当前位置: 仪器信息网 > 行业主题 > >

生长代谢能量

仪器信息网生长代谢能量专题为您整合生长代谢能量相关的最新文章,在生长代谢能量专题,您不仅可以免费浏览生长代谢能量的资讯, 同时您还可以浏览生长代谢能量的相关资料、解决方案,参与社区生长代谢能量话题讨论。

生长代谢能量相关的论坛

  • 【讨论】【求助】近红外能直接预测代谢能吗?

    最近看了些关于近红外预测能量的文章,有些迷惑,向大家请教些问题:用近红外建立的代谢能预测模型,大部分国外的研究成果,(英语水平有限,看不太懂),是直接用代谢能和近红外模型挂钩;还是用近红外先预测出化学成分再预测代谢能?如果是第二种情况,是不是这种间接的过程是在计算机内部处理我们看不出来,从而体现出来的只是用近红外预测的代谢能的模型?(看了一些资料,说的有些模糊!)近红外是通过一些C-H键来反映一些成分,而代谢能是经过了机体内一些理化反映,用近红外能直接预测出代谢能吗? 期待解答!

  • 新研究发现高纤维坚果20%能量未被吸收

    日前,在国际生命科学学会中国办事处主办的学术论坛上,美国加州巴旦木商会首席科学家Karen Lapsley(凯伦·来普斯利)博士发布了美国农业部农业研究服务局的一研究中心对能量代谢研究的新成果。日前,在国际生命科学学会中国办事处主办的学术论坛上,美国加州巴旦木商会首席科学家Karen Lapsley(凯伦·来普斯利)博士发布了美国农业部农业研究服务局的一研究中心对能量代谢研究的新成果。该研究通过人体代谢实测的方法替代传统计算的方法发现,以美国巴旦木为代表的质地较硬、富含膳食纤维和脂肪的坚果食物,其实际可吸收的能量值低于通过计算标注在营养标签上的理论值。美国巴旦木的可吸收能量比理论能量值低约20%,开心果的可吸收能量比理论能量值低约5%.这为同等能量下食用坚果有利于控制体重提供了技术依据。 Karen Lapsley博士介绍说,目前食物的能量值依然沿用100年前Wilbur Atwater(韦伯·阿特沃德)提出的经典的热能系数来计算获得,即先检测食物中供能营养素的含量,再根据每克碳水化合物产能4千卡、每克蛋白质产能4千卡、每克脂肪产能9千卡来计算总能量。2003年FAO/WHO(世界粮农组织/世界卫生组织)更新了膳食纤维的产能吸收,不同于普通的碳水化合物,其每克产能系数为2千卡。例如:每盎司(28克)巴旦木含14克脂肪,6克总碳水化合物(其中3克为膳食纤维)含6克蛋白质,计算能量值为168千卡。但Atwater能量值是按照食物热能完全燃烧利用来计算的,但食物营养的消化吸收过程并不是百分百有效的,未被吸收的能量会随粪便流失,这对质地坚硬、富含膳食纤维的食物来说,表现得更为明显。 为确切了解没被吸收的能量有多少,美国农业部农业研究服务局贝尔茨维尔人类营养研究中心于2012年8月研究了人体摄入美国巴旦木后实际获得的能量。据该实验主持研究人员大卫·拜尔博士介绍,实验是用进食总能量减去受试者粪便、尿液中的能量获得的有效代谢能量。实验结果表明,每盎司美国巴旦木(约28克)被人体吸收的能量为129千卡,比传统认为的168千卡的数值低20%.这一结果解释了为什么研究发现吃巴旦木不会导致肥胖而是会有利于控制体重。研究人员说,不同的坚果具有不同的供能营养素构成,能量可代谢的系数也不同。同时研究的开心果的可代谢能量比理论值低5%-10%. Karen Lapsley博士告诉记者,高膳食纤维食品的人体吸收比例是一个非常活跃的研究领域,全球有很多研究机构在进行这一领域的研究,主要的研究团体在新西兰,今年10月份将在澳大利亚召开一个专门讨论这一课题的学术会议。除了巴旦木,有些高膳食纤维且能量密集的植物性食品如芝麻,据分析其可代谢能量比例也会较低。目前,美国加州巴旦木商会已经向美国FDA提出了申请,希望修改相关营养标签上的标注,至今已完成第一轮磋商,进入由美国FDA主导的政府实验室试验验证阶段。 美国塔斯夫大学奥利弗·陈博士表示,该能量代谢研究结果也提示消费者,吃坚果最好带皮吃,因为坚果种皮正是膳食纤维和具有抗氧化功能的多酚物质富集的部位。

