公司(以下简称创锐光谱)的超快瞬态吸收光谱系统。对于为何会选择该国产仪器设备,陈熹翰表示:“我个人选择仪器的标准,第一点就是它的稳定性要好;第二点是可以定制化,我们可以做自己的改进;第三点就是售后服务一定要及时。”其实,陈熹翰一直在关注国内外相关的仪器产品,也做了很多调研对比,他表示,相比进口品牌,国产超快光谱仪器在国内科研应用中会更有优势。其评价说,以创锐光谱超快瞬态吸收光谱系统为例,相比进口品牌,这套系统的性能参数、稳定性可以完全对标,同时创锐还针对不同需求提供了定制服务,这是进口设备做不到的。系统交付后,双方在设备培训和沟通十分及时高效。系统可靠性也很优秀,投入使用至今未发生过异常。 创锐光谱超快瞬态吸收光谱系统技术亟待推广,多领域发展值得期待随着科学研究的不断深入,超快光谱也迎来了发展机遇。陈熹翰对于超快光谱的应用潜力信心满满,他分析道,从国家发展战略的角度出发,有三个方面的发展值得期待:首先,国家正在大力发展半导体产业,超快光谱对于研究半导体系统缺陷、提升其工艺水平十分重要;其次,在可再生能源领域,特别是太阳能电池、光催化分解水等方面,应用超快光谱可有助于研发出更高效的太阳能电池和催化剂,更快地完成从传统能源到新能源的转型;另外,国家也在积极推动生物制药等领域的发展,超快光谱可以用来研究生物体系中的一些能量转换模式,为之后的生物制药相关过程分析提供指导。机遇意味着拥有无限可能,对于超快光谱未来发展的可能性,陈熹翰也分享了自己的观点。他表示:未来,超快光谱在科研、工业两个方向都会有比较大的发展。科研方向上,超快光谱除了朝着时间更快,空间利用率更高的趋势发展之外,波长范围也将会更广,这样超快光谱将在任意波段都可以进行相关的研究;工业方向上,超快光谱将更多的与软件相结合,通过预设模型既可使采集数据更快,又可直接通过软件进行大数据分析,直接给出大家想要的结果。采访中,陈熹翰特别表示,虽然目前超快光谱的发展还处于起步阶段,但潜力非常大,亟需向大众宣传推广,以推动其在相关前沿基础科学研究及工业中的应用拓展。陈熹翰表示:“除了像我们一样的专业人士之外,希望能让更多的人了解、使用超快光谱技术。当然,实际应用中需要操作者有一定的材料学、物理学技术背景,确实有一些难度,不过随着我们国家的发展,理工科人才越来越多,大家的知识背景越来越强,这项技术就可以进行更多、更广泛的推广。”同时,对于未来的推广方式,陈熹翰也给出了自己的想法,“在我看来,超快光谱想要推广应用,一是需要在高校、科研院所、产线上刷存在感,吸引更多的用户去了解它,应用推广的机会也就越多;二是通过相关网站、各大平台等做更多的科普宣传,向大家普及超快光谱如何使用,有何优势,可以帮助解决何种问题等;三是超快光谱若能够作为国家战略层面上的一项技术或者一项储备来宣传的话,将会达到事半功倍的效果。”
  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
  • 中国化学会第三届全国热分析动力学与热动力学学术会议(第三轮通知)
    “中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rdJTA)”。本届会议由由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办。   会议期间,我们将举办“国际先进热分析技术讲习班”。讲习班结束我们将颁发培训证书,并设立“梅特勒-托利多优秀学员奖”若干名,大会论文还特设“梅特勒-托利多优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。   热忱邀请相关领域的科研、教学工作者、研究生和仪器厂商参加研讨交流。   一、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果二、会议组织委员会主席:陈国祥,韩布兴,尉志武副主席:赵厚民,张建军,魏少华,张明明,王昉秘书长:汤伟三、会议学术委员会主任委员:韩布兴副主任委员(以姓氏拼音为序):陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武委员(以姓氏拼音为序):安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起四、会议日程:详见附件一。五、会议日期:2011年10月20-22日。   六、会议报到时间及地点:10月20日8:00—23:00,南京师范大学敬师楼大酒店一楼大厅(南京市宁海路122号)   注:报名参加《国际先进热分析技术讲习班》的代表请于10月20日中午12:00之前报到。   七、会议时间及地点(详见附件二):   1、2011年10月20日下午14:00-17:00《国际先进热分析技术讲习班》在南京师范大学南山专家楼1楼多媒体厅 2、2011年10月21日-22日学术会议在南京古南都饭店江南春厅(三楼)。(南京市广州路208号)。   八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册) 学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人 论文审理费:60元/篇。讲习班:200元/人邮局汇款:南京市龙蟠路189号江苏省分析测试协会汤伟收(汇款附言中请注明“TAKT2011”)银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047   开户行:江苏南京交行玄武支行九、联系方式:联系人:江苏省分析测试协会汤伟(电话:025-85485940,13912996398传真:025-85404940)   南京师范大学王昉(手机:13851614122) 河北师范大学张建军(手机:15533995800)Email:TAKT2011@126.com   江苏协会南京大学河北大学二○一一年九月十日  附件一:会议日程 时间 日程安排 月 日(星期四)8:00—22:00 全天报到 14:00—17:00 国际先进热分析技术讲习班 月 日(星期五) 07:00—08:00 早餐 08:00—08:40 开幕式 08:40—09:00 合影留念 大会报告 1. 西安近代化学研究所胡荣祖教授热分析动力学和热动力学进展 9:10—12:00 2. 清华大学尉志武教授蛋白质热变性的动力学问题思考 3. 武汉大学刘义教授生命体系中的热动力学 4. 西北大学高胜利教授含能配合物的热动力学研究 5.南京师范大学安学勤教授脂质体相平衡与药物释放 12:00—13:30 午餐、午休 1. 中国食品药品检定研究院杨腊虎教授热分析在药物研究中的作用 大会报告 2. 北京大学陈尔强教授一些复杂软物质的热分析研究 13:40—17:30 3. 中国科学院大连化学物理研究所孙立贤教授新型储氢材料的纳米限域及其热化学研究 4. 中国科学院大连化学物理研究所王晓东研究员能源和环境催化研究中的吸附量热应用 5. 南京大学胡文兵教授聚合物结晶热分析的现状和挑战 6. 南京师范大学周宁琳教授热分析技术在生物材料中的应用7. 河北师范大学郑君茹稀土2,3二氯苯甲酸与2,2'-联吡啶配合物的合成、晶体结构及热分析动力学 8. 南京理工大学成一教授热分析动力学的研究与应用 18:00—20:00 迎宾晚宴   注:大会还安排有热分析各大厂商的新产品、新技术介绍。   附件二:宾馆信息及路线   (会务组与两家酒店合作为参会代表提供舒适的住宿环境和优惠的价格)1、南京古南都饭店(五星级):地址:南京市广州路208号   标准双人间:520元/间/天,含双早餐 标准单人间:480元/间/天,含单早餐2、南京师范大学敬师楼大酒店(准三星,也称“南师大南山专家楼东楼”):   地址:南京市宁海路122号,距离南京古南都饭店50米。   标准双人间:228元/间/天,含双早餐 标准单人间:258元/间/天,含单早餐   到南京古南都饭店和南京师范大学敬师楼大酒店交通路线:南京市内可乘3W、6W、91W、109W、132W、152W、302W、318W到“随家仓”站下,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。   一、火车站 、火车站打出租车 元左右即可到达南京师范大学敬师楼大酒店。 、步行至“南京站”地铁站、乘坐地铁1号线(或 地铁1号线南延), 在 珠江路站 下车,步行至珠江路站,乘坐91路(或6,132), 在“ 随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。 、步行100米至“南京车站”公交车站,乘坐318路,在 随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。二、南京长途汽车总站(中央门)步行460米至“玉桥市场”站,乘坐303路, 在广州路站 下车,步行320米至南京古南都饭店,再往西走50米是敬师楼大酒店。三、南京长途汽车东站   步行70米至长途东站,乘坐115路(或70,136,28,45), 在 板仓村站 下车,乘坐6路,在 “随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。四、飞机场机场大巴 号线到国防园(21:00结束)乘坐132路(或91), 在随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。或者从国防园打出租到敬师楼大酒店,起步价就够。
