当前位置: 仪器信息网 > 行业主题 > >

双燃料燃烧系统

仪器信息网双燃料燃烧系统专题为您整合双燃料燃烧系统相关的最新文章,在双燃料燃烧系统专题,您不仅可以免费浏览双燃料燃烧系统的资讯, 同时您还可以浏览双燃料燃烧系统的相关资料、解决方案,参与社区双燃料燃烧系统话题讨论。

双燃料燃烧系统相关的论坛

  • 水分解化合燃料用分解燃烧器

    今天不经意在网上看到一个叫做“水分解化合燃料用分解燃烧器”的发明专利,觉着很新鲜,在网上查了一下也有好多有关这个发明的新闻 发明者说:“水分解化合燃料用分解燃烧器”是以成本低廉的水为主要燃料,通过分解产生氢和氧并发生燃烧,从而减少了一次能源的消耗,可替代一次能源20%——80%。同时,由于氢和氧燃烧后产生的是水,明显降低了温室气体及污染物的排放,也避免了传统水煤气反应所带来的影响燃料燃烧等缺点。这种新兴产品具有工艺周期短、市场前景广阔、利润高等特点。这项发明可应用于热力电厂、供暖锅炉、化工热力等一切消耗能源的产业单位,是节能减排创新能源项目。“水分解化合燃料用分解燃烧器”无论燃烧多长时间,只需一次预热,可以采用自然状态下的河、湖等水源做燃料,可谓“取之不尽,用之不竭”。 眨眼一看,这个发明确实很不错,环保且污染小,尤其是“取之不尽,用之不竭”,看着就特别炫,但是这种东西真的可以吗,真的可以做出来吗? 看到这个发明的时候我又想起了去年听一个朋友介绍的“空气发动机”的项目,据说项目做的很大, 看着也确实很吸引人,但是按照常理来看,总是不能理解,或许是我们知识浅薄吧, 今天发这个帖子就想知道一下这个发明是不是真的可行?有相关只是经验的朋友可以解释一下

  • 提高燃气空调的锅炉燃烧效率的氧气分析仪推荐

    [b]氧化锆氧气传感器是如何提高燃气空调的锅炉燃烧效率的[/b]目前冷空气造访全国,北京这两天的室外温度已经达到-12℃的低温,或降至入冬以来最低,取暖成了头等大事。由于传统燃煤锅炉采暖易造成雾霾、用电空调存在制热效率差、花费高等问题,使得天然气空调的优势凸显出来。燃气调用的是天燃气,比煤气更加的环保而且价格也比较低,还没有像使用电器那样有漏电的危险。[b]燃气空调的工作原理[/b]燃气空调,即以燃气为能源的空调设备。广义上的燃气空调有多种方式:燃气直燃机、燃气锅炉+蒸汽吸收式制冷机、燃气锅炉+蒸汽透平驱动离心机、燃气吸收式热泵、CCHP等。燃气直燃机是采用可燃气体直接燃烧提供制冷、采暖和卫生热水。燃气直燃机能源转换途径少、技术成熟且行业发展迅速、应用普及,我们常说的燃气空调多指燃气直燃机。[b]燃气空调的优点[/b]燃气空调以天然气为能源,采用溴化锂和水为冷媒。与电力空调不同,电力空调可以直接用于家庭,而燃气空调主要用作商用,也就是主要用于办公楼、商务楼、商厦、车站大厅和大型公共场所。可有效平衡城市能源结构,缓解城市夏季供电紧张、燃气使用量过低的矛盾。此外从宏观效益来看,燃气空调还是一种绿色的制冷空调系统,符合环保要求。它直接利用燃气能源,制冷剂是水,吸收剂是溴化锂,不用氟利昂或其他替代品,不会污染大气,有利城市的生态环境的改善。具有高效、节能的特点。[b]如何提高燃气空调的锅炉效率?[/b]所有的燃烧过程都需要正确的氧气和燃料比值,因为它直接影响锅炉效率。太少的氧气导致不完全燃烧,从而产生有害的排放物。设置锅炉与过量的氧气燃烧是减少排放的正常的解决方案。氧化锆氧传感器可以帮助客户优化他们的锅炉燃烧效率,包括石油,煤炭,天然气和生物质在内的锅炉市场。[url=http://news.isweek.cn/wp-content/uploads/2018/12/20181228152916.png][img=20181228152916,449,300]http://news.isweek.cn/wp-content/uploads/2018/12/20181228152916-449x300.png[/img][/url]不正确的燃烧的过程会到导致一系列问题,包括燃料浪费,有毒气体排放量的增加,甚至会潜在的破坏燃烧系统,同时对环境和财务影响都是显着的。在大型工业和商业锅炉/炉中,燃料消耗和系统值的开销是很高的。为了看到投资回报和最低的运行成本,操作必须保持在峰值效率。完全燃烧需要正确的燃料和氧气比。这个比率,可以通过在一个闭环反馈系统中使用氧传感器测量排气/烟道气中的氧浓度来调节输入结构的控制器来优化和维持。当供应的燃料的品种是各种各样的时候这个就显得特别有用(即来自不同源头的气体)。[url=http://news.isweek.cn/wp-content/uploads/2018/12/20181228152934.png][img=20181228152934,355,300]http://news.isweek.cn/wp-content/uploads/2018/12/20181228152934-355x300.png[/img][/url]SST[url=https://www.isweek.cn/category_152.html]氧化锆氧传感器[/url]帮助客户优化其在石油,煤炭,天然气和生物质锅炉市场的燃烧效率。氧传感器用于提供一个干净的燃烧和减少有害排放物在燃烧过程控制领域,已经有超过15年的经验。将氧传感器插入锅炉烟道内,监测氧气水平,使锅炉氧燃比完全控制。[img=英国SST 高温氧气分析仪,300,300]https://www.isweek.cn/Thumbs/300/0180228/5a95ff30ad372.jpg[/img]SST的OXY-Flex[url=https://www.isweek.cn/1566.html]氧气分析仪[/url],不需要参考气体,可以在清新的空气中或任何其他已知的氧浓度进行简单的单点校准。传感器提供精确的输出值和可选择的输出量程范围(0.1至25% O2或0.1到100% O2),坚固的不锈钢结构,使它们拥有在极端温度下工作的能力(高达400℃),使得OXY-Flex成为一个坚固的,强大的,可靠的氧气监控设备。

  • 燃料电池汽车氢系统氢气泄漏检测传感器

    根据《中国氢能源及燃料电池产业白皮书》,氢能将成为中国能源体系重要组成部分,2050年能源体系中占比约10%,氢气需求量达6000万吨,加氢站10000座以上,氢燃料汽车产量达500万辆/年,行业发展前景广阔。截至2020年底,全球氢燃料电池汽车保有量为32535辆,同比增长38%,韩国保有量达10906辆,位居全球第一,美国为8931辆,我国氢燃料电池汽车保有量为7352辆排第三。[url=http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340.png][img=QQ图片20220907092340,447,300]http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340-447x300.png[/img][/url]氢燃料电池汽车是利用氢气和氧气的电化学反应产生电能驱动汽车,产物只有水,具有无污染、动力性能高、充气时间短和续驶里程长等优点。基于这些优点,氢燃料电池汽车正在成为各国政府和企业重点布局和探索的未来绿色产业,也是发展新能源汽车的重要技术路线之一。氢燃料电池汽车的核心为燃料电池发动机系统,关系着整车运行的安全性,对燃料电池汽车是否具备成熟、可靠的性能表现具有重要影响。燃料电池发动机主要部件包括电堆、发动机控制器、氢气供给系统、空气供给系统等。燃料电池系统是氢燃料电池汽车的核心单元,存在结构复杂、性能要求高、运行环境恶劣和动态响应能力差等,难免出现各种故障和失效。而氢气具有无色无味、极易燃烧等特性,需要重点关注对于氢气泄漏故障的准确诊断,以免发生严重安全事故。工采网推出了一款专门针对燃料电池系统氢气泄漏检测的传感器TGS6812,该传感器性可靠性好、性价比高,是氢燃料电池H2泄漏检测的好帮手。[img=日本figaro 催化燃烧式可燃气体传感器,300,300]https://www.isweek.cn/Thumbs/300/0161206/58466d62d3342.JPG[/img][b]一、催化燃烧式可燃气体传感器TGS6812描述:[/b]TGS6812-D00是催化燃烧式的可燃气体传感器,可以检测100%LEL水平的氢气,此传感器具有精度高,耐久性与稳定性好,快速响应、线性输出的特点,不仅可监测氢气,还可以用于检测甲烷与LP气体。这对于固定式燃料电池将氢气作为可燃气体时的泄漏检测是个非常优秀的方案。TGS6812-D00的盖帽内有吸附剂,对有机蒸汽的交叉灵敏度很低。此外,此传感器对硅化合物的耐受性更佳,更适应恶劣环境。[b]二、催化燃烧式可燃气体传感器TGS6812特点:[/b]* 线性输出* 使用寿命长* 对酒精灵敏度低* 对氢气、甲烷与LP等物质有较高灵敏度[b]三、催化燃烧式可燃气体传感器TGS6812应用:[/b]* 用于监测燃料电池的氢气与可燃气体泄漏* 工业、商用上的可燃气体泄漏检测

  • 原子吸收的三缝燃烧器比单缝燃烧器稳定

    最近在看一些文献教材,看到关于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]燃烧器这一部分。3,燃烧器 试液的细雾滴进入燃烧器,在火焰中经过干燥、熔化、蒸发和离解等过程后,产生大量的基态自由原子及少量的激发态原子、离子和分子。通常要求燃烧器的原子化程度高、火焰稳定、吸收光程长、噪声小等。燃烧器有单缝和三缝两种。燃烧器的缝长和缝宽,应根据所用燃料确定。目前,单缝燃烧器应用最广。 单缝燃烧器产生的火焰较窄,使部分光束在火焰周围通过而未能被吸收,从而使测量灵敏度降低。采用三缝燃烧器,由于缝宽较大,产生的原子蒸气能将光源发出的光束完全包围,外侧缝隙还可以起到屏蔽火焰作用,并避免来自大气的污染物。因此,三缝燃烧器比单缝燃烧器稳定=======================================从来没有见过三缝燃烧器啊?既然三缝燃烧器稳定,那为什么没有大规模普及呢??