  • 红蓝光结合对黄芩生长和次生代谢的影响机制

    [font=楷体]黄芩([/font][font='Times New Roman',serif]Scutellariabaicalensis Georgi[/font][font=楷体])是一种常见于中国及东亚其他地区的药用植物,其高含量的黄酮类化合物赋予其多种生物活性,包括抗炎、抗菌、抗病毒和抗新冠病毒([/font][font='Times New Roman',serif]COVID-19[/font][font=楷体])等功效。发光二极管([/font][font='Times New Roman',serif]LED[/font][font=楷体])已被公认为能够增强植物生长及次生代谢物积累的有效人工光源,适用于商业植物生产。然而,关于[/font][font='Times New Roman',serif]LED[/font][font=楷体]光对黄芩的影响仍知之甚少。本研究探讨了单色蓝光([/font][font='Times New Roman',serif]B[/font][font=楷体],[/font][font='Times New Roman',serif]460 nm[/font][font=楷体])、单色红光([/font][font='Times New Roman',serif]R[/font][font=楷体],[/font][font='Times New Roman',serif]660 nm[/font][font=楷体])、白光([/font][font='Times New Roman',serif]CK[/font][font=楷体])及不同比例的红蓝光组合([/font][font='Times New Roman',serif]R9B1[/font][font=楷体]、[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]、[/font][font='Times New Roman',serif]R5B5[/font][font=楷体]、[/font][font='Times New Roman',serif]R3B7[/font][font=楷体]、[/font][font='Times New Roman',serif]R1B9[/font][font=楷体])对黄芩生长和黄酮积累的影响。结果表明,在[/font][font='Times New Roman',serif]R:B[/font][font=楷体]比为[/font][font='Times New Roman',serif]9:1[/font][font=楷体]或[/font][font='Times New Roman',serif]7:3[/font][font=楷体]的条件下,黄芩幼苗的全株及根部生物量和黄酮含量较高。靶向代谢组学分析显示,不同处理组间验证了[/font][font='Times New Roman',serif]48[/font][font=楷体]种差异表达代谢物([/font][font='Times New Roman',serif]DEMs[/font][font=楷体]),且与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组上调的[/font][font='Times New Roman',serif]DEMs[/font][font=楷体]数量尤其是黄酮类化合物较多。转录组数据表明,与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组分别有[/font][font='Times New Roman',serif]1412[/font][font=楷体]和[/font][font='Times New Roman',serif]1508[/font][font=楷体]个差异表达基因([/font][font='Times New Roman',serif]DEGs[/font][font=楷体])。[/font][font='Times New Roman',serif]KEGG[/font][font=楷体]通路分析显示,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组中的[/font][font='Times New Roman',serif]DEGs[/font][font=楷体]主要富集于苯丙烷生物合成、植物激素信号传导、黄酮生物合成、淀粉和蔗糖代谢、半乳糖代谢、类胡萝卜素生物合成、玉米素生物合成和氮代谢等通路。[/font][font='Times New Roman',serif]qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=楷体]结果表明,参与黄酮生物合成途径的[/font][font='Times New Roman',serif]SbPAL[/font][font=楷体]、[/font][font='Times New Roman',serif]SbCLL-7[/font][font=楷体]、[/font][font='Times New Roman',serif]SbCHI[/font][font=楷体]、[/font][font='Times New Roman',serif]SbFNS[/font][font=楷体]和[/font][font='Times New Roman',serif]SbOMT[/font][font=楷体]等编码酶在黄芩中的表达显著上调,且与转录组数据一致。最后,[b]通过黄芩中主要黄酮类化合物与编码黄酮代谢途径的转录因子和酶的基因之间的相关性分析,构建了一个共表达网络图,为挖掘与黄酮类合成相关的光响应基因提供了依据[/b]。这是首个关于红蓝光组合如何影响黄芩生长及次生代谢的研究报告。 [/font][font=楷体]黄芩([/font][font='Times New Roman',serif]Scutellariabaicalensis Georgi[/font][font=楷体])是唇形科著名的药用植物,其干燥根部在中国被称为“黄芩”,是最常用的中药材之一,广泛用于抗菌、抗炎、抗病毒和抗肿瘤治疗([/font][font='Times New Roman',serif]Do et al., 2021 Xiang et al., 2022[/font][font=楷体])。黄芩的化学成分主要包括黄酮类、有机酸类化合物和皂苷类,其中黄酮类是其主要活性成分([/font][font='Times New Roman',serif]Miao et al., 2022 Sun et al., 2020a[/font][font=楷体])。黄芩苷是黄芩中含量最高的黄酮类化合物之一,也是《中国药典》评估黄芩质量的重要指标之一。最近的研究表明,黄芩提取物和黄芩素具有潜在的抗冠状病毒药物活性([/font][font='Times New Roman',serif]Liu et al., 2021[/font][font=楷体])。黄芩是清肺排毒汤的重要成分,清肺排毒汤是国家卫健委推荐用于新冠肺炎治疗的权威中药方剂(中华人民共和国国家卫生健康委员会[/font][font='Times New Roman',serif], 2021[/font][font=楷体])。目前,黄芩在中国北方广泛种植,对其药用成分的需求不断增加。因此,[/font][b][font=楷体]提高该物种的产量及其黄酮类化合物(包括黄芩素和黄芩苷)含量成为了重要的研究领域。[/font][/b][font=楷体]在多种可控的环境因素中,光是至关重要的因素之一,因为光对植物光合作用具有重要性,不同的光质对植物的生长和发育有显著影响([/font][font='Times New Roman',serif]Chen et al., 2021 Danziger and Bernstein, 2021[/font][font=楷体]),如红光和蓝光更有效地参与植物光合作用([/font][font='Times New Roman',serif]Mccree, 1970[/font][font=楷体])。植物已经进化出一系列光受体来响应光的特定方面,这决定了植物的生长和发育([/font][font='Times New Roman',serif]Ahmad, 2016 de Wit et al., 2016[/font][font=楷体])。在温室园艺中,发光二极管([/font][font='Times New Roman',serif]LED[/font][font=楷体])可以通过发射特定波长的光精确控制光谱组成,已被用于提高作物的产量和质量([/font][font='Times New Roman',serif]Lazzarin et al., 2021 Ma et al., 2021[/font][font=楷体])。例如,研究表明,与白光相比,红光照射下的苹果([/font][font='Times New Roman',serif]Malus domestica[/font][font=楷体])根长、侧根数量和根体积显著增加,而蓝光和白光之间的根指数没有显著差异([/font][font='Times New Roman',serif]Li etal., 2021b[/font][font=楷体])。红光和蓝光通过影响植物的激素水平和信号传导调节其生长和发育。例如,蓝光和红光促进了挪威云杉幼苗中赤霉素和吲哚[/font][font='Times New Roman',serif]-3-[/font][font=楷体]乙酸([/font][font='Times New Roman',serif]IAA[/font][font=楷体])的积累([/font][font='Times New Roman',serif]OuYang et al., 2015[/font][font=楷体])。与单色红光或蓝光相比,两种光的组合能显著刺激植物的光受体,从而影响其生长和发育([/font][font='Times New Roman',serif]Spalholz et al., 2020[/font][font=楷体])。之前的研究表明,单一的红光或蓝光无法促进番茄茎的伸长和生长,但当红蓝光的比例适当时,植物的生长状态达到最佳([/font][font='Times New Roman',serif]Liang et al., 2021[/font][font=楷体])。[/font][font=楷体]红光和蓝光通常用于温室农业种植,不仅影响植物的生长状态,还影响次生代谢物的生成。例如,红光和蓝光通过激活青蒿素合成相关基因的表达提高了黄花蒿([/font][font='Times New Roman',serif]Artemisia annua[/font][font=楷体])中青蒿素的水平([/font][font='Times New Roman',serif]Zhang et al., 2018[/font][font=楷体])。在某些物种中,红光和蓝光对次生代谢的影响有所不同。例如,在贯叶连翘([/font][font='Times New Roman',serif]Hypericum perforatum[/font][font=楷体])中,红光下金丝桃素和黄酮类化合物的含量显著增加,而蓝光和白光处理之间无显著差异([/font][font='Times New Roman',serif]Sobhani Najafabadi et al., 2019[/font][font=楷体])。类似地,红光被证明有效提高了蓝莓([/font][font='Times New Roman',serif]Vaccinium spp.[/font][font=楷体])中的花青素含量([/font][font='Times New Roman',serif]Abou El-Dis et al., 2021[/font][font=楷体])。红蓝光组合可以强烈刺激莴苣([/font][font='Times New Roman',serif]Lactuca sativa cv. "Batavia"[/font][font=楷体])中花青素和黄酮类化合物的积累([/font][font='Times New Roman',serif]Sng et al., 2021[/font][font=楷体])。[/font][b][font=楷体]对于药用植物育种者来说,一个重要的目标是优化活性成分的含量,同时提高产量[/font][/b][font=楷体]。近年来,黄芩黄酮类化合物的生物合成及其调控机制得到了广泛研究([/font][font='Times New Roman',serif]Zhao et al., 2016[/font][font=楷体]),[/font][b][font=楷体]但关于不同波长光对黄芩生长、发育和次生代谢影响的信息仍然缺乏。[/font][/b][font=楷体]本研究利用红光和蓝光及其不同比例组合研究了它们对黄芩的影响。根据植物的形态特征和主要活性成分的含量确定了最佳的红蓝光比例。随后,利用靶向代谢组学和转录组学数据分析了最佳红蓝光组合促进黄芩生长及次生代谢物积累的潜在机制。通过代谢组和转录组数据的整合分析,鉴定了参与黄酮类化合物生物合成和调控的转录因子和酶的潜在光响应基因。[/font][b][font=楷体]本研究结果为黄芩的分子育种及[/font][font='Times New Roman', serif]LED[/font][font=楷体]应用于其优化生长和黄酮类药效的研究奠定了基础。[/font][font=楷体]结果[/font][font='Times New Roman',serif]3.1. [/font][font=楷体]光处理对黄芩生长和生物量的影响[/font][/b][font=楷体]不同光照显著影响了黄芩的生长(图[/font][font='Times New Roman',serif]1A[/font][font=楷体])。与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,红蓝光组合处理组的植株高度显著低于[/font][font='Times New Roman',serif]CK[/font][font=楷体]组和单色光处理组(图[/font][font='Times New Roman',serif]1B[/font][font=楷体])。与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,单[b]色红光处理下,黄芩全株和根部的生物量分别增加了[/b][/font][b][font='Times New Roman',serif]1.44[/font][font=楷体]倍和[/font][font='Times New Roman',serif]1.77[/font][font=楷体]倍,而单色蓝光处理组则无显著差异[/font][/b][font=楷体]。[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]处理下,全株和根部生物量分别是[/font][font='Times New Roman',serif]CK[/font][font=楷体]组的[/font][font='Times New Roman',serif]2.23[/font][font=楷体]倍和[/font][font='Times New Roman',serif]3.53[/font][font=楷体]倍,[/font][font='Times New Roman',serif]2.04[/font][font=楷体]倍和[/font][font='Times New Roman',serif]3.45[/font][font=楷体]倍(图[/font][font='Times New Roman',serif]1C[/font][font=楷体]、[/font][font='Times New Roman',serif]D[/font][font=楷体])。数据表明,与单色光处理和[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,红蓝光组合显著抑制了植株高度。然而,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]处理显著增加了黄芩幼苗全株和根部的生物量,而在较高比例的蓝光处理下,植物生长受到抑制。 [b][font='Times New Roman',serif]4.1. [/font][font=楷体]适当的红蓝光组合促进黄芩的生长和主要活性成分的积累[/font][/b][font=楷体]植物对红光和蓝光的反应具有物种特异性([/font][font='Times New Roman',serif]Izzo et al., 2020 Kong and Zheng, 2020 Liang et al., 2021[/font][font=楷体])。例如,在红蓝光组合处理下,贯叶连翘([/font][font='Times New Roman',serif]Hypericum perforatum L.[/font][font=楷体])的根、叶和花的生物量随着红光比例的增加而增加,尤其是在[/font][font='Times New Roman',serif]100%[/font][font=楷体]红光处理下([/font][font='Times New Roman',serif]Karimi et al., 2022[/font][font=楷体])。在单色蓝光处理下,四周龄的豆薯幼苗的生物量显著高于单色红光、绿光和白光处理([/font][font='Times New Roman',serif]Chung et al., 2019[/font][font=楷体])。本研究得出结论,单色红光相比[/font][font='Times New Roman',serif]CK[/font][font=楷体]显著促进了黄芩根部和全株的生长,而蓝光对生长没有显著影响(图[/font][font='Times New Roman',serif]1[/font][font=楷体])。[/font][font='Times New Roman',serif]Yeo[/font][font=楷体]等([/font][font='Times New Roman',serif]2021[/font][font=楷体])研究了在单色红光、蓝光和白色[/font][font='Times New Roman',serif]LED[/font][font=楷体]光处理下黄芩幼苗的初级和次级代谢物变化,发现白光[/font][font='Times New Roman',serif]LED[/font][font=楷体]最有效地促进了黄酮类物质(如黄芩苷、黄芩素和汉黄芩素)的生产。不同比例的红蓝光组合能够更好地控制植物生长和次生代谢物的生成([/font][font='Times New Roman',serif]Bantis et al., 2018 Chen et al., 2019 Li et al., 2021a[/font][font=楷体])。例如,适当比例的红光和蓝光可以显著促进大麻([/font][font='Times New Roman',serif]Cannabis sativa L.[/font][font=楷体])的生长和大麻二酚的积累([/font][font='Times New Roman',serif]Wei et al., 2021[/font][font=楷体])。在另一种唇形科著名药用植物丹参([/font][font='Times New Roman',serif]Salvia miltiorrhiza Bunge[/font][font=楷体])中,[/font][font='Times New Roman',serif]R[/font][font='Times New Roman',serif]=7:3[/font][font=楷体]的比例不仅促进了其生长,还促进了酚酸的生成([/font][font='Times New Roman',serif]Zhang et al., 2020[/font][font=楷体])。本研究发现,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组相比[/font][font='Times New Roman',serif]CK[/font][font=楷体]组或其他处理组,更有利于黄芩的生长和黄酮类物质的积累(图[/font][font='Times New Roman',serif]1[/font][font=楷体],图[/font][font='Times New Roman',serif]2[/font][font=楷体]),这与丹参的研究结果类似([/font][font='Times New Roman',serif]Zhang et al., 2020[/font][font=楷体])。[/font][b][font='Times New Roman',serif]4.2. [/font][font=楷体]组合光可激活黄芩的黄酮类合成途径[/font][/b][font=楷体]多种在黄芩根部参与黄酮类合成途径的关键酶基因,如[/font][font='Times New Roman',serif]SbPALs[/font][font=楷体]、[/font][font='Times New Roman',serif]SbC4H[/font][font=楷体]、[/font][font='Times New Roman

  • 【每日一贴】羟基蛋氨酸钙

    【每日一贴】羟基蛋氨酸钙

    【中文名称】羟基蛋氨酸钙;MHA-Ca【英文名称】methionine hydroxy analog-Ca【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/02/201202012000_347274_1855403_3.jpg【密度】典型堆积密度(装填)为658kg/m3.【性状】 外观为浅褐色结晶形粉末。【溶解情况】 水溶性为7.4g/100g(27℃)【用途】 用作饲料添加剂时可作为蛋氨酸类营养补充剂,促进动物生长发育。【制备或来源】 丙烯醛与甲硫醇反应制得。【其他】 pH值7,代谢能量为15.35MJ/kg。 在使用该产品后,需用水冲净皮肤,若眼睛粘上该产品,亦需用清水冲洗。应避免使该产品与空气中粉尘接触。【包装及贮运】 25kg袋运载。【生产单位】 美国孟山都公司;诺伟恩国际营养有限公司

  • 【有奖调研】安捷伦Seahorse 细胞能量代谢分析问卷调研

    【有奖调研】安捷伦Seahorse 细胞能量代谢分析问卷调研

    [size=18px]仪器信息网联合知名厂商安捷伦推出细胞能量代谢系统调研活动。为更好服务新药研发、生命科学、细胞生物学、细胞能量代谢、疾病研究等领域的从业人员。[/size][size=18px]特设置以下调研内容邀请您参与,问卷调研结束后将会根据内容真实和完整性,赠送10元话费作为奖励。[/size][size=18px][img=,353,303]https://ng1.17img.cn/bbsfiles/images/2021/08/202108301552020806_8009_5249572_3.png!w353x303.jpg[/img][/size][size=18px]凡是完整填写信息的用户将会获得仪器社区200积分奖励(获得10元话费不再获得积分奖励),请注意补充仪器社区用户ID信息。[/size][size=18px][img=,690,383]https://ng1.17img.cn/bbsfiles/images/2021/08/202108301555078047_6826_5249572_3.jpeg!w690x383.jpg[/img][/size][size=18px]参与调研链接:[url]http://instrument-vip.mikecrm.com/GEAwrLR[/url][/size]