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
  • 宇航动力学国家重点实验室今日在西安成立
    12月3日,我国第一个研究人造天体运动规律的宇航动力学国家重点实验室在西安卫星测控中心正式挂牌成立。实验室的成立,将从根本上提升我国航天测控技术的自主创新能力,并实现对宇航动力学领域相关研究资源的整合。   实验室依托中国西安卫星测控中心建设,是我国进行宇航动力学领域基础理论和应用基础研究、前沿技术创新、科研成果推广、人才培养和实践验证和国际交流的国家级创新平台,2009年9月18日正式获国家科技部批准建设。经过两年的建设期,实验室将建成实验室前端系统、宇航动力学平台系统、数据存储系统、网上开放平台系统和精密跟踪站。   宇航动力学是一门研究航天器质心运动,绕自身质心运动、各部分间相对运动及其控制规律的学科,是高分辨率对地观测系统、北斗卫星导航系统等重大科技工程的重要基础理论。宇航动力学实验室的成立,是提升我国航天技术原始创新能力、提高我国航天测控能力以及实现我国空间科技由试验应用向业务服务转变的迫切需要。   目前,我国在宇航动力学模型、测量模型等基础领域的技术研究大都依赖国际航天大国发布的数据进行模型系数更新,宇航动力学国家重点实验室成立后,将在动力学模型、测量模型、时空框架、估值理论等基础领域开展关键技术研究,形成自己的宇航动力学基础理论,并摆脱对于国际联测数据的依赖性,充分挖掘和运用已有数据,实现自我完善更新,从根本上提升我国航天测控技术的自主创新能力,推动我国科技创新体系的建设发展。   宇航动力学实验室主任余培军介绍说,实验室的成员除了40多个固定研究人员外,还会有多个相关领域的国内外知名学者作为流动研究人员。实验室成立后,将充分发挥其"开放、流动、联合、竞争"的独特优势,成为一个开放的国家公共实验研究平台。通过设立开放式科研课题、对外开放科学实验设备和数据、大型课题联合研究等形式,邀请国内外知名学者担任实验室的兼职研究员或学术顾问,使实验室成为国内大专院校、卫星研制部门和科研院所交流的桥梁,实现对宇航动力学领域相关资源的整合。   宇航动力学国家重点实验室的建设必将吸引我国宇航动力学研究领域的优秀人才和领先技术资源,紧盯世界宇航动力学发展前沿和适应我国航天技术发展需求,推动我国航天测控事业的跨越式发展。
  • 贝斯特商品化最新系统:碳纤维复合材料原位微裂纹动力学分析
    复合材料的微裂纹和断裂力学一直是困扰科研人员的难题, 对于类似金属材料的断裂力学研究已经有了丰硕的成果;但是复合材料的断裂力学机理和过程, 一直没有较好的测试技术和设备商品化, 贝斯特公司的研发人员通过多年的科研经验和创新的工作, 开发了碳纤维复合材料微裂纹动力学测试技术, 通过该技术可以在线原位扫描样品在外力作用下,内部裂纹的扩展机理和动力学;为科研人员提供一臂之力。 此系统主要由Nano系列动态试验机和原位扫面测试系统、多通道控制系统和专业软件组成。 涡流检测原理:通过感应磁场和微裂纹相关性测试碳纤维复合材料的裂纹动力学。 由于导电材料不均匀会导致磁导率、电导率不同,使涡流流通路径发生改变,导致涡流的大小、相位发生改变。如果被检测件存在缺陷(如表面裂纹),则会阻碍涡流流过,因涡流只能存在于导体材料中,故导致涡流流通路径的畸变,最终影响涡流磁场,使得涡流强度降低。 构造配置: 技术参数:* 400x400毫米扫描区域* 探针直径1 & 3 mm* 速度Up to 100 mm/s, 同步数据采集up to 5 kHz* 样品厚度 t 8 mm* 3-轴位置控制 X, Y旋转编码器; Z 激光位置反馈* 作为独立的完全集成 “工作站”测试系统控制器。独立的扫描应用* 单通道输出信号,整流直流(0-10V)* X, Y &与负载、行程、应变等信号的记录* 轴向和横向的合规性应用:
  • 中国化学会第七届全国热分析动力学与热动力学学术会议第二轮通知
    p    strong 仪器信息网讯  /strong 由中国化学会主办,中国化学会化学热力学和热分析专业委员会和中国科学技术大学承办的第七届全国热分析动力学与热动力学学术会议将于2019年4月19-21日在安徽省合肥市召开。 /p p   本次会议将就近年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内从事热分析动力学和热动力学及热化学领域的著名专家、中青年学者和仪器生产厂商参加学术交流和技术探讨。会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。欢迎广大科技工作者踊跃投稿,积极参加。欢迎相关企业利用此次契机参与会展,扩大影响。本次会议的优秀论文将推荐给《物理化学学报》和《化学物理学报》(英文版),经过正常审稿程序被录用后发表。 /p p   strong  一、会议组织委员会 /strong /p p   大 会 主席:王键吉 尉志武 张建军 /p p   组委会主席:罗 毅 刘文齐 丁延伟 /p p   秘 书 长:丁延伟 /p p   秘 书 处:宋 策 白玉霞 刘吕丹 王雨松 程 霄 /p p   strong  二、会议学术委员会 /strong (按姓氏拼音排序) /p p   主 任:王键吉(河南师范大学) /p p   副主任: 尉志武(候任主任)(清华大学)、房大维(辽宁大学)、李浩然(浙江大学)、刘洪来(华东理工大学)、刘义(武汉大学) /p p   秘书长:赵扬(河南师范大学) /p p   委 员:安学勤(华东理工大学)、白光月(河南师范大学)、白同春(苏州大学)、陈三平(西北大学)、崔子祥(太原理工大学)、邓天龙(天津科技大学)、邸友莹(商洛学院)、丁延伟(中国科学技术大学)、杜为红(中国人民大学)、杜勇(中南大学)、方文军(浙江大学)、高峡(北京理化分析测试中心)、韩布兴(中国科学院化学研究所)、胡文兵(南京大学)、胡艳军(湖北师范大学)、黄在银(广西民族大学)、蒋风雷(武汉大学)、兰孝征(山东农业大学)、李宏平(郑州大学)、李强国(湘南学院)、李庆忠(烟台大学)、李武(中国科学院青海盐湖研究所)、刘士军(中南大学)、刘志宏(陕西师范大学)、刘志敏(中国科学院化学研究所)、陆小华(南京工业大学)、吕兴梅(中国科学院过程工程研究所)、马海霞(西北大学)、孟祥光(四川大学)、牟天成(中国人民大学)、彭汝芳(西南科技大学)、任宜霞(延安大学)、史全(中国科学院大连化学物理研究所)、王昉(南京师范大学)、王金本(中国科学院化学研究所)、王琦(浙江大学)、王毅琳(中国科学院化学研究所)、王玉洁(河南科技学院)、武克忠(河北师范大学)、吴卫泽(北京化工大学)、谢钢(西北大学)、徐芬(桂林电子科技大学)、薛永强(太原理工大学)、严川伟(中国科学院金属研究所)、杨莉萍(中国科学院上海硅酸盐研究所)、叶树亮(中国计量学院)、于惠梅(华东理工大学)、张建军(河北师范大学)、张建玲(中国科学院化学研究所)、张庆国(渤海大学)、张锁江(中国科学院过程工程研究所)、张同来(北京理工大学)、赵凤起(西安近代化学研究所)、曾德文(中南大学)、卓克垒(河南师范大学) /p p   strong  三、会议学术顾问委员会 /strong (按姓氏拼音排序) /p p   顾问:高胜利(西北大学)、沈伟国(华东理工大学)、孙立贤(桂林电子科技大学) /p p    strong 四、大会主题 /strong /p p   展现热分析动力学与热动力学以及热分析和量热领域的主要研究成果。 /p p    strong 五、会议交流形式 /strong /p p   大会特邀报告、专题报告及讨论、墙展、出版大会论文集。 /p p   大会拟于2019年4月19日下午14:30-18:00举行热分析动力学和热动力学应用的讲习班,讲习班将邀请国内著名热分析动力学和热动力学学者参与,请感兴趣者提前安排好时间,本讲习班不再额外收取费用。 /p p   讲习班由西北大学高胜利教授、河北师范大学张建军教授和德国耐驰仪器公司实验室应用技术经理徐梁博士主讲,主要内容包括热分析动力学和热动力学方法及应用中的常见问题分析与研讨。 /p p    strong 六、已确认邀请报告名单 /strong (按照确认时间排序,其他邀请者还在确认中) /p p   拟报告题目详见会议主页http://takt2019.ustc.edu.cn/ /p p   1. 韩布兴 中科院化学所 /p p   2. 王键吉 河南师范大学 /p p   3. 尉志武 清华大学 /p p   4. 刘 义 武汉大学 /p p   5. 胡文兵 南京大学 /p p   6. 张建军 河北师范大学 /p p   7. 陈三平 西北大学 /p p   8. 刘 峰 西北工业大学 /p p   9. 张广照 华南理工大学 /p p   10. 孙立贤 桂林电子科技大学 /p p   11. 罗 毅 中国科学技术大学 /p p   12. 夏红德 中科院工程热物理所 /p p   13. 谢启源 中国科学技术大学 /p p   14. 成 一 南京理工大学 /p p   15. 史 全 中科院大连化物所 /p p   16. 刘志宏 陕西师范大学 /p p   17. 王 昉 南京师范大学 /p p   18. 