当前位置: 仪器信息网 > 行业主题 > >

石墨烯浆料

仪器信息网石墨烯浆料专题为您整合石墨烯浆料相关的最新文章,在石墨烯浆料专题,您不仅可以免费浏览石墨烯浆料的资讯, 同时您还可以浏览石墨烯浆料的相关资料、解决方案,参与社区石墨烯浆料话题讨论。

石墨烯浆料相关的资讯

  • 卡尔费休水分测定仪——禾工AKF-2010V助力石墨烯材料检测
    2017年2月山东青岛德通纳米科技有限公司成功采购我司一台设备,山东青岛德通纳米是一家石墨烯新材料科技公司。公司致力于石墨烯功能材料及其相关下游应用产品。 2017年3月初上海禾工科学仪器有限公司派遣专业的技术工程师远赴山东地区,现场安装调试培训AKF-2010V卡尔费休水分测定仪。使用禾工AKF-2010V卡尔费休水分测定仪检测石墨烯导电浆料中的水分含量 鲁烯石墨烯导电浆料是青岛德通纳米技术有限公司开发的一款石墨烯新材料产品。石墨烯具有众所周知的超强超薄物理特点,其导电、导热、润滑、防腐、密封和耐高温物理特性优异。该石墨烯乳系列产品以其优异的性能广泛应用于储能和动力电池、新能源、太阳能、电子元器件、电子工艺工程、印刷、抗静电、电磁屏蔽、特种功能涂料、复合材料、等领域。青岛德通纳米科技石墨烯产品展示 仪器状态及观测数据完全正常,期间与用户进行多次详细的交流。通过禾工专业技术工程师现场对用户所提疑问一一展示、验证及作答,最终获得了客户的一致肯定,本次安调作业圆满完成!
  • 梅特勒卤素水分仪测定锂离子电池浆料固含量方法
    我们知道,锂电池浆料分为正极浆料和负极浆料两种,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。 锂离子电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂离子电池浆料制备的整个过程。合浆后的浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。表征浆料稳定性的主要参数有流动性、粘度、固含量、密度等。 浆料的固含量和浆料稳定性息息相关,同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。在一定范围内,粘度越高,浆料稳定性越高。固含量越高,浆料搅拌时间越短,所耗溶剂越少,涂布干燥效率越高,节省时间。高固含量的浆料还可以减少涂层间厚度,降低电池内阻。 锂电池的生产包括极片制造工艺阶段的浆料制备、浆料涂覆工序是整个锂电池制造的核心内容,浆料的固含量等参数就关系着电池电化学性能的好坏,我们就来探讨一下主流的测量锂离子电池浆料固含量的方法。锂离子电池正负极浆料目前的标准的测试方法为GB/T18856.2-2008 水煤浆试验方法第2 部分 浓度测定。浆料试样的采取与制备按锂离子电池浆料采样方法进行。BINDER FD115 (固含量测定烘箱)1.1 取充分搅拌均匀的浆料试样(3.0±0.2g) 置于预先干燥并称量(称准至0.0002g)过的称量瓶中,迅速加盖,称量(称准至0.0002g),晃动摊平。1.2 打开瓶盖,将称量瓶和瓶盖放入预先鼓风并已经加热到120~125℃的干燥箱中,在鼓风条件下,干燥2h。1.3 从干燥箱中取出称量瓶,立即盖上盖在空气中冷却约3min后放入干燥器中,冷却至室温,MT电子分析天平称量。1.4 进行检查性干燥,每次30min,直到连续两次干燥的试样质量的减少不超过0.003g或质量增加后为止。在后一种情况下,应才有质量增加前一次的质量作为计算依据。由此我们看出此方法的局限性: 目前主流采用是梅特勒的经典型HC103及超越型HX204这两款卤素红外水分仪测量电池浆料的固含量,其测定方法是如何简化测试流程又能和烘箱法的结果保持一致呢? 一:HX204 超越型的卤素水分测定仪,主要的优势为:创新的悬挂式秤盘设计避免了加样腔的热量对秤盘的影响,通过消除对称量单元的负面热效应,改善测定结果。高性能 MonoBloc 称量单元可提供最大量程和最佳分辨率(200g,0.1mg),可满足要求最严苛的任务,可在最短的时间内获得非常可靠的结果。快速加热:先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。第二代卤素加热技术最大程度减少了热物质,通过缩短加热/冷却循环及精确的温度控制增强性能。采用冷仪器进行首次测量,与随后采用热仪器进行测量的精确程度相同。一键水分测定 :One Click™ Moisture 的图形化用户界面可快速、顺畅地执行操作,同时提供实时的干燥曲线和控制图表。了解测量,自动化控制图表可显示每个样品的固含量的含量变化趋势。具有测试方法开发功能。 具有终点判定方法选择功能 二:梅特勒-托利多全新经典HC103水份测定仪 使用 HC103 卤素水份测定仪轻松执行浆料固含量的测定。借助触摸屏操作和用户指导,HC103 使用起来十分方便。 2. 坚固耐用的设计均可确保今后数年内获得可靠的结果。 3. 图形化用户界面:让您倍感舒适自在,只需轻轻一击即可立即开始水份测定。4. SmartCal功能:确保可信水份结果的性能验证,应当在保养间隔期间定期测试卤素水份测定仪,以确保水份测量结果始终正确。通过 SmartCal,我们可提供一种在简单的 10 分钟测试中对您卤素水份测定仪的整体性能进行验证的独特测试物质。5.HC103 和HX204 的最小浆料的称量量为0.1g, 为了保证浆料固含量的准确性及重现性,建议称量量在0.5-3.5 g 左右。对于浆料而言,需要选用可重复使用的不锈钢样品盘及玻璃纤维盘进行测试。 根据正负极浆料水分残留及NMP残留物质的特性,一般可以进行120-155度左右的方法开发,通过测定方法开发功能,以烘箱法的结果进行比对修订及优化,最终形成固定的正负极浆料固含量的标准方法,保存在仪器界面的快捷键中,均匀放置好浆料样品好,一键开始测量,约2-10min自己显示结果。 结论梅特勒公司的HX204和HC103 卤素红外水分仪,非常适合于工厂车间和实验室进行原料,半成品和成品的水分或者固含量的测定。可以在几分钟内提供精确可靠的水分或固含量的信息,确保最佳的产品质量和至高的生产力,助力于锂电池正负极浆料固含量测定,有力保障锂离子电池的性能品质。
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 锂电浆料福音 看低场核磁如何畅泳比表面检测——访仪思奇(北京)科技发展有限公司总经理杨正红
    p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em " 众所周知,目前测量比表面积最主流的方法之一是气体吸附法。但是该法只能测干燥固体的比表面,对于分散在液体中的样品却爱莫能助。而对于需要通过制浆过程形成的终产品,样品在悬浮液状态下的比表面信息却非常重要。 /span /p p style=" text-indent: 2em text-align: justify " 有绳结就有解绳人,近日,仪思奇(北京)科技发展有限公司宣布代理的新产品Xigo系列胶体和悬浮液颗粒比表面积分析仪,则能够通过专利的核磁共振技术,测定胶体、乳液和悬浮液中颗粒的比表面积!仪器信息网编辑采访了仪思奇(北京)科技发展有限公司总经理、北京粉体技术协会专家委员杨正红,请其对Xigo系列胶体和悬浮液颗粒比表面积分析仪的特性、技术原理和应用场景进行了解读,并探访了其背后的故事。访谈详情摘录如下,以飨读者。 /p p style=" text-indent: 2em text-align: justify " strong 原理核心是核磁共振的弛豫时间 /strong /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 176, 240) " strong 仪器信息网: /strong /span 请您介绍下Xigo系列胶体和悬浮液颗粒比表面积分析仪的核磁共振技术原理和仪器的创新优势? /p p style=" text-indent: 2em text-align: justify " strong 杨正红: /strong Xigo系列润湿颗粒比表面分析仪所采用的原理是基于这样一种现象:当磁场改变时,与颗粒表面接触的或附着在界面上的液体分子与内部的液体分子行为存在很大的差异。界面上液体分子呈现受严格约束的运动状态,而内部自由的液体分子却是可以随意运动的。在颗粒表面液体的核磁共振驰豫时间远小于液体内部的驰豫时间,其差别可以达到几个数量级。悬浮液中颗粒的驰豫时间是这两个驰豫时间的平均值:分别是对颗粒表面液体与自由液体相对总量加权得到的驰豫时间,从而可以直接推导出颗粒的总比表面积。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 313px " src=" https://img1.17img.cn/17img/images/201907/uepic/6bd151e3-d331-4e87-a962-ca24a1af820e.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 313" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 这种方法的驱动力是“溶剂”液体的驰豫和在颗粒表面的液体驰豫之间的差异。文献证明,这种差异在低频时比在高频时更大,也就是说,在比较10兆赫和100兆赫时,差异系数达到了3。所以Xigo选用的电子设备支持高达100兆赫的频率,但测量采用的是13MHz的低场核磁。 /p p style=" text-indent: 2em text-align: justify " 这种方法的最大特点就是不仅可以测量比表面积,同时可以对应粒度分布。因为润湿比表面积对应于粒度分布比直接测量粒度分布更加敏感,并且测量时间少于5分钟,测量速度与粒度分布测量相近。但是,它可以在悬浮液状态下直接测量,不用稀释样品,无需样品制备;样品用量少,无破环性,样品可以储存和重新测量。这种测量方法适用任何类型的颗粒(乳液和悬浮液),适用于至少含有一个氢原子的任何液体,包括液体混合物(混溶),仪器同时具有较宽的浓度范围0.01%至60+%(最好高于1%)。样品可以储存和重新测量。该仪器的软件标准模式(QC模式)用于比表面测量;但在高级模式(R& amp D模式)下,就是一台独立工作的经典核磁共振谱仪(小核磁)。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 505px " src=" https://img1.17img.cn/17img/images/201907/uepic/6b139658-4476-479c-8d39-70fae28362c3.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 500" height=" 505" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong Xigo系列胶体和悬浮液颗粒比表面积分析仪具体参数 /strong /p p style=" text-indent: 0em " script src=" https://p.bokecc.com/player?vid=600B7C8565C464A49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script strong br/ /strong /p p style=" text-indent: 0em text-align: center " strong Xigo系列胶体和悬浮液颗粒比表面积分析仪视频实操简介 /strong /p p style=" text-indent: 2em text-align: justify " strong 类比气体吸附仪 分散性检测是最大优势 /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" color: rgb(0, 176, 240) " 仪器信息网: /span /strong Xigo系列胶体和悬浮液颗粒比表面积分析仪,与气体吸附仪相比有哪些优势和侧重点?这系列仪器具体有那几款型号? /p p style=" text-indent: 2em text-align: justify " 杨正红:气体吸附仪测定的是固体,用于原料的检验;而Xigo测定的是中间体,就是将原料制成浆料后的分散效果的质量控制和评价。其作用,我用下面这个经典案例来说明: /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 294px " src=" https://img1.17img.cn/17img/images/201907/uepic/4a2ab58a-7383-42ae-9fc1-1b9068422772.jpg" title=" 3_看图王.jpg" alt=" 3_看图王.jpg" width=" 500" height=" 294" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 当TiO2颗粒得到很好地分散时,色素性能就得到优化。BET计算的是粉体比表面积,无法判定它在液体中的分散效果。而Xigo系列测定的是润湿颗粒的比表面,可以给出分散效果的明确判断。即分散不好时,比表面明显低于样品BET值,当分散很好时,其值与BET值一致。 /p p style=" text-indent: 2em text-align: justify " Xigo系列润湿颗粒比表面分析仪目前有四款型号,分别是Area(基本型)、Drop(可用于水中油或油中水的测定)、Flow(用于改变条件的连续监测)和Chek(工厂在线应用): /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 87px " src=" https://img1.17img.cn/17img/images/201907/uepic/8d2562b4-4d59-4899-8c4c-f29c9ae707b8.jpg" title=" 4.png" alt=" 4.png" width=" 500" height=" 87" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 目前Area已经能测量多孔材料。例如,多孔石墨烯悬浮液表现出两种不同的弛豫,一种与颗粒的外表面有关,另一种与颗粒内的液体有关。通过观察弛豫峰的大小和弛豫时间,科学家可以研究孔隙率和孔径分布的变化。目前,我已经委托工厂将Drop发展到纳米泡测量,即由液-液界面发展到液-气界面的应用 。 /p p style=" text-indent: 2em text-align: justify " strong 最大应用空间:锂电浆料涂覆工艺质控 /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" color: rgb(0, 176, 240) " 仪器信息网: /span /strong Xigo系列仪器应用最广泛的行业领域有哪些? /p p style=" text-indent: 2em text-align: justify " strong span style=" text-indent: 2em " 杨正红: /span /strong span style=" text-indent: 2em " 该仪器应用的最大福音是锂电池浆料的涂覆工艺质量控制,过去两年,效仿于日本电池厂,我们一直致力于用电声法zeta电位及微观电学性质得到锂电池浆料的质量控制评判标准。但是,由于外方技术保密和浆料难以稳定的原因,我们对质控参数的摸索进展缓慢。而Xigo测量简单,只出一个数据,对锂电池浆料非常适用,对DT系列超声和电声法粒度和zeta电位仪是一个很好的补充。与DT一样,日本是Xigo的最大市场,丰田、尼桑、三菱和三星等著名公司都是Xigo的用户。另外,Xigo对于石墨烯、碳纳米管、银浆以及电子浆料等行业也都是切实可行的监测和评估手段,对于陶瓷、药物、化妆品、催化剂、墨水甚至纸浆和粘土等行业都是分散稳定性简单易行的质控手段。 /span /p p style=" text-indent: 2em text-align: justify " 无论电池、医药、催化剂和电子工业,在工艺生产过程中,粉体原料都需要调成浆料与添加剂充分混合再形成终产品。然而,在液体中混合颗粒并不容易做到均匀,颗粒必须分散得很好才能发挥作用,比如电池浆料中导电剂。这就造成了相同工艺但不同批次之间,或相同配方不同批号之间的性能差异。虽然我们有动态光散射技术、超声法粒度和zeta电位技术或多重光散射技术来测定浆料性质,但这些技术要么需要其它参数的输入才能准确计算,要么出一条曲线或参数需要有丰富的经验和积累去解读,这样就很难适应现场环节质控的需求。这样,就呼唤更好的工具来快速测量液体中的颗粒,简单地判定颗粒的分散程度,以控制分散,提高产品性能。Xigo利用核磁共振驰豫时间的测定,探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,计算液体或浆料体系中颗粒比表面积的技术,恰好符合这一需求,尤其是对石墨烯和碳纳米管、化妆品和墨水行业。 /p p style=" text-indent: 2em text-align: justify " strong 缘起20年前 萌芽10年前 & nbsp /strong /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 176, 240) " strong 仪器信息网: /strong /span 请您介绍下生产Xigo系列产品的美国Xigo Nanotools公司,仪思奇为何选择代理该款产品?目前在全世面范围内有哪些厂商具有这类型仪器?在中国是否有同类产品的竞争对手? /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 363px " src=" https://img1.17img.cn/17img/images/201907/uepic/ba48e836-1fce-485c-a51e-1783d406fd60.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 500" height=" 363" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图左:Xigo公司CEO Sean Race;图右:仪思奇(北京)科技发展有限公司总经理杨正红 /strong /p p style=" text-indent: 2em text-align: justify " strong 杨正红: /strong 西戈纳米工具公司(Xigo nanotools)由Sean Race和David Fairhurst博士于2005年在美国创立,其使命是为新兴的纳米材料行业提供新的创新“工具”。其目标是为科学家、研究人员和公司用户提供占地面积小,易于使用的纳米科学研究和精确测量工具。Xigo公司的CEO Sean Race原来是Bohlin 仪器公司的美国总裁,该公司于2003年底被马尔文帕纳科收购,David 曾经是布鲁克海文仪器公司(Brookhaven Instruments)副总裁,《Particle Sciences》的执行副总裁。 /p p style=" text-indent: 2em text-align: justify " 早在1988年,我在北京大学天然药物及仿生药物国家重点实验室负责仪器管理的时候, 有机会到德国Bruker公司培训。在那里,我就看到并了解了如何用核磁共振技术通过测量弛豫时间计算食品当中水含量的技术和仪器。所以,当我在2009年PittCon上看到Xigo测量润湿颗粒比表面的仪器,并不感到奇怪,只是并不清楚它的应用点在哪里。随着仪思奇(北京)科技发展有限公司的成立,作为一家中关村高新技术企业和新仪器技术研发及应用推广与服务平台,我们的工作重心也从仪器推广为主,转向了提供解决方案为主,而美国西戈纳米工具(Xigo nanotools)和法国高端技术(Cordouan Technologies)的产品恰恰是我们缺乏和正在寻找的纳米科学的解决方案,是对仪思奇现有技术手段的完美补充,有些技术填补了国内空白。而Xigo也正在探索扩大中国市场应用的途径,我的动向也自然引起了他们的关注。可以说,10年后我们是在理念、市场、应用和彼此需求几乎趋同的情况下水到渠成,再次自然交集在一起的。 /p p style=" text-indent: 2em text-align: justify " strong 附:采访嘉宾简介 /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 150px height: 180px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/01ce4eb2-6368-43bc-ba99-1d36d59cf04f.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 150" height=" 180" border=" 0" vspace=" 0" / 杨正红,仪思奇(北京)科技发展有限公司总经理,现为国际标准化组织颗粒表征筛分法以外的粒度分析方法技术委员会(ISO/TC24/SC4)专家委员,全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会委员,中国颗粒学会第七届理事会高级理事,中国化工学会化肥专业委员会第十届委员会专家委员,北京粉体技术协会专家委员。 /p p style=" text-indent: 2em text-align: justify " 1985年毕业于北京大学药学院,师从著名化学家,我国生物无机化学学科的开拓者, 中科院院士王夔教授。留校任教至副研究员期间,主要从事自由基生命科学研究并担任天然药物及仿生药物国家重点实验室仪器组组长,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。 /p p style=" text-indent: 2em text-align: justify " 1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家。2000年以来,有近20篇颗粒特性分析的论文发表。2004年起,先后被英国马尔文仪器公司聘为市场部经理及北方区经理,并同时担任美国康塔仪器公司中国区经理,北京代表处首席代表。 /p p style=" text-indent: 2em text-align: justify " 这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。《物理吸附100问》于2016年12月出版发行。 /p
  • 锂电池浆料与性能之间的桥梁——流变仪
    p   随着近些年新能源汽车、数码电子产品等锂离子电池应用领域的大力发展和推广,锂离子电池市场迅猛发展,预计2020年全球锂离子电池市场规模有望达到4500亿元。 /p p   相比于传统的镍氢电池,铅酸电池来说,锂离子电池具有能量密度高,无记忆效应,环境污染小等特点。 /p p   锂离子电池的主要材料有正负极、电池隔膜、电解液,这也是锂电池目前研究的热点领域和对象。其中在电极的制备过程中,锂电池浆料的性质,尤其是浆料的流变特性对最终电池的储电性能具有很大程度上的影响。 /p p   锂离子电池浆料含有活性材料及多种非活性物质,通过将其涂覆于金属集流体上来制备锂离子电池的电极。 /p p   锂离子电池中需要添加各种导电剂和粘结剂以形成导电网络,颗粒聚集在浆料中产生不均匀性,会导致复合电极中出现裂纹和空隙,使电子通路出现中断,从而影响电池性能。因此,制作分散均匀的、稳定的浆料成为重中之重。 /p p   锂离子电池浆料多为黑色不透明粘性流体或胶体状态,肉眼无法直接观测到分散是否均匀,不同分散状态的浆料又有着不同的粘度趋势。因此,流变特性是分析锂离子电池浆料分散状态的重要手段。 /p p   流变仪可在接近真实加工条件下,对样品在力、热作用下的行为进行研究,如样品的流动特性、加工过程中的结构变化、降解及混合质量等性质。锂离子电池浆料的流动特性与固含、搅拌工艺及加料顺序等都有很大的关系。另外,浆料的粘度和沉降稳定性也会对后续的涂布过程产生影响。 /p p   多项研究表明,锂电池的性能与浆料的粘度、添料次序、浆料固含、混合工艺、粘结剂种类、导电剂种类、溶剂种类、添加剂种类有关,且它们均是通过影响锂电池浆料的流变特性而影响最终的重放电性能。在体系相同的情况下,浆料的表观粘度基本与浆料的分散情况相关,浆料的分散程度越好,浆料的表观粘度越低。 /p p   制作分散均匀而稳定的浆料已成为提高锂离子电池性能的重要手段,流变仪则已成为锂电池开发研究过程中不可或缺的仪器。 /p
  • 应用 | 石墨Gibbs表面自由能对锂离子电池传统负极浆初始黏度和稳定性的影响
    研究背景锂离子电池的负极是通过将石墨、导电碳、CMC(羧甲基纤维素)和SBR(苯乙烯-丁二烯橡胶)在水中混合产生均匀溶液来制备的。负极浆料的初始粘度和稳定性对锂离子电池的制备过程和性能至关重要。众所周知,负极浆料中的石墨颗粒受到不同的力,如颗粒间的相互作用力(吸引力和斥力)、重力、浮力和布朗运动力。此外,吸引力可以细分为范德华力、静电力(相反电荷)、疏水作用力等。排斥力可以细分为静电力(相同电荷)、溶剂化力和空间位阻力。由于空间位阻效应,吸附在石墨颗粒表面的CMC可以阻碍颗粒聚集,是非常重要的稳定剂。因此,负极浆料的初始粘度和稳定性在很大程度上取决于CMC的吸附量及其性质。CMC吸附源于我们所说的“吉布斯表面自由能”:表面上的固体颗粒原子比内部原子具有更多的能量。因此,它们周围的其他分子或原子将被吸收以降低表面能。吉布斯表面自由能包含极性部分和非极性部分。通常情况下,石墨颗粒的非极性力高于极性部分的力。根据相似性和相容性原理,非极性力越高,吸收的非极性有机化合物越多,因此导致初始粘度越高。在本研究中,我们深入研究了商用石墨的吉布斯表面自由能与其浆料的初始粘度和稳定性之间的关系。图1. 浆液稳定性机理图及其影响因素实验仪器与方法负极浆料的制备过程是在100 mL烧杯中加入石墨(100 g)、导电碳、CMC和SBR,搅拌数小时,得到固体含量为50%的均匀溶液。吉布斯表面自由能根据杨氏方程和吸附功公式计算,其中接触角使用KRÜ SS DSA100仪器测量,并且测试了2种溶剂(水和二碘甲烷)的接触角,计算出表面能。DSA100全自动接触角测量仪结果与讨论吉布斯表面自由能是石墨颗粒和CMC分子之间相互作用力的来源,图2显示了5AL和LAG-18与水的接触角分别为138°和约150°,而在CH2I2中分别为约71°和约74°。然而,CMC吸附后,5AL的润湿角平均降至112°,LAG-18的润湿角降至92°,跟水表现出更好的润湿性。图2 5AL, LAG-18吸附CMC前后水和二碘甲烷的接触角对5AL、LAG-18、802SE、812SE、A70H、918、S360、A61和CEMD的吉布斯表面自由能进行了测试和计算(如表1所示)。表1. 5AL、LAG-18、802SE、812SE、A70H、918、S360、A61和CEMD的吉布斯表面自由能如表1所示,初始粘度更多地与吉布斯表面自由能的比表面积和非极性部分有关。初始粘度和吉布斯表面自由能的非极性部分之间的线性独立性如图3(d)所示,即y=466.83lnx+2956.2,表示不同种类石墨在固定重量量(例如,实验中的100g)下的残余能量差。初始粘度与比表面积或吉布斯表面自由能的极性部分之间不存在明显的线性独立性。然而,当吉布斯表面自由能的非极性部分在某种程度上非常大时,由于颗粒的表面积受到限制,初始粘度不会相应增加。图3 初始粘度与比表面积(a)和吉布斯表面自由能(b,c,d)的相关性对于吉布斯表面自由能,当吉布斯表面非极性部分的自由能高于极性部分时,CMC的吸附量相应增加,浆液表现出较好的稳定性性能。相反,浆料的稳定性变差。当吉布斯表面自由能的非极性部分非常接近其极性时,CMC的吸附和解吸将在浆料中达到动态平衡,LAG-18/CMC的润湿角约为90°(如图2所示)。这里,石墨颗粒不会发生沉降,浆料的粘度也不会发生明显变化,如LAG-18所示。然而,对于S360和A61的小型人造石墨所证明的结果,浆料的稳定性不能用初始粘度或吉布斯表面自由能来解释。根据范德华作用能方程,颗粒尺寸越小,相同质量的粉末(本研究中为100g)中所含石墨颗粒的量就越多,颗粒之间范德华力的影响就越大。因此,颗粒聚集变得更加明显,这不适合负极浆料的稳定性。结论本研究以几种商用石墨为原料,研究了石墨的吉布斯表面自由能对负极浆料初始粘度和稳定性的影响。结果表明,负极浆料的初始粘度与其吉布斯表面自由能的非极性部分呈正相关,并建立了它们之间的线性独立性。吉布斯表面自由能、比表面积和粒径等物理性质都说明了负极浆料的稳定性,其中吉布斯表面自由能量对浆料的初始粘度和稳定性进行了定性表征和定量计算,利用这一研究结果可以预测负极浆料的性能。本文有删减,详细信息见原文[1]周奇,文博,张佳丽等.石墨Gibbs表面自由能对锂离子电池传统负极浆初始黏度和稳定性的影响(英文)[J].Journal of Central South University,2023,30(03):665-676.
