当前位置: 仪器信息网 > 行业主题 > >

生物治疗蛋白质

仪器信息网生物治疗蛋白质专题为您整合生物治疗蛋白质相关的最新文章,在生物治疗蛋白质专题,您不仅可以免费浏览生物治疗蛋白质的资讯, 同时您还可以浏览生物治疗蛋白质的相关资料、解决方案,参与社区生物治疗蛋白质话题讨论。

生物治疗蛋白质相关的资讯

  • 新型蛋白质表征仪器系统使生物治疗分析得到改观
    p style=" text-indent: 2em " RedShift& #8482 BioAnalytics公司推出了一款新型蛋白质表征平台——AQS3& reg PRO,这一平台结合了强大的、高度集成的自动化生物分析软件,为生物医疗行业带来了高灵敏度的光谱分析。 /p p style=" text-indent: 2em " 用户通过这一平台可以观察浓度范围在0.1至200 mg/mL的蛋白质二级结构变化,并能进行集成性、可量化、稳定的结构检测和相似性检测,为用药的安全性和有效性提供重要支撑。它能够提供多种属性的测量,减少甚至消除了使用不同工具进行各种单一属性测量的需要。此外,AQS3pro还具有先进的自动化多样本分析功能,大大简化了生物医疗产业的分析工作流程。 /p p style=" text-indent: 2em " RedShift& #8482 BioAnalytics公司的首席技术官Eugene Ma表示:“ AQS3prois是生物物理表征领域的一项重大进展——将红外光谱应用在生物医疗领域的诊断分析上。这一平台是我们内部一流研发团队与大量行业专家、学术专家倾力合作的结晶。其检测的准确性、重复性和重现性已在数百个样本中得到验证,这些样本包含有数千种尺寸量度的蛋白质。有力的数据支撑和合作伙伴的热情增强了我们对AQS3Pro的信心,我们相信这一成果具有相当大的产业化价值。” /p p style=" text-indent: 2em " AQS3Pro新系统使用了RedShift& #8482 BioAnalytics公司的微流控调制光谱学(MMS)专利技术,这一技术将针对微流体的中红外激光光谱分析与先进的信号处理相结合,对蛋白质的二级结构进行测量。它能够在0.01至200mg/mL的浓度范围内对蛋白质直接进行无需标记的测量,在生物医药研发和制造过程经常遇到的各种条件下,无需样品稀释,就可以进行样品表征。其检测是高度自动化的,其多样品检测功能、便捷化操作设置和最先进的生物分析软件进一步提升了检测流程的效率。创新而灵活的分析套件也使得光谱数据的常规分析高度自动化,其先进的检测分析工具能够方便地获得样品的结构性变化,并对这些变化的影响进行深入分析。 /p p style=" text-indent: 2em " “我与RedShift& #8482 BioAnalytics一直在AQS3PRO的验证性测试中合作。”美国特拉华大学的Christopher Roberts教授说, “这一平台将MMS和红外光谱应用在蛋白质溶液的分析中,让我们能够对多种样本、多种浓度范围蛋白质的二次结构性变化,进行同时的原位量化测量。无论是对从事蛋白质基础性研究的科学家,还是负责生物产品开发的工程师,AQS3PRO都将带来极大的助益。” /p
  • 赛默飞宣布与 AES 达成协议,通过jian端蛋白质分析技术加速治疗药物开发
    赛默飞 × AES近日,赛默飞和蛋白质成像技术专家 Advanced Electrophoresis Solutions Ltd (AES)宣布达成协议,将蛋白质分离技术与质谱 (MS) 相结合,通过简化表征来推进治疗性蛋白质药物的开发。两家公司将共同推广赛默飞生物制药和蛋白质组学应用质谱技术领xian的专业知识,以及 AES 为蛋白质分离、定量和表征提供高性能全柱成像检测毛细管电泳系统的能力。两家公司在蛋白质分析领域的强强联手,突出各自技术的优势,为实验室分析提供全新、先进的生物制药表征方案,使研究者能够更深入地了解成像毛细管等电聚焦 (iCIEF) 蛋白质分离产生的结果。这对在生物制药、临床、食品分析和学术领域工作的科学家特别有益。 “蛋白质分离、纯化和分析是生物治疗药物开发中的关键组成部分,但该过程可能复杂且极具挑战性,赛默飞色谱与质谱事业部制药/生物制药总监 Eric Grumbach如是说。“尽管质谱提供了高灵敏度、高分辨率和蛋白质质量信息,但在某些情况下仍需要从不同角度的洞察力。通过这项合作,我们将把我们的技术与先前没有经常与质谱联用,但使用范围更广泛、也必不可少的分离手段相结合,使蛋白质变异体鉴定更容易、更准确,以获取更高质量的数据信息并增进科学认知。” AES 首席执行官黄铁民表示:“在精zhun医疗概念兴起的推动下,对蛋白质组学和蛋白质表征的需求不断增长,因此最hao的工具组合可促进我们在这一重要领域的理解和研究。通过与赛默飞并肩合作,将高分辨质谱 (HRAM-MS) 与可根据分析需求灵活更替的蛋白质分离技术相结合,将支持我们的客户实现更精确的分析,这将在持续开发有效的治疗方法的进程中发挥重要作用。 ” 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注”赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • [重磅]探索新冠新疗法,蛋白质组学在行动
    导论近期,来自法兰克福大学医学病毒学研究所和歌德大学医学院团队利用一种新颖的蛋白质组学方法对新冠病毒进行研究,加速确证病毒致病性相关的生物途径以及寻找潜在的药物靶标,提出新冠治疗新疗法。治疗选择细胞层面理解从2019年底由SARS-CoV-2(2型严重急性呼吸综合征冠状病毒)引起的新型冠状病毒疾病(COVID-19)具有高传染性,该病已发展至全球大流行。全球迫切需要开发抑制病毒感染或复制的疗法。SARS-CoV-2与其他冠状病毒有相似之处,所以目前主要通过对已用于其他适应症的药物库进行高通量筛选,鉴定出许多临床上认可的药物,但却缺乏对SARS-CoV-2感染的治疗选择和细胞层面理解。法兰克福大学医学病毒学研究所的Jindrich Cinatl教授和歌德大学医学院的Christian Münch教授团队发表最新研究中,建立感染SARS-CoV-2的Caco-212细胞模型,运用一种新颖的多重增强蛋白质动力学(multiplexed enhanced protein dynamicsme, mePROD)方法进行蛋白质组学分析,能够在高时间分辨率下确定转录组和蛋白质组的变化,加速确证病毒致病性相关的生物途径以及寻找潜在的药物靶标。一、构建细胞感染模型想要开展该研究的重点取决于两点01是否有合适的允许病毒感染的细胞培养模型;02对蛋白质进行时间感染特征分析的敏感蛋白质组学方法。 该研究建立针对SARS-CoV-2高度兼容的细胞模型,在病毒感染24小时后就能迅速见到细胞致病作用 (图1A)。在病毒感染细胞后的2h、6h、10h和24h,分别用定量PCR技术测量上清液中的病毒RNA拷贝数,发现感染后SARS-CoV-2 RNA数量不断增加(图1B)。这表明模型可以用于研究细胞中SARS-CoV-2。图1. SARS-CoV-2 在细胞内快速复制模型。A, 病毒感染24小时后的细胞形态变化 B, 细胞上清液中病毒RNA拷贝数的增加。二、翻译抑制剂防止SARS-CoV-2病毒复制建立好模型,研究人员需要利用一种高效的方法确定SARS-CoV-2感染的时间分布,这时候mePROD蛋白质组学方法应运而生,即基于Orbitrap高分辨质谱仪联用新蛋白代谢标记(SILAC)和串联质量标签(TMT)两种标记方法,进行蛋白差异分析。图2. mePROD蛋白质组学实验流程抑制宿主翻译先前已被用作治疗MERS-CoV等多种冠状病毒感染性疾病。与其他病毒抑制宿主蛋白的合成从而增加病毒蛋白的合成不同,该方法挖掘数据表明SARS-CoV–2仅引起宿主翻译能力的微小变化,作者推测SARS-CoV-2复制可能对翻译抑制更为敏感。通过测试了两种翻译抑制剂,即环己酰亚胺(cycloheximide, 翻译延伸抑制剂)和曲美汀(emetine, 抑制40S核糖体蛋白S14)。在无毒浓度下,两个化合物均对SARS-CoV-2复制产生了显着抑制作用从而发现翻译抑制剂是细胞中SARS-CoV-2复制的有效抑制剂。图3. 环己酰亚胺和曲美汀对病毒复制的抑制作用三、发现潜在的抗病毒靶标重点来了,通过前期蛋白质组学大数据挖掘,目前一张蓝图已展现在眼前,下一步的重中之重就是探究与病毒蛋白共同增加的宿主蛋白,从而寻求潜在的SARS-CoV-2复制抑制剂。作者分析了与病毒蛋白变化趋势相似的蛋白,在数据中富集的代谢途径主要由不同的核酸代谢子途径组成。基于此,研究者测试核苷酸合成抑制剂对细胞中SARS-CoV-2复制的影响,高达10 μM的布雷奎纳(brequinar,抑制双氢乳清酸脱氢酶并不具有抗病毒的作用。相比之下,低浓度下的利巴韦林(ribavirine,抑制肌苷一磷酸脱氢酶)即可抑制SARS-CoV-2复制(图4C),这表明利巴韦林是可以进行进一步检测的候选药物。此外,与蛋白质折叠相关的蛋白变化与病毒蛋白质较为一致,p97是AAA家族的六聚体ATPase酶,也是真核生物最丰富的蛋白之一,通过调节蛋白的稳定性来执行一系列生物学功能,参与膜融合、蛋白降解等过程。测试p97的小分子抑制剂NMS–873对SARS-CoV-2复制的影响。研究表明,NMS–873在低纳摩尔浓度下即可完全抑制SARS-CoV–2(图4D)。图4. 核酸代谢相关的蛋白水平与病毒基因表达相关。A, 病毒蛋白随感染时间的变化;B, 宿主蛋白与病毒蛋白关联的GO分析;C, D, Ribavirin和NMS–873的抗病毒实验。(点击查看大图) 结论全球对于病毒高效治疗方案的需求非常紧迫,深入了解病毒机理及致病性相关的生物途径变得非常关键。定量蛋白质组学是病毒机理研究的主要手段之一,文中提及的mePROD蛋白质组学研究方案均基于Orbitrap组学金标准技术,能够提供超高分辨率和灵敏度,可为病毒蛋白质组学研究者所面临的挑战“样本基质复杂、蛋白质鉴定数量不足、假阴性/假阳性结果”提供强大的技术保障。
  • 超大孔填料在蛋白质分离纯化中的应用
    p & nbsp /p p   层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。 /p p   span style=" color: rgb(0, 176, 240) " strong  层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题 /strong /span /p p   随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。 /p p   为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。 /p p span style=" color: rgb(0, 176, 240) " strong   病毒及病毒样颗粒的分离纯化 /strong /span /p p   根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。 /p p   例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。 /p p style=" text-align: center " img width=" 576" height=" 450" title=" 1.jpg" style=" width: 415px height: 282px " src=" http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg" /    /p p style=" text-align: center " 重组乙肝病毒表面抗原在不同孔径离子交换填料上 /p p style=" text-align: center "   的吸附动力学[1] /p p style=" text-align: center " img width=" 497" height=" 345" title=" 2.jpg" style=" width: 387px height: 289px " src=" http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg" /   /p p style=" text-align: center "  重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的 /p p style=" text-align: center "   ELISA回收率[1] /p p   对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。 /p p style=" text-align: center "    span style=" font-size: 14px " strong 灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程 /strong /span /p p   与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性: /p p   1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。 /p p   2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。 /p p style=" text-align: center "   span style=" font-size: 14px " strong  表面曲率变化对蛋白接触面积的影响 /strong /span /p p   3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。 /p p   4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。 /p p span style=" color: rgb(0, 176, 240) " strong   快速分离蛋白质及pDNA /strong /span /p p   除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。 /p p   例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。 /p p style=" text-align: center " img width=" 588" height=" 170" title=" 3.jpg" style=" width: 473px height: 144px " src=" http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  超大孔填料应用前景与展望 /strong /span /p p   近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。 /p p   根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面: /p p   (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。 /p p   (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。 /p p   (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。 /p p   (4)制备规模整体柱的开发及其在生物下游技术中的应用。 /p p   目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。 /p p span style=" color: rgb(0, 176, 240) " strong   部分商品化的超大孔层析介质 /strong /span /p p    strong 超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。 /strong /p p   参考文献 /p p   [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79. /p p   [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1). /p p   [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125. /p p   [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77. /p p   [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107. /p p /p
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style=" text-align: justify line-height: 1.75em "   詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 深入剖析蛋白质组学技术最新进展与应用 /strong /span /p p style=" text-align: justify line-height: 1.75em "   詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。 span style=" text-indent: 2em " 蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。 /span /p p style=" text-align: justify line-height: 1.75em "   蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title=" 1111111.png" alt=" 1111111.png" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。 /p p style=" text-align: justify line-height: 1.75em "   最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 基于整合组学发现疾病标志物才是精准发展之重 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案 /p p style=" text-align: justify line-height: 1.75em "   詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子 /p p style=" text-align: justify line-height: 1.75em "   机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。 /p p style=" text-align: justify line-height: 1.75em "   我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。 /p p style=" text-align: justify line-height: 1.75em "   在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。 /p p style=" text-align: justify line-height: 1.75em "   2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地? /p p style=" text-align: justify line-height: 1.75em "   詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。 /p p style=" text-align: justify line-height: 1.75em "   我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify line-height: 1.75em "   3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划 /p p style=" text-align: justify line-height: 1.75em "   詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。 /p p style=" text-align: justify line-height: 1.75em "   另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 802px " src=" https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title=" 詹.jpg" alt=" 詹.jpg" width=" 600" height=" 802" border=" 0" vspace=" 0" / /p p br/ /p
  • 应脉医疗又一战略合作,布局Seer高深度无偏蛋白质组学新技术
    2023年8月8日,应脉医疗科技(上海)有限公司(下称:应脉医疗)与上海康昱盛生物科技有限公司(下称:康昱盛)在上海签署战略合作协议,合作推广美国Seer公司的高深度无偏蛋白质组学新技术,助力基于血液的蛋白质组学精准医疗进入新时代,这是应脉医疗继2021年宣布与Seer达成合作进军中国蛋白质组学市场后的又一战略合作。  生物信息巨头布局中国蛋白质组学市场  2021年,Seer宣布与应脉医疗达成独家经销协议,重点是加速公司蛋白质图谱产品套件(Proteograph系统平台)的商业扩张。根据协议条款,应脉医疗将负责Seer Proteograph系统平台在中国的销售、市场营销和客户服务,并为在中国拓展这一颠覆性技术铺平道路。Seer公司拥有专有的纳米粒子(Nanoparticle, NP)技术,让血液蛋白质组在实现深度和通量上的“非特异性选择”方法成为可能。Seer公司提供的Proteograph™XT平台利用经过特殊制作的纳米粒子磁珠,在跨数十个数量级丰度之间,非特异性地结合各类蛋白,无需额外去除高丰度蛋白,再利用高性能的质谱技术,达到高精度测量。在兼顾深度,增强蛋白组分析通量的情况下,实现对大规模血液蛋白的可重复性定量分析,创造了无偏差高通量探寻生物标记物的机会。  作为Seer在中国市场的独家经销商,应脉首席运营官边英男博士表示,非常高兴能与康昱盛达成本次合作,康昱盛具有丰富的客户资源,专业的技术支持。双方将发挥各自在擅长领域的优势,产生一加一大于二的倍增效果,推动创新的血浆蛋白质组学技术在生命科学、医疗健康领域的应用。  康昱盛总经理林建成先生表示,应脉医疗的资源丰富、市场洞察力敏锐。相信高深度无偏蛋白质组学技术具有非常巨大的市场潜力,期待与应脉医疗共同为基于质谱的血浆/血清蛋白质组学研究与应用开启新的篇章。  中国的生命科学和医药市场是世界上规模最大、增长最快的市场之一,并且拥有蛋白质组学的巨大潜力。 随着肿瘤学、神经学和免疫学在全球卫生保健需求的激增,我们需要新的工具来加速对生物学的见解,识别生物标志物,并开发新的治疗方法。Seer提供的无偏、深入和大规模的蛋白质组学平台解决了这一需求,使制药和生物医学研究人员能够发现新的生物标记物,用于诊断和治疗癌症及其他疾病,并更好地了解健康细胞的功能。  关于康昱盛  康昱盛是一家专门提供生物制药领域科学信息整体解决方案的公司。公司由一批多年从事生物医药信息学前沿技术研究、科学咨询、技术服务以及产品研发的科学家于2009年创立。经过10多年的技术积累并得益于我们与国内优秀科研机构的紧密合作,我们拥有一支专业的技术服务团队和资深的专家咨询团队,服务于生物医药领域的各种创新研发型公司、学术科研机构、大学以及政府部门,提供从药物设计分子模拟、生物信息学、化学信息学与研发信息管理系统、化合物毒性预测分析、蛋白质组学、代谢调控分析、二代测序变异与疾病关联分析,到临床前、临床的数据分析以及管理等一系列国际知名的科研软件产品、平台以及成熟的科学信息解决方案。我们目前在中国服务超过900家生物医药行业的企业与学术客户,竭诚为他们研发创新提供强有力的技术服务与产品支持!