  • 【原创大赛】二甲醚燃烧后辣眼的原因分析

    一、认识二甲醚二甲醚又称甲醚,简称DME。二甲醚在常温常压下是一种无色气体或压缩液体,具有轻微醚香味。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性。其燃烧时火焰略带亮光。二甲醚作为一种基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。作为民用燃料气,其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。由于石油资源短缺、煤炭资源丰富及人们环保意识的增强,二甲醚作为从煤转化成的清洁燃料而日益受到重视,成为近年来国内外竞相开发的性能优越的碳一化工产品。二、二甲醚作为燃料的应用DME具有燃料的主要性质,其热值约为64.686MJ/m3,且其本身含氧量为34.8%,能够充分燃烧,不析碳、无残液,是一种理想的清洁燃料。以前主要由于其成本较高、生产及应用研究深度以及替代积极性等问题限制了在燃料领域的应用。二甲醚是一种无色、无毒、无致癌性、腐蚀性小的产品,并且燃烧性能好,热效率高,燃烧过程中无残渣、无黑烟,CO、NO排量低,二甲醚还可掺入石油液化气、煤气或天然气混烧并能提高热量,≥95%二甲醚可直接作为替代液化气的燃料使用。作为液化气替代产品的二甲醚,具有价格便宜、无污染、安全性高等特点。我公司生产的二甲醚已经在公司内部进行试点,取的成功。但是最近发现燃烧过程中发现燃烧后出现辣眼的现象,我们从以下几个方面对其进行原因分析。三、二甲醚燃烧后辣眼的原因分析二甲醚燃烧方程式为:CH3OCH3+3O2→2CO2+3H2O从反应方程式可以看出其产物是二氧化碳和水,完全燃烧是不会产生异味的。有异味说明二甲醚内含有杂质的存在。从以下杂质中予以分析:1、二甲醚中含有微量的氨氨气不能在空气里燃烧,但能在纯氧里燃烧,发生如下反应:4NH3+3O2 2N2+6H2O氨气燃烧生产氮气和水,没有刺激性气体产生。我们可以做实验予以证明。我们分别对二甲醚球罐不凝气和二甲醚进行取样分析分析结果如下二甲醚球罐不凝气二甲醚检测管未检出未检出氨检测仪未检出未检出注:二甲醚采用气化后进行分析通过以上分析结果可以看出,我公司生产的二甲醚中未发现含有氨气,不是此原因造成燃烧后辣眼。2、二甲醚中含有硫化氢硫化氢和氧气燃烧,在氧气不足的情况下是生成单质硫,在氧气足量的情况下是生成二氧化硫。氧气不足:2H2S+O2→2S+2H2O氧气充足:2H2S+3O2→[font=Times New Rom

  • 柴油发电机组燃烧过程的四阶段

    柴油发电机组的燃烧过程一般分为着火延迟期、速燃期、缓燃期和后燃期这四个阶段,在这四个阶段中,每个燃烧阶段的具体表现都各不相同。这里就带大家一起了解下每一个燃烧阶段的表现,从而帮助客户弄清楚机组处于何种工作状态。  柴油发电机组  1、着火延迟期是指从燃料开始喷射到着火,其间经过喷散、加热蒸发、扩散、混合和初期氧化等一系列物理的和化学的准备过程。它是燃烧过程的一个重要参数,对发电机燃烧放热过程的特性有直接影响。  2、在着火延迟期内喷入燃烧室的燃料,在速燃期内几乎是同时燃烧的,所以放热速度很高,压力升高也特别快。  3、缓燃期阶段中燃料的燃烧取决于混合的速度。因此,加强燃烧室内的空气扰动和加速空气与燃料的混合,对保证燃料在上止点附近迅速而完全地燃烧有重要作用。  4、机组的混合和燃烧时间很短,以致有些燃料不能在上止点附近及时烧完,而拖到膨胀行程的后期放出的热量不能得到充分利用,因此应尽量避免燃料在后燃期燃烧。  在这四个阶段中,前三个阶段是柴油发电机组燃料燃烧的主要阶段,操作时要尽可能保证燃料在这三个阶段内及时烧完,这样才能充分的利用燃料,达到发电机组的工作效率

  • 煤气燃烧器的方案与特点

    由于焦炉煤气与高炉煤气的燃烧特性不同,必须对采用高炉煤气的管式炉重新进行技术参数核算。一般焦化 厂管式炉辐射室顶部温度为600~650℃,辐射室炉墙温度约800℃。从以上数据可以看出,按热值折算, 5.4m3高炉煤[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]当于1m3焦炉煤气。热值相同的焦炉煤气与高炉煤气的理论空气量与理论烟气量相差不大,燃料替换后管式炉结构尺寸可以不变。为验证辐射管式值班火炬装置,制作了火炬装置并进行了燃烧试验,燃料为液化石油气。辐射管加热后呈暗红色,顶部喷出火焰长度约200~400mm。试验证明了方案可行。在辐射管式值班火炬试验成功的基础上,设计出能力为1MW的管式炉用高炉煤气燃烧器。  以下为418万kJ/h高炉煤气燃烧器技术数据:高炉煤气燃烧器每台供热量:QB=418万kJ/h;高炉煤气压力:4kPa;高炉煤气发热量:qB=3344kJ/m3;高炉煤气量: VB=1 250m3/h;高炉煤气比热: CB=1.8346kJ/(m3℃);辐射管用焦炉煤气量: VC=10m3/h;焦炉煤气压力: 4kPa;焦炉煤气发热量: qC=17556kJ/m3;焦炉煤气燃烧发热量:QC=175560kJ/h。  研制高炉煤气燃烧器结构时充分考虑了焦化厂的操作习惯,采用与兖州工程中引进的燃烧酸汽的克劳斯炉烧嘴相近的结构,煤气和空气均不用另设加压机,操作简单方便。因该燃烧器的燃料要比酸汽的燃烧性能好,可以稳定燃烧。高炉煤气燃烧器的辐射管内焦炉煤气用量仅占总热量的4.2%左右,主要热量来自高炉煤气。国内燃烧器的定型产品均采用风机加压一种气体以引射另一种气体的方案。该装置采用带辐射管的值班火炬,辐射管提高燃气温度后,可以扩大可燃极限,值班燃气采用掺混少量焦炉煤气的高炉煤气,替代效果更好。

  • 【转帖】“新燃烧方式”服务节能减排

    节能减排,需要污染物末端治理,需要从源头着手进行燃料替换,也需要发展低碳能源和可再生能源。然而,记者最近在采访中发现,其实,生产过程、燃烧过程的改善也大有可为。近几年来,两家致力于“燃烧改良”的企业,正在把新型的燃烧思维从北京推向全国。 “让火从上面烧”   2007年,北京房山区的韩村河村改变了“造暖方式”,投入将近2000万元建设了三套新型的采暖锅炉。这几套锅炉几乎没有烟囱,而且不排放任何烟尘,村里的居民从此可以放心大胆地在院子里晾衣服、储白菜了。   他们采用的是北京雄财集团的技术。在锅炉房里,这项技术的发明人、雄财集团董事长王永江打开方形锅炉的一个小孔,让记者看里面的火焰。“一般人烧煤,都是从下面向上点火,从下向上烧;而我们是从上向下点火,从上向下烧。我们有一项专门的技术,是把烟尘导回来,重新燃烧。当烟尘里的有害物质遇上800度以上的高温,就几乎烧光了,大大降低了污染。你看,里面的火焰是纯蓝色、透明的,这说明燃烧得特别彻底,而烧的这些型煤,每公斤含热量3500大卡左右,只有优质煤的一半。”   雄财集团的技术直面的现实问题是:如何改造全国480万台散煤锅炉?如何清洁、高效地利用低质煤炭(特别是目前被大量废弃的褐煤、乏煤、煤泥、煤矸石等)和可再生生物质能源(如秸秆、锯末、树叶和生活垃圾等)?这一直是我国能源和环保领域面临的重要课题。   2000年以来,北京雄财公司将燃料与燃烧设备作为一个整体,取得了突破性进展,成功研制出专利产品“逆流聚焰生物质型煤锅炉”和“生物质固硫型煤”,即生物质与非优质煤的共烧技术与装备。其先进性在于应用独特的顶燃、逆向、聚焰燃烧技术,较好地把生物质型煤和燃烧方式结合起来,使燃料燃烧得彻底、完全,锅炉热效率达到80%以上,与燃气锅炉排放指标相当,实现了节能、降耗、减排的效果;同时,利用秸秆、树枝叶等生物质和煤矸石、粉煤灰等低质煤制成的生物质型煤,采用科学配方和“加密成型”工艺,热值不超过3500大卡/公斤,具有密度大、充分燃尽、消除黑烟的特点,并具有固硫效果。二者配套使用,使燃用低质煤达到优质煤(6000大卡/公斤以上)的供暖效果成为现实,实现了耗能结构的优化。   2006年起,北京市开始进行生物质型煤供暖试点。2006-2007采暖季,房山、延庆、顺义等郊区县的部分锅炉房进行了供暖改造,应用生物质型煤锅炉和生物质型煤供暖。海淀区苏家坨镇中心卫生院、房山区韩村河村、延庆县八达岭镇、顺义区耿丹教育中心等用户反映满意率几乎达到100%。2008年,北京市将在大兴、平谷、密云、门头沟、延庆等区县开展生物质清洁煤推广工作,预计全市将新增数百万平方米的供热面积。 “蓄热式烧嘴”起神雾   记者到中关村科技园区昌平园采访神雾公司时,国家技术监督局的相关领导正给神雾公司颁发“锅炉证”。神雾公司研究院院长王正华说:“锅炉产业非常大,里面可做的事非常多,因为我们过去的燃烧方式实在是太粗放了。”   粗放型的生产给技术改良带来了商机。神雾公司董事长吴道洪说:“过去农村烧柴做饭,城市里烧蜂窝煤,都只利用了物质本身所含热量的极少部分。许多采暖锅炉、烧开水锅炉,许多大型冶炼、燃烧型企业,比如火电业、钢铁业、炼铝业、水泥业等,它们的窑炉、高炉的热利用程度都有很大的改进余地。如果能够改变燃烧方式,让燃烧彻底一些,同时把燃烧产生的能量利用效率提高,节能减排就很容易。”   1994年,西安一家陶瓷厂进行节能改造,吴道洪的燃烧改良技术第一次得到应用。1995年,通过给钢铁公司、陶瓷厂、火力发电厂等企业提供燃烧节能服务,吴道洪逐渐将自己发明的“蓄热式烧嘴”技术推广开来。   “烧嘴”,就是燃烧物进入燃烧炉前的入口处。“蓄热式烧嘴”,其实就是用蓄热材料把本来要随烟气排放到空中的热量蓄集起来,用来加热要进入燃烧室助燃的空气。这样,空气进入燃烧室时,就已经具有了相当高的温度,有助于把燃料雾化得更彻底。“海绵可以吸水,同样,一些蓄热材料比如耐火砖,也可以吸热。把这些蓄热材料加在燃烧炉的门口,排放出来的温度可达1600度左右的烟气中的热量会被这些蓄热材料拦积。我们的燃烧方式是双向的,这边燃烧上三四十秒,就换成另外一边。这样,上一次的排气通道,这次就成了进气通道……三四十秒后,燃烧的方向又自动转换一次。由于燃烧变得更彻底了,烟气中的污染物质在燃烧炉中几乎被烧尽,所以烟气中含有的各种有害物质也就显著减少。”