  • 石墨烯前沿最新综述精选(内附石墨烯网络研讨会参会福利)
    石墨烯具备超强导热性与导电性、以及轻质高强、柔性、透明等无比伦比的特性,被誉为“新材料之王”,应用前景十分广阔。自2004 年问世以来,关于石墨烯的研究热度持续不减,新兴研究领域不断被开拓。本文对近期石墨烯领域的部分综述进行盘点汇总,以此总结该领域最新前沿科研成果,以飨读者。(鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。)宁波材料所在石墨烯复合硅碳负极材料及其高能量密度锂离子电池方面取得进展动力电池、消费类电池等终端产品对高能量密度锂离子电池需求越来越强。目前,产业界主要采取硅碳复合路线来提升硅基负极应用水平,但高比容量的硅碳负极材料嵌/脱锂过程体积膨胀巨大,循环过程中活性材料会发生结构失效导致电接触变差,表面固体电解质膜反复破裂/再生导致电解液快速消耗,锂离子电池可逆容量迅速衰减。针对硅碳负极材料的体积膨胀问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队从源头出发,创新性地构筑了高机械稳定的自机械抑制石墨烯复合硅碳负极材料。刘兆平团队将氧化亚硅和石墨烯浆料在液相体系混合均匀,其中沥青作为添加剂,通过喷雾干燥、高温热处理和化学气相沉积等一系列工艺,制备类球形的石墨烯/沥青裂解碳封装硅氧化物复合负极材料(SiOx/Graphene/C,简称SGC),SGC复合负极材料可维持石墨烯宏观结构的完整性和机械稳定性。自机械抑制石墨烯复合硅碳负极材料制备研究表明,SGC复合负极材料可抑制SiOx摄锂量,降低体积膨胀,提升循环稳定性。该高性能石墨烯复合硅碳负极材料已成功实现产业化,研制出能量密度达350-400Wh/kg的系列新型高能量密度锂离子电池。俄罗斯借石墨烯涂层开发出新材料:用“微电厂”取代电池技术俄罗斯国立研究型技术大学与俄罗斯科学院微电子技术问题研究所科研人员,通过沉积石墨烯涂层技术开发出一种独特的硅纳米复合材料,这一研发成果将加速直接放置在电子产品印刷电路板上的“微电厂”技术的发展。俄罗斯国立研究型技术大学半导体与电介质材料科学系副教授叶卡捷琳娜戈斯捷娃解释说:“我们提出了独一无二的方法,在硅结构整个深度的孔道内壁上沉积多层石墨烯涂层。目前没有其他方法可以生产用于高效微燃料电池的电极。这种电源不仅可以为设备提供长期备用电源,而且可能会随着时间的推移取代电池。”郑大《ACS Nano》:MXene/石墨烯气凝胶实现超强电磁波吸收!郑州大学申长雨院士和刘春太教授课题组通过定向冷冻法和肼蒸汽还原法制备得到一种新型的含有磁性Ni纳米链锚定的三维MXene/石墨烯复合气凝胶(命名为NiMR-H)。特殊的取向结构和介电/磁性组分的异质界面有利于获得优异的吸波性能,具有良好的阻抗匹配、多重极化和电/磁耦合效应。NiMR-H气凝胶制备示意图及结构形貌表征图中国科大实现二维石墨烯室温铁磁性中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂策略,实现二维石墨烯的室温铁磁性。该研究组利用两步浸渍—热解的方法,在氮原子辅助下,将钴原子掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu/g,居里温度达到400K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法,研究人员证实样品中的钴是以平面四边形四氮化钴结构单元原子级分散于石墨烯晶格中的,排除了磁性起源于钴相关第二相的可能,四氮化钴结构单元是室温铁磁性的主要来源。精确可控的钴原子掺杂激活石墨烯室温铁磁性曹原一周连发两篇《Nature》:魔角石墨烯再次突破021年4月1日,来自美国麻省理工学院的曹原(通讯兼第一作者)&Pablo Jarillo-Herrero等研究者,通过进行热力学和输运测量,研究了魔角扭曲双层石墨烯(MATBG)的对称性破缺多体基态和非平凡拓扑现象。同时,也使魔角石墨烯的理论和实验都更趋近于一个统一的框架,为我们开发新型的量子材料,带来了更多可能。4月7日,曹原再发《Nature》,本文是关于魔角石墨烯中的Pomeranchuk效应的熵证据。当前相关态的杂化特性和能量尺度的大分离对于双层扭曲石墨烯中相关态的热力学和输运性质具有重要意义。山西大学:利用OAT法实现超高垂直石墨烯薄膜生长山西大学激光光谱研究所陈旭远教授团队在三维竖直石墨烯制备及储能应用领域取得突破性进展,研究成果近日发表在《ACS Appl. Mater. Interfaces》上。该团队开发了一种氧辅助“修正”(OAT)工艺以消除过密的石墨烯片层,阻止片层随时间增长而聚集,克服了生长过程中竖直石墨烯厚度饱和的现象。未聚合的竖直石墨烯陈旭远团队利用这种方法合成了高达80微米的超高竖直石墨烯,并应用于超级电容器中,获得了241.35mF cm–2的面积比电容,展现出了优越的电化学性能及储能能力。值得注意的是,80微米的高度并非该合成技术所能达到的最大值,通过氧辅助“修正”工艺可以获得任意高度的竖直石墨烯。这项工作对于高负载竖直石墨烯的合成具有重要的指导意义。与IC兼容的制造工艺和出色的储能能力使得OAT竖直石墨烯在集成芯片、器件领域中具有非常大的应用潜力。 《ACS Macro Letter》3D打印明胶氧化石墨烯墨水实现自发成肌分化釜山国立大学Dong-Wook Han与韩国亚洲大学Ki Dong Park教授团队在高分子领域顶刊《ACS Macro Letters》上发表了其最新研究成果,由富含酚的明胶(GHPA)和氧化石墨烯(GO)组成的3D可打印生物墨水,是诱导肌发生的材料的组成部分,可通过双重酶介导的交联反应原位形成水凝胶网络。原位可固化的GO/GHPA水凝胶可以成功地用作3D可打印的生物墨水,以提供合适的细胞微环境,并促进C2C12骨骼肌成肌细胞的成肌分化。总体而言,研究团队建议功能性生物墨水可能在肌肉组织工程和再生医学中有用。GO/GHPA水凝胶基质的3D生物打印和理化特性“石墨烯检测技术及应用进展”主题网络研讨会随着业界对石墨烯的高度关注,我国石墨烯研发和产业化得到了快速发展,但其产业化仍然面临诸多挑战和问题。石墨烯的“杀手锏”级应用仍在探索中,石墨烯标准、检测体系不完善,产品鱼龙混杂,市场亟需标准化。基于此,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中……报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 工信部批复组建国家石墨烯创新中心等3家国家制造业创新中心
    据工信部网站消息,近日,工业和信息化部批复组建国家石墨烯创新中心、国家虚拟现实创新中心、国家超高清视频创新中心等3家国家制造业创新中心。国家石墨烯创新中心依托宁波石墨烯创新中心有限公司组建,建设地位于浙江宁波,股东单位充分汇聚了浙江、江苏、广东等14个省份的行业创新力量。创新中心面向石墨烯产业发展的薄弱环节,围绕石墨烯材料规模化制备、石墨烯材料产业化应用和石墨烯行业质量提升等研发方向,开展关键共性技术攻关,支撑打造贯穿石墨烯领域创新链、产业链、资金链、人才链和价值链的创新体系,助推我国石墨烯产业创新发展。国家虚拟现实创新中心依托南昌虚拟现实研究院有限公司组建,建设地位于江西南昌,股东单位汇聚了虚拟现实硬件、软件、内容制作与分发、应用与服务等环节的行业骨干力量。创新中心聚焦制约我国虚拟现实产业发展的关键共性技术难题,建设关键共性技术研发、测试验证、检测、技术服务、人才培养和国际合作等平台,逐步构建覆盖虚拟现实全产业链的产业创新生态,推动我国虚拟现实产业高质量发展。国家超高清视频创新中心依托四川新视创伟超高清科技有限公司组建,建设地位于四川成都,股东单位汇聚了超高清视频材料、芯片、模组、算法、设备、整机及系统的行业创新资源。创新中心面向超高清视频产业发展重大需求,围绕前端采集、内容制作、编解码、网络传输和行业应用,提升关键共性技术研发、技术应用推广、行业公共服务等能力,助推我国超高清视频产业创新发展。下一步,工业和信息化部将加强对3家国家制造业创新中心建设的指导,和有关地方共同推动创新中心加快建设,督促创新中心不断提升技术创新能力和行业服务能力,为产业链供应链韧性提升提供有力支撑。正是看中石墨烯良好的性能以及巨大的发展潜力,宁波于2013年在全国率先启动石墨烯产业化应用研发重大科技专项,并支持了近40个石墨烯应用研发项目。借着这股东风,2017年浙江省石墨烯制造业创新中心作为全省首批省级制造业创新中心代表正式落户宁波,一批石墨烯产业的重大技术成果加速涌现。在技术研发方面,截至目前,浙江省石墨烯制造业创新中心已突破石墨烯微片的高效分散、稳定的水性浆料制备、石墨烯浆料快速印刷及涂布等多个关键共性技术;在产业化应用领域,锂电池用石墨烯复合导电浆料已在宁波墨西科技有限公司建成万吨级生产线;孵化的浙江墨原新材料有限公司已成功研发出百微米级石墨烯导热膜卷材;孵化的宁波烯暖科技有限公司已成功研发出基于水性工艺的石墨烯电热膜;研发的石墨烯RFID实现在资产管理的示范应用。“不光是宁波,我国已成为全球石墨烯开发和产业化最活跃的国家之一。截至2021年底,我国石墨烯专利技术申请量约占全球的80%,相关产品市场规模达到160亿元,已初步形成完整的产业链、供应链体系。”工信部科技司相关负责人此前在国家石墨烯创新中心建设方案专家论证会上表示,尽管如此,但我国石墨烯产业的发展仍存在不少的问题。国家石墨烯创新中心的建设就是要加速前沿基础理论和关键共性技术的创新和突破,加快技术的工程化,成果的产业化,推动石墨烯产业的高质量发展。
  • 八年探索,锂电池浆料评价方法终获突破
    近日,中文国家核心期刊《电源技术》2024年第1期和第2期连续发表仪思奇(北京)科技发展有限公司杨正红等两篇论文:《超声/电声谱法测定锂电池浆料的粒度、流变和微观电学参数》(见2024,48(1):95-100)及《用超声/电声谱监测锂电池正极浆料的合浆及包覆质量》(见2024,48(2):284-288)。这预示着在锂电池浆料稳定性和微观电学性质评价方面取得决定性突破。众所周知,在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接影响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料混合分散至关重要。浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。目前对电池浆料的质量监测依据的是剪切流变性能的监测,然而,对相同工艺产生不同流变性质的原因始终是困扰电池浆料质量控制的痛点。据报道,影响锂离子电池浆料流变性的一些主要参数包括:1. 分散相的类型及表面电荷的大小:对于不同种类的正负极活性物质,由于其种类不同,具有不同的水化膨胀特性以及不同的表面电荷,因而不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。2. 固相的浓度:分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般情况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。3. 固相颗位的大小、形状以及粒径的分布:在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。 4. 分散介质本身的粘度:不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。5. 温度和压力:在不同的温度和压力下浆料具有不同的流变特性。6. 浆料的pH值。对于锂电池合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。通过高粘度搅拌工艺,浆料中导电剂是否能较好地分散在主料的表面,均匀地包覆住主料,这将影响极片的导电性,直接影响电池的倍率性能。因此,我国锂电池行业只能通过测粘度对浆料稳定性进行粗放的宏观管理,而缺乏对浆料本身电学性质的研究和监测,极大地影响了锂电池的成品率,导致成本无法下降,品质无法提高。美国和日本锂电企业都是通过超声衰减/电声学技术(ISO 20998/ISO13099)表征浆料中颗粒的电化学性能,进行锂电池浆料及其稳定性精准质控的。为了打破封锁,提高我国锂电池生产品质,根据所掌握的信息,仪思奇对电池浆料品质控制的超声/电声学参数进行了初步探索。美国分散技术公司的DT-1202或DT-1210超声/电声谱分析仪具有在常压条件下测量和计算上述包括粒度及zeta电位等几乎全部涉及的宏观和微观参数的能力(颗粒形状除外),国家标准GB/T 41316-2022《分散体系稳定性表征指导原则》中也推荐了超声/电声学方法。在日本,DT-1202以每年20台的销量早已广泛应用于电池浆料的质量控制中。然而,日本公司在向我国销售电池设备的同时,却对质控仪器及其相关参数对我国严格保密。为打破垄断,提高我国锂电池生产质量,降低消耗,仪思奇科技从成立之初,即与锂电材料企业广泛合作,对电池浆料可能的质控参数进行了一系列探索实验。经过八年的艰苦探索和努力,他们发现锂电池正负极浆料的稳定性化存在着不同的机制,它们的作用可以通过不同的参数表征出来,即宏观电动学参数——Zeta电位和微观电学参数——表面电荷密度。在锂电池浆料的稳定效应中,后者起到更重要的作用。因此,在锂电池浆料的研究或质量监控中,不仅需要关注zeta电位值,更需要关注表面电荷密度值的变化,二者不可偏废。这些微观电学参数也影响着浆料的宏观流变性能。超声衰减谱还可同时测量浆料体系的高频剪切黏度(动力黏度)和体积黏度(纵向黏度),反映了浆料在微观尺度上流变学性质,并且是一种非侵入式和非破环性的方法,为物质的微观结构提供了更深入的信息,有助于判断锂电池浆料工艺不稳定性的原因。研究表明,超声法直接测定锂电池合浆过程中的原浓浆料粒度直观有效,对于工艺质控非常重要。zeta电位作为疏水胶体体系静电排斥效应的表征参数,却很难直接作为电池浆料NMP有机体系的稳定化表征参数。但是在合浆过程中,因导电添加剂团聚的存在,很难均匀包覆在LFP颗粒上,而通过胶体电流(CVI)测定的电声法直接测量锂电池浆料的Zeta电位和双电层厚度可以成为导电剂是否分散和包覆均匀的关键质量控制参数。上述对电池浆料评价方法的突破,对锂电池浆料稳定性和工艺控制的解决方案探索具有重要意义
  • 李琦博士——第一位叩开中国石墨烯产业大门的人
    上世纪90年代,他主持美国能源部10亿美元的项目,研制高温超导线材两次刷新临界电流密度纪录 2007年,他创立美国新纳科技有限公司,建成居世界前列产能的纳米碳管生产线 2012年,他在中国成立鸿纳(东莞)新材料科技有限公司,建成具有世界级产能的少层石墨烯生产线̷̷他就是国家“千人计划”专家、美籍华人李琦博士。  作为一名科研工作者,能够在一个前沿领域独占鳌头已是不易,而李琦从高温超导、纳米碳管到石墨烯领域,样样做成佼佼者。然而,天有不测风云,2016年12月21日,因主动脉血管突发破裂,他溘然离世,享年58岁。  誓将实验室成果工业化  “当初最吸引我的,是他的勤奋好学,以及他所拥有的自强不息、坚忍不拔的开创能力。”妻子方明女士回国整理李琦遗物期间,对科技日报记者回忆道。  李琦和她是大学毕业后在北京相识、相恋和结婚。随后,他们相继赴丹麦哥本哈根大学求学,李琦以优异成绩获得物理学博士学位。  方明记得李琦的弟弟曾讲,李琦自幼喜爱看书,动手能力很强,在家里常把半导体收音机拆了又装,一天到晚琢磨鼓弄电子玩意儿。尽管没有上过高中,他以初中的底子自学四个月就直接考上大学。当时他的物理成绩是全校最高分,只是语文差些,在所有入学新生里总分数较低,但大学毕业时,他总成绩列全校第一,也是唯一一个考上研究生的学生。  细数李琦在国际权威学术期刊包括《自然》上发表的科技论文,竟达60余篇。然而,他对妻子说,此生最大誓愿,不是在学术刊物上发表论文,而要把实验室的成果工业化,并达世界第一量产,惠及大众。  2015年,许多石墨烯企业还在烧钱摸石头过河。此时,李琦创立的鸿纳科技已与比亚迪合作,大批量提供石墨烯锂电池导电浆料产品,成为国内第一家赢利的企业,推开了中国石墨烯产业化的大门。  志创世界级中国高科技公司  那晚,李琦身感不适,被紧急送进医院等待第二天的手术,话别前来探望的亲朋之后,他心头仍放不下近期的技术研发项目,于是打出人生最后一个电话,同公司技术总监李召平讨论下周例会涉及的技术要点,时长约半小时。  “考虑到李总的身体,就劝他别讲太长,这要在平时,他会跟我们讨论上一两个小时不止。”当时接电话的李召平向记者回忆道。  李召平说:“作为一个企业家,李总不仅在一线指导公司技术创新,还亲力亲为做基础研究。给人印象深刻的首先是他的科学思维,他触类旁通,具有独特的技术敏感性,对新生事物能够快速吸收,他会留意谈话中的灵感一现,并想办法一步步实现 其次,针对客户需求开发产品,并做相关解决方案,为优化产品让客户使用方便,省去磨合环节,不怕增加工序 再有,经营企业具有前瞻性,超前布局未来5—10年的发展策略。”  鸿纳科技行政总监关宝利告诉科技日报记者:“李总每天睡得很晚,经常抱着电脑看技术信息、专利或科技论文,琢磨如何能够进一步完善新产品。第二天一大早就去公司下车间看研发情况。国内创业近十年,他每年回美国与家人见面不足两周。他志在创立世界级的中国高科技公司,因此他视鸿纳科技如同自己的生命,一刻都未放下过。”  敢为产业发展鞭策谏言  李琦的突然离去,让石墨烯产业界很多人痛心疾首,他们不仅失去了一位学识渊博、乐观幽默的良师益友,还缺失了一位敢为产业发展谏言的鞭策者。  李琦从做科研出身,到在美国运作高技术企业,深谙企业管理、质量管控及与市场的契合,他对企业发展有深刻的理解,超出一般科学家的见地,大量的实践让他对产业走向具有独到的洞察力。  中国石墨烯产业技术创新战略联盟秘书长李义春博士在接受科技日报记者采访时指出:“李琦对产业的贡献,要远比对其企业的贡献多得多。他常对业内企业直言不讳,有时言辞犀利令人难以接受。然而,事后被他告诫的企业或大学教授都觉着他字字珠玉,避免了许多不必要的损失、少走了很多弯路。”  李琦,一生为科研创新乐此不疲,把自己的率真、开拓、求索和坚毅毫无保留地奉献给石墨烯产业,人们将永远记住他——第一位叩开石墨烯产业大门的人。
  • 飞纳电镜能谱一体机 Phenom ProX 在利德浆料成功验收