  • 天府锦城实验室在生物传感与蛋白质测序领域取得重要进展
    3月10日,封面新闻记者从天府锦城实验室(未来医学城)获悉,四川大学华西医院临床检验医学研究中心与生物治疗全国重点实验室、天府锦城实验室(未来医学城)耿佳教授和华西第二医院陈路教授联合团队在生物传感与蛋白质测序领域取得重要进展。耿佳教授、陈路教授(左四、左五)与主要作者合影(左至右:陈山川、张丹、张明、王紫纯、唐超)。摄影:谢忱据了解,每个人体内都有超过百万种蛋白质,与水、脂肪和无机物等共同构成生物体。蛋白质是生命活动的主要承担者,例如胰岛素和胰高血糖素控制血糖高低;视紫质能够感应光子,对于正常视觉功能必不可少。许多疾病的发生与蛋白质的异常直接相关,例如缺乏凝血因子会引起血友病;异常淀粉样蛋白斑可损害神经元,是阿尔茨海默病的潜在诱因。破译蛋白质信息是探索生命现象、促进人类健康的关键一环。该研究成果阐明了纳米孔单分子检测新策略,实现了对全部20种天然氨基酸的直接区分,提出并验证了纳米孔外切酶实时多肽测序(Nanopore Exopeptidase Real-time Peptide Sequencing, NEPS)方法,为实现单分子蛋白质测序提供了可行途径,展示出生物传感器技术与人工智能算法结合的优异潜力。NEPS技术为最终破译“生命天书”、更精准的疾病诊断和治疗、更快的药物开发提供有力工具,同时代表我国生物传感技术与蛋白组学工具的原始创新能力进入全球前沿方阵。相关成果日前在线发表于《自然方法》。相关成果日前在线发表于《自然方法》近年来,成都未来医学城围绕高质量发展和科技创新时代主题,依托成渝地区双城经济圈国家战略,以临床医学转化为创新原点,专注创新成果转化、孵化。2023年7月,天府锦城实验室(未来医学城)耿佳教授团队联合卢克锋教授、戚世乾教授、李绘绘教授等团队共同在世界知名学术期刊《Nature Communications》发布学术文章,半年后,天府锦城实验室(未来医学城)耿佳教授团队再传喜报,提出并验证了纳米孔外切酶实时多肽测序(Nanopore Exopeptidase Real-time Peptide Sequencing, NEPS)方法,研发领域成果喜人。截至目前,天府锦城实验室(未来医学城)成功导入高能级科研团队14支,其中院士级团队3支,聚集研发人才200人;承担国家级科研课题3项、省级课题2项,发表SCI论文7篇,注册企业19家。成都未来医学城下一步,成都未来医学城将充分发挥成渝双城经济圈建设国家战略及区位优势,搭建集技术开发、概念验证、小中试等功能为一体的成果创新转化平台,打通基础创新源头和科技成果转化的“最后一公里”,促进创新链、产业链、资金链、人才链深度融合,护航科技创新策源转化,提升创新成果转化效率,助力成都加快形成新质生产力。
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 威斯康星大学葛瑛PNAS最新成果:自上而下蛋白质组学研究揭示共有蛋白指纹图谱可简化遗传性心脏病治疗
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 肥厚型心肌病(hypertrophic cardiomyopathy, HCM)是一种常见的遗传性心脏病,是年轻人心脏猝死的主要原因。 肥厚型心肌病与肌肉蛋白的编码基因突变有关,但不同的突变如何导致相似的临床表型尚不清楚。迄今已发现令人眼花缭乱的1400多个基因突变可能导致这种疾病,也使得医生们非常困惑如何治疗如此复杂的遗传性心脏病。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 近日,在威斯康星大学麦迪逊分校葛瑛教授的一项新研究中,团队使用基于高分辨率质谱技术的自上而下蛋白质组学分析肥厚型心肌病患者的手术心脏组织样本,发现许多不同的基因突变会导致相似的心肌蛋白变化,并详细分析了患者和正常人的心脏蛋白质特征。 /span span style=" text-indent: 2em " 该研究成果“ /span Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics span style=" text-indent: 2em " ”已于2020年9月23日发布在《美国科学院院报》(PNAS)。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 317px " src=" https://img1.17img.cn/17img/images/202009/uepic/4307809a-5b4e-4070-9e8f-8fddd25830ef.jpg" title=" 222.png" alt=" 222.png" width=" 600" height=" 317" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " (原文链接: /span a href=" https://www.pnas.org/content/early/2020/09/22/2006764117" target=" _blank" style=" text-indent: 2em color: rgb(0, 112, 192) " span style=" text-indent: 2em " https://www.pnas.org/content/early/2020/09/22/2006764117 /span /a span style=" text-indent: 2em " ) /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 研究团队从梗阻性肥厚型心肌病患者接受矫正手术以修复心脏血流受损的患者中收集了患病心脏组织的样本。尽管潜在的遗传突变有所不同,葛瑛团队发现患者心脏的许多关键肌肉蛋白有非常近似的蛋白质指纹图谱,表明这些梗阻性肥厚型心肌病患者具有共同的信号途径。虽然具体机制尚需进一步研究,但这些关键肌肉蛋白质磷酸化改变很可能导致心脏失调,从而导致心肌增厚。这对心脏病医生来说是个好消息,因为这证明可以用研发一种共通的疗法治疗这种梗阻性肥厚型心肌病,而不是针对患者个别基因突变的治疗方法。 span style=" text-indent: 2em " 该研究也进一步证明了基因突变并不总是足以解释疾病。这些基因编码的蛋白质对健康有最终影响,但在疾病期间,人体的蛋白质可能会以微妙但相应的方式改变。蛋白质水平的变化可能比其基因更好地反映了患者的疾病,并且如果我们可以在蛋白质水平上检查患者的样本,则可以帮助我们提供精准医学治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 葛瑛教授团队希望接下来继续扩大研究范围,研究数百名潜在的肥厚型心肌病患者,以了解类似的蛋白质指纹趋势是否成立,此外,团队还计划研究具有致病突变的心脏干细胞,以期利用蛋白质指纹的深入研究为将来的疾病治疗提供指导。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 研究团队:& nbsp a href=" https://labs.wisc.edu/gelab/" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://labs.wisc.edu/gelab/ /span /a /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 450px " src=" https://img1.17img.cn/17img/images/202009/uepic/a1b6fd05-398f-4f1c-8e9a-23434294fa82.jpg" title=" ge.jpg" alt=" ge.jpg" width=" 300" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 2em " 葛瑛教授 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/524db4d6-af69-46ed-b7f7-f4bb9a8ec57a.jpg" title=" ge group.jpg" alt=" ge group.jpg" / /p p style=" line-height: 1.75em text-indent: 2em text-align: center " 团队合照 /p
  • 蛋白质组:解码生命“天书”
