当前位置: 仪器信息网 > 行业主题 > >

水动力学推动机制

仪器信息网水动力学推动机制专题为您整合水动力学推动机制相关的最新文章,在水动力学推动机制专题,您不仅可以免费浏览水动力学推动机制的资讯, 同时您还可以浏览水动力学推动机制的相关资料、解决方案,参与社区水动力学推动机制话题讨论。

水动力学推动机制相关的资讯

  • 岛津 LC-MS/MS系列质谱在药代动力学应用
    药物动力学是对药物在生物体内吸收、分布、生物转化、排泄等一系列过程定量研究的学科。药物动力学研究的难点在于建立选择性强、精密度和准确度高、灵敏、快速的分析方法,测定生物样品(通常为血浆样品)中的微量药物和代谢产物浓度。近年来,液相色谱-串联质谱(LC-MS/MS)在这一领域取得了巨大的成功,有力地推动了新药研究和开发。 LC-MS/MS用于测定生物样品中微量药物及代谢产物,定量灵敏度高,重现性好,线性范围宽。但是由于药代动力学所研究的生物样品(例如血浆)的主要特点在于待测药物浓度低、内源性物质极性较大并易于离子化,从而产生基质效应,大幅度降低测定的灵敏度和重现性。因此,LC-MS/MS法测定血浆中药物或代谢产物时,必须根据不同化合物的结构特点,考察其在不同离子源(ESI或APCI)下的响应,优化流动相系统的组成,提高质谱响应。特别在分析极性较强的化合物时,应综合考虑血浆样品预处理和色谱分离方法,以避免离子抑制。 岛津LC-MS/MS系统充分考虑到生物样品分析的特点,从超快速液相分离到质谱分析都很好地满足了血浆中痕量组分定量的准确性和重现性,适应生物样品分析的快速、高通量、低系统残留的要求,主要体现在以下几个方面: 1)超快速液相和超高效液相提高了分离效率,能够在更短的时间内有效地分离待测药物和内源性物质,从而降低基质效应,提高分析结果的灵敏度和重现性;2)自动进样器的流通式进样针设计,防止交叉污染,减少额外的清洗时间,支持多种洗针液和多样化的洗针方式,彻底清洗样品流路,最大限度地减少系统残留; 3)适合生物样品高通量分析要求的自动进样系统,自动进样器均能够支持多孔板快速进样分析,例如Rack ChangerII 能够支持12 块多孔板,依靠机械臂自动换板;SIL-30ACMP 能够支持6 块多孔板同时分析,最快仅需7 秒钟即可完成任意板的任意孔位样品分析。可信赖的X-Y-Z 进样针移动机制,确保高速运转模式,具备重叠进样功能,减少30%的循环时间;底盘冷却方式,有效降低使用孔板分析时样品的挥发程度;4)高效率CID 的碰撞池(UF sweeper ?),高速离子传输技术可以提高离子传输效率,从而保持信号强度并且有效抑制串扰,确保生物样品中多组分同时分析的准确性;高效率CID 的碰撞池(UF sweeper ?) 5)出色的长期稳定性,提高生物样品分析结果的准确性和可靠性;离子源维护的简便,在保持真空的状态下即可实施脱溶剂组件的维护,缩短装置停机时间。岛津公司作为制药行业的忠实合作伙伴,一直在努力为药物研发、质控等工作提供具有优越性能的分析仪器。致力于提供更加优越的技术和全面的解决方法,积极与业内的专家合作,目前与中国医学科学院药物研究所、中国科学院上海药物所、浙江省疾病预防控制中心等单位都建立了良好的合作关系,合作单位利用岛津的LC-MS/MS 系统也开展了多种药代动力学研究工作。 岛津公司与中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室蒋建东教授课题组一直保持着紧密的合作关系,该实验室主要针对国内外天然药物活性物质与功能研究的发展趋势和我国创制新药的需求,围绕天然药物活性物质与功能研究的三个不可分割的关键问题,即活性物质发现、成药性和相关技术方法问题,以肿瘤、心脑血管疾病、神经精神疾病、糖尿病、感染性疾病、炎症与免疫性疾病等重大疾病防治药物创制的核心问题为重点,开展创新研究。近期该实验室关于盐酸小檗碱的代谢物研究工作发表在JOURNALOF PHARMACEUTICAL SCIENCES 上,文章中使用岛津三重四极杆质谱LCMS-8040 对盐酸小檗碱及其代谢产物的排泄进行了定量研究。 浙江省疾病预防控制中心理化所与岛津一直保持着良好的合作关系,中心的各类标准项目通过了国家实验室认可和国家级计量认证,主要承担疾病预防与控制、突发公共卫生事件应急处置、疫情与健康相关因素信息管理、健康危害因素监测与控制、健康教育与健康促进、实验室检测分析与评价、技术管理与应用研究等职能。目前,该所拥有一套岛津的LCMS-8040三重四极杆液质联用系统,使用该套仪器完成多篇药物代谢动力学相关研究论文。以下这篇文章是中心与大学合作开展的关于补肾活血汤的主要活性成分的药代动力学研究工作,该工作发表在JOURNAL OF CHROMATOGRAPHY B 上。另外,该实验室还利用岛津的LCMS-8040 完成大鼠血浆中人参皂苷的药代动力学研究,该工作发表在Planta Medica 上。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 岛津 LC-MS/MS系列质谱在药代动力学应用
    药物动力学是对药物在生物体内吸收、分布、生物转化、排泄等一系列过程定量研究的学科。药物动力学研究的难点在于建立选择性强、精密度和准确度高、灵敏、快速的分析方法,测定生物样品(通常为血浆样品)中的微量药物和代谢产物浓度。近年来,液相色谱-串联质谱(LC-MS/MS)在这一领域取得了巨大的成功,有力地推动了新药研究和开发。 LC-MS/MS用于测定生物样品中微量药物及代谢产物,定量灵敏度高,重现性好,线性范围宽。但是由于药代动力学所研究的生物样品(例如血浆)的主要特点在于待测药物浓度低、内源性物质极性较大并易于离子化,从而产生基质效应,大幅度降低测定的灵敏度和重现性。因此,LC-MS/MS法测定血浆中药物或代谢产物时,必须根据不同化合物的结构特点,考察其在不同离子源(ESI或APCI)下的响应,优化流动相系统的组成,提高质谱响应。特别在分析极性较强的化合物时,应综合考虑血浆样品预处理和色谱分离方法,以避免离子抑制。 岛津LC-MS/MS系统充分考虑到生物样品分析的特点,从超快速液相分离到质谱分析都很好地满足了血浆中痕量组分定量的准确性和重现性,适应生物样品分析的快速、高通量、低系统残留的要求,主要体现在以下几个方面: 1)超快速液相和超高效液相提高了分离效率,能够在更短的时间内有效地分离待测药物和内源性物质,从而降低基质效应,提高分析结果的灵敏度和重现性;2)自动进样器的流通式进样针设计,防止交叉污染,减少额外的清洗时间,支持多种洗针液和多样化的洗针方式,彻底清洗样品流路,最大限度地减少系统残留; 3)适合生物样品高通量分析要求的自动进样系统,自动进样器均能够支持多孔板快速进样分析,例如Rack ChangerII 能够支持12 块多孔板,依靠机械臂自动换板;SIL-30ACMP 能够支持6 块多孔板同时分析,最快仅需7 秒钟即可完成任意板的任意孔位样品分析。可信赖的X-Y-Z 进样针移动机制,确保高速运转模式,具备重叠进样功能,减少30%的循环时间;底盘冷却方式,有效降低使用孔板分析时样品的挥发程度;4)高效率CID 的碰撞池(UF sweeper ?),高速离子传输技术可以提高离子传输效率,从而保持信号强度并且有效抑制串扰,确保生物样品中多组分同时分析的准确性;高效率CID 的碰撞池(UF sweeper ?) 5)出色的长期稳定性,提高生物样品分析结果的准确性和可靠性;离子源维护的简便,在保持真空的状态下即可实施脱溶剂组件的维护,缩短装置停机时间。岛津公司作为制药行业的忠实合作伙伴,一直在努力为药物研发、质控等工作提供具有优越性能的分析仪器。致力于提供更加优越的技术和全面的解决方法,积极与业内的专家合作,目前与中国医学科学院药物研究所、中国科学院上海药物所、浙江省疾病预防控制中心等单位都建立了良好的合作关系,合作单位利用岛津的LC-MS/MS 系统也开展了多种药代动力学研究工作。 岛津公司与中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室蒋建东教授课题组一直保持着紧密的合作关系,该实验室主要针对国内外天然药物活性物质与功能研究的发展趋势和我国创制新药的需求,围绕天然药物活性物质与功能研究的三个不可分割的关键问题,即活性物质发现、成药性和相关技术方法问题,以肿瘤、心脑血管疾病、神经精神疾病、糖尿病、感染性疾病、炎症与免疫性疾病等重大疾病防治药物创制的核心问题为重点,开展创新研究。近期该实验室关于盐酸小檗碱的代谢物研究工作发表在JOURNALOF PHARMACEUTICAL SCIENCES 上,文章中使用岛津三重四极杆质谱LCMS-8040 对盐酸小檗碱及其代谢产物的排泄进行了定量研究。 浙江省疾病预防控制中心理化所与岛津一直保持着良好的合作关系,中心的各类标准项目通过了国家实验室认可和国家级计量认证,主要承担疾病预防与控制、突发公共卫生事件应急处置、疫情与健康相关因素信息管理、健康危害因素监测与控制、健康教育与健康促进、实验室检测分析与评价、技术管理与应用研究等职能。目前,该所拥有一套岛津的LCMS-8040三重四极杆液质联用系统,使用该套仪器完成多篇药物代谢动力学相关研究论文。以下这篇文章是中心与大学合作开展的关于补肾活血汤的主要活性成分的药代动力学研究工作,该工作发表在JOURNAL OF CHROMATOGRAPHY B 上。另外,该实验室还利用岛津的LCMS-8040 完成大鼠血浆中人参皂苷的药代动力学研究,该工作发表在Planta Medica 上。上海纳锘--为您提供纳米级专业细致服务! 如欲了解更多该产品信息,可来电咨询 。 ---------------------------------------------------------------------  上海纳锘实业有限公司  地址:上海市闵行区金都路1165弄123号21幢综合楼5001室  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052
  • 做世界一流的药代动力学研究平台——访药代动力学重点实验室王广基院士
    p   span style=" FONT-FAMILY: times new roman"  药代动力学在我国和世界上发展的很快,是创新药物研发中不可或缺的重要研究内容,甚至决定了药物开发的命运。药代动力学是一门多交叉学科,定量研究药物在体内的吸收、分布、代谢、排泄(ADME),也融合了药理学、药物分析、药剂学、中药学、细胞生物学、分子生物学、实验动物学等多门学科的相关知识。药代动力学的应用研究主要包括创新药物临床前的评价和申报、新药的临床药动学研究及评价、中药与生物大分子药物的药代动力学研究等。 /span /p p span style=" FONT-FAMILY: times new roman"   中国工程院院士王广基所带领的江苏省药代动力学重点实验室的研究团队在国内的创新药物药代动力学、中药药代动力学和细胞药代动力学等方面取得了令人瞩目的成就。日前,仪器信息网编辑在中国药科大学药代动力学重点实验室采访了王广基院士。 /span /p p span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)" strong   王广基所带领的药代动力学实验室在国内外取得了令人瞩目的成就 /strong /span /p p span style=" FONT-FAMILY: times new roman"   王广基所带领的药代动力学实验室先后成为了江苏省药物代谢动力学重点实验室、国家科技部临床前药物代谢动力学技术平台建设牵头单位、国家中医药管理局“中药复方药代动力学方法重点研究室”, 天然药物活性组分与药效国家重点实验室核心单元;先后承担了包括国家“863”计划、“973”计划、“国家自然科学基金”重点项目、国家“重大新药创制”科技重大专项、“国家科技支撑计划”等重大研究项目30余项。在国内外核心期刊发表科研论文320余篇,申请发明专利30多项。 /span /p p style=" TEXT-ALIGN: center" img title=" IMG_1417_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/0696db27-0b35-48a5-b151-d8e91f690cc0.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 王广基院士 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   王广基带领的药代动力学重点实验室是国内领先的药代动力学研究实验室,同时在该研究领域也是世界一流的。王广基对国内的药代动力学研究很有信心,他表示:“我国的药代动力学研究水平已经与发达国家接轨。”该实验室的很多研究成果都处于国际领先水平,据介绍该团队撰写了国际上第一篇细胞药代动力学研究综述,并发表于国际药代动力学权威杂志DMR,此文章属国际首次系统提出细胞PK/PD研究理论与技术方法,推动了药代动力学研究从“血浆”到“细胞”、从“宏观”到“微观”的突破。中药药代动力学研究的技术体系也得到了国内、国际上的广泛认可,如国际著名分析化学家Dr.Brack(德国)在Trends AC(国际化学分析顶级期刊)上将他们建立的“诊断离子桥联网络”策略评为复杂基质中未知成分分析的九大创新策略之一。 /span /p p span style=" FONT-FAMILY: times new roman"   药代动力学的基础研究主要包括针对ADME环节的各种体内外模型的建立及优化,药物吸收/代谢机制、调控途径,PK/PD(药动/药效结合研究)模型及由此衍生出来的各类数学模型的建立及评价等。如何将药代动力学的研究理论与技术应用到创新药物研究中是王广基所带领团队一直在深入研究的内容。 /span /p p span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)" strong   探索中药多成分药代动力学研究新技术,实现药代动力学研究从“单成分”向“多成分”的突破 /strong /span /p p span style=" FONT-FAMILY: times new roman"   中药现代化的研究中,需要对中药的一锅汤进行系统研究,包括“汤”里面究竟有哪些成分、成分的比例和量是多少 人服用以后,有多少成分吸收进入体内、有哪些成分进入体内后发生转化、起效的成分是哪些等。 /span /p p span style=" FONT-FAMILY: times new roman"   针对中药成分构成复杂、代谢多样、体内浓度低等难题,王广基及其团队创建了高效普适的中药复杂成分体内过程研究方法学体系。如:“诊断离子桥联网络”、“相对曝露法”、“物质组-代谢组关联网络”等策略。 /span /p p span style=" FONT-FAMILY: times new roman"   王广基介绍说:“诊断离子桥联网络技术即采用多级质谱对复杂组分碎裂分析,得到各成分的多级碎片离子,根据碎片离子进行各组分的桥接,从而实现化合物的快速归属” 。这一技术使得复杂组分,尤其是完全未知的成分的鉴定具有重要意义。目前我们发表的有关该技术的论文在国际期刊上已被引用47次。此技术也被用于多种中药方剂及环境污染物的分析中。”质量亏损过滤技术很早就被提出,并一直被应用于单个西药成分的代谢物鉴定中。对于适用于中药多组分的质量亏损过滤技术,王广基说:“质量亏损过滤用于去除基质相关的大量的背景离子,缩小假阳性的数目,使得目标化合物从背景噪音脱颖而出。这一技术的应用使得中药复杂成分中同一类化合物可以快速同时被检出,分析效率大幅度提高。” /span /p p span style=" FONT-FAMILY: times new roman"   在突破核心技术难题的基础上,王广基带领团队探索中药整体效应,取得了很多成果。例如,在人参皂苷的抗抑郁作用研究方面,该团队发现人参皂苷难以透过血脑屏障,但可调节免疫细胞及内源性神经递质的代谢转运,阻断炎症因子向脑部的传递,发挥脑神经保护作用。 /span /p p span style=" FONT-FAMILY: times new roman"   中药药代相关的研究成果获2009年国家科技进步二等奖、2012年江苏省科技进步一等奖 完成的“十一五”重大专项项目“中药复方药代动力学研究关键技术”获评全国第一。 /span /p p span style=" FONT-FAMILY: times new roman"   对于药效明确、机制不明的中药,可以通过分析内源性小分子物质群的改变等代谢研究手段来考察其药物机制和作用效果。王广基以人参对血压双向的调节作用为例,介绍了有关中药药效和作用机制的研究内容。对于高血压而言,很多西药的降压作用很明显,降压效果很快体现,但是,一旦停药后血压又反弹回原有的水平。人参降压作用比较温和,但是降压作用持久,在停药后反弹速率显著低于西药。王广基说:“通过代谢组学的研究,检测体内的内源性小分子代谢物群,发现高血压与正常人体内的代谢组的分群区分很明显。这说明高血压患者体内的生理生化代谢等机体的功能状态发生了偏移,偏离了正常状态。而人参皂苷具有一定的”纠偏“作用,高血压患者给予人参以后,偏离正常状态的代谢组有向正常状态恢复的趋势。 /span /p p span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)" strong 质谱技术是药代动力学研究的重要手段 /strong /span /p p span style=" FONT-FAMILY: times new roman"   质谱技术、细胞与分子生物学模型、PK/PD模型等都是药代动力学研究的常规手段。质谱主要用于测定血液、尿液、组织等生物样品中的微量药物浓度、代谢物鉴定和内源性成分的分离分析。 /span /p p span style=" FONT-FAMILY: times new roman"   该实验室质谱仪器非常多,其中大多数还是单级四极杆和三重四极杆质谱。