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 108px" title=" 2.png" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/2f4ede14-87a6-4ade-8bfd-9402d76e9ce7.jpg" width=" 600" height=" 108" / /p p br/ /p p 湖南利德电子浆料股份有限公司成立于 2008 年,原隶属于湖南利德集团,是原集团的电子材料事业部,单独成立的具有独立法人资格的股份制公司,公司坐落于湖南株洲(国家)高新区金龙路国投众普森科技园,是专门从事电子浆料研发、生产与销售的高新技术企业。 /p p br/ /p p 公司从事电子浆料开发生产已有十余年历史,专注于研发和生产各种厚膜行业用电子浆料,产品包括各种银浆、电阻浆和介质浆,其中银浆和介质浆全为无铅环保产品。所有产品均遵循环保,节能的理念,且经过与客户使用条件几乎相同的测试与试验,力图真实体验客户感受。公司采取自主研发和与高校合作方式,先后承担了国家“863”项目、国家中小企业创新基金项目及湖南省重点科技项目,形成了具有完全自主知识产权的多系列电子浆料产品。 /p p br/ /p p strong Phenom SEM 的应用 /strong /p p 应用领域:太阳能电池浆料、金属基板浆料、汽车玻璃热线浆料、银钯浆料及普通浆料、低温浆料及导电胶。 /p p br/ /p p 样品 纯 Al 浆料 /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 303px" title=" Snip20150922_115.png" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/f629b550-2c06-49cf-8612-052ce76be860.jpg" width=" 600" height=" 303" / /p p br/ /p p 利用四分割背散射探头的 Topo 模式,可以清楚的分辨 Al 浆料表面的凸起和凹陷,观察其形貌。同时,在 Full 模式下通过被加强的对比度,分辨出轻重元素,找到并排除样品中的杂质。 /p p br/ /p p 样品 太阳能背板 Al 浆截面 /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 638px" title=" 飞纳电镜铝浆截面.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/b28a9b82-1ef2-4de6-b74e-814acb9e9563.jpg" width=" 600" height=" 638" / /p p br/ /p p 太阳能电池板背部设计的环保型导电铝浆,与晶体硅片实现完美的热膨胀匹配,转换效率高,其中的鼓包是需要工艺中排除的缺陷,利用飞纳电镜扫描区域的旋转,将基板置于水平位置,利于观察分析和排除缺陷。 /p p br/ /p p 样品 Ag 粉 /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 480px" title=" 飞纳电镜 Ag 粉.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/ea574af0-c3a2-4144-8ae6-606d7f9f71e7.jpg" width=" 600" height=" 480" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 335px" title=" 飞纳电镜利德表格.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/aa1eea30-4098-4048-b75f-f8ed2d7cce81.jpg" width=" 600" height=" 335" / /p p style=" TEXT-ALIGN: center" br/ /p p 利用飞纳全景拼图软件,可在较大区域中采集500张高倍银颗粒图像,然后利用飞纳颗粒系统软件,对其进行单颗粒识别和颗粒参数的统计分析。 /p p br/ /p p strong 客户选购 Phenom 飞纳的原因 /strong /p p 客户购买主要是基于飞纳独特的双低倍导航(快速寻样)、优越的抗震性能和小巧的体积。 /p p 2015 年 8 月 22 日,Phenom 飞纳电镜在利德浆料历时四天的培训验收工作顺利完成,感谢公司领导及同事的支持,也祝愿利德浆料在 Phenom 飞纳电镜的协助下,领军行业,把握脉搏,精益求精,走向卓越。 /p
  • 石墨炔与石墨烯,谁是超级材料?
    据报道,美国科罗拉多大学研究人员日前成功合成出石墨炔,此项成果或为电子、光学和半导体材料研究开辟全新的途径。事实上,石墨炔的合成研究一直是科学家们孜孜以求的目标,早在2010年,我国的李玉良院士团队就在世界上首次合成石墨炔。我们很多人都听说过大名鼎鼎的石墨烯,也知道2010年的诺贝尔物理学奖就是颁发给了石墨烯材料的研发者。石墨炔与石墨烯,仅一字之差,它们之间是否存在某种联系?石墨炔能否和石墨烯媲美?这里我们就来深入了解一下。21世纪是石墨烯的世纪  让我们先从更早出世的石墨烯说起。  听上去,石墨烯和石墨似乎有着某种联系,事实也确实如此。石墨烯和石墨、金刚石、碳60、碳纳米管等都是碳元素的单质。它们都是碳家族的一员,互为同素异形体,含有碳元素但具有不同的排列方式,从而表现出不同的物理性质。  比如金刚石(钻石的原身),它呈正四面体空间网状立体结构,碳原子之间形成共价键;当切割或熔化时,需要克服碳原子之间的共价键,由于金刚石中所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。  石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以3个共价键与其它碳原子结合,而层与层之间的距离则比较大,层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。铅笔之所以在纸上轻轻一划就会留下痕迹,正是这种松散堆砌的结果。  石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,可以说石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至几十层的石墨烯。  换句话说,把石墨一层一层地剥下来就是石墨烯了。从力学性质上说,石墨烯同石墨一样,其各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。  科学家已经证实了石墨烯是目前世界上已知的强度最高的材料,比钻石还坚硬,是世界上最硬的钢铁强度的100多倍。瑞典皇家科学院在颁发2010年诺贝尔物理学奖时曾这样比喻:“利用单层石墨烯制作的吊床可以承载一只4千克的兔子”。有人这样引申说,由于石墨烯厚度只有单层原子,透光率高达97.7%,因此如果真有那样的吊床,它不仅对于肉眼,甚至对于很多仪器来说都是不可见的,我们看到的将是一只悬停在半空中的兔子。还有估算显示,如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车。  从热电性质上来说,在石墨烯的“二维世界”里,电子运动具有很奇特的性质,即电子的质量仿佛是不存在的,其传导速度可达光速的1/300,远远超过了电子在一般导体中的运动速度。加上石墨烯结构在常温下的高度完美性,使得电子的传输及对外场的反应都超级迅速,这使得石墨烯具有超常的导电性和导热性。  而且更重要的是,石墨烯还可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的线度上依然能稳定地工作。若是用石墨烯来替代硅生产超级计算机,计算机的运行速度将会比现在快数百倍。因此很多人相信,石墨烯将会成为硅的接班人,引领技术领域一个新的微缩时代的来临。  除了具有超高的强度和韧性外,石墨烯几乎是完全透明的,即使是最小的单分子原子(氦原子)也无法穿过,只吸收2.3%左右的光,还有不透水、不透气以及抵御强酸、强碱的能力,这使它有可能成为制作保护膜的理想材料。石墨烯既能导电又高度透明的特点,使得它非常适合作为透明电子产品的原料,例如触摸显示屏、太阳能电池板的原料等。  研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备——微型石墨烯超级电容器。这种装置的充电或放电速度比常规电池快100倍到1000倍,能在一分钟内给手机甚至汽车充满电。  正因如此,所以有人说,如果20世纪是硅的世纪,那么21世纪就是石墨烯的世纪。  2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,在实验中成功地从石墨中分离出石墨烯。2010年,两人因此共同获得了诺贝尔物理学奖。“下一代奇迹材料”石墨炔  石墨烯已经如此神奇了,那么石墨炔呢?它有什么不一样的神奇之处吗?  石墨炔和石墨烯一样,也是只由碳原子构成,也是只有一层原子厚度的二维晶体。不同的地方在于,石墨烯的平面原子结构是六边形,也被称为蜂巢晶格结构;而石墨炔的平面原子结构则能具有数种不同的二维结构,其理论上能以无数种形态存在,目前已经至少有6种石墨炔异构体被报道。  正是因为拥有异构体结构,石墨炔具有某些独特的电子传导、力学和光学特性。此外,石墨炔还天生具有电荷载子,不像石墨烯需要额外掺杂,因此能作为制作电子元件所需的半导体材料。  早在1968年,理论化学家鲍曼就通过理论计算证实了石墨炔结构的存在。但要想在实际中合成制备出石墨炔,还面临着很多巨大的困难。我们可以这样理解,石墨烯的平面碳原子结构和石墨的单层平面碳原子结构毕竟是相同的,因此合成制备石墨烯还可以以石墨为抓手,而合成石墨炔的难度显然是更大了。  科学家们一直在为此不懈努力。在2010年,中科院化学所李玉良院士团队在石墨炔研究方面取得了重要突破,在世界上首次合成了石墨炔,开辟了碳材料的新领域。李玉良和他的团队从20世纪90年代中期开始探索平面碳的合成化学研究。在石墨炔的合成中,他们从源头的分子设计开始进行研究,渐渐地试着合成一些分子的片段。直到有一天在阅读文献的过程中,李玉良研究员突然联想到了一种化学的方法有可能使石墨炔大面积成膜。他们在铜片表面上通过化学方法原位合成石墨炔并首次成功地获得了大面积(3.61平方厘米)碳的新的同素异形体——石墨炔薄膜。  今年5月9日发表在《自然合成》上的研究论文,则在石墨炔合成制备上提供了一个新的途径。此文通讯作者、科罗拉多大学波尔德分校化学教授张伟和他的团队,通过使用被称为炔烃换位反应的有机反应过程中,在热力学和动力学的控制下重新分割或切割和重组烷基化学键,也成功地制作出石墨炔。  石墨炔被誉为是最稳定的一种人工合成的二炔碳的同素异形体。由于其特殊的电子结构及类似硅的优异半导体性能,石墨炔有望广泛应用于电子、半导体领域。  锂在石墨中的扩散方式是面内扩散,也就是层间扩散。与石墨不同的是,石墨炔同时有二维平面结构和三维孔道结构,锂在其中有面内和面外两种扩散方式,这使得石墨炔在锂离子电池方面具有很好的应用潜力。石墨炔是一种理想的储锂材料,可以作为锂离子电池的高能量密度存储的负极材料。科学家也预测它在新能源领域将产生非比寻常的影响。  石墨炔这种材料或许还有一些令人意想不到的神奇功能。据2020年发表在《科技日报》上的一则报道,山东理工大学低维光电材料与器件团队发现,石墨炔具有优异的紫外非线性特性,可以“恰到好处”地吸收紫外线。相关成果发表在国际知名期刊《纳米尺度》上。所谓紫外非线性材料,就是能够在紫外线强度比较低的情况下允许其通过,但若紫外线强度高于某一阈值,那么该材料就会神奇地将超额的紫外线阻挡住,形成对生物细胞的保护,从而使其成为理想的紫外防护材料。  英国《纳米技术》杂志曾这样评价:“石墨炔是未来最具潜力和商业价值的材料之一,它将在诸多领域得到广泛的应用。”  在合成石墨炔领域,我国科学家有着开创性的成果。而要获得大规模工业制备石墨炔的方法,还需要全球科学家们付出更多艰苦的努力,前景令人期待。
  • 深度聚焦:石墨烯检测与标准高峰论坛众咖云集
    p style=" text-align: justify text-indent: 2em " 2018年9月19日-9月21日,古都西安迎来了石墨烯年度国际盛会——2018中国国际石墨烯创新大会。在大会的“石墨烯检测与标准分论坛”上,瑞典皇家工程科学院院士、瑞典查尔莫斯理工大学教授、国家千人计划专家刘建影,中国计量科学研究院纳米新材料计量研究所副研究员任玲玲,中科院宁波材料技术与工程研究所研究员刘兆平等学术大咖结合石墨烯制备和重点应用领域,就石墨烯检测和相关标准制定的前沿工作和探索,进行了精彩的主题报告和学术研讨。论坛由中国石墨烯产业技术创新战略联盟标准委员会秘书长戴石峰主持,吸引了百余位石墨烯检测专家学者、用户单位检测负责人以及相关企业高层参加。 br/ strong /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/566e71a1-bb80-4d55-8731-5f2c439a1525.jpg" title=" IMG_5307.JPG" alt=" IMG_5307.JPG" / /p p style=" text-align: center text-indent: 0em " strong 中国石墨烯产业技术创新战略联盟标准委员会秘书长戴石峰主持 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/b6f2f76d-973a-4ed4-a69c-774bc1a9bf68.jpg" title=" IMG_5316.JPG" alt=" IMG_5316.JPG" / br/ 广西柳工机械股份有限公司研究总院新技术研究所副所长林博 /strong br/ /p p style=" text-align: justify text-indent: 2em " 林博副所长 span style=" text-indent: 2em " 介绍了石墨烯增强极压锂基润滑脂应用开发及标准制定的工作筹备和思考。润滑脂在装载机工作装置、回转减速机输出齿轮及齿圈的润滑领域有重要应用,石墨烯润滑脂相比于标杆润滑脂具有更好的挤压抗磨性(常用四球试验机和Timken试验机进行检测评价),并能减少磨损和举升异响等行业“痛点”。但目前石墨烯改性润滑脂的的关键性能指标和测试方法不统一,测试方法和评价体系不全面,且与实际应用的关联性有待提升。林博表示柳工机械正在联合相关单位筹备相关团体标准的制定工作,预计将于2019-2020年完成团标的理化性能交叉测试、台架与整车测试、全工况、全地域小批量测试、可靠性检验与质量说明书等四个阶段的标准研制工作。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/19323c9c-bfdc-41ed-947a-59934b2a208f.jpg" title=" IMG_5361.JPG" alt=" IMG_5361.JPG" style=" text-align: center text-indent: 2em " / /p p style=" text-align: center text-indent: 0em " strong 瑞典皇家工程科学院院士、瑞典查尔莫斯理工大学教授、国家千人计划专家刘建影 /strong /p p style=" text-align: justify text-indent: 2em " 刘建影院士做了题为《高导热石墨烯散热材料检测与表征方法建议》的报告。石墨烯散射材料在CPU、传感器、LED等光电元器件具有重要意义,刘建影院士表示,相比于商用普及的碳化膜,石墨烯薄膜在横向均热和纵向散射方面都具有更好的热导率,但是界面把控是保证其良好性能的关键。石墨烯薄膜的热导率与厚度成反比,一般来说常用拉曼光谱仪进行其热导率检测,然而在极薄区间的检测误差较大。刘建影结合自己的科研经验,介绍了几种新颖的热导率检测手段:Hot Disk、Laser Flash、Joule Heating、3ω、Thermal bridge method、ASTM D5470 technique、PPR和IR imaging and Resistance thermometers。他特别推荐了真空焦耳加热的检测方法,表示在极薄石墨烯材料的热导率检测方法中,该方法和热桥法是误差较低的两种方法,而真空焦耳加热的方法速度快于热桥法。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/426518b3-4057-425b-93e3-740e8081bef8.jpg" title=" IMG_5421.JPG" alt=" IMG_5421.JPG" / /p p style=" text-align: center " strong 中国计量科学研究院纳米新材料计量研究所副研究员任玲玲 /strong /p p style=" text-indent: 2em text-align: justify " 任玲玲副研究员以《石墨烯材料层表征方法研究与实例》为题做了报告,她介绍了石墨烯材料标准化的需求,她强调在术语方面首先要明确石墨烯、石墨烯材料以及石墨烯材料质量高低三个概念。她特别强调评价是否为石墨烯材料的关键指标为小于10个石墨烯层堆垛而成的二维材料。从测量需求的角度,任玲玲通过粉体材料、浆料、薄膜、消费品、测试方法/测量设备等维度进行了讲解。石墨烯材料的检测主要需要用到电子显微镜、近探针显微镜、光散射光谱、材料分析、功能性测试等五大类仪器设备,任玲玲强调石墨烯测量结果的准确性保证需要满足三个条件:测量设备做好校准与溯源;测量方法要进行国际国内比对和量值等效一致性工作;测量样品的取样要具有代表性。 br/ /p p style=" text-align: center text-indent: 0em " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/67064b87-52bf-4c10-b013-7419e719d78e.jpg" title=" IMG_5473.JPG" alt=" IMG_5473.JPG" / br/ 山东欧铂新材料有限公司副总经理、研发总监赵永彬 /strong /p p style=" text-indent: 2em text-align: justify " 赵永彬副总经理介绍了石墨烯重防腐涂料在化工领域的评价检测情况。石墨烯防腐涂料的化学、电化学防腐作用明显,但是该涂料的均一和分散非常重要。如果分散不好,产生大量团聚现象,不但不防腐还会加速腐蚀。因此石墨烯防腐涂料的标准制定工作亟待进行。赵永彬从应用范围、实验测试方法、规范化文件储存运输等维度分享了有关标准化的思考,并表示,10月26日,欧铂新材料将召开石墨烯防腐涂料标准制定启动会议。石墨烯在石墨烯涂料中的含量一般较低,不易检测且成本较高,报告中,赵永彬还分享了通过晶型显微镜观测涂料流体去评估石墨烯涂料中石墨烯存在性的方法。 br/ /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201809/uepic/891daa67-a3e0-4eb4-8936-95e5bb5126d2.jpg" title=" IMG_5520.JPG" alt=" IMG_5520.JPG" / br/ /strong /p p style=" text-align: center " strong 合肥国轩高科动力能源有限公司材料研究院郑刚博士 /strong /p p style=" text-align: justify text-indent: 2em " 郑刚博士分享了石墨烯复合碳基到点浆料的表征与测试方法。石墨烯在动力电池方向具有重要的应用,具体应用领域主要集中在复合材料、加热膜、涂覆集流体、导电剂等方面,其中石墨烯复合导电剂是当下石墨烯在动力电池领域最广泛的应用场景,可大幅降低导电剂的用量,且可改善孔隙结构,提高压实密度。郑刚表示,当前石墨烯复合导电剂的评测体系存在石墨烯质量,导电剂、分散剂含量与类别确定,浆料性能快速判定等重点与难点问题,并就上述维度分享了相关研究与思考。