    人类和老鼠的外貌可说是天渊之别,但实际上他们却有着近99%相同的基因组。何以&ldquo 失之毫厘差之千里&rdquo ?正是蛋白质放大了他们基因上的细微差别。 日前,中国人类蛋白质组计划全面启动。&ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至几近万倍地放大。&rdquo 亚太蛋白质组组织主席、中国科学院院士贺福 初表示,这一计划的实施将对基因组序列图进行&ldquo 解码&rdquo ,进而全景式揭示生命奥秘,为提高重大疾病防诊治水平提供有效手段。 解码生命的&ldquo 密钥&rdquo 提起蛋白质,大家并不陌生。它是生物体内一种极为重要的高分子有机物,约占人体干重的54%。 不过,&ldquo 蛋白质组&rdquo 一词却鲜有人了解。其实,蝴蝶由卵变虫、成蛹、再破茧成蝶,幕后&ldquo 操盘者&rdquo 并非基因组,而是蛋白质组。&ldquo 1994年澳大利亚科学家率先提出蛋白质组这个概念,指某个时刻、某个组织、器官或个体中所有蛋白质的集合。&rdquo 贺福初说。 科学家们之所以对蛋白质组产生浓厚兴趣,还要从人类基因组计划说起。2003年4月,耗资27亿美元、经由6国科学家历时13年奋战的人类基因组计划,以人类基因组序列图的绘制完成为标志,画上了句号。 没想到,更大的挑战还在后头&mdash &mdash &ldquo 科学界曾经认为,只要绘制出了人类基因组序列图,就能了解疾病的根源,但是错了&rdquo 。国际蛋白质组组织启动计划主席萨姆· 哈纳什说,事实上,我们此时只了解10%的基因的功能,剩下的90%仍是未知的。 &ldquo 人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能的执行体层次,揭示人类生、老、病、死的全部秘密。基因组序列只是提供了一维遗传信息,而更复杂的多维信息发生在蛋白质组层面。&rdquo 贺福初表示。 就 人体而言,各个器官的基因组是一样的,而它们之所以形态、功能各异,正是其结构与功能的物质基础&mdash &mdash 不同的蛋白质组在&ldquo 操盘&rdquo 。&ldquo 就像蛹化蝶,无论形态如 何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红说,人的每一种生命形态,都是特定蛋白质组在不同时间、空间出现并发挥功能的 结果。比如,某些蛋白质表达量偏离常态,就能够表征人体可能处于某种疾病状态。 &ldquo 无论是正常的生理过程还是病理过程,最直接的体现是蛋白质以及它们的集合体&mdash &mdash 蛋白质组。&rdquo 上述专家们表示。&ldquo 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能根本阐释生命。&rdquo 贺福初说。 独辟蹊径的&ldquo 中国画卷&rdquo 事实上,早在上世纪90年代人类基因组计划成形之际,已有科学家提出解读人类蛋白质组的想法。其目标是,将人体所有蛋白质归类,并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用等。 《科学》杂志在2001年,也将蛋白质组学列为六大科学研究热点之一,其&ldquo 热度&rdquo 仅次于干细胞研究,名列第二。 不过,严峻的现实挑战,让这一想法迟迟停留在&ldquo 纸上谈兵&rdquo 阶段。&ldquo 生物蛋白质数的差别大概是基因数差别的三个数量级左右,人类基因总数大概2万多个,人体内的蛋白质及其变异、修饰体却是百万级的数量。&rdquo 贺福初表示。 不仅如此,人类基因组图谱只有一张,而蛋白质组图谱每个器官、每个器官的每一种细胞都有一张,且在生理过程和疾病状态时还会发生相应改变。工程的艰巨性可想而知。 但困难并未阻挡住科学家们对其探索的脚步。1995年,首先倡导&ldquo 蛋白质组&rdquo 的两家澳大利亚实验室分别挂牌成立蛋白质组研究中心。随后欧美日韩等国均有行动。 1998年初,从事基因组研究的贺福初敏锐地嗅到这朵夜幕后悄然盛开的&ldquo 莲花&rdquo ,逐渐将精力投入到这个新兴领域。 2001年,&ldquo 基因组会战&rdquo 尚未鸣金,《自然》、《科学》杂志即发出&ldquo 蛋白质组盟约&rdquo 。同年秋,&ldquo 人类蛋白质组计划&rdquo 开始孕育。 2002 年4月,贺福初在华盛顿会议上阐述&ldquo 人类肝脏蛋白质组计划&rdquo 。同年11月,&ldquo 人类血浆蛋白质组计划&rdquo &ldquo 人类肝脏蛋白质组计划&rdquo 正式启动,贺福初担任&ldquo 人类 肝脏蛋白质组计划&rdquo 主席。其后两年间,德国牵头的&ldquo 人类脑蛋白组计划&rdquo 、瑞士牵头的&ldquo 大规模抗体计划&rdquo 、英国牵头的&ldquo 蛋白质组标准计划&rdquo 及加拿大牵头的 &ldquo 模式动物蛋白质组计划&rdquo 相继启动。 然而,很少有人知道,这种以生物系统为单元的研究策略酝酿之初饱受诟病。贺福初回忆,在华盛顿,中国人提出蛋白质组计划必须按生物系统(如器官、组织、细胞)进行一种战略分工和任务分割,一石激起千层浪,争议四起。 &ldquo 要想通过分工合作来完成全景式分析人类蛋白质组的宏大目标,必须以人体的生物系统作为研究单元和分工的规则。这个策略,10年来合者渐众,不过目前仍存争议,中国的先见之明可能得在下个10年成为不可阻挡的潮流。&rdquo 贺福初坦陈。 定位疾病的&ldquo GPS&rdquo 历经10余年的努力,以贺福初为代表的中国蛋白质组研究团队,在该领域向世界交了一份漂亮答卷: 成功构建迄今国际上质量最高、规模最大的人类第一个器官(肝脏)蛋白质组的表达谱、修饰谱、连锁图及其综合数据库; 首次实现人类组织与器官转录组和蛋白质组的全面对接; 在 炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的 新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝 癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物标记。2012年,张令强课题组研制出世界上首个能特异性靶向成骨细胞的核酸递送系 统,提供了一种基于促进骨形成的全新骨质疏松症治疗途径,向解决骨丢失无法补回这一医学难题迈出了坚实的一步。2014年,张令强课题组首次在国际上揭示 泛素连接酶Smurf1是促进结直肠癌发生发展,并且导致病人预后差的一个重要因子&hellip &hellip 上述几项成果均发表于国际顶级的《科学》、《自然》系列杂志。 还没来得及分享这一喜悦,激烈的角逐又让他们绷紧了神经。日前,英国《自然》杂志公布美国、印度和德国等合作完成的人类蛋白质组草图。研究人员表示,这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。 &ldquo 尽 管还有许多不完善的地方,但确实是蛋白质组学领域乃至整个生命科学领域,具有里程碑意义的科学贡献。&rdquo 中国科学院院士饶子和直陈。中国科学院院士张玉奎指 出,虽然中国在蛋白质组的一些领域走在了世界前列,但国外有些团队正快马加鞭,我们不得不警醒,否则很快将被甩出第一阵营。 6 月10日,中国人类蛋白质组计划全面启动实施。&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊断标志物、治疗和创新药物,可以全面提高疾病防 诊治水平。这个项目完成后,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo ,进而找到针对性的诊断措施、干预措施和预防措 施。&rdquo 记者了解到,中国人类蛋白质组计划第一阶段,将全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及的主要组织器官的蛋白质组,了解疾病发生的主要异常,进而研制诊断试剂以及筛选药物。这将在2017年左右完成。 &ldquo 这是真正的原始创新,也是中国能够引领世界科技发展的重要领域之一。&rdquo 贺福初强调说。
  • 定量蛋白质组学探索新型冠状病毒新疗法
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近期,来自法兰克福大学医学病毒学研究所和歌德大学医学院团队利用一种新颖的蛋白质组学方法对新冠病毒进行研究,加速确证病毒致病性相关的生物途径以及寻找潜在的药物靶标,提出新冠治疗新疗法。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 治疗选择· 细胞层面理解 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 从2019年底由SARS-CoV-2(2型严重急性呼吸综合征冠状病毒)引起的新型冠状病毒疾病(COVID-19)具有高传染性,该病已发展至全球大流行。全球迫切需要开发抑制病毒感染或复制的疗法。SARS-CoV-2与其他冠状病毒有相似之处,所以目前主要通过对已用于其他适应症的药物库进行高通量筛选,鉴定出许多临床上认可的药物,但却缺乏对SARS-CoV-2感染的治疗选择和细胞层面理解。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 法兰克福大学医学病毒学研究所的Jindrich Cinatl教授和歌德大学医学院的Christian Mü nch教授团队发表最新研究中,建立感染SARS-CoV-2的Caco-212细胞模型,运用一种新颖的多重增强蛋白质动力学(multiplexed enhanced protein dynamicsme, mePROD)方法进行蛋白质组学分析,能够在高时间分辨率下确定转录组和蛋白质组的变化,加速确证病毒致病性相关的生物途径以及寻找潜在的药物靶标。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 一、构建细胞感染模型 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 想要开展该研究的重点取决于两点: span style=" text-indent: 2em " 1.是否有合适的允许病毒感染的细胞培养模型; /span span style=" text-indent: 2em " 2.对蛋白质进行时间感染特征分析的敏感蛋白质组学方法。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 该研究建立针对SARS-CoV-2高度兼容的细胞模型,在病毒感染24小时后就能迅速见到细胞致病作用 (图1A)。在病毒感染细胞后的2h、6h、10h和24h,分别用定量PCR技术测量上清液中的病毒RNA拷贝数,发现感染后SARS-CoV-2 RNA数量不断增加(图1B)。这表明模型可以用于研究细胞中SARS-CoV-2。