王广基说:“定量分析是药物代谢研究的基础,也是我们做的最多的工作。我们目前的药物和代谢物的定量工作主要还是采用四极杆质谱分析。” /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_1361_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/17acd960-08dd-4f10-b7e2-3de02104dfd3.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 正在运行的岛津四极杆质谱仪 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   IT-TOF主要用于代谢物分析及其中药多组分的体内外物质基础的鉴定。王广基说:“2007年,我们开始将岛津LC-IT-TOF/MS(离子阱-飞行时间串联质谱)用于中药复杂未知成分定性和定量分析、中药体内复杂代谢产物分析与体内外物质关联网络分析等新领域。” 通过对中药复杂成分分析研究,王广基团队先后在Anal Chem,J Mass Spectrom, Talanta等国际化学分析领域权威期刊发表论文30余篇。“这些文章在国际上充分展示了LC-IT-TOF/MS在复杂未知成分定性分析中的卓越性能和广阔的应用前景。”王广基说。 /span /p p span style=" FONT-FAMILY: times new roman"   王广基及其实验室的研究者曾多次在国内外学术会议上报告了相关研究成果,基于IT-TOF的研究成果已经产生了深远的影响。马来西亚、新加坡和国内的制药企业正在寻求与王广基带领的药代动力学重点实验室在IT-TOF应用中的合作。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_1382_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/c4879eec-d7a5-47a6-acbc-35382f3c351e.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 正在运行的岛津LCMS-IT-TOF /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   在参观实验室时,王广基告诉编者,实验室在使用MALDI-TOF进行生物大分子生物药物的药代动力学研究及基于质谱成像技术的组织分布研究。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_1380_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/266ad761-b4b7-4a09-b8a5-9e350479ac83.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 正在运行的岛津MALDI-TOF质谱 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   王广基认为质谱技术特别是液质联用技术对于药代动力学研究有着非常重要的意义。他说:“首先,对药物的动力学特征研究一般分为定性研究和定量研究两个方面,对于定性来说,随着各种杂交质谱技术的出现,液质联用可以给出多级碎裂信息和准确分子量,对于化合物及其代谢物的结构推断提供了强有力的工具。此外,定量研究更加需要质谱,由于生物样本中干扰大、药物浓度低,而质谱的专属性强、灵敏度高,目前,大部分药物的药代动力学研究都是用质谱完成的。” /span /p p span style=" FONT-FAMILY: times new roman"   编者看到该实验室岛津的仪器非常多,大部分质谱仪出自岛津。时逢岛津公司成立140周年,在编者问是否对岛津有何期待时,王广基代表中国药科大学祝愿岛津创新不止、扬帆起航,朝着更高的目标不断迈进,取得更加辉煌的成就!王广基说“岛津以科学技术向社会做贡献,愿其早日实现‘为了人类和地球的健康’之愿望!” /span /p p style=" TEXT-ALIGN: center" img title=" DSC_7100_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/7df496f6-f064-4d2a-b9e8-901a67b8a3c4.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 药代动力学实验室合影 /strong /span /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 采访编辑:郭浩楠 /span br/ /p
  • 中国唯一空气动力学国家重点实验室揭牌成立
    中国唯一国家级空气动力学重点实验室二十三日在四川绵阳空气动力研究基地正式揭牌成立,将为大飞机、新一代列车、风力发电机等国家重大专项研制提供技术支撑,并推动中国空气动力学基础研究,为国家经济社会发展和国家安全战略提供重要保障。   中国科学技术部副部长曹健林向新成立的空气动力学国家重点实验室授牌,他说,空气动力学是航空航天事业和国家安全战略的重要基础支撑,当前中国日新月异的建设发展对空气动力学的战略需求愈加强烈。成立空气动力学国家重点实验室,是加强国家科技基础条件平台建设的重要举措。依托空气动力研究基地建设空气动力学重点实验室,能够充分利用空气动力研究基地的人才、设备、技术、信息、成果等优势资源,提供一个一流的科学研究和学术交流平台,有利于针对空气动力学的基础性、前沿性关键问题进行长期、系统、深入的研究,从而取得更大突破。   空气动力学国家重点实验室相关负责人介绍,该实验室将充分发挥其开放共享的独特优势,吸引中国空气动力学研究领域的优秀人才和领先技术资源,紧盯世界空气动力学发展前沿和中国航空航天技术发展需求,重点开展以大飞机研制为核心的气动噪声、减阻技术和结冰机理等方面的技术研究,为大飞机、新一代列车、风力发电机等国家重大专项、高速轨道交通和高效风能利用中涉及的关键气动问题提供技术支撑,为复杂流动机理问题研究搭建高精度、高效率、高可信度的数值模拟研究平台。   据悉,长期以来,四川绵阳空气动力研究基地依托亚洲最大风洞群和中国最先进的风洞试验研究技术,大力推进空气动力学与其它学科交叉渗透,构建起科学合理的空气动力学基础理论体系,为空气动力学国家重点实验室的成立完成了大量技术储备。该基地广大科技人员致力于解决制约中国航空航天、地面交通、风能利用等领域发展的瓶颈问题,围绕计算空气动力学及飞行器流动机理、低速空气动力学和国家大型空气动力学基础条件平台关键技术开展集中攻关,先后发展了数百项风洞试验新技术,为包括“歼十”战机、“神舟”飞船等多项重点飞行器的研制攻克了上千个技术难题,形成一大批具有国际先进水平的重大研究成果。
  • 中国化学会第七届全国热分析动力学与热动力学学术会议顺利闭幕
    p strong 仪器信息网讯 /strong   2019年4月21日,由中国化学会主办、中国化学会第七届全国热分析动力学与热动力学学术会议中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办的中国化学会第七届全国热分析动力学与热动力学学术会议于合肥顺利闭幕。21日上午的大会由桂林电子科技大学的孙立贤、河北师范大学的张建军、天津科技大学的邓天龙联合主持。在闭幕式上,颁发了“最佳张贴报告奖” 并发布2021年第八届全国热分析动力学与热动力学学术会议筹备的最新消息。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/b77b6d53-6fc5-4cf5-9718-398f495537a8.jpg" title=" 孙立贤_副本.jpg" alt=" 孙立贤_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" /    /p p style=" text-align: center " 桂林电子科技大学孙立贤 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/f0a1c4e0-09b9-4d96-b3ce-745c45ed36de.jpg" title=" 张建军_副本.jpg" alt=" 张建军_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" /    /p p style=" text-align: center " 河北师范大学张建军 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/90a6779e-fa06-42d5-bd4d-122190562706.jpg" title=" 邓天龙_副本.jpg" alt=" 邓天龙_副本.jpg" style=" width: 400px height: 294px " width=" 400" vspace=" 0" height=" 294" border=" 0" /    /p p style=" text-align: center " 天津科技大学邓天龙 /p p   中国科学院化学研究所院士韩布兴首先作了题为“绿色溶剂体系热力学、催化材料合成与化学反应中的溶剂效应”的主题报告。当前,70%以上的化学化工过程都会使用到溶剂,尤其是有机溶剂,但也同时面临着效率低、功能有限和环境污染等问题,因此无法满足当代化工可持续发展的要求,开发利用绿色溶剂是必然发展趋势。绿色溶剂应具有无毒、无害、便宜易得、容易循环利用和具有特定功能等特性。其中,具有代表性的绿色溶剂包括水、超临界流体、离子液体和生物质基溶剂等。韩布兴课题组目前的主要研究工作就是围绕超临界CO2、离子液体和水等绿色溶剂,通过化学热力学研究以及发展实验方法,实现绿色功能介质创制、催化材料合成等应用。报告中,韩布兴介绍了其目前的研究成果,包含超临界流体体系局域热力学模型、离子液体与超临界流体/离子液体乳液体系、超临界CO2中表面活性剂自组装及组装体催化功能、配合物催化剂稳定的CO2包水型微乳液光催化CO2还原、MOF稳定CO2/水乳液及MOF界面组装、超临界CO2/IL乳液制备有序介孔MOF纳米球、多孔金属制备及生物质基资源转换、离子液体/有机盐体系制备介孔无机盐、离子液体制备负载型纳米催化材料等。韩布兴课题组还尝试了用离子液体解决CO2反应中的热力学问题,实现了两相体系的甲酸合成 利用CO2形成碳酸解决动力学问题和用于纳米催化等,并介绍了溶剂效应在化学反应中的应用。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c173d718-ce88-4413-bc02-5cf5159d12aa.jpg" title=" 韩布兴_副本.jpg" alt=" 韩布兴_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " 中国科学院化学研究所院士韩布兴 /p p   武汉大学刘义作了题为“蛋白纤维化纳米抑制剂的设计及其作用机制”的主题报告。阿尔兹海默症近年来受到人们的普遍关注 研究表明,其与蛋白纤维化关系密切。目前,主要的蛋白纤维化抑制剂分为多肽类抑制剂、小分子抑制剂和新型纳米材料三种。新型纳米材料由于其稳定性强、比表面积大和表面易修饰的特点,受到广泛青睐。碳点是一类生物相容性很好的纳米材料,刘义通过设计一系列表面改性的碳点(如氧化改性),并以与阿尔兹海默症相关的胰岛素蛋白为研究对象,利用等温滴定量热、荧光光谱、圆二色谱和显微分析等仪器,证实了其对与疾病相关的HI蛋白的聚集和生长有抑制作用。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/b8ca13a8-ab38-466b-8635-f03976de0064.jpg" title=" 刘义_副本.jpg" alt=" 刘义_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " 武汉大学刘义 /p p   桂林电子科技大学孙立贤作了题为“新型储能材料设计与热力学调控”的主题报告。我国对可再生能源的需求迫切,氢能源利用是支持可再生能源大规模应用的重要途经,但目前缺乏安全高效的氢储运技术,制约了氢能的发展。孙立贤介绍了其在可控形貌低维催化剂制备及配位氢化物储氢、金属与配体调变以及符合纳米化MOFs储氢等工作。此外,还分享了孙立贤课题组首次创建的国内储氢材料数据库基本情况。 /p p   陕西师范大学的刘志宏作了题为“热化学在硼酸盐功能材料制备及其性能研究中的应用”的主题报告。报告主要介绍了硼酸盐微孔晶体材料的液-固相吸附热动力学、硼酸盐纳米阻燃材料应用的研究和多级孔硼酸盐材料制备及其吸附性能的研究等。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8c4c8e97-1587-41d4-aae8-d3bbbb67608b.jpg" title=" 刘志宏_副本.jpg" alt=" 刘志宏_副本.jpg" / /p p style=" text-align: center " 陕西师范大学刘志宏 /p p   河北师范大学张建军作了题为“稀土超分子配合物的晶体结构、热分解反应动力学及热力学的研究“的主题报告。报告中,张建军主要阐释了稀土超分子配合物中第一系列配合物、第二系列配合物和第三系列配合物的热分解机理 并提出了简单反应处理的改进双等双步法,从而确定了活化能E、指前因子A以及其他热力学参数。 /p p   中国科学技术大学丁延伟作了题为“仪器间差异对于热分析动力学结果影响的研究“的主题报告。报告中对影响热分析曲线的多种因素进行了分析讨论,其中包含样品量、制样方式、样品状态、样品前处理条件、温度控制程序、支架类型、仪器结构、实验气氛及流速、仪器状态、仪器间差异、人员差异等。丁延伟特别强调,要不定期进行仪器的校准,尤其在进行重要的实验前,最好一定要做仪器的校准。 /p p   在报告中,对“仪器间差异”这一重要因素进行了深入、全面的分析和解读。理化科学实验中心先后与美国赛默飞、美国珀金埃尔默公司、美国TA公司等6家仪器厂商共建联合实验室,目前已经装备不同型号热分析仪器近30台。除了考察不同实验室中仪器对同一样品的测试差异之外,利用理化科学实验中心的优势,特别补充同一测试条件下、不同仪器对同一样品的测试差异分析。报告中以三家公司(匿名)的DSC数据说明了仪器间差异对最终测试结果的影响较大。通过比对了不同公司仪器、相同型号仪器、不同类型仪器的热重分析结果,丁延伟发现相同型号仪器对比差别不大,不同类型仪器对比差别较大。通过考察同一公司不同型号仪器之间的差异,发现数据结果并不吻合 丁延伟认为,不一定是仪器的质量问题,而是有可能是校准方法差异的问题。通过对比同一公司不同类型的仪器,测试结果也会产生差异,这可能是由于仪器结构的影响。报告还指出,即使是同一公司的同一产品,测得的结果也可能不同,这可能是由于仪器状态不同导致的。因此,校准方法、结构和仪器状态都可能对热分析动力学结果产生影响。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/4c89254e-800e-422a-82dc-54ab6200f331.jpg" title=" 丁延伟_副本.jpg" alt=" 丁延伟_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " 中国科学技术大学丁延伟 /p p   大会闭幕式由张建军主持。闭幕式上颁发了“最佳张贴报告奖” 获奖名单由辽宁大学房大维宣布:山东农业大学的兰孝征、西北大学的陈湘、南京师范大学的刘浩、南京大学的谢科峰、北京理工大学的钟野、河南师范大学的邢肇碧、辽宁大学的宋宗仁、广西师范大学的陈志凤、中国科学院上海硅酸盐研究所的张赵文斌和北京理工大学的任杰。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/7d1e3620-9c8a-41fd-afec-4c28560cda4b.jpg" title=" 房大维_副本.jpg" alt=" 房大维_副本.jpg" style=" width: 400px height: 300px " width=" 400" vspace=" 0" height=" 300" border=" 0" /   /p p style=" text-align: center " 辽宁大学房大维 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/fac4c8ae-f987-4091-8f1d-4c6662013f46.jpg" title=" 大会颁奖.jpg" alt=" 大会颁奖.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 颁奖现场 /p p   随后,大会合作厂商、美国TA公司的经理王健女士发表了讲话 武汉大学刘义对大会进行了总结发言。最后,大会特别通告,2021年第八届热分析动力学与热动力学学术会议由陕西师范大学承办,并邀请下一届会议主办方代表刘志宏登台发言。诸多参会代表纷纷组团在即将关闭的大会主屏幕前合影留念,为本次大会圆满结束留下了最后的注脚。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/ad559fe0-de58-41b8-9275-132c4800061b.jpg" title=" 大会留影.jpg" alt=" 大会留影.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 组团合影留念 /p p br/ /p
