当前位置: 仪器信息网 > 行业主题 > >

实验流体力学

仪器信息网实验流体力学专题为您整合实验流体力学相关的最新文章,在实验流体力学专题,您不仅可以免费浏览实验流体力学的资讯, 同时您还可以浏览实验流体力学的相关资料、解决方案,参与社区实验流体力学话题讨论。

实验流体力学相关的资讯

  • 赛默飞世尔科技与德累斯顿工业大学流体力学学院展开合作
    &mdash &mdash 推出&ldquo 流变学入门课程&rdquo 培训包,内含实践实验指导 德国卡尔斯鲁厄(2010年6月7日) &mdash 全球服务科学领域的领导者赛默飞世尔科技有限公司与德累斯顿工业大学流体力学学院展开密切合作,为其学生提供流变学培训课程。此次合作可为公司的所有意向客户提供有关Thermo Scientific HAAKE Viscotester 550 粘度计的各种实践实验资料。 流变学研究对于新产品的开发和质量控制来说正变得日益重要 &mdash 例如,从低粘度的眼药水到固体聚合物。因此,早期培训对于了解流变现象就显得更为重要。赛默飞世尔的&ldquo 流变学入门课程&rdquo 培训包中包括具有特殊配置的HAAKE Viscotester 550粘度计和两个实践实验的说明。该培训可用于普通学校、职业学校、公司和大学。此外,培训包还为授课教师准备了教学指导和实验结果示例。为确保培训包的效果,赛默飞世尔科技将在研讨会活动中对授课教师进行一天的培训。 &ldquo 我们在学生培训课上使用HAAKE Viscotester 550等旋转粘度计进行流变测量教学。该仪器是实践实验的理想之选,通过使用预设的内部程序或软件,操作变得非常简单,可快速培训多个用户。&rdquo 德累斯顿工业大学流体力学学院磁流体动力学系主任Odenbach教授说道:&ldquo 在更复杂的流变测量中,我们使用诸如Thermo Scientific HAAKE MARS之类的仪器。它是一个模块化的流变仪平台,能够针对各种应用进行校准,并提供多种附件。 培训包优点一览: · 坚固可靠的旋转粘度计,带预设的内部程序。 · 适用于介质粘度试验的同心圆筒测量转子,可选用多种测量转子进行扩展(例如、平行板、锥板、旋转式或悬挂式同心圆筒) · 用户友好的Thermo Scientific HAAKE RheoWin测量和评估软件,适用于初学者或熟练用户,可在www.thermoscientific.com/mc 网站上进行免费升级。 · 文件资料中包含流变学基础知识和两个实践实验的说明,还包括授课教师的教学指导。 · 在授课教师的进一步培训中,可有针对性地讲授流变学基础知识或巩固已有知识。 流变学领域的领先者之一赛默飞世尔科技凭借其丰富的Thermo Scientific材料物性表征解决方案为各行各业的客户提供支持。材料物性表征解决方案对塑料、食品、化妆品、药品、涂料、化学品和石化产品,乃至各种液体或固体的粘度、弹性、可加工性和温度相关力学变化进行分析和测量。欲了解更多信息,请访问www.thermoscientific.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔科技旗下品牌。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证券交易所代码:TMO)是全球科学服务领域的领导者,致力于为客户提供全面支持,让世界变得更健康、更清洁、更安全。公司拥有员工35,000名,年收入超过100亿美元,所服务客户包括:医药和生物科技公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制等行业。公司借助Thermo Scientific和Fisher Scientific这两个主要品牌,为客户提供了独特的连续技术开发以及最便捷的采购方案,为公司的主要股东创造利润和其他价值。公司的产品和服务有助于加快科研步伐,帮助客户解决从复杂研发到常规测试再到现场应用中遇到的各类分析挑战。请访问www.thermofisher.com 或中文网站www.thermo.com.cn, www.fishersci.com.cn。
  • 美国TSI公司流体力学网上讲座
    题目:利用互相关峰率量化PIV不确定度演讲人:普渡大学 Pavlos Vlachos教授; TSI 公司Stamatios Pothos 和 Aaron Boomsma 博士;日期:2014年12月18日时间:美 中央时区早上9:00 点(北京时间 晚10:00点)在粒子图像测速系统(PIV)中,误差取决于PIV算法、用户设置、流动特征与实验装置。之前,PIV系统的误差分析是在理想或约束的实验与分析条件下建立的。然而,这些条件与随着时间空间变化的实验和流动实际条件不同。因此,误差及广义的PIV不确定度不能基于现有的误差分析。John Charonko and Pavlos Vlachos博士发现PIV不确定度是与互相关信噪比密切相关。互相关信噪比的一个主要指标是第一峰率(PPR),PPR是互相关分析图上的第一高峰与第二高峰比值。总之,不确定度是与PPR呈负相关。本次研讨会,Pavlos Vlachos教授将介绍量化PIV不确定度的方法及其在TSI Insight4G软件中的实现。请您点击以下链接尽快注册参加此网上讲座:https://www3.gotomeeting.com/register/269024462
  • 奥影闪耀亮相全国固体力学学术会议
    近日,备受瞩目的“2024年全国固体力学学术会议”在江苏省南京市隆重召开,本次会议吸引了众多国内外知名专家学者和研究生齐聚一堂,共同探讨固体力学的前沿和挑战。在会议现场,奥影设立展位与现场的学者与业界同仁互动交流,展示奥影工业CT系统在固体力学领域的创新应用与实践案例。全国固体力学学术会议是我国固体力学界每四年举办一次的综合性学术盛会,旨在为固体力学领域的专家学者提供展示最新成果、交流学术思想、探讨未来趋势的平台。本次会议主题为“固体力学前沿和挑战”,聚焦新形势下固体力学领域的科技创新和人才培养,研讨主题包括不限于固体力学及其分支学科的主要进展、创新方法、现存挑战及未来方向。借助工业CT的高精度三维成像能力,为固体力学研究者提供了前所未有的观察和分析手段。无论是复杂的材料内部结构,还是微小的形变和裂纹,都能通过工业CT的扫描图像得以清晰展现。这不仅有助于我们深入理解材料的力学行为,更能为优化材料设计、提升产品性能提供有力支持。此外,工业CT还可在原位加载实验中得到应用。在进行原位加载实验时,工业CT可持续监测试件在加载过程中的内部结构变化,如裂缝的产生、扩展以及材料的形变等。这些信息对于理解材料的失效机制、优化材料设计以及提升产品的耐用性具有重要意义。本次会议作为固体力学领域的年度盛会,不仅汇聚了众多专家学者,为他们提供了一个展示前沿成果、深入交流学术思想的平台,更在推动固体力学领域的科技创新和人才培养方面发挥了重要作用。同时,奥影也将继续深耕工业CT技术的研发与应用,不断为固体力学领域的研究和发展贡献新的力量,共同推动该领域的繁荣与进步。
  • 凯尔测控2024年全国固体力学学术会议完美落幕
    会议概况 “2024年全国固体力学学术会议”于 2024年3月29日至4月1日在江苏省南京市南京国际博览会议中心顺利召开。全国固体力学学术会议是我国固体力学界每四年举办一次的综合性学术盛会,旨在为固体力学领域的专家学者提供展示最新成果、交流学术思想、探讨未来趋势的平台。本次会议主题为“固体力学前沿和挑战”。大会组委会热忱邀请全国固体力学领域的专家学者及研究生参会交流,分享最新的研究进展,共同研讨固体力学及相关领域的发展机遇以及面临的挑战。 凯尔测控-作为本次会议国内高端疲劳试验机厂商赞助商,展示了固体材料力学检测设备:微型电磁式动态力学试验机和原位拉压力学试验机。
  • INNOVATEST轶诺仪器与固体力学会议携手推动力学性能测试
    由中国力学学会固体力学专业委员会主办,中国工程物理研究院总体工程研究所,西南交通大学力学与工程学院,四川大学破坏力学与工程防灾减灾省重点实验室,顶峰多尺度科学研究所,成都大学承办的“2014年全国固体力学学术会议”于金秋十月在四川隆重举办。此次会议共设2个主会场,27个分会场,会议规模宏大,会场组织有序。作为赞助商之一,轶诺仪器(上海)有限公司亦亲自派出市场与技术团队,全心助力此次大会。 现场与会专家多达1200余人,在为期2天的会议中,来自中国科学院力学所的白以龙教授、王自强教授,自然科学基金委的杨卫教授,美国西北大学的黄永刚教授,哈尔滨工业大学的杜善义教授,中国工程物理研究院的孙承伟教授,西南交通大学的翟婉明教授,香港科技大学的余同希教以及美国普渡大学的陈为农教授分别作了特邀报告,会场气氛轻松热烈,不时传来听众的阵阵掌声。 所谓固体力学,就是研究可变形固体在外界因素作用下所产生的应力、应变、位移和破坏等的力学分支。一般包括材料力学、弹性力学、塑性力学等方向。其中,材料力学是固体力学中发展最早的一个分支,它研究材料在外力作用下的力学性能、变形状态和破坏规律,为工程设计中选用材料和选择构件尺寸提供依据。之后发展起来的弹性力学是研究弹性物体在外力作用下的应力场、应变场以及有关的规律;塑性力学则是研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律。 众所周知,金属材料的主要力学性能包括硬度、弹性、塑性、刚性、冲击韧性、疲劳强度、断裂韧性等;而硬度作为一项综合的力学性能指标,与材料的其他性能之间存在一定的联系,比如,金属的抗拉强度便可由硬度经过换算得到。另外,金属的硬度与冷成型性、切削性、焊接性等工艺性能也有密切关系;硬度实验能敏感地反映出材料的化学成分、金相组织和结构的差异,因此被广泛用来进行原材料的质量检验,以及检验零件的热处理质量。硬度试验具有设备简单、操作方便快捷、压痕小以及便于现场操作等特点,是产品研发和生产中最常用的力学性能试验方法,在测试金属材料机械性能上得到了广泛应用。 INNOVATEST轶诺仪器,全球领先的硬度计制造商,位于欧洲荷兰,集设计,研发,生产于一身,深谙力学,视质量为第一生命,致力于提供高端、精密、可靠、稳定的硬度检测设备。为此,INNOVATEST轶诺仪器不断契合广大用户的需要,为其量身定做最合适的硬度测试解决方案。 INNOVATEST轶诺仪器在其荷兰总部和上海子公司均设有展厅,随时恭候您莅临体验!