  • 水平燃烧测试仪价格/水平燃烧测试仪

    水平燃烧测试仪价格/水平燃烧测试仪

    水平燃烧性测试仪用于检测纺织品特别是汽车内装饰织物的相对燃烧速率及阻燃性。该仪器配有密封不锈钢燃烧室、观察窗、试样夹及门式燃烧器。自动燃气控制系统包括电磁控制燃气阀、自动点火计时器及控制器。  使用描述:  1、采用具有悬空鼓膜结构,并带有钢弹簧和减振系统,可平稳操作;  2、配有自动燃气控制系统包括电磁控制燃气阀、自动点火计时器及控制器;  3、配有密封不锈钢燃烧室及观察窗,不锈钢采用316型材质,耐高温高压;  4、试样架可以上下及左右进行移动;  5、基本模式配有手动计时控制;  6、配有试样夹及门式燃烧器。

  • 锂离子电池负极材料石油焦的燃烧特性介绍

    石油焦的颗粒直径、升温速度、挥发分释放特性指数等都对石油焦的着火温度及燃尽产生不同的影响。不同颗粒直径下的石油焦的着火温度和燃尽温度各不相同。通常150-200目石油焦的着火温度小于300℃,燃尽温度为580℃;100-150目石油焦的着火温度为300℃左右,燃尽温度为590℃;1.0 mm石油焦的着火温度为450℃,燃尽温度为650℃,即随着颗粒直径的增加,着火温度和燃尽温度也随之增高。  石油焦的燃烧特性处于烟煤和无烟煤之间,石油焦的着火点及燃尽温度也处于烟煤和无烟煤之间。挥发分的释放有利于石油焦的燃烧,挥发分特性指数大的石油焦,其燃烧特性指数也大。  改性后用于玻璃熔窑的石油焦粉在燃烧前首先利用气力输送原理将成品仓内的粉料采用特殊设备将其与压缩空气混合成一定比例且呈流态化的固、气两相流体,通过管道喷吹,在雾化作用下将石油焦粉喷入熔窑,石油焦粉在高温下与助燃空气混合后,使挥发分挥发燃烧,接着粉状颗粒燃烧。石油焦粉燃烧火焰的黑度系数高,火焰的辐射能力比重油要强,所以,石油焦粉实际单耗量要比按热值计算的重油量要少。石油焦粉火焰与重油燃烧的火焰存在少许差异,主要表现是石油焦粉燃烧时火根温度低于火梢15-30℃。其他如火焰长度、扩散面、形状等都与重油燃烧时的火焰相似。  由于石油焦粉是一种粉状固体燃料,即表面燃烧,难点燃,着火温度高,燃烧不稳定而且难以燃尽,常规燃烧会带来很多不完全燃烧物,造成未燃焦炭含量过高而影响玻璃液透光率。若采用专用燃烧及雾化技术等措施改变石油焦粉的燃烧特性,则可改善其燃烧效果。

  • 锂离子电池负极材料石油焦的燃烧特性介绍

    石油焦的颗粒直径、升温速度、挥发分释放特性指数等都对石油焦的着火温度及燃尽产生不同的影响。不同颗粒直径下的石油焦的着火温度和燃尽温度各不相同。通常150-200目石油焦的着火温度小于300℃,燃尽温度为580℃;100-150目石油焦的着火温度为300℃左右,燃尽温度为590℃;1.0 mm石油焦的着火温度为450℃,燃尽温度为650℃,即随着颗粒直径的增加,着火温度和燃尽温度也随之增高。  石油焦的燃烧特性处于烟煤和无烟煤之间,石油焦的着火点及燃尽温度也处于烟煤和无烟煤之间。挥发分的释放有利于石油焦的燃烧,挥发分特性指数大的石油焦,其燃烧特性指数也大。  改性后用于玻璃熔窑的石油焦粉在燃烧前首先利用气力输送原理将成品仓内的粉料采用特殊设备将其与压缩空气混合成一定比例且呈流态化的固、气两相流体,通过管道喷吹,在雾化作用下将石油焦粉喷入熔窑,石油焦粉在高温下与助燃空气混合后,使挥发分挥发燃烧,接着粉状颗粒燃烧。石油焦粉燃烧火焰的黑度系数高,火焰的辐射能力比重油要强,所以,石油焦粉实际单耗量要比按热值计算的重油量要少。石油焦粉火焰与重油燃烧的火焰存在少许差异,主要表现是石油焦粉燃烧时火根温度低于火梢15-30℃。其他如火焰长度、扩散面、形状等都与重油燃烧时的火焰相似。  由于石油焦粉是一种粉状固体燃料,即表面燃烧,难点燃,着火温度高,燃烧不稳定而且难以燃尽,常规燃烧会带来很多不完全燃烧物,造成未燃焦炭含量过高而影响玻璃液透光率。若采用专用燃烧及雾化技术等措施改变石油焦粉的燃烧特性,则可改善其燃烧效果

  • 【讨论】燃烧秸秆对环境有什么危害

    由于农业作业方式的改变和农民生活水平的提高,一些农村地区不再将植物秸秆作为主要的生活燃料,而是将其付之一炬,一烧了之。殊不知秸秆的燃烧对环境的危害极大。 一是污染大气。一般而言,我国农村的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量要好于城市,但由于燃烧秸秆,使得空气中烟尘、颗粒物和其他污染物的浓度急剧增加,空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量迅速下降,不利于人体健康。 二是降低大气能见度,妨碍交通,特别是机场飞机的起降和高速公路上汽车的行驶,容易导致交通事故的发生。 保护环境,从我做起。收获季节,帮助一下农民解决秸秆问题也是“三农”问题的好体现。