  • 微生物的生长介绍

    生长是一个复杂的生命活动的过程。微生物细胞从环境吸取营养物质,经代谢作用合成新的细胞成分,细胞各组成成分有规律地增长,致使菌体重量增加,这就是生长。随着菌体重量的增加,菌体数量也增多,这就进入到繁殖阶段。生长是繁殖的基础,繁殖是生长的结果。   微生物在各种环境下生长,其生长和生理活动实际上是对它们所处环境条件的一种反应。微生物怎样生长,什么因素影响它们的生长,什么因素促使代谢产物的生成,微生物如何对不良环境做出反应,又在什么条件下死亡研究和解决这些问题,将为培养和发酵条件的优化打好基础。   微生物生长和繁殖有许多方式。细菌是裂殖,即每个母细胞体积增大最后分裂成两个相同的子细胞,众多无性的子细胞形成一个无性繁殖系。除了裂殖酵母外,多数酵母行出芽繁殖,母细胞在繁殖周期内体积几乎没有变化,无数代出芽繁殖,也形成为菌落。丝状真菌的生长是以其顶端延长的方式进行的,在生长过程中产生繁茂的分技而构成整体。 研究微生物的生长,需要从研究微生物的个体生长和群体生长两个方面着手。

  • 微生物生长的几种检测方法

    微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常用的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。  概述:  一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其他生物的生长,微生物的个体生长在科研上有一定困难,通常情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长通常指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和他们的生长抑制紧密相关。所以有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,所以测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,可以从其重量,体积,密度,浓度,做指标来进行衡量。  生长量测定法  体积测量法:又称测菌丝浓度法。  通过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。

  • 关于咖啡那点事~咖啡因代谢物的测定

    关于咖啡那点事~咖啡因代谢物的测定

    咖啡的主要成分是咖啡因,可以作用于神经细胞中一种叫做腺嘌呤核苷的化学物质,是一种中枢神经兴奋剂,能够暂时的驱走睡意并恢复精力。 不过,咖啡对有些人是有好处的,但是对某些人却产生负面影响,这主要是与咖啡因的在不同人的代谢能力有关的。 咖啡因在肝脏中被分解产生三个初级代谢产物副黄嘌呤,可可碱,茶碱。咖啡因在摄取后45分钟内被胃和小肠完全吸收。吸收后它会分布于身体的所有器官之中,转化过程符合化学动力学一级反应,这些化合物进一步代谢,最终通过尿液排泄。 如果某些人的这个酶的代谢比较快,摄入的咖啡因很快就会被清除出体外,因此咖啡因起作用的效果就很有限,不能令人产生特别明显的兴奋感。而对于另一些人,他们这个酶代谢速度慢,咖啡因在体内的清除速度很慢,起作用时间也就较长,这样的人往往一杯咖啡就会令他们夜不能寐,有的还会影响食欲,呕吐和痉挛,也可能出现胃炎或心脏病等不良反应。 所以这也解释了一般人普遍担心的咖啡会影响睡眠问题,其实和你对咖啡因的代谢力有很大的关系。由于每个人对咖啡因代谢的能力不同,平均来说,咖啡因在体内的运作,大约能维持3~4个小时,所以即使在晚餐后饮用,也不至于造成太大的困扰。但有些人的代谢力较差,可能会持续作用8~12个小时;或者体质对咖啡因比较敏感,就得特别注意喝咖啡的时间,避免影响作息,因为不论是多喝开水或是增加运动,都无法有效的促使咖啡因快速代谢。*********************************** 以上对咖啡因的代谢方面做了简单的科普,可如何对咖啡因代谢物进行检测呢?由于咖啡因代谢物从化学结构上来看,这一类化合物具有相似的母体结构,不同之处在于甲基的位置,属于位置异构体。(见下图)http://ng1.17img.cn/bbsfiles/images/2016/01/201601071109_581149_2452211_3.png 对于分离这些代谢物来说,对色谱柱的分离能力要求比较高,下面我们看看使用迪马Spursil色谱柱分离9种咖啡因代谢物的分离效果情况色谱柱:Spursil C18规格:150 x 4.6 mm, 5 μm流动相:甲醇/ 水+1% 乙酸=10/90流速:1.0 mL/min柱温:室温检测器:UV 254 nm样品:1. 尿酸2. 黄嘌呤3. 7- 甲基黄嘌呤4. 1- 甲基尿酸5. 3- 甲基黄嘌呤6. 1,3- 二甲基尿酸7. 可可碱8. 1,7- 二甲基黄嘌呤9. 茶碱http://ng1.17img.cn/bbsfiles/images/2016/01/201601071110_581151_2452211_3.png总结:Spursil 色谱柱能够在13分钟之内将它们全部分开且达到基线分离~棒棒哒http://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 生物显微镜下细菌的理化性状!

    物显微镜下细菌的理化性状!细菌的理化性状一、细菌的化学组成  细菌和其他生物细胞相似,含有多种化学成分。 1、就其元素来讲,包括:有机元素(C、N、H、O)和灰分元素(P、K、Mg、S、Ca以及Fe、Na、Cl、Cu、Zn等)。这些元素主要以化合物的形式存在,构成了细菌细胞的水分和有机物、无机物的固体成分。http://jpkc.yzu.edu.cn/course/shywshw/pictures/t4001.jpg 2、细菌的化学组成 (1)小分子物质:水分是菌细胞重要的组成部分,占细胞总重量的75%~90%; (2)无机盐:占干重的10%; (3)大分子物质:蛋白质、糖类、脂类、核酸; (4)特殊化学物质: 肽聚糖、胞壁酸、磷壁酸、D型氨基酸、二氨基庚二酸(DAP)、吡啶二羧酸(DPA)等。二、细菌的物理性状  1、光学性质:细菌为半透明体。当光线照射至细菌,部分被吸收,部分被折射,故细菌悬液呈混浊状态。  2、表面积:细菌体积微小,相对表面积大,有利于同外界进行物质交换。如葡萄球菌直径约1μm,则1cm3体积的表面积可达60000cm2;直径为1cm的生物体,每cm3体积的表面积仅6cm2,两者相差1万倍。  3、带电现象:细菌固体成分的50%~80%是蛋白质,蛋白质由兼性离子氨基酸组成。革兰阳性菌pI为2-3,革兰阴性菌pI为4-5,故在近中性或弱碱性环境中,细菌均带负电荷,尤以前者所带负电荷更多。  4、半透性:细菌的细胞壁和细胞膜都有半透性,允许水及部分小分子物质通过,有利于吸收营养和排出代谢产物。  5、渗透压: 细菌体内含有高浓度的营养物质和无机盐,一般革兰阳性菌的渗透压高达 20~25个大气压,革兰阴性菌为5~6个大气压。细菌所处一般环境相对低渗,但有坚韧细胞壁的保护不致崩裂。第二节 细菌的生长繁殖一、细菌生长的条件  1、营养:水、碳源、氮源、无机盐,有些细菌还需要生长因子。    生长因子:为细菌生长所必需的一类物质,有维持细菌正常发育和促进生长的功能,极其微量就能显示其影响, 而足够份量可促进某些细菌生长加快数百倍。如:维生素(主要是VB)、有机酸、嘌呤、嘧啶等,以及色素和某些细菌的抗生素等。生长因子多为辅酶或辅基的主要成分,对细菌的生命活动至关重要  2、酸碱度:多数致病菌的最适pH为7.2-7.6  3、气体:   (1)根据对氧的需要不同将细菌分为4类:  ① 专性需氧菌(obligate aerobe)             ② 微需氧菌(microaerophilic bacterium)   ③ 兼性厌氧菌(facultative anaerobe)          ④ 专性厌氧菌(obligate anaerobe)  (2)某些细菌在培养的时候还需要一定浓度的CO2: 5% CO2   4、温度:多数致病菌的最适温度为37℃二、细菌的生物氧化与能量代谢  细菌能量代谢活动中主要涉及ATP形式的化学能。细菌的有机物分解或无机物氧化过程中释放的能量通过底物磷酸化或氧化磷酸化合成ATP。主要有发酵、需氧呼吸、厌氧呼吸等方式。 三、细菌的营养类型  不同种类的细菌,对能源和碳源的要求并不一样,据此可将细菌区分为不同的营养类型。  1、根据碳素营养的区分  (1)自养菌:只能从无机物取得碳源的细菌。能利用无机碳(如CO2、H2CO3等)合成所需要的含碳有机物,如硝化菌。   (2)异养菌:凡能从有机物中取得碳源的细菌。不能利用无机碳,需要有机碳来合成所需要的含碳有机物;必须依赖其他生物供给现成的有机物而营寄生生活  2、根据能源的区分:  (1)光能营养菌:能将光能转变为化学能的细菌;这类细菌都是属于土壤和水中的细菌,在病原菌中不存在此种类型的细菌。   (2)化能营养菌:从无机和有机物中取得能量的细菌;大部分细菌属于此类。前者称为无机化能营养菌;后者称为有机化能营养菌。   3、因此,细菌的营养类型分为:(1)光能自养菌   (2)光能异养菌    (3)化能自养菌    (4)化能异养菌 http://jpkc.yzu.edu.cn/course/shywshw/pictures/t4004.jpg四、细菌吸收营养物质的机制  细菌代谢能力极强,繁殖很快,消耗营养很多。 细菌没有特殊的摄食和排泄器官,这些营养物质,是通过细菌半透性的细胞壁和胞浆膜进行吸收的。  细菌主要有4种吸收营养物质的方式,不同营养物质可沿不同的方式进入:    (1)单纯扩散(simple diffusion)     (2)促进扩散(facilitated diffusion)     (3)主动运输(active transport)     (4)基团转移(group translocation)  1.单纯扩散  也称为被动扩散,是一种最简单的细胞内外物质交换方式。只靠简单的分子运动进行扩散。  吸收的是溶液中的溶质。   特点:  ① 无特异性;  ② 不需要载体   ③ 不需要能量   ④ 速度较慢   ⑤ 可逆,但不能逆浓度梯度.  因此不是细菌取得营养的主要方式   2. 促进扩散   营养物质通过透酶吸收营养基质的方式称为促进扩散,也称为协助扩散。  特点:  ① 严格的特异性,  ② 需要载体,  ③ 不需要能量;   ④ 可逆   ⑤ 与被动扩散相同,也不能逆浓度梯度  3. 主动运输   特点:  ① 需要载体,  ② 严格的特异性,  ③ 需要能量.  ④ 不可逆,可逆浓度梯度; 胞内的基质可高于胞外100~1000倍,  ⑤ 饱和效应:如胞外基质浓度甚高,足使载体饱和,输送的速度达到一定高度时就无法进一步提高;  ⑥ 吸收竞争:某些性质极为相似的化合

  • 【求助】请教如何确定晶体生长方向?