  • 空气动力学研究常用测量技术及应用网上讲座将举办
    空气动力学研究常用测量技术及其应用   演讲人: 许荣川博士 高级应用工程师   张鑫 应用工程师   崔军磊 应用工程师   网上讲座: 2011年6月2日上午10点   美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。   这是TSI公司第四次推出流体测量技术系列中文网上讲座(可以网上同时收看收听音视频内容),以帮助您了解流体测量技术及提高应用水平。我们将于2011年6月2日上午10点开始此次讲座,重点介绍空气动力学研究中常用的几种测量技术。   具体内容:介绍空气动力学研究特征及测量需要 介绍几种常用测量技术原理,特点及其典型应用:激光多普勒测量技术(LDV/PDPA),粒子图像测量技术(PIV),体三维测量技术(V3V)与热线热膜风速仪测量技术(HWFA)。   讲座将会进行40分钟及预留15分钟答疑环节。   网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写姓名邮箱地址及联系电话于表格中,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 喜讯!Tinius Olsen与同济大学航空航天与力学学院签署实验室共建协议
    近日,全球领先的百年试验机厂商Tinius Olsen(天氏欧森,以下简称Tinius Olsen)与国内知名高等学府同济大学航空航天与力学学院签署实验室共建协议。作为国内工科首屈一指的一流大学,此次合作,Tinius Olsen将助力同济大学在航空航天及力学领域的科研及日常教学工作的开展。同济大学是一个以工科为主的大学,学生也以工科为主,多数学生都要学习力学相关课程,同时也要参加力学的相关实验研究。在力学学科人才培养方面,航空航天与力学学院承担了全校广范围的基础力学课,包括材料力学、理论力学、流体力学等等。同时包括独立设课的课程实验,学院每年力学相关实验课程达到5000个学时,30000个课时。在悠久力学学科发展的基础上,学院先后获批了国家级的力学实验教学示范中心、国家级力学虚拟仿真实验教学中心和复合材料工程实验中心,面向全校本科生开设基础力学课程的教学、各类力学和航空的实验课与创新实验。力学学科的发展离不开先进的力学测试仪器设备,在此次的合作项目中,本着建设既能“满足学生日常学习实践需求”,又能“达到国际实验室技术水平”来满足科研需求的初衷,Tinius Olsen与同济大学航天航空与力学专业签署的协议中,一共包括了11个测试站,来满足不同材料和类型的测试需求: 1个30吨常温合金类材料测试站1个15吨特殊材料测试站4个10吨金属材料测试站1个10吨加高型金属材料测试站1个10吨碳纤维复合材料测试站1个10吨高温合金和钛合金类材料测试站1个5吨高分子材料和碳纤维复合材料测试站1个500公斤轻型材料测试站Tinius Olsen一站式测试站值得一提的是,在这11个不同类型的测试站中,除了基础的试验机架、专业夹具、环境箱、高温炉之外,Tinius Olsen还将提供其最新的附件设备,比如行业领先的视频引伸计、光学引伸计、无线手持控制器、实现全程测试回放(带有实时曲线)的摄像系统,以及最新的Horizon测试软件等。这些先进设备的引入,旨在匹配同济大学航空航天与力学学院力争打造国际一流现代化实验中心的目标。Tinius Olsen视频引伸计 Tinius Olsen光学引伸计在台式试验机上的应用 其实,放眼过去,这并不是同济大学与Tinius Olsen的第一次合作,事实上,在上世纪40年代,同济大学力学学院就引入了一台Tinius Olsen(天氏欧森)早期的杠杆式试验机,这台试验机,也是目前能考证到的,亚洲范围内,最古老的一台试验机。去年4月,Tinius Olsen走访了同济大学航空航天与力学学院,对这台古老设备以及学院的李岩院长进行了拍摄及采访。(点击此处查看去年相关报道)作为同样拥有超过百年历史的一家组织机构,Tinius Olsen对此次的合作,感到万分荣幸,Tinius Olsen十分尊敬并高度赞扬同济大学航空航天与力学学院对国内航空航天以及力学事业做出的杰出贡献和取得的卓越成就。Tinius Olsen也将继续延续并不断完善百年传承的制造工艺,协助同济大学航空航天与力学学院建成国内乃至国际一流的教学科研实验中心。同济大学航空航天与力学学院简介同济大学航空航天与力学学院成立于2004年1月,是学校为了适应中国航空航天事业迅速发展以及上海将航空航天作为支柱产业的需求,在原工程力学与技术系的基础上,发挥学校学科交叉、人才集聚的综合优势而设立的。学院现有工程力学和飞行器制造工程2个本科专业,有力学一级学科博士点和航空宇航科学与技术一级学科硕士点,设有力学一级学科博士后流动站。学院设有国家级力学实验教学示范中心、国家级力学虚拟仿真实验教学中心和复合材料工程实验中心,面向全校本科生开设基础力学课程的教学、各类力学和航空的实验课与创新实验。学院目前的主要研究方向有先进材料与结构的力学行为、流体力学、动力学与控制、现代力学测试技术,先进复合材料与结构、飞行器设计与制造等。近三年,承担国家自然科学基金重点项目2项、重大项目1项、国家973课题1项、国家863项目2项、国家自然科学基金面上项目23项、省部级以上项目49项,以及77项横向课题;共发表SCI论文近200篇、获省部级科技奖13项。学院现有在职教师90人,在其中的专技类教师69人中,有正高30人,副高26人;学院现有长江学者特聘教授1名,国家杰出青年基金获得者3名,同济特聘教授4名,教育部“新世纪优秀人才计划”入选者2名、“新世纪百千万人才工程”国家级人选1名、上海市“优秀学科带头人”3名,上海市“领军人才”2名,以及若干上海市“曙光计划”“启明星”以及“浦江计划”入选者。著名力学家、桥梁家李国豪先生等知名学者曾在此任教。Tinius Olsen(天氏欧森)简介Tinius Olsen(天氏欧森)是行业领先的致力于静态材料试验技术的制造商。公司于1880年在美国费城建立,创始人为全球第一台万能材料试验机的设计者及专利拥有者Tinius Olsen(天氏欧森)先生本人。130多年来,Tinius Olsen(天氏欧森)为数万家制造商出谋划策,提供产品研发及质量控制的解决方案。目前,在材料测试设备的开发与制造领域,已成为行业的领导者。随着时代的发展,我们产品的测试范围不断扩大,获取与显示测试数据的技术和方法也不断增加。我们同时拥有当今市场上最先进的材料测试软件,我们的开发人员与客户紧密合作,为客户独特的测试及生产需求提供解决方案。与此同时,我们的现场校准与维护团队已得到A2LA与UKAS的认证,他们不懈地提高自己的能力及服务素质,以达到客户的要求与期望。Tinius Olsen(天氏欧森)的设备广泛应用于化工、金属、纺织、医药、汽车、航空航天、食品、包装、粘合剂、复合材料、建筑材料与纸张制造等多个行业。不仅可以设计并制造满足您的测试样品的设备,而且可以开发测试控制与数据分析的软件程序。Tinius Olsen(天氏欧森)的设备久经考验,它们的性能不因时间的流逝而逊色分毫。我们的翻新计划可以保证Tinius Olsen(天氏欧森)及其它测试设备的良好性能并延长其使用寿命。Tinius Olsen的测试系统和程序可以满足您的测试需求,进行拉伸、压缩、弯曲、穿刺、撕破、剥离、剪切、熔融指数、冲击强度、热变形温度、维卡软化点、硬度、脆性与摩擦等多项测试。其中我们的冲击试验机,是美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的指定计量测试设备。Tinius Olsen(天氏欧森)把130多年的测试经验应用于测试设备的开发,只要您提出您的测试要求,我们就可以为您提供相应的完整测试方案。
  • 国内首个以女科学家名字命名的实验室在北航揭牌
    北京航空航天大学陆士嘉实验室日前揭牌。这是我国首个以女科学家名字命名的实验室。  今年3月18日是陆士嘉诞辰106周年。陆士嘉出生于1911年,是我国流体力学家、教育家,为我国航空事业的发展作出了巨大贡献。  北京航空航天大学党委书记张军表示,在陆士嘉诞辰106周年之际,北航将她长期工作的流体力学实验室命名为陆士嘉实验室。陆士嘉实验室现有风洞10座,待建风洞1座,水洞(水槽)4座。待建的BHAW风洞将作为我国高校首座航空气动声学风洞,承担与型号研制直接相关的应用基础和生产所需要的气动声学风洞试验研究。  流体力学实验室始建于1952年。历经多年建设,形成了从风洞到水洞、从低速到高速、从教学到科研的一系列较为完整的体系。
  • 美国TSI公司空气动力学粒径谱仪获评“2014科学仪器行业最受关注仪器”
    2015年4月22日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2015 (第九届)中国科学仪器发展年会(ACCSI 2015)在北京京仪大酒店召开,会议主题为&ldquo 创新创造价值&rdquo , 出席会议人数达800余位。作为ACCSI 2015的&ldquo 重头戏&rdquo ,年会主办方颁布了多项产品奖项。其中,TSI公司的空气动力学粒径谱仪(APS-3321)获得&ldquo 2014科学仪器行业最受关注仪器&rdquo 大奖。 TSI3321型空气动力学粒径谱仪 (APS) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。 APS 粒径谱仪使用取得专利(美国专利号5561515)的双峰光学系统,具有无与伦比的粒径检测精度。它还包括新设计的喷嘴结构和改进的信号处理。因此,它具有更大的小粒径检测效率、提高的质量分布精确度并有效消除错误背景计数。 TSI公司的空气动力学粒径谱仪(APS-3321)可广泛用于各类相关科学研究和实际应用,如究吸入毒理学,给药研究,大气研究,环境空气监测,室内空气质量监测,滤料和空气清洁器测试,气溶胶特性测试和粉尘粒径检测等。 关于TSI公司 TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 美国TSI公司“体三维速度场仪系统(V3V)”网上讲座4月26日举办