  • 航空燃料,汽油,柴油中腐蚀性物质的介绍

    液体燃料在储存运输过程中对容器和管道的腐蚀,以及燃料在发动机中蒸发前对燃料系统的腐蚀均属[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]腐蚀。 液体燃料中的各种烃类对储运设备和发动机中的金属材料均无腐蚀作用。燃料引起金属腐蚀的原因是由于燃料中常含有不同数量的非烃物质,它们主要是硫和硫化合物、有机酸(环烷酸)、水分、添加剂(如乙液中的引出剂)以及细菌等。 一般精制良好的液体燃料均不含无机酸碱和水分,有机酸的含量也很低。但是,各种液体燃料中都含有少量的硫化合物,它们无论在液体状态或燃烧后呈气体状态都能给许多金属带来严重危害。燃料在长期储存过程中会逐渐氧化而生成有机酸,它们也能对一些金属引起腐蚀。 一、硫和硫化合物 液体燃料中的含硫物质主要包括硫(即游离硫)、硫化氢、硫醇、硫醚、二硫化物。(二硫醚)、环硫醚(氢化噻吩)和噻吩等。它们在燃料中的数量和种类是由原油的性质和加工工艺决定的,一般馏分愈重的燃料含硫量也愈多。 各种含硫物质中以硫、硫化氢和硫醇的腐蚀作用zui强,在常温下能直接腐蚀金属,称为活性硫。其他硫化合物在常温下不直接腐蚀金属 ,称为非活性硫。所有含硫物质燃烧后均生成二氧化硫和三氧化硫,它们对一些金属有腐蚀作用,特别在遇水冷凝条件下,生成亚硫酸和硫酸,能导致金属的强烈腐蚀。例如,发动机在起动时或低温下熄火再发动,燃烧室温度很低,燃气中的水分即很容易凝结而引起汽缸和活塞的腐蚀。各型发动机的排气系统同样在低温下也很容易遭受腐蚀。 硫能溶于液体燃料中,在常温下对银、铜及其合金有强烈的直接腐蚀作用。在较高温度下,元素硫也可以直接和铁作用而产生化学腐蚀,生成的产物为FeS,当温度超过150℃时,元素硫还可以和烷烃或环烷烃作用,生成硫化氢而腐蚀金属。在有水的情况下,硫与金属作用的腐蚀产物还可以与金属形成微电池而进行电化腐蚀,当元素硫含量超过0.02%时,硫能与镍作用,破坏其表面晶体结构。 随着温度的升高和硫含量的增大,硫对金属的腐蚀作用也增强。当燃料中无其他活性硫化物存在时,只要元素硫含量达到0.005%,就能引起铜片的腐蚀。当燃料中含有0.001%的硫醇,只要有0.001%的元素硫,就会在铜片上出现腐蚀。 硫与铜作用后生成黑色硫化铜薄胶,覆盖在金属表面。但硫化铜薄膜很不坚固,经过一段时间后便易从表面脱落,在燃料中形成不溶解的沉淀,同时使铜或铜合金进一步进受腐蚀。元素硫与银也能生成黑色硫化银,腐蚀机理与铜相似。 我国的原油大部分属于低硫原油,生产的液体燃料一般含元素硫极微,不致引起铜和铜合金的腐蚀,1962年曾发生大庆2号喷气燃料铜片试验不合格的情况。经检查,系因33号添加剂质量控制不严,将少量硫带进燃料所致。将添加剂中硫充分脱除后,在100℃下经过3h铜片也未出现腐蚀。近年来,我国部分炼厂开始加工进口高硫原油,对脱硫技术提出了更高的要求。 硫化氢是各种硫化合物中腐蚀性zui强的物质。它能直接腐蚀锌、铜、黄铜、铁、铝等金属,生成这些金属的硫化物。燃料中只要有0.0005%的硫化氢,铜片试验即发现有腐蚀现象,因此各种燃料中均不允许含有。硫化氢易溶于水,且易和碱作用,在加工过程中通过碱洗很容易脱除。此外,燃料中的硫化氢与空气接触后易被氧化而生成硫。 硫醇主要腐蚀锡和青铜,在常温下不腐蚀钢、铝等合金。有硫化氢存在时,硫醇的腐蚀作用加剧。硫醇腐蚀金属后,生成难溶于燃料的粘稠胶状沉淀物,聚集在燃料系统的金属表面,堵塞喷嘴、过滤器和喷气发动机油泵的调节机构,破坏发动机的正常工作。硫醇还会与某些人造橡胶起作用,破坏橡胶油箱的缝合胶,引起漏油。 硫醇的腐蚀性与本身的结构有关。存在于汽油和宽馏分喷气燃料中的低分子硫醇具有较大的腐蚀性,存在于煤油型喷气燃料中的较高沸点的硫醇次之,而存在于柴油型喷气燃料中的硫醇则一般可认为是不会引起[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]腐蚀的中性硫化合物。根据研究,60-130℃馏分中的硫醇,其腐蚀性比130-240℃馏分中的硫醇腐蚀性大5-7倍。200-300℃馏分中的硫醇在120℃时还不会腐蚀青铜。 烷基硫醇多存在于直馏产品中,其腐蚀性较大,而芳基硫醇多存在于热裂解产品中.其腐蚀性较小。芳基硫醇中的巯基(-SH)直接连在环上的腐蚀性比巯基连在侧链上的还要小。 为了防止硫醇产生的腐蚀,国内外喷气燃料规格一般将硫醇性硫含量限制在0.001%-0.005%以下。 所有活性含硫物质在有水分存在时,它们的腐蚀性增强。温度升高后,腐蚀性也增大,如俄罗斯TC-1喷气燃料在与青铜接触的情况下,温度从95℃提高到120℃后,腐蚀性增大为原来的1.5-2倍。 由于铜对活性含硫物质的腐蚀比较敏感,所以经常使用铜片试验来检查汽油、煤油或柴油中的活性含硫物质,通常采用的检测仪器为上海羽通仪器仪表厂生产的YT-5096铜片腐蚀测定仪。我国因喷气发动机的油泵有镀银的部件,虽然燃料的铜片试验合格,但仍出现镀银表面腐蚀现象,故在喷气燃料规格中增添了银片腐蚀试验,采用羽通公司生产的YT-0023银片腐蚀测定仪,以检测和防止燃料对油泵镀银部件产生腐蚀。 液体燃料中的硫化物,除了活性硫常温[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件下对金属产生腐蚀外,无论活性硫还是非活性硫燃烧后都会转化成so2和so3,它们也会对发动机产生腐蚀,这些内容将在以后介绍。 由于以上原因,各种液体燃料的规格中都对含硫量作出严格的限制。国家成品油新标准的出台,更是对硫含量的要求有了进一步的提高,原来采用的燃灯法硫含量已经不能满足现在的需要,也促使生产和使用成品油的单位逐渐在采用YT-0253Z库仑硫含量测定仪,YT-0689Z紫外荧光硫含量测定仪和KL-3120X荧光硫含量测定仪。 二、有机酸 液体燃料中的有机酸主要指从原油加工时带来的环烷酸,但也包括少量燃料在储存过程中氧化生成的有机酸(羧酸)。 环烷酸一般以环戊烷和环己烷的衍生物出现,主要存在于柴油馏分中,煤油中含zui较少,汽油中更少。在精制过程中,燃料中的环烷酸和其他有机酸用碱洗后再用水洗,可以大部分被除去。但由于环烷酸钠盐仍有部分溶于燃料,出厂后遇到水分再水解而生成少量环烷酸,溶于燃料。 如果在燃料碱洗过程中控制不良,残存于燃料中的环烷酸皂,将呈棕色粘稠物质从燃料中析出,严重时会堵塞喷气发动机过滤器,影响操作。环烷酸皂很容易与普通胶质区别开,因为环烷酸皂用热水溶解后,会分解而呈碱性反应,而胶质则不能。 环烷酸对铅、锌等有色金属腐蚀性较大,也会腐蚀喷气发动机燃料系统中零件的镀镉层,生成不溶性的腐蚀产物,严重时将破坏燃料系统的正常工作。环烷酸对钢铁的腐蚀性较小,对铝则几乎不腐蚀。 汽油对金属的酸性腐蚀主要是由于氧化生成的有机酸造成的。随着汽油中胶质的生成而出现的有机酸比环烷酸的腐蚀性强得多,特别是能溶于水的低分子有机酸,其腐蚀性很大。如果容器中有水垫或燃料中混入水分时,水层中聚集的酸可以达到一定的浓度,对金属产生强烈的电化学腐蚀。煤油也有类似情况。因此,在储存液体燃料时,应尽量避免水分混入燃料。此外,储油容器或燃料系统中使用不同金属,亦将促进电极电位代数值较小的金属(较活泼的金属)的迅速腐蚀。 随着有机酸相对分子质量的增大,它们与金属作用后生成的盐类在燃料中的溶解度愈来愈小。这些盐类常粘附在容器及燃料系统的金属表面,部分悬浮于燃料中,使用中将会堵塞滤油器、喷嘴或燃油导管,影响燃油的正常流通。车辆长期存放中有时就会出现上述现象。因此,各种液体燃料均对有机酸含量作出严格的限制。相关检测仪器是羽通公司生产的YT-264系列酸值测定仪。 三、水溶性酸或碱 石油产品中的水溶性酸包括硫酸、磺酸、酸性硫酸酯,以及因氧化而生成的低分子有机酸。石油产品中的水溶性碱一般是氢氧化钠。经过正常精制的各种液体燃料都不含有水溶性酸或碱。但是,如果生产中控制不严,或在储存运愉过程中容器不清洁(例如容器用碱洗去油或用硫酸除锈后清洗不够),均有可能混入少量水溶性酸或碱。低分子有机酸则是燃料长期储存中氧化变质后生成的产物。 水溶性酸不仅对钢铁,而且对其他金属都有强烈的腐蚀作用,它们与金属作用后生成相应的盐类。水溶性碱主要对铝及铝合金有强烈的腐蚀。当燃料中有少量水溶性碱时,它能与铝及铝合金表面的氧化铝薄膜作用生成NaAlO2,新暴露的金属铝则容易与溶液中的水分作用,生成胶状的Al(OH)3沉淀。这种沉淀能堵塞滤清器的滤网、喷油嘴或导管。由于水溶性酸或碱的严重危害,一般燃料中均严格规定不许含有。检测仪器为YT-259石油产品水溶性酸和碱测定仪。 四、水分 燃料中混入的水分对金属的腐蚀表现在两个方面:一是水分能直接引起金属的化学和电化学腐蚀 二是燃料中的某些含硫及酸性腐蚀性物质能溶解在水中,加速金属的腐蚀过程。 燃料中的游离水对金属的危害很大,它能腐蚀各种钢制零件,例如钢油罐、油桶、管道、阀门以及其他零件等。水分对低合金钢有较强烈的腐蚀作用,也腐蚀铜和锌等有色金属,对青铜不产生腐蚀。溶解在燃料中的微量水分只引起低合金钢的腐蚀。 在车辆和飞机发动机的燃料中,腐蚀一般容易发生于间歇和慢速运动的滑动部件上,特别是当发动机停放时间过久而又未按规定时间起动试车时,zui容易使各种钢制零件发生腐蚀。腐蚀表面往往出现斑点,生成褐色的絮状沉淀(含有氢氧化铁),堵塞过滤器,有时甚至卡住活门、套筒、活塞等精密机件,从而破坏燃料系统的正常工作。水分的检测主要采用YT-260蒸馏法水分测定仪和YT-11133系列卡尔费休微量水分测定仪。 五、微生物 中国科学院微生物研究所曾对液体燃料中的微生物进行了研究,在国产汽油、喷气燃料、灯用煤油及柴油中分离出细菌82株,真菌约41株。分离出的细菌有假单孢菌属、棒状杆菌属、节杆菌属和产碱杆菌属等,真菌有树脂芽枝霉、茄病镰刀霉、瓦克青霉、杂色曲霉和构巢曲霉等。有的菌种可在喷气燃料中存活300天以上。 喷气燃料中的细菌和真菌约有100多种,zui常见的是树脂芽枝霉。在有水的环境中,细菌能在一较宽的温度范围内生长,zui有利的繁殖温度是25-35度。如有铁锈及污渣等存在,繁殖特别迅速。它们主要以直链烃为食物,然后产生出二氧化碳、醇、酯、有机酸等物质。当储油容器、飞机油箱等长期未清洗,底部积水,在湿热的情况下,细菌极易繁殖。在油水界面上繁殖出的细菌,有的能产生有机酸,有的能将燃料的硫化物转化为硫及硫化氢等活性含硫物质,使容器遭受腐蚀。 为了防止细菌的腐蚀,可以在燃料中加入杀菌剂。这类物质如甲基紫,在每毫升燃料中加入万分之四克即能阻止细菌引起的腐蚀。有的用硼砂、乙二醇硼酸盐或有机硼(加人量0.05%)。因为硼基杀菌剂对祸轮有影响,不能连续使用,只能周期性地加入。此外,还有脂肪族伯胺的醋酸盐及氯霉素等亦可用作杀菌剂。烃类中的细菌缺乏游离水时,便不会繁殖,所以在储运及使用过程中,防止水分进人燃料和及时排出油箱中的水分,消灭细菌繁殖的条件,也可以防止细菌引起的腐蚀。 六、乙液 含有乙液的航空汽油燃烧后的产物也能对金属引起腐蚀。腐蚀有两种情况: 1)乙液中含有的引出剂如溴乙烷等在高温下产生热分解,生成卤化氢,生成的卤化氢在高温下能和金属作用,发生[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]腐蚀,也称热腐蚀。乙液中的引出剂愈多,腐蚀也愈严重。例如发动机中的排气阀等零件就很容易遭受热腐蚀。 2)乙液汽油燃烧后,在发动机燃烧室壁和活塞顶等零件上常聚积有少量溴化铅沉淀。当发动机停放冷却时,溴化铅与凝结水作用,进行水解而生成氢溴酸HBr,对金属产生电化学腐蚀。这种腐蚀又称冷腐蚀。为此,使用过乙液汽油的发动机在长期封存时,燃烧室内需注入滑油或滑脂以防止腐蚀。此外,在储存乙液汽油的容器中有水分存在时,也能使乙液中的引出剂发生水解而生成HBr。它对锌铁(油桶)和镁合金(飞机油箱)等均有强烈的腐蚀作用。因此,在储存和运输乙液汽油时应注意采取措施,防止水分进入燃料。