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/00b7210b-e85a-4327-aa02-dc0af774d72a.jpg" title=" theromo.jpg" alt=" theromo.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1. & nbsp SARS-CoV-2 在细胞内快速复制模型。A, 病毒感染24小时后的细胞形态变化 & nbsp B, 细胞上清液中病毒RNA拷贝数的增加 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 二、翻译抑制剂防止SARS-CoV-2病毒复制 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 建立好模型,研究人员需要利用一种高效的方法确定SARS-CoV-2感染的时间分布,这时候mePROD蛋白质组学方法应运而生,即基于Orbitrap高分辨质谱仪联用新蛋白代谢标记(SILAC)和串联质量标签(TMT)两种标记方法,进行蛋白差异分析。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/1f28c8de-733d-43ac-8f8a-d1f2138c637a.jpg" title=" e.jpg" alt=" e.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2. mePROD蛋白质组学实验流程 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 抑制宿主翻译先前已被用作治疗MERS-CoV等多种冠状病毒感染性疾病。与其他病毒抑制宿主蛋白的合成从而增加病毒蛋白的合成不同,该方法挖掘数据表明SARS-CoV–2仅引起宿主翻译能力的微小变化,作者推测SARS-CoV-2复制可能对翻译抑制更为敏感。通过测试了两种翻译抑制剂,即环己酰亚胺(cycloheximide, 翻译延伸抑制剂)和曲美汀(emetine, 抑制40S核糖体蛋白S14)。在无毒浓度下,两个化合物均对SARS-CoV-2复制产生了显着抑制作用从而发现翻译抑制剂是细胞中SARS-CoV-2复制的有效抑制剂。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/f6db163f-b3fd-4747-bd76-a206ba4a658d.jpg" title=" 他.jpg" alt=" 他.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图3. 环己酰亚胺和曲美汀对病毒复制的抑制作用 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 三、发现潜在的抗病毒靶标 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 重点来了,通过前期蛋白质组学大数据挖掘,目前一张蓝图已展现在眼前,下一步的重中之重就是探究与病毒蛋白共同增加的宿主蛋白,从而寻求潜在的SARS-CoV-2复制抑制剂。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 作者分析了与病毒蛋白变化趋势相似的蛋白,在数据中富集的代谢途径主要由不同的核酸代谢子途径组成。基于此,研究者测试核苷酸合成抑制剂对细胞中SARS-CoV-2复制的影响,高达10 µ M的布雷奎纳(brequinar,抑制双氢乳清酸脱氢酶并不具有抗病毒的作用。相比之下,低浓度下的利巴韦林(ribavirine,抑制肌苷一磷酸脱氢酶)即可抑制SARS-CoV-2复制(图4C),这表明利巴韦林是可以进行进一步检测的候选药物。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,与蛋白质折叠相关的蛋白变化与病毒蛋白质较为一致,p97是AAA家族的六聚体ATPase酶,也是真核生物最丰富的蛋白之一,通过调节蛋白的稳定性来执行一系列生物学功能,参与膜融合、蛋白降解等过程。测试p97的小分子抑制剂NMS–873对SARS-CoV-2复制的影响。研究表明,NMS–873在低纳摩尔浓度下即可完全抑制SARS-CoV–2(图4D)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7559257b-c48c-4e0d-97e1-dbe56f69f256.jpg" title=" t4.jpg" alt=" t4.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图4. 核酸代谢相关的蛋白水平与病毒基因表达相关。A, 病毒蛋白随感染时间的变化;B, 宿主蛋白与病毒蛋白关联的GO分析;C, D, Ribavirin和NMS–873的抗病毒实验 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 结论 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 全球对于病毒高效治疗方案的需求非常紧迫,深入了解病毒机理及致病性相关的生物途径变得非常关键。 span style=" text-indent: 2em " 定量蛋白质组学是病毒机理研究的主要手段之一,能够提供超高分辨率和灵敏度,可为病毒蛋白质组学研究者所面临的挑战“样本基质复杂、蛋白质鉴定数量不足、假阴性/假阳性结果”提供强大的技术保障。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 参考文献: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " SARS-CoV-2 infected host cell proteomics reveal potential therapy targets, DOI:10.21203/rs.3.rs-17218/v1 /p p br/ /p
  • 完整蛋白质鉴定:基于UNIFI的沃特世生物制药系统
    目的 以单克隆抗体完整蛋白的UPLC® /MS分析为例,展示UNIFI&trade 科学信息系统这个平台在精确质量测定、数据处理和报告方面的强大功能。 背景 生物治疗药物得到了越来越多的关注,无论是药监部门还是生物制药企业,有效剖析单克隆抗体(mAb)尤为重要。在同一软件平台中实现数据采集和处理,并同时满足审计追踪的要求,是符合法规要求的重要因素。 蛋白质药物会发生翻译后修饰,如糖基化等,由于糖基化在生物系统中有几项重要的功能,因此,准确鉴定抗体药物的糖基化情况是蛋白药物监管指导原则中的一部分。为确保生物药物的安全性和有效性,快速、准确地对糖蛋白进行分析是十分必要的。 ACQUITY UPLC® H-Class Bio系统的高分辨生物分子分离能力与Xevo® G2 Tof 高质量精度的高分辨飞行时间质谱检测技术相结合,为生物药物分析实验室提供了常规分析用的UPLC/MS系统。 基于UN IFI的完全一体化分析平台突破了以往采集、处理色谱及质谱数据的局限性,并可自动生成报告。 每个mAb分析都会产生一个非常庞大的数据组,需要对各种不同的糖基化修饰进行阐释,以便对最终产品进行综合鉴定。这个步骤会限制其它高通量分析过程的效率,并且很难实现自动化。 基于UN IFI的完全一体化分析平台突破了以往采集、处理色谱及质谱数据的局限性,并可自动生成报告。 解决方案为解决数据分析耗时长的问题,促进治疗用单克隆抗体(mAb)的数据处理,基于UNIFI的生物制药系统解决方案专门配置了完整蛋白分析方案。 这是一个完整的方案:采集了UPLC/MS数据后,以高通量方式进行全自动的数据处理和结果标注,得到的数据结果可在导出后进行数据管理。 曲妥珠单抗的UPLC/MS分析以全自动的方式进行,使用0.1%甲酸水溶液和0.1%甲酸乙腈溶液分别用作流动相液A和B。为成功进行色谱分离,色谱柱的温度必须设定至80 ° C。这套完整的生物制药系统解决方案包括如下要素:ACQUITY UPLCH-Class Bio系统,ACQUITY UPLC BEH300 C4 色谱柱和Xevo G2 Tof质谱系统,UNIFI科学信息系统用于数据的采集、处理和报告。 完整蛋白分析报告可显示不同的报告内容,用户可以自主设置具体的报告内容:TIC色谱图;原始质谱数据、去卷积处理后的数据和棒状质谱图;及LC/MS数据分析结果的总表(图-1)。该详细视图为在特定质量范围及以本方法设定的参数范围内的去卷积处理后数据。去卷积图谱反映了抗体药物的几个主要的糖型,与葡萄糖残基数量和岩藻糖基化程度对应。另一个报告的格式是表格,该表列出了完整单克隆抗体(mAb)的质量测定结果和不同糖型(图-2)。报告还列出了曲妥珠单抗不同糖型的质谱峰的测量值以及与理论值之间的误差,并列出了TIC色谱图的色谱保留时间。这样一种完整的LC/MS分析方法使用户可灵活运用原始数据和处理后的数据,并进行快速而有效的数据管理。 总结 本应用通过单克隆抗体(mAb)完整蛋白分析应用展示了基于UNIFI的生物制药系统解决方案的强大功能。 现代仪器系统和先进的分析技术突破了生物制药企业以往的限制,能够对其生产过程进行严格的监控。 高效而经济的UPLC/MS分析方法,结合UNIFI科学信息系统进行数据处理和报告,不仅可满足法规的要求,还有助于完整蛋白鉴定。UPLC/MS平台可覆盖从详细的蛋白结构鉴定到复杂的数据管理整个过程。
  • 解决生物学50年来的重大挑战!生物界“AlphaGo”精准预测蛋白质结构