    体三维速度场仪系统(V3V)网上讲座   演讲人: 张鑫 应用工程师   崔军磊 应用工程师   网上讲座: 2011年4月26日上午10点   美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案;寻求如何优化系统得到更可靠数据。   这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。   讲座将会进行40分钟及预留15分钟答疑环节。   这是TSI公司第三次推出流体测量仪器的系列中文网上讲座,以帮助您提高利用V3V系统测量流体速度的技术水平。 我们将于2011年4月26日上午10点开始此次讲座,介绍V3V三维成像原理,系统校准及数据处理。   具体内容:V3V原理,系统布置,三维成像介绍,相机校准;数据处理流程及算法介绍;应用。   网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写姓名邮箱地址及联系电话于表格中,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 大连理工大学突破等离子体工艺腔室仿真软件,助力半导体关键设备研发
    超大规模集成电路(ULSI)产业直接关系到国家的经济发展、信息安全和国防建设,是衡量一个国家综合实力的重要标志之一。在半导体芯片制备过程中,约有三分之一的工序要使用等离子体技术,因此配备等离子体工艺腔室的材料刻蚀和薄膜沉积设备是ULSI制造工艺的核心。目前,半导体工艺中最常用的两种等离子体源是CCP(容性耦合等离子体)和ICP(感应耦合等离子体)。等离子体工艺腔室制造过程极为复杂,不仅涉及精密机械加工技术,还要统筹考虑电源、气体、材料等外部参数的优化,以及与晶圆处理工艺的兼容性。如果采用传统的“实验试错法”,不仅成本巨大,而且延长了设备的研发周期,将严重制约我国ULSI产业的快速发展。因此,采用建模仿真与实验诊断相结合的方式、为等离子体工艺腔室的研发与优化提供方案,成为一种必然趋势。等离子体放电过程是极其复杂的,受到多种外界参数的控制,如电源功率与频率、气体成分与压强、腔室尺寸及材料属性等。此外,等离子体系统还包含了多空间尺度和多时间尺度的变化,以及多物理化学场的耦合过程。例如等离子体、鞘层、表面微槽等空间特征尺度相差10个量级;电磁场、带电粒子、中性气体及化学反应等时间特征尺度相差9个量级。如此复杂的等离子体工艺环境,给物理建模和数值仿真都带来了巨大挑战。物理学院PSEG团队在王友年教授的带领下,自2005年开始,历经近二十年时间,在国内率先研发出具有自主知识产权的等离子体工艺腔室仿真软件——MAPS(Multi-Physics Analysis of Plasma Sources)。通过采用物理建模、数值仿真与实验诊断相结合的方法,解决了制约等离子体工艺腔室设计和制造中的一些关键技术难题,为我国研发具有自主知识产权的等离子体工艺腔室提供了技术支撑。MAPS是一款专门面向等离子体工艺腔室的数值模拟软件平台,可以同时为等离子体工艺腔室的参数设计和表面处理工艺(材料刻蚀和薄膜沉积)的结果预测提供模拟服务。基于不同的等离子体模型,MAPS包含不同的数值模拟方法,如粒子/蒙特卡洛碰撞模拟方法、流体力学模拟方法、流体力学/蒙特卡洛碰撞混合模拟方法、整体模型模拟方法等。软件平台包含输入部分、输出部分以及七大模块,分别是等离子体模块、中性气体模块、电磁模块、鞘层模块、化学反应模块、表面模块及实验验证模块。此外,PSEG团队研制了结构可变的大面积、多功能等离子体实验平台和多套CCP和ICP放电平台,并自主研发了射频磁探针、微波发卡探针、光探针、吸收光谱诊断系统、布拉格光栅测温系统、悬浮双探针等诊断工具和集成了商用的Langmuir探针、质谱仪、离子能量分析仪、光谱仪、ICCD及光致解离负离子诊断系统等。这些诊断手段为等离子体源多参数诊断提供条件。大量研究表明,MAPS的模拟结果与实验测量结果在量级和变化趋势上达到一致,证明了MAPS仿真软件的可靠性。近期,针对工业中常用的CCP源,MAPS仿真软件提供了一种新的快速仿真算法:基于多时间步长、泊松方程的半隐式修正、超松弛迭代等,可以将模拟速度提高几十倍。此外,针对ICP源,PSEG团队也建立了一种新的双极扩散近似模型,可以对带有射频偏压的感性耦合放电过程进行仿真。该方法不仅模拟速度快,还适用于低气压放电。MAPS仿真软件具有外界控制参数多、耦合物理场多、数值求解器多、数值仿真模型多等优势,能够对ICP刻蚀机、CCP刻蚀机、PECVD(等离子体增强化学气相沉积)和PVD(物理气相沉积)工艺腔室进行仿真,支持对优化工艺过程参数的进一步探索,受到了国内的多家半导体设备制造企业的青睐。近十年中,MAPS仿真软件已分别为北方华创、中微半导体设备(上海)、拓荆科技、苏州迈为、武汉长江存储及理想能源设备(上海)等多家企业提供仿真服务。未来,PSEG团队将继续专注于对MAPS仿真软件的完善和升级,希望可以为半导体、光伏及平板显示等产业的创新与发展注入源源不断的强劲动力。
  • 2016年国际微流控和芯片实验室学术大会(ICMFLOC)召开
    大会现场 6月10日至12日,由大连海事大学、加拿大滑铁卢大学及北京国际力学中心联合举办的“2016年大连国际微流控和芯片实验室大会”在我校隆重举行。大连市副市长刘岩、大连高新区管委会主任靳国卫、大连市经济和信息化委员会副主任刘刚、大连市科技局副局长姜斯进以及大连海事大学校长孙玉清、副校长潘新祥等出席开幕式。大连海事大学“千人计划”特聘专家李冬青教授担任大会主席。来自美国、加拿大、欧洲、澳大利亚、新加坡、日本、韩国、印度等15个国家和地区近300名研究人员和企业代表参会。  大连市副市长 刘岩 开幕式上,刘岩代表大连市政府向本次学术会议的召开表示祝贺,他表示,本次会议的召开为相关领域专家搭建了展示和交流合作的平台,共同探讨当今微流控领域的最新进展、产业化发展前景,将进一步推进微流控芯片这一技术的转化、应用以及促进国际间交流与合作。他说,当前,以网络化、智能化为标志的新一轮技术革命正在给世界带来深刻的变化,我国已确定建设“科技强国”的宏伟目标,大连市拥有像大连海事大学在内的一批具有扎实科研能力的高等院校和研究机构,大连市政府正在规划建设国家自主创新示范区,为科学研究机构、科技成果的转化、科技人才的成长以及国际科技交流合作创造良好的环境,努力把大连建设成为创新型城市。最后,他祝愿来自世界各地的从事微流控芯片研究的专家和各项成果能够为推动世界各地科学技术的进步作出贡献。大连海事大学校长 孙玉清  孙玉清在欢迎词中表示,当前,新一轮科技革命和全球性产业结构调整方兴未艾,科技创新已成为应对经济危机、优化产业结构、催生新型经济和新的经济增长点的关键。微纳米流体力学是一门多领域交叉的新兴前沿学科,在环境监测、海洋资源开发和利用、新能源等领域具有巨大的应用潜力,相信通过与会专家的智慧碰撞,一定能够产生新的科技创新理念与成果,并为创新资源的深度交融带来新的机遇。他强调,我校在微纳流体和微流控芯片领域已有多年的研究基础,形成了多个在国内外具有一定影响力的创新团队,支撑着国家外专局“绿色航运与海上安全创新引智基地”、科技部“国家级海湾生态国际科技合作基地”等平台的发展,承担了中国载人航天、深远海资源探测和海洋环境监测等多个具有影响力的科研项目。希望各位专家借此机会与我校深入广泛交流,共同探讨协同创新的平台和途径。大连海事大学“千人计划”特聘专家 李冬青  李冬青致开幕词。他说,在过去的二十年里,微纳流体和微流控芯片研究迅猛发展,对分析、监测和诊断等一系列技术起到重大推动作用,直接影响到生物、医疗、化学、环境、航运等科学和工程领域,本次会议召开的目的,是为全球该领域的尖端研究人员提供一个交流平台,促进相关领域的进一步发展。最后,他代表大会组织委会,对大连海事大学以及各位参会人员的支持表示感谢。大会现场  据了解,此次会议是首次微流体及微全分析系统在机械工程、海洋、能源、航天以及生物医学等领域中应用方面的国际会议。会议历时3天,以大会报告、专题报告、邀请报告、口头报告、墙报等交流形式,为与会专家、青年学者、企业等提供一个与国内外知名学者互动和学术交流的机会,以促进相关学科的深入发展。与会者就微纳流体基础理论及应用、微全分析系统、微流控芯片便携式检测仪器研发及在船舶以及海洋、能源、航天等领域的应用进行了广泛深入的学术研讨。其中,来自英国科学院院士、英国格拉斯哥大学Jonathan Cooper教授,德国科学院院士、德国Freiburg大学Roland Zengerle教授,加拿大工程院院士、多伦多大学David Sinton教授、清华大学的程京院士,东京大学前副校长Takehiko Kitamori教授、世界知名微流体和微流控芯片学者瑞士ETH Zurich的Andrew deMello教授、英国南安普顿大学Hywel Morgan教授、美国密歇根大学Shuichi Takayama教授、韩国科学技术高级研究院Je-Kyun Park教授等一批国内外学者作相关报告。  微纳米流体力学是一门多领域交叉的新兴前沿学科,对其蕴含的基本科学问题进行深入的研究,可有效支撑微全分析系统、微机电和微能源装置、晶体生长、稀薄气体流动和磁流体等研究的发展,并且在海洋环境监测、资源开发和利用、新能源、分析化学、生物、医学以及医疗诊断等领域具有巨大的应用潜力。
  • 开年喜提大单!莱伯泰科中标新能源领域1500万实验室建设项目!