  • 航空燃料,汽油,柴油中腐蚀性物质的介绍

    液体燃料在储存运输过程中对容器和管道的腐蚀,以及燃料在发动机中蒸发前对燃料系统的腐蚀均属[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]腐蚀。 液体燃料中的各种烃类对储运设备和发动机中的金属材料均无腐蚀作用。燃料引起金属腐蚀的原因是由于燃料中常含有不同数量的非烃物质,它们主要是硫和硫化合物、有机酸(环烷酸)、水分、添加剂(如乙液中的引出剂)以及细菌等。 一般精制良好的液体燃料均不含无机酸碱和水分,有机酸的含量也很低。但是,各种液体燃料中都含有少量的硫化合物,它们无论在液体状态或燃烧后呈气体状态都能给许多金属带来严重危害。燃料在长期储存过程中会逐渐氧化而生成有机酸,它们也能对一些金属引起腐蚀。 一、硫和硫化合物 液体燃料中的含硫物质主要包括硫(即游离硫)、硫化氢、硫醇、硫醚、二硫化物。(二硫醚)、环硫醚(氢化噻吩)和噻吩等。它们在燃料中的数量和种类是由原油的性质和加工工艺决定的,一般馏分愈重的燃料含硫量也愈多。 各种含硫物质中以硫、硫化氢和硫醇的腐蚀作用zui强,在常温下能直接腐蚀金属,称为活性硫。其他硫化合物在常温下不直接腐蚀金属 ,称为非活性硫。所有含硫物质燃烧后均生成二氧化硫和三氧化硫,它们对一些金属有腐蚀作用,特别在遇水冷凝条件下,生成亚硫酸和硫酸,能导致金属的强烈腐蚀。例如,发动机在起动时或低温下熄火再发动,燃烧室温度很低,燃气中的水分即很容易凝结而引起汽缸和活塞的腐蚀。各型发动机的排气系统同样在低温下也很容易遭受腐蚀。 硫能溶于液体燃料中,在常温下对银、铜及其合金有强烈的直接腐蚀作用。在较高温度下,元素硫也可以直接和铁作用而产生化学腐蚀,生成的产物为FeS,当温度超过150℃时,元素硫还可以和烷烃或环烷烃作用,生成硫化氢而腐蚀金属。在有水的情况下,硫与金属作用的腐蚀产物还可以与金属形成微电池而进行电化腐蚀,当元素硫含量超过0.02%时,硫能与镍作用,破坏其表面晶体结构。 随着温度的升高和硫含量的增大,硫对金属的腐蚀作用也增强。当燃料中无其他活性硫化物存在时,只要元素硫含量达到0.005%,就能引起铜片的腐蚀。当燃料中含有0.001%的硫醇,只要有0.001%的元素硫,就会在铜片上出现腐蚀。 硫与铜作用后生成黑色硫化铜薄胶,覆盖在金属表面。但硫化铜薄膜很不坚固,经过一段时间后便易从表面脱落,在燃料中形成不溶解的沉淀,同时使铜或铜合金进一步进受腐蚀。元素硫与银也能生成黑色硫化银,腐蚀机理与铜相似。 我国的原油大部分属于低硫原油,生产的液体燃料一般含元素硫极微,不致引起铜和铜合金的腐蚀,1962年曾发生大庆2号喷气燃料铜片试验不合格的情况。经检查,系因33号添加剂质量控制不严,将少量硫带进燃料所致。将添加剂中硫充分脱除后,在100℃下经过3h铜片也未出现腐蚀。近年来,我国部分炼厂开始加工进口高硫原油,对脱硫技术提出了更高的要求。 硫化氢是各种硫化合物中腐蚀性zui强的物质。它能直接腐蚀锌、铜、黄铜、铁、铝等金属,生成这些金属的硫化物。燃料中只要有0.0005%的硫化氢,铜片试验即发现有腐蚀现象,因此各种燃料中均不允许含有。硫化氢易溶于水,且易和碱作用,在加工过程中通过碱洗很容易脱除。此外,燃料中的硫化氢与空气接触后易被氧化而生成硫。 硫醇主要腐蚀锡和青铜,在常温下不腐蚀钢、铝等合金。有硫化氢存在时,硫醇的腐蚀作用加剧。硫醇腐蚀金属后,生成难溶于燃料的粘稠胶状沉淀物,聚集在燃料系统的金属表面,堵塞喷嘴、过滤器和喷气发动机油泵的调节机构,破坏发动机的正常工作。硫醇还会与某些人造橡胶起作用,破坏橡胶油箱的缝合胶,引起漏油。 硫醇的腐蚀性与本身的结构有关。存在于汽油和宽馏分喷气燃料中的低分子硫醇具有较大的腐蚀性,存在于煤油型喷气燃料中的较高沸点的硫醇次之,而存在于柴油型喷气燃料中的硫醇则一般可认为是不会引起[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]腐蚀的中性硫化合物。根据研究,60-130℃馏分中的硫醇,其腐蚀性比130-240℃馏分中的硫醇腐蚀性大5-7倍。200-300℃馏分中的硫醇在120℃时还不会腐蚀青铜。 烷基硫醇多存在于直馏产品中,其腐蚀性较大,而芳基硫醇多存在于热裂解产品中.其腐蚀性较小。芳基硫醇中的巯基(-SH)直接连在环上的腐蚀性比巯基连在侧链上的还要小。 为了防止硫醇产生的腐蚀,国内外喷气燃料规格一般将硫醇性硫含量限制在0.001%-0.005%以下。 所有活性含硫物质在有水分存在时,它们的腐蚀性增强。温度升高后,腐蚀性也增大,如俄罗斯TC-1喷气燃料在与青铜接触的情况下,温度从95℃提高到120℃后,腐蚀性增大为原来的1.5-2倍。 由于铜对活性含硫物质的腐蚀比较敏感,所以经常使用铜片试验来检查汽油、煤油或柴油中的活性含硫物质,通常采用的检测仪器为上海羽通仪器仪表厂生产的YT-5096铜片腐蚀测定仪。我国因喷气发动机的油泵有镀银的部件,虽然燃料的铜片试验合格,但仍出现镀银表面腐蚀现象,故在喷气燃料规格中增添了银片腐蚀试验,采用羽通公司生产的YT-0023银片腐蚀测定仪,以检测和防止燃料对油泵镀银部件产生腐蚀。 液体燃料中的硫化物,除了活性硫常温[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件下对金属产生腐蚀外,无论活性硫还是非活性硫燃烧后都会转化成so2和so3,它们也会对发动机产生腐蚀,这些内容将在以后介绍。 由于以上原因,各种液体燃料的规格中都对含硫量作出严格的限制。国家成品油新标准的出台,更是对硫含量的要求有了进一步的提高,原来采用的燃灯法硫含量已经不能满足现在的需要,也促使生产和使用成品油的单位逐渐在采用YT-0253Z库仑硫含量测定仪,YT-0689Z紫外荧光硫含量测定仪和KL-3120X荧光硫含量测定仪。 二、有机酸 液体燃料中的有机酸主要指从原油加工时带来的环烷酸,但也包括少量燃料在储存过程中氧化生成的有机酸(羧酸)。 环烷酸一般以环戊烷和环己烷的衍生物出现,主要存在于柴油馏分中,煤油中含zui较少,汽油中更少。在精制过程中,燃料中的环烷酸和其他有机酸用碱洗后再用水洗,可以大部分被除去。但由于环烷酸钠盐仍有部分溶于燃料,出厂后遇到水分再水解而生成少量环烷酸,溶于燃料。 如果在燃料碱洗过程中控制不良,残存于燃料中的环烷酸皂,将呈棕色粘稠物质从燃料中析出,严重时会堵塞喷气发动机过滤器,影响操作。环烷酸皂很容易与普通胶质区别开,因为环烷酸皂用热水溶解后,会分解而呈碱性反应,而胶质则不能。 环烷酸对铅、锌等有色金属腐蚀性较大,也会腐蚀喷气发动机燃料系统中零件的镀镉层,生成不溶性的腐蚀产物,严重时将破坏燃料系统的正常工作。环烷酸对钢铁的腐蚀性较小,对铝则几乎不腐蚀。 汽油对金属的酸性腐蚀主要是由于氧化生成的有机酸造成的。随着汽油中胶质的生成而出现的有机酸比环烷酸的腐蚀性强得多,特别是能溶于水的低分子有机酸,其腐蚀性很大。如果容器中有水垫或燃料中混入水分时,水层中聚集的酸可以达到一定的浓度,对金属产生强烈的电化学腐蚀。煤油也有类似情况。因此,在储存液体燃料时,应尽量避免水分混入燃料。此外,储油容器或燃料系统中使用不同金属,亦将促进电极电位代数值较小的金属(较活泼的金属)的迅速腐蚀。 随着有机酸相对分子质量的增大,它们与金属作用后生成的盐类在燃料中的溶解度愈来愈小。这些盐类常粘附在容器及燃料系统的金属表面,部分悬浮于燃料中,使用中将会堵塞滤油器、喷嘴或燃油导管,影响燃油的正常流通。车辆长期存放中有时就会出现上述现象。因此,各种液体燃料均对有机酸含量作出严格的限制。相关检测仪器是羽通公司生产的YT-264系列酸值测定仪。 三、水溶性酸或碱 石油产品中的水溶性酸包括硫酸、磺酸、酸性硫酸酯,以及因氧化而生成的低分子有机酸。石油产品中的水溶性碱一般是氢氧化钠。经过正常精制的各种液体燃料都不含有水溶性酸或碱。但是,如果生产中控制不严,或在储存运愉过程中容器不清洁(例如容器用碱洗去油或用硫酸除锈后清洗不够),均有可能混入少量水溶性酸或碱。低分子有机酸则是燃料长期储存中氧化变质后生成的产物。 水溶性酸不仅对钢铁,而且对其他金属都有强烈的腐蚀作用,它们与金属作用后生成相应的盐类。水溶性碱主要对铝及铝合金有强烈的腐蚀。当燃料中有少量水溶性碱时,它能与铝及铝合金表面的氧化铝薄膜作用生成NaAlO2,新暴露的金属铝则容易与溶液中的水分作用,生成胶状的Al(OH)3沉淀。这种沉淀能堵塞滤清器的滤网、喷油嘴或导管。由于水溶性酸或碱的严重危害,一般燃料中均严格规定不许含有。检测仪器为YT-259石油产品水溶性酸和碱测定仪。 四、水分 燃料中混入的水分对金属的腐蚀表现在两个方面:一是水分能直接引起金属的化学和电化学腐蚀 二是燃料中的某些含硫及酸性腐蚀性物质能溶解在水中,加速金属的腐蚀过程。 燃料中的游离水对金属的危害很大,它能腐蚀各种钢制零件,例如钢油罐、油桶、管道、阀门以及其他零件等。水分对低合金钢有较强烈的腐蚀作用,也腐蚀铜和锌等有色金属,对青铜不产生腐蚀。溶解在燃料中的微量水分只引起低合金钢的腐蚀。 在车辆和飞机发动机的燃料中,腐蚀一般容易发生于间歇和慢速运动的滑动部件上,特别是当发动机停放时间过久而又未按规定时间起动试车时,zui容易使各种钢制零件发生腐蚀。腐蚀表面往往出现斑点,生成褐色的絮状沉淀(含有氢氧化铁),堵塞过滤器,有时甚至卡住活门、套筒、活塞等精密机件,从而破坏燃料系统的正常工作。水分的检测主要采用YT-260蒸馏法水分测定仪和YT-11133系列卡尔费休微量水分测定仪。 五、微生物 中国科学院微生物研究所曾对液体燃料中的微生物进行了研究,在国产汽油、喷气燃料、灯用煤油及柴油中分离出细菌82株,真菌约41株。分离出的细菌有假单孢菌属、棒状杆菌属、节杆菌属和产碱杆菌属等,真菌有树脂芽枝霉、茄病镰刀霉、瓦克青霉、杂色曲霉和构巢曲霉等。有的菌种可在喷气燃料中存活300天以上。 喷气燃料中的细菌和真菌约有100多种,zui常见的是树脂芽枝霉。在有水的环境中,细菌能在一较宽的温度范围内生长,zui有利的繁殖温度是25-35度。如有铁锈及污渣等存在,繁殖特别迅速。它们主要以直链烃为食物,然后产生出二氧化碳、醇、酯、有机酸等物质。当储油容器、飞机油箱等长期未清洗,底部积水,在湿热的情况下,细菌极易繁殖。在油水界面上繁殖出的细菌,有的能产生有机酸,有的能将燃料的硫化物转化为硫及硫化氢等活性含硫物质,使容器遭受腐蚀。 为了防止细菌的腐蚀,可以在燃料中加入杀菌剂。这类物质如甲基紫,在每毫升燃料中加入万分之四克即能阻止细菌引起的腐蚀。有的用硼砂、乙二醇硼酸盐或有机硼(加人量0.05%)。因为硼基杀菌剂对祸轮有影响,不能连续使用,只能周期性地加入。此外,还有脂肪族伯胺的醋酸盐及氯霉素等亦可用作杀菌剂。烃类中的细菌缺乏游离水时,便不会繁殖,所以在储运及使用过程中,防止水分进人燃料和及时排出油箱中的水分,消灭细菌繁殖的条件,也可以防止细菌引起的腐蚀。 六、乙液 含有乙液的航空汽油燃烧后的产物也能对金属引起腐蚀。腐蚀有两种情况: 1)乙液中含有的引出剂如溴乙烷等在高温下产生热分解,生成卤化氢,生成的卤化氢在高温下能和金属作用,发生[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]腐蚀,也称热腐蚀。乙液中的引出剂愈多,腐蚀也愈严重。例如发动机中的排气阀等零件就很容易遭受热腐蚀。 2)乙液汽油燃烧后,在发动机燃烧室壁和活塞顶等零件上常聚积有少量溴化铅沉淀。当发动机停放冷却时,溴化铅与凝结水作用,进行水解而生成氢溴酸HBr,对金属产生电化学腐蚀。这种腐蚀又称冷腐蚀。为此,使用过乙液汽油的发动机在长期封存时,燃烧室内需注入滑油或滑脂以防止腐蚀。此外,在储存乙液汽油的容器中有水分存在时,也能使乙液中的引出剂发生水解而生成HBr。它对锌铁(油桶)和镁合金(飞机油箱)等均有强烈的腐蚀作用。因此,在储存和运输乙液汽油时应注意采取措施,防止水分进入燃料