  • 宇航动力学国家重点实验室今日在西安成立
    12月3日,我国第一个研究人造天体运动规律的宇航动力学国家重点实验室在西安卫星测控中心正式挂牌成立。实验室的成立,将从根本上提升我国航天测控技术的自主创新能力,并实现对宇航动力学领域相关研究资源的整合。   实验室依托中国西安卫星测控中心建设,是我国进行宇航动力学领域基础理论和应用基础研究、前沿技术创新、科研成果推广、人才培养和实践验证和国际交流的国家级创新平台,2009年9月18日正式获国家科技部批准建设。经过两年的建设期,实验室将建成实验室前端系统、宇航动力学平台系统、数据存储系统、网上开放平台系统和精密跟踪站。   宇航动力学是一门研究航天器质心运动,绕自身质心运动、各部分间相对运动及其控制规律的学科,是高分辨率对地观测系统、北斗卫星导航系统等重大科技工程的重要基础理论。宇航动力学实验室的成立,是提升我国航天技术原始创新能力、提高我国航天测控能力以及实现我国空间科技由试验应用向业务服务转变的迫切需要。   目前,我国在宇航动力学模型、测量模型等基础领域的技术研究大都依赖国际航天大国发布的数据进行模型系数更新,宇航动力学国家重点实验室成立后,将在动力学模型、测量模型、时空框架、估值理论等基础领域开展关键技术研究,形成自己的宇航动力学基础理论,并摆脱对于国际联测数据的依赖性,充分挖掘和运用已有数据,实现自我完善更新,从根本上提升我国航天测控技术的自主创新能力,推动我国科技创新体系的建设发展。   宇航动力学实验室主任余培军介绍说,实验室的成员除了40多个固定研究人员外,还会有多个相关领域的国内外知名学者作为流动研究人员。实验室成立后,将充分发挥其"开放、流动、联合、竞争"的独特优势,成为一个开放的国家公共实验研究平台。通过设立开放式科研课题、对外开放科学实验设备和数据、大型课题联合研究等形式,邀请国内外知名学者担任实验室的兼职研究员或学术顾问,使实验室成为国内大专院校、卫星研制部门和科研院所交流的桥梁,实现对宇航动力学领域相关资源的整合。   宇航动力学国家重点实验室的建设必将吸引我国宇航动力学研究领域的优秀人才和领先技术资源,紧盯世界宇航动力学发展前沿和适应我国航天技术发展需求,推动我国航天测控事业的跨越式发展。
  • 外泌体分泌动力学受温度控制
    单分子荧光成像:外泌体分泌动力学受温度控制荧光显微镜的出现,让细胞器的观察成为可能,而如果要观察到更细致的目标,则需要做单分子荧光成像,今天我们就来分享一个今年用TIRF全内反射荧光显微镜做的单分子荧光成像研究:外泌体分泌动力学受温度控制。 为什么使用TIRF全内反射荧光显微镜全内反射荧光显微镜MF53-TIRFTIRF全内反射荧光显微镜是利用光线全反射后形成衰逝波特性,来实现薄区域荧光观察的光学仪器,这种显微镜相比常规荧光显微镜(宽场荧光),背景荧光显著更低,可以实现信噪比更高、细节更丰富的荧光成像,尤其适合应用于细胞膜物质的动态观察。衰逝波①衰逝波是一种光学现象,当激发光以特定角度入射时,会发生全反射现象,所有激发光会被反射,靠近反射面的样品面则会形成一个深度仅几百纳米,光强呈指数衰减的激发光,称为衰逝波。普通荧光成像与TIRF成像对比① 利用衰逝波,TIRF全内反射荧光显微镜可以将激发范围控制在样品面极薄的区域,从而避免了传统荧光显微镜焦面以外的荧光激发形成的模糊光晕,大大提升了信噪比和分辨率。由于衰逝波光强呈指数衰减,因此最合适的应用是细胞膜相关研究。 外泌体分泌动力学受温度控制我们来看一个论文案例,从中了解TIRF全内反射荧光显微镜的应用优势:超高分辨率、动态观察。使用CD63-pHluorin可视化pH敏感蛋白 使用CD63-pHluorin可视化外泌体与质膜融合过程。TIRF全内反射荧光显微镜可以实现单分子动态跟踪观察,为此需要配备高帧率、高灵敏度的显微镜相机,比如MSH12之类背照式sCMOS科学相机。按成像分析,区分外泌体不同活动方式② 单分子荧光成像研究通常涉及数据统计分析等内容,往往需要一定的算法设计来自动化分析和量化处理,比如本论文使用的就是MATLAB脚本,在github可以下载。成像分析可靠性验证,排除溶酶体或囊泡转运② 通过成像分析CD63-pHluorin可视化外泌体与质膜融合,排除溶酶体或囊泡转运。外泌体与质膜融合有多种动力学模式② 算法分析,得出外泌体与质膜融合有多种动力学模式。 外泌体与质膜融合事件受温度控制② 对不同动力学模式进行分析,显示外泌体与质膜融合事件受温度控制。 模型验证② 利用模型验证解释实验观察到的动力学。进一步的动力学分析② 外泌体与质膜融合前先有对接。 结尾总体而言,全内反射荧光显微镜MF53-TIRF是细胞表面物质动态观察的理想仪器,如固定在盖玻片或细胞膜表面上的分子等,在TIRF基础上明美还有dSTORM超分辨成像方案,有兴趣的老师可以跟我们联系。 如您对这篇论文感兴趣,或者有兴趣获取论文使用的MATLAB自动分析处理脚本,请参考应用来源部分信息②。 引用来源:①Fish KN. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr Protoc. 2022 Aug 2(8):e517. doi: 10.1002/cpz1.517. PMID: 35972209 PMCID: PMC9522316. ②Mahmood A, et al. Exosome secretion kinetics are controlled by temperature. Biophys J. 2023 Apr 4 122(7):1301-1314. doi: 10.1016/j.bpj.2023.02.025. Epub 2023 Feb 22. PMID: 36814381 PMCID: PMC10111348.https://www.mshot.com/article/1828.html
  • 超快光谱用于拓扑材料高压超快动力学研究
    近期,中科院合肥研究院固体所计算物理与量子材料研究部与广东大湾区空天信息研究院、中科院合肥研究院强磁场中心等团队合作,研究了高压下拓扑绝缘体 Sb2Te3 的电子和声子动力学,探索了压力对该材料电声耦合强度、相干声子以及热声子瓶颈等的影响。 相关结果发表在 Physical Review B 上,固体所博士后张凯为论文第一作者,苏付海研究员为通讯作者。超快光谱可以飞秒时间分辨率记录激发态演化过程,进而获得热电子冷却、电声子耦合、相干声子激发等动力学信息;金刚石对顶砧高压技术可连续调控材料的晶格和电子结构,实现不同量子态的抑制或诱导。超快光谱和金刚石对顶砧相结合,对于探寻和理解高压下电子拓扑相变、金属-绝缘体转变等重要物理现象和机制具有重要意义。近年来,固体所计算物理与量子材料研究部研究人员已研制出基于飞秒激光的近红外至太赫兹波段高压超快光谱系统,并利用该技术在石墨烯、砷化镓等材料的热电子动力学压力调控方面取得了一定进展 (Appl. Phys. Lett. 117, 101105 (2020);Phys. Rev. Lett. 126, 027402 (2021);Optics Express, 29, 14058 (2021))。在此基础之上,研究团队以经典拓扑绝缘体Sb2Te3为研究对象,着重探究电子拓扑转变过程中的超快动力学效应。借助高压下飞秒泵浦-探测光谱,测量了不同压力下瞬态反射光谱,获得了Sb2Te3的热电子弛豫时间、相干声学声子寿命等参数和压力的关系,并观察到伴随电子拓扑转变的热声子瓶颈压制效应(图1)。结合理论计算,发现其电子能态密度在电子拓扑转变之上迅速增大,从而为热电子和热声子提供更多的弛豫通道,有效提高电声耦合强度,减弱热声子瓶颈效应。由于超快光谱可探测偏离费米面或能带极值点的高能载流子弛豫过程,反映电子和声子结构的色散细节以及高频光学声子相关的电声子耦合,因而高压超快光谱能够清晰直观地表征材料的电子拓扑及晶体结构转变(图2)。该研究首次揭示了高压下Sb2Te3材料在电子拓扑转变及晶格结构相变过程中的非平衡态电子和声子动力学,深化了对该体系材料中电声子相互作用的理解,为高压下拓扑相变探测开辟了新途径。该工作得到了国家青年基金项目、面上项目和基金委国家重大科研仪器研制项目等的支持。文章链接:https://doi.org/10.1103/PhysRevB.105.195109。 图1. 不同压力下的Sb2Te3的飞秒泵浦-探测反射光谱以及相干声子寿命、快时间、热声子瓶颈效应随压力的变化趋势图2. 不同压力下Sb2Te3的飞秒泵浦-探测反射光谱。
  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
  • 第三届全国热分析动力学与热动力学学术会议(第二轮通知)
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会(第二轮通知)   The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)   受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学工作者和研究生踊跃投稿、与会参加研讨交流。   另外,为配合“国际化学年在中国”活动,会议期间,我们还将举办“国际先进热分析技术讲习班”,特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,比利时天主教Lueven大学化学系、前欧洲热分析协会主席Vincent Mathot教授等人进行讲座,为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。讲习班开班授课时间为:2011年10月20日下午1:30。讲习班结束我们将颁发培训证书,并设立“Mettler-Toledo优秀学员奖”若干名,奖品为500G移动硬盘。   一、会议组织委员会   主 席:陈国祥,韩布兴,尉志武   副主席:赵厚民,张建军,魏少华,张明明,王昉   秘书长:汤伟   二、会议学术委员会   主 任 委员:韩布兴   副主任委员(以姓氏拼音为序):   陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武   委 员(以姓氏拼音为序):   安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起   三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。   大会专题学术报告题目及主讲人:   1、 热分析动力学和热动力学进展 西安近代化学研究所 胡荣祖 教授   2、 生命体系中的热动力学 武汉大学化学与分子科学学院 刘义 教授   3、 含能配合物的热动力学研究 西北大学化学与材料科学学院 高胜利 教授   4、 热分析动力学的研究与应用 南京理工大学化学化工学院 成一教授   5、 新型储氢材料的纳米限域及其热化学研究 中国科学院大连化学物理研究所航天催化与新材料研究室 孙立贤教授   6、 脂质体相平衡与药物释放 南京师范大学化学与材料科学学院 安学勤教授   7、 热分析在药物研究中的作用 中国食品药品检定研究院 杨腊虎教授   8、 一些复杂软物质的热分析研究 北京大学化学与分子工程学院 陈尔强教授   9、 聚合物结晶热分析的现状和挑战 南京大学化学化工学院 胡文兵教授   10、高速扫描高灵敏量热仪的研制与应用 南京大学化学化工学院 周东山教授   11、国内外知名仪器厂商热分析新产品、新技术及其应用报告   四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。   五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他   六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用Times New Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。3、作者中如有学生,请在第一页左下角脚注处说明清楚。4、特别提示:大会论文特设“Mettler-Toledo优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。分设特等奖(奖品ipad),一等奖(奖品itouch),二等奖(500G移动硬盘),三等奖。   七、会议日期 : 2011年10月20-22日   八、会议地点:南京古南都饭店江南春厅(三楼)。(南京市广州路208号)   九、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人   论文审理费:60元/篇。讲习班: 200元/人   邮局汇款:南京市龙蟠路189号 江苏省分析测试协会 汤伟 收 (汇款附言中请注明“TAKT2011”)   银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047   开 户 行:江苏南京交行玄武支行   十、联系方式:   联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)   Email:TAKT2011@126.com   中国化学会第十五届全国化学热力学和热分析专业委员会   江苏省分析测试协会   南京师范大学   河北师范大学   二○一一年四月十八日
  • 第三届全国热分析动力学与热动力学学术会议第一轮通知
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会 (第一轮通知)   The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)    受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。本次会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学的科学工作者和研究生踊跃投稿、与会参加研讨交流。   一、会议组织委员会   主 席:陈国祥,韩布兴,尉志武   副主席:赵厚民,张建军,魏少华,张明明,胡卫东,王昉   秘书长:汤伟   二、会议学术委员会   主 任 委员:韩布兴 (中国科学院化学研究所)   副主任委员(以姓氏拼音为序):   陈启元(中南大学) 高胜利(西北大学) 刘义 (武汉大学)   沈伟国(华东理工大学) 孙立贤(中国科学院大连化学物理研究所)   王键吉(河南师范大学) 尉志武(清华大学)   委 员(以姓氏拼音为序):   安学勤(华东理工大学),白同春(苏州大学),陈健(清华大学),陈三平(西北大学),成一(南京理工大学),杜为红(中国人民大学),杜勇(中南大学粉末冶金国家重点实验室),   顾敏芬(南京师范大学),关伟(辽宁大学),李浩然(浙江大学),刘义(武汉大学),李小云(南京工业大学),李武(中国科学院青海盐湖所),刘洪来(华东理工大学),刘义(武汉大学),刘育(南开大学),陆昌伟(中科院上海硅酸盐研究所),卢雁(河南师范大学),孟祥光(四川大学),孙建平(苏州大学),谭卫红(南京林化所),檀亦兵(江南大学食品学院),王保怀(北京大学),汪存信(武汉大学),王昉(南京师范大学),吴昊(扬州大学),王金本(中科院化学研究所),王琦(浙江大学),王晓东(中科院大连化学物理研究所),王毅琳(中国科学院化学研究所),杨家振(辽宁大学),杨腊虎(中国药品生物制品检定所),郁清(南京大学),袁钻如(南京大学),张洪林(曲阜师范大学),张建军(河北师范大学),张建玲(中国科学院化学研究所),张堃(中山大学),朱立忠(南化集团研究院物化检测中心),张同来(北京理工大学),赵凤起(西安近代化学研究所),祝昱(中国药科大学)   三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。   四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。   五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他   六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用TimesNew Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。   七、会议日期、地点:会议将于2011年10月20-22日在江苏省南京市召开(具体地址与日程将在以后的通知中发布)。   八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:350元/人   论文审理费:60元/篇。   九、联系方式:   联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)   Email:TAKT2011@126.com   中国化学会第十五届全国化学热力学和热分析专业委员会   江苏省分析测试协会   南京师范大学   河北师范大学   二○一○年十一月八日   为了便于我们很好地组织此次会议,请抽空填写本会议回执。谢谢!   中国化学会第三届全国热分析动力学与热动力学学术会议 暨江苏省第三届热分析技术研讨会议参会回执   我单位选派下列同志参加: 单位名称 详细地址 联 系 人 手 机 电 话 传 真 姓 名 性别 职 务 手 机 E-mail 参会总人数:( )人 是否提交会议论文: 是否拟做会议报告: 提交会议论文总篇数:( )篇,拟做会议报告总数:( )个报告 是否参加会后考察:参加( ) 不参加( ) 注:   *为了便于我们更好地组织此次会议,请抽空填写本会议回执并请于2011年1月15日前用电子邮件发到TAKT2011@126.com信箱,谢谢合作!