    2023新年伊始,莱伯泰科凭借在实验室建设领域的技术优势,成功中标某新能源项目中实验室建设部分,中标总金额1500万元。在该大型新能源项目中,莱伯泰科中标的是综合型企业中心实验室建设部分,包括半导体超净实验室及常规化学分析室的设计和建设。实验室建成后,可为该新能源项目中半导体及光伏材料等样品的检测提供符合要求的检测环境,确保实验室的空气洁净度、污染物、压差等条件达到要求,为企业提供准确可靠的实验数据。随着大型精密分析仪器的发展和新兴行业科学研究的开展,超净实验室的应用范围越来越广泛,然而超净实验室建设过程中涉及的专业众多,包括概流体力学、化工与物理、分子科学、结构、土木建筑、给排水、暖通、电气工程、施工安装、设备调试等专业,所以对于超净实验室的设计和施工要求非常高,除了熟悉各种专业知识之外,还必须拥有先进的生产工艺技术和与之充分匹配的配套工程建设,才能达到预定的实验室建设效果和目的。此次中标是对莱伯泰科综合实力的又一次肯定。莱伯泰科在实验室建设领域已深耕二十余年,在超净实验室的设计与建设中有着雄厚的经验积累,拥有配置齐全的专业人才、丰富的技术、强大的项目和工程管理经验以及系统的集成能力。莱伯泰科已经帮助众多客户设计和建设了大型超净实验室和实验室通风工程,除了传统行业之外,还覆盖了电池材料、太阳能材料、新能源材料、储能材料、半导体材料等众多新材料领域,以及生物医药和生命科学研究领域,并得到了各行业客户的普遍赞誉和一致认可。“工艺先行”是莱伯泰科一直坚持的经营理念,莱伯泰科将凭借自身在实验室建设中的工艺技术优势和对各类型仪器设备安装环境的熟练掌握,继续为各行各业客户提供完备的实验室整体解决方案和优质的服务。关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,是一家专业从事实验分析仪器的研发、生产和销售的科技型公司。公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究、生命科学等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,顺利通过“高新技术企业”和“北京市企业技术中心”认定,属于国家级专精特新小巨人企业,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”,并于2022年入选“2022北京制造业企业100强”和“2022北京高精尖企业100强”,是全球范围内能将多种类和多功能的样品前处理技术与全自动实验分析检测平台组合成全自动实验分析仪器系统的主要实验分析仪器供应商之一。公司拥有LabTech、CDS、Empore等行业知名品牌,在中国和美国设有研发和生产基地,并在中国内地主要城市、中国香港、美国马萨诸塞州和宾夕法尼亚州等地设有产品营销和服务中心。公司产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等,可为全球多种类型用户提供从实验室建设到样品分析的一站式解决方案。目前,公司产品已销往全球90多个国家,累计服务客户3万余家
  • 李政道:1957年诺贝尔物理学奖获得者
    李政道,江苏苏州人,父亲李骏康是金陵大学农化系首届毕业生。曾就读于东吴大学(苏州大学)附中、江西联合中学等校。因抗战,中学未毕业。1943年因以同等学历考入迁至贵州的浙江大学物理系,由此走上物理学之路,师从束星北、王淦昌等教授。   1944年因日军入侵贵州,时在贵州的浙江大学被迫停学。   1945年他转学到时在昆明的西南联合大学就读二年级,毛遂自荐,找到当时的北京大学物理系教授吴大猷。   1946年经吴大猷教授推荐赴美进入芝加哥大学,师从诺贝尔物理学奖获得者、物理学大师费米教授。   1950年获得博士学位之后,从事流体力学的湍流、统计物理的相变以及凝聚态物理的极化子的研究。   1953年,任哥伦比亚大学助理教授,主要从事粒子物理和场论领域的研究。三年后,29岁的李政道成为哥伦比亚大学二百多年历史上最年轻的正教授。他开辟了弱作用中的对称破缺、高能中微子物理以及相对论性重离子对撞物理等科学研究领域。   1984年他获得全校级教授(UniversityProfessor)这一最高职称,至今仍是哥伦比亚大学在科学研究上最活跃的教授之一。现在,他的兴趣转向高温超导波色子特性、中微子映射矩阵以及解薛定谔方程的新途径的研究。   李政道为哥伦比亚大学全校级教授,美籍华裔物理学家,诺贝尔物理学奖获得者,因在宇称不守恒、李模型、相对论性重离子碰撞(RHIC)物理、和非拓朴孤立子场论等领域的贡献闻名。1957年,他31岁时与杨振宁一起,因发现弱作用中宇称不守恒而获得诺贝尔物理学奖。他们的这项发现,由吴健雄的实验证实。20世纪60年代后期提出了场代数理论。70年代初期研究了CP自发破缺的问题,发现和研究了非拓扑性孤立子,并建立了强子结构的孤立子袋模型理论。李政道和杨振宁是最早获诺贝尔奖的华人。   所得奖项   1957 诺贝尔物理奖   1957 爱因斯坦科学奖   1969 法国国家学院G. Bude奖章   1977 法国国家学院G. Bude奖章   1979 伽利略奖章   1986 意大利最高骑士勋章   1994 和平科学奖   1995 中国国际合作奖   1997 命名3443小行星为李政道星   1997 纽约市科学奖   1999 教皇保罗奖章   1999 意大利政府内政部奖章   2000 纽约科学院奖   2007 日本旭日重光章
  • 锐拓RT7流池法溶出系统应用案例——阴道软胶囊的体外释放试验
    根据CDE公布的《局部作用常见阴-道制剂仿制药的评价技术要求》(征求意见稿),阴-道制剂的质量研究不但需要执行溶出度(释放度)测试,还建议进行模拟阴-道制剂体内释放行为的体外释放研究。而对于阴-道栓和阴-道软胶囊这类普遍使用脂类基质的制剂,无论是溶出度测试还是体外释放研究,传统溶出方法都很难获得满意的测试结果。所以,在本次应用案例中,我们将分享如何使用流池法进行阴-道软胶囊的体外释放度研究。流通池的选择不同尺寸和构造特点的流通池会影响阴-道软胶囊的体外释放行为。根据本案例样品的尺寸和释放特点,通过对不同类型流通池的对比评估,最终选择使用22.6mm内径的药典标准流通池(如下图所示)。另外,考虑到阴-道软胶囊在释放期间会产生大量的脂类基质,很容易造成在线过滤系统的堵塞。得益于锐拓专利设计的流通池在线过滤装置,使得多级在线过滤可以有效阻挡脂类基质的同时,还保证了在整个24小时溶出实验期间内不会出现过滤系统堵塞和管路系统漏液。溶出介质的优化在进行体外释放度研究时,溶出介质的选择应充分考虑药物在人体内释放部位的生理特点。而对于阴-道制剂,可使用人工模拟阴-道液或模拟阴-道pH的弱酸性介质进行体外释放度研究。由于本案例样品的特殊性,在方法开发阶段,我们对溶出介质的配方进行了充分的优化,在保证满足漏槽条件的同时,让溶出介质更加接近阴-道内的生理特点。研究结果本次研究分别对参比制剂和两种不同生产工艺的自研样品进行体外释放度测试。由于样品中存在两种主药成分,所以使用HPLC对这两种主药成分进行定量测定。测试结果如下:主药成分 A对于主药成分A,1号样品 (Sample 1) 和2号样品 (Sample 2) 与参比制剂 (Reference)的溶出相似因子(f2)分别为 47 和 62。主药成分 B对于主药成分B,1号样品 (Sample 1) 和2号样品 (Sample 2) 与参比制剂 (Reference)的溶出相似因子(f2)分别为43 和 57。根据测试数据我们可以发现:经过工艺改良后的2号样品的释放速率有明显的提升,而且与参比制剂表现出更好的相似性。结论流池法在阴-道制剂溶出度测试和体外释放研究方面具有明显的优势,其能够排除脂类基质干扰的同时,流通池内的流体力学环境也更接近阴-道内的流体环境。流池法能够提供更有区分力和更接近体内条件的溶出数据,助力阴-道制剂仿制药一致性评价的开展。
  • 郑哲敏:爆炸力学家的家国情怀
    八十七岁的郑哲敏最令人难忘和喜欢的是他的笑容,笑容中透着的那份孩童般的天真和机灵很容易让人忘记他是当今中国力学界德高望重的泰斗,郑哲敏是著名的力学家,同时是三院院士:中国科学院院士、中国工程院院士及美国国家工程科学院外籍院士,他曾任中国科学院力学研究所所长、中国力学学会理事长等职。   他身材瘦小,行动灵活,思维敏捷,说起许多往事,总是和蔼地笑着,并带着几分孩子气地手舞足蹈。在他的身上,有许多同时代科学家的共同烙印:聪颖好学,名校出身,师从名师,游学西方,归国报效,成就斐然……但对于这一切,他本人只是淡淡地说,“都是机缘和运气。”直到与他深入地交谈了两个多小时之后,记者才慢慢地了解和读懂了些许老人阳光笑容和“一蓑烟雨任平生”的淡泊背后,是他面对命运时浪漫的天性和对家国始终放不下的情怀。   遵父命,不经商   在郑哲敏的人生中,父亲是第一个对他影响深刻的人。   父亲郑章斐出生在浙江宁波的农村,自幼家贫,念书不多,但聪敏勤奋,16岁时到上海打拼,从学徒做起,最终成为著名钟表品牌“亨得利”的合伙人,分号遍布全国多地,还说得一口流利的英文。   郑哲敏于1924年出生在山东济南,是家中次子。他幼时顽皮,心思不在读书上,喜欢搞恶作剧,甚至仅仅因为对父亲店铺里一个男伙计女性化的打扮不满,就发动弟弟妹妹搞起了“小游行”。郑哲敏终生难忘,8岁那年,父亲对他说,经商让人看不起,以后不要走做生意这条路,要好好读书。在郑哲敏的印象中,父亲没有一般商人的恶习,他正直良善,崇尚文化,决心不在子女中培养一个商业接班人,不娶一个姨太太,朋友也多是医生或大学教授。在家庭的影响下,郑哲敏与家中兄妹也都一生刚正不阿,一心向学。   尽管郑哲敏成长在兵荒马乱的年代,少年时又心脏不好,他的求学经历多次因战乱或生病中断,但因为父亲对子女教育的重视,所以学业却从未荒废。即使在休学期间,父亲也为郑哲敏请来家庭教师,给他补课 此外还带他到全国多地旅游,使他开阔眼界 给他买《曾国藩家书》,教他学会做人做事的道理 带他大声朗读英语,使他后来渐渐能够使用原版英文书,自学数学、物理等课程。郑哲敏说,这些点滴的往事,影响了他一生,养成了他喜欢自学、不喜求问于人的习惯。   1943年,他以优异的成绩同时被西南联合大学(抗战期间国立清华大学、国立北京大学和私立南开大学在昆明合办的大学)和国立中央大学录取,因哥哥郑维敏已在此前一年考入西南联大,郑哲敏也毫不犹豫地选择了西南联大,和他从小敬佩的哥哥同样进入了工学院电机系。      进名校,遇名师   因家境富庶,当年郑哲敏是坐着飞机去昆明上大学的。然而,1943年至1946年在西南联大读书的三年里,学习和生活条件却很艰苦。课堂就设在茅草房里,他有机会见到梅贻琦、沈从文、闻一多等名教授,他们简朴的生活让他印象深刻。   郑哲敏至今印象最深的是教授们教学时的一丝不苟。作为低年级生,他与那些名教授近距离接触的机会并不多,但是,通过听他们的报告,以及整个学校大环境的耳濡目染,他渐渐隐约感到“学术上要有追求,做人要有追求”。   