    p style=" text-indent: 2em " 提到DeepMind公司,我们首先想到的可能是几年前,它开发的人工智能AlphaGo“横扫”顶尖人类围棋职业选手,变革了围棋的思考方式。除了在棋类比赛中所向披靡以外,DeepMind也在加速科学发现上迈出了重要一步。今日,DeepMind宣布,其新一代AlphaFold人工智能系统,在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手,能够精确地基于氨基酸序列,预测蛋白质的3D结构。其准确性可以与使用冷冻电子显微镜(CryoEM)、核磁共振或 X 射线晶体学等实验技术解析的3D结构相媲美。这一突破被多家媒体称为“变革生物科学和生物医学”的突破。前基因泰克(Genentech)首席执行官Arthur D. Levinson博士称这一成就为“划时代的进步”(once in a generation advance)。 /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/33325072-7059-48e8-b1d4-6321cae2e263.jpg" title=" 微信图片_20201201221037.png" alt=" 微信图片_20201201221037.png" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " 图片来源:DeepMind Blog /span /p p br/ /p p style=" text-indent: 2em " strong 生物学50年来的重大挑战 /strong /p p br/ /p p style=" text-indent: 2em " 我们都知道,蛋白质对生命来说是不可或缺的,它们支持生物体的几乎所有功能。这些复杂的大分子由氨基酸链构成,而蛋白质的功能很大程度上决定于它的3D结构。生物医学领域的众多挑战,包括开发治疗疾病的创新疗法,依赖于对蛋白质结构和功能的理解。 /p p br/ /p p style=" text-indent: 2em " 在过去的五十年中,科学家们已经能够利用冷冻电子显微镜、核磁共振或 X 射线晶体学等实验手段在实验室中确定蛋白质的形状,但每种方法都依赖于大量的试错,耗时耗力,可能需要花上好几年时间。1972年,诺贝尔化学奖得主Christian Anfinsen博士表示,理论上,蛋白质的氨基酸序列应该能够完全决定它的3D结构。这一假说激发了50年来基于氨基酸序列,通过计算方法预测蛋白质3D结构的探索。 /p p br/ /p p style=" text-indent: 2em " 然而,这一领域面临的重大挑战是理论上,氨基酸链可能形成的蛋白质构象的数目是个非常庞大的天文数字。有学者估计,一个典型的蛋白质理论上可以形成10的300次方(1后面加300个0)个可能构象。然而在自然界,蛋白质能够自发地在几毫秒内,迅速折叠成其中一个构象。用什么样的计算方法,才能从10的300次方的可能构象中找到那个正确的构象? /p p br/ /p p style=" text-indent: 2em " strong AlphaFold:生物界的“AlphaGo” /strong /p p br/ /p p style=" text-indent: 2em " DeepMind的研究人员把折叠好的蛋白质设想成一幅具有3D结构的“空间图画”(spatial graph),而氨基酸则是这副“空间图画”中节点和线条。基于神经网络系统,他们设计了AlphaFold系统来解析这一空间图画的结构。它使用了进化相关的氨基酸序列,多序列对比(multiple sequence alignment, MSA)以及对氨基酸对(amino acid pairs)的评估来优化“空间图画“的描绘。 /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/7ffebf8d-21e2-421e-bff5-adf328b90caf.jpg" title=" 微信图片_20201201221204.png" alt=" 微信图片_20201201221204.png" / /p p style=" text-align: center text-indent: 2em " ▲AlphaFold的神经网络模型构架(图片来源:DeepMind Blog) /p p br/ /p p style=" text-indent: 2em " 研究人员使用蛋白质数据库中接近17万个不同的蛋白质结构,以及包含未知结构的蛋白序列数据库对AlphaFold进行训练。通过不断地迭代,AlphaFold系统学习到了基于氨基酸序列,精确预测蛋白结构的能力。 /p p br/ /p p style=" text-indent: 2em " 与实验结果相差无几的蛋白质结构预测 /p p br/ /p p style=" text-indent: 2em " 国际蛋白质结构预测竞赛(CASP)是由马里兰大学的John Moult教授和加州大学戴维斯分校的Krzysztof Fidelis教授联合创建的国际性比赛,旨在评估、促进和确认最佳的蛋白质结构预测手段。CASP选择已经通过实验手段解析,但是尚未公布的蛋白质结构作为目标,让世界各地的研究团队运用自己的计算手段预测它们的结构。一个独立的团队会评估预测结构与通过实验手段解析的蛋白结构之间的差异。 /p p br/ /p p style=" text-indent: 2em " 2018年,DeepMind开发的第一代AlphaFold首次参加CASP并且拔得头筹。而今年,新一代的AlphaFold在CASP中的表现更为惊艳。CASP使用称为GDT的评分系统来评估预测蛋白结构的精确性。这个评分从0到100,如果评分达到90分以上,可以认为预测的结构与实验手段获得的结构相当。 /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/87def9e4-8753-401b-9fa9-3ada59e01d7b.jpg" title=" 微信图片_20201201221209.png" alt=" 微信图片_20201201221209.png" / /p p style=" text-align: center text-indent: 2em " strong ▲2006-2020年CASP比赛中最佳蛋白折叠预测系统的评分表现(图片来源:DeepMind Blog) /strong /p p br/ /p p style=" text-indent: 2em " 在今年的CASP中,AlphaFold系统对所有蛋白靶点3D结构预测的中位GDT评分为92.4分。即便是针对最难解析的蛋白靶点,AlphaFold的中位GDT评分也达到了87.0分。在接受检验的近100个蛋白靶点中,AlphaFold对三分之二的蛋白靶点给出的预测结构与实验手段获得的结构相差无几。CASP创始人Moult教授表示,在有些情况下,已经无法区分两者之间的区别是由于AlphaFold的预测出现错误,还是实验手段产生的假象。 /p p style=" text-align: center" br/ /p p style=" text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202012/uepic/14003fd2-fbf1-4fc4-b34a-087e4fa5f63d.jpg" title=" 微信图片_20201201221209.png" alt=" 微信图片_20201201221209.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 2em " ▲AlphaFold根据氨基酸序列预测的蛋白结构与实验手段解析的结果几乎完全重合(绿色,实验结果;蓝色,计算预测结果;图片来源:DeepMind Blog) /p p br/ /p p style=" text-indent: 2em " strong 对真实世界的影响 /strong /p p br/ /p p style=" text-indent: 2em " 在今年早些时候,DeepMind已经利用这一系统预测了多种新冠病毒蛋白的结构。后续的实验显示, strong AlphaFold预测的新冠病毒Orf3a蛋白结构与冷冻电镜解析的结构非常相似。 /strong /p p br/ /p p style=" text-indent: 2em " 虽然,AlphaFold不见得会取代冷冻电子显微镜等其它实验手段,但是DeepMind的研究人员表示,这一令人兴奋的结果表明,生物学家们可以使用计算结构预测作为科学研究的核心工具之一。这一手段对于特定类型的蛋白来说可能尤为便利,例如膜蛋白一直非常难于结晶,因此很难用实验手段获得它们的结构。 /p p br/ /p p style=" text-indent: 2em " 而对于从事计算和机器学习研究的DeepMind团队来说,AlphaFold的表现证明了AI在辅助基础科学发现方面惊人的潜力。该团队在公司发布的博文中表示,他们相信,AI将成为人类拓展科学知识前沿最有力的工具之一! /p p br/ /p
  • 中国蛋白质组学世界领先