  • 上海光机所在单次超快动力学诊断方面取得研究进展
    近日,中国科学院上海光机所高功率激光物理联合实验室在单次超快动力学诊断方面取得研究进展,相关研究成果以“Single-shot spatiotemporal plasma density diagnosis using an arbitrary time-wavelength-encoded biprism interferometer”为题发表于Optics and Lasers in Engineering。   超快动力学现象在光化学、自旋电子学、等离子体物理、激光加工等领域广泛的存在,超快动力学诊断技术是可视化超快动力学现象演化过程的重要工具,可以用于定量研究超快演化过程的机制,揭示超快演化过程的原理,在超快演化过程调控中可以实现定量反馈的作用。然而,目前的单次超快动力学诊断技术很难同时兼顾高时空分辨率、高序列深度、时间窗口独立可调、无需参考臂等优点。   在这项工作中,研究人员提出了时间波长编码的双棱镜干涉仪(TWEBI),其原理是通过级联不同相位匹配角的非线性晶体产生波长编码的探针光,利用二维衍射光学元件(DOE)和窄带通干涉滤光片(IBPF)实现波长空间复用,利用即插即用的双棱镜干涉仪实现阴影记录模式和相位测量模式的按需切换。实验在神光II飞秒数拍瓦的光参量啁啾脉冲放大的前端上进行的,在实验中TWEBI装置实现了4 的空间分辨率、200 fs的时间分辨率、序列深度为12、有效帧率可达5 Tfps、时间窗口可以从亚皮秒到1.86 ns任意可调。用TWEBI装置对激光诱导空气成丝的动力学过程进行阴影记录和密度测量,相关实验结果证明了该方法的可行性。本项工作为诊断复杂的瞬态动力学提供了一个潜在的解决方案,这将有助于我们进一步理解、调控、应用这些超快现象。   相关工作得到了国家自然科学基金、中国科学院基金、上海市科学技术委员会基金、科技部基金的支持。图1 (a)TWEBI实验装置;(b)探针光光谱图;(c)探针光时域振幅和相位图;(d)成像系统空间分辨率图图2 (a)激光诱导空气成丝阴影图;(b)子光斑中心波长图;(c)激光诱导成丝相位和振幅图;(d)重建的等离子体密度分布图
  • 2015第一届药代动力学朝阳论坛成功举行
    仪器信息网讯 为期三天的&ldquo 2015年南京生物医药发展论坛暨第一届药代动力学朝阳论坛&rdquo 于2015年4月11日至13日在风景秀丽的南京珍珠泉畔明发珍珠泉大酒店成功举办。本届会议由由南京生物医药谷主办,南京高新生物医药公共服务平台承办,中国药物和化学异物代谢专业委员会协办,近400位来自国内外高校、科研院所、制药企业等单位人员参加了本届会议。   本届会议举办目的主要是在新时代下为药代动力学研究和新药研发在中国长远健康的发展培养和储备一批具有国际竞争力的青年人才。朝阳论坛会议日程采用会前专题研讨会、大会报告和主题会场的形式,有针对性地为相关专业人才提供充分交流的平台。会议特邀1个大会报告、10个主题会场共38个主题报告,阐述中国药代动力学研究的现状和挑战、药物代谢研究中的前沿和热点、生物分析法规与技术进展、药物分析和代谢组学研究中的新技术等10个相关领域,并专为青年学者特设职业发展专场和青年学者专场,职业发展专场讲解中国学生撰写药代动力学研究文章出现的主要问题及写作技巧、以及如何回答编辑和审稿人问题等方法,介绍药代动力学的职业发展 青年学者专场邀请国内药代动力学研究相关实验室的优秀青年学者就各自研究方向、进展及经验进行介绍,搭建和提供青年学者学术交流合作的机会和平台,促进我国DMPK的发展。 会议现场   大会开幕式由南京高新区的管委会副主任许扬汶主持,南京市副市长储永宏,南京高新区管委会常务副主任闵一峰出席开幕式并致辞。 大会组委会主席军事医学科学院毒物药物研究所庄笑梅研究员介绍会议基本情况。 发言人:储永宏 南京市副市长 发言人:庄笑梅 研究员 军事医学科学院毒物药物研究所   会议特邀中国药科大学王广基院士做题为&ldquo 细胞药代动力学及成药性研究探讨&rdquo 报告,报告结合精准医学对经典药代动力学的挑战,从宏观的血浆药物浓度监测,深入至微观的细胞层面,提出细胞药代动力学的新概念。阐述了全细胞吸收、亚细胞分布、细胞药效动力学的研究平台建立过程,从细胞药代动力学的角度揭示微观层面药物在细胞内靶点的作用,及其对药物筛选、纳米靶向制剂、ADC(Antibody Drug Conjugate, ADC) 药物细胞内释药机制以及临床联合用药等领域的指导意义。通过综述不同药物在细胞核内,线粒体以及胞浆的研究结果,为精准医学的长远目标,提供药效、毒理以及药代方面的指南性研究。 报告人:王广基院士 中国药科大学报告题目:细胞药代动力学及成药性研究探讨   在随后一天半的分会报告涵盖新药研发申报中的PK/PD问题,生物大分子药物分析及药代动力学研究现状及挑战,中药PK/PD研究中药活性成分与作用机理,药物分析与代谢组学研究中的新技术,代谢组学与生物标志物发现等多个药代动力学的多个关键领域。来自海内外的38位资深专家为参会人员带来内容详实,深入全面的报告, &ldquo 呈现精彩纷呈的学术大餐&rdquo 。   多家仪器及耗材生产代理企业参加了本届会议。(撰稿:杨改霞) 安捷伦科技(中国)有限公司 沃特世科技(上海)有限公司 岛津企业管理(中国)有限公司 赛默飞世尔科技(中国)有限公司 SCIEX 公司   第一届药代动力学朝阳论坛官方网站:http://www.bpisunrise.com
  • 第三届全国热分析动力学与热动力学学术会议在南京召开
    仪器信息网讯 作为“国际化学年在中国”的系列活动之一,“中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会”于2011年10月21日在南京古南都饭店隆重召开。本次会议是受中国化学会委托,由中国化学会化学热动力学和热分析专业委员会及江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办,河北师范大学协办,来自全国各地近240名热分析工作者参与了此次大会。 大会开幕式由江苏省分析测试协会热分析专业委员会主任王昉老师主持 大会主办方之一南京师范大学副校长陈国祥教授致欢迎辞 江苏省分析测试协会理事长、江苏省生产力促进中心胡义东主任致开幕词 中国分析测试协会副理事长、南京大学陈洪渊院士致贺词 中国化学会热分析和热分析专业委员会主任、中科院化学所韩布兴研究员致贺词   本届大会将历时2天,共有28个精彩报告,报告内容涉及热动力学理论研究、材料分析、药物分析、生命科学、仪器研发及最新技术进展等广泛领域,充分体现了本届大会“展现热分析动力学与热动力学以及热分析领域的主要研究成果”的主题。 会议现场   梅特勒-托利多国际贸易(上海)有限公司、铂金埃尔默仪器(上海)有限公司、耐驰科学仪器商贸(上海)有限公司、TA仪器公司、精工盈司电子科技(上海)有限公司、上海精科天美贸易有限公司、法国赛特拉姆仪器公司等热分析相关厂商赞助了此次会议。 热分析仪器厂商纷纷参展   梅特勒-托利多是本届大会最大的赞助商,在会上展示了其2010年底推出的升温速度高达2,400,000K/min的FLASH DSC样机,同时还为本届大会设立了“梅特勒-托利多优秀学生论文奖”,奖励第一作者为学生的优秀论文。 梅特勒-托利多FLASH DSC亮相大会现场
  • 中科院物理所|氧离子输运动力学的原位电镜研究取得进展
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究员白雪冬课题组利用像差矫正透射电子显微镜实时原子成像技术和分子动力学模拟方法,揭示了CeO在激活条件下氧原子各向异性扩散的原子机制。该工作以Visualizing Anisotropic Oxygen Diffusion in Ceria under Activated Conditions& nbsp 为题发表在《物理评论快报》(Physical Review Letters)上。 /p p style=" text-align: justify text-indent: 2em " 该研究利用像差校正电镜对CeO2纳米颗粒进行表征,实现了Ce原子和O原子直接原子分辨成像,同时发现透射电镜高能电子束传递给氧化铈中氧原子足够多的能量导致氧原子析出并伴随氧化铈产生萤石相CeO2和铁锰矿相Ce2O3的相转变(图1)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/0eb98acd-9ef6-4be9-a733-b5c8381dabca.jpg" title=" 图1:CeO2结构演变的原子分辨TEM成像。.png" alt=" 图1:CeO2结构演变的原子分辨TEM成像。.png" / /p p style=" text-align: center " strong 图1:CeO2结构演变的原子分辨TEM成像 /strong /p p style=" text-align: justify text-indent: 2em " 利用电子束进行动态观察表征,同时作为诱导氧离子迁移的手段,捕获了反应中的氧原子和它的实时扩散路径(图2)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b0a3291d-134c-458c-b79f-9f8bb5785e8f.jpg" title=" 图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟.png" alt=" 图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟.png" / /p p style=" text-align: center " strong 图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟 /strong /p p style=" text-align: justify text-indent: 2em " 原位实时观察到氧化铈中氧原子扩散的优先路径,通过实验观测和分子动力学模拟,发现了萤石结构氧化铈中氧原子以& lt 001& gt 方向作为优先传输通道。结合第一性原理计算,揭示了其物理原因在于氧原子扩散过程中伴随的电子重新分布使局域库仑作用力发生改变,导致晶格扰动,氧原子扩散路径选择扰动能量最低的方向(图3)。 !--001-- /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/add1c0c8-118d-40ef-8cc3-3f1c93518814.jpg" title=" 图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟.jpg" alt=" 图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟.jpg" / /p p style=" text-align: center " strong 图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟 /strong /p p style=" text-align: justify text-indent: 2em " 这种氧原子扩散过程中伴随的配位价态的变化也得到了原位电子能量损失谱分析结果的佐证(图4)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/013a5cd5-05ec-41c9-91c0-71f9524f160e.jpg" title=" 图4:电子能量损失谱揭示中间化学键状态的变化.png" alt=" 图4:电子能量损失谱揭示中间化学键状态的变化.png" / /p p style=" text-align: center " strong 图4:电子能量损失谱揭示中间化学键状态的变化 /strong /p p style=" text-align: justify text-indent: 2em " 本研究揭示的萤石结构二氧化铈中氧原子各向异性传输机制对于其各向异性相关的性质和功能调控具有指导作用。 /p p style=" text-align: justify text-indent: 2em " 上述工作得到中科院、科技部、国家自然科学基金委、北京自然科学基金委和中科院青促会的资助。表面室SF1组研究生朱亮和纳米室N04组研究生金鑫是该文章的共同第一作者。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/download/shtml/934197.shtml" target=" _self" span style=" color: rgb(0, 112, 192) " 文章链接 /span /a /p
  • 2006年快速动力学装置应用技术报告及交流会
    第二轮通知 在当今化学、反应动力学、生命科学以及医学药物研究中,停流快速动力学装置已经成为一种重要的研究工具,为了使国内客户更多地了解快速动力学应用及相关技术的新进展,解决用户在实际应用过程中遇到的问题,我司特别邀请法国Bio-logic公司资深应用技术专家Mr. Cé dric Georges来华做学术报告。欢迎对此感兴趣的专家学者届时参加报告会。 报告人:Mr. Cé dric Georges 报告题目:Introduction to rapid kinetics instrumentation, example of application 会议具体时间:2006年11月20日 报告地点:广西师范大学(广西桂林) 同时我们向正在使用我们仪器的各位专家再次约稿。您可以将使用我们的仪器在杂志上已经发表的文章通过E-mail或传真等形式发送给我们,也可将未经发表的文章投给我们,我们将汇编成文集,供与会者参考。如果您投稿但未能参加会议,会后我们将此文集通过邮寄的形式发送给您,以利于您更好的使用仪器。凡提供稿件被收录者以及做现场学术报告者,我公司每年会优先提供最新的应用资料。希望各位专家踊跃投稿,共同交流经验,使此仪器的利用率达到最高。 华 洋 科 仪 2006/10/20 联系人:王明艳 杜攀 E-mail: rebecca@dhsi.com.cn;vera@dhsi.com.cn 电话:0411-82364123/82364126 010-84802260/84802665 传真:0411-82364006 010-84802667 地址:大连市中山区丰汇园5号 邮编:116013 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 欲参会人员请于2006年11月10日前填写以下回执单,传真或E-mail至我司,以便我们准备资料,谢谢! 回 执 单 姓名 单位名称 地址 性别 职务 电话 传真 E-mail 论文题目
  • 中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕
    p strong 仪器信息网讯 /strong   2019年4月20日,中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕。本次会议由中国化学会主办,中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/4f08b216-cd0f-4748-a3eb-0af93ce157c6.jpg" title=" huichang.jpg" alt=" huichang.jpg" style=" width: 600px height: 147px " width=" 600" vspace=" 0" height=" 147" border=" 0" / /p p style=" text-align: center "   大会现场 /p p   本次会议的主旨是就近些年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。此次会议邀请到了来自清华大学、北京大学、南京大学、中国科学技术大学、西北工业大学、中科院研究所等多所知名高校及科研院所长期从事热分析动力学和热动力学的著名专家、中青年学者,以及珀金埃尔默、梅特勒-托利多、日立高新等多家仪器生产厂商,会议盛况空前,4百多位学者注册参会。仪器信息网作为报道媒体出席了本次会议。 /p p   大会组委会主席、合肥微尺度科学国家实验室教授罗毅主持了本次开幕式。中国科学技术大学副校长罗喜胜和大会主席王键吉在开幕式上致辞。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/3bfb1960-feae-4474-a5f0-70a30ed6e48e.jpg" title=" 罗毅.jpg" alt=" 罗毅.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center "   中国科学技术大学教授罗毅主持会议 /p p   罗喜胜首先作开幕致辞,从中国科学技术大学创新立项的办学理念,谈到办学60年的丰硕成果 同时强调了本次会议的基础性意义和战略性意义,并坚信热力学作为基础学科将对科学界做出巨大的贡献,希望通过本次会议促进学者之间的沟通和交流 并预祝大会圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/30acd465-5a7c-4bf7-9722-e4ebbdb229c0.jpg" title=" 罗喜胜.jpg" alt=" 罗喜胜.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 中国科学技术大学副校长罗喜胜致辞 /p p   王键吉在开幕致辞中强调了热分析和热动力学在环境、能源、化学化工和生命科学等领域具有不可替代的重要意义。王键吉教授表示,本次大会有三个方面的重要意义:(1)有助于青年学者更好地相互交流 (2)有助于多学科之间的学科交叉互动 (3)希望在热力学研究方面,年轻学者后继有人。作为大会主席,王键吉教授感谢主办单位中国科学技术大学会务组的辛勤付出,感谢为大会做出贡献的老师、同学,并预祝大会召开圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/08e905b2-27f1-448a-b4c0-e45f0b4cca18.jpg" title=" 王键吉.jpg" alt=" 王键吉.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 大会主席王键吉致辞 /p p   随后开始的大会报告环节,武汉大学教授刘义、大会主席王键吉、清华大学教授尉志武先后主持了会议。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8b410aa4-9c55-41c7-a7d0-fde1b9d2edba.jpg" title=" 刘义.jpg" alt=" 刘义.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center "   武汉大学教授刘义 /p p   中国化学会理事、中国化学会化学热力学专业委员会主任王键吉作题为“CO2响应离子液体的设计和性能调控”的主题报告。王键吉由溶剂/催化剂引出了成本、效率和环境问题,分别介绍了CO2响应离子液体的设计和性能调控的研究方向,即从功能化的离子液体转变成智能化的离子液体,从而实现多功能介质及材料的制备以及产物分离、催化剂和介质循环利用。接着,介绍了通过特定基团嫁接离子液体,实现低浓度CO2的捕集、可逆相分离、可逆相转移、可逆乳化和破乳、光电化学转化等应用。最后,王键吉展望了该研究在酸性气体的选择性吸收、CO2捕集/转化的耦合、离子液体相转移催化和CO2响应离子液体性能强化四个方面新的发展。 /p p   清华大学化学系、生命有机磷重点实验室教授尉志武作题为“关于热分析动力学的思考与若干生物分子体系相变研究进展”的主题报告。报告中,主要谈到了DSC技术在蛋白质变性二态性问题、混合磷脂相变、离子液体杀菌机理和构筑不对称囊泡等研究中的应用。尉志武教授认为,热分析动力学和热动力学内容丰富、应用广泛,特别是在化学反应和物理变化机理研究方面有重要的应用 在做热动力学和热分析动力学时,定量分析一定要考虑对原始数据进行校正。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/df5e6910-bbae-41d2-b89b-18eece44918d.jpg" title=" 尉志武.jpg" alt=" 尉志武.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 清华大学教授尉志武 /p p   华南理工大学材料科学与工程学院教授张广照作题为“溶液中高分子的单链构象变化热力学”的主题报告。报告中主要介绍了热分析与热动力学在多种单链高分子构象变化中的应用,提出了通过外推法得到热力学平衡状态下高分子单链的相关参数的新方法。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8c1765fe-aea8-475b-8228-aae8da2b5df8.jpg" title=" 张广照.jpg" alt=" 张广照.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 华南理工大学教授张广照 /p p   西北工业大学教授刘峰作题为“金属材料非平衡相变的热动力学协同效应与调控”的主题报告。报告中提出,传统研究缺乏对转变过程的研究,忽略了加工工艺的重要性,希望通过研究热动力学相关性,实现成分和工艺的定量化,并介绍了动力学模型在多种钢铁材料中的实际应用。刘峰还提出了大驱动力大能垒设计的概念,可以同先进高强钢相结合,用于设计纳米相变体系,发展出具有优良力学性能的双相双峰组织。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/261b0d7a-2f06-475c-b322-849f4d76bc4d.jpg" title=" 刘峰.jpg" alt=" 刘峰.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" / /p p style=" text-align: center "   西北工业大学教授刘峰 /p p   西北大学教授陈三平作了题为“镝单分子磁体的磁弛豫动力学”的主题报告。高性能单分子磁体构筑要考虑金属离子的选择、单轴各向异性和晶体场的对称性 镧系金属离子具有磁矩大、奇数电子和强轴向性等特点 在此基础上,陈三平构建了D4d构型、D5h镝单分子磁体。陈三平还介绍了弱化面各向异性的Dy-I单核体系和Dy-X双核体系。最后,陈三平提出了构建热容和低温磁弛豫动力学关系的展望。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c5ad46bc-4b58-44d3-bdbe-7bb658b2b5ec.jpg" title=" 陈三平.jpg" alt=" 陈三平.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 西北大学教授陈三平 /p p   南京大学教授胡文兵作题为“高分子结晶动力学的Flash DSC研究”的主题报告。目前,全球超过三分之二产量的合成高分子是可结晶的,高分子加工需要控制结晶,但加工成型的冷却速度通常比较快。传统DSC技术需要的样品量较多,且升降温速度不够快。因此,超快扫描芯片量热仪应运而生。超快DSC技术是研究动力学的有力工具,推动着高分子结晶学进入低温区域,并有助于帮助理解高分子化学结构与结晶动力学的关系。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/907f7dbb-0e27-40e0-9f37-ee03042a2010.jpg" title=" 胡文兵.jpg" alt=" 胡文兵.jpg" style=" width: 400px height: 277px " width=" 400" vspace=" 0" height=" 277" border=" 0" /    /p p style=" text-align: center " 南京大学教授胡文兵 /p p   下午,大会分为热分析动力学方法、热分析动力学应用、热分析动力学应用与热分析、热动力学与热力学四个专题,开设了四个分会场。其中,热分析动力学方法分会场,作报告的专家有南京理工大学的成一教授、西安建筑科技大学的酒少武教授、南京师范大学的王昉教授以及邯郸学院的任宁教授等。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c8009021-8440-4775-8044-ef43fd9ad66c.jpg" title=" 热分析动力学方法专题会场.jpg" alt=" 热分析动力学方法专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center "   热分析动力学方法专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/df522974-aa72-4581-add4-71d885afbe80.jpg" title=" 热分析动力学应用专题会场.jpg" alt=" 热分析动力学应用专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center " 热分析动力学应用专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/721f5c24-3f68-4f0f-af25-8e3afa8fcd63.jpg" title=" 热分析动力学应用与热分析专题会场.jpg" alt=" 热分析动力学应用与热分析专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center " 热分析动力学应用与热分析专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/86184f2d-c57a-4d4b-98b1-25e8af0bb90b.jpg" title=" 热动力学与热力学专题会场.jpg" alt=" 热动力学与热力学专题会场.jpg" style=" width: 600px height: 336px " width=" 600" vspace=" 0" height=" 336" border=" 0" / /p p style=" text-align: center " 热动力学与热力学专题会场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/f2f76146-9def-49ef-a46a-42674df93166.jpg" title=" 铂金埃尔默.jpg" alt=" 铂金埃尔默.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-美国铂金埃尔默公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/231d5013-a502-4cfb-836c-efb470ba0d08.jpg" title=" 梅特勒.jpg" alt=" 梅特勒.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-梅特勒-托利多 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/0243fa12-8bf7-4513-a5b6-7b7e15c17e49.jpg" title=" 耐驰.jpg" alt=" 耐驰.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-德国耐驰仪器制造有限公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/116cfd6a-f1aa-40b0-a710-8e6aaf969f89.jpg" title=" TA仪器.jpg" alt=" TA仪器.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-美国TA仪器公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/8e5e18cf-bf0a-4649-a0f8-8e823f144319.jpg" title=" 林赛斯.jpg" alt=" 林赛斯.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-德国林赛斯仪器公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/fb2af071-a5fb-4e2b-968d-4ed698e9d797.jpg" title=" 日立高新.jpg" alt=" 日立高新.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-日立高新技术(上海)国际贸易有限公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/27e4e2bb-4abc-4bf0-ba9b-6cc4b1e95c54.jpg" title=" 塞塔拉姆.jpg" alt=" 塞塔拉姆.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-法国塞塔拉姆仪器公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/7f27dcd8-af4d-4570-94b0-bda11b1a6d23.jpg" title=" 仰仪.jpg" alt=" 仰仪.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-杭州仰仪科技有限公司 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/fe1b89a3-ebf8-4f47-9e7b-51da980c5376.jpg" title=" 凯正.jpg" alt=" 凯正.jpg" style=" width: 600px height: 398px " width=" 600" vspace=" 0" height=" 398" border=" 0" / /p p style=" text-align: center " 会议合作厂家-上海凯正仪器有限公司 /p p br/ /p
  • 气固反应动力学分析方法与仪器研讨会召开
    仪器信息网讯 2011年3月25日上午,由中科院计财局条件装备处组办、中科院过程工程研究所承办的“气固反应动力学分析方法与仪器研讨会”在中科院过程工程研究所举行。会议邀请了煤炭、生物质、矿产资源、环境、石由加工、航天材料、多晶硅等涉及气固反应的重要领域的近20名国内专家学者参加,科技部、科学院、北京市科委和过程所的相关领导出席并致词或介绍了有关政策。此次研讨会的目的在于回顾气固反应动力学分析方法与仪器的发展,把握不同领域的需求,分析尚存问题并探讨解决办法,以期形成自主新型的反应动力学分析方法与分析仪,推动学科发展和分析水平升级,填补方法与仪器的空白。 研讨会现场 中科院过程工程研究所所长张锁江研究员   中科院过程工程研究所所长张锁江研究员在研讨会前的致词中对各位领导和专家的参会表示感谢和欢迎,并介绍了近年来中科院过程工程研究所在仪器研制、基本建设、人才引进等方面的工作进展。最后,张锁江研究员希望,在座的领导与专家能够对“微型流化床反应动力学分析仪”研制项目以及过程所其它方面的工作提出宝贵的意见。 西安近代化学研究所胡荣祖教授 报告题目:关于气固反应热分析动力学的几个问题   研讨会首先由《热分析动力学》著者、原西北大学教授胡荣祖先生,《应用化工动力学》译者、原太原理工大学教授郭汉贤先生作了专题报告。胡荣祖教授介绍了气固反应动力学的反应机理、关键参数以及半导体脉冲补偿式量热测试单元的结构原理,最后,胡荣祖教授重点向大家展示了自己多年的研究成果,如经验级数自催化分解反应动力学参数计算系统、含能材料感度估算系统以及自加速分解温度-热点火速度-绝热至爆时间计算系统等。 太原理工大学煤化工研究所原所长郭汉贤教授(由过程所余剑博士代讲) 报告题目:非催化气固反应动力学分析方法概述   郭汉贤教授的报告由中国科学院过程工程研究所的余剑博士代讲,报告对非催化气固反应化工动力学的研究进行了简要分析,指出:研究非催化气固反应动力学,需要有良好的反应设备和科学的数学模型,硬件、软件同时并举才能事半功倍。而动力学的研究具有层次性的特点,故热重装置和流化固定床反应装置缺一不可。 中科院过程工程研究所许光文研究员 报告题目:微型流化床反应分析方法、仪器及典型应用   上午,中科院过程工程研究所的许光文研究员还系统汇报了其团队自主研发微型流化床反应分析方法与仪器的过程和已经实现的典型应用。在报告中他介绍到:气固反应分析动力学是化学、化工、能源、材料、环境等众多领域的研发工作的起点,但是,现有的气固反应分析动力学方法几乎均采用非等温加热方法,无法在线供给反应试料,存在着难以测定非稳定物质及快速反应的动力学、受传热及扩散的影响严重等缺点。他团队研发的微型流化床反应动力学分析方法以分析仪(MFBRA:Micro Fluidized Bed Analysis)可克服这些缺陷,提供有效的等温微分反应分析方法和测试工具。 微型流化床反应动力学分析仪(MFBRA)   MFBRA首次利用微型流化床作为反应器,构建了气固反应分析方法与分析仪。利用流化床反应器有效抑制了扩散影响,实现了对反应物快速的加热 通过集成微型流化床反应器和脉冲微量反应物进样,实现了流化床中气固反应的等温微分化,形成了定点温度下的气固反应动力学参数的等温微分测试方法与仪器,填补了快速升温条件下等温微分反应测试方法与仪器的空白,可望与热重分析仪器形成互补性科学工具,实现气固反应的等温微分、快速原位(升温)和低扩散影响等技术特点。   经过三年多的应用实践,MFBRA分析方法与各部件结构均得到了很大程度的优化,颗粒反应物供给时间0.1s,测量重复性误差3.0%。通过应用于石墨燃烧过程中的等温微分反应特性的分析测试,成功证实了MFBRA的等温微分特性 运用MFBRA首次成功测试了Ca(OH)2捕集CO2的动力学特性,展示了仪器拥有的原位反应特性;该仪器对生物质及煤热解等快速复杂反应显示了很好的适应性,剔提供揭示反应机理的有效基础数据;比较热重测试的CO还原CuO反应特性,MFBRA对该反应显现了明显了低扩散影响。   最后,许光文研究员提出了进一步研发基于微型流化床的气固反应分析方法与分析仪的计划:将通过集成质谱等分析仪和提高仪器自控及美观水平,希望MFBRA能成为国际先进水平的我国自主创新仪器,与程序升温脱附(TPD)设备、程序升温还原(TPR)设备、热重分析(TG)设备等并驾齐驱,成为国内外市场中的反应分析高端产品。 北京市科委政策法规处李萍女士 报告题目:北京市支持成果转化及产业化相关政策解读   会议也邀请了北京市科委政策法规与体制改革处的李萍女士通过专题报告,系统介绍北京市对科技创新与科技成果产业化的支持政策,重点解读了北京市支持自主创新与成果转化的12个重点政策,并现场回答了与会者问题。   基于上午的主题报告,研讨会的下午针对“气固反应动力学分析方法与仪器发展”、“自主分析方法与分析仪器及应用”、“不同行业领域对气固反应分析的需求特性”等主题,与会专家展开了积极的讨论与交流互动,各位专家结合自身的研究工作经历,提炼了各行业中在气固反应分析方面尚存的难题,希望的分析方法与测试工具,对中科院过程工程研究所研发的微型流化床等温微分反应分析方法与分析仪的功能扩展和解决尚存问题积极建言献策。   通过总结与会专家的讨论意见,许光文研究员总结了进一步发展等温微分反应分析方法、解决各行业尚存问题或满足各行业特定需求的技术方向。在近四个小时的讨论中,现场气氛十分热烈。   相关报道:   微型流化床反应动力学分析仪研制成功   “微型流化床反应分析方法与分析仪”鉴定会在京召开   先进能源关键技术与仪器装备亟需强化——访中科院过程工程研究所许光文研究员