    近期开始做一些晶体方向的研究,本人之前很少接触这一领域,现在有些问题想请教一下各位高手呀。我们现在想通过高倍透镜来确定一下晶体的生长方向,首先我们对样品进行了高倍透镜测试,根据所得图片量出了晶格条纹的间距,进而确定了所属晶面,现在就是不清楚如何根据晶面确定晶体的生长方向,想问一下,是不是和这个晶面垂直的方向就是晶体的生长方向呀,如果不是的话,应该如何确定呢?另外,我们觉得在晶体组装的过程中,由于各晶面能量的不同,小的晶体组装组装成较大晶体的过程中,有少数能量较高的晶面可能会消失(小的晶体可能通过这些高能量晶面发生连接组装,这一过程中该晶面消失),那么如何确定消失的是哪些晶面呢?在线等,还请高手伸出援手

  • 【分享】细胞生长受什么因素影响?影响细胞生长的因素

    细胞在体外进行培养,失去了机体的调节和控制。因此,除满足营养的要求外,还必须使细胞生存环境尽量接近活体的环境。外环境的培养条件如温度、渗透压、酸碱度等均能影响细胞的生长。 一、温度 一般哺乳类及禽类细胞体外培养的适宜温度是37~38℃。温度过高或过低都会影响到细胞的生长。细胞耐受低温的能力比抗热的能力强,在低温下,细胞的代谢活力及核分裂降低。温度不低于0℃时,虽影响细胞代谢,但并无伤害作用;把细胞置于25~35℃时,细胞仍能生存和生长,但速度减缓;放在40℃数小时后,再置回37℃培养细胞仍能继续生长。但如果在40℃下暴露时间太长,对细胞生长不利,甚至变圆脱落于瓶壁。若温度过低,在降到冰点以下时,细胞因胞外水和胞质结冰而受损死亡。但若向培养液中加入甘油或二甲亚砜等保护剂,封入安瓿中后,置于液氮中,可起保护作用,此时细胞可耐受-70℃以下温度,能长期储存,解冻后细胞复苏,仍能继续生长增殖,细胞生物性状不受任何影响。此为保存细胞的主要手段。 高温对细胞培养不利。细胞在39~40℃培养1小时,能受到一定损伤,但仍有可能恢复,但不能忍受温度再升高2℃,持续数小时,即在41~42℃中培养1小时,细胞损伤严重,温度至43℃以上时细胞多数被杀死。高温主要引起酶的灭活、类脂质破坏,核分裂的破坏,产生凝固酶使细胞发生凝固,另外使蛋白质变性。因此,体外培养细胞时一定要避免高温。 二、渗透压 细胞在高渗溶液或低渗溶液中,可以立即发生皱缩或肿胀、破裂。所以,渗透压是体外培养细胞的重要条件之一。哺乳动物和其他动物组织细胞体外培养的渗透压的维持主要与NaCl有关,但不能忽视其他电介质渗透压的关系。渗透压与单位体积溶媒内溶质的分子数和离子数成正比。为此,按一定比例控制培养液中离子平衡,维持正常渗透压是很重要的。这不仅是为了维持细胞张力,而且是为了调节细胞的代谢。因为细胞外离子输送和离子浓度改变着其他营养物质的输送(如氨基酸、蔗糖等),直接影响细胞基本合成系统。 理想的渗透压因细胞的类型及种族而异,人血浆渗透压为290mmol/L,被视为是体外培养人类细胞的理想渗透压。哺乳类动物细胞的渗透压一般为290~300mmol/L。人胚肺成纤维细胞为250~325mmol/L,鼠则为310mmol/L左右。在实际应用中,260~320mmol/L的渗透压可适于大多数细胞。

  • 上海应物所发现金纳米粒子对果蝇代谢信号通路的调控作用

    金纳米粒子很可能是最早被用作药物的纳米材料,其历史甚至可追溯到几千年前的古埃及——炼金术士们将金熔化后制成金水供法老饮用,其中就含有金纳米粒子。直到中世纪的欧洲,贵族中也流行着类似的方法。现代的纳米研究表明,金纳米粒子细胞毒性很低,生物安全性良好,因而被广泛应用于纳米药物研究。科研人员猜想,进入动物体内的金纳米粒子是否可能产生其它独特的生物效应呢? 近期,中国科学院上海应用物理研究所物理生物学实验室樊春海、黄庆研究员和中国科学院系统生物学重点实验室宋海云研究员开展合作研究,课题组的科研人员王彬、陈楠和魏应亮以果蝇为动物模型的工作表明,经食物摄取的金纳米粒子能够显著增强胰岛素和生长因子下游的PI3K/Akt信号通路,促进细胞对食物中营养成分的吸收和利用。相关论文已于近日发表于自然出版集团的综合性杂志《科学报道》(Scientific Reports 2012, 2:563)。 PI3K/Akt信号通路是多细胞生物中高度保守的合成代谢通路。果蝇幼虫通过PI3K/Akt信号通路将摄入的营养成分以甘油三酯的形式储存,以满足成蛹期的能量需求。果蝇幼虫摄取掺入金纳米粒子的食物后,PI3K/Akt信号通路活性上升,并通过SREBP通路增加甘油三酯的合成。在能量限制(calorie restriction)导致PI3K活性下降的条件下,金纳米粒子的这一效应表现更加显著。如果在喂食金纳米粒子的同时抑制Akt信号通路,能够消除其对脂合成代谢的作用,说明金纳米粒子的代谢效应是通过促进PI3K/Akt信号通路实现的。进一步研究表明,金纳米粒子并没有改变果蝇的进食量,其促进PI3K/Akt信号通路的机制,一部分在于促进细胞对营养成分的摄取,一部分在于促进PI3K定位于细胞膜。 该研究揭示了金纳米粒子一种出人意料的生物学效应,预示了其在糖尿病等代谢紊乱研究中的应用前景。 该研究工作得到科技部、国家自然基金委和中国科学院的支持。http://www.cas.cn/ky/kyjz/201208/W020120823596824413298.jpg金纳米粒子对果蝇代谢信号通路的调控作用

  • 化学药剂对微生物生长的影响

    化学药剂对微生物的作用取决于药剂浓度、作用时间和微生物对药物的敏感性。1.重金属及其化合物 重金属离子尤其是Hg+、 Ag+和CU2+具有很强的杀菌力。重金属离子进入细胞后主要与酶或蛋白质上的-SH基结合而使之失活或变性。微量的重金属离子还能在细胞内不断累积并最终对生物发生毒害作用,此即微动作用。2.卤化物 杀菌力高低顺序是:F>CL>Br>I,最常用的是碘和氯。碘 碘不可逆地与菌体蛋白质(或酶)的酪氨酸结合,生成二碘酪氨酸,使菌体失活。常用于皮肤消毒。氯 氯与水结合成次氯酸,后者易分解产生新生态氧,为强氧化剂。Cl2+H2O→HCl+HClO HClO→HCl+常用于饮水和游泳池水消毒。3.有机化合物 常用作杀菌剂的有机化合物是酚、醇、醛和有机酸等。酚及其衍生物 酚类化合物的作用主要是损伤微生物的细胞膜,钝化酶和使蛋白质变性。酚系数①被广泛用作比较化学药剂杀菌效力的标准。甲酚是酚的衍生物,杀菌力比酚强几倍。乳化的甲酚溶液即煤酚皂液(俗称来苏尔)。醇类 通过溶解细胞壁和膜中的类脂,破坏膜结构及使蛋白质脱水变性,而起杀菌作用。醇类的杀菌力,随分子量增大而增强,但丙醇以上的醇不易与水相混,所以一般不作消毒剂。甲醇杀菌力较乙醇差,且对人尤其对眼有害,也不适于作消毒剂。70%的乙醇,杀菌效果最好。醛类 能与蛋白质氨基酸中的多种基团共价结合而使其变性,是常用的杀细菌与杀真菌剂。福尔马林溶液即37%~40%的甲醛水溶液。10%的甲醛溶液熏蒸厂房、无菌室以及传染病患者的住房等,消毒效果较好。酸类 有机酸能抑制微生物(尤其是霉菌)的酶和代谢活性,常加在食品、饮料或化妆品中以防止霉菌等微生物的生长。新型气态有机化学杀菌剂 环氧乙烷是目前广泛应用的一种新型空气及器械表面消毒剂,通过用—CH2CH2OH基团取代氨基酸中的—SH、—COOH或—OH基团而使蛋白质变性。能在4h~18h内杀死微生物细胞包括芽孢,尤其适用于不能高温处理的物品的灭菌。其缺点是有毒性和纯品易爆,使用时常与二氧化碳或氮气等气体混合。4.表面活性剂 是能降低液体分子表面张力的化学物质。这类物质可以影响细胞质膜的稳定性和透性,使细胞的某些必要成分(如K+)流失而导致微生物生长停滞和死亡。肥皂和洗衣粉是阴离子表面活性剂,杀菌作用不强,但能机械性地移去微生物。杀菌作用较强的是阳离子表面活性剂,它们均是季胺类化合物,如新洁尔灭,其有效成分为溴代十二烷基二甲苄基胺,常用于皮肤、器具和空气消毒等。现市场商品名为苯扎溴铵溶液。5.染料(染色剂) 一般碱性染料比酸性染料杀菌力强。碱性染料如结晶紫、亚甲蓝、孔雀石绿、吖啶黄等在低浓度下具有明显的抑菌效果并表现出一定的特异性。因为碱性染料的阳离子基因(显色基团带正电)易与带负电的菌体蛋白结合,从而抑制细菌生长发育。G+细菌一般对碱性染料敏感,染料对它们的作用浓度(一般<10mg/L)比对G-细菌要低十至几十倍。6.化学治疗剂 化学治疗剂是一类能选择性地抑制或杀死人畜或家禽体内的病原微生物并可用于临床治疗的特殊化学药剂。按其作用性质可分为抗代谢物和抗生素两大类。(1)抗代谢物 结构与生物体所必需的代谢物很相似,可与特定的酶结合,产生竞争性拮抗作用,这类化合物叫做抗代谢物。如磺胺类药物,其结构式为NH2— SO2NHR,与细菌生长所必需的代谢物对氨基苯甲酸NH2 —COOH的结构很相似,能在细菌合成叶酸的过程中竞争性地与二氢叶酸合成酶结合,阻止对氨基苯甲酸参与合成二氢叶酸,从而破坏细菌细胞活力。(2)抗生素 由某些生物合成或半合成的,在低浓度时就可抑制或杀死微生物、螨类和寄生虫等多种生物的化合物叫做抗生素。抗生素的作用机制随种类而异,或抑制细胞壁的合成,如青霉素等;或损伤细胞质膜,如多粘菌素等;或干扰蛋白质的合成,如链霉素等;或阻碍核酸的合成,如丝裂霉素C等。

  • 请问能量过滤像的原理?