马海霞 西北大学 /p p   19. 高红旭 西安近代化学所 /p p   20. 于惠梅 华东理工大学 /p p   21. 武克忠 河北师范大学 /p p   22. 章 斐 北京大学 /p p   23. 金 波 西南科技大学 /p p   24. 任 宁 邯郸学院 /p p   25. 黄在银 广西民族大学 /p p   26. 白光月 河南师范大学 /p p   27. 酒少武 西安建筑科技大学 /p p   28. 李 伟 首都师范大学 /p p   29. 丁延伟 中国科学技术大学 /p p   strong  七、征文内容 /strong /p p   1. 热分析动力学理论与研究进展 /p p   2. 热动力学理论与研究进展 /p p   3. 热分析动力学和热动力学的仪器功能、实验方法和数据处理软件的开发等 /p p   4. 热分析动力学和热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 /p p   5. 热分析与量热学领域内的研究工作 /p p   6. 其他相关内容。 /p p    strong 八、论文要求 /strong /p p   1. 会议接收未在国内外学术刊物上公开发表过的原创论文 /p p   2. 会议论文要求突出工作的创新性,文字简练,语言准确 /p p   3. 论文摘要格式要求如下:请按照附件2中论文摘要的模板以中文或英文提供论文摘要,每篇摘要不超过两页。提交的论文摘要(word电子版)及报名表回执表通过E-mail(takt2019@ustc.edu.cn)发送给组委会 /p p   4. 论文征集截稿日期:2019年3月31日。 /p p   strong  九、会议日期、地点 /strong /p p   1. 日期:2019年4月19-21日(19日报到) /p p   2019年4月19日下午14:30-18:00: 热分析动力学和热动力学应用讲习班(参加动力学讲习班的代表请提前做好时间安排) /p p   以下为会议大体日程,供与会者安排行程参考。 /p table style=" border-collapse:collapse " data-sort=" sortDisabled" tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 68" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" 4月19日 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 122" valign=" top" 全天 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 410" valign=" top" 会议报到 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 122" valign=" top" 下午14:30-18:00 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 410" valign=" top" 热分析动力学和热动力学应用讲习班 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 68" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" 4月20日 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 122" valign=" top" 上午 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 410" valign=" top" 开幕式+大会报告 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 122" valign=" top" 下午 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 410" valign=" top" 分会报告 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 68" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" 4月21日 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 122" valign=" top" 上午 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 410" valign=" top" 大会报告 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 122" valign=" top" 下午14:00-18:30 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 410" valign=" top" 分组专题研讨 /td /tr /tbody /table p   2. 会议召开、报到地点: /p p   安徽高速开元国际大酒店(安徽省合肥市蜀山区合作化南路88号) /p p   3. 会议住宿酒店:安徽高速开元国际大酒店 /p p   住宿价格(含双早):双床房350元 大床房450元 /p p   会议期间食宿统一安排,费用自理。房间数量有限,请尽快登录网站预订住宿,预订截止时间:2019年3月31日 /p p   4. 交通路线: /p p img src=" https://img1.17img.cn/17img/images/201903/uepic/0e78a8c1-fb0e-470c-85d1-18b431397184.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 325" border=" 0" vspace=" 0" style=" width: 600px height: 325px " / /p p   (1)合肥南站(约7公里): br/ /p p   公交车: 合肥南站 --16路公交车-- 轴承厂站 -- 酒店 /p p   出租车: 约20元 /p p   (2)合肥站(约13公里): /p p   公交车: 合肥站 --111路公交车-- 轴承厂站 -- 酒店 /p p   出租车: 约30元 /p p   (3)合肥新桥国际机场(约45公里): /p p   公交车: 新桥机场 --机场巴士2号线-- 汽车客运西站 --地铁2号线-- 五里墩站(B出口) --步行250米-- 青阳路站 --16路公交车-- 轴承厂站 -- 酒店 /p p   出租车: 约100元 /p p strong   十、会议注册 /strong /p ol class=" list-paddingleft-2" style=" list-style-type: decimal " li p 注册费: /p /li /ol table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 263" valign=" top" p 交费日期 /p p (以汇款时间为准) /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 140" valign=" top" 教师及其他人员 p (非化学会会员) /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 96" valign=" top" p 学生 /p p (凭学生证) /p /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 80" valign=" top" 化学会会员 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 264" valign=" top" 2019年3月30日(含)之前 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 140" valign=" top" 1200元 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 96" valign=" top" 800元 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 80" valign=" top" 1000元 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 264" valign=" top" 2019年3月31日之后或现场交费 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 140" valign=" top" 1300元 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 96" valign=" top" 900元 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 80" valign=" top" 1100元 /td /tr /tbody /table p   2. 