    2003年12月15日,由中国科学院院士贺福初牵头的“人类肝脏蛋白质计划”(HLPP)启动,这是我国领导的第一项重大国际合作计划,也是第一个人类组织/器官的蛋白质组计划。 北京蛋白质组研究中心主任、蛋白质组学国家重点实验室副主任秦钧告诉《中国科学报》记者,十余年来,HLPP经历了三代更迭,从第一代版本的肝脏总蛋白质组,到第二代的肝脏细胞器蛋白质组,以及到刚刚完成的第三代肝脏不同细胞亚群的蛋白质组解析。HLPP的肝脏蛋白质组研究正在并将继续作为“中国人类蛋白质组计划”(CNHPP)的先导,为CNHPP的发展探明道路。 事实上,通过HLPP研究十余年的努力,中国蛋白质组研究团队已向世界交上了一份漂亮的答卷。 据记者了解,中国科学家成功构建了迄今国际上质量最高、规模最大的人类第一个器官蛋白质组的表达谱、修饰谱、连锁图及其综合数据库;首次实现人类组织与器官转录组和蛋白质组的全面对接;在炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜在药靶、蛋白质药物和生物标志物。 2008年,张学敏课题组首次发现炎症和免疫的新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组“逮到”肝癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物标记̷̷上述几项成果均发表于国际顶级的《科学》《自然》系列杂志。 秦钧认为,蛋白质组学研究是我国生命科学中几个能够始终跻身世界前沿的科学领域之一。 而现在,世界蛋白质组学领域内的新一轮科技竞赛已开始。中国科学院院士、中国科学院大连化学物理研究所研究员张玉奎表示,虽然中国在蛋白质组学领域走在了世界前列,但国外有些团队如今正快马加鞭,中国科学家必须加快步伐,不能丧失已经取得的优势。 这也是我国开展CNHPP研究的一个重要原因。“这是真正的原始创新,是中国能够引领世界科技发展的重要领域之一。”贺福初说。
  • 我国蛋白质组学研究取得系列成果
    由中国科学院院士贺福初领衔的北京蛋白质组研究中心/蛋白质组学国家重点实验室,在国际学术刊物《分子与细胞蛋白质组学》(Molecular & Cellular Proteomics,MCP)2009年第三期上,同时发表了《亨廷顿疾病患者脑脊液的脑特异性蛋白含量下调》等3篇研究论文。3篇论文在该刊同期发表,创造了该刊单期同一单位发表论文数量之最。3篇研究论文分别从亨廷顿疾病(HD)发病机理、乙型肝炎病毒(HBV)相关疾病的诊断治疗方法、蛋白质组质谱数据筛查新模型等方面进行了深入研究。   钱小红研究员课题组合作发表的《亨廷顿疾病患者脑脊液的脑特异性蛋白含量下调》一文,发现了亨廷顿疾病潜在的生物标志物。该研究以患者脑脊液为样本,通过对基因组和蛋白质组数据的整体研究,规模化地筛选和鉴定与亨廷顿疾病发生、发展密切相关的蛋白质,揭示出HD患者脑脊液中高表达的蛋白可作为HD的潜在生物标志物,为有效诊断亨廷顿疾病提供了可能的参考指标。   HBV感染作为一种严重危害人类健康的重大疾病,目前治疗手段有限,其重要原因是缺乏有效的治疗靶点。   姜颖副研究员课题组用先进的蛋白质复合体分离和鉴定方法,发现了治疗乙型肝炎病毒相关疾病的潜在靶点,为系统了解乙型肝炎病毒的生命周期和研发相关疾病的治疗药物提供了新的思路。   大规模、高通量的蛋白质组研究产生了海量数据,其中包含了大量的“噪声”,而可靠的数据是进一步生物学分析的基础。目前的分析方法均采用了过严的标准,这在降低假阳性的同时也人为造成了数据较高的假阴性,导致大量数据浪费。因此,“在保证高可信度的前提下,最大限度地利用实验数据”一直是蛋白质组学界的追求。朱云平研究员课题组基于随机数据库策略、非参概率密度模型和贝叶斯公式,建立了串联质谱数据过滤的多元贝叶斯非参模型,将质谱数据的利用率提高了10%~40%,创造了目前该领域研究的最好水平。
  • 蛋白质组学全球市场已达500亿美元
    01 摘要蛋白质组学目前的研究活动的成长与基因组学早期的发展轨迹相似。基因组学花费了大概十年的时间实现了产业化。尽管蛋白质组学技术起步的时间比基因组学更早,但蛋白质组学相对更大的复杂性导致其与基因组学相比需要更先进的技术。然而,今天,蛋白质组学的重要研究瓶颈正在被不断突破,让科学家们看到了其在研究、转化和临床意义上达到与基因组学相当的水平的前景。因此,随着时间的推移,蛋白质组学在研究和临床中应用的商业机会将与基因组学的可用市场总量(TAM)规模趋于一致,目前全球TAM已经达到500亿美元。并且我们有理由相信,由于蛋白质组学动态、变化的性质将使得其超过基因组学而转化为更加具有经常性、重复性的临床应用。质谱是最能促进蛋白质组学工业化的技术,但其工作流程的标准化,尤其是样品制备阶段的标准化,仍然存在着挑战。对于长期投资商来说,应该对在这个生态圈中拥有于众不同知识产权的供应商给与更大的关注。尽管以基于高元多工分析方法为代表的新兴检测方法与质谱方法相比仅处于早期发展阶段,但也具有巨大的潜力。02 背景与投资情况论述生命的基本构成部分是核酸和氨基酸。核酸是基因的基本构成成分。氨基酸是蛋白质的基本构成成分。事实上,我们体内每个细胞的成分都可以归类于蛋白质、基因、脂质或碳水化合物这四类大分子化合物。脂质和碳水化合物组成简单不易出错。因此,最重要的是对基因和蛋白质进行深入了解。我们对人类生物学的理解,从细胞功能到疾病的因果关系,再到药物治疗,都是我们对基因组学和蛋白质组学知识的衍生品。在20世纪,先进显微镜和生物化学技术的发明导致我们对基于结构的蛋白质和基因的理解有了很大的进步。在21世纪,基因组学经历了一场革命,使其从一个刚刚起步的研究领域经历了工业化的过程,成为了临床生物学重要方面。这不仅使得人类对生物学有了更深更新的了解,也提供了包括液体活检诊断,CAR-T细胞治疗,甚至是mRNA疫苗的一系列新的临床治疗及诊断方法。蛋白质组学在21世纪也取得了重要进展。这不仅是由于质谱和X射线晶体学等成像方面新技术的出现,也是由于免疫检定试剂方面的生物化学方法创新,使得我们可以分离特定的蛋白进行进一步的研究。与基因组学相比,蛋白质组学还未取得飞跃。这并不是由于它相对于基因学的有较小的前景和应用场景,这只与它的方法的复杂性有关。我们认为,下一个十年蛋白质组学将进入快车道,使生物学研究、医学治疗和诊断方面进入一个以蛋白质为中心的新时代。蛋白质组学的挑战。超过95%的获得FDA批准的药物都是以蛋白质为目标,但蛋白质组中的多数组分却尚未被人们所了解。我们相信,十年后,西方国家的蛋白质组学公司所创造的股权价值将与今天基于基因组学的公司所创造的约2500亿美元的市值相当或更多。创新的速度正在加快:在1869年由弗里德里希-米歇尔(Friedrich Miescher)发现核酸之后近85年才由沃森和克里克于1953年发现了DNA双螺旋。从沃森和克里克的发现到2001年第一个人类基因组序列的发表花费了近50年时间。从2001年人类基因组的第一份草图到2021年7月公布的第一份完整序列花费了20年时间。总而言之,从核酸发现到确定完整的人类基因组花费了近155年的时间。在接下来的155年里,创新的速度将呈指数型增长,而蛋白质组学将是其中最大的受益者。03 蛋白质组学的今天:挑战与机遇什么是蛋白质组学?它为什么重要?图一:蛋白质组学受益于多种技术跨越式进步蛋白质组学作为一个术语首次出现在1996年,它被定义为对一个细胞系的整个蛋白质图谱进行大规模表征。蛋白质组学的要点是完整性和深度:通过检测和解读该细胞中的所有蛋白质的作用以及相互作用来彻底了解细胞功能,而不是应用传统的通过抗体分离已知蛋白质的方法单独检测每个蛋白质。基于抗体的蛋白质检测将继续在后续的工作中得到应用,但蛋白质组学是针对所有蛋白质,它们的相互作用,及其多种形态的大规模、高通量、高灵敏度的分析。因为蛋白质修饰和相互作用出错是发生疾病的通常原因,蛋白质组学研究对理解造成疾病发生的原因非常重要,Source: Graves PR, Haystead TA., Molecular biologist’s Guide to Proteomics(2002)04 蛋白质组学和基因组学之间的关系是什么?当马克-威尔金斯(Mark Wilkins)在1996年首次使用蛋白质组学一词时,他明确表示他指的是“基因组的补充”。基因是细胞的说明书。通过RNA的表达,他们指示细胞要构建哪些蛋白质。蛋白质细胞构建之后,它们通过与其他蛋白质和环境的相互作用而被翻译和修饰。因此,1) 基因组学的大部分功能效用通过蛋白质组体现;2) 下游事件-包括蛋白质间的相互作用,新的蛋白质形态和动态修饰的产生,及其对细胞分裂的影响-是蛋白质组学而不是基因组学的主题。Source: Virag D, Dalmadi K B. Current Trends in the Analysis of Post-translational Modifications (2020)因此,基因组学和蛋白质组学是相互关联的,而不是分开的,但蛋白质组学在功能上更为重要及复杂。有25000个独立的基因,但有超过100万种蛋白形式。虽然一个人的基因组不会改变,但一个人的蛋白质组是动态的。身体里的变化是通过蛋白质的修饰来表达的。你出生时的基因组和今天一样。但你的蛋白质组每天都在变化。05 为什么蛋白质组学研究如此困难?1. 分子的复杂性和多样性Source: Creative-Proteomics.com蛋白质分子本身的分子结构更为复杂。DNA是由4种核苷酸组成的,而蛋白质是由20种不同的氨基酸组成的。翻译后修饰,如甲基化和羟基化,改变了蛋白质的形态和功能。每个蛋白质可以有9种不同的蛋白形式。取决于翻译后修饰和蛋白质间的相互作用。这意味着同一个蛋白质可以有9种不同的功能。DNA的分子结构相对简单,有4种核苷酸变体,这意味着基因测序方法(如合成测序)不能应用于蛋白质组。需要新的、更复杂的、定制的方法来捕获生物样本中数百万种不同的蛋白质形态。2. 动态范围问题Source: Montanaro Research Aebersold R., Targeted Proteomic Strategy for Clinical Biomarker Discovery (2009)Y轴表示血浆样品中特定蛋白质分子的浓度和丰度。虽然有些蛋白质的含量极高,但大多数蛋白质类型的浓度很小,甚至可以忽略不计。红圈中的蛋白质存在于蛋白质组的“黑暗角落”,在这种极低的丰度下,这些蛋白质非常难以测得。大多数蛋白质的丰度极低。在血浆细胞中发现的约12,000个独立的蛋白质中,前10个占总蛋白量的90%,而其他约11,990个仅占10%。3. 少数的暴政如下饼图显示了血浆样品中蛋白质的相对丰度。单一的一种蛋白质,即血浆白蛋白,占了57%的总丰度,使读取其余的1万种蛋白质更加困难。Source: Anderson NG., Molecular Cell Proteomics (2002)06 蛋白质组学市场机遇有多大?我们相信,蛋白质组学在分子生物学研究以及临床医学和诊断方面有与基因组学一样远大的前景。Source: Montanaro Research自2001年第一个人类基因组的组装以来,基因组学已经成为生物医学的一个工业化部分, 纯基因组学公司的总市值达到2400亿美元。Illumina是其中最大的公司。蛋白质组学TAM(可用市场总量)如今已经达到数百亿美元。Somalogic estimate the total TAM to be $50 bn (Source: Somalogic)虽然临床应用方面的TAM具有最大的长期潜力,但在未来5年内研究和发展方面的TAM是最容易解决的。Source: Souda P., Proteomics: The Next Frontier, SVB Leerink (2021)SVB Leerink的蛋白质组学专家Puneet Souda估计,目前仅美国的研发TAM 有140亿美元,这基于学术界和制药业共约 26,100 个实验室总经费的2.5%的保守估计。如果我们把西方国家的实验室数量看作是约50,000个,并更合理的假设占总经费的5%的资金分配给蛋白质组学研究,我们估计在全球发达经济体中的蛋白质组学研发TAM为500亿美元。