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/4688db04-f6c2-4adf-90e1-443fa45a1636.jpg" title=" IMG_5565.JPG" alt=" IMG_5565.JPG" / br/ /p p style=" text-align: center " strong 中科院山西煤炭化学研究所副研究员陈成猛 /strong /p p style=" text-align: justify text-indent: 2em " 中科院山西煤炭化学研究所的陈成猛副研究员则介绍了一种石墨烯材料表面含氧官能团测试方法标准。他表示,石墨烯含氧官能团· 缺陷、杂质· 金属和酸根离子、比表面积· 层数· 片状大小是石墨烯的几个关键控制指标。其中含氧官能团的种类和含量,对石墨烯导电导热性、润湿性、酸碱性、表面活性都有显著影响,目前石墨烯的含氧官能团主要有FT-IR、XPS、EA、AES、EELS、Boehm滴定等常用检测方法。陈成猛表示,Boehm滴定法在石墨烯含氧官能团定量分析、精确度、分析区域等维度都具有突出优势。他介绍了Boehm滴定的原理和测试流程,并分享了与之相关的石墨烯国家标准审定的第一个测试类标准20160467-T-491 《纳米技术 石墨烯材料表面含氧官能团的定量分析 化学滴定法》。 br/ /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/d01a1dbe-18a6-403b-a6a7-b42166b05d5e.jpg" title=" IMG_5604.JPG" alt=" IMG_5604.JPG" / br/ /strong /p p style=" text-align: center " strong 北京市理化分析测试中心副研究员刘伟丽 /strong /p p style=" text-align: justify text-indent: 2em " 刘伟丽研究员介绍了石墨烯粉体材料中阴离子含量测试方法的开发工作。石墨烯粉体生产的过程中,阴离子杂质由于多种引入因素已成为必然存在的杂质类型之一,其种类和含量水平,对石墨烯粉体产品的性能和应用有影响。刘伟丽详细介绍了其团队的成果《石墨烯粉体中水溶性阴离子含量的测定 离子色谱法》,该方法的检测过程需要经过石墨烯分体样品研磨处理、溶解提取、过滤净化、离子色谱仪检测等流程,适用于对石墨烯粉体中水溶性氟离子、氯离子、亚硝酸根离子、硝酸根离子、溴离子、亚硫酸根离子、硫酸根离子、磷酸根离子等8中阴离子含量的测定。能够同时定多种离子,测定结果准确、快速、灵敏度高。 br/ /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201809/uepic/cae15bdb-9d23-46a6-9a60-aede0683b3e2.jpg" title=" IMG_5638.JPG" alt=" IMG_5638.JPG" / br/ /strong /p p style=" text-align: center text-indent: 0em " strong 中科院宁波材料技术与工程研究所研究员刘兆平 /strong /p p style=" text-align: justify text-indent: 2em " 刘兆平研究员做了题为《石墨烯材料绿色制造指南思考和建议》的报告。他解读了国家绿色制造相关政策、发展规划以及绿色制造标准体系。石墨烯虽然被誉为新材料之王,但其主要制备工艺制备工艺(化学气相沉积、液相剥离、氧化还原、插层剥离等)都会带来不同类型的的废气、废水、废渣污染。而石墨烯本身进入水体也会吸附到正在腐烂的动植物产生的有机物上,带来环境风险,影响人体健康。刘兆平从能源、环境、资源、经济四个维度讲解了全球范围内的石墨烯绿色制造经验,表示要建立低能耗、低物耗、绿色环保、可回收,面向石墨烯绿色制造技术全生命周期的标准体系。 br/ /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/f5e7c803-d92d-4042-81a9-d9661f791fc0.jpg" title=" IMG_5323.JPG" alt=" IMG_5323.JPG" / br/ 论坛现场 /strong /p p style=" text-indent: 2em " 一连串的精彩主题报告让听众受益匪浅,也极大地调动了现场参会嘉宾的热情,每个报告的交流环节提问的嘉宾都络绎不绝,会议时间甚至不得不临时调整延长。会后,参会嘉宾纷纷向报告的专家们表示感谢,并继续进行深入的交流互动。 /p
  • 祝贺东莞卓高电子购买冠亚陶瓷浆料固含量检测仪
    秋天,是丰收的季节!粮食收购正紧锣密鼓的进行着,东北市场那是一片火热,冠亚粮食快速水分仪在粮食收购过程中扮演着重要的角色,销售团队奔波于各个粮库之间,忙的不可开交,水分仪供不应求!南方市场也不示弱,国庆后上班天,东莞市卓高电子科技有限公司就迫不及待的等我们送货过去! 东莞卓高电子此次购买的是一款SFY系列陶瓷浆料固含量测定仪,主要检测用于锂电池电极涂层的陶瓷浆料固含量,陶瓷浆料的固含量对电池的隔热、绝缘效果有着的影响!所以浆料固含量的有效控制对产品的质量起着决定性的作用!此款仪器不仅操作便捷(取样放进仪器,仪器自动检测),检测结果稳定、准确,检测的时间也大大的缩短,只需几分钟,同时该仪器还可广泛的应用于化工原料、塑胶、医药、粉体、颗粒、半固体等等的水分检测!冠亚许工现场给实验人员指导培训!东莞卓高电子致力于为国内高端锂离子电池安全提供解决方案,目前主要从事高端锂离子电池用隔膜和铝塑包装膜的研发和生产,客户均为国内新能源业界领先企业。其在东莞的横沥镇和寮步镇均设有分厂,企业的良好发展离不开先进的硬件配套设施,卓高认识到这点,他们选择了冠亚,也希望卓高电子越做越大,越做越强! 卓高电子生产车间在这个丹桂飘香的金秋十月,虽然你很不情愿,但长假真的结束了,关于假期,每个人的记忆点都不一样,但有一些是共通的,比如:堵在路上、景区看“人海”等等,不管怎样,都已远去,希望大家带着愉快的心情,全身心的投入到工作当中,打响2016年的后一场战役!!!
  • 浆料流动合成怎么破?Vapourtec在连续泵送浆料实验中的优越性
    2021 年 9 月 14 日,《绿色化学》上发表了一篇题为“Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment”(“利用新型固体处理设备在水中连续泵送浆态Fe/ppm Pd纳米颗粒催化Suzuki–Miyaura偶联反应”)的论文。▲ 原文链接:https://pubs.rsc.org/en/content/articlelanding/2021/gc/d1gc02461b/unauth该论文中,Lipshutz 团队使用 Vapourtec E系列和V-3 泵的组合,描述了一种在流动中进行 Suzuki-Miyaura 反应的新颖且环保的方法。当应用该解决方案时,可以连续运行 1.5 小时,从而生产 20 克药物中间体。(点击可查看大图)将三个准备好的注射器插入交叉混合器中,将交叉混合器直接插入 2 mL 反应器盘管。然后将反应器盘管连接到 T 型混合器中,其中 2-甲基四氢呋喃通过止回阀垂直输送到该流中作为在线萃取器。交叉混合器、反应盘管和在线萃取装置在运行期间保持95°C温度稳定。将运行前的萃取混合物通过 Vapourtec E 系列蠕动泵输送,该蠕动泵作为保持 2.2 bar 的背压调节器。反应以 200 µL/min 的组合流速运行四个停留时间(40 分钟),达到稳定状态。在总共五个停留时间(50分钟)内收集反应物,同时使用 2-MeTHF 以 200 µL/分钟的速度进行在线萃取。分离合并的水相和有机相,减压蒸发溶剂。用200mL水处理残余有机物,导致固体沉淀。将该固体通过过滤回收,溶解在DCM中,并通过硅胶塞,得到灰白色固体产物(431mg,97%产率)。摘自原文,Lipshutz 团队说:“While other commercial systems were considered, the Vapourtec E-Series reactor system was chosen due to its inclusion of peristaltic pumps as the primary mode of delivering reagents together with an internalized, probe-monitored heating well for the reactor coil. This instrument has been reported to accommodate light slurries in suspension while our examination of this system found that the NPs suspended in an aqueous micellar medium could be easily pumped without clogging”[1] 译文:虽然考虑了其他商业系统,但选择了 Vapourtec E 系列反应器系统,因为它将蠕动泵作为输送试剂的主要模式,以及用于反应器线圈的内部化、探针监控的加热模块。据报道,该仪器可容纳悬浮的轻质浆液,而我们对该系统的检查发现,悬浮在水性胶束介质中的纳米颗粒可以轻松泵送而不会堵塞。论文报道了开发普及流动化学过程的初步努力,将异质纳米催化剂应用于水性胶束实现 Suzuki-Miyaura 偶联反应。悬浮在水性胶束介质中的多相催化剂在进入管式反应器之前被连续泵送和预混合。Lipshutz 的团队利用了Vapourtec多功能V-3 泵,不仅能够泵送浆料,而且还可以用作动态背压调节器而不会堵塞合成通道。该合成路线合成了超过 13 g/h 的 API 中间体。V-3泵解决Suzuki-Miyaura偶联反应的技术难点对于大多数合成化学家来说,Suzuki-Miyaura偶联可能是实验室中最常见的交叉偶联反应。这种有用的反应由 Pd(0)介导,在碱存在下在有机硼和卤化物化合物之间形成 C-C键。在连续流动中,多相催化通常是通过将催化剂填充在柱式反应器中来完成的。这种简单的方法使大多数研究团队在过去十年中探索了流动中的Suzuki反应。如果没有合适的系统,处理流动中的固体是一项挑战。对于大多数泵来说,几乎不可能泵送固体,而且当固体通过时,大多数背压调节器会堵塞。Vapourtec开发了V-3泵,旨在克服这些问题。这些蠕动泵能够在压力下工作,提供平稳的泵送流速,控制反应器的压力。Vapourtec提供更环保的合成途径全球环境问题意味着我们需要不断努力寻求比当前批处理过程更可持续的解决方案,例如连续流动,提供了更环保的途径。在这篇论文中,Lipshutz团队通过使用水溶液和使用可以在下游进一步回收的纳米粒子,将这种绿色方法提升到了一个新的水平。相比于传统釜式合成方式,该反应技术具有传质传热效率高、本质安全、过程重复性好、产品质量稳定、连续自动化操作和时空效率高等诸多优势,Vapourtec流动合成仪用于化学合成中的研究越来越多。流动化学系统专业厂家Vapourtec成立于2003年,已有17年生产经验。作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前推出两个系列产品:▲ R-Series 一个高度特定的模块化系统,能够独立操作或与其他设备的集成,提供多功能的自动化流动合成▲ E-Series 一个易于使用的入门级系统平台,适合新用户和学校实验室教学。参考文献[1] A. B. Wood et al., “Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment,” Green Chem., 2021, doi: 10.1039/D1GC02461B.[2] Vapourtec Ltd, “Application Note 51 – Palladium on Charcoal Slurries in Continuous Flow Hydrogenation,” 2017.[3] Vapourtec Ltd, “Application Note 54 – Selective hydrogenation of O-benzyl vanillin using hydrogen gas and a palladium on charcoal slurry,” 2017.
  • 机会来了!想和华为、陕汽、塔塔钢铁......500强企携200+需求做客2019中国国际石墨烯创新大会,等您来对接!
    p   2019中国国际石墨烯创新大会” 将于2019年10月19-21日在西安陕西宾馆召开。大会将以“烯连丝路、聚焦应用、共赢未来 ”为主题,通过石墨烯新材料构建连接丝路沿线国家的科技合作通道,打造优势互补合作共赢的全球石墨烯产业发展共同体,助力西安打造“硬科技之都”和全球石墨烯产业创新高地。 /p p   为精准对接石墨烯应用,解决终端应用企业需求痛点,推动终端产品不断创新以及石墨烯商业化进程,“2019中国国际石墨烯创新大会”将设立“商务会客室”邀请华为、陕汽、塔塔钢铁......500强企业携200+需求做客“商务会客室”与全球石墨烯产业化企业“零距离”对接石墨烯技术和产品需求!为应用企业带来亟需的石墨烯相关技术和产品,助力其赢得战略先机、促进产业转型升级、实现新的产业增长点,同时也将为石墨烯企业拓展产品市场,把脉企业未来发展方向,推动石墨烯产业化进程,开启全球石墨烯产业发展新时代! /p p   10月19日至21日,2019中国国际石墨烯创新大会即将强势登陆西安,多领域超百场的需求对接(技术需求、产品采购需求、技术项目合作需求等)商务活动,面对面交谈,面对面对接,更多精彩活动亮点云集,相信优秀的你已经加入我们啦!! /p p    span style=" color: rgb(192, 0, 0) " 一、VIP商务活动需求明细一览表 /span /p p    strong 1、石墨烯在电池领域应用洽谈会(时间:10月19-21日) /strong /p p   企业需求:石墨烯导电剂    发布企业:多氟多化工股份有限公司 /p p   企业需求:新能源   发布企业:新奥集团 /p p   产品采购需求:石墨烯可移动电源   发布企业:香港某美妆、健康界权威企业 /p p   产品采购需求:一次性锂电池     发布企业:武汉某高新技术企业 /p p   项目合作需求:石墨烯水性导电浆料  发布企业:西安某国家大型军工研发所 /p p   产品采购需求:石墨烯充电宝     发布企业:江苏某装饰工程有限公司 /p p    strong 2、石墨烯在传感器领域应用洽谈会(时间:10月19-21日) /strong /p p   项目合作需求:泛在电力物联网感知端用的多种石墨烯传感器   发布企业:国家电网有限公司 /p p    strong 3、石墨烯在物联网领域应用洽谈会(时间:10月19-21日) /strong /p p   产品采购需求:可作为音频SPK振膜的石墨烯膜材料        发布企业:华为技术有限公司 /p p    strong 4、石墨烯在纤维领域应用洽谈会(时间:10月19-21日) /strong /p p   产品采购需求:石墨烯纺线或服装    发布企业:陕西某服装有限责任公司 /p p   产品采购需求:用于服装的石墨烯改性纤维或面料  发布企业:云南某生物科技有限公司 /p p   项目合作需求:用于防弹头盔的石墨烯改性芳纶材料 发布企业:中山某服装护具公司 /p p    strong 5、石墨烯在房地产、建筑领域应用洽谈会(时间:10月19-21日) /strong /p p   产品采购需求:建材相关石墨烯产品    发布企业:中国建材集团有限公司 /p p   技术开发需求:石墨烯改性泡沫混凝土   发布企业:陕西某实业有限公司 /p p   项目合作需求:环境工程中用的石墨烯保温材料   发布企业:陕西某环境工程有限公司 /p p   strong  6、石墨烯在橡胶、塑料领域应用洽谈会(时间:10月19-21日) /strong /p p   技术开发需求:一种可提升乙橡胶性能的石墨烯改性橡胶     发布企业:陕西某橡胶化工生产企业 /p p   技术开发需求:石墨烯改性橡胶,改善硅胶性能    发布企业:陕西某橡胶化工生产企业 /p p   技术开发需求:一种用于改善硼硅胶耐高温性的石墨烯改性橡胶  发布企业:陕西某橡胶化工生产企业 /p p   技术开发需求:一种可改善乙橡胶性能的石墨烯改性橡胶  发布企业:陕西某橡胶化工生产企业 /p p   项目合作需求:耐磨、耐低温石墨烯轮胎    发布企业:西安某互联网家科技公司 /p p   技术开发需求:一种塑料用的石墨烯增强减重技术   发布企业:广东某新材料公司 /p p   产品采购需求:浴霸产品用的石墨烯树脂增强材料   发布企业:奥普家居股份有限公司 /p p   技术开发需求:一种用于PET改性的石墨烯分散技术  发布企业:中国石化仪征化纤有限责任公司 /p p   技术开发需求:一种用于PET功能化的石墨烯改性技术    发布企业:中国石化仪征化纤有限责任公司 /p p   技术开发需求:一种用于石墨烯改性PET材料的表征方法      发布企业:中国石化仪征化纤有限责任公司 /p p   技术开发需求:石墨烯改性橡胶    发布企业:江苏某新材料股份有限公司 /p p    strong 7、石墨烯在热管理领域应用洽谈会(时间:10月19-21日) /strong /p p   技术开发需求:石墨烯散热材料      发布企业:华为技术有限公司 /p p   技术开发需求:耐高温胶粘剂改进要求    发布企业:烟台某高新技术企业 /p p   技术开发需求:石墨烯基导热材料、导热硅脂       发布企业:西安、宝鸡某国家大型军工单位 /p p   技术开发需求:泡沫铝、导热硅脂、导热垫片    发布企业:西安、宝鸡某国家大型军工单位 /p p   项目合作需求:防火A1级建筑工程用的保温材料   发布企业:西安某建筑公司 /p p   项目合作需求:寻找批量化绝缘导热材料       发布企业:兵器工业部西安某所 /p p   项目合作需求:一种用于冰箱的保温材料       发布企业:全球知名大型冰箱企业 /p p   项目合作需求:用于工程机械的石墨烯散热产品与技术   发布企业:广西柳工机械股份有限公司 /p p   项目合作需求:用于发电机的石墨烯散热材料    发布企业:广东知名国际化家电企业 /p p    strong 8、石墨烯在航天领域应用洽谈会(时间:10月19-21日) /strong /p p   技术开发需求:改善碳纤维产品散热性的技术或产品    发布企业:南京某高新技术企业 /p p   技术开发需求:高速旋转涡轮叶片表面喷涂隔热材料    发布企业:陕西航天某单位 /p p   技术开发需求:基于石墨烯发热材料的燃料输送细管加热   发布企业:陕西航天某单位 /p p   技术开发需求:耐高温散热涂层     发布企业:陕西航天某单位 /p p   技术开发需求:用于旋转动密封的耐磨涂层     发布企业:陕西航天某单位 /p p   技术开发需求:一种用于燃烧室内壁的耐高温、抗氧化石墨烯隔热涂层  