缴费方式: br/ /p p   (1)汇款: /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 161" align=" right" 银行户名: /td td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 274" 中国科学技术大学 /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 161" align=" right" 银行账号: /td td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 274" 184203468850 /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 161" align=" right" 开户银行: /td td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 274" 中行合肥南城支行 /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 161" align=" right" 备  注: /td td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 274" TAKT-参会代表姓名 /td /tr /tbody /table p   请注意: /p p    ●汇款时请务必写上“TAKT XXX(一名参会代表姓名)” /p p    ●汇款后请发送E-mail至takt2019@ustc.edu.cn,告知汇款金额、汇款单位 /p p    ●汇款后请保管好汇款凭证,会议报到时,凭汇款凭证或复印件开具发票。 /p p   (2)现场缴费。 /p p   3.本次会议注册采用网站注册(网址:http://takt2019.ustc.edu.cn/)、邮件注册(请将附表1回执表填好后发送到takt2019@ustc.edu.cn)的方式。 /p p    strong 十一、联系方式 /strong /p table style=" border-collapse:collapse " data-sort=" sortDisabled" tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 126" rowspan=" 4" colspan=" 1" align=" right" 联系人: /td td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 478" 丁延伟 (电话:0551-63606347 手机:13033058986) /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 584" 宋 策 (电话:0551-63607614 手机:15255102219) /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 584" 白玉霞 (手机:18715115436) /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 584" 刘吕丹 (手机:13695695976) /td /tr /tbody /table p   E-mail:takt2019@ustc.edu.cn /p p   附件1 会议回执(点击下载 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201903/attachment/ebca3f7d-346a-4763-9150-a1a86ab6f69d.doc" title=" 附件一.doc" style=" font-size: 12px color: rgb(0, 102, 204) " 附件一.doc /a ) /p p   附件2 论文摘要(点击下载 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201903/attachment/50fffa46-b627-4cbe-b540-08f384c3b366.doc" title=" 附件二.doc" style=" font-size: 12px color: rgb(0, 102, 204) " 附件二.doc /a ) /p p    img src=" https://img1.17img.cn/17img/images/201903/uepic/4f06a880-a308-407c-b28a-a7a069a5d043.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 180" border=" 0" vspace=" 0" style=" width: 600px height: 180px " / /p p br/ /p
  • 中国化学会第七届全国热分析动力学与热动力学学术会议(第一轮通知)
    p style=" text-align: center " strong & nbsp 中国化学会第七届全国热分析动力学与热动力学学术会议 /strong /p p style=" text-align: center " strong The 7th National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society /strong /p p style=" text-align: center " (第一轮通知) /p p & nbsp /p p   由中国化学会主办,中国化学会化学热力学和热分析专业委员会和中国科学技术大学承办的第七届全国热分析动力学与热动力学学术会议将于2019年4月19-21日在安徽省合肥市召开。 /p p   本次会议将就近年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内从事热分析动力学和热动力学及热化学领域的著名专家、中青年学者和仪器生产厂商参加学术交流和技术探讨。会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。欢迎广大科技工作者踊跃投稿,积极参加。欢迎相关企业利用此次契机参与会展,扩大影响。本次会议的优秀论文将推荐给《物理化学学报》和《化学物理学报》(英文版),经过正常审稿程序被录用后发表。 /p p & nbsp /p p strong 一、会议组织委员会 /strong /p p   大会主席:王键吉 尉志武 张建军 /p p   组委会主席:罗 毅 刘文齐 丁延伟 /p p   秘书长:丁延伟 /p p   秘书处:宋 策 白玉霞 刘吕丹 王雨松 程 霄 /p p & nbsp /p p strong 二、会议学术委员会(按姓氏拼音排序) /strong /p p   主任:王键吉(河南师范大学) /p p   副主任: 尉志武(候任主任)(清华大学)、房大维(辽宁大学)、李浩然(浙江大学)、刘洪来(华东理工大学)、刘义(武汉大学) /p p   秘书长:赵扬(河南师范大学) /p p   委员:安学勤(华东理工大学)、白光月(河南师范大学)、白同春(苏州大学)、陈三平(西北大学)、崔子祥(太原理工大学)、邓天龙(天津科技大学)、邸友莹(聊城大学)、丁延伟(中国科学技术大学)、杜为红(中国人民大学)、杜勇(中南大学)、方文军(浙江大学)、高峡(北京理化分析测试中心)、韩布兴(中国科学院化学研究所)、胡文兵(南京大学)、胡艳军(湖北师范大学)、黄在银(广西民族大学)、蒋风雷(武汉大学)、兰孝征(山东农业大学)、李宏平(郑州大学)、李强国(湘南学院)、李庆忠(烟台大学)、李武(中国科学院青海盐湖研究所)、刘士军(中南大学)、刘志宏(陕西师范大学)、刘志敏(中国科学院化学研究所)、陆小华(南京工业大学)、吕兴梅(中国科学院过程工程研究所)、马海霞(西北大学)、孟祥光(四川大学)、牟天成(中国人民大学)、彭汝芳(西南科技大学)、任宜霞(延安大学)、史全(中国科学院大连化学物理研究所)、王昉(南京师范大学)、王金本(中国科学院化学研究所)、王琦(浙江大学)、王毅琳(中国科学院化学研究所)、王玉洁(河南科技学院)、武克忠(河北师范大学)、吴卫泽(北京化工大学)、谢钢(西北大学)、徐芬(桂林电子科技大学)、薛永强(太原理工大学)、严川伟(中国科学院金属研究所)、杨莉萍(中国科学院上海硅酸盐研究所)、叶树亮(中国计量学院)、于慧梅(华东理工大学)、张建军(河北师范大学)、张建玲(中国科学院化学研究所)、张庆国(渤海大学)、张锁江(中国科学院过程工程研究所)、张同来(北京理工大学)、赵凤起(西安近代化学研究所)、曾德文(中南大学)、卓克垒(河南师范大学) /p p & nbsp /p p strong 三、大会主题 /strong /p p   展现热分析动力学与热动力学以及热分析和量热领域的主要研究成果。 /p p & nbsp /p p strong 四、会议交流形式 /strong /p p   大会特邀报告、专题报告及讨论、墙展、出版大会论文集。 /p p   大会拟于2019年4月19日下午14:30-18:00举行热分析动力学和热动力学应用的讲习班,讲习班将邀请国内著名热分析动力学和热动力学学者参与,请感兴趣者提前安排好时间,本讲习班不再额外收取费用。 /p p & nbsp /p p strong 五、征文内容 /strong /p p   1. 热分析动力学理论与研究进展 /p p   2. 热动力学理论与研究进展 /p p   3. 热分析动力学和热动力学的仪器功能、实验方法和数据处理软件的开发等 /p p   4. 热分析动力学和热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 /p p   5. 热分析与量热学领域内的研究工作 /p p   6. 其他相关内容。 /p p & nbsp /p p strong 六、论文要求 /strong /p p   1. 会议接收未在国内外学术刊物上公开发表过的原创论文 /p p   2. 会议论文要求突出工作的创新性,文字简练,语言准确 /p p   3. 论文摘要格式要求如下:请按照附件2中论文摘要的模板以中文或英文提供论文摘要,每篇摘要不超过两页。提交的论文摘要(word电子版)及报名表回执表通过E-mail(takt2019@ustc.edu.cn)发送给组委会 /p p   4. 论文征集截稿日期:2019年3月19日。 /p p & nbsp /p p strong 七、会议日期、地点 /strong /p p   日期:2019年4月19-21日(19日报到) /p p   地点:安徽省合肥市 /p p   2019年4月19日下午14:30-18:00: 热分析动力学和热动力学应用讲习班 /p p & nbsp /p p strong 八、会议注册 /strong /p p   1. 注册费: /p table width=" 522" border=" 0" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 30px " td width=" 238" height=" 30" style=" border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 交费日期 /span /p p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " (以汇款时间为准) /span /p /td td width=" 124" height=" 30" style=" border-width: 1px 0px 0px border-style: solid none none border-color: windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 教师及其他人员 /span /p p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " (非化学会会员) /span /p /td td width=" 96" height=" 30" style=" border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 学生 /span /p p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " (凭学生证) /span /p /td td width=" 64" height=" 30" style=" border-width: 1px 1px 0px 0px border-style: solid solid none none border-color: windowtext windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 化学会 /span /p p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 会员 /span /p /td /tr tr style=" height: 23px " td width=" 238" height=" 23" style=" border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 2019 /span span style=" color: black font-family: 仿宋 font-size: 16px " 年 span 3 /span 月 span 30 /span 日(含)之前 /span /p /td td width=" 124" height=" 23" style=" border-width: 1px 0px 0px border-style: solid none none border-color: windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 1200 /span span style=" color: black font-family: 仿宋 font-size: 16px " 元 /span /p /td td width=" 96" height=" 23" style=" border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 800 /span span style=" color: black font-family: 仿宋 font-size: 16px " 元 /span /p /td td width=" 64" height=" 23" style=" border-width: 1px 1px 0px 0px border-style: solid solid none none border-color: windowtext windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 1000 /span span style=" color: black font-family: 仿宋 font-size: 16px " 元 /span /p /td /tr tr style=" height: 23px " td width=" 238" height=" 23" style=" padding: 0px border: 1px solid windowtext border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 2019 /span span style=" color: black font-family: 仿宋 font-size: 16px " 年 span 3 /span 月 span 31 /span 日之后或现场交费 /span /p /td td width=" 124" height=" 23" style=" border-width: 1px 0px border-style: solid none border-color: windowtext rgb(0, 0, 0) padding: 0px background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 1300 /span span style=" color: black font-family: 仿宋 font-size: 16px " 元 /span /p /td td width=" 96" height=" 23" style=" padding: 0px border: 1px solid windowtext border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 900 /span span style=" color: black font-family: 仿宋 font-size: 16px " 元 /span /p /td td width=" 64" height=" 23" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent " p style=" text-align: center " span style=" color: black font-family: 仿宋 font-size: 16px " 1100 /span span style=" color: black font-family: 仿宋 font-size: 16px " 元 /span /p /td /tr /tbody /table p   2. 