  • 燃烧炉与离子色谱联用技术

    大家好!老板布置任务,要求用离子色谱+燃烧炉系统,测试油中卤素含量。网上查了下有现成的产品,但价格太贵,所以准备采购一台离子色谱和燃烧炉,现求助该系统的有关测试操作经验。谢谢!

  • 【分享】PE公司AA-300原子吸收仪点火困难和燃烧器控制系统剖析

    PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪点火困难和燃烧器控制系统剖析PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪点火困难和燃烧器控制系统剖析2005年02期邵星炜 , 苏浩 上海宝钢股份公司现有[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计20台,承担着原料、钢铁、环境、化工产品的分析,仪器分别来自美国PE、瓦里安,日本岛津、柳本公司.现对PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪燃烧器控制系统的剖析和对仪器点火困难和使用一段时间后熄火这一故障处理,结合PEAA-300燃烧器控制系统的原理,向大家介绍处理故障的经过,供[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪的维护人员在以后的同类故障处理中参考. 关键词: [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度 , 电流-气流转换器 , 燃烧器元件 , 喷雾器 , 燃烧器排液系统 , 点火器元件 , 气体控制器 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67778]PE公司AA-300[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪点火困难和燃烧器控制系统剖析[/url]

  • 【原创】烟气分析仪提高工业窑炉燃烧效率的意义及应用

    烟气分析仪提高工业窑炉燃烧效率的意义及应用【原创】 作者:李玉峰 上海**科学仪器有限公司 2011年5月16日 中国从二00六年起开始实施GDP能耗指标公报制度。来自国家发改委的消息说,万元GDP能耗、万元GDP能耗降低率等重要能耗指标将定期向社会公布。“十一五\"规划建议首次明确提出了单位GDP能耗下降指标,要求到二0一0年单位国内生产总值(GDP)能源消耗比“十五\"期末降低二成左右。这意味着,今后年均能耗将下降百分之四左右将成为一种趋势。根据未来我国经济社会发展的趋势和条件,提出了“十一五\"时期的主要发展目标。其中包括两个重要的数量目标:一是人均国内生产总值2010年比2000年翻一番;二是单位国内生产总值能源消耗比“十五\"期末降低20%左右。后一指标的具体含义是,按可比价计算的每万元国内生产总值的能源消耗量,以吨标准煤作为单位。在仅有的两个数量指标中,就包括能源消耗指标,充分说明这一目标在“十一五\"发展中的重要性。第二,降低能源消耗的任务很艰巨,潜力也很大。改革开放以来我国能源利用效率有所提高,但还不够明显。2003年、2004年我国能源消费增长速度均高于15%,而经济增长速度均为9.5%,单位国内生产总值能耗呈现上升趋势。2005-2008年的能耗增长速度也大大高于经济增长速度。例如,我国单位产出能源消耗大大高于发达国家和世界平均水平。据计算,2003年,我国单位国内生产总值的能源消耗比世界平均水平高2.2倍,比美国高2.3倍,比欧盟高4.5倍,比日本高8倍,比印度还高0.3倍。目前我国的一次能源消费相当于美国的60%,但经济总量仅相当于美国的比例不到15%。理论上讲,如果我国的能源利用效率达到世界平均水平,那么在现有基础上不用再增加能源消耗,也可以实现经济总量翻番。按照五年能耗降低20%计算,平均每年降低约4%,在现有偏高的能源消耗基础上,经过努力,这一能耗降低目标是有可能达到的。目前工业领域考虑节能、环保主要是提高工业窑炉热效率,且主要的途径如下是加强炉窑热工管理、热工控制,提高操作水平。上海普致科学仪器有限公司是专业从事气体采样调节、烟道气及过程气体分析、汽车尾气分析、汽车检测与诊断、火焰探测、光学仪器、热成像、气体传感器等领域国外知名品牌仪器仪表的研究与销售,普致科技凭借其专业的技术优势在业内遥遥领先,尤其在专业的气体分析领域拥有丰富的经验。不仅为各行各业提供完整的测量方案,而且为各级标准实验室提供最专业的测量及校准服务,多年以来累积了丰富的测量经验与解决方案,在测量技术的专业领域中拥有着极高的声誉与口碑。ecom®烟气分析仪在节能及环保方面的应用:当鼓风量过大时(即空燃比α偏大),虽然能使燃料充分燃烧,但烟气中过剩空气量偏大,表现为烟气中O2含量高,过剩空气带走的热损失Q1值增大,导致热效率η偏低。与此同时,过量的氧气会与燃料中的S、烟气中的N2反应生成SO2、NOX等有害物质。而对于轧钢加热炉,烟气中氧含量过高还会导致钢坯氧化铁皮增厚,增加氧化烧损。 当鼓风量偏低时(即空燃比α减小),表现为烟气中O2含量低,CO含量高,虽说排烟热损失小,但燃料没有完全燃烧,热损失Q2增大,热效率η也将降低。另外,烟囱也会冒黑烟而污染环境。 提高燃烧效率最直接的方法就是使用烟气分析仪器(如多功能烟气分析仪、燃烧效率测定仪、在线烟气分析仪检测仪)定期或连续监测烟道气体成分,分析烟气中O2含量和CO含量,调节助燃空气和燃料的流量,确定最佳的空气消耗系数。 所以,想全面、准确地了解一台锅(窑)炉的燃烧状况,仅仅测量SO2、NOX等参数是不够的,同时还要测量出O2及由O2计算的过剩空气系数,然后把SO2、NOX等参数进行折算,这样的结果才能符合国标的要求。无论采取何种方式控制燃烧效率,快速、准确的测量烟气中O2含量和CO含量都是实现最佳燃烧的前提条件。所谓提高燃烧效率,就是要适量的燃料与适量的空气组成最佳比例进行燃烧。因此,这里介绍一些典型的烟气分析仪器应用。 烟气分析仪是抽气采样炉窑烟道气体并自动进行成分分析的仪表,分为在线监测式和便携式。一般可以测量分析烟气中的CO、O2、NOX、SO2等气体含量,以及烟气温度、压力、环境温度等,并通过计算获得CO2含量、过剩空气系数、烟气露点、燃烧效率、排烟热损失、烟气流量等热工参数。 烟气分析仪中一般安装多个传感器,分为电化学传感器和红外传感器。电化学传感器测量原理是将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。 红外传感器主要由红外光源、红外吸收池、红外接收器、气体管路、温度传感器等组成。它是利用各种元素对某个特定波长的吸收原理,当被测气体进入红外吸收池后会对红外光有不同程度的吸收,从而计算出气体含量。红外传感器具有抗中毒性好、量程范围广、反应灵敏等特点。 烟气分析仪利用测量得到的O2、CO含量等数据可计算得到相应的热工参数:CO2含量,空气过剩系数,排烟热损失,燃烧效率,空气过剩系数等等 。 烟气分析仪器应用领域十分广泛,例如:(1)热电厂循环流化床锅炉用于燃烧控制室的烟道气体监测;(2)钢铁厂轧钢加热炉用于解决降低氧化烧损或脱碳层厚度时的炉气气氛检测;(3)全氢热处理炉用于检测辐射管是否烧穿漏气(4)研制新型燃烧器(蓄热式、低NOX式、辐射管式)时用于燃烧器结构尺寸的设计研究;(5)汽车尾气排放检测;(6)其他环境保护监测项目。