发布企业:西安航天动力研究所 /p p    strong 9、石墨烯在医疗健康领域应用洽谈会(时间:10月19-21日) /strong /p p   产品采购需求:石墨烯发热膜     发布企业:香港某美妆、健康界权威企业 /p p   产品采购需求:用于面膜的石墨烯无纺布    发布企业:华清海康(西安)石墨烯医疗应用研究院 /p p   产品采购需求:用于临床器械中的石墨烯电加热膜  发布企业:华清海康(西安)石墨烯医疗应用研究院 /p p   项目合作需求:石墨烯医疗健康类产品    发布企业:西安某商贸公司 /p p    strong 10、石墨烯在军工领域应用洽谈会(时间:10月19-21日) /strong /p p   项目合作需求:轻量化防弹头盔      发布企业:西安某光学设备公司 /p p   项目合作需求:电磁屏蔽帐篷       发布企业:西安某部队单位 /p p   技术开发需求:一种基于石墨烯发热材料的发动机保温技术  发布企业:陕西某大型军工单位 /p p   项目合作需求:水下控制器所需的浮力材料     发布企业:陕西某军工单位 /p p   项目合作需求:多领域的、先进的石墨烯应用产品与技术   发布企业:中国船舶某研究所 /p p    strong 11、石墨烯在LED领域应用洽谈会(时间:10月19-21日) /strong /p p   技术开发需求:利用石墨烯相关技术提高COB模组性能   发布企业:半导体照明领域内某知名企业 /p p    strong 12、石墨烯在环保领域应用洽谈会(时间:10月19-21日) /strong /p p   项目合作需求:石墨烯节能环保设备相关研发、生产及销售  发布企业:中节能环保装备股份有限公司 /p p   产品采购需求:一款高吸附的石墨烯空气净化产品    发布企业:广东某新材料公司 /p p   产品采购需求:新风系统用的石墨烯空气净化材料   发布企业:奥普家居股份有限公司 /p p    strong 13、石墨烯材料采购洽谈会(时间:10月19-21日) /strong /p p   产品采购需求:高导电石墨烯粉体    发布企业:青岛某新材料公司 /p p   技术开发需求:带基材的覆单层石墨烯铜箔     发布企业:兵器工业部西安某所 /p p   项目合作需求:一种可工业化量产的石墨烯制备技术       发布企业:兰州某石化设备有限公司 /p p   产品采购需求:耐温石墨烯覆膜材料     发布企业:辽宁鞍山市某高新科技型企业 /p p   技术开发需求:用于胶辊表面高强度石墨烯涂覆包裹技术与材料  发布企业:辽宁鞍山市某高新科技型企业 /p p   技术开发需求:用于3D打印电子元器件的石墨烯导电浆料     发布企业:西安某三维科技有限公司 /p p   技术开发需求:用于3D打印电路中散热结构的石墨烯浆料     发布企业:西安某三维科技有限公司 /p p   产品采购需求:用于高温环境的石墨烯浆料     发布企业:上海某电子科技有限公司 /p p   技术开发需求:用于航天烃类燃料中的石墨烯材料及技术   发布企业:西安航天动力试验技术研究所 /p p    strong 14、石墨烯在涂料领域应用洽谈会(时间:10月19-21日) /strong /p p   企业需求:防腐涂料、石油管道伴热材料     发布企业:陕西延长石油(集团)有限责任公司 /p p   企业需求:防腐涂料    发布企业:陕西煤业化工集团有限责任公司 /p p   企业需求:防腐涂料    发布企业:中国石化胜利油田 /p p   企业需求:防腐涂料    发布企业:新奥集团 /p p   项目合作需求:提高空调中的散热铝翅片防腐性能    发布企业:广东某大型家电企业 /p p   项目合作需求:滚筒耐温防腐涂料    发布企业:陕西某机电设备公司 /p p   项目合作需求:防腐涂料需求      发布企业:中航工业集团西安某企业 /p p   项目合作需求:防腐散热涂料      发布企业:福建某电子材料生产企业 /p p   项目合作需求:异型结构件耐高温涂料    布企业:西安某航空航天企业 /p p   技术开发需求:一种用于环氧富锌漆中石墨烯替代锌粉的解决方案 发布企业:河北省某知名锌业企业 /p p   产品采购需求:石墨烯水性涂料    发布企业:陕西某实业有限公司 /p p   产品采购需求:用于高温环境的石墨烯封装涂层    发布企业:上海某电子科技有限公司 /p p   项目合作需求:环境工程中用的石墨烯防腐涂料   发布企业:陕西某环境工程有限公司 /p p    strong 15、石墨烯在汽车领域应用洽谈会(时间:10月19-21日) /strong /p p   企业需求:润滑油、汽车涂料、导电剂    发布企业:上汽通用五菱汽车股份有限公司 /p p   企业需求:润滑油、汽车涂料、导电剂    发布企业:东风柳州汽车有限公司 /p p    strong 16、石墨烯在润滑油领域应用洽谈会(时间:10月19-21日) /strong /p p   项目合作需求:用于工程机械的石墨烯润滑产品与技术   发布企业:广西柳工机械股份有限公司 /p p   技术开发需求:用于提高石墨轴承耐磨的石墨烯材料    发布企业:广东知名国际化家电企业 /p p   技术开发需求:用于机械轴耐磨涂层的石墨烯材料     发布企业:广东知名国际化家电企业 /p p   技术开发需求:用于汽车发动机的石墨烯润滑    发布企业:西安航天动力试验技术研究所 /p p    strong 17、石墨烯在电采暖领域应用洽谈会(时间:10月19-21日) /strong /p p   产品采购需求:一款高功率电暖器用的石墨烯发热体   发布企业:四川知名膜塑企业 /p p   产品采购需求:一款电暖器用的石墨烯发热体   发布企业:四川知名膜塑企业 /p p   产品采购需求:一款智能马桶盖用的坐圈发热体   发布企业:四川知名膜塑企业 /p p   产品采购需求:一种低温石墨烯伴热膜  发布企业:西安华清烯能电加热产业促进中心 /p p   产品采购需求:一种石油储罐用的石墨烯加热棒& nbsp & nbsp & nbsp 发布企业:西安华清烯能电加热产业促进中心 /p p   技术开发需求:一种用于橡胶生产设备的石墨烯加热技术  发布企业:西安华清烯能电加热产业促进中心 /p p   技术开发需求:一种用于粉煤灰管道中的高温加热系统   发布企业:西安华清烯能电加热产业促进中心 /p p   项目合作需求:一种用于替代家纺烘干的发热材料   发布企业:陕西某机电设备公司 /p p   技术开发需求:石墨烯发热涂料在惯性平台加温回路上的工艺应用 发布企业:宝鸡某航天电子企业 /p p   项目合作需求:用于服装、护具的石墨烯发热材料   发布企业:中山某服装护具公司 /p p   产品采购需求:浴霸取暖用的石墨烯相关热源材料   发布企业:奥普家居股份有限公司 /p p   产品采购需求:石墨烯发热材料及电采暖产品     发布企业:国内某新能源企业 /p p   项目合作需求:一种用于防止公路结冰的石墨烯加热解决方案   发布企业:西安华清烯能电加热产业促进中心 /p p   产品采购需求:用于塑身衣的石墨烯电发热膜     发布企业:成都某服装有限公司 /p p   产品采购需求:用于液晶面板的透明石墨烯发热膜    发布企业:西安某特种仪器公司 /p p   产品采购需求:用于服装的石墨烯电加热布     发布企业:江苏某装饰工程有限公司 /p p   产品采购需求:石墨烯加热羽绒服     发布企业:江苏某装饰工程有限公司 /p p   项目合作需求:石墨烯电采暖产品     发布企业:西安某商贸公司 /p p   项目合作需求:环境工程中用的石墨烯电采暖材料  发布企业:陕西某环境工程有限公司 /p p    strong 18、石墨烯在金属复材领域应用洽谈会(时间:10月19-21日) /strong /p p   技术开发需求:石墨烯改性铝材     发布企业:陕西某复合材料专业开发单位 /p p   项目合作需求:镁锂合金用重防腐涂料  发布企业:西安某生产高强度镁锂合金材料企业 /p p   产品采购需求:压铸件合金材料     发布企业:西安某汽车零部件公司 /p p   项目合作需求:石墨烯复合增材技术   发布企业:陕西某表面技术有限公司 /p p    strong 19、石墨烯在电磁屏蔽领域应用洽谈会(时间:10月19-21日) /strong /p p   项目合作需求:用于离心机的石墨烯相关电磁屏蔽材料   发布企业:广东知名国际化家电企业 /p p    strong 20、塔塔钢铁专场(时间:10月19-21日) /strong /p p   企业需求:CVD石墨烯及物理剥离石墨烯用于钢铁防腐的解决方案 /p p    strong 21、东方雨虹专场(时间:10月19-21日) /strong /p p   技术开发需求:HCA-108屋面丙烯酸高弹防水涂料 /p p   技术开发需求:聚合物水泥防水涂料 /p p   技术开发需求:单组份水性防水涂料 /p p   技术开发需求:石墨烯在水性沥青防水涂料中的应用 /p p   技术开发需求:石墨烯在改性沥青防水卷材中的应用 /p p   技术开发需求:石墨烯覆层材料的研制 /p p   产品采购需求:石墨烯电热浆料 /p p   技术开发需求:耐核辐射TPO等高分子卷材中的应用研究 /p p   技术开发需求:高强高耐水聚合物水泥防水涂料 /p p   技术开发需求:高氯离子阻隔聚合物水泥防水涂料 /p p   技术开发需求:金属屋面专用防锈底漆 /p p    strong 22、陕汽专场(时间:10月19-21日) /strong /p p   技术开发需求:石墨烯增强铝基复材在汽车领域中的应用 /p p   技术开发需求:一种用于金属表面防腐处理的石墨烯界膜剂优化方案 /p p   技术开发需求:一种用于玄武岩纤维表面改性的氧化石墨烯处理剂 /p p   技术开发需求:用于汽车金属零部件表面防腐的石墨烯底面合一防腐涂料 /p p   项目合作需求:用于汽车领域的石墨烯润滑产品 /p p   项目合作需求:用于汽车领域的石墨烯防腐涂料 /p p   项目合作需求:用于汽车领域的轻量化材料 /p p   strong  23、商飞北研专场(时间:10月19-21日) /strong /p p   技术合作需求: /p p   高质量稳定可靠的电加热膜 /p p   石墨烯防腐涂层 /p p   高强度复合材料 /p p   改性高性能润滑脂 /p p   石墨烯传感器 /p p   石墨烯柔性屏 /p p    strong 24、中国农业科学院环发所专场(时间:10月19-21日) /strong /p p   商务和技术合作需求: /p p   LED光源散热中的高导热材料 /p p   温室薄膜的光学特性的特殊要求(可见光高透过率、耐老化、红外光高反射率) /p p   检测营养液元素含量的石墨烯传感器 /p p   透明的红外光薄膜电池 /p p   温室内部高效低成本的石墨烯电热加温方案 /p p   便捷和准确的农药检测传感器 /p p    strong 25、全球知名综合通信解决方案提供商专场(时间:10月19-21日) /strong /p p   技术方向及期望目标需求合作: /p p   石墨烯导热垫 /p p   石墨烯导热凝胶 /p p   石墨烯导热膜片 /p p   石墨烯金属基复合材料 /p p   石墨烯高防腐粉末涂料 /p p   石墨烯导电导热塑料 /p p   石墨烯电池材料 /p p    strong 26、海尔专场(时间:10月19-21日) /strong /p p   材料类研发技术需求: /p p   抗异常音材料 /p p   抗菌材料 /p p   抗变形材料 /p p   抗静电防尘材料 /p p   铝翅片及铜管用的防腐涂层材料 /p p   电路板用的防腐涂层材料 /p p    span style=" color: rgb(192, 0, 0) " 二、VIP权益: /span /p p   1、VIP商务活动 /p p   2、大会全方位资讯支持(包括参展商及参展产品信息) /p p   3、VIP专属展区巡展活动 /p p   4、所有会议区,展览区,石墨烯产品发布区,项目路演 /p p   5、石墨烯狂欢节入场券(欢迎晚宴),VIP商务酒会入场券,VIP专属午餐 /p p   6、专属休息区,专属坐席区。 /p p span style=" color: rgb(192, 0, 0) "   三、VIP商务活动: /span /p p   1、需求一览表请登录 a href=" http://www.grapchina.cn/index.php/article6532" _src=" http://www.grapchina.cn/index.php/article6532" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " http://www.grapchina.cn/index.php/article6532 /span /a span style=" color: rgb(0, 112, 192) text-decoration: underline " & nbsp /span /p p   2、每场商务活动设置的参会名额为 span style=" font-size: 18px color: rgb(192, 80, 77) " 3位 /span /p p   3、每位VIP参会人可获得 span style=" font-size: 18px color: rgb(192, 80, 77) " 5场 /span 商务活动的入场券,入场券非实名制。 /p p   span style=" color: rgb(192, 0, 0) "  四、会议时间& amp 地点: /span /p p    strong 时间: /strong 2019年10月19-21日 /p p    strong 地点: /strong 陕西宾馆(陕西省西安市丈八北路1号) /p p    span style=" color: rgb(192, 0, 0) " 五、大会组委会: /span /p p    strong 电话: /strong 400-110-3655 /p p    strong 官网: /strong www.grapchina.cn /p p    strong 邮箱: /strong meeting01@c-gia.org /p p    strong QQ群: /strong 296531551 397051421 /p p    strong 微信: /strong SMXLM2013、CGIA-2013(添加为好友,邀请入群) /p p    strong 微信订阅号: /strong CGIA2013(支持在线咨询) /p p br/ /p
  • 诺奖得主小组用石墨烯制成隔气透水材料
    英国曼彻斯特大学教授安德烈海姆最近利用氧化石墨烯制作出了一种新型隔气透水材料。这种材料的神奇之处在于,绝大多数液体和气体都无法通过它,但水蒸气可以畅通无阻。   石墨烯是从石墨材料中剥离出来的,由碳原子组成的二维晶体。它只有一层碳原子的厚度,是目前世界上最薄的材料。海姆和同事康斯坦丁诺沃肖洛夫2004年在世界上最早制作出石墨烯,并因此共同获得2010年诺贝尔物理学奖。   近日,海姆在美国《科学》杂志上报告说,他的研究小组把石墨烯加工为氧化石墨烯后,制成一种薄膜,这种薄膜的厚度只有一根头发的几百分之一,但强度和韧性都很好。   特别神奇的是,这种薄膜具有特殊的隔气透水的性能。在实验中,用这种薄膜封装的绝大部分气体和液体都无法逸出来,显示出良好的密封性,唯有水能够照常蒸发。   海姆研究小组成员拉胡尔奈尔说,他们做了一个有趣的实验,用这种薄膜封好一瓶伏特加酒,结果随着水分蒸发,酒的味道越来越浓。   奈尔说,独特的隔气透水性质,注定这种新型材料将会拥有广阔的应用前景。(来源:新华网 黄堃)
  • 新型石墨烯材料问世
    近日,中科院等离子体所低温等离子体应用研究室研究员王祥科和中科院化学所研究员胡文平合作,成功制备出分散性均匀的功能化石墨烯材料,并对该材料进行磺酸化处理,实现了对持久性有机污染物的有效去除。相关研究论文日前在材料领域的顶级期刊《先进材料》发表。   石墨烯材料具有独特的物理化学性质,近年来引起国际上的广泛关注。石墨烯与有机污染物之间可以产生非常强的络合反应,从而对有机污染物有很强的吸附能力。但在溶液中,石墨烯易于团聚,从而会降低自身的吸附能力。   王祥科、胡文平等通过大量的实验研究表明,在石墨烯表面进行磺酸基功能化处理,不但可以提高石墨烯的分散性,而且可以提高石墨烯的吸附能力。研究结果显示,这种功能化石墨烯对萘和萘酚的吸附能力达到了每克2.4毫摩尔,是目前吸附能力最高的材料。目前,该种材料的制备成本较高,但随着技术的发展,将有望实现低成本、规模化制备,因此在未来的环境污染治理中有非常重要的应用前景。   王祥科介绍说,研究发现,对石墨烯进行氧化处理,在其表面修饰含氧功能基团后,氧化石墨烯对金属离子也具有很好的吸附效果。此外,课题组在等离子体技术制备石墨烯纳米材料研究中,利用等离子体技术可以直接在石墨表面剥离制备石墨烯,不需要化学试剂,简化了制备过程,并且该过程是环境友好的。   据介绍,常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
  • 人和科仪亮相2022年第八届太阳电池浆料与金属化技术论坛
    上海人和科学仪器有限公司携带具有物联网功能的智能三辊机、超高压纳米均质机、稳定分析仪等在浆料行业具有广泛应用的仪器设备。参加了在常州富力喜来登酒店举办的第八届太阳电池浆料与金属化技术论坛。 TRILOS 智能三辊机 应用于: 浆料的均匀分散 TRILOS 超高压纳米均质机 应用于: 有机载体经微射流均质机预处理后, 可提高分散性,然后与玻璃粉、 银粉混合,制得浆料。 LUMiSizer稳定性分析仪 应用于: 浆料的稳定性的精确快速评价 该论坛主要探讨光伏行业展望与浆料市场前景,太阳电池技术与金属化工艺发展趋势,银浆金属化导电机理与接触机制研究,SE PERC、异质结和TOPCon电池进一步提效降本的浆料和金属化解决方案,激光转印技术实现路径与产业化进展,先进铜电镀技术与应用,银包铜浆料成本优势与电池稳定性研究,丝网印刷和电池烧结技术与设备,钙钛矿叠层电池金属化工艺展望等。会议现场,这些仪器设备一经展出就吸引了大家的目光。通过人和科仪技术工程师们的认真耐心的讲解以及现场样品的演示,使得大家对这些仪器设备有了一个更为直观和细致的了解。现场让大家最感兴趣的就是TRILOS特有的物联网功能。该功能可以全程自动设置并记录设备运行全过程,在方便客户进行数据分析的同时避免人为因素造成的误差。此外,物联网平台还可以接入投料、配料、预混以及在线监测等设备进行联用。 人和公司(www.renhe.net)始终聚焦行业痛点,在解决方案中不断融入符合中国制造2025标准,具有自动化、智能化、数字化、微型化、模块化并带物联网的仪器设备。让客户通过这些仪器设备实时获取生产过程中的信息反馈,进行综合分析,不断优化生产工艺,从而实现在提高产品质量的同时,降低生产成本。
  • 石墨烯:新材料王者之路有多长?