    想问一下能量过滤像的工作原理是什么?我有一个样品,是GaAs基上SK模式生长InAs量子点,在生长InAs的过程中掺入了少量的AlAs,我想知道AlAs是在InAs量子点之中还是之外,也就是说我想知道AlAs比较具体的分布情况,我的样品中AlAs的含量较少,作能量过滤像是否可行?或者还有别的比较好的方法?

  • 【金秋计划】半夏泻心汤通过调节淋巴平滑肌细胞收缩和能量代谢促进胃淋巴泵送

    [size=15px][color=#595959]近年来,[b]淋巴脉管系统[/b]和淋巴运输在胃肠道疾病中的作用受到越来越多的研究关注,淋巴[/color][/size][b][size=15px][color=#595959]畸形[/color][/size][/b][size=15px][color=#595959]和淋巴结重塑已被认为是许多胃肠道疾病的标志。此外,胃肠道淋巴引流受损和[b]淋巴淤滞[/b]会阻碍大分子、死细胞和病原体离开肠道的清除,从而加剧感染并延迟[/color][/size][b][size=15px][color=#595959]免疫[/color][/size][/b][size=15px][color=#595959]反应。[/color][/size] [size=15px][color=#595959]近年来,肠道和肠系膜淋巴管在肠道疾病,特别是炎症性肠病(IBD)中的作用已被广泛研究。然而,对[b]胃淋巴管(GLVs)[/b]的研究一直落后于胃肠学本身的发展。虽然最早对[b]胃淋巴泵(GLP)[/b]的可视化研究可以追溯到Nagata和Guth在1984年的报告,但在随后的40年里,关于GLP在胃疾病中的作用以及针对GLP的药物的报道很少。[/color][/size] [b][size=15px][color=#595959]半夏泻心汤(BXD)[/color][/size][/b][size=15px][color=#595959]出自《伤寒论》,在现代医学实践中被广泛应用于治疗各种肠胃疾病,对[b]应激性胃溃疡(SIGU)[/b]等多种胃肠道疾病有明确的治疗效果,但对胃淋巴泵(GLP)的影响尚不清楚。[/color][/size] [size=15px][color=#595959]阐明GLP在SIGU和BXD治疗中的作用,探讨GLP调控的分子机制。 [/color][/size] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]对SIGU大鼠模型进行体内GLP显像,评价淋巴动力学参数。采集胃窦组织及血清进行宏观、组织病理学及溃疡参数分析。收集胃淋巴管(GLV)组织进行RNA-Seq检测。从RNA-Seq结果中筛选差异表达基因(DEGs)并用于转录组学分析。采用qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]和WB检测关键DEGs及其衍生蛋白。 [/color][/size] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]SIGU大鼠GLP明显受到抑制。[b]BXD能恢复GLP,改善胃淋巴淤积,减轻溃疡损害[/b]。GLV转录组分析显示,上调的DEGs集中在[b]平滑肌收缩信号通路[/b],下调的DEGs集中在能量代谢通路,尤其是脂肪酸降解通路,说明BXD可以促进淋巴平滑肌收缩,调节能量代谢,减少脂肪酸降解。这些机制最有可能的目标是驱动GLP的[b]淋巴平滑肌细胞(LSMCs)[/b]。qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]和WB对关键基因和蛋白水平的评估进一步验证了这一推测。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [color=#3573b9]结论[/color][b][size=15px][color=#595959][/color][/size][/b][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][size=15px][color=#595959][font=&][/font][font=&][/font][/color][/size][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]BXD通过激[/color][/size][/b][size=15px][color=#595959][b]活平滑肌收缩信号通路,恢复能量供应,调节能量代谢程序,减少脂肪酸降解,有效回收GLP,减轻胃内炎症细胞因子和代谢废物的积累[/b],是其治疗SIGU的重要作用机制。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][font=&][size=16px][color=#232323][/color][/size][/font][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size]

  • 【转帖】生物诗——代谢惆怅

    (代谢惆怅)彷徨·能量秋风起水面微皱我的心情像酶的活性随着pH和温度而动荡断裂了ATP的高能磷酸键我有了抬头的力量静望夕阳的余光余光中的植物一片透亮仿佛可看见叶绿体中缕缕冒出的氧把二氧化碳还原成糖默默地聚集着能量一切那么匆忙难道它们也担心黑夜中的静寂静寂中的彷徨?恰如糖分解为丙酮酸我艰难的释放着能量纵使窒息到没有氧气大不了把宝贵的处理成垃圾给我一点希望我就能释放出辉煌就像给一点氧丙酮酸分解成二氧化碳大量的就释放出惊人的能量夜深了就睡吧再寒冷的夜晚酶也不会变性再深的迷惘我也不会绝望

  • 【分享】菌种保藏的几种方法

    微生物具有容易变异的特性,因此,在保藏过程中,必须使微生物的代谢处于最不活跃或相对静止的状态,才能在一定的时间内使其不发生变异而又保持生活能力。   低温、干燥和隔绝空气是使微生物代谢能力降低的重要因素,所以,菌种保藏方法虽多,但都是根据这三个因素而设计的。 保藏方法大致可分为以下几种: 1.传代培养保藏法  又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4—6℃冰箱内保存。2.液体石蜡覆盖保藏法  是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3.载体保藏法  是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。 4.寄主保藏法  用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。

  • 微生物生长的几种检测方法

    摘要:   微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常用的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。  概述:  一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其他生物的生长,微生物的个体生长在科研上有一定困难,通常情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长通常指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和他们的生长抑制紧密相关。所以有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,所以测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,可以从其重量,体积,密度,浓度,做指标来进行衡量。  生长量测定法  体积测量法:又称测菌丝浓度法。  通过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。  称干重法:  可用离心或过滤法测定。一般干重为湿重的10-20%。在离心法中,将一定体积待测培养液倒入离心管中,设定一定的离心时间和转速,进行离心,并用清水离心洗涤1-5次,进行干燥。干燥可用烘箱在105℃或100℃下烘干,或采用红外线烘干,也可在80℃或40℃下真空干燥,干燥后称重。如用过滤法,丝状真菌可用滤纸过滤,细菌可用醋酸纤维膜等滤膜过滤,过滤后用少量水洗涤,在40℃下进行真空干燥。称干重发法较为烦琐,通常获取的微生物产品为菌体时,常采用这种方法,如活性干酵母(activity dry yeast, ADY),一些以微生物菌体为活性物质的饲料和肥料。  比浊法:  微生物的生长引起培养物混浊度的增高。通过紫外分光光度计测定一定波长下的吸光值,判断微生物的生长状况。对某一培养物内的菌体生长作定时跟踪时,可采用一种特制的有侧臂的三角烧瓶。将侧臂插入光电比色计的比色座孔中,即可随时测定其生长情况,而不必取菌液。该法主要用于发酵工业菌体生长监测。如我所使用UNICO公司的紫外-可见分光光度计,在波长600nm 处用比色管定时测定发酵液的吸光光度值OD600,以此监控E.Coli的生长及诱导时间。  菌丝长度测量法:  对于丝状真菌和一些放线菌,可以在培养基上测定一定时间内菌丝生长的长度,或是利用一只一端开口并带有刻度的细玻璃管,到入合适的培养基,卧放,在开口的一端接种微生物,一段时间后记录其菌丝生长长度,借此衡量丝状微生物的生长。微生物计数法  血球计数板法:  血球计数板是一种有特别结构刻度和厚度的厚玻璃片,玻片上有四条沟和两条嵴,中央有一短横沟和两个平台,两嵴的表比两平台的表面高0.1 mm,每个平台上刻有不同规格的格网,中央0.1 mm2面积上刻有400个小方格。通过油镜观察,统计一定大格内微生物的数量,即可算出1毫升菌液中所含的菌体数。这种方法简便,直观,快捷,但只适宜于单细胞状态的微生物或丝状微生物所产生的孢子进行计数,并且所得结果是包括死细胞在内的总菌数。  染色计数法:  为了弥补一些微生物在油镜下不易观察计数,而直接用血球计数板法又无法区分死细胞和活细胞的不足,人们发明了染色计数法。借助不同的染料对菌体进行适当的染色,可以更方便的在显微镜下进行活菌计数。如酵母活细胞计数可用美蓝染色液,染色后在显微镜下观察,活细胞为无色,而死细胞为蓝色。  比例计数法:  将已知颗粒(如霉菌孢子或红细胞)浓度的液体与一待测细胞浓度的菌液按一定比例均匀混合,在显微镜视野中数出各自的数目,即可得未知菌液的细胞浓度。这种计数方法比较粗放。并且需要配制已知颗粒浓度的悬液做标准。  液体稀释法:  对未知菌样做连续十倍系列稀释,根据估计数,从最适宜的三个连续的10倍稀释液中各取5毫升试样,接种1毫升到3组共15只装培养液的试管中,经培养后记录每个稀释度出现生长的试管数,然后查最大或然数表MPN(most probably number)得出菌样的含菌数,根据样品稀释倍数计算出活菌含量。该法常用于食品中微生物的检测,例如饮用水和牛奶的微生物限量检查。  平板菌落计数法:  这是一种最常用的活菌计数法。将待测菌液进行梯度稀释,取一定体积的稀释菌液与合适的固体培养基在凝固前均匀混合,或将菌液涂布于已凝固的固体培养基平板上。保温培养后,用平板上出现的菌落数乘以菌液稀释度,即可算出原菌液的含菌数。一般以直径9cm的平板上出现50-500个菌落为宜。但方法比较麻烦,操作者需有熟练的技术。平板菌落计数法不仅可以得出菌液中活菌的含菌数,而且同时将菌液中的细菌进行了一次分离培养,获得了单克隆。  试剂纸法:  在平板计数法的基础上,发展了小型商品化产品以供快速计数用。形式有小型厚滤纸片,琼脂片等。在滤纸和琼脂片中吸有合适的培养基,其中加入活性指示剂2,3,5-氯化三苯基四氮唑(TTC,无色)待蘸取测试菌液后置密封包装袋中培养。短期培养后在滤纸上出现一定密度的玫瑰色微小菌落与标准纸色板上图谱比较即可估算出样品的含菌量。试剂纸法计数快捷准确,相比而言避免了平板计数法的人为操作误差。  膜过滤法:  用特殊的滤膜过滤一定体积的含菌样品,经丫叮橙染色,在紫外显微镜下观察细胞的荧光,活细胞会发橙色荧光,而死细胞则发绿色荧光。  生理指标法:  微生物的生长伴随着一系列生理指标发生变化,例如酸碱度,发酵液中的含氮量,含糖量,产气量等,与生长量相平行的生理指标很多,它们可作为生长测定的相对值。测定含氮量:  大多数细菌的含氮量为干重的12.5%,酵母为7.5%,霉菌为6.0%。根据含氮量×6.25,即可测定粗蛋白的含量。含氮量的测定方法有很多,如用硫酸,过氯酸,碘酸,磷酸等消化法和Dumas测N2气法。Dumas测N2气法是将样品与CuO混合,在CO2气流中加热后产生氮气,收集在呼吸计中,用KOH吸去CO2后即可测出N2的量。  测定含碳量:  将少量(干重0.2-2.0 mg)生物材料混入1毫升水或无机缓冲液中,用2毫升2%的K2Cr2O7溶液在100 0C下加热30分钟后冷却。加水稀释至5毫升,在580nm的波长下读取吸光光度值,即可推算出生长量。需用试剂做空白对照,用标准样品做标准曲线。  还原糖测定法:[/si