  • 一种先进的密闭系统纯氧条件下有机卤素有机氟的快速燃烧炉前处理装置

    一种先进的密闭系统纯氧条件下有机卤素有机氟的快速燃烧炉前处理装置

    符合EN14582 卤素测试的技术要求。由日本三菱生产的自动快速燃烧炉 AQF-2100H(针对固体) AQF-2100V(针对液体,气体)技术参数:高纯氩气,高纯氧气最高加热温度1100度高纯石英管,陶瓷管,痕量测试可到达100ppb加湿系统改善回收率,准确性自动定容功能,使用外标法更方便安全级别高,24小时无人值守,异常情况报警并及时停止错误操作[img=,690,816]https://ng1.17img.cn/bbsfiles/images/2023/03/202303310025559841_9136_3293902_3.jpg!w690x816.jpg[/img][img=,690,398]https://ng1.17img.cn/bbsfiles/images/2023/03/202303310027142194_9272_3293902_3.jpg!w690x398.jpg[/img]

  • 【原创大赛】zeenit700原子吸收光谱仪燃烧器-雾化系统维护与优化

    【原创大赛】zeenit700原子吸收光谱仪燃烧器-雾化系统维护与优化

    前 言:在仪器信息网总是能看到不少精华的帖子,学习到不少课堂上不曾会讲到的经验与知识。比如前一段时间安老师写的《火焰燃烧器的调整方法》受益良多。说来惭愧,本人接手原吸近五年了,也未曾清洗过火焰燃烧器,一个是样品多是饮用水之类的纯净样品,平时的考核都还行,另一个就是拖延症比较重,有几次起心要做,但是都只是起心而已,呵呵。看完安老师的帖子后,我决定好好清洗一次火焰燃烧器。虽说是基础维护但是我尽量图文并茂,为同型号的仪器操作者提供参考,也请各位指出不足,以下为正文。仪器:德国耶拿ZEENIT700原子吸收光谱仪 第一部分 燃烧头-雾化器系统的拆解与清洗 一般情况下,火焰燃烧器出现下列情况时我们需要清洗燃烧器1)火焰形状异常(如:分叉,边缘异常)2)燃烧头狭缝有异物堵塞,特别是长时间测量高盐样品时3)测量灵敏度严重下降4)测量重复性不好5)火焰燃烧时有爆沸发生为了给各位一个直观的印象,借用一张官方图片说明燃烧头-雾化器系统(实际照片有点不同,但无影响,各位自己分辨了)http://ng1.17img.cn/bbsfiles/images/2015/07/201507291524_557809_2648817_3.jpg图11、大致的清洗顺序如下 a.拆下燃烧头-雾化器系统 b.清洗雾化室 c.清洗水封 d.清洗混合室e.清洗燃烧头2、拆机之前,按照日常的操作与设置,测定1ppm的铜标液,连续测定6次(每次仪器测定3次),记录吸光度、RSD以及部分参数留作对比。http://ng1.17img.cn/bbsfiles/images/2015/07/201507291525_557810_2648817_3.jpg图2部分参数:燃气流量:50 l/h,燃烧头高度:6mm ,燃助比:0.125剔除第四组数据后(原因见第四部分)Abs均值:0.1769,五次测定的RSD:0.683。 数据还不错吧,我也觉得不错,不然我们也没法做考核样了。不过大家注意到第4次测定的数据没,低了一点。这里有一个小插曲,后面第四部分我再告诉大家。3、拆下燃烧头-雾化器系统。拆机之前,拍照留念,呵呵,其实主要是为了防止我复原时接错管路。http://ng1.17img.cn/bbsfiles/images/2015/07/201507291525_557811_2648817_3.jpg图3a. 松开固定螺丝1 ,拆下燃烧头b. 松开混合室的各气路接头(空气和乙炔)和废液管。注意:有的接头是有垫圈的,不要掉落遗失了c. 松开水封传感器接头8并拔下http://ng1.17img.cn/bbsfiles/images/2015/07/201507291525_557812_2648817_3.jpg图4d. 松开14固定燃烧头-雾化器系统的螺丝,即可取下整个雾化系统。取下时,保持雾化系统竖直,因为内部还有水,拿到水池边向废液口一侧倾斜,可到出内部的液体e. 旋下上部燃烧头连接块,松开水封水封固定螺丝9,取下水封10f. 拧开浮子插入单元11,从水封中取出浮子,如下图5http://ng1.17img.cn/bbsfiles/images/2015/07/201507291525_557813_2648817_3.jpg图5下图的是混合室12与水封10的连接口,脏吧!http://ng1.17img.cn/bbsfiles/images/2015/07/201507291526_557814_2648817_3.jpg图6在换个角度看看http://ng1.17img.cn/bbsfiles/images/2015/07/201507291526_557815_2648817_3.jpg图7左上角那点黑圈是安全阀的垫圈,后面有拆解图。洗出接口的黑色东东,滑滑的类似水藻之类的东西,见下图8http://ng1.17img.cn/bbsfiles/images/2015/07/201507291526_557816_2648817_3.jpg图8g. 拧开雾化器固定螺帽5,小心地拔出雾化器4http://ng1.17img.cn/bbsfiles/images/2015/07/201507291526_557817_2648817_3.png图9h. 从混合室12上旋下雾化室,下图中正前方的孔是雾化器插孔,下方边缘发黑的是撞击球的固定位置http://ng1.17img.cn/bbsfiles/images/2015/07/201507291527_557818_2648817_3.jpg图10i. 松开撞击球固定螺帽6,小心地拆下撞击球,确保撞击球不能损坏。因为撞击球是“7”字型的,所以取下时不能直接往下拔,要先往下拔一点,从雾化室和混合室的接口看到撞击球的球珠要碰到管壁时,沿“7”字拐角稍稍倾斜,即可取出撞击球及其底座。(因为撞击球固定旋帽6是套在撞击球固定单元7上的,是松动的,所以取撞击球时不能拿着旋帽,要拿着下面的金属底座)http://ng1.17img.cn/bbsfiles/images/2015/07/201507291527_557819_2648817_3.jpg图11j. 拧下安全阀http://ng1.17img.cn/bbsfiles/images/2015/07/201507291527_557821_2648817_3.jpg图12http://ng1.17img.cn/bbsfiles/images/2015/07/201507291527_557823_2648817_3.jpg图13安全阀也有部分腐蚀到这雾化系统基本拆解完毕,接下来就是清洗。雾化室,混合室,水封这三大块可以先用自来水冲洗,冲不掉的污垢可以用细毛刷轻轻刷洗,注意不要让刷子上的金属部分划到内壁,以免后期划痕干扰气流,使产生的气溶胶颗粒,因雾化室、混合室内壁的不光洁,造成一部分气溶胶挂壁而转变为大滴的液珠成为废液流出。最后再用蒸馏水清洗一遍即可。注意各个部位的密封圈不要掉落或遗失。4、清洗雾化器a. 用仪器配备的细通丝插入雾化器的导管,来回抽动几次,动作要轻柔,避免损坏毛细管的出口http://ng1.17img.cn/bbsfiles/images/2015/07/201507291528_557824_2648817_3.jpg图145 、清洗撞击球及底座(还是借用官方图片一张)a. 松开撞击球固定螺帽b. 小心地拆下撞击球架,要注意倾斜一定的角度,以免碰断撞击球c. 尽可能地向右旋转螺丝2(图15右)到头,d. 用工具旋开PTFE 方形螺丝1(图15右),拔出撞击球e. 用细毛刷刷洗底座f. 插入撞

  • 耶拿Nov400清洗燃烧头雾化器系统后杯具了!!!求助,十万火急!!!

    耶拿Nov400清洗燃烧头雾化器系统后杯具了!!!求助,十万火急!!!

    本人使用的为耶拿 vario6系列 Nov400原子吸收光谱仪。前几天因为感觉仪器灵敏度太差,所以按说明书指示把燃烧头-雾化器系统拆开清洗了一次。并按说明书重新组装。但是杯具了,检测助燃气和燃气的时候,空气测试时,吸样品的管有气体喷出。按理讲,吸样管应该是往里面吸才对,但是现在是往外吹气。把雾化器取下通空气,雾化器两端都有空气吹出。请问论坛里哪位老师使用同样型号的仪器遇到过同样的情况?期待您的指教。现将仪器燃烧头雾化器系统发图,请各位老师帮忙分析,谢谢http://ng1.17img.cn/bbsfiles/images/2011/10/201110271018_326726_2338413_3.jpg

  • 纺织品服装甲醛、燃烧、重金属、抗菌等的测定国家标准(部分)

    GB/T2912.1-1998 纺织品 甲醛的测定 第1部分:游离水解的甲醛(水萃取法)  GB/T2912.2-1998 纺织品 甲醛的测定 第2部分:释放甲醛(蒸气吸收法)  GB/T14644-1993 纺织织物 燃烧性能 45°方向燃烧速率测定  GB/T14645-1993 纺织织物 燃烧性能 45°方向损毁面积和接焰次数测定  GB/T17591-2006 阻燃织物  GB/T17592-2006 纺织品 禁用偶氮染料的测定  GB/T17593.1-2006 纺织品 重金属的测定 第1部分:原子吸收分光光度法  GB/T17593.2-2007 纺织品 重金属的测定 第2部分: 电感耦合等离子体原子发射光谱法  GB/T17593.3-2006 纺织品 重金属的测定 第3部分:六价铬 分光光度法  GB/T17593.4-2006 纺织品 重金属的测定 第4部分:砷、汞原子荧光分光光度法  GB/T17595-1998 纺织品 织物燃烧试验前的家庭洗涤程序  GB/T17596-1998 纺织品 织物燃烧试验前的商业洗涤程序  GB/T17599-1998 防护服用织物 防热性能 抗熔融金属滴冲击性能的测定  GB/T20382-2006 纺织品 致癌染料的测定  GB/T20383-2006 纺织品 致敏性分散染料的测定  GB/T20384-2006 纺织品 氯化苯和氯化甲苯残留量的测定  GB/T20385-2006 纺织品 有机锡化合物的测定  GB/T20386-2006 纺织品 邻苯基苯酚的测定  GB/T20387-2006 纺织品 多氯联苯的测定  GB/T20388-2006 纺织品 邻苯二甲酸酯的测定  GB/T20390.1-2006 纺织品 床上用品燃烧性能 第1部分:香烟为点火源的可点燃性试验方法  GB/T20390.2-2006 纺织品 床上用品燃烧性能 第2部分:小火焰为点火源的可点燃性试验方法  GB/T20944.1-2007 纺织品 抗菌性能的评价 第1部分:琼脂平皿扩散法  GB/T20944.2-2007 纺织品 抗菌性能的评价 第2部分:吸收法  GB/T20944.3-2008 纺织品 抗菌性能的评价 第3部分:振荡法