同样使他记忆犹新的还有学校里浓厚的民主气氛。持不同政见的学生们经常辩论,而郑哲敏属于“中间派”。他也开始思考国家前途,并逐渐意识到当时社会的许多问题恐怕根源于体制问题。但他生性淡泊名利,很多事都是想想就放一边, “政治太危险”,还是学习要紧。在大学时代,和很多这个年龄的青年一样,他开始思考“人为什么活着”这样的哲学问题,还特意到图书馆借来哲学书籍寻找“答案”,他最后的结论是:“人终归是要死的,一个人活着的价值,还是要做一些事,为社会做点贡献。”   因为觉得和哥哥学不同专业,能对国家有更大贡献,郑哲敏从电机系转到了机械系。中学时郑哲敏的理想是当飞行员或工程师,前者可以在前线抗战,后者可以建设国家。然而,最终他还是走向“力学”这条理论研究的道路,因为他遇到了第二个对他影响深远的人——著名物理学家钱伟长。   1946年,抗战胜利后,北大、清华、南开三校迁回原址,郑哲敏所在的工学院回到北京的清华园。同年,钱伟长从美国回国到清华大学任教,在他的课上,大四的郑哲敏首次接触到弹性力学、流体力学等近代力学理论,钱伟长严密而生动的理论分析引起了郑哲敏的极大兴趣。钱伟长也很赏识这个聪明的年轻人,常叫他到家里吃饭。郑哲敏毕业后留校为钱伟长当了一年助教,还见到了回国探亲时到清华演讲并在钱伟长家小住的钱学森。   多年后,郑哲敏回忆道,钱伟长对他的重要影响,一是使他从此确定了研究力学的道路,二是钱伟长重视数学和物理等基础学科,对他影响很大 三是钱伟长是当时有名的“进步教授”,积极参与爱国学生运动,还常跟学生讲对美国社会的认识,认为美国“虽有很多科学创造,但都不能为人民所用。”   1948年,经过清华大学、北京市、华北地区及全国等四级选拔,同时在梅贻琦、钱伟长、李辑祥等人的推荐下,郑哲敏在众竞争者中脱颖而出,成为全国唯一的“国际扶轮社国际奖学金”获得者,前往美国加州理工学院留学。   国家需要什么,就做什么   美国加州理工学院是世界最负盛名的理工学院之一,培养了多名诺贝尔奖获得者,中国的多位著名科学家都先后在这里留学深造过。在这里,郑哲敏用一年时间获得硕士学位后,跟随年长他13岁、当时已誉满全球、即使在美国社会也家喻户晓的钱学森攻读博士学位。钱学森也因此成为他人生路上第三位影响深远的导师。   在加州理工学院,郑哲敏有机会聆听许多世界著名学者的课程或报告,尤其受钱学森所代表的近代应用力学学派影响很深:着眼重大的实际问题,强调严格推理、表述清晰、创新理论,进而开辟新的技术和工业,这成为郑哲敏后来一生坚持的研究方向和治学风格。   出国留学,是为了归国报效,郑哲敏“从没想过不回国”。然而,新中国成立后,美国留学生归国集体受阻,郑哲敏毕业后不得已继续留在美国加州理工学院当了两年助教。尽管美国人很友好,但他仍然感到一些微笑面孔背后的歧视,“似乎与你交往是对你的施舍”,他感到自己像一叶浮萍,扎不下根来。   1955年,郑哲敏与钱学森师生俩终于相继回国。郑哲敏回国前夕,钱学森特地跟他谈心,告诉他回国不一定能做高精尖的研究:“一直在美国,也不知道国内科研水平如何,只能是国家需要什么我们就做什么。”在此后的50多年里,郑哲敏的科研人生,始终与钱学森如影随形,也一直在践行着钱学森的这番话。   国内生活条件的确不如美国,但是郑哲敏“从来没觉得苦”。他所看重的是,街上的社会秩序不乱了,物价不再像旧社会那样一天一个价,买东西不再需要用麻袋装钱了 商店的橱窗里居然也有了一些国产的电子和五金产品。他特意到书店里买了一部《宪法》,认真研究这个他眼前的新社会。   回国后,郑哲敏投奔恩师钱伟长。当时中科院还没有力学所,力学研究室设在数学所,钱伟长专门在研究室设立了新专业——弹性力学组,由郑哲敏担任组长,研究水坝抗震,后来又领导大型水轮机的方案论证。钱学森回国后,带领创建中科院力学所,郑哲敏参加了这项工作并成为该所首批科技人员。   因中苏交恶,苏联专家从中国撤走。1960年,郑哲敏受航天部门委托,研究爆炸成形问题。钱学森预见到一门新学科正在诞生,将其命名为爆炸力学,并将开创这门学科的任务交给了郑哲敏。郑哲敏与他所领导的小组不负所托,成功研究出“爆炸成型模型律与成型机制”,并应用此理论基础成功地生产出高精度的导弹零部件,为中国导弹上天做出重要贡献,同时,相关理论和技术还广泛应用于其它国防和民用领域。4年后,在大量实验和计算分析的基础上,郑哲敏独立地与国外同行同时提出了一种新的力学模型——流体弹塑性体模型,为中国首次地下核试验的当量预报做出了重要贡献,并为爆炸力学学科建立奠定了理论基础。   文革期间,郑哲敏的研究被迫中断,他被隔离审查过,也到干校劳动过。如今,提起这段往事,他只是呵呵一笑,说:“很多事,我已经都忘了。”   1971年,从干校返回中科院力学所后,郑哲敏继续致力于爆炸力学的研究。经过10年努力,郑哲敏先后解决了穿甲和破甲相似律、破甲机理、穿甲简化理论和射流稳定性等一系列问题,改变了中国常规武器落后状况。此外,他还通过在爆炸力学和固体力学中的科学实践,为国家解决了瓦斯等生产爆炸的力学分析、港口建设中海淤软基处理等一批重大实际问题。   1984年2月,郑哲敏接替钱学森出任力学所第二任所长。虽然他不再担任爆炸力学实验室主任,而是把精力更多地放在了力学学科及相关科学的规划工作中,但还是会经常对爆炸力学的一些具体工作进行理论指导。    科研需要耐心   至今,87岁的郑哲敏依然每天会到中科院力学所上班。在记者专访的两个多小时里,仍不时有前来拜访或请教的客人。   尽管在旁人看来,郑哲敏已是了不起的享誉海内外的大科学家,但他本人却从不以为然。他说,自己有一些问题,比如“胸无大志”,从未一门心思地想过要成就些什么 还“不够勤奋”,所以没能做更多的事。   有人曾将郑哲敏与比他年长5岁、在加州理工结识且交情甚笃的学长冯元桢相比较,认为论聪明才智,郑哲敏绝不在冯元桢之下,而当年选择了留在美国的后者,如今已经是赫赫有名的“美国生物力学之父”。   对此,郑哲敏说,人到晚年,他也曾和冯元桢在美国会面,谈起过两个人不同的道路,彼此都会觉得羡慕对方——一个是功成名就,一个是尽忠报国,二者很难比较。   问及当前中国力学的发展水平,郑哲敏认为,虽然有进步,但与国际先进水平相比,仍有不小差距,他认为当下学术界浮躁的风气是制约发展的重要原因。他说:“科研需要耐心。现在,一些人都急于求成,沉不下心来坐冷板凳,这样做出的也最多是中等成果,很难有出色的、有重大影响的成果。有的人急于要实效,不重视基础理论研究,最终会极大地制约整体科技的发展。”   他语重心长地说,当科学家并不像大家看上去的那么美。“科研有突破的那一刻很快乐,但是更多的时候很苦、很枯燥,在一遍又一遍的错误中寻求突破,在反反复复的试验中总结创新。”   一口气说完上面两段话,郑哲敏又笑笑说:“人老了,很多事我也只是想想而已,想过就放下了。当前,我想得最多的事还是,如何培养好我现在唯一的研究生。”   他告诉记者,如今,他业余喜欢散步和听音乐,最喜欢听巴赫和贝多芬。   质朴——“就是老老实实做,不知道就再去学”   “没什么神秘的。”当记者问科研方法心得的时候,郑老认真地说,“就是老老实实做,不知道就再去学”。但同时他也承认,科研有时是很枯燥的,必须耐得住寂寞。“要搞科研就要有吃苦的决心。没有牺牲精神、一往直前的勇气,基础研究也是做不成事的。”   郑老的办公室在力学所的三楼,他现在依然坚持每天上午到办公室坐半天班。“今天起晚了,快7点才起来。”郑老笑说,除了上班、做点家务之外,下午天气好的话还会出去走走。   不过这几天,郑老将下午的精力放在了“上网”,浏览一些学科领域的新资讯。他说,考虑到自己研究力学性质这么多年,希望从更宏观的角度回头看看,有没有什么遗漏的地方。“如果哪天有什么想法,就去找老白(白以龙院士)聊聊。”   当后来提到本文开头的那个“奖金”的问题时,记者才明白了郑老为什么热衷于“上网”背后的原因。他说,奖金“肯定不能撒开随便用”。所以,他最近在查文献,“希望能有更多人参与进来。能起点作用就起点。”   期望——年轻人“太苦”,要正确引导   如今,年近90的郑老近年来依然工作在科研一线,除了继续学科领域内的研究外,还关注能源战略安全等重大问题,当国家重大工程遇到挫折时,郑老也会挺身而出。   “郑老是我们所多年的优秀党员,科技界的楷模。”力学所党委书记乔均录自豪地说,八十多岁的郑老有次身体不舒服住院输液,都不耽误他把研究生叫到医院里给他们辅导论文。   郑老生活简朴,一心向学,性格中透露着难能可贵的“纯粹”。在他的观念中,科研人员是不会发财的,能有个“体面的生活”就满足了。   “现在的年轻人确实压力比较大。”不过,他倒不主张用物质奖励去刺激他们,“吊他们的胃口”。“这会把人搞得非常‘烦躁’,一天到晚操心。就像无头苍蝇似的,不能想大事,不能想远的事。”在郑老看来,这种状态实在是“太苦”了。   “当然,这要从政策上来引导。”他寄语青年科研人员“要看得远一点”,不要为一时的得失计较太多。“文革时‘赶时髦’的都吃亏了,所以做点实事,或许当前会吃亏,但心情会平衡一点。”
  • 激光纳米诊断方法可以检测癌症早期病状
    俄罗斯西伯利亚科学分院热物理研究所的科研人员通过研究,找到了一种激光纳米诊断方法,可通过对尿液的检测发现癌症的早期病状。   据研究人员介绍,该方法最早源于通过间接测量相关蛋白质的流体力学尺寸,分析血红细胞沉降速度的实验中。在此实验过程中,研究人员找到了一种借助于激光光谱仪测量蛋白质流体力学尺寸的方法,但不是用在对血浆的检测,而是用于尿液,因为纳米粒子能够适用于各种液体中。    通过采用激光光谱仪检测尿液中相关蛋白质流体力学尺寸的实验,研究人员发现了何种尺寸属于正常范围,何种尺寸预示着癌症病症的规律。这种诊断方法通过医 院的临床测试,准确率超过了85%。目前,研究人员已致力于研制适于民用的小型检测仪,未来该检测仪有望进入普通人家庭,成为一种适于广泛推广的癌症早期 检测技术,届时,人们在家中即可完成早期癌症病状的检测。
  • 6国家重点实验室更名并调整研究方向