  • 大连化物所“表面光化学动力学研究装置”通过验收
    大连化物所分子反应动力学国家重点实验室1102组承担的中科院重大科研装备研制项目“表面光化学动力学研究装置”于11月23-24日通过了中科院计划财务局组织的专家组的现场测试和验收。   以中国科技大学朱俊发教授为组长的测试专家组在11月23日全天对建成的“表面光化学动力学研究装置”的各项指标进行了认真测试,给出的测试报告认为“测试结果表明,该研究装置完全达到甚至优于各项设计指标,运转良好,而且操作简便。该设备将为研究表面光化学动力学提供强大的、性能独特的研究平台”。   以清华大学莫宇翔教授为组长的验收专家组于11月24日听取了项目负责人杨学明做的研制工作报告、经费收支报告、设备使用报告和测试组组长做的测试报告,审核了相关的文件档案,提问和质询了有关问题。经充分讨论后,专家组形成的验收意见认为本项目研制成功的实验装置“基于超高真空系统、采用可调谐飞秒激光技术和质谱技术,具有原位测量和高灵敏度的特点”,“将为研究表面光化学动力学提供强大的、性能独特的研究平台”。专家组一致同意该项目通过验收。
  • 2006年快速动力学装置应用技术报告及交流会邀请函
    在当今化学、反应动力学、生命科学以及医学药物研究中,停流快速动力学装置已经成为一种重要的研究工具,为了使国内客户更多地了解快速动力学应用及相关技术的新进展,解决用户在实际应用过程中遇到的问题,我司特别邀请法国Bio-logic公司资深应用技术专家来华做学术报告。欢迎对此感兴趣的专家学者届时参加报告会。 同时,我们面向与会者约稿,会后汇编成文集,供与会者参考。凡提供稿件被收录者以及做现场学术报告者,我司每年会优先提供最新的应用资料。 征稿内容如下: -----动力学研究 --------------------------------生命科学 -----有机化学(包括天然产物)研究 --------------医学和药物研究 -----农业化学-----------------------------------聚合物化学 -----物理化学-----------------------------------时间分辨等等各方面。 稿件要求:近期与停流快速动力学相关的工作等已发表或未发表的均可投稿。 截止时间:2006年8月30日 欢迎积极投稿 报告时间地点:2006年下半年,广西桂林(具体时间及地点见第二轮通知)。 华洋科仪 2006/5/16 联系人:王明艳E-mail: rebecca@dhsi.com.cn 电话:0411-82364123/82364126传真:0411-82364006 地址:大连市中山区丰汇园5号邮编:116013 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 欲参会人员请于2005年8月30日前填写以下回执单,传真或E-mail至我司,谢谢。
  • 一文了解材料热动力学概念
    p strong 1.热、动力学概述 /strong /p p   自然界中发生的一切物理、化学和生物代谢反应,通常都伴随着热效应的变化,人们对热本质的认识经历了漫长曲折的探索历程。 /p p   20世纪初,Planck、Poincare、Gibbs等科学家以宏观系统为研究对象,基于热力学第一、二定律,并定义了焓、熵、亥姆霍兹和吉布斯等函数,加上P、V、T等可以直接测定的客观性质,经过归纳与演绎推理,得到一系列热力学公式和结论,用来解决能量、相和反应平衡问题,这便是经典热力学的基本框架。经典热力学研究的对象是系统中的物质和能量的交换,它是不断逼近极限的科学,只讨论变化前后的平衡状态,不涉及物质内部粒子的微观结构。 /p p   Boltzmann等人将量子力学与经典热力学相结合,形成了统计热力学。统计热力学属于从微观到宏观的方法,它从微观粒子的性质出发,通过求统计概率,定义出系统或粒子的配分函数,以此为桥梁建立起与宏观性质的联系。 /p p   时间是热力学中非常重要的独立变量,怎样处理时间变量是区别不同层次热力学的标志,在物理学中利用熵增来描述时间的单向性。热力学研究可能性,动力学研究现实性,即变化速率和变化机理。动力学是反应进度与时间的函数关系,系统的行为状态和输出只取决于起始状态和随后的输入。 /p p   自然界中发生的好多现象都是在非平衡态进行的不可逆过程,这就推动了热力学由平衡态向非平衡态发展。20世纪50年代,Prigogine I、Onsager L等人形成了非平衡态热力学(Non-equilibrium Thermodynamics),局域平衡假设是非平衡态热力学的中心假设。其中,Onsager L于1931年确立了唯象系数的倒易关系,Prigogine 在1945年提出了非平衡定态的最小熵增原理,适用于接近平衡状态的线性非平衡体系。对于远离平衡态的系统,以Progogine为首的布鲁塞尔学派经过多年的努力,建立了著名的耗散结构理论,后来通过云街、贝纳德对流实验等一些自组织现象(见图1)得以证实,耗散结构理论指出远离平衡的开放系统可以形成有序状态,打开了物理科学通向生命科学的窗口。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/436c0be6-c410-4216-9391-914804187287.jpg" title=" 图1 一些自组织现象.png" alt=" 图1 一些自组织现象.png" width=" 400" height=" 313" border=" 0" vspace=" 0" style=" width: 400px height: 313px " / /p p style=" text-align: center " strong 图1 一些自组织现象 /strong /p p   目前,热动力学不再仅仅是研究热现象基本规律的科学,它和系统理论、非线性科学、生命科学、宇宙起源等密切相关,其应用涉及物理学、化学、生物、工程技术,以及宇宙学和社会学科[1]。 /p p strong 2.材料热力学的形成和发展 /strong /p p   现代材料科学的进步和发展一直受到热力学的支撑和帮助,材料热力学是经典热力学与统计热力学理论在材料科学领域的应用,其形成和发展正是材料科学走向成熟的标志之一。 /p p   从1876年Gibbs相律的出现,1899年H. Roozeboom把相律应用到多组元系统,1900年,Roberts-Austen构建了Fe-Fe3C相图的最初形式,为钢铁材料的研究提供了理论支撑 再到20世纪初,G. Tamman等通过实验建立了大量金属系相图,有力推地动了合金材料的开发 50年代初R. Kikuchi提出了关于熵描述的现代统计理论,为热力学理论和第一性原理结合起来创造了条件 60年代初M. Hillert等对于非平衡系统热力学的研究,导致了失稳分解领域的出现,丰富了材料组织形成规律的认识 70年代由L. Kaufman、M. Hillert等倡导的相图热力学计算(CALPHAD),使材料研究逐渐进入到根据实际需要进行材料设计的时代[2]。 /p p   2011年6月,美国宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,核心内容之一是“材料基因组计划(materials genome initiative, MGI)”,其目的是为新材料的发展提供必要的工具集,通过强大的计算分析减少对物理实验的依赖,加上实验与表征方面的进步,显著加快新材料投入市场的种类与速度,开发周期可从目前的10~20年缩短至2~3年,图2比较了传统材料设计与现代材料设计的流程。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1f972848-2ff1-4a22-9f2f-766750dfbfc7.jpg" title=" 图2 传统材料设计与现代材料设计流程对比.png" alt=" 图2 传统材料设计与现代材料设计流程对比.png" width=" 400" height=" 371" border=" 0" vspace=" 0" style=" width: 400px height: 371px " / /p p style=" text-align: center " strong 图2 传统材料设计与现代材料设计流程对比 /strong /p p   材料热力学研究固态材料的熔化与凝固、固态相变、相平衡关系与成分、微观结构稳定性、相变的方向与驱动力等。为了描述各种不同类型物相的自由能、焓、熵等,曾提出过各种唯象的或统计的热力学模型,比如,理想溶体模型、正规溶体模型、亚正规溶体模型、准化学模型、原子缔和模型、中心原子模型、双亚点阵模型、集团变分模型(CVM)、Bragg-Williams近似、Bethe近似、Ising近似、Miedema近似等。扩散是动力学研究的主要内容,包括凝固过程中晶核的形成和长,以及在热处理过程中合金的均匀化、溶质原子的分布与再分配,可通过菲克第一、二定律推导。 /p p   热力学计算的涵盖范围很广,分析和理解材料学问题的重要工具有:Gm-x图、相图、TTT曲线、CCT曲线等。其中,最成功的核心应用是相图计算。相图依据获得的方法可以分为三类: /p p   1、实验相图:利用实验手段(DSC、DTA、TG、X射线衍射、电子探针微区成分分析等),以二、三元系为主。 /p p   2、理论相图,也称第一性原理计算相图,不需要任何参数,利用Ab initio method实现的理论计算相图,只在个别二元和三元体系材料设计方面有少量报道。 /p p   3、计算相图,其核心是理论模型与热力学数据库的计算机耦合。目前国际上流行的软件多采用CALPHAD模式,包括Thermo-Calc、Pandat、FactSage、Mtdata、JMatPro等。CALPHAD模式中对溶体自由能的描述大部分采用亚正规溶体模型,流程如图3所示,它是根据体系中各相的特点,集热力学性质、相平衡数据、晶体结构等信息于一体,建立热力学模型和自由能表达式,然后基于多元多相平衡的热力学条件计算相图,最终获得体系的具有热力学自洽性的相图和描述各相热力学性质的优化参数。 /p p style=" text-align: center "   例如,王翠萍,刘兴军,大沼郁雄等人利用CALPHAD方法评估了Cu-Ni-Sn三元系各相的热力学参数,其计算结果与实验值吻合得很好,如图4所示,他们还计算了该三元系中bcc相的有序无序转变及fcc相的溶解度间隙,对利用析出强化以及Spinodal分解开发高强度和高导电性的新型Cu基合金的组织设计具有一定的指导意义[3]。 br/ strong img src=" https://img1.17img.cn/17img/images/201809/uepic/a0a89f13-1022-49a1-9fd6-5604b5b5b379.jpg" title=" 图3 CALPHAD方法流程图.png" alt=" 图3 CALPHAD方法流程图.png" width=" 400" height=" 401" border=" 0" vspace=" 0" style=" width: 400px height: 401px " / /strong /p p style=" text-align: center " strong 图3 CALPHAD方法流程图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/bae8d53e-6ea5-4648-881d-ddedb81a12f2.jpg" title=" 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" alt=" 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" / br/ 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3] /strong /p p   动力学计算以热力学计算为基础,引入以时间为变量的扩散动力学模型和原子移动性数据库,通过大量的迭代运算,获得材料热力学状态随时间的变化关系。 /p p strong 3.在材料各领域的应用 /strong /p p   任何一个体系,热力学、动力学和物质结构三方面是密切联系的。金属材料的微观结构和热力学性质影响凝固和热处理过程中的生成相和微观组织演变。例如,对于Al-Cu系合金,溶质原子在固溶时过饱和析出,造成球对称畸变 在时效硬化时,首先形成G.P. Zone,接着溶质原子在低指数晶面上发生聚集、有序化,最终生成非共格θ(Al2Cu)平衡相。在凝固或均匀化过程中生成的相尺寸大于0.5μm时,受载时界面出现位错塞积,成为裂纹源 当尺寸介于0.005~0.05μm,并且呈细小弥散分布时,可阻碍再结晶和晶粒长大。当然,热、动力学理论目前已经渗透到了材料各个领域,成为一种有效的理论指导和必要的分析手段。 /p p strong (1)传统钢铁行业 /strong /p p   钢铁研究总院作为国内最大的专业钢铁材料研发机构,是最早引入热力学计算方法和软件的单位之一,先后在节镍型不锈钢设计、V-N 微合金化技术、LNG 用 9 Ni 低温钢等方面都取得了丰硕的研究成果[4]。 /p p strong (2)金属基复合材料 /strong /p p   范同祥、李建国、孙祖庆等人采用热力学、动力学模型,在复合材料增强相与基体界面反应控制、反应自生增强相种类选择、复合材料体系设计以及制备工艺等方面做了大量研究[5]。 /p p strong (3)纳米材料 /strong /p p   2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时用到纳米热力学(Nanothermodynamics)一词,Giebultowica、Hill等人证明了纳米热力学在处理纳米体系的生长和物理化学性能时的巨大作用,中国科学院大连化学物理研究所的谭志诚团队在纳米材料低温热容方面也做了大量研究[6]。 /p p strong (4)形状记忆合金 /strong /p p   Lidija GOMIDZELOVIC等人采用Muggianu模型并结合实验,使用Thermo-Calc软件计算了形状记忆合金Cu-Al-Zn在293K时的相图,并探讨了组织性能[7]。 /p p   此外,在Mg基储氢材料、石墨烯界面及其吸附性能都有热力学计算机模拟的相关应用。 /p p strong 4.