  • 【“仪”起享奥运】脾虚的表现

    [b][size=18px][color=#06948c]脾虚的表现[/color][/size][/b]脾受伤后有两种表现, [b]越来越胖或者越来越瘦。1、过劳肥,最伤脾[/b]如果是思劳伤的脾,脾气虚可能表现为越来越瘦;如果不是因为心情,而是因为懒,因为久坐、不运动导致的伤脾,体内垃圾毒素逐渐堆积,人也就越来越胖,而且是虚胖。方法不靠谱,当然越减越肥。我们总能听到 “过劳死” 的新闻报道,事实上, “过劳死”在生活中还是比较少见的。过劳引起的更多问题是“过劳肥”,就是越累越胖、越忙越肥,这是很多人的经验。为什么会如此?就是因为[b]过劳伤的首先是脾[/b],脾气虚了,代谢能力下降,能量过多地存留在体内,人就变肥胖了。这种胖子肯定是脂肪多、肌肉少的。[b]“十个胖子九个虚”[/b],这里的“虚”指的就是脾虚。对此, 金元时期的名医李东垣在他的《脾胃论》中早就清楚地提到了:“胃中元气盛,则能食而不伤,过时而不饥。脾胃俱旺,能食而肥;脾胃俱虚,则不能食而瘦。或少食而肥,虽肥而四肢不举,盖脾实而邪气盛也。又有善食而瘦者,胃伏火邪于气分,则能食, 脾虚则肌肉削, 即食亦也。叔和云:多食亦肌虚,此之谓也。”这段文字里包含了几种状态和体形:[b]首先是“能吃且胖型”。[/b]这种胖很明显是吃出来的, 是胖而不是肥, 而且常见于年纪轻、正处于发育期、胃口特好的人。他们的胖是比较结实的,主因就是饮食过量。这应该不能算病,只需要控制食欲、加强运动就可以了。其次是[b]能吃且瘦型[/b],或者是虽然吃得少,人却很胖。这两种情况显然都是病态。先说“能吃却瘦型”。很多人怎么吃都不胖, 通俗地讲, 就是吸收功能不好,“酒肉穿肠过”了,这就是脾气虚的问题。其实,这种“能吃不胖”的“优点”早晚要变成缺点的, 因为脾气虚不可能仅仅是因为身体不吸收,肯定还有不能代谢或者代谢能力减弱的问题。只不过前面提到的这个女孩年纪轻,代谢问题因为年轻、生命力旺盛而暂时不明显。到40岁以后,整体的代谢能力下降,脾气虚导致的代谢无能的问题就会加重,那个时候的她,很可能就成了一个大胖子。即便到了那时,她仍旧还会有腹泻的问题。[b]另外[/b],还有一种是李东垣说的[b] "少食而肥型"[/b] ,就是我们说的[b]“喝凉水都长肉”的那种人[/b]。这是典型的脾气虚,也很可能是那个吃牛排而不胖的女孩子的未来。这种人除了“少食而肥”之外,还有一个特点就是[b]肌肉无力[/b]。所谓“肥而四肢不举”,就是虽然胖,但不是肌肉多, 而是脂肪多,所以运动起来仍旧无力,他们的脾虚和肥胖都是过劳所致。这种过劳主要是因为心力交瘁,是思虑过劳。中医五行中,火生土,而火对应的是心, 土对应的是脾。心被消耗太过,自然无力生土,脾气随之虚弱。[b]2、思虑重,最伤脾[/b]这也是为什么过去的文人多给人“手无缚鸡之力”的脾虚印象,他们的脾虚就是因为用脑过度、心思太重导致的劳心所致。脾气虚、代谢能力弱,脂肪之类应该消耗出去的“脏东西”就要停在身体里,[b]李东垣称其为“邪气盛”。这种停留在人体内的“脏东西”,中医叫“痰湿”[/b],所以吃得少但也胖的人,一般体内都有痰湿,需要通过补脾祛除痰湿的办法来减肥。这类人虽然不胖,但体检时却发现得了脂肪肝, 大家开玩笑说他仅有的脂肪还长在了肝上。这种情况在经常熬夜、值夜班的人身上更多见,即便他们没有吃夜宵的习惯,即便吃的夜宵的热量很低,但仍旧难免会发胖或者得脂肪肝。按照中医“子午流注”的理论, 是因为他们在肝经值守的“丑时”,也就是夜里的1~3点,没有让肝脏休息,导致了这种代谢紊乱。事实上,这种违背正常作息的生活方式,更是对脾气的消耗。[b]3、胃火盛引起的脾虚[/b]还有一种与前面那个可以大吃牛排,但仍旧很瘦的女孩子不同的人是“能吃且瘦型”,类似于糖尿病、甲状腺功能亢进症(简称“甲亢”),是虚性亢奋的结果,对此,中医归结为“胃火盛”。这种人不仅总是饿, 还很容易渴, 他们的瘦比起大吃牛排的女孩子来说,要明显地呈现出病态,人会显得很憔悴,皮肤也缺少水分,是需要马上治疗的。

  • 【分享】一种全新的微生物鉴定方法-代谢指纹法

    历史上对微生物尤其是细菌的鉴定,主要是根据其形态、染色和生化特征,进行手工分类鉴定。20世纪70年代以来,随着微生物学和光电、色谱等技术的发展和计算机的广泛应用,微生物鉴定的自动化逐步成为现实。目前常见的微生物鉴定原理有以下几种:  1. 酸碱反应:细菌代谢碳水化合物,一般产生酸性物质;分解蛋白质或氨基酸,则产生碱性物质,根据不同细菌的理化性质不同,测定细菌的分解底物导致PH值变化而产生的不同颜色,来判断菌种。  2. 酶谱分析:根据细菌生长产生酶的特性,在测定底物中加入基质。使其与细菌生长过程中的酶结合成荧光物质,可以在较短的时间判定菌种。  3.高压液相色谱分析:用气相色谱检测细菌在液体培养基中的代谢产物(挥发和非挥发脂肪酸),结果与数据库数据比较后,得出鉴定结果。  4.代谢指纹法:20世纪80年代初,美国BIOLOG公司开发了一种新的微生物鉴定方法-代谢指纹法,并将其应用于微生物的自动化检测。其原理是根据细菌对碳源(或氮源)利用的差异来区别和鉴定细菌,不同的细菌会利用不同碳源(或氮源)进入新陈代谢过程(称为呼吸),而对其他一些碳源(或氮源)则无法利用,将每种细菌能利用和不能利用的一系列碳源(或氮源)进行排列组合,就构成了该种细菌特定的代谢指纹,由于细菌在利用碳源进行呼吸时,会发生一系列的氧化-还原反应,产生电子,TTC(四唑紫,2,3,5-TriphenylTetrazoliumChloride)在呼收电子后,会由无色的氧化型转变为紫色的还原型,通过肉眼观察或计算机控制的读数仪,将反应结果同数据库中的指纹进行比对,从而得到细菌的鉴定结果。  BIOLOG公司的基于代谢指纹法原理的细菌鉴定系统,在全球拥有二十多项专利,该系统在在96孔板条上实现95个反应,大大提高了鉴定的准确率,代谢指纹技术的运用,使该系统与传统的酸碱或细菌的生长反应相比。细菌鉴定的范围更为广泛。目前,BIOLOG的微生物鉴定系统不仅能够鉴定常见的肠杆菌、芽孢杆菌、棒状杆菌、嗜血杆菌、厌氧菌、酵母样真菌、丝状真菌等近2000种微生物,几乎覆盖了所有重要的人体、动植物微生物和大部分环境微生物。  现在,美国半数以上的州立实验室和国家疾控中心(CDC)都在使用BIOLOG公司的产品,十几年来,BIOLOG公司在全球六十多个国家和地区共销售了1700多套微生物鉴定系统********************************************************************(该段有广告内容)。

  • 【转帖】美国和欧盟审查生长激素安全性

    2010年12月,EMA和FDA相继宣布开始对含生长激素药品进行审查,以了解它们是否增加死亡的风险。美国食品药品管理局在一份声明中指出,这个举措是由于法国的一项研究发现,与一般人群相比,一些儿童使用生长激素后“死亡风险小幅增加”。生长激素是一种蛋白质,能刺激组织生长,促进代谢,增加身高。它能用于多种疾病和异常情况导致的矮小身材。FDA表示,它正在对有关可能风险的信息进行审查,一旦完成审查工作,就会发表新的建议。“目前,FDA建议病人按照医嘱继续使用重组人生长激素。”本月早些时候,欧盟官员表示,在获知这项法国研究的初步结果后,他们将对这些药品进行审查,但目前安全性方面没有非常迫切的问题。欧盟官员称,法国的这项名为Sante Adulte GH Enfant(SAGhE)的研究开始于2007年,对1985和1996之间开始使用生长激素的大约7000名儿童进行了分析。这项研究还没有公开发表。FDA称,这项研究发现,这些患者的死亡率增加了30%,在大剂量使用者中尤为明显。使用生长激素的患者中有93人死亡,而按法国一般人群推算的预期死亡数为70。从目前的报道看,生长激素与死亡的关系还不清楚,不能认为生长激素与死亡两者之间一定存在因果关系。因此对于真正需要生长激素的患者,各国药监部门并不禁止其在规定范围内使用。真正需要禁止的,是那些非法添加、滥用生长激素的行为。追求身高的年轻人和家长们也要注意,实在需要治疗,应去正规医院内分泌科就诊,确诊为疾病所致的矮身材,并需要使用生长激素的才能用它来治疗