    近日,教育部、工业和信息化部办公厅公布了关于流体传动及控制等6个国家重点实验室更名和调整研究方向的通知。具体如下: 教育部、工业和信息化部办公厅:   你们报送的关于流体传动及控制等6个国家重点实验室更名和调整研究方向的来函收悉。根据《国家重点实验室建设与运行管理办法》,经研究,现就有关事项通知如下:   1.“流体传动及控制国家重点实验室”更名为“流体动力与机电系统国家重点实验室”,英文名称更名为“State Key Laboratory of Fluid Power and Control”。研究方向调整为:(1)流体传动及控制;(2)应用流体力学;(3)机电系统控制与信号处理;(4)机电系统集成及智能化;(5)机电系统及装备设计与制造。实验室要进一步凝练学科方向,突出特色。   2.“蛋白质工程及植物基因工程国家重点实验室”更名为“蛋白质与植物基因研究国家重点实验室”,英文名称更名为“State Key Laboratory of Protein and Plant Gene Research”。研究方向调整为:(1)生物大分子与生物药物研究;(2)植物发育与功能基因研究;(3)植物与微生物相互作用研究;(4)生物信息与基因演化。实验室要进一步加强研究组之间的有机结合。   3.“汽车动态模拟国家重点实验室”更名为“汽车仿真与控制国家重点实验室”,英文名称更名为“State Key Laboratory of Automotive Simulation and Control”。实验室要进一步凝练研究方向,突出特色,体现仿真与控制的研究内容。   4.“现代焊接生产技术国家重点实验室”更名为“先进焊接与连接国家重点实验室”,英文名称更名为“State Key Laboratory of Advanced Welding and Joining”。实验室要明确微连接与电子封装的研究内涵,突出焊接与连接的特色。   5.“有害生物控制与资源利用国家重点实验室”的研究方向调整为:(1)植物病虫害生物防治;(2)水产畜禽病害控制;(3)海洋生物基因资源与功能;(4)生物适应性进化。   6.“生物反应器工程国家重点实验室”的研究方向中“生物系统工程”调整为“生物反应器系统工程”。   希望你们按照上述意见,组织相关实验室尽快完成实验室更名和研究方向的调整,并做好相关配套工作。   中华人民共和国科学技术部   二O一O年十二月二十三日
  • TSI 网上讲座: 粒子图像测速仪系统 II ( 2011年3月22日)
    美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案;寻求如何优化系统得到更可靠数据。 这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。 讲座将会进行40分钟及预留15分钟答疑环节。 这是TSI公司第二次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年3月22日上午10点开始此次讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。 具体内容:PIV原理及PIV实验基本原则;Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。 网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接 http://www.instrument.com.cn/netshow/SH100732/guestbook.asp (中文注册)简单填写表格,并点击&ldquo 发送&rdquo 。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 2010年数理地学国家重点实验室评估结果公布
    关于发布2010年数理和地学领域国家重点实验室评估结果的通知   教育部、工业和信息化部、中国科学院、中国地震局、中国气象局、国家海洋局,四川省科技厅、陕西省科技厅:   今年我部对数理、地学领域国家重点实验室组织了评估。数理领域参评实验室11个 地学领域参评实验室37个。另外,数理领域的强场激光物理国家重点实验室在此之前连续2次评估优秀而申请此次免评,按《国家重点实验室评估规则》的有关规定,其评估结果视为良好。现将评估结果通报如下:   一、评估结果   1. 数理领域国家重点实验室   非线性力学国家重点实验室、固体微结构物理国家重点实验室、人工微结构和介观物理国家重点实验室等3个国家重点实验室为优秀类实验室。   半导体超晶格国家重点实验室等8个实验室为良好类实验室(名单见附件)。   湍流与复杂系统国家重点实验室的评估结果待定。   2. 地学领域国家重点实验室   测绘遥感信息工程国家重点实验室、大气科学和地球流体力学数值模拟国家重点实验室、冻土工程国家重点实验室、海洋地质国家重点实验室、环境化学与生态毒理学国家重点实验室、黄土与第四纪地质国家重点实验室、近海海洋环境科学国家重点实验室、现代古生物学和地层学国家重点实验室、岩石圈演化国家重点实验室、资源与环境信息系统国家重点实验室等10个国家重点实验室为优秀类实验室。   冰冻圈科学国家重点实验室等25个实验室为良好类实验室(名单见附件)。   地震动力学国家重点实验室和卫星海洋环境动力学国家重点实验室的评估结果待定。   二、我部将对上述优秀类和良好类的国家重点实验室给予专项经费资助。   三、湍流与复杂系统国家重点实验室、地震动力学国家重点实验室和卫星海洋环境动力学国家重点实验室存在问题较多,请有关部门和依托单位高度重视,组织相关实验室就存在的薄弱环节和主要问题进行认真整改。整改工作的主要任务是:明确主要研究方向和重点组织承担国家科研任务、加强科研队伍建设、引进和培养优秀人才、形成研究特色和优势、完善和提升实验研究平台、建立“开放、流动、联合、竞争”的运行机制等。我部将相应核减这3个国家重点实验室整改期间的专项经费,并在两年后对整改进展情况进行考核。   四、希望各参评实验室、依托单位和主管部门认真总结经验,针对评估专家组提出的问题和建议,找出实验室存在的差距和不足,研究制定解决问题的方法和措施。根据《国家重点实验室建设与运行管理办法》,切实加强实验室的建设和管理,营造有利于原始创新的环境,促进实验室整体水平的提高。   附件:2010年数理、地学领域优秀类和良好类国家重点实验室名单
  • 热分析结合机器学习实现烟叶风格评价达国际领先水平 福建中烟两项目获行业科技奖
    近日,中国烟草总公司表彰奖励了一批重大项目和优秀科技工作者,其中福建中烟两个项目和两位同志获得殊荣,分别是:《天然茶香料规模化精准制备关键技术开发及应用》获中国烟草总公司技术发明奖二等奖《基于计算流体力学的细支卷烟燃烧机理研究及应用》获中国烟草总公司科学技术进步奖三等奖技术中心李华杰、邓其馨获中国烟草总公司创新争先奖一起来看看这些创新项目和创新达人吧01《天然茶香料规模化精准制备关键技术开发及应用》主要完成人:范坚强 张峰 伊勇涛 谢金栋 胡军 洪祖灿 茅中一 刘珊该项目针对天然香料存在的特色原料筛选及处理不够精准、开发技术不够高效、规模化生产香料存在质量波动、功能传导精准应用有待提升等行业共性问题,以福建最具特色的茶叶为研究对象——● 形成了以“一种制备香料的方法、香料及其用途”为核心专利的茶原料精准筛选处理、茶香料高效开发、稳定可靠规模化制备及功能作用精准传导等4大专利技术板块;● 建成了行业首条天然茶香料生产线;● 开发生产出一系列茶香料、茶香基模块,并拓展开发出其它多种天然香料、香基模块。目前,茶香料等自主研发生产的香料已成功应用于20个卷烟产品中,并以天然茶香料为核心香料开发出茶香风格突出的高价位“金砖”系列卷烟。项目不仅显著提升了企业香精香料的自主研发和自我保障水平,也为行业天然香料研发应用提供了可复制、可推广的范本和共性生产平台。关键技术已推广至郑州烟草研究院、河南中烟等多家单位,推广应用效果显著。02《基于计算流体力学的细支卷烟燃烧机理研究及应用》主要完成人:李跃锋 李斌 李巧灵 谢卫 刘泽春 李华杰 钟洪祥 邓小华 王乐 张齐该项目通过对卷烟燃烧时物理化学过程的数学表达,搭建设计要素、燃烧状态和设计目标间的构效关系。● 采用计算流体力学(CFD)的方法构建细支卷烟燃烧模型,阐述了卷烟燃烧传递机理及各设计要素的作用机理;● 基于对卷烟燃烧机理的深入研究,首次将热分析技术与机器学习算法结合,实现对烟草质量风格的量化评价;● 最终形成计算流体力学导引下的细支卷烟系统化设计体系,并应用于福建中烟多个牌号的新产品开发和老产品维护。项目填补行业在卷烟燃烧数值模拟研究领域的空白,为行业细支卷烟开发设计提供快速便捷的工具。鉴定委员会一致认为,项目在“细支卷烟燃烧数值模拟”和“基于热分析图谱结合机器学习算法实现烟叶风格评价”两个方面具有显著创新,达到国际领先水平。03李华杰:守护工艺 创想当“燃”人物名片2004年入职,高级工程师,主要负责卷烟工艺技术研究,多次参与行业重大专项项目和福建中烟科技项目,2016年以来获得中烟科技进步奖项4项,获得授权发明专利7项,实用新型专利12项。研究制定行业标准5项,并作为第一副主编编著30万字以上书籍3本。作为一名潜心钻研的科技工作者,多年来,李华杰立足自身技术领域,积极投身企业及行业的科研创新与服务工作,推进行业重大专项工作实施,推动卷烟生产过程品质控制,增强工艺装备技术支撑能力,促进行业质量管控标准化和规范化… … 可以说,他是一个研究型的实践者,亦是一个实践型的探索者。● 推动生产制造工艺技术及装备功能的不断完善优化,为企业产品、原料等各领域的集成协同提供了很好的生产制造与创新平台;● 完成了《再造烟叶涂布率的测定 烘箱法》等行业标准的研究和编制工作,填补了行业关键领域质量管控标准的缺失;● 作为卷烟产品工艺的“守护者”,近几年他和项目团队积极开展库存不适用烟叶加工技术研究,为提前一年半完成了国家局布置的30万担不适用烟叶的消化使用任务作出积极贡献。04邓其馨:埋首耕耘探“气”之路人物名片2009年进入福建中烟技术中心实验室,主要从事卷烟烟叶及烟气化学成分分析与应用、卷烟原辅材料质量安全保障及产品降焦减害的技术研究。2016年破格评为高级工程师,2017年入选中国科协“青年人才托举工程”。五年来,授权发明专利10项,发表SCI论文4篇,在《德国烟草科技》《烟草科技》《中国烟草学报》等核心期刊发表论文5篇,多次获得福建中烟科技进步奖项。从关注实验本身到关注实验与卷烟产品之间的联系,将研发新技术、共性规律应用到产品开发当中,真正让技术研发落地,这是邓其馨从事十多年科研工作最大的收获。入职至今,邓其馨一直在福建中烟技术中心实验室,与烟草化学打交道。● 在基于烟气化学成分的通风卷烟调控技术研究方面,首次采用“卷烟烟气截留释放模型”尝试探究了滤嘴通风影响卷烟烟气化学成分变化差异的根本原因,为通风卷烟产品通风设计开发优化,产品维护等方面提供技术支撑,并应用于福建中烟在产卷烟规格分析及新产品设计,取得显著经济效益。● 此外,他在卷烟原辅材料质量安全保障及产品降焦减害方面努力探索,对福建中烟卷烟品牌发展具有积极的促进作用。
  • TSI参加第十一届中国国际科学仪器及实验室装备展览会