    p   去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。 /p p   中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。 /p p   牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。” /p p    strong 超级材料 /strong /p p   石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。 /p p   2004年,英国曼彻斯特大学的两位科学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。 /p p   他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。 /p p   据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。 /p p   常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。 /p p   石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。 /p p   另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 /p p   石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。 /p p style=" text-align: center " img title=" untitled1.png" src=" http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg" / /p p style=" text-align: center " 诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带 /p p    strong 性能改良 /strong /p p   这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。 /p p   由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。 /p p   牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。” /p p   当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。 /p p   “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。 /p p   牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。 /p p style=" text-align: center " img style=" width: 499px height: 420px " title=" untitled2.png" src=" http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg" width=" 499" height=" 509" / /p p style=" text-align: center " 显微镜下的石墨烯“单晶” /p p    strong 目标驱动 /strong /p p   他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。 /p p   “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。 /p p   因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。 /p p   围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。 /p p   目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。 /p p   牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。” /p
  • 国内首次!中国电科将石墨烯电磁屏蔽涂料应用于电磁屏蔽工程
    近日,中国电科33所与大同墨西科技有限责任公司通过对石墨烯电磁屏蔽涂料及其工程应用技术的联合研究,在国内首次将石墨烯电磁屏蔽涂料应用于屏蔽工程,并完成了石墨烯电磁屏蔽涂料屏蔽防护样板间的施工,屏蔽效能达到40dB,可实现电磁波阻隔99.99%。石墨烯是一种碳六元环组成的蜂窝状二维纳米材料,sp²杂化碳原子贡献的可自由移动的电子赋予了石墨烯优异的导电性和导热性,在电磁屏蔽领域拥有广泛的应用价值。石墨烯电磁屏蔽涂料不含有金属元素,具有比重小(~0.36g/cm³)、耐腐蚀性好、稳定性高、成本低廉等特点。石墨烯屏蔽涂料区别于传统的钢结构六面体式屏蔽结构,在常规房间内进行综合电磁防护设计后,在墙面上涂覆该屏蔽涂料,结合其它电磁防护产品,配合电磁防护手段,可实现40dB以上的屏蔽效果。石墨烯屏蔽涂料施工工艺简单、房屋面积利用率高,相比传统的钢结构均有显著的优势,有着广阔的前景。目前,该方案已经在山西多单位开展应用。
  • 超级蒙烯材料:石墨烯家族的新成员
    引言石墨烯是由sp2杂化的单层碳原子构成的蜂窝状二维原子晶体材料,是古老的碳材料家族的新成员,拥有无与伦比的物理化学性质。石墨烯有两种基本形态。一种是石墨烯粉体,通常由数十纳米到数十微米的微小石墨烯片堆积而成;另一种是通过碳源高温裂解反应生成的连续态石墨烯薄膜。存在形态不同,性质差异很大,用途也完全不同。石墨烯纤维是近年来发展起来的新的石墨烯形态,通常从氧化石墨烯粉体出发,经有序组装、 化学还原、高温处理等工艺制得。石墨烯纤维的结构比较复杂,作为初始结构单元的氧化石墨烯微片通过化学还原和高温化学反应形成准连续的石墨烯薄膜,其片层间的堆垛结构依处理工艺差别很大。从堆垛结构上看,石墨烯纤维接近传统石墨;而从宏观形态上看,它类似于碳纤维。石墨烯粉体通过与高分子复合,可在一定程度上改善高分子材料的力学、电学乃至热学性能,派生出一类石墨烯/高分子复合材料。 理论上讲,高温外延生长而成的连续态单晶石墨烯薄膜最能体现石墨烯的本征优异特性,如超高载流子迁移率、极高的热导率以及超强的力学强度等。这种连续态石墨烯薄膜通常生长在铜、镍等金属表面,金属的作用是降低碳源裂解温度和石墨化温度。金属材料具有很好的导电性和导热性,原子级厚度的石墨烯的优良导电、导热特性会淹没在宏观厚度的金属生长衬底贡献的电子汪洋大海背景中。因此,在实际应用中,需要将石墨烯从金属生长衬底表面剥离下来,转移到目标支撑衬底上。实现单原子层厚度的石墨烯剥离转移无疑是一个巨大的技术挑战,从某种意义上讲,决定着连续态石墨烯薄膜的发展未来,这是制约石墨烯薄膜应用的瓶颈所在。超级蒙烯材料是本研究团队提出的新概念,为破解连续态石墨烯薄膜应用的剥离转移瓶颈提供了一个全新的解决方案。通过高温生长过程和巧妙的工艺设计,在传统材料表面沉积连续态石墨烯薄膜。借助高性能石墨烯“蒙皮”,赋予传统材料全新的功能,让原子级厚度的石墨烯薄膜搭乘传统材料载体走进市场(图1)。不同于石墨烯涂料在材料表面的物理涂敷,这种直接生长的连续态石墨烯“蒙皮”最大程度地保存了石墨烯的本征特性,是普通石墨烯微片材料所无法比拟的。这也是冠之以“超级”的原因所在。需要强调指出的是,超级蒙烯材料体现了连续态石墨烯薄膜应用的新理念,借助传统材料衬底,解决了超薄石墨烯薄膜的无法自支撑问题,同时回避了金属衬底上薄膜生长的剥离转移难题。超级蒙烯材料是一类新型石墨烯复合材料,通过高温工艺实现石墨烯与传统材料的直接复合。例如,利用特殊设计的化学气相沉积工艺,在广泛应用的传统玻璃纤维表面生长石墨烯,即可得到新型“蒙烯玻璃纤维”材料。石墨烯蒙皮的存在赋予蒙烯玻璃纤维优良的导电性和导热性,为传统玻璃纤维带来全新的性能。尤其重要的是,纳米级到亚微米厚度的石墨烯蒙皮基本上不改变衬底材料的宏观形态,因此超级蒙烯材料具有工艺兼容性强的巨大优势,在不改变现役工程材料加工工艺的前提下发挥其独特的功能,可借力现役工程材料的广阔应用市场,将石墨烯薄膜推向实际应用。超级蒙烯材料是石墨烯家族的新成员,拥有丰富的内涵和广阔的发展空间。生长衬底材料的选择是发展超级蒙烯材料的关键所在。原理上讲,衬底材料需要耐受石墨烯生长所需要的高温条件,确保其本征特性不发生显著的改变。另一个重要条件是,能够找到可行的工艺路线实现石墨烯的直接生长。高品质连续态石墨烯的可控生长是实现其优异性能的重要前提。此外,衬底材料在工程领域已经获得广泛应用,以便为超级蒙烯材料提供更多可选择的应用场景。超级蒙烯材料可分为蒙烯非金属材料和蒙烯金属材料(图2)。蒙烯玻璃纤维是典型的蒙烯非金属材料。蒙烯氧化铝、蒙烯碳化硅以及蒙烯氮化硼等都是蒙烯非金属材料家族的重要成员。蒙烯金属材料通过在金属衬底上生长石墨烯获得,包括蒙烯铜、蒙烯镍、蒙烯铟、蒙烯锡、蒙烯钢等诸多种类。按照衬底材料的形态分类,超级蒙烯材料又可以细分为蒙烯箔材、蒙烯纤维、蒙烯粉体以及蒙烯泡沫等多种形态,构成琳琅满目的超级蒙烯材料家族。不同形态的超级蒙烯材料进行后加工处理或者与其他材料复合,将进一步丰富超级蒙烯材料家族的内涵。蒙烯玻璃纤维蒙烯玻璃纤维是超级蒙烯材料概念的第一个具体实例。通过高温化学气相沉积过程,在传统玻璃纤维表面生长连续态石墨烯薄膜,实现石墨烯与玻璃纤维的有机结合,是一类全新的石墨烯/玻璃纤维复合材料。玻璃纤维是广泛应用的传统工程材料,2019 年全球玻璃纤维产量约800万吨。我国是玻璃纤维生产大国,全球占比达65%以上。玻璃纤维兼具轻质、高强、耐高温、柔性等诸多优异性能,是国防军工、航空航天、风能发电、工程建筑等领域的重要基材,如飞机机身、火箭和导弹外壳、雷达罩等都采用玻璃纤维作为主要的复合材料增强体。蒙烯玻璃纤维继承了玻璃纤维的本征特性,同时赋予其高导电、高导热等新的性能(图3)。原子级厚度的石墨烯薄膜可搭乘传统玻璃纤维载体,走向实际应用,从而开辟出石墨烯材料应用的新天地。制备蒙烯玻璃纤维材料存在着诸多技术挑战。通常情况下,石墨烯的CVD生长会选择以铜、镍为代表的金属衬底。金属衬底具有催化活性,对于碳源前驱体的裂解、石墨烯成核、外延生长等基元过程有着良好的促进作用,有助于提升石墨烯的结晶质量、生长速率以及层数可控性。然而,玻璃纤维是非金属材料,催化活性很弱,因此碳源前驱体的裂解过程主要是热裂解。为了确保碳源前驱体充分裂解,CVD生长温度通常很高,这就要求玻璃纤维材料具有优异的高温稳定性。事实上,除石英纤维以外,普通玻璃纤维材料很难满足这 一苛刻的生长条件。在由C―O四面体骨架构成的非晶态玻璃纤维表面,活性碳物种的扩散势垒非常高,导致生长的石墨烯畴区尺寸很小,且取向不可控。通常情况下,玻璃纤维上生长的石墨烯 存在畴区尺寸小、缺陷密度高、层数可控性差、均匀性差、生长速率慢等问题。此外,与平面衬底上的CVD生长不同,玻璃纤维丝束及其织物的特殊结构形态也给传质和传热过程设计带来新的挑战。2013年以来,本研究团队一直致力于传统玻璃表面石墨烯的生长方法研究,发展了一系列创新性的高质量石墨烯生长方法,材料体系从平面玻璃到石英光纤,进一步拓展到玻璃(石英)纤维。针对玻璃纤维上的石墨烯生长问题,通过空间限域生长、生长助剂引入、碳源前驱体设计、衬底表面调控以及流场设计等手段,打破了玻璃纤维衬底在碳源裂解、石墨烯成核、层数控制、结晶质量以及均匀性等方面的局限性,实现了高质量蒙烯玻璃纤维丝束和织物的可控制备(图4)。例如,针对玻璃纤维织物表面上石墨烯大面积生长均匀性差的难题,发明了“互补性碳源生长法”,通过不同裂解温度的混合碳源设计,调控活性碳物种沿流场方向的浓度分布,制备出大面积均匀的蒙烯玻璃纤维织物。 蒙烯玻璃纤维的低成本和规模化制备是走向实际应用的前提。在放大的CVD生长系统中,大腔体内流场与热场的均匀性控制难度大幅增加,直接影响着石墨烯在玻璃纤维表面的生长质量、速 率、均匀性等关键指标,最终制约着材料生产的品质、产能与成本。在利用静态CVD系统制备大面积蒙烯玻璃纤维织物的过程中,活性碳物种沿流场方向的不均匀分布直接导致石墨烯的生长均匀度下降,进而造成生产良率的降低。同时,由于玻璃纤维的催化惰性,石墨烯的生长速率通常很低,因此成为制约产能提升和生产成本降低的关键因素。利用玻璃纤维织物轻质、柔性、高强度的特点,本团队设计了动态“卷对卷”规模化CVD生长系统,并对气体流场、生长区热场、温度控制系统、进料控制系统等关键模块进行了系统集成,研制出第一代蒙烯玻璃纤维织物规模化制备装备。在该系统中,玻璃纤维织物以均匀的速度连续传入CVD腔室内完成石墨烯的高温沉积生长,最大可能地保障织物表面不同位置都经历相同的流场与热场环境,从而大幅提升生长均匀性。目前,本团队已成功突破蒙烯玻璃纤维织物的放量制备工艺,建成了年产能10000平方米的中试生产示范线(图5)。需要指出的是,目前蒙烯玻璃纤维的生产成本仍然较高,尺寸、良率受限于装备制造技术与材料制备工艺,这也是蒙烯玻璃纤维材料制备领域的未来攻关重点。图5 蒙烯玻璃纤维织物的规模化制备。(a–c)动态“卷对卷”规模化制备系统;(d)蒙烯玻璃纤维织物实物照片Fig 5 Mass production of graphene-skinned glass fiber fabric. (a–c) Roll to roll growth system (d) Photographs of graphene-skinned glass fiber fabric.与物理涂覆方法制备的石墨烯/玻璃纤维复合材料不同,高温生长工艺既保证了石墨烯薄膜的连续性和高性能,又保证了石墨烯与玻璃纤维之间的强附着力。通过调控石墨烯的厚度,蒙烯玻璃纤维的面电阻可在1–5000Ω∙sq−1范围内调控。蒙烯玻璃纤维完美地结合了石墨烯和玻璃纤维的优良特性,是一种全新的柔性导电导热材料,有望成为电热转换领域的杀手锏级材料。研究表明,蒙烯玻 璃纤维织物拥有极为出色的电加热性能,在~9.3 Wꞏcm−2功率密度下,升温速率达~190 °C∙s−1,且达到饱和温度后的温度不均匀性 3% (20 cm × 15 cm)(图6) 。蒙烯玻璃纤维还具有优异的红外辐射性能,表现出良好的灰体辐射特性,红外发射率高达~0.92 35,36。与铁铬合金、镍铬合金等传统电加热材料相比,蒙烯玻璃纤维拥有超高的电热转换效率,实测数据高~94%。因此,作为新一代轻质、柔性的电热转换材料,蒙烯玻璃纤维在电加热、辐射热管理等领域拥有巨大的应用潜力。众所周知,高性能复合材料大量用于空天飞行器、武器装备、风机叶片等制造过程中,玻璃纤维则是其中重要的构成单元,已经形成成熟的复材加工和成型工艺。原理上讲,纳米级到亚微米级厚度的石墨烯薄膜的引入基本不会改变相关工艺流程,也不会影响玻璃纤维制件的内部结构与力学性能(图7)。因此,蒙烯玻璃纤维材料的一大优势是其良好的体系兼容性和工艺兼容性,这是其走向实际应用的巨大推力。 蒙烯玻璃纤维材料在飞行器的防除冰领域取得了巨大成功,显示出不可替代的独特优势。飞行器高速飞行过程中,机翼前缘、发动机进气道等关键位置的结冰一直是困扰航空领域的难题。目前,金属基电加热技术是实现防除冰的有效手段,其防冰效果好,除冰效率高,性能稳定。但是,传统金属基电热材料面临着高功耗、低柔性、不耐极端环境等问题。同时,基于飞行器轻量化的发展趋势,复合材料的使用比例不断攀升,玻璃纤维作为重要的复合材料基材在飞行器中已得到大量应用,随之而来的是金属基电加热防除冰材料与复合材料之间的结合强度和稳定性问题。蒙烯玻璃纤维的问世完美地解决了这一技术难题,尤其其良好的透波性能使其成为特种应用领域的杀手锏材料。蒙烯玻璃纤维是第一个实现实际应用的超级蒙烯材料,展示了超级蒙烯材料的巨大理论价值和广阔应用前景,为原子级厚度的石墨烯走向应用开辟了全新的路径,也为新型石墨烯基复合材料设计提供了新的思路。展望正如前述蒙烯玻璃纤维的具体案例,我们可以通过巧妙的载体选择和材料设计,架起连接理想的单层石墨烯基元到实用宏观材料的桥梁,实现石墨烯的优异特性向宏观实用场景的有效传递。在超级蒙烯材料设计和制备过程中,衬底材料的选择和预处理、石墨烯的可控生长、石墨烯—衬底的界面调控、后加工成型以及批量制备工艺与装备等极为关键,也是超级蒙烯材料走向应用的基础。由于超级蒙烯材料的多样性和复杂的电子声子耦合,这一全新的复合材料领域有可能孕育新的物理发现,催生新的技术创新,甚至引发新的产业革命。支撑衬底的选择是超级蒙烯材料设计的关键所在,决定着制备可行性、材料性能以及应用前景。支撑衬底可分为非金属和金属两大类别。上文详细介绍了蒙烯玻璃(石英)纤维材料。实际上,很多常见的非金属材料(如氧化铝、氮化硼、碳化硅等)表面,都有直接高温生长石墨烯的研究报道,这说明以这些材料为衬底的超级蒙烯材料制备具有可行性。尤其是在蓝宝石(α-Al2O3)表面,通过甚高温方法生长得到的石墨烯薄膜质量很高,层数和结构的控制性也很好;而氧化铝纤维作为一类新型氧化物纤维材料,具有优异的力学强度、耐高温、机械柔性、化学稳定性以及绝缘性,已逐渐成为新材料领域的翘楚。在超级蒙烯材料设计理念指导下诞生的蒙烯氧化铝纤维集石墨烯和氧化铝纤维的优异特性于一身,有望成为新一代轻质高强、高导电、高导热复合材料。大多数过渡金属因具有部分填充的d轨道,或者能形成可吸附和活化反应介质的中间产物而表现出良好的催化活性,是高品质石墨烯生长的良好衬底。而以铜、铝、铟、锡等金属材料为代表的导电、导热材料,被广泛应用于国民经济和国防军工的各个领域,例如输配电网络、雷达微波管、电磁屏蔽、电子芯片封装等。随着这些领域的迅速发展,对金属材料提出了更高的要求,具有轻质、高强、高导电、高导热、耐腐蚀、抗电磁屏蔽 等特性的金属基复合材料成为众多高端装备的亟需材料。已有研究表明,石墨烯蒙皮的引入可显著改善金属材料的性能。例如,以铜箔、铜丝、铜网、铜粉等不同形态的金属铜材作为支撑衬底生长石墨烯,再经过热压复合等工艺处理,可得到具有高导电、高导热、高载流量的蒙烯铜材料;利用化学气相沉积方法在铜、铝表面生长少层石墨烯或垂直石墨烯纳米片,可显著提升金属材料的电磁屏蔽效能,增强抗腐蚀能力。这种全新的金属基蒙烯材料有望促进飞行器电缆、电机、电触头、隐身涂层基板、雷达微波行波管等结构功能部件的升级换代,在飞行器减重、防雷击以及电磁对抗、电磁防护领域具有广阔的应用前景。在超级蒙烯材料中,作为支撑衬底的体相材料仍发挥着重要作用,石墨烯通过蒙皮或以复合 界面的形式介入其中,带来新的功能(如导电、导热增强等)。由于石墨烯“蒙皮”很薄,从单原子层到亚微米厚度可调,而支撑衬底材料的特征尺寸通常都在微米到毫米量级,因此如何有效提高石墨烯的相对比重、构筑连续的石墨烯网络、调控石墨烯与衬底材料的耦合强度,以最大化地发挥石墨烯的性能,成为超级蒙烯材料设计与制备的关键科学问题。后加工工艺可为超级蒙烯材料的微观结构与性能改善提供新的调控空间。各种蒙烯金属材料基元的进一步复合成型可制造出丰富的界面结构。可以想象,在此类新型复合材料体系中,石墨烯会带来更多的导电、导热通道,而金属为石墨烯提供更多的载流子。需指出的是,高温生长过程、后加工工艺以及石墨烯与金属衬底的相互作用可能导致金属衬底的体相结构重构,进而带来新的调控空间或需要解决的技术挑战。此外,对于超级蒙烯纤维材料来说,不同的编制结构和图案化设计也会影响其力学、热学和电磁学性能。近年来,粉末冶金、增材制造、复材加工成型等相关领域的快速技术进步也为超级蒙烯材料的发展提供了良好的技术依托。应当指出的是,超级蒙烯材料研究尚处于起步阶段,在材料设计、高温生长、物性测量和应用探索方面空间巨大。例如,蒙烯粉体材料比表面积大,易于加工,有利于发挥石墨烯的优异性能,但高温生长过程面临着难以分散、易于团聚、不易工程放大等难题。对蒙烯金属粉体制备来说尤其如此,有效控制高温生长过程中的金属粉体团聚和碳源前驱体传质至关重要。针对这些问题,人们发展了鼓泡化学气相沉积生长方法,但生长效率和粉体质量的控制仍有很大的提升空间。对于蒙烯非金属材料,由于缺乏催化活性,通常石墨烯的质量和生长速率较低。为解决这些问题,人们发展了限域空间法、助催化法、甚高温法等特殊生长方法,与金属表面催化生长的石墨烯相比仍有显著的差距。此外,目前所报道的蒙烯金属仅限于铜和铝,其导电性和导热性提升的物理机制尚不清晰,石墨烯与金属界面结构的调控方法 和规模化制备工艺还远未成熟。在应用探索方面,石墨烯的导热性和导电性为人们所青睐,超级蒙烯材料的问世有望促进电力电缆、信号传输、导热散热等结构功能器件的升级换代。需要关注的是,具体应用场景下超级蒙烯材料的短板,如高温生长工艺带来的载体结构和力学性能变化等。有针对性地发展超级蒙烯材料的生长方法、规模化工艺和装备是这一新兴领域发展的关键。毋庸置疑,这一新概念材料的提出将有力推动石墨烯与传统材料的融合,为破解连续态石墨烯薄膜材料的实用化开辟新路,为加快石墨烯材料的产业落地提供新的动力。