  • 代谢组学简介

    欢迎大家一起交流讨论~代谢组学是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分。基因组学和蛋白质组学分别从和蛋白质层面探寻生命的活动,而实际上细胞内许多生命活动是与代谢物相关的,如细胞信号(cell signaling),能量传递等都是受代谢物调控的。代谢组学正是研究代谢组(metabolome)——在某一时刻细胞内所有代谢物的集合——的一门学科。基因与蛋白质的表达紧密相连,而代谢物则更多地反映了细胞所处的环境,这又与细胞的营养状态,药物和环境污染物的作用,以及其它外界因素的影响密切相关。因此有人认为,基因组学和蛋白质组学能够说明可能发生的事件,而代谢组学则反映确实已经发生了的事情。新陈代谢网络是十分复杂的网络,特别是人体的代谢网络,一直被认为是最复杂的代谢网络。现在多数信号通路的研究都是集中在代谢网络的一个很小的领域。基因组学、蛋白组学研究已经揭示了部分调节通路,但是和代谢网络直接相关的是代谢产物。但是从茫茫多的代谢产物中选取研究对象,无疑是大海捞针。代谢组学研究通过一定的手段能够帮助研究员从代谢产物海中跳出来,提供一个“航拍”的视角,一目了然地发现差异性代谢产物。然后通过已知的代谢通路逆推找出调节酶和基因,完成疾病发病机制、药物治疗机制等方面的研究。代谢组学主要研究的是作为各种代谢路径的底物和产物的小分子代谢物(MW1000)。其样品主要是尿液,血浆或血清,唾液,以及细胞和组织的提取液。主要技术手段是核磁共振(NMR ),液-质联用(LC-MS),气-质联用(GC-MS),色谱(HPLC,GC)等。通过检测一系列样品的谱图,再结合化学模式识别方法,可以判断出生物体的病理生理状态,基因的功能,药物的毒性和药效等,并有可能找出与之相关的生物标志物(biomarker)。代谢组学在新药的安全性评价,毒理学,生理学,重大疾病的早期诊断,个性化治疗,功能基因组学,中医药现代化,环境评价,营养学等科学领域中都有着极其广泛和重要的应用前景,是一门充满朝气的学科。 从近年来发表的相关SCI论文的数量可以看出代谢组学研究呈一个蓬勃发展的局面。从近年来国家拨付的相关研究基金也可以看出国家对代谢组学相关研究的重视。

  • 【分享】微生物的生物学特点与作用

    微生物除具有生物的共性外,也有其独特的特点,正因为其具有这些特点,才使得这样微不可见的生物类群引起人们的高度重视. (一)种类繁多,分布广泛 (二)生长繁殖快,代谢能力强 (三)遗传稳定性差,容易发生变异 (一)种类繁多,分布广泛 种类极其繁多——已发现的微生物达10万种以上,新种不断发现. 分布非常广泛——可以说微生物无处不有,无处不在. 极端环境:冰川,温泉,火山口等极端环境; 土 壤:土壤是微生物的大本营,一克沃土中含菌量高达几亿甚至几十亿; 空 气:空气中也含有大量微生物,越是人员聚集的公共场所,微生物含量越高; 水:水中以江,湖,河,海中含量高,井水次之; 动植物体表及某些内部器官:如皮肤及消化道等. 微生物的多样性已在全球范围内对人类产生巨大影响. 土壤中微生物的种类繁多,几乎所有的微生物都能从土壤中分离筛选得到,要分离筛选某中微生物,多数情况都是从土壤采取样品. 首先微生物为人类创造了巨大的物质财富,目前所使用的抗生素药物,绝大多数是微生物发酵产生的,以微生物为劳动者的发酵工业,为工,农,医等领域提供各种产品. 另外微生物也为人类带来巨大危害,如疫病的传播,并且引起疫病传播的新微生物种类总不断出现.

  • 【第三届原创参赛】代谢产物分离与纯化的心得体会(大鼠篇)

    【第三届原创参赛】代谢产物分离与纯化的心得体会(大鼠篇)

    维权声明:本文为qweaxi原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。代谢产物的分离与纯化心得体会(大鼠篇)代谢的概念 什么叫代谢,在这就不解释啦,大家应该都知道,我们主要做两个方面:大鼠与人。这个原创里面,讨论的是大鼠代谢产物的分离与纯化。大鼠的介绍 大鼠我们用过的有两种(SPF级)SD大鼠和wistar大鼠,这两只大鼠的区别: SD大鼠: 生长快,繁育性能好,大多用于安全性试验及营养与生长发育有关的研究。 该品系对性激素敏感,对呼吸道疾病有较强的抵抗力。广泛用于药理、毒理、药效及GLP实验。 Wistar大鼠 :其被毛呈白色,特征为头部较宽、耳朵较长、尾的长度小于身长。Wistar大鼠性情温顺,性周期稳定,早熟多产,平均每窝产自10只左右,生长发育快,乳腺癌发病率很低,对传染病抵抗力强。 个人觉得SD大鼠挺暴躁,很容易咬人的,Wistar大鼠比较好哦,乖乖鼠。大鼠喂养 这个问题很关键,饲料控制不好,大鼠会超重地:一天喂2次,水应该给足,要不然会发生惨案的,垫料要3天换一次,要不然,会被熏坏的,消毒必须的,要不然出血热就会光顾你们实验室的,记得去年就在我们这发生啦,封楼2周呢,当时,我们爽坏啦,有时间玩嘛。给药前准备 第一:大鼠禁食12小时,期间给以0.4%的盐水,为什么禁食呢,让其胃里的饲料代谢完,要不然对以后的分离工作有影响。 第二:给药剂量药换算好,要不然没有根据,发文章会有问题的。大鼠给药 这个比较讲究,我们常用的方法是灌胃和腹腔给药,腹腔给药简单,扎一针就好啦,灌胃挺有讲究的,本人不才,学了半天才会,牺牲在我手中的大鼠有5只多,那叫一个惨啊。警告大家,在不会灌胃的情况下,千万别自以为是,要不然。。。尿液富集 有些时候怕样品不稳定,发生变化(代谢产物在尿液中不稳定,个人经验),有三招来防止: 第一招:在收集瓶中加无水乙醇,个人觉得效果很好。 第二招:在收集瓶里加酸,PH=4为好。 第三招;冰水浴,个人觉得那个麻烦,但也有点效果。尿液储存 放在冰箱里,冷藏,不易降解滴。尿液处理 不同的样品处理不一样,我们这做过黄酮,生物碱之类的化合物,据我了解,这个生物碱不好做,黄酮挺好做的,我个人觉得有两种方法:大孔和萃取。大孔树脂,我们这用得D1O1比较多,本人首次用AB-8,觉得不错的,我热衷于大孔。萃取:必须加酸调节PH3,要不然萃不出来的。样品的分离与纯化 呵呵,代谢产物分离。个人经验:进行大孔柱色谱以后,可以考虑进行凝胶柱色谱,内源性物质一般可以除去,非常好的方法,我记得凝胶下来我就分到一个纯的,哈哈,真爽啊。 由于代谢物极性过大,最好不用硅胶来分,要不然,死吸附严重,样品就这样浪费啦,呵呵,用ODS分离,最好。 最后补充,做代谢的,最好有液质联用,盲分容易浪费时间,浪费经费。下图为凝胶分的纯品http://ng1.17img.cn/bbsfiles/images/2010/09/201009252351_246992_2160429_3.jpg

  • 【分享】代谢组学研究简介

    代谢组学研究代谢组学(metabonomics/metabolomics)是继基因组学和蛋白质组学之后新近发展起来的一门学科,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。基因组学和蛋白质组学分别从基因和蛋白质层面探寻生命的活动,而实际上细胞内许多生命活动是发生在代谢物层面的,如细胞信号释放(cell signaling),能量传递,细胞间通信等都是受代谢物调控的。代谢组学正是研究代谢组(metabolome)——在某一时刻细胞内所有代谢物的集合——的一门学科。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。化学分析技术中最常用的是^1H核磁共振(^1HNMR)以及色谱(毛细管电泳)-质谱联用(X—MS)。代谢组学属于全局系统生物学(Global systems biology)研究方法,便于对复杂体系的整体进行认识.譬如,一个正常工作的人体包括“人体”本身和与之共同进化而来且共生的消化道微生物群体(或称菌群),孤立地研究“人体”本身的基因,转录子以及蛋白质当然可以为人们认识人体生物学提供重要信息,但无法提供使人体正常工作不可缺少的菌群的信息.人体血液和尿液的代谢组却携带着包括菌群在内的每一个细胞的信息,因此代谢组学方法对研究如人体这样复杂的进化杂合体十分有效.早在20世纪60年代,代谢物组学的核心技术——核磁共振技术(NMR),就已经被应用到代谢研究中。但直到20世纪90年代,随着模式识别分析技术的发展,代谢谱的定量分析才得以实现,并应用于药物和基因功能的研究。利用代谢物组学研究药物对整体的作用主要依赖于多参数检测外源物质攻击所导致的机体新陈代谢改变。这种方法也适合研究基因突变和转基因所产生的代谢改变以及疾病诊断和疗效评价。在药物发现阶段,它可以进行体内毒性研究、先导药物的筛选和目标化合物的优化及体内动物模型的药效筛选。在药物开发阶段,它可以在临床前安全性评价方面进行生物标志物的发现和毒性机制的研究,从而可有效地利用动物模型研究人类疾病的治疗,发现与临床安全性和有效性有关的生物标志物。代谢组学已经广泛地应用到了包括药物研发,分子生理学,分子病理学,基因功能组学,营养学,环境科学等重要领域.在代谢组学诞生的过去6年里,有关代谢组学的研究论文和专利以指数的形式逐年增长.可以预见,这门新兴学科将应用到更为广泛的领域.