缴费方式: /p p   (1)汇款:银行户名:中国科学技术大学 /p p   银行账号:184203468850 /p p   开户银行:中行合肥南城支行 /p p   备  注:TAKT-参会代表姓名 /p p   请注意: /p p   · 汇款时请务必写上“TAKT XXX(一名参会代表姓名)” /p p   · 汇款后请发送E-mail至takt2019@ustc.edu.cn,告知汇款金额、汇款单位 /p p   · 汇款后请保管好汇款凭证,会议报到时,凭汇款凭证或复印件开具发票。 /p p   (2)现场缴费。 /p p   3.会议期间食宿统一安排,费用自理。 /p p   4.本次会议注册采用网站注册(网址:http://takt2019.ustc.edu.cn/)、邮件注册(请将附表1回执表填好后发送到takt2019@ustc.edu.cn)的方式。 /p p & nbsp /p p strong 九、联系方式 /strong /p p   联系人:丁延伟 (电话:0551-63606347 手机:13033058986) /p p   宋 策 (电话:0551-63607614 手机:15255102219) /p p   白玉霞 (手机:18715115436) /p p   刘吕丹 (手机:13695695976) /p p   E-mail:takt2019@ustc.edu.cn /p p & nbsp /p p style=" text-align: right " & nbsp img width=" 500" height=" 154" title=" 1.png" style=" width: 500px height: 154px " alt=" 1.png" src=" https://img1.17img.cn/17img/images/201812/uepic/ee4d3789-5932-47c1-971a-66062171ef3f.jpg" border=" 0" vspace=" 0" / /p p & nbsp /p p 附件: img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" takt2019会议通知-章.pdf" style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href=" https://img1.17img.cn/17img/files/201812/attachment/6c1d875a-83c4-413b-979e-4b44030b3c45.pdf" span style=" font-size: 16px " takt2019会议通知.pdf /span /a /p p br/ /p
  • 免费报名|9位专家详解“药物代谢动力学”
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 药物代谢动力学是定量研究药物在生物体内吸收、分布、排泄和代谢规律的学科。该领域研究至今已在新药研究和临床用药个体化过程中发挥巨大作用。随着细胞生物学和分子生物学的发展,在药物体内代谢物及代谢机理研究也已有了长足的发展。在创新药研制过程中,药物代谢动力学研究在评价新药中,与药效学、毒理学研究处于同等重要的地位。药物代谢动力学已成为创新药物研究和临床医学的重要组成部分。因此,药物代谢动力学也成为领域内的研究热点。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 为加强药物代谢动力学的最新研究与技术交流,为来自企业、科研院所、高校与政府监管部门的相关用户搭建交流与沟通平台,仪器信息网将于2020年12月16日举办“药物代谢动力学”主题网络研讨会。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/PKPD2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 450px height: 214px " src=" https://img1.17img.cn/17img/images/202012/uepic/039d4b79-7f40-44d8-b17a-cf03addd31e1.jpg" title=" 690-350.jpg" alt=" 690-350.jpg" width=" 450" height=" 214" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " 点击报名 /p p br/ /p p style=" text-align: center " strong 会议日程 /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" height=" 624" style=" border-collapse: collapse " colgroup col width=" 112" style=" width:84.00pt " / col width=" 202" style=" width:151.50pt " / col width=" 132" style=" width:99.00pt " / col width=" 211" style=" width:158.25pt " / /colgroup tbody tr height=" 52" style=" height:39.00pt " class=" firstRow" td class=" et3" height=" 39" width=" 84" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 时间 /strong /td td class=" et4" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 报告主题 /strong /td td class=" et5" width=" 99" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 报告嘉宾 /strong /td td class=" et5" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 单位 /strong /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 09:30--10:00 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 从药物代谢的角度评估中国小分子新药在欧美日上市所面临的挑战 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 朱明社 CSO /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " MassDefect Technologies /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 10:00--10:30 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 岛津液质联用技术在药代动力学研究中的应用 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 李思明 应用工程师 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 岛津企业管理(中国)有限公司 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 10:30--11:00 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 受法规监管的生物分析测试样品再分析(ISR):案例分析 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 蒙敏 CEO /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 重庆迪纳利医药科技有限责任公司 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 11:00--11:30 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " UPLC-MS/MS在药物代谢及生物利用度研究中的经验简介 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 秦永平 实验室主管/教授 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 四川大学华西医院 /td /tr tr height=" 32" style=" height:24.00pt " td class=" et6" height=" 24" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 11:30--13:30 /td td colspan=" 3" class=" et8" width=" 483" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 午间休息 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 13:30--14:00 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 生物分析技术在新药代谢和药动学研究中的应用 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 钟大放 研究员 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 中国科学院上海药物研究所 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 14:00--14:30 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 药物组织分布和动力学的质谱成像分析 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 王勇为 应用经理 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 布鲁克(北京)科技有限公司 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 14:30--15:00 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 临床药理学在肿瘤药物早期临床试验中的实践和探索 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 郑昕 博士 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 北京协和医院临床药理中心 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 15:00--15:30 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " Hamilton自动化移液工作站助力药物代谢研究 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 刘振凯 应用工程师 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 瑞士哈美顿博纳图斯股份公司上海代表处 /td /tr tr height=" 60" style=" height:45.00pt " td class=" et6" height=" 45" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 15:30--16:00 /td td class=" et7" width=" 151" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 药动学研究中多成分一同分析的液质联用技术应用案例 /td td class=" et6" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 李鹰飞 研究员 /td td class=" et7" width=" 153" x:str=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 中医科学院中药研究所中药药代动力学研究中心 /td /tr /tbody /table p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: center " span style=" color: rgb(79, 129, 189) " strong 报告专家 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 189px " src=" https://img1.17img.cn/17img/images/202012/uepic/95ce6bf0-379c-486a-a9a2-0d43b0decd69.jpg" title=" 1.png" alt=" 1.png" width=" 550" height=" 189" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 朱明社博士曾担任美国百时美施贵宝公司药物代谢部门的首席科学家,具有二十多年新药研发的经验。他负责过数十项新药研发项目的DMPK工作,包括先导化学物的优化,临床侯选物的评估和新药侯选物在发展阶段的体外DDI 和体内ADME研究以及新药的申报, 其中 Abilify(阿立哌唑)和Dapagliflozin (达格列净)成为新药在世界多国上市。朱博士与他的合作者发明了多项用于代谢物鉴定的质谱新技术, 包括质量亏损过滤(Mass defect filter), 精确背景扣除& nbsp (Background subtraction) 和多离子扫描& nbsp (Multiple ion monitoring) 等,已普遍用于全世界的药物代谢研究。 朱博士于2017年成为新药药物代谢方面的独立咨询顾问,长期担任南京药明康德的首席科学家,已支持了几十个小分子新药侯选物的研发和IND或NDA(包括安罗替尼,恩沙替尼,多纳非尼,HQP1351等)的申报,同时他也为多家中美药企提供短期的咨询服务。近年来他的研究兴趣延伸到ADC, 中药,多肽,氘代药物和其它新型药物的ADME方面。 朱博士发表了100多篇研究论文和综述, 并共同主编了& nbsp “Drug Metabolism in Drug Design and Development” 和 “Mass Spectrometry in Drug Metabolism and Disposition”& nbsp 两本专作。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 192px " src=" https://img1.17img.cn/17img/images/202012/uepic/06ad823f-56c9-4f0c-ab05-67c79f68182e.jpg" title=" 2.png" alt=" 2.png" width=" 550" height=" 192" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 蒙敏,美国马里兰州立大学药学院药学博士。American Health Foundation博士后研究员。从1998到2017, 曾经工作于Tandem Labs和Covance& nbsp (世界500强和世界上第二大的药物开发与服务CRO公司),先后任职高级科学家,项目经理,技术总监,实验室主任和首席技术官。有20年在美国从事GLP生物分析实验室的建设,运营,及业务拓展的经验。发表SCI论文 30篇,会议论文120篇,合作专著5本。是美国生物分析行业的知名科学家和学术带头人之一。2017年初,蒙敏海归并创办GLP生物分析实验室。现任重庆迪纳利(Denali)医药技术有限公司CEO。本实验室采用全球领先的液相色谱-串联质谱联用技术(LC-MS/MS),为制药公司药物研发提供临床前和临床生物分析服务。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/d275c11c-6294-4a07-8bcb-4781f1ede642.jpg" title=" 3.png" alt=" 3.png" / /p p br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 钟大放博士,中国科学院上海药物研究所研究员,上海药物代谢研究中心主任,苏州海科医药技术有限公司董事长。主要从事药物代谢和药动学研究,以及创新药物申报所需的吸收、分布、代谢和排泄试验等。他在沈阳药科大学获得学士和硕士学位,在德国波恩大学获得博士学位,在德国药师中心实验室从事4年博士后研究。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 钟博士曾主持7项国家自然科学基金项目,1996年获国家杰出青年科学基金。已经发表SCI论文210余篇,国内期刊论文220余篇,出版药物代谢专著和译著5部。指导毕业博士生48名,硕士生90余名。近年来,他的团队开展了260余项新药临床前ADME试验,约占中国申报临床试验新药总数的30%。其中,180余项获得中国临床试验批件,多项获得美国或澳大利亚临床试验许可。与临床医院合作,参与新药临床代谢和药动学试验100余项。在参与的研究项目中,已经有13种1.1类新药在中国批准上市。