  • 盘点“新材料之王”石墨烯的检测方法及标准
    石墨烯是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的平面二维材料,是目前发现的最薄却最坚硬的纳米材料,具有优异的光学、热学、电学、力学特性,在新能源、大健康、电子信息、节能环保、生物医药等领域应用前景广阔,被称为“新材料之王”。2004年,英国曼切斯特大学物理学家安德烈• 海姆和康斯坦丁• 诺沃肖诺夫成功从石墨中分离出石墨烯,引发学术界轰动,两人也因此获得2010年诺贝尔物理学奖。自此,全球掀起了持续至今的石墨烯研究热潮。作为新兴材料,石墨烯一直备受关注,但也屡屡成为被炒作的话题;各类石墨烯“黑科技”层出不穷,真假难辨。前段时间,某品牌电动汽车宣称其石墨烯基电池,充电8分钟,续航2000里。次日,中科院院士欧阳明高就在电动车论坛上公开表示:“如果有人告诉你,这车能跑1000公里,几分钟充满电,还安全,成本又低。以目前的技术来讲,他一定是骗子”。该品牌随即发表声明,声称充电快的是石墨烯基超级快充电池,长续航的是硅负极电池。除此之外,市面上还有石墨烯面膜、石墨烯袜子等日消品,可谓“万物皆可石墨烯”。而现实情况是,石墨烯低成本规模化制备技术存在技术瓶颈,其制备成本高,价格远超黄金。广告上石墨烯的噱头,更多只是为了迎合消费者的猎奇心理,收割一波“智商税”。如何规范这一不良现象?业界普遍认为,石墨烯行业亟需统一的国家标准,通过检测认证正本清源。为促进石墨烯产业健康发展,本文特汇总石墨烯的常用检测方法与已发布的国家标准,供相关检测人员参考。石墨烯常用检测方法石墨烯的检测仪器主要分为图像类和图谱类,图像类以光学显微镜、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)为主,而图谱类则以拉曼光谱(Raman)、红外光谱(IR)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、紫外光谱(UV)为代表。其中,光学显微镜、SEM、TEM、Raman、AFM 一般用来表征石墨烯的层数;SEM、TEM、AFM能够对石墨烯的表面形貌进行观察分析;而Raman、IR、XRD、XPS和UV则可对石墨烯的结构进行表征。此外,热重分析仪、激光导热仪、激光粒度仪、比表面及孔径分析仪等仪器也用来测试石墨烯的热稳定性、粒度、比表面积等物理性质。每种检测方法都有各自的优势和局限性。在实际研究中,为提升检测精准度,几种表征手段往往联合使用,测试结果可互相对比、印证,进而为石墨烯的大规模生产和应用提供科学的保障。同时,随着石墨烯研究的不断推进,其检测方法将越来越丰富。已发布的石墨烯相关国家标准序号标准编号标准名称发布日期实施日期1GB/T 30544.13-2018纳米科技 术语 第13部分:石墨烯及相关二维材料2018-12-282019-11-012GB/Z 38062-2019纳米技术 石墨烯材料比表面积的测试 亚甲基蓝吸附法2019-10-182020-09-013GB/T 38114-2019纳米技术 石墨烯材料表面含氧官能团的定量分析 化学滴定法2019-10-182020-09-014GB/T 40071-2021纳米技术 石墨烯相关二维材料的层数测量 光学对比度法2021-05-212021-12-015GB/T 40069-2021纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法2021-05-212021-12-01GB/T 30544.13-2018是我国首个石墨烯国家标准,该标准界定了石墨烯及相关二维材料的术语和定义,包括制备方法、特性及其表征。此标准的制定和实施,为产业界和学术界交流提供了统一的技术语言,是开展石墨烯各种技术标准研究及制定工作的重要基础及前提。石墨烯材料比表面积大,拥有强大的吸附性能,在储能、催化、传感及水处理等能源、化工和环保领域有着广泛的应用。不同方法制备的石墨烯材料比表面积存在较大差异,因此,准确测定石墨烯材料的比表面积对其应用至关重要。GB/Z 38062-2019规定了亚甲基蓝吸附法测定石墨烯材料比表面积,即利用石墨烯材料在液相中吸附亚甲基蓝,通过吸附前后亚甲基蓝溶液的吸光度变化来计算出石墨烯材料的比表面积。石墨烯粉体材料在制备或应用改性过程中,可能引入一些含氧官能团,如羧基、内脂基、酚羟基和羰基等。这些含氧官能团对石墨烯粉体材料的电子特性、润湿性、导电性、导热性及化学反应活性等性能有着重要影响。因此,测量含氧官能团的种类和含量,对石墨烯粉体材料质量控制和应用具有十分重要的指导意义。GB/T 38114-2019规定了一种低成本、重复性好、操作简便的Boehm滴定法,Boehm滴定法根据碱性试剂的消耗量,可计算出石墨烯粉体材料表面的羧基、内酯基、酚羟基和羰基的含量。石墨烯的层数是影响其性能的关键参数,准确测量石墨烯的层数对于材料的研究、开发和应用意义重大。光学对比度法与拉曼光谱法因其快速、无损和高灵敏度等优势,被广泛应用于测量石墨烯的层数。GB/T 40071-2021规定了光学对比度法(包括反射光谱法和光学图片法)测量石墨烯相关二维材料的层数的步骤、仪器参数要求、数据分析、层数判定准则。GB/T 40069-2021规定了拉曼光谱法测量石墨烯相关二维材料层数时的样品制备、仪器参数要求、表征步骤、图谱分析及结果表示等内容,并列出基于本标准规定的方法测量某几个石墨烯薄片样品的实例。每一个新兴产业的发展,都不可能一蹴而就。当前我国石墨烯产业的发展正处于关键节点,只有建立和遵循完善的标准化体系,才能保证产品的质量,促进石墨烯产业安全、有序和健康地发展。
  • SPME+GCMS分析方便面酱料包中的邻苯二甲酸酯
    2011年6月媒体报道多款内地制造的方便面调味粉和酱料含塑化剂。这类化学物质属于环境激素,它们进入人体后,可干扰人体内分泌系统和生殖系统,并被怀疑与儿童性早熟有关,是造成男性生殖问题的&ldquo 罪魁祸首&rdquo 。Sigma-Aldrich旗下子品牌Supelco积极响应热点事件,近期出版的Supelco色谱分离通讯(Reporter)第30期中就中国热门的方便面中邻苯二甲酸酯的检测提供了详细新颖的解决方案&mdash &mdash SPME-GC-MS方法分析方便面酱料包中的邻苯二甲酸酯。 SPME+GCMS 适用于从油脂基体的方便面酱料包中萃取邻苯二甲酸酯,而无须任何溶剂处理,省去了复杂的油类和脂肪预处理步骤。采用高温顶空SPME法提取邻苯二甲酸酯,直接GC-MS系统进行分析。该方法非常地简单、快速、高效,整个前处理过程总共只需要42分钟,其中12分钟为手动操作时间。 应用文章提供了该方法的详细说明,在100&mu g/kg-2000&mu g/kg范围内具有良好的线性,并分析了鸡肉、牛肉口味方便面酱料包中16种邻苯二甲酸酯的含量。本文同时检测了加标鸡肉、牛肉口味酱料样品中邻苯二甲酸酯,每个基质均进行三次平行实验,提供回收率、平均回收率和重现性%RSD数据。实验数据表明,采用SPME-GC-MS方法分析方便面酱料包中的邻苯二甲酸酯,具有高灵敏度,可定量、可重现的优点。若想知悉更详细的信息,您可以联系我们021-61415566-8242索取全文。 SPME方法如下: 样品制备:100&mu m PDMS萃取头(货号57300-U)顶空90℃,30min 解析:260℃,4min 色谱柱:SLB-5ms 20m× 0.18mmI.D., 0.18um(货号28564-U) MSD接口:330℃ 扫描:SIM 载气:氦气,0.6mL/min恒流 衬管:SPME专用0.75mm I.D.(货号2637501) 美国Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验,拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco正式加入美国Sigma-Aldrich公司,成为Sigma-Aldrich公司旗下分析业务的专业品牌。
  • 石墨烯 — 下一场材料革命
    2019年9月20至22日在山西煤炭化学研究所举办了第七届石墨烯青年论坛,石墨烯青年论坛于2013年发起,至今已成功举办六届,分别由浙江大学、哈尔滨工业大学、中国科学技术大学、中国科学院宁波材料技术与工程研究所、上海应用技术大学与上海交通大学(合办)、中国科学院兰州化学物理研究所举办。今年由中国科学院山西煤炭化学研究所主办,重点交流最近一年来青年科学家在石墨烯领域的最新研究进展。此届石墨烯青年论坛参会人数百余人,石墨烯青年论坛已发展成为国内石墨烯领域颇具特色和影响力的专业学术会议,弗尔德仪器携旗下有幸参与此次盛会,与该研究领域的优秀中青年科学家共同学习和交流。 参会嘉宾合影留念 在论坛大会上,首先由中科院金属所的成会明院士为大会致辞,并带来“研究中的简单美”—石墨烯研究的几个实例为题的报告,第二个是中科院山西煤化所的房倚天副所长为大会致辞,清华大学深圳研究生院的康飞宇老师为大家做“天然石墨深加工与石墨烯粉体制备技术”为题的报告,与现场石墨烯领域的中青年学者和专家进行了深入交流和经验分享。 小知识石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ωcm,比铜或银更低,为目前世上电阻率最小的材料[5][1]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 热处理CarboliteGero(卡博莱特盖罗)是弗尔德科学仪器事业部制造实验室和工业马弗炉、烘箱的专业品牌,加热温度范围30-3000℃。在石墨烯行业中,CarboliteGero具有丰富的行业应用经验,是全球知名的热处理炉供应商。卡博莱特?盖罗Carbolite ? Gero高温管式炉HTRH,可在水平位置上操作,最高温度可达1800°C。凭借多种多样的配件,HTRH系列在高温范围内可提供完整的系统解决方案。 研磨粉碎德国RETSCH(莱驰)强大、灵活的行星式球磨仪PM100满足快速将样品研磨至亚微米级的所有要求,并且保证结果具有可重复性。常被用来做高难度样品研磨,从常规的样品处理到胶体研磨和机械合金。行星球磨仪超高的离心力带来极大的粉碎能量,因此所需研磨时间非常短,可将样品研磨到纳米级的细度。 粒度粒形分析Camsizer X2采用了更高分辨率的光学系统,提供更多的分析模块可选。CamsizerX2可选的X-Fall、X-Jet和X-Flow三种模块可让您根据不同的应用和要求进行分析,由于具有足够的进样量也不受其他因素(如折射率)影响,Camsizer X2还能够准确测量到粉体的整体形态信息,比如球形度、对称性等。 元素分析仪德国Eltra(埃尔特)能够对固体样品中C/H/O/N/S元素进行精准分析。新的ELEMENTRAC CS-d是一台可靠,精准,耐用的燃烧法碳硫元素分析仪。红外检测池配置灵活,C,S测量范围宽泛,从ppm级一直到100%。ELEMENTRAC CS-d针对有机和无机样品中C,S的测量,一台仪器整合了两种炉体,即高频感应炉和电阻炉。
  • 新型石墨烯纳米抗菌材料研究获进展
    近日,美国化学会ACS Nano杂志报道了中国科学院上海应用物理研究所物理生物学实验室在新型石墨烯纳米抗菌材料方面的研究工作(Graphene-Based Antibacterial Paper. Wenbing Hu, Cheng Peng, Weijie Luo, Min Lv, Xiaoming Li, Di Li, Qing Huang and Chunhai Fan,ACS Nano, 2010, 4 (7), pp 4317–4323)。该工作发表以后,被Nanowerk、Qmed、Sciencedaily等多家媒体报道及转载,其中美国科学促进协会主办的Eurekalert!网站报道中指出,这可能是石墨烯重要的环境和临床应用。   研制和利用抗菌材料来抑制和杀灭有害细菌是提高人类健康水平的一个重要方面。传统的抗菌材料,如抗生素、季铵盐等不但会导致微生物的抗性,还会造成严重的环境污染。纳米技术的发展,为解决该问题提供了一条新的思路。   石墨烯是由单层碳原子紧密排列而成的二维晶体,其优异的电子传递、较高的机械强度特性使石墨烯成为纳米电子器件、太阳能电池、生物传感器等方面应用的新贵。上海应用物理所物理生物学实验室博士研究生胡文兵等在樊春海和黄庆研究员的指导下,探索了氧化石墨烯的抗菌特性,发现氧化石墨烯纳米悬液在与大肠杆菌孵育2小时后,对其抑制率超过90%。进一步的实验结果表明,氧化石墨烯的抗菌性源于其对大肠杆菌细胞膜的破坏。更重要的是,氧化石墨烯不仅是一种新型的优良抗菌材料,而且对哺乳动物细胞产生的细胞毒性很小。此外,通过抽滤法能够将氧化石墨烯制备成纸片样的宏观石墨烯膜,也能有效地抑制大肠杆菌的生长。   由于氧化石墨烯的制备简便、成本低廉,这种新型的碳纳米材料有望在环境和临床领域得到广泛的应用。
  • 石墨烯材料开启“速跑”模式,禾工优质设备助力发展
    石墨烯是一种技术含量非常高、应用潜力非常广泛的碳材料,随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空航天、新能源电池领域。  随着石墨烯概念的升温,我国也将石墨烯产业发展列入重点支持项目,从政策层面给予前所未有的扶持力度。随着我国政策对石墨烯产业的扶持力度加大,该产业还将呈现巨大的应用前景。 近日,最新一代石墨烯加热软膜由我国黑金杰尼联合团队在杭州研发成功,并在石墨烯智能穿戴产业化方面取得了突破性进展。据悉最新一代石墨烯加热软膜有效解决了防水、导电、柔韧性等方面的问题,将实质推动我国智能穿戴产业的发展。 在石墨烯生产当中,水分含量是需要严格控制的参数值,水分含量过高,产品质量将会大打折扣。AKF-BT2015C是国产的第一套带卡式加热炉的卡尔费休水分测定仪,采用AKF-BT2015C水分测定仪,将待测样品称重后放入样品瓶,样品瓶在卡式加热炉中均匀加热,蒸发后的水分在高纯惰性气体作为载气引导下,进到滴定池内进行水分含量分析,可快速、精确地给出结果且易于操作。卡尔费休水分测定仪+卡氏加热炉是目前石墨烯、电池、电解液、隔膜、极片等材料检测最为广泛的应用设备。
  • 国际石墨烯创新大会在即 我国将参与国际石墨烯标准制定
    据悉,由青岛国家高新技术产业开发区和中国石墨烯产业技术创新战略联盟共同举办,青岛国际石墨烯创新中心承办的“2016中国国际石墨烯创新大会”将于9月22日在青岛国际会展中心召开。本次展会将围绕石墨烯新能源、环保、润滑剂等领域集中开展,同时我国石墨烯标准委员会将参与国际石墨烯的标准制定,成为展会一大亮点。  吸引30多个国家和地区企业  为期3天的活动中,来自30多个国家和地区的600家公司、2000多位石墨烯行业人士,将通过40多场分会对石墨烯的基础研究、应用技术及产业化推广展开交流和探讨。大会还将同期举办“2016中国国际先进碳材料应用博览会”,吸引了国内外优秀的石墨烯原材料供应商、制备及检测设备供应商及下游应用领头企业前来参展。  9月22日上午,在青岛国际会展中心5号馆5307会议室,还将举办石墨烯大会青岛专场活动。活动涵盖中国石墨烯产业技术创新战略联盟理事单位授牌、石墨烯创新项目落户签约仪式等,突出展示青岛地区间石墨烯产业发展创新合作成果,推动青岛国际石墨烯创新中心建设成为“技术领先、科研集中、产业集聚、辐射全球”的高水平石墨烯技术研发和产业应用平台。  石墨烯标准制定成亮点  在青举办的2015中国国际石墨烯创新大会上,石墨烯发现者、2010年诺奖得主安德烈海姆教授应邀出席做了主题演讲,并受聘为 “青岛市经济顾问”和“青岛高新区石墨烯工程技术研究中心名誉主任”。本届大会上,安德烈海姆教授将继续参会并带来更精彩的主题报告,参会代表将现场聆听顶级学者对石墨烯产业未来发展的独到见解。  本届大会上,中国石墨烯产业技术创新战略联盟标准化委员会参与国际石墨烯标准制定是一大亮点。大会期间,中外将联合举办国际石墨烯标准化论坛,标志着中国在联合制定国际石墨烯标准方面迈出关键一步。欧盟石墨烯旗舰计划负责人将与中方共同布局全球石墨烯知识产权合作,讨论合作开展知识产权保护、交易等促进企业技术发展的平台建设工作。  石墨烯:“新材料之王”  据从事多年石墨烯研究的青岛华高墨烯有限公司总经理钟成介绍,石墨烯其实是一种新型的纳米材料,本来就存在于自然界。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯,但难以剥离出单层结构。 2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010 年诺贝尔物理学奖。  作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”。