    美国TSI公司将于2013年5月15日至17日参加在北京中国国际展览中心举办的“第十一届中国国际科学仪器及实验室装备展览会,展位号为一号馆1175号展台。 美国TSI公司于展会上将展示最新推出的新一代的ChemLogixTM系列元素分析解决方案产品线中的第一款产品:ChemRevealTM型台式激光诱导击穿光谱仪。其配备了先进的ChemLyticsTM等离子体发射光谱分析和元素分析软件,大大简化了复杂的元素分析过程,对每一个固体样品矩阵里的广泛的元素进行直接鉴定和分析。事实上,这个强大的全新的解决方案提供了对包括粉末,非晶或非导电材料固体样品中的有机物,轻元素,重元素进行同时表征,而且不需要繁琐的有害的样品制备过程,对固体物质的元素进行快速分析,为材料鉴定以及固体元素成分分析提供了一种快速可靠的方式。无论是微量还是高浓度,实验室还是生产线,这款台式激光诱导击穿光谱仪的激光诱导击穿光谱元素分析技术,都是研究人员,科学家以及测试技术人员为多种应用进行快速可靠的材料鉴定以及固体元素成分分析的理想选择。美国TSI公司还将展示NanoScan SMPS 3910型纳米颗粒粒径谱测量仪,实时粒径测量,最小检测到10纳米粒径的颗粒,是现场快速检测的理想选择。 敬请大家届时光临TSI展位!关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统   演讲人: 许荣川博士高级应用工程师   KHOO Yong Chuan Mike PhD   Senior Applications Engineer   网上讲座: 2011年1月12日上午10点   美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。   这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。   讲座将会进行40分钟及预留15分钟答疑环节。   这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。   具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。   网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。   讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。   细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。   1. 外泌体提取及方法学评价   到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。   1.1 离心法   这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。   1.2 过滤离心   过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。   1.3 密度梯度离心法   密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。   1.4 免疫磁珠法   免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。   1.5 色谱法   色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。   2. 外泌体测量各种方法的比较   2.1 电子显微镜   扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。   2.2 动态光散射技术   动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。    图1 大颗粒和小颗粒光强波动及相关曲线   在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。   2.3 纳米微粒追踪分析术   纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。   NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。 图2 NTA激光光路图      激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。   根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径   在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。   由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。   NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。 图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关   NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量   由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。   3. 总结   外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。   (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)   注:文中观点不代表本网立场,仅供读者参考。
  • 兰光发布高精度C230H氧气透过率测试仪新品
    C230H氧气透过率测试系统——本产品基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。适用于食品、药品、医疗器械、日用化学、光伏电子等领域的薄膜、片材、包装件及相关材料的氧气透过性能测试。产品优势:只为精准——先进流体力学和热力学设计的专利测试集成块;空间立体恒温技术;独立监测各腔测试情况的温湿度传感器;高效合规——同时测试3个相同试样,符合平行试验的标准要求;支持同一条件下3个不同试样测试;节省人力——自动温度、湿度控制;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。2、自动温度、湿度控制——设备内部温度、湿度自动调节。测试腔各自安装温湿度传感器监测温湿度情况,控制测试过程更加精准。3、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接4、入第三方软件。先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。测试原理:将预先处理好的试样夹紧于测试腔之间,氧气或空气在薄膜的一侧流动,高纯氮气在薄膜的另一侧流动,氧分子穿过薄膜扩散到另一侧中的高纯氮气中,被流动的氮气携带至传感器,通过对传感器测量到的氧气浓度进行分析,计算出氧气透过率等结果;对于包装件而言,高纯氮气则在包装件内流动,空气或氧气包围在包装件外侧。参照标准:ASTM D3985、ASTM F1307、ASTM F1927、GB/T 19789、GB/T 31354、DIN 53-3、JIS K7126-2-B、YBB 00082003-2015技术参数:测试范围:0.01~200cm3/(m2day) (标准);0.0007~12.9cc/(100in2day);0.00005~1cm3/(pkgday)(包)分辨率:0.001cm3/(m2day)重复性:0.01cm3/(m2day)或2%,取大者测试温度:10~55℃±0.2℃测试湿度:0%RH,5%RH~90%RH±1%RH,100%RH附加功能:包装件测试(最大3L):可选DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:测试腔:3样品尺寸:108mm×108mm样品厚度:≤3mm标准测试面积:50cm2载气规格:99.999%高纯氮气(气源用户自备)气源压力:≥0.28MPa/40.6psi接口尺寸:1/8 英寸金属管创新点:C230H氧气透过率测试系统基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。 创新技术特点: (1)新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。 (2)搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统; 高精度C230H氧气透过率测试仪
  • “一滴”液体 获取结果——微流控芯片助力医疗检测设备小型化
    近年来,部分医疗检测设备的小型化、便携化,已经成为发展趋势。杭州电子科技大学副教授王骏超团队在微流控研究领域的研究,有望打开医疗检测设备小型化芯片设计制造的“快捷之门”。相关研究成果近日发表于《芯片实验室》(Lab on a Chip),并被英国皇家化学学会中文官微头条推介。据悉,微流控芯片不同于一般集成电路芯片,后者通过硅、铜材质的电路图电压运行工作,而前者则通过树脂、玻璃等聚合物里的液体(聚合物有惰性,不会和流经液体发生反应)压力差运行工作。“微流控芯片做液体检测,优势是液体样本量变小了,反应体芯片也很小,流体在微米级别大小会变得更可控。”王骏超告诉《中国科学报》,“流体到达微流控里的反应区,经过小型阀门的控制,发生生化反应,传感器件通过解码液体里隐藏的信息,得到医疗检测所要的结论,比如新冠核酸检测、病毒感染检测等等。”事实上,微流控作为专业术语有些“生僻”,但其应用对大众来说并不陌生。王骏超以验孕棒为例介绍道:“验孕棒就是用了微流控原理。女性将极少量尿液放到验孕棒试纸上,试纸就是一款基于纸张的微流控芯片,尿液进入微流控,通过生化反应,通过判断试纸出现单线或双线解码出女性是否已孕。”此项研究最大的创新点在于,大幅提升了微流控芯片仿真速度。众所周知,集成电路芯片生产出来,前面要经历软件设计、代工、封测等环节。芯片设计需要的EDA(电子设计自动化)软件设计工具,被认为是中国集成电路产业“卡脖子中的卡脖子”。微流控芯片设计也需要EDA软件设计工具,一般被称为MEDA,而王骏超团队通过芯片结构矩阵化,换句话说是“对芯片结构拍照”,将流体力学问题转化为“图像识别问题”,相比传统微流控芯片仿真设计速度,MEDA可以将速度提升51600倍,从而缩短微流控芯片设计时间,减少设计研发成本。此外,论文还提出了基于卷积神经网络(CNN)的技术来预测随机微流控混合器的流体行为。王骏超表示,随着微流控应用扩大,用户可以在家通过微型检测设备DIY检测唾液、汗液、尿液,而不用去医院自己获取身体健康信息,未来微流控芯片将得到广泛应用。相关论文信息:https://doi.org/10.1039/D0LC01158D
  • 兰光发布塑料包材水蒸气透过率测试仪新品