热动力学的发展趋势 /strong /p p   几乎没有一种实用材料的结构在热力学上是稳定的,扩散、相变、位错的产生和运动,以及材料的形变和断裂都涉及各种非平衡,这就需要在实际应用中将CALPHAD模式与其他理论相结合,使其更加逼真地模拟现实情形,比如:与第一性原理(First-Principles)、密度泛函理论(Density functional theory,DFT)、相场理论(Multiphase Field Method)相结合 与材料物理冶金模型相结合,对材料硬度、强度、延伸率等做出预测 引入晶胞和析出相的形核、长大、粗化模型,计算材料的CCT、TTT相变曲线、晶粒尺寸、形核率等物性参数。 /p p   在未来,包括热力学和动力学在内的多尺度集成计算模拟配合专业数据库,实现材料设计阶段、模拟材料生产制备和服役的全流程,从而预测材料的组织演变和宏观性能,并在制备过程中对组织性能进行精确调控,是材料热、动力学发展的主要趋势[8,9]。 /p p strong 参考文献 /strong /p p [1]徐祖耀,材料热力学,高等教育出版社,2009 /p p [2]戴占海,卢锦堂,孔纲. 相图计算的研究进展[J]. 材料研究导报,2006,4(20):94-97 /p p [3]王翠萍,刘兴军,马云庆,大沼郁雄,貝沼亮介,石田清仁. Cu-Ni-Sn三元系相平衡的热力学计算[J]. 中国有色金属学报, 2005(11): 202-207. /p p [4]董恩龙,朱莹光,潘涛. LNG用9Ni低温压力容器钢板的研制[C],全国低合金钢年会论文集. 北戴河:中国金属学会低合金钢分会,2008:741-749 /p p [5]范同祥,张从发,张荻.金属基复合材料的热力学与动力学研究进展[J]. 中国材料进展, 2010, 29(04): 23-27 /p p [6]姜俊颖,黄在银,米艳,李艳芬,袁爱群. 纳米材料热力学的研究现状及展望[J].化学进展,2010,22(06):1058-1067. /p p [7]Lidija GOMIDZELOVIC, Emina POZEGA,Ana KOSTOV,Nikola VUKOVIC,Thermodynamics and characterization of shape memory Cu-Al-Zn Alloy [J].Transactions of Nonferrous Metals Society of China, 2015, 25(08): 2630-2636 /p p [8]Liux J, Takaku Y, Ohnuma I, et al. Design of Pb-free solders in electronic packing by computational thermodynamics and kinetics [J]. Journal of Materials and Metallurgy, 2005, 4(2): 122-125 /p p [9]Chen Q, Jeppsson J, Agren J. Analytical treatment of diffusion during precipitate growth in multicomponent systems [J]. Acta Materialia, 2008, 56:1890-1896 br/ br/ /p
  • 物理所在光激发VO2超快电子相变和结构相变的动力学解耦研究中取
    二氧化钒(VO2)是一种典型的强关联材料。在温度约为340K时,VO2会经历从绝缘性单斜相(M1-VO2)到金属性金红石相(R-VO2)的一级相变过程。强关联材料中电荷、晶格、轨道和自旋等自由度强烈地耦合在一起,这使得VO2绝缘体-金属相变存在多种相变机制。超快激光脉冲通过激发固体材料的价电子可以快速改变原子的势能面,因此激光辐射已经成为一种诱导强关联材料相变的有效途径,比如激光辐射可以使M1-VO2在500fs内发生非热的结构相变。但是实验上通常很难直接同时观测结构相变和绝缘体-金属相变中的超快原子和电子动力学,因此对于VO2的超快结构相变和绝缘体-金属相变的相变机制,以及两种相变能否脱耦仍然存在巨大争议。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员利用自主开发的激发态动力学模拟软件TDAP,研究了激光诱导M1-VO2到R-VO2的超快结构相变和绝缘体-金属相变,揭示了超快尺度上的非平衡相变机制。激发态动力学模拟可以追踪光诱导VO2结构相变和绝缘体-金属相变的超快过程,直接证明飞秒尺度上两种相变的解耦合行为。在这种动力学过程中,激光将M1-VO2 d||带上的价电子激发到导带上,d||带上产生的空穴可以引起V-V对的扩张和V-V-V扭转角的增加,从而驱动M1-VO2到R-VO2的结构相变(图1、图2)。计算模拟得到的结构相变速率与激发强度的依赖关系,与超快实验数据符合得很好。基于杂化密度泛函的激发态动力学模拟证明了在M1-VO2构型下可以出现等同结构的绝缘体-金属相变(图3)。M1-VO2中的空穴会引起间隙能级在带隙中的填充,从而引起带隙的消失。更高强度的光激发可以引起d||带的明显上移。模拟得到的结构相变和绝缘体-金属相变的激发阈值基本上是相同的,而结构相变和电子相变存在着数百飞秒的时间延迟,这导致了金属型M1-VO2瞬态和等同结构电子相变的出现(图4)。该工作揭示了VO2超快结构相变和绝缘体-金属相变过程中不同的超快机制,澄清了以往对于VO2是否存在等同原子结构的电子相变的争议,并提供了研究强关联材料非平衡动力学的新方法。相关成果近期发表在Science Advances上。研究工作受到国家重点研发计划、国家自然科学基金委和中科院的资助。图1 VO2原子结构图和光激发电子跃迁过程。(A)低温绝缘型M1-VO2和(B)高温金属型R-VO2的原子结构图。钒原子和氧原子分别以绿色和橙色显示。(C)脉冲电场强度E0为0.20 V/的800nm激光脉冲,以及其激发M1-VO2中的光生空穴密度随时间的演变。(D)光激发有效空穴密度与激光脉冲电场强度E0的关系。图2 光激发M1-VO2到R-VO2相变原子动力学。(A)不同激发强度下V-V长键和V-V短键平均长度的时间演变。(B)不同激发强度下平均V-V-V扭曲角的时间演化。(C)0.64 e/f.u激发强度下的差分电荷密度图。黄色区域对应于电子增加,青色区域对应于电子减少。(D)光激发结构相变时间常数与实验数据的比较。图3 光激发M1-VO2的电子动力学。(A)不同激发强度下M1-VO2的电子态密度。(B)杂化泛函非绝热模拟中电子激发量的演化。在E0=0.14 V/ 下t= 20 fs(C)和t = 40 fs(D)时的电子占据和态密度。图4 光诱导M1-VO2超快相变示意图。初始的绝缘相M1-VO2(t = -100 fs)在t = 0 fs时被激光脉冲激发。光激发诱导M1-VO2发生等同原子结构的绝缘体-金属相变(10 fs内),而结构相变在100至300 fs的时间尺度内发生。
  • 【热门应用】WAVE基于GCI技术的分子相互作用动力学分析在药物开发中的应用
    Creoptix公司,光学生物传感器的领军企业,2022年加入马尔文帕纳科,拥有专利的光栅耦合干涉(GCI)技术,开创新一代动力学,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据具备先进的GCI技术的WAVE系列分子互作分析仪,究竟能为生物开发领域带来什么样的支持呢?他和传统的分子互作技术相比又有哪些差异和优势呢?本文将针对以上问题予以解答。1关于光栅耦合干涉技术(GCI)光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)是一种近年发展起来的具有极高灵敏度的基于芯片的非标记生物传感器技术,它区别于依赖荧光和免疫等标记分子的传统分子间相互作用技术。通过一次GCI实验,用户可以快速、准确、可靠的获取一整套描述分子间相互作用的信息,包括并不限于结合有无、结合特异性、描述结合强弱的亲和力KD或键合常数KA、描述结合快慢与稳定性的动力学常数(结合速率常数ka与解离速率常数kd)、样品活性浓度、分子间结合机制以及理论热力学信息(范德霍夫焓变)等。GCI技术的商业化产品是Creoptix WAVE系列(2022年初被马尔文帕纳科收购作为旗下Label-Free分子互作分析平台的一员)。 GCI技术具有高灵敏度、分析物的分子量无下限以及捕获快速解离动力学等优势,改进了基于片段的小分子筛选和动力学分析,与无堵塞的流路集成芯片配合使用,加速了药物开发的过程。图1 光栅耦合干涉技术(GCI)示意图2弱相互作用也能得到很好的数据在基于片段的筛选中发现的弱结合物通常是根据亲和力而不是动力学进行排名的,因为它们的解离速率常数kd非常快,这是传统的SPR仪器无法解决的问题。然而,由于具有超快速的流路切换时间,Creoptix WAVE系统可以提供出色的分辨率,在高达10 s-1的解离速率下仍然能够可靠地确定动力学,提供了一个多功能的片段药物筛选和分析平台。使用4PCZ WAVE芯片固定淀粉样纤维蛋白(Amyloid Fibrils),小分子硫黄素(ThT,319 Da)以4种浓度(50 mM ~ 6.25 mM)注入,拟合后显示出10 s-1左右的解离速率常数。图2 淀粉样纤维蛋白与硫黄素的结合分析下图为在PCP WAVE芯片上捕获的6-mer寡核苷酸(1.7 kDa)与其互补的ssDNA结合的传感图,拟合后显示出10 s-1左右的解离速率常数。图3 寡核苷酸与其互补的ssDNA的结合分析3创新的waveRAPID技术加快药物发现的早期阶段对于更快地将新药送到患者手中至关重要。为了满足用户需求,Creoptix推出了测量动力学的新方法。在传统的动力学实验中,分析物以不断增加的浓度被注入,每次注射的持续时间一样。然而,Creoptix创新的waveRAPID (Repeated Analyte Pulses of Increasing Duration)技术通过以不同时长注入单一浓度的分析物,不断增加在芯片表面的脉冲时间来进行动力学分析,该方法免去了浓度梯度的稀释步骤,大大减少了人为稀释误差和实验前的准备时间。图4 waveRAPID与传统动力学的方法比较用waveRAPID和传统的多循环动力学测量小分子化合物FUR(分析物)与碳酸酐酶CAII(配体)的结合。使用WAVEcontrol软件的“Direct Kinetics”分析,两种方法都能提供高度一致的结果。图5 waveRAPID与传统动力学的数据比较使用waveRAPID技术,在18小时内完成了对90个小分子的动力学分析,图中显示的结果为筛选过的具有低统计学误差的速率常数,突出展示了三种不同结合强度的相互作用的传感图和拟合图。图6 小分子药物苗头化合物的waveRAPID动力学筛选结论Conclusion通过Creoptix WAVE所提供的亲和力和动力学信息能够表征药物结合的详细动力学机制,为开发具有高选择性的药物提供了理论基础,使得未来药物设计中的计算和实验更加合理化。提高通量是药物发现过程中经常提到的需求,使用waveRAPID技术大大缩短了总测量时间,在药物发现领域得到了广泛应用。参考文献[1] Kartal O, Andres F, Lai MP, et al. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens withthe Creoptix WAVEsystem. SLAS Discov. 2021 26(8): 995-1003.[2] FitzGerald EA, Butko MT, Boronat P, et al. Discovery of fragments inducing conformational effects in dynamicproteins using a second-harmonic generation biosensor. RSC Adv. 2021 11(13): 7527-7537.相关产品WAVE 分子相互作用分析仪WAVE分子相互作用分析仪拥有基于光栅耦合干涉技术(GCI)的光学生物传感器,且具有创新性的微流控技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。与传统动力学分子互作分析技术相比具有如下优势:无需配置浓度梯度样品10倍于传统分子互作技术分析速度超高灵敏度,捕获快速动力学微流控技术,不堵塞流路点击下载产品手册马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 专注于化学反应动力学及热分析科学领域的设备研发与制造 | OMNICAL重磅亮相PDQC成都
    药物工艺开发及质量控制会议 公司介绍总部位于美国德克萨斯州休斯顿斯塔福市的OMNICAL公司。专注于化学反应动力学及热分析科学领域的设备研发与制造。是快速反应动力学与热分析及安全工学领域的技术领军企业。OMNICAL差示反应量热仪与全绝热量热仪已成为化学与制药工业催化反应动力学与失控反应动力学及安全工学研究的行业标准。 主推产品OMNICAL的快速反应差示量热及全绝热分析技术飞跃性地推动了催化反应动力学和失控反应动力学的研究与发展,从而响誉于世界各国小分子合成与失控反应动力学领域。其产品范围从多通平行反应微量量热仪到高精度微量量热仪、小型差示反应量热仪、全绝热式差示加速量热仪、全绝热式差示扫描量热仪及压力跟踪差示扫描量热仪,并应用于有机合成、手性催化、动力电池、药品及化学品稳定性、失控反应热动力学、危险化学品加工及贮藏及运输等各个环节,为精细化工及小分子制药行业提供过程反应动力学热力学及安全工学综合解决方案。 合作单位OMNICAL的高端量热分析仪受到全球众多顶尖学府顶级国家实验室一流化学与制药公司青睐,顶级用户包括诺奖得主Sharpless与Noyori教授,麻省理工、哈佛大学、伦敦帝国理工、东京大学、德国普朗克研究院、沈阳化工研究院、中科院有机所、日本原子能研究院、日本国立火灾消防研究所,以及陶氏 、杜邦 、通用三菱住友、辉瑞 、默克、礼莱、诺华、阿斯利康等几乎所有的全球五百强药企化企。产品已覆盖绝大部分发达国家和地区,为用户的合成及失控反应动力学问题提供优质的解决方案,为全球顶尖学府、国家实验室、全球五百强药化学和制药公司提供了强有力的技术支持。
  • 梅特勒托利多倾情赞助第三届全国热分析动力学与热动力学学术会议
    由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的&ldquo 中国化学会第三届全国热分析动力学与热动力学学术会议&rdquo 于2011年10月20-22日在江苏省南京市召开,会议期间同时召开&ldquo 江苏省第三届热分析技术研讨会&rdquo 。 本次会议以展现热分析动力学与热动力学以及热分析领域的主要研究成果为主题,就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议邀请了国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还展示了一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。 第三届全国热分析动力学与热动力学学术会议开幕式 来自全国各地高校的教授、学生及企事业单位的技术人员近150人参加了本次大会。会议交流形式包括出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲,题材涵盖热分析动力学理论与研究进展;热分析动力学的仪器功能、实验方法和数据处理软件的开发等;热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用;热分析与量热学领域内的研究工作 武汉大学、西北大学、南京理工大学、南京师范大学、清华大学、北京大学、南京大学等高校的教授分别介绍了各自领域的研究成果。大会上的精彩报告不断,提问踊跃。梅特勒托利多公司热分析仪器部技术应用顾问唐远旺先生为大会作了&ldquo 闪速DSC 1-超快速差示扫描量热仪技术与应用&rdquo 的报告,向与会人员介绍了闪速DSC1在材料科学领域的重要应用。 本次大会特设&ldquo 梅特勒托利多杯优秀学生论文奖&rdquo ,奖励那些第一作者为学生的优秀论文作者。 梅特勒托利多公司郭晓群经理为获得优秀学生论文奖的学生颁发证书 梅特勒托利多公司参展此次会议 梅特勒托利多公司是本次大会的最大赞助商。为了让大家更好地了解热分析发展的前沿,梅特勒托利多公司特将全球第一款商品化的超快速差示扫描量热仪-闪速DSC1搬到了会场展台。闪速DSC1是梅特勒托利多公司最新推出的升温速率可达2,400,000K/min,降温速率可达240,000K/min的超快速差示扫描量热仪,会上很多专家、教授、学者表现出了对闪速DSC的极大兴趣,大家也纷纷讨论有关超快速差示扫描量热仪的有关课题。 梅特勒托利多公司技术人员为与会人员讲解闪速DSC1 同时为了配合&ldquo 国际化学年在中国&rdquo 活动,10月20日下午还举办了&ldquo 梅特勒托利多杯国际先进热分析技术讲习班&rdquo 。讲习班特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,苏州大学孙建平老师,梅特勒托利多公司热分析技术应用顾问唐远旺先生为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。Christoph Schick教授为学员介绍了热分析的最新进展;孙建平老师讲解了热分析实验的方法与技巧;唐远旺先生就热分析联用技术及应用进行了详细阐述。课程结束后,每一位学员都参加了课程考试,对于成绩优秀者,颁发&ldquo 梅特勒托利多优秀学员奖&rdquo 证书及奖品。 梅特勒托利多热分析部应用顾问唐远旺在讲习班上做报告 梅特勒托利多公司实验室市场部郭晓群经理为讲习班优秀学员颁奖 会议于10月22日闭幕,大家一致认为,通过这次大会的成功举办既很好地交流了学术,又增进了大家的友谊。与会人员希望今后能有更多的交流沟通热分析的机会,促进国内热分析的蓬勃发展。