  • 新世纪“材料之王”——石墨烯在空天推进和动力领域的应用
    太空环境由极端温度、真空、微流星体、太空碎片和太阳黑子活动引起的大变化组成。航天器和航天系统的设计和建造很大程度上依赖于这些参数。暴露在这些恶劣环境下的系统表面由于原子氧的存在而产生破损。因此,高强度和刚度的先进工程材料使20世纪的月球探索时代成为可能,人类探索火星和更远的目的地将需要新一代的材料。20多年来,在纳米尺度(一维小于100nm)合成和加工材料的独特性能吸引了各行各业的关注,这些特性包括大表面积、高纵横比、高各向异性、可定制的电导率和导热系数以及独特的光学特性等。这些特性可用于制备高强度、轻量化和多功能结构、新颖的传感器以及具有高度可靠的环境控制能力、能够屏蔽辐射的储能系统。可持续技术改进的交织性质使纳米材料成为航空航天应用的理想材料。纳米材料可以集成到复杂的航空几何结构中,减少制造技术中的废物产生。这也可用于轻量化和无需耗时维护的机身和结构的设计。石墨烯结构由单层厚度的六方晶格碳原子组成,具有高强度、高刚度、低密度、高电导率和导热率。石墨烯具有高的载流子传输速率,表现出比铜导体好的导电性,比硅半导体更好的材料。石墨烯基复合材料应用于航空航天工业,能有效地减轻重量,提高材料强度,从而减少排放,减少燃料消耗,最终实现更绿色和更清洁的环境。以石墨烯为基础的先进纳米材料在航空工业中,得到了广泛的认可和应用。本文主要从以下三方面进行综述: (1)简述石墨烯结构及其性能特征;(2)主要介绍石墨烯在空天推进和动力领域的热门应用方向,例如复合推进剂,热管理,电极材料,光帆材料等方面;(3)石墨烯未来在空天领域的应用前景和挑战。一、石墨烯结构及其特性石墨烯由单原子厚度的sp₂杂化碳原子同素异形体组成,呈二维(2D)平面蜂窝状晶格。也是构成石墨、碳纳米管、富勒烯等多种碳的同素异形体的基本单元。如图1所示,具有二维碳原子结构的石墨烯,可以通过堆叠形成三维的石墨,也可通过卷曲形成一维的碳纳米管,或者通过包裹形成零维的富勒烯。图1 (a)石墨烯及碳的同素异形体;(b)石墨烯的晶格结构,属于相邻两个碳格A和B的碳原子以圆点表示;(c)石墨烯的能带结构;(d)石墨烯起伏表面模型图。早在1940年,就有理论认为,二维的石墨烯处于非稳定热力学状态,无法在有限温度下自由存在。因此,一直仅是一个学术概念。直至2004年,曼彻斯特大学利用简单的机械剥离方法成功获得单层石墨烯,从而证实它可以稳定存在。石墨烯的蜂巢晶格结构由密集分布在六边形点阵上的碳原子构成,原子排列十分紧密。碳原子以sp₂电子轨道杂化,在平面内形成3个σ键,键角120°,键长约为0.142nm(图 1(b)),2pz轨道电子在垂直于平面方向形成大π键。石墨烯具有特殊的能带结构,由简单的紧束缚模型可以计算得出,它的导带(π*带)和价带(π带)在布里渊区的两个锥顶点K和K´交于一点,称为Dirac点,进而形成圆锥状的低谷。同时,通过观测发现,石墨烯并不是一个完美的平整的二维结构,而是在微观状态下表现出一定的起伏(图 1(e)),这也被认为是石墨烯能够在室温下自由稳定存在的原因。由于其优异的化学稳定性、高载流子迁移率、低密度和光学透明度等特性,在传感器、光子和电子器件等领域被认为是一种很有前景的材料。这一新型碳材料也从此开辟了一个崭新的研究方向,以其令人兴奋的独特性质,涉及的领域覆盖化学、力学、医学、电子智能及众多交叉学科,并由此创造了潜在的巨大经济价值与广阔的应用前景。二、石墨烯在空天推进领域热门应用方向航空航天应用历来是先进材料的驱动力,从太空飞行器的强化碳-碳热保护系统到先进的推进动力系统。只有工程纳米材料的应用才能满足需求,使得航空航天发展更进一步。(一)复合推进剂石墨烯的应用目前也已经扩展到复合推进剂领域,主要用于提高推进剂的热分解、导热以及力学性能。研究最多的就是复合固体推进剂含能组分的热分解,分解速率的提升对于提高推进剂的燃烧性能至关重要,而热分解又主要依赖于催化剂体系。传统上广泛使用的催化剂主要是一些过渡金属及其氧化物。它们的催化能力依赖暴露出来的金属活性位点的数量,然而其往往容易发生团聚,降低催化活性。为了克服这一问题,纳米碳材料已经被广泛作为催化剂载体,以抑制催化剂颗粒的团聚,提高其催化能力。以石墨烯为基底负载无机纳米颗粒的方法主要有非原位复合和原位复合。非原位复合是将预先制备好的纳米颗粒直接附着在石墨烯上,但是由于兼容性问题以及改性剂可能影响到与含能材料之间的相互作用,所以以原位复合方法制备复合推进剂的方法研究的较多。原位复合是通过在石墨烯表面上由各种前驱体制备出纳米颗粒的方法。根据制备手段不同原位复合可以分为还原法、电化学沉积法、水热法、溶胶-凝胶法。石墨烯原位复合纳米材料的制备方法中,电化学沉积法、溶胶/凝胶法由于工艺复杂或原料昂贵,不适合大规模生产。水热法相对于化学还原法的优势在于避免了还原剂的使用,还可以负载金属氧化物纳米颗粒,纳米颗粒分散度高,粒径小且对负载纳米颗粒的性状调控性更强。在实际应用中,根据负载的燃烧催化剂选择不同的方法制备。DEY等采用微波法制备了直径约20~30nm的Fe₂O₃粒子均匀分散在石墨烯片上的Fe₂O₃/Graphene复合粒子,作为AP的催化剂,并对其催化性能进行研究。研究发现,随着Fe₂O₃/Graphene含量的增加,催化作用也明显增强,同时指出Fe₂O₃/Graphene能够有效加快AP系推进剂的燃烧速率。复合固体推进剂的导热问题是导弹、火箭系统安全性与可靠性研究中的重要问题。一方面,由于推进剂不可避免地需要承受极端恶劣和复杂的温度环境,温度的变化很容易导致内部应力的产生;另一方面,导热系数对推进剂的点火和燃烧性能具有关键性的作用。以高分子粘结剂为基体的复合固体推进剂导热系数通常较低,这使得其在承受大幅度温度冲击时,热量无法快速传递,导致装药内部温度分布不均匀或呈梯度分布,进而产生严重的内部热应力,直接引起内部裂纹甚至结构破坏。石墨烯由于具有极高的导热系数和较轻的质量,目前已经广泛作为导热填料用于复合材料。这种具有二维结构的新型轻质碳材料实际上已经在含能材料导热性能的提升方面发挥了作用,如对于高聚物粘结炸药导热系数的提升。张建侃等总结了石墨烯应用于固体推进剂的研究进展的基础上,提出非氧化石墨烯由于导热系数高,适合经非共价改性后分散于推进剂基体中,增强基体的导热性能。此外,复合固体推进剂力学性能的不足将导致药柱无法承受冲击、振动、过载等复杂载荷的作用,进而产生裂纹,增大燃烧面积,引起发动机内压升高,甚至导致爆炸。为了提高复合推进剂的力学性能,在基体中添加纳米材料已经成为提高推进剂力学性能的重要手段。文献指出,石墨烯应用于复合推进剂,可以有效增强推进剂的力学性质。(二)热管理石墨烯纳米材料目前正被纳入各种航天热防护材料和热管理,以提高在各种气或热流动条件下热稳定性和机械完整性的极限。为特殊航天任务材料系统提供多功能的研究也在进行中。由于航空工业的发展,复合材料基体的耐热性和烧蚀性能提出了更高的要求。由于树脂具有良好的加工工艺等性能,被广泛用作耐烧蚀材料的主要基体。为了进一步改善烧蚀材料的性能,石墨烯由于其独特的结构,表现出优异的热稳定性能、力学性能、导电性能等特点,是制备先进复合材料的理想增强体。这些复合材料用于高超声速飞行器前缘的热保护系统、火箭喷管和固体火箭发动机的内部绝缘以及导弹发射设施结构。研究发现,氧化石墨烯/酚醛树脂/碳纤维复合材料的热稳定性和烧蚀性能得到了显著提高,这是因为GO在聚合物基体中的分散良好,GO与酚醛基体之间的界面相互作用强,以及热解后的层状碳结构。与其他样品相比,GO含量为1.25%的样品在烧蚀率、热扩散率和热稳定性方面表现最佳。该复合材料在不同温度下具有恒定的热扩散率,炭产率和烧蚀率分别提高了10%和51%。MA等为了提高碳纤维/ 酚醛复合材料的烧蚀性能,采用纳米填料对纤维增强体界面进行改性。首先,通过将低浓度的GO(0.1%)加入到碳/酚醛(CF/PR)中,结合实验和计算分析氧化石墨烯(GO)对提高复合材料抗烧蚀性能。氧化石墨烯填充复合材料在热阻方面的优势与氧化石墨烯的加入提高了PR的炭收率和纤维的石墨化。分子动力学模拟表明,即使浓度很小,基体内的氧化石墨烯也可以作为炭化PR石墨化晶体生长的核剂。在极端烧蚀温度下,纤维-基体界面处的氧化石墨烯可以与纤维结合。促进了石墨烯-纤维界面stone-throwing-wales缺陷(xy平面)和sp₂杂化(z方向)的形成,进一步提高了纤维的石墨化程度。文中还研究了两种纳米材料填充 CF/PR复合材料的界面、热性能和烧蚀性能。特别是,氧化石墨烯(GO)和石墨氮化碳(g-C3N4)被用于生产低负载(0.1%)的复合材料。通过氧乙炔火焰试验研究了复合材料的烧蚀性能。石墨烯填充和g-C3N4填充复合材料的抗烧蚀性能比原始复合材料分别提高了62.02%和22.36%,线性烧蚀速率的降低是导热系数、烧焦层和纤维石墨化程度共同作用的结果。氧化石墨烯填充复合材料的机理是氧化石墨烯可以显著提高纤维表面的石墨化程度,并进一步提高其抗高温烧蚀的耐热性。而在g-C3N4填充的复合材料中,较厚的纤维直径和烧蚀区炭化层可以分散可燃气体,提高抗氧化性能。此外,将石墨烯均匀地分散在丁苯橡胶基体中,显著提高了聚合物基纳米复合材料的抗烧蚀性能。多孔结构在烧蚀试验过程中形成,它增强了蒸腾和蒸发过程,降低了背面的温度升高。橡胶复合材料的极限拉伸强度和橡胶的肖氏硬度A得到有效提高,而断裂伸长率随着填料与基体比的增加而降低。与有机硅、天然橡胶和乙丙橡胶纳米复合材料相比,丁苯橡胶复合材料在暴露于超高温和剪切流后显示出很好特性。ARABY等制备了苯乙烯-丁二烯橡胶和石墨烯聚合物纳米复合材料。当纳米颗粒含量达到10.5%阈值时,产生导热和界面通道,此时导热系数最高。此外,如图2所示,辐射冷却正在成为一种越来越有吸引力的被动热管理方法,它利用周围环境中的光谱辐射特性。通过机械可重构石墨烯的选择性中间膨胀发射率控制,其中机械拉伸和释放会引起石墨烯的受控形态变化。利用太阳光谱吸收太阳辐射加热(从200nm~2.5μm,可见到近红外波长)并利用大气透射窗口(从8μm~14μm,中红外波长),通过将热量重新发射到外层空间来冷却表面。用于航空航天应用的系统和表面需要动态温度控制以获得最佳系统性能,同时满足个人舒适度和维护设备功能的热需求,并避免过热。能够在不同光谱范围内加热和冷却否定了使用具有相当均匀的高或低发射率值的传统材料,并且由于缺乏对发射率的动态调制,可调节温度的需要是刚性冷却表面无法实现的。同时,由于石墨烯良好的导热性,基于废热反射导热的石墨烯散热器在空间光伏聚光器上得到了应用,不仅降低了成本,在降低质量密度,比功率的提升方面都起到至关重要的作用。图2 (a)基于皱褶石墨烯的选择性发射;(b,c)褶皱节距的变化可利用太阳辐射和大气窗口来辐射冷却(10 μm)和加热(290nm)。(三)电极材料目前,小型化、自动化、以功能为中心的设备的快速发展,使星际任务和近地空间探索的实现更近一步。先进的纳米结构材料的引入促进了全球智能多样化的平台在电力、仪器和通信方面取得进步。然而,仍然缺乏高效可靠的推力系统,能够在长期部署期间支持小型卫星和立方体卫星的精确机动。此外,航空和空间系统需要可靠的电力生产、存储和传输,无论是短期还是长期活动。现有的能源系统正在被纳米材料创新所取代或补充。以石墨烯为基础的更好的工程纳米材料正在不断改进。MARKANDAN等使用氧化铝增韧氧化锆(ATZ)作为结构材料制造了一个微型推进器,氧化钇稳定氧化锆-石墨烯(YSZ-Gr)作为电极材料。YSZ-石墨烯不仅可以作为电解分解硝酸羟铵溶液的电极,还可以起到阻尼作用。这种微型推进器作为主推进系统具有潜在的应用,可用于卫星星座编队飞行中的快速轨道转移。离子推进器阴极(如图3(a)所示)的关键挑战在于减少或完全消除阴极的推进剂消耗,显著提高阴极的使用寿命,以及减少白炽部分的热损失。通过使用纳米多孔材料、纳米管和石墨烯,可以确保减少气体消耗。这个问题的最佳解决方案是通过使用高发射材料和表面结构完全消除通过阴极的气体通量。垂直排列的石墨烯薄片显著提高推进器效率的,作为无推进剂体系下的良好候选者而备受关注,如图3(b)所示。图3 (a)常用的热发射阴极示意图;(b)纳米多孔材料,垂直排列的石墨烯薄片直接生长在纳米多孔氧化铝上(比例尺:200nm)。(四)光帆材料基于石墨烯的轻型帆的推进系统因其灵活性和无需携带燃料这一特性而成为行星际和星际任务的候选技术。轻型航行也是唯一现存的空间推进技术,可以让我们在人类的一生中访问其他星系。为此举办的蜻蜓计划竞赛,就旨在评估激光驱动的光帆星际探测器发送到另一个恒星系统的可行性。这种大规模光操纵石墨烯光帆对实现星际探索和直接空间运输是具有深远意义的。如图4(a)所示,ZHANG等使用大块石墨烯泡沫在宏观尺度上观察到其直接光推进。这种三维石墨烯材料的新形态,使其不仅能够吸收不同波长的光,而且可以使用瓦级的激光,甚至阳光,按照一种新颖的光致电子喷射机制,直接推进到亚米尺度。如图4(b)所示,GAUDENZI与其合作伙伴制作了由铜网格支撑的石墨烯微膜二维帆叶,并在微重力环境下测试了光诱导位移。提出的材料设计消除了帆所需的光学和机械性能,从而大大降低了帆的总质量,并为利用石墨烯机械强度的高反射2D帆打开了大门。此外,PERAKIS等设计了石墨烯作为夹层的低密度和高反射率的三明治轻帆,达到指定加速度比目前最先进的镀铝的聚酯薄膜太阳帆材料性能更好。图4(a)石墨烯海绵在激光照射下向上推进和光致旋转示意图;(b)帆在激光照射下的垂直位移,显示了帆在微重力和真空中的不同位置(侧视图):释放后(左)和在450nm、100mW的激光下加速350ms后(右) 。(五)其他领域由于太空环境由极端温度、真空、太空碎片和太阳黑子活动引起的大变化构成,那么先进的纳米复合材料被用于航空航天飞机结构和太空环境恶劣气候的涂层以及微电子系统的开发就变得非常的有意义。石墨烯霍尔效应传感器具有低热漂移,适用于航空航天应用的电力电子模块中的电流实时监测,可在高达500K的温度下工作。随着温度的升高,临界电子性质的变化,特别是载流子浓度和载流子迁移率的变化,这些参数是受实现传感器的石墨烯层狄拉克点Dirac点所独特影响的。利用门控优化石墨烯霍尔传感器可以实现低温度系数下的高灵敏度霍尔效应测量。此外,在其他星球上的生境开发受到多种标准的制约,其中之一就是空间碎片的撞击破坏。Kuzhir在纳米级厚度的铜催化剂膜和介质SiO₂基底之间通过催化化学气相沉积工艺合成Ka波段多层石墨烯薄膜,石墨烯薄膜的厚度由原子力显微镜直接表征,仅显示了样品上纳米级的小波动。所研究的薄膜厚度不超过5nm,且有一定的粗糙度。石墨烯只有千分之一的皮肤深度,吸收损耗造成的电磁屏蔽效率非常高,达到35%~43%的入射功率水平上。制造的石墨烯薄膜在室温下具有高度的导电性,在可见的范围内具有非常高的透明性,并具有非常好的热学和力学性能,可能成为制造纳米级厚度的电磁干扰防护涂层的有趣的技术材料。此外,特殊的三维导电链结构对轻质,柔性的导电纳米复合材料具有很强的吸引力,尤其是在降低材料的制造价格和良好的加工性能方面。聚二甲基硅氧烷(PDMS)复合材料通过将石墨烯排列成仿珍珠层状序列三维结构,在石墨烯含量不足的情况下表现出更高的力学性能、各向异性电导率和优越的电磁辐射屏蔽效率。掺杂0.4%质量分数的导电颗粒电磁辐射屏蔽效率达到42dB,沿排列方向的电导率为32S/m。在2500 ℃下热处理气凝胶后,聚合物纳米复合材料的电磁辐射屏蔽效率和电导率分别变化为65dB和0.5S/m。在0.15%的超低浓度,热处理温度800℃条件下,其电磁辐射屏蔽效率可达25dB。表明各向异性石墨烯/PDMS层板在超低石墨烯含量下通过结构调控获得了更高的电磁屏蔽效率。环境控制和生命支持系统技术是纳米材料的沃土,长期的人类太空探索带来了最大的挑战。无论是在相对安全的低地球轨道内的短期任务,还是艰难的长期任务,如前往遥远的星球。可靠的空气、水和食物供应;废物管理系统;功能性的可居住空间都是必不可少的。包括在国际空间站上的低轨道运行,已经为生命支撑技术提供了一个有用的试验场,随着航天国家为前往火星等目的地的长期任务做准备,在低轨道运行中测试技术被认为是一项重要的指标。目前的生命支撑技术的可靠性和性能相对较差,需要采用高比表面积和导电纳米材料作为提高系统整体性能的途径之一。碳纳米管仲胺功能化以实现二氧化碳去除,这是生命支持技术不可或缺的功能,并解决当前系统的局限性,包括可再生性和高功耗。在最好的条件下,水的净化和回收是具有挑战性的,但微重力环境的增加和多年耐用性的必要性推动了基于纳米材料的水过滤系统的几个例子。富勒烯在水净化方面已显示出非常好的前景,美国宇航局赞助的使用碳纳米管的纳米级过滤技术已发展成为一种商业产品。尽管可扩展性仍然存在问题,但多孔石墨烯是一种积极研究的水过滤材料,吸引了大量的关注,如图5所示。图5 (a)纳米多孔石墨烯水脱盐示意图;(b)具有亲水键的纳米孔示意图。三、结束语本文首先对石墨烯的结构和理化性质进行了介绍,并简要阐述各性能在具体应用中的重要作用;然后,综述了石墨烯纳米材料在航空航天领域的各方面(复合固体推进剂、热管理和智能光帆等)前沿领域的应用现状。石墨烯及其复合材料的制备已得到较快发展。其中,石墨烯在复合固体推进剂中的应用目前主要集中在提高推进剂含能组分的热分解和燃烧性能方面,而在导热和力学性能方面的研究则相对较少,且制备方法单一,以简单的共混为主,缺乏针对性的设计和性能的控制。而且对石墨烯的性能增强机理缺乏深入的分析。在热管理方面,导热系数、产炭性能和纳米颗粒分散对聚合物纳米复合材料的烧蚀性能和绝缘性能都有影响。酚醛树脂仍然是这一应用中被广泛研究的聚合物,纳米陶瓷颗粒与碳基的复合纳米填料的结合似乎是下一个热管理趋势。此外,在太空电力推进领域,新型石墨烯基纳米材料和微电子机械系统支持的离子液体推进器解决方案,这是为微加工和纳米结构推进器阵列的实现提出了方案。另外,一种可能的低成本,高时效的纳米制造工艺,用于飞机储能和生命支持设备。与传统解决方案相比,这些纳米复合材料应用了纳米材料的整合,并与太空任务和探索计划相结合,可以节省成本和时间。石墨烯在很多领域的研究仍处于探索阶段,石墨烯材料在极端环境中的行为将扩大我们的基本理解和潜在应用,将促进人类在太空的探索。石墨烯基纳米材料未来的研究重点需要着眼于以下几个方向:(1)一种降低开发成本的潜在解决方案是创新材料-建模和模拟与实验测试和表征方法相结合,可以降低开发和鉴定成本。将有助于跨越纳米工程材料的性能转化为宏观尺度上的现实。(2)大规模构造石墨烯材料的集成方法,以保持在石墨烯纳米尺度上注意到的性能和批量实现。它们占地面积小,功耗低,耐辐射,非常适合太空应用。(3)将纳米石墨烯材料集成到最先进类型的电力推进装置中,利用纳米材料的独特特性,提高其效率和使用寿命。另外,进一步创造出一个自适应(自清洁表面,自愈合修复机制,自我愈合)推进器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制