    塑料包装水蒸气透过率测试仪 C360H水蒸气透过率测试系统——本产品基于重量法水蒸气透过的测试原理,参照ASTME96,GB 1037标准设计制造,为低、中、高水蒸气阻隔性材料提供宽范围、高效率的水蒸气透过率检测试验。适用于食品、药品、医疗器械、日用化学等领域的薄膜、片材、纸张、织物、无纺布及相关材料的水蒸气透过性能测试。塑料包装水蒸气透过率测试仪产品优势:只为精准——先进流体力学和热力学设计的专利测试舱和透湿杯;立体空间恒温技术;精密科学的测试条件调节计算;高效合规——12个测试工位;支持增重法和减重法测试模式;节省人力——风速自动调节;湿度自动调节;无需更换内芯的气体干燥装置和高效水蒸气发生装置;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。4、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接入第三方软件。5、先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。塑料包装水蒸气透过率测试仪测试原理:在预先处理好的测试杯中放置水或者干燥剂,然后将预先处理好的试样夹紧在测试杯上,测试杯放置于测试舱当中。测试舱根据指定测试条件生成稳定的温度、湿度和气流吹扫环境。水蒸气通过试样进入干燥一侧,通过测定测试杯整体重量随时间的变化量,计算试样水蒸气透过量等结果。参照标准:ASTM E96、GB 1037、GB/T 16928、ASTM D1653、ISO 2528、TAPPIT464、DIN 53122-1、YBB00092003-2015塑料包装水蒸气透过率测试仪技术参数:最大量程:减重法:10000/n(1-12件)g/(m2day);645/n(1-12件)g/(100in2day)增重法:每件1200 g/(m2day);每件77g/(100in2day)测试工位:12个测试温度:20℃~55℃±0.2测试湿度:10%RH~90%RH±1%扩展功能:DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:样品尺寸:Φ74mm样品厚度:≤3mm测试方法:增重法,减重法标准测试面积:33cm2载气规格:压缩空气载气干燥:长寿命干燥装置,不需要更换内芯载气加湿:内置高效无水雾加湿气源压力:≥0.6MPa接口尺寸:Φ6mm聚氨酯管创新点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。 2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。 3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。 塑料包材水蒸气透过率测试仪
  • 鲨鱼为什么游得快?岛津CT为您揭开谜题
    曾经在国际游泳比赛中风靡一时的鲨鱼皮泳衣(快皮),是仿照鲨鱼皮的结构制作的高科技材料泳衣,穿上它能让人在水中游得更快。那么它是怎么被研发出来的呢?学者发现,鲨鱼皮的构造能够有效地降低流体阻力,所以鲨鱼的游速非常快。目前,各国学者仍在研究鲨鱼皮的构造,本文简单介绍鲨鱼皮的盾鳞在流体力学方面的研究。 岛津制作所参与了东京工业大学联合日本国立博物馆对《降低流体阻力的课题》的研究。以下为研究内容的简介: 研究目的验证鲨鱼身体各个部位盾鳞的表面小波纹结构是否能有效降低流体阻力。 试验方法★ 对大白鲨盾鳞采集测量数据★ 利用采集的数据建模★ 利用建模数据,通过逆向工程制作实验用真实模型★ 在流动水槽中使用制作的模型测量流体的阻力 工业CT主要应用于第一步。以下就本研究的数据采集和试验结论进行介绍。 数据采集本次研究对象外观图:鲨鱼体表的盾鳞,如图1所示。 图1 鲨鱼盾鳞的SEM图像 本课题的适应性★ 取材的盾鳞在结构上的相异不妨碍身体的变形★ 各种承受外力的可活动盾鳞的结构均可实现降低阻力的功能。 验证前的设问★ 鲨鱼皮上的盾鳞是否真的能够有效降低阻力?★ 盾鳞的形状和小波纹的间隔是否会阻挡局部液体的流动? 制样首先,从大白鲨鱼身的5个不同部位各取1块表皮,使用微焦点CT SMX-100CT 对其进行扫描,采集数据并重建图像。如图2所示。 图2 上排图片:盾鳞的CT图像(VR)下图:取样部位 其中,对所取盾鳞部位的定义,如图3所示。 图3 使用三坐标扫描的鲨鱼全身图(总长3.16m) (中间步骤省略)试验的基本原理如下:小波纹形状的评价方法:点参数S+uτ:摩擦系数 ν:海水动态粘度系数 ρ:海水的密度 图4 图5 小波纹结构:S+=5~25时,有降低阻力的作用S+=15~20时,降低阻力的效果达到最大(Dean,2010) 利用模型测量的试验结果如下★ 设定大白鲨的游泳速度为2【m/S】、6.7【m/S】(Watanabe et al .,2019)对小波纹间隔进行测量的结果,如图6 图6 对小波纹间隔测量的结果 测量可知,身体部分小波纹间隔:80~100μm;胸鳍或尾鳍的小波纹间隔:50~80μm。★ 当大白鲨以2【m/S】的速度在岛屿之间移动时的S+值如图7 图7 2【m/S】的速度时点参数S+的计算结果 ★ 当大白鲨以6.7【m/S】的速度进行捕食时的S+值如图8 图8 6.7【m/S】的速度时点参数S+的计算结果 (中间过程省略) 本试验的结论★ 大白鲨盾鳞的小波纹的间隔显示其有降低阻力的效果与2D小波纹的理论相比,所有部位的小波纹都有降低抵抗的效果★ 当大白鲨以高速游泳进行捕食时,降低阻力的效果可能达到最大★ 局部的流动显示表面存在小波纹间隔的原因像尾鳍等盾鳞间隔较小的部位,表面小波纹也有降低阻力的效果 本试验的后继课题★ 各部位盾鳞的形状是否与身体变形相对应★ 研究各种承受外力的可活动盾鳞的结构对降低阻力的效果 岛津工业CT助力流体阻力研究岛津微焦点CT inspeXio SMX-100CT Plus
  • 09年数理地学教育部重点实验室评估结果
    教育部关于发布2009年度数理、地学领域教育部重点实验室评估结果的通知   有关高等学校:   根据《高等学校重点实验室建设与管理暂行办法》和《教育部重点实验室评估规则》,今年我部组织对数理、地学领域的30个教育部重点实验室进行了评估。现将评估结果及有关事项通知如下:   1.数学及应用数学教育部重点实验室(北京大学)等5个实验室为优秀类实验室,地表过程分析与模拟教育部重点实验室(北京大学)等24个实验室为良好类实验室(名单见附件),其余为较差类实验室。   2.优秀类教育部重点实验室,可按照教育部《高等学校科技创新工程重大项目培育资金项目管理办法》,在今后我部重大项目计划中予以优先支持,具体组织申报程序另行通知。较差类实验室将不再列入教育部重点实验室序列。   3.希望各有关高校和参评实验室认真总结经验,根据反馈的综合评估意见提出的问题和建议,抓紧研究解决问题的办法和措施,制定未来五年实验室建设和发展的方案。   4.为保证实验室持续稳定发展,加强规范化管理,推动实验室领导班子换届与评估周期相衔接,依照《高等学校教育部重点实验室建设与管理暂行办法》的有关要求,通过此次评估的实验室及各有关高校应于2010年上半年前完成实验室主任和学术委员会主任换届工作,并将推荐人选及时报送我部科技司。 附件: 2009年度数理、地球科学领域教育部重点实验室评估结果 序号 实验室名称 依托高校 优秀类 1 数学及应用数学 北京大学 2 西部环境 兰州大学 3 原子分子纳米科学 清华大学 4 污染环境修复与生态健康 浙江大学 5 地理信息系统 武汉大学 良好类 6 地表过程分析与模拟 北京大学 7 西南资源开发及环境灾害控制工程 重庆大学 8 核心数学与组合数学 南开大学 9 近代声学 南京大学 10 海底科学与探测技术 中国海洋大学 11 信息数学与信息行为 北京航空航天大学 12 非线性数学模型与方法 复旦大学 13 射线束技术与材料改性 北京师范大学 14 辐射物理及技术 四川大学 15 环境演变与自然灾害 北京师范大学 16 地理信息科学 华东师范大学 17 地球空间环境与大地测量 武汉大学 18 造山带与地壳演化 北京大学 19 生物地质与环境地质 中国地质大学(武汉) 20 海岸与海岛开发 南京大学 21 物理海洋 中国海洋大学 22 海洋环境与生态 中国海洋大学 23 浅水湖泊综合治理与资源开发 河海大学 24 长江水环境 同济大学 25 三峡库区生态环境 重庆大学 26 旱区农业水土工程 西北农林科技大学 27 流体力学 北京航空航天大学 28 中尺度灾害性天气 南京大学 29 应用离子束物理 复旦大学 30 海洋环境与生态 中国海洋大学 注:良好类实验室排名不分先后。   教育部科技司   二○○九年十月二十七日
  • 高端电子材料和装备制造联合实验室成立
    3月22日,石科院与与湖北侨光石化装备股份有限公司共同成立高端电子材料和装备制造联合实验室,在湖北省仙桃市举办揭牌仪式并召开第一次联席会议。仙桃市市委书记孙道军,市委常委、副市长胡常伟,市委常委、秘书长朱慧玲,石科院院长李明丰、副院长王辉国,湖北侨光公司董事长刘洪祥出席揭牌仪式,并为联合实验室筹建的世界最大规模反应器内构件冷模试验装置奠基剪彩。彭场镇党委书记蔡勇军,中国石化集团高级专家郁灼、仙桃市及石科院相关部门负责人及有关人员参加。揭牌仪式上,李明丰、胡常伟分别致开幕词。李明丰回顾了石科院与湖北侨光公司十四年的合作历程,指出双方将依托联合实验室携手开展大型冷模装备及“专精特新”技术研发,探索实验室研究与工程制造紧密结合的创新模式,将联合实验室打造成为国际一流的产学研高度融合的创新平台。胡常伟对联合实验室的成立表示热烈的祝贺,强调联合实验室是仙桃装备制造产业创新发展的重大实践成果之一,仙桃市政府将全力支持联合实验室建设,希望石科院、湖北侨光继续发挥自身优势,以技术创新推动产业升级和高质量发展。孙道军、李明丰共同为联合实验室揭牌。刘洪祥、李明丰分别为联合实验室主任、副主任颁发聘书。 高效环保芳烃成套技术是保障我国纺织原料供应、产业链完整及经济结构安全的关键核心技术。吸附塔格栅内件专有设备是芳烃吸附分离工艺的核心装备之一,直接决定了吸附剂利用率和吸附分离效果。为实现技术迭代升级,联合实验室决定筹建世界最大规模流体力学冷模试验装置,建成后将开展吸附分离装置大型化研究,为芳烃成套技术大型化提供有力支撑。孙道军、李明丰、刘洪祥及部分参会嘉宾共同为大型冷模试验装置奠基。仪式结束后,联合实验室召开第一次联席会议。与会人员一致表示,联合实验室将聚焦国家重大需求,在高端电子材料生产技术、高端石化化工设备制造、产业升级等重点技术领域开展放大试验、工程转化、产业融合、成果推广、人才培养等科技创新活动,培育新质生产力、实现科研成果转化落地,促进产业升级与变革。下一步,石科院将全力推进联合实验室大型冷模试验装置建设,保证装置按时投用,尽快开展试验。同时将依托联合实验室持续开展芳烃成套技术迭代升级,开发更多过程强化和节能技术,为中国石化成套技术研发提供强劲动力,为石化行业实现“双碳”目标发挥重要作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制