  • 【资料】电弧炉燃烧法测定石油产品中的硫量

    电弧炉燃烧法测定石油产品中的硫量 1.石油产品的硫量测定 现行的检验方法中有管式炉法、燃灯法、氧弹法等,近代方法常用X射线荧光谱法。前者是长期沿用的经典方法,但费时费力,完成一个样品的测定常需耗时数小时;X射线法测定精密度高,测定省力省时,但仪器昂贵。本法利用电弧引燃炉、纯铁助燃高温快速燃烧的方法,实现对石油产品硫含量的快速测定。经对轻柴油、燃料油、润滑油等样品进行测定,测定,测定结果的相对标准偏差在5%以下,测定范围硫含量(质量分数)为0.2%~4%。与X荧光法对比,试验结果能很好地相符。 2.添加剂的选用 试验中首先考虑用硅钼粉加锡作添加剂,经试验,常常出现炉渣中间包裹有未燃完的球状颗粒,实验难以控制。后选用TH-100型高效添加剂,固定纯铁助燃剂用量,以轻柴油作试样,在0.1~0.4g范围内,改变TH-100型添中剂用量所得结果表明,0.3g与0.4用量时硫测定结果示值较高。后选取TH-100添加剂和量为0.3g左右。由于纯铁助燃剂用量的多少会对体系温度产生影响。从而影响到燃烧输出的SO2量及测定结果,所以有必要对纯铁助燃剂用量进行试验确定。试验以轻柴油作试样,固定添加剂用量,在0.8~1.2g范围改变纯铁助燃剂用量,结果表明,当用TH-100高效添加剂时,纯铁用量的少量改变对结果无明显影响。当采用硅钼粉(0.5g)+(0.2g)添加剂时,随纯铁助燃剂用量增国,测定结果略有增加。故选用TH-100型高效添加剂,纯铁助燃剂用量在为1.0g左右。

  • 织物垂直燃烧测试原理解析

    织物垂直燃烧测试原理解析

    织物垂直燃烧测试原理解析测试标准:ASTM D6413,DOC-FF 3/71,CALIF TB-117,GB/T5455,CPAI-84试验原理:用规定点火器产生的火焰,对垂直方向的试样底边中心点火,在规定的点火时间后,测量试样的续燃时间、阴燃时间及损毁长度。仪器设备组成及各部件配合:1、试验箱体,箱体侧面及顶部开有标准规定的通风孔。箱体门应嵌有透明耐火玻璃,以便测试者观察试样燃烧情况。2、试样夹具及其固定装置。试样夹具上设有倒钩,挂于箱体上部的试样夹具支架上,箱体中部还设有固定装置,保证试样维持在竖直方向。3、点火计时系统。仪器的点火计时系统是独立于试验箱体的。不同的标准,点火时间的控制是不同的。一种是控制煤气通入的时间,达到标准规定的时间后,燃气关闭,外源燃烧停止。一种是移动火焰位置,标准点火时间过后,火焰位置远离试样。4、计时装置为手动启动计时,试验这观察织物表面状态,按动开关进行计时。试验过程:以GB/T 5455-2014为例介绍垂直燃烧试验的试验过程。1、关闭试验箱前门,打开气体供给阀,点着点火器,调节火焰高度。燃烧一定时间后,熄灭火焰(排除管道内的空气)。2、干燥过后的试样装到夹具中,试样应尽可能的保证平整。将试样夹上端挂在支架上,侧面被试样夹固定装置固定。3、关闭箱门,点着点火器,火焰稳定后,移动火焰到试样正下方。4、点火时间后,点火器移开,打开计时器,记录续燃时间及阴燃时间。随时记录试样燃烧状况。5、打开风扇,或通风厨,排除烟气。6、打开箱门,取出试样,在织物一端悬挂重锤测试损毁长度,测试方法如图所示。沿试样长度方向上损毁面积内最高点折一条直线,然后在试样的下端一侧,距其底边及侧边各约6mm处,挂上选用的重锤,再用手缓缓提起试样下端的另一侧,让重锤悬空,再放下,测量并记录试样撕裂的长度,即为损毁长度,精确到1mm。http://ng1.17img.cn/bbsfiles/images/2015/05/201505211033_546883_1916297_3.png注意事项:1、纺织品的燃烧可能会产生影响操作人员健康的烟雾和有毒气体,试验人员需佩戴防毒面罩。试验时可在通风厨内完成。每次试验后应排除烟雾和烟尘。2、试样燃烧时应关闭通风系统,避免影响试验结果。3、当试验熔融性纤维制成的织物时,如果被测试样在燃烧过程中有熔滴产生,则应在试验箱的箱底平铺10mm厚的脱脂棉,并记录脱脂棉是否有燃烧或阴燃现象。

  • 燃料油基本知识

    (1)什么是燃料油?绝大部分石油产品均可用作燃料,但燃料油在不同的地区却有不同的解释。欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的惨合物,主要用作蒸汽炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。但在美国则指任何闪点不低于37.8°C的可燃烧的液态或可液化的石油产品,它既可以是残渣燃料油(Residual Fuel 011,亦称Heavy Fuel 011)也可是馏分燃料油(Healing 011)。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程如裂化等再经蒸馏得到。燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity),硫含量(Sulfur Content),倾点(Pour Point)等供发电厂等使用的燃料油还对钒(Vanadium)、钠(Sodium)含量作有规定.1、 燃料油的自然属性燃料油是成品油的一种,广泛用于电厂发电、船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。(1) 粘度粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。目前国内较常用的是40°C运动粘度(馏分型燃料油)和100°C运动粘度(残渣型燃料油)。我国过去的燃料油行业标准用恩氏粘度(80°C、100°C)作为质量控制指标,用80°C运动粘度来划分牌号。油品运动粘度是油品的动力粘度和密度的比值。运动粘度的单位是Stokes,即斯托克斯,简称斯。当流体的动力粘度为1泊,密度为1g/cm3时的运动粘度为1斯托克斯。CST是Centistokes的缩写,意思是厘斯,即1斯托克斯的百分之一。(2) 含硫量燃料油中的硫含量过高会引起金属设备腐蚀的和环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫、低硫燃料油。在石油的组分中除碳、氢外,硫是第三个主要组分,虽然在含量上远低于前两者,但是其含量仍然是很重要的一个指标。按含硫量的多少,燃料油一般又有低硫(LSFO)与高硫(HSFO)之分,前者含硫在1%以下,后者通常高达3.5%甚至4.5%或以上。另外还有低蜡油(Low Sulfur Waxy Residual缩写LSWR),含蜡量高有高倾点(如40至50°C)。在上海期货交易所交易的是高硫燃料油(HSFO)。(3) 密度为油品的质量(Mass)与具体积的比值。常用单位——克/立方厘米、千克/立方米或公砘/立方米等。由于体积随温度的变化而变化,故密度不能脱离温度而独立存在。为便于比较,西方规定以15°C下之密度作为石油的标准密度。(4) 闪点是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温度即定义为其闪点。其特点是火焰一闪即灭,达到闪点温度的油品尚未能提供足够的可燃蒸气以维持持续的燃烧,仅当其再行受热而达到另一更高的温度时,一旦与火源相遇方构成持续燃烧,此时的温度称燃点或着火点(Fire Point或Ignition Point)。虽然如此,但闪点已足以表征一油品着火燃烧的危险程度,习惯上也正是根据闪点对危险品进行分级。显然闪点愈低愈危险,愈高愈安全。(5) 水分水分的存在会影响燃料油的凝点,随着含水量的增加,燃料油的凝点逐渐上升。此外,水分还会影响燃料机械的燃烧性能,可能会造成炉膛熄火、停炉等事故。(6) 灰分灰分是燃烧后剩余不能燃烧的部分,特别是催化裂化循环油和油浆渗入燃料油后,硅铝催化剂粉末会使泵、阀磨损加速。另外,灰分还会覆盖在锅炉受热面上,使传热性变坏。(7) 机械杂质机械杂质会堵塞过滤网,造成抽油泵磨损和喷油嘴堵塞,影响正常燃烧。2、 燃料油的分类燃料油作为炼油工艺过程中的最后一种产品,产品质量控制有着较强的特殊性,最终燃料油产品形成受到原油品种、加工工艺、加工深度等许多因素的制约。根据不同的标准,燃料油可以进行以下分类:(1) 根据出厂时是否形成商品,燃料油可以分为商品燃料油和自用燃料油。商品燃料油指在出厂环节形成商品的燃料油;自用燃料油指用于炼厂生产的原料或燃料而未在出厂环节形成商品的燃料油。(2) 根据加工工艺流程,燃料油可以分为常压重油、减压重油、催化重油和混合重油。常压重油指炼厂催化、裂化装置分馏出的重油(俗称油浆);混合重油一般指减压重油和催化重油的混合。(3) 根据用途,燃料油分为船用内燃机燃料油和炉用燃料油两大类。前者是由直馏重油和一定比例的柴油混合而成,用于大型低速船用柴油机(转速小于150转/分)。后者又称为重油,主要是减压渣油、或裂化残油或二者的混合物,或调入适量裂化轻油制成的重质石油燃料油,供各种工业炉或锅炉作为燃料。船用内燃机燃料油是大型低速柴油机的燃料油,其主要使用性能是要求燃料能够喷油雾化良好,以便燃烧完全,降低耗油量,减少积炭和发动机的磨损,因而要求燃料油具有一定的黏度,以保证在预热温度下能达到高压油泵和喷油嘴所需要的黏度(约为21-27厘斯),通常使用较多的是38°C。雷氏1号黏度为1000和1500秒的两种。由于燃料油在使用时必须预热以降低黏度,为了确保使用安全预热温度必须比燃料油的闪点低约20°C,燃料油的闪点一般在70-150°C之间。重油主要作为各种锅炉和工业用炉的燃料油。各种工业炉燃料系统的工作过程大体相同,即抽油泵把重油从储油罐中抽出,经粗、细分离器除去机械杂质,再经预热器预热到70-120°C,预热后的重油黏度降低,再经过调节阀在8-20天大气压下,由喷油嘴喷入炉膛,雾状的重油与空气混合后燃烧,燃烧废气通过烟囱排入大气。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制