  • 技术生物所在青霉素形态代谢工程研究方面取得进展

    中科院合肥物质科学研究院技术生物与农业工程研究所郑之明研究员及其科研团队承担的国家863课题围绕“形态基因-代谢活性-产率”的研究思路,将RNA干扰技术与形态代谢工程相结合,在产黄青霉形态代谢工程研究方面取得重要进展。 产黄青霉( Penicillium chrysogenum)是工业上用于发酵生产青霉素的重要真菌。作为丝状真菌,产黄青霉一般是通过菌丝延伸和分枝进行生长,但具体调控机制尚未完全了解。 菌丝形态差异直接影响青霉素发酵效价,这已成为工业上的共识。几丁质作为真菌细胞壁的主要成分,在决定顶端生长、分枝以及细胞壁分化等形态变化的相关过程中居核心地位。技术生物所项目组采用调控几丁质合成酶表达量、细胞壁几丁质含量、发酵过程中菌丝体形态,实现促进次生代谢产物的技术途径。 在郑之明指导下,博士研究生刘会将III类几丁质合成酶CHS4基因选为目的基因,构建干扰载体以研究chs4的基因功能。反转录PCR结果显示,各转化株中,chs4基因沉默的程度有所不同。摇瓶发酵发现,突变株与原始菌形态差异明显,其生长缓慢,菌丝短、分支多,所有转化株的孢子产生率相对于原始菌都有明显下降,这暗示着chs4在孢子形成中有重要作用。 放大发酵发现,大多数突变株菌丝生长较原始菌短小,膨胀、分支数增加,进入发酵后期,菌丝发生缠绕形成菌丝团甚至菌丝球。在一定范围内,青霉素产量与菌丝团紧密度呈正相关,与chs4表达量呈负相关,其中,干扰突变株PcRNAi2-1青霉素产量比原始菌提高41%。研究人员由此推断,chs4基因沉默影响了产黄青霉形态,使菌丝体发生短小、膨胀、分支增加等变化,而此种形态更有利于菌丝聚集成菌球,进一步降低了发酵液粘度,有利于物质传递,提高青霉素产量。 相关研究论文发表在Applied Microbiology and Biotechnology及Biotechnology Letters。文章评审人认为通过chs4影响菌丝体形态,尤其是分支数增加,是获得青霉素高产突变菌株一种有效、实用的研究思路。 论文链接:http://link.springer.com/article/10.1007%2Fs00253-012-4581-3      http://link.springer.com/article/10.1007%2Fs10529-012-1099-9http://www.cas.cn/ky/kyjz/201301/W020130105533542340753.jpg沉默突变株发酵过程形态与产率变化

  • 请教呋喃西林代谢物SEM条件优化

    新手小白,刚接触[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],想请教走呋喃西林代谢物时,用的乙腈,0.1%甲酸水作为流动相,在4分钟左右出峰,响应值不高,离子对209-192和209-166,192碎片离子几乎是没有丰度的,而且调节它的碰撞能量也没有反应,请问这是什么原因呢?

  • 【分享】细胞代谢呼吸动态分析仪同步侦测OCR、CDPR、ECAR

    北京华威中仪科技代理的由美国Seahorse Bioscience 公司最新研发的XF生物能量测定仪(细胞代谢呼吸动态分析仪)XF extracellular analyzer是世界首创使用24孔及96孔微孔盘为平台,采用无损伤专利固态探针侦测技术即时同步侦测有氧呼吸O2(OCR)以及糖酵解作H+(OCAR)、 CO2产率(CDPR)的动态分析仪,透过此系统的协助,研究者得以更快的速度、更简易的设计了解细胞以及线粒体如何运用不同的受质作为能量的来源、评估疾病与氧代谢及线粒体运作状态之交互作用、分析代谢调节药物对于生理的效应、建立细胞品管系统、快速筛选出具开发潜力之药物及药物毒性评估等多种不同应用。此系统现已被广泛应用于免疫学、药物筛选、肝脏及外源性毒理、糖尿病及肥胖症、老化、干细胞、细胞生理、药物转化等各个领域,哈佛大学等名校已借助该系统在nature、cell上发表文章几十篇,其他SCI高影响因子文章200多篇,现在就拥有Seahorse Bioscience 公司的细胞代谢呼吸动态分析仪,领先下一个细胞与线粒体研究的黄金十年。

  • 喹乙醇残留检测代谢产物的原理及标准中存在的瑕疵

    喹乙醇(N-羟乙基-3-甲基-2-喹啉酰胺-1,4-二氧化物)是一种化学合成抗菌促生长剂。1965年由德国拜尔公司等首先发现它对动物具有促生长作用。由于喹乙醇有中度至明显的蓄积毒性,对大多数动物有明显的致畸作用,对人也有潜在的三致性,即致畸形,致突变,致癌。因此喹乙醇在美国和欧盟都被禁止用作饲料添加剂。《中国兽药典》(2010版)也有明确规定,喹乙醇被禁止用于家禽及水产养殖。农业部在2001年第168号公告中就作了严格规定:只能用于体重低于35千克的猪。由于喹乙醇曾经的广泛使用和较大危害性,对其进行残留监控十分必要。喹乙醇本身不稳定,在动物体内能够在短时间内代谢,其在动物体内有十多种代谢产物,其中3-甲基喹噁啉-2-羧酸(MQCA)是主要代谢物,在体内相对稳定。因此,在检测饲料时,可检测喹乙醇原形物,但在检测食品及动物产品(肉、肝脏、水产品等)时应检测喹乙醇代谢产物。目前喹乙醇及其代谢产物的液相色谱及液相色谱-质谱检测标准主要有:1.饲料类GB/T8381.7-2009 饲料中喹乙醇的测定 高效液相色谱法DB43/T 891-2014 饲料中喹乙醇、氰乙基-(2-亚甲基肼喹噁啉基)-N,N-二氧化物(喹赛多)、卡巴氧的测定 液相色谱-串联质谱法(暂无文本)农业部2086号公告-5-2014 饲料中卡巴氧、乙酰甲喹、喹烯酮和喹乙醇的测定 液相色谱-串联质谱法2.食品及动物产品GB/T 20746-2006 牛、猪的肝脏和肌肉中卡巴氧和喹乙醇及代谢物残留量的测定 液相色谱-串联质谱法GB/T 20797-2006 肉与肉制品中喹乙醇残留量的测定GB/T 22984-2008 牛奶和奶粉中卡巴氧和喹乙醇代谢物残留量的测定 液相色谱-串联质谱法SC/T 3019-2004 水产品中喹乙醇残留量的测定 液相色谱法SN/T 0197-2014 出口动物源性食品中喹乙醇代谢物残留量的测定 液相色谱-质谱/质谱法(暂无文本)农业部1077号公告-5-2008 水产品中喹乙醇代谢物残留量的测定 高效液相色谱法从上述标准可以看出,大部分食品及动物产品标准检测喹乙醇代谢物(MQCA)。但少数标准如GB/T 20797-2006、SC/T 3019-2004在动物产品及水产品中检测喹乙醇原形物,存在瑕疵,显得不是非常严谨。

  • Science:活细胞代谢成像新方法

    http://www.bioon.com/biology/UploadFiles/201203/2012030911450761.jpg细胞S-腺苷甲硫氨酸成像图,随着每个时间点蛋氨酸(右下)的增加,荧光强度也增高通过基因工程技术使得细胞表达一种经修饰(改造)过的RNA,又称Spinach,研究人员能对活细胞中的小分子代谢物进行成像,并观察它们随时间变化是如何改变的。每个细胞新陈代谢都会产生代谢产物。假如能得知产物生成效率的话,就能辨识如癌症状态下细胞代谢的异常或确定药物能否将细胞的代谢状况恢复到正常状态。康奈尔大学威尔医学院的研究人员说发表在3月9日的《科学》杂志上的相关论文详细描述了这种先进的技术方法,这一技术将有可能彻底颠覆以往对代谢组学的认识,提供数千种细胞内代谢产物的动态变化的化学指纹图谱。威尔康乃尔医学院药理学副教授Samie R. Jaffrey博士说:“动态观察到代谢产物的变化将为我们提供新的和强大的武器,方便我们了解代谢在疾病状态下是如何改变的,并帮助我们找到可以将它们恢复到正常水平的方法”。Jaffrey博士领导威尔康乃尔的其他三名研究人员共同完成了这项研究。他说:“细胞的代谢水平调控着细胞诸多功能,也正因为如此,代谢水平的变化可以是细胞内在特定的时间内发生什么变化的写照”。例如生物学家都知道,肿瘤细胞存在代谢异常,这些细胞对葡萄糖能源的利用存在异常并产生独特的代谢产物如乳酸,从而有不一样的新陈代谢过程。Jaffrey博士说:“能够看到这些代谢异常的话,就可以了解癌症的发生发展。但是到现在为止,测量活细胞中代谢产物一直非常困难。Jaffrey博士和他的团队展开的科学研究表明:可以用特定的RNA序列来检测细胞中代谢产物的水平。这些RNAs是基于能在细胞发出绿色光的Spinach RNA设计的。Jaffrey博士研究小组修改Spinach的RNAs,使得它们一旦遇到它们专属绑定的代谢物时就关闭,造成Spinach荧光开启。他们设计出了RNA序列以追踪细胞中五个不同代谢产物包括二磷酸腺苷、细胞能量分子ATP和参与调节基因活性的甲基化过程的SAM(S-腺苷蛋氨酸)水平的变化。他说:“在此之前,一直没有人能够实时观察到细胞中代谢产物水平是如何变化的”。Jaffrey博士说:“在活细胞中运用RNA传感器,研究人员能够测量单个细胞中的目标代谢产物水平随着时间的变化而发生的改变,你可以看到这些代谢物如何响应信号刺激或遗传变化进而发生动态变化的。你可以筛选出能使得这些基因异常发生正常化的药物,我们的一个主要目标是确定药物是否能使细胞的新陈代谢正常化。新技术克服了现行的用绿色荧光蛋白(GFP)标记活细胞以充当传感器的缺点。如果将绿色荧光蛋白和其他发光蛋白质融合到能结合某种代谢物产物的自然存在的蛋白质中的话,绿色荧光蛋白和其他发光蛋白质就可以用来充当代谢感应器。但在某些情况下,代谢产物与自然存在的蛋白质结合方式会扭转蛋白质结构,进而影响已经融入到这些蛋白质中的荧光蛋白。另外,对于大多数的代谢产物,并没有可用来融合绿色荧光蛋白以制造传感器的蛋白质。通过使用RNA作为代谢物传感器,这个问题引刃而解了。Jaffrey博士说:“关于RNA令人惊奇的是,你可以得到基本上你想要结合任何一种小分子代谢物的RNA序列。他们可以在几个星期就能生产出来”。然后,这些人造序列融合到Spinach中,并在细胞中以单链RNA的形式表达。Jaffrey博士说:“这种做法能让你得到任何你想研究的小分子代谢物,以及这些小分子代谢物在细胞内的情况”,他和他的同事们将这一技术的运用范围扩大到能检测活细胞内的蛋白质和其他分子。他补充说道:该技术可应用于多种疾病研究中。Jaffrey博士说:“我们非常有兴趣研究导致发育障碍如自闭症的大脑神经细胞内的代谢如何是变化的,有很多的机会能让这一新的工具发挥用处”。这篇研究论文的合著者包括威尔康乃尔医学院药理系Jeremy S. Paige博士、Thinh Nguyen Duc博士、Wenjiao Song博士。这项研究由美国国立卫生研究院的生物医学成像和生物研究所以及McKnight基金会资助。康奈尔科技企业和商业中心(CCTEC)已经代表康奈尔大学提出了这项技术的专利保护申请。Samie Jaffrey博士是Lucerna技术的创始人和科学顾问,并持有该公司股权。此外,Lucerna技术拥有上述描述技术的相关许可证。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制