此外,他的团队还开展了400多项制剂生物等效性试验。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 钟博士是中国药典2015年版《生物样品定量分析方法验证指导原则》和《药物制剂人体生物利用度和生物等效性试验指导原则》的起草人。目前担任国家药典委员会委员,中国药学会医药生物分析专业委员会主任委员,以及国内外多种学术期刊的编委。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 174px " src=" https://img1.17img.cn/17img/images/202012/uepic/aa389556-cdd9-41de-af31-0bcae1dfc762.jpg" title=" 4.png" alt=" 4.png" width=" 550" height=" 174" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 李鹰飞博士,研究员,硕士生导师。就职于中国中医科学院中药研究所中药药代动力学研究中心。从事中药多成分体内过程与效/毒物质基础发现、代谢组学及创新药物非临床药代动力学评价等相关研究。 在Food Chemistry,Journal of Chromatography A/B,Rapid Communications in Mass Spectrometry和中国中药杂志等期刊发表中英文论文25篇;参编中文著作3部,英文著作1部;获授权发明专利2项。主持和参与国家自然科学基金、国家重大新药创制课题等项目近10项;2018年获省部级科技一等奖一项。先后完成多个创新药物的临床前评价,其中江苏恒瑞医药公司的1类新药甲磺酸阿帕替尼已于2014年底上市;中国医学科学院药物研究所的1类新药芬乐胺已于2016年获批进入临床试验;山西振东先导生物科技有限公司的1类新药ZD03也于2019年8月获得美国FDA批准,进入临床试验。当前承担四项1类新药的临床前药代动力学评价工作。现为中国医药教育协会老年医学与健康促进专业委员会常务委员,中国药理学会药物代谢专业委员会青年专委会委员,北京市药理学会药物代谢专业委员会委员。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 192px " src=" https://img1.17img.cn/17img/images/202012/uepic/2bc467df-a924-47f9-a5f8-a881802b6bce.jpg" title=" 5.png" alt=" 5.png" width=" 550" height=" 192" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2006年获得北京大学化学与分子工程学院理学学士学位,同年保送至北京协和医学院攻读药理学博士学位。2011 年获得药理学博士学位后进入北京协和医院临床药理中心工作,主要从事新药的 I 期临床研究。主要研究方向包括复杂生物基质中的药物/生物标志物的定量分析、药物药物相互作用研究、代谢产物鉴定以及新药的 PK/PD 研究等。并作为主要参与人员参与了「十一五」,「十二五」新药创制国家重大科技专项。作为负责人承担国家实验室开放课题 1 项,国家自然科学基金青年基金 1 项,参与国家自然科学基金3项。目前担任中国药理学会数学药理专业委员会青年委员(2014-2018);中国药物学会治疗药物监测专业委员会青年组委员(2016-2020);《协和医学杂志》青年编委。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 193px " src=" https://img1.17img.cn/17img/images/202012/uepic/7aff43b3-ea3b-42d5-8536-315e19f5e369.jpg" title=" 6.png" alt=" 6.png" width=" 550" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 秦永平从事生物药物分析实验研究及本科教学工作36年,& nbsp 专长是生物药物分析,特别能熟练使用UPLC-MS/MS对复杂生物样品中化学成分进行定性定量分析、查找未知代谢物等,结合半制备HPLC可分离纯化所需成分,有扎实的理论基础及丰富的实验技能。曾负责或主研近百个各类新药药代动力学或生物利用度研究课题,以及国家自然科学基金、省科委、省中医药管理局课题多个。已发表学术论文100余篇。现任四川省分析测试学会常务委员,四川省分析测试学会色谱专业委员会副主任委员,中国西部地区有机质谱委员会秘书长,四川省食品药品安全监测及评审认证中心专家。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 197px " src=" https://img1.17img.cn/17img/images/202012/uepic/582b4ff1-9c12-4683-ae8d-1240c4e020c4.jpg" title=" 7.png" alt=" 7.png" width=" 550" height=" 197" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 李思明,医学博士,2015年加入岛津企业管理(中国)有限公司,担任LC/LCMS应用工程师,具有多年LC、LCMS应用开发经验,主要侧重生物样品分析等研究领域,在生物医药行业具有较为丰富的应用经验。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 196px " src=" https://img1.17img.cn/17img/images/202012/uepic/a45357c8-2642-448d-a594-8805662ee61f.jpg" title=" 8.png" alt=" 8.png" width=" 550" height=" 196" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 王勇为博士于2018年加入布鲁克(北京)科技有限公司,现任MALDI质谱成像应用经理,负责MALDI质谱成像产品的技术支持和在药物研发和临床医学的应用发展。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 王勇为1989年毕业于复旦大学化学系获硕士学位,1992年于中国科学院上海药物研究所获博士学位,随后留所从事色谱和质谱分析方法开发、药物代谢动力学和新药质量标准研究工作。2001-2013年,先后在安捷伦科技有限公司任LC/MS应用工程师,赛默飞世尔科技色谱质谱应用经理,从事离子阱质谱、三重四极杆质谱、飞行时间质谱、轨道阱质谱、FT-ICR质谱等各类质谱仪的技术和应用支持,以及生命科学质谱在蛋白质组学和药物研发等重点领域的市场推广。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 175px " src=" https://img1.17img.cn/17img/images/202012/uepic/99a4b171-6222-4337-8ea1-f273171beb6f.jpg" title=" 9.png" alt=" 9.png" width=" 550" height=" 175" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 刘振凯,8+年实验室自动化设备应用经验。目前就职于Hamilton 公司上海代表处,负责Hamilton 实验室自动化产品培训,应用技术支持及药物研发自动化产品开发。已为多家合作伙伴设计和提供自动化产品。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 点击链接报名参会: a href=" https://www.instrument.com.cn/webinar/meetings/PKPD2020/" target=" _blank" https://www.instrument.com.cn/webinar/meetings/PKPD2020/ /a /p p style=" text-indent: 2em " 加入抗体“药代动力学”交流群,及时了解会议相关信息! /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 251px height: 367px " src=" https://img1.17img.cn/17img/images/202012/uepic/bd08e7ac-9a82-45fa-a5a0-c44860844449.jpg" title=" 群群.jpg" alt=" 群群.jpg" width=" 251" height=" 367" / /p p style=" text-align: center " 药代动力学交流群 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制