  • 2015第一届药代动力学朝阳论坛第一轮通知
    会议网站:www.bpisunrise.com   主办单位:南京高新生物医药谷   承办单位:南京高新生物医药公共服务平台   协办单位:中国药物和化学异物代谢专业委员会   由南京高新生物医药谷主办, 南京高新生物医药公共服务平台承办, 中国药物和化学异物代谢专业委员会协办的&ldquo 2015年第一届药代动力学朝阳论坛&rdquo 将于2015年4月11-13日在江苏省南京市召开。   本届论坛是非盈利性的、全国范围的专业学术会议。本次会议的主旨除了由国内外资深专家报告药代动力学研究的最新进展外,特别为从事药动学研究的青年学者和年轻学子提供互动对话、交流学习和锻炼的机会,激发启迪科研兴趣,发掘创新潜能,促进中国药代动力学学科的持续发展。   会议将设会前专题讨论会、大会报告、分会报告及朝阳学者/学子报告、壁报交流等形式,期间将颁发朝阳学者/学子(博士/硕士毕业5年内以及博士后或研究生)杰出奖及优秀奖等奖项。   热诚欢迎从事药物代谢与药代动力学研究的专家、学者及学生以及从事药代动力学研究服务的相关单位和企业参与本次论坛。 会议主题   从IND和NDA申请和新药研发成败的案例中看中国药代动力学研究的现状和挑战   药物代谢研究中的前沿和热点   中国生物分析在法规、管理和技术上与世界接轨的进程   从中药体内物质基础及其PK/PD关系研究中药的活性成分和作用机理   外源性化合物在肝外组织中或由非P450酶介导代谢的机理和应用   药物代谢介导的化学物毒性机制   代谢酶和转运体研究的新技术和新进展   代谢组学与生物标志物发现   建模和模拟在药物发现和临床研究设计中的应用   药物分析和代谢组学研究中的新技术。   会议日程   共同主席:   庄笑梅 军事医学科学院毒物药物研究所   燕 茹 澳门大学中华医药研究院   组委会:   阿基业 中国药科大学药物代谢动力学重点实验室   毕惠嫦 中山大学药学院   邓 泮 中国科学院上海药物研究所药物代谢研究中心   葛广波 中国科学院大连化学物理研究所   姜宏梁 华中科技大学药学院   刘厚甫 葛兰素史克中国公司   吴彩胜 中国医科院药物所国家药物及代谢产物分析研究中心   邢 杰 山东大学药学院 会议地点:南京明发珍珠泉大酒店 投稿方式:网上投稿 投稿截止时间:2015年3月25日   参会费用等会议相关详细信息敬请关注网站:   会议网站:www.bpisunrise.com 下载第一轮通知:2015第一届药代动力学朝阳论坛.pdf
  • 人参怎么用才有效?从药物动力学角度看人参皂苷的生物利用
    研究背景人参是一味广为人知的中草药,在中国已有数千年的应用历史,具有大补元气、复脉固脱、补脾益肺、生津养血、安神益智的功效。现代药理研究表明,人参的主要活性成分人参皂苷在糖尿病、阿尔兹海默症及癌症中能够发挥保护作用。同时,大量的研究表明,蒸制人参(红参和黑参)相对于生晒参具有更好的药理作用。 人参皂苷Rk1及Rg5是蒸制人参中的特征性成分,二者为同分异构体,结构上仅双键位置不同。研究证实,人参皂苷Rk1及Rg5具有抗炎、降低血糖、保护心肌、神经保护及抗癌等作用。本研究对人参皂苷Rk1及Rg5在大鼠体内的药物动力学过程进行比较研究。 1—〇方法与结果〇— 该研究使用LCMS-8050三重四极杆液相色谱质谱联用仪建立了血浆中人参皂苷Rk1及Rg5的定量检测方法。然后,通过灌胃及口服方式给予大鼠人参皂苷Rk1及Rg5,收集血浆进行定量分析,并计算药动参数。 通过全扫及产物离子扫描,确定人参皂苷Rk1、Rg5及Rg3(内标)的母离子及产物离子,如图1所示。经过LabSolutions软件自动MRM优化后,对建立的方法进行专属性、线性、精密度、准确度、基质效应及提取回收率验证,结果如图2、表1及表2所示。结果表明,建立的方法符合生物样品的测定要求。图1 人参皂苷Rk1(A)、Rg5(B)及Rg3(C)的产物离子扫描图 图2 人参皂苷Rk1、Rg3和Rg3的MRM色谱图:A,空白血浆;B,空白血浆加人参皂苷Rk1或Rg5和Rg3;C,给药老鼠血浆 表1 人参皂苷Rk1及Rg5的日内及日间精密度及准确度表2 人参皂苷Rk1及Rg5在大鼠血浆中的提取回收率,基质效应及稳定性大鼠24只,随机分为4组,每组6只,分别为人参皂苷Rk1、Rg5口服组(50mg/kg)和人参皂苷Rk1、Rg5静脉组(2mg/kg)。经取血、收集血浆、加标、涡旋、离心、吹干、复溶,以及再涡旋、离心、取上清等步骤后,进入LCMS-8050进行分析。 药-时曲线结果如图3所示,人参皂苷Rk1及Rg5在灌胃给药5 min后,即可在血液中检出,说明人参皂苷Rk1及Rg5能够被快速吸收入血。人参皂苷Rg5在灌胃给药4 h后达到最大血药浓度,人参皂苷Rk1在灌胃4至6 h后可达到最大血药浓度,结果表明人参皂苷Rg5相对于人参皂苷Rk1具有更好的吸收。 使用非房室模型计算的药物动力学参数结果如表3所示。人参皂苷Rk1及Rg3灌胃的药物浓度-时间曲线下面积分别为204.18 ngh/mL和985.69 ngh/mL,分布体积分别为1821.04 L/kg和388.57 L/kg,消除速率分别为249.40 L/h/kg和53.79 L/h/kg。同时,人参皂苷Rk1和Rg5的生物利用度仅有0.67%和0.98%,胃肠道的代谢和较差的跨膜转运能力可能是其生物利用度差的主要原因。 图3 人参皂苷Rk1及Rg5在大鼠体内的药-时曲线:A,口服(50mg/kg);B,静脉给药(2 mg/kg) 表3 人参皂苷Rk1及Rg5在大鼠体内的药动参数(n = 6)2—〇 总结与讨论 〇— 本文建立了UHPLC-MS/MS方法用于测定血浆中人参皂苷Rk1及Rg5的含量,并对其进行方法学考察。结果表明其专属性、基质效应、回收率、精密度、准确度和稳定性等均满足生物样品定量分析要求。通过对人参皂苷Rk1及Rg5的药物动力学研究,发现灌胃给予大鼠50 mg/kg人参皂苷Rk1或 Rg5后,二者均能被迅速吸收入血,但它们的口服生物利用度较低。如何提高它们的生物利用度是开发利用人参皂苷Rk1及Rg5亟待解决的主要问题之一。LCMS-8050 3—〇 文献简介〇— 文献题目《Pharmacokinetic studies of ginsenosides Rk1 and Rg5 in ratsby UFLC–MS/MS》使用仪器LCMS-8050,LC-30AD作者Chao Ma1,2, Qiyan Lin1 ,Yafu Xue1,Zhengcai Ju1, Gang Deng1, Wei Liu3,Yuting Sun1,Huida Guan1,Xuemei Cheng1, Changhong Wang1* 1.Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China2.Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China3.Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China* Corresponding author. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Tel: 086-021-51322511, Fax: 086-021-51322519, E-mail: wchcxm@shutcm.edu.cn wchcxm@hotmail.com (Changhong Wang). 原标题:人参皂苷Rk1和Rg5在大鼠体内的药物动力学研究上海中医药大学 中药研究所文章发表于Biomedical Chromatography文章链接:https://doi.org/10.1002/bmc.5108 致谢本研究工作得到中国国家自然科学基金(基金号 81903804, 81530101, 81530096)的支持。 声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 中国化学会第三届全国热分析动力学与热动力学学术会议(第三轮通知)
    “中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rdJTA)”。本届会议由由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办。   会议期间,我们将举办“国际先进热分析技术讲习班”。讲习班结束我们将颁发培训证书,并设立“梅特勒-托利多优秀学员奖”若干名,大会论文还特设“梅特勒-托利多优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。   热忱邀请相关领域的科研、教学工作者、研究生和仪器厂商参加研讨交流。   一、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果二、会议组织委员会主席:陈国祥,韩布兴,尉志武副主席:赵厚民,张建军,魏少华,张明明,王昉秘书长:汤伟三、会议学术委员会主任委员:韩布兴副主任委员(以姓氏拼音为序):陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武委员(以姓氏拼音为序):安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起四、会议日程:详见附件一。五、会议日期:2011年10月20-22日。   六、会议报到时间及地点:10月20日8:00—23:00,南京师范大学敬师楼大酒店一楼大厅(南京市宁海路122号)   注:报名参加《国际先进热分析技术讲习班》的代表请于10月20日中午12:00之前报到。   七、会议时间及地点(详见附件二):   1、2011年10月20日下午14:00-17:00《国际先进热分析技术讲习班》在南京师范大学南山专家楼1楼多媒体厅 2、2011年10月21日-22日学术会议在南京古南都饭店江南春厅(三楼)。(南京市广州路208号)。   八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册) 学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人 论文审理费:60元/篇。讲习班:200元/人邮局汇款:南京市龙蟠路189号江苏省分析测试协会汤伟收(汇款附言中请注明“TAKT2011”)银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047   开户行:江苏南京交行玄武支行九、联系方式:联系人:江苏省分析测试协会汤伟(电话:025-85485940,13912996398传真:025-85404940)   南京师范大学王昉(手机:13851614122) 河北师范大学张建军(手机:15533995800)Email:TAKT2011@126.com   江苏协会南京大学河北大学二○一一年九月十日  附件一:会议日程 时间 日程安排 月 日(星期四)8:00—22:00 全天报到 14:00—17:00 国际先进热分析技术讲习班 月 日(星期五) 07:00—08:00 早餐 08:00—08:40 开幕式 08:40—09:00 合影留念 大会报告 1. 西安近代化学研究所胡荣祖教授热分析动力学和热动力学进展 9:10—12:00 2. 清华大学尉志武教授蛋白质热变性的动力学问题思考 3. 武汉大学刘义教授生命体系中的热动力学 4. 西北大学高胜利教授含能配合物的热动力学研究 5.南京师范大学安学勤教授脂质体相平衡与药物释放 12:00—13:30 午餐、午休 1. 中国食品药品检定研究院杨腊虎教授热分析在药物研究中的作用 大会报告 2. 北京大学陈尔强教授一些复杂软物质的热分析研究 13:40—17:30 3. 中国科学院大连化学物理研究所孙立贤教授新型储氢材料的纳米限域及其热化学研究 4. 中国科学院大连化学物理研究所王晓东研究员能源和环境催化研究中的吸附量热应用 5. 南京大学胡文兵教授聚合物结晶热分析的现状和挑战 6. 南京师范大学周宁琳教授热分析技术在生物材料中的应用7. 河北师范大学郑君茹稀土2,3二氯苯甲酸与2,2'-联吡啶配合物的合成、晶体结构及热分析动力学 8. 南京理工大学成一教授热分析动力学的研究与应用 18:00—20:00 迎宾晚宴   注:大会还安排有热分析各大厂商的新产品、新技术介绍。   附件二:宾馆信息及路线   (会务组与两家酒店合作为参会代表提供舒适的住宿环境和优惠的价格)1、南京古南都饭店(五星级):地址:南京市广州路208号   标准双人间:520元/间/天,含双早餐 标准单人间:480元/间/天,含单早餐2、南京师范大学敬师楼大酒店(准三星,也称“南师大南山专家楼东楼”):   地址:南京市宁海路122号,距离南京古南都饭店50米。   标准双人间:228元/间/天,含双早餐 标准单人间:258元/间/天,含单早餐   到南京古南都饭店和南京师范大学敬师楼大酒店交通路线:南京市内可乘3W、6W、91W、109W、132W、152W、302W、318W到“随家仓”站下,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。   一、火车站 、火车站打出租车 元左右即可到达南京师范大学敬师楼大酒店。 、步行至“南京站”地铁站、乘坐地铁1号线(或 地铁1号线南延), 在 珠江路站 下车,步行至珠江路站,乘坐91路(或6,132), 在“ 随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。 、步行100米至“南京车站”公交车站,乘坐318路,在 随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。二、南京长途汽车总站(中央门)步行460米至“玉桥市场”站,乘坐303路, 在广州路站 下车,步行320米至南京古南都饭店,再往西走50米是敬师楼大酒店。三、南京长途汽车东站   步行70米至长途东站,乘坐115路(或70,136,28,45), 在 板仓村站 下车,乘坐6路,在 “随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。四、飞机场机场大巴 号线到国防园(21:00结束)乘坐132路(或91), 在随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。或者从国防园打出租到敬师楼大酒店,起步价就够。
  • 冷冻电镜发展进入全原子动力学分析阶段
    p   “这是《自然》杂志首次发表系统性、优于3.6埃分辨率水平实验研究超大复合蛋白质机器的动力学过程和原理的论文,标志冷冻电镜的发展开始进入全原子动力学分析的新阶段。”1月20日,北京大学教授毛有东告诉科技日报记者。 /p p   本月,北京大学物理学院人工微结构和介观物理国家重点实验室、前沿交叉学科研究院定量生物学中心毛有东课题组在《自然》杂志上发表的论文表明,他们通过冷冻电子显微镜和机器学习技术的结合,解析了人源蛋白酶体26S在降解底物过程中的七种中间态构象的高分辨(2.8埃—3.6埃)精细原子结构,局部分辨率最高达到2.5埃。 /p p   毛有东介绍,这些三维结构展现了惊人的时空连续性,生动呈现了原子水平的蛋白酶体和底物相互作用的动态过程,首次实现了对三磷酸腺苷酶六聚马达分子内三磷酸腺苷水解全周步进循环完整过程的原子水平观测和三维建模,发现三种不同的三磷酸腺苷水解协同反应模式,及其如何调控蛋白酶体复杂多样的功能。 /p p   “论文解决了一系列长期悬而未决的重要科学问题,如三磷酸腺苷酶马达如何将化学能转化为机械能,进而实现了底物解折叠的协同动力学机制。”该论文的共同第一作者、原课题组博士后、现为中国科学院化学所研究员董原辰说。 /p p   论文的共同第一作者、课题组博士生张书文说,这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的三磷酸腺苷酶马达分子的一般工作原理具有极为重要的科学意义。 /p
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制