  • 走近大科学工程:国家蛋白质科学中心
    图为蛋白质科学研究(上海)设施核磁共振分析系统。   走近中国大科学工程   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。(原标题:探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象)
  • 国家蛋白质科学中心:不容小觑的仪器集群
    【科技日报】探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象 图为蛋白质科学研究(上海)设施核磁共振分析系统。   生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。   在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。   国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?   为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。   不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。   &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。   可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。   雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。   在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。   围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。   史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。   上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。   要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。   找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。   在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。   高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。   传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。   上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。   &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。   五线六站 透视蛋白质内部结构   蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。   肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。   大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。   在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。   记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。   国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。   &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。   过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。   &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。   核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。   在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。   分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。   离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。   和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。   &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。   为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。   蛋白质研究为药物研发铺路   蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。   一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。   细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。   然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。   上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。   &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。
  • 投资7亿 国家蛋白质科学中心(上海)建成
    我国生命科学领域第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施日前通过工艺测试,进入开放试运行阶段,预计于今年年底正式面向多用户、多领域开放。25日,记者走进基本建成的国家蛋白质研究中心,见识了国际一流的研究设施和紧锣密鼓开展科研的研究团队:   高通量自动化克隆构建系统,中心自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化),达到全球生物自动化一流水平,从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆,极大地提高了生物实验效率。   自主研发高精度激光双光镊系统,光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现压纳米级位移和压皮牛级力的测量。这些技术有望在蛋白质折叠、RNA聚合酶合等研究领域提供单分子层次的信息。在仪器研发方面,为拓展仪器性能,还将结合单分子荧光技术和高精度激光光镊,有望提升蛋白质科学领域的仪器自主研发能力。   尽管仍处于紧张建设筹备中,科研活动早已紧锣密鼓地开展。截至2013年底,中心科研项目共计31项,年度新增13项,其中包括国家重大科学研究计划项目2项、中科院科研装备研制项目1项以及国家自然科学基金多项。中心成立伊始,许琛琦研究组即在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash &mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。   国家蛋白质科学中心上海(筹)在保障上海设施高效运行的同时,定位于蛋白质科学研究,研究内容涵盖染色质结构与功能的调控、跨膜分子信息传递、非编码RNA以及结构生物学新技术和方法研究等学科领域,着重开展蛋白质多尺度结构分析、蛋白质动态结构研究、蛋白质修饰与相互作用研究、设备自主创新与集成研究和生物信息学与计算生物学等五大领域的研究。在未来的科学研究中,国家蛋白质科学中心/上海(筹)/蛋白质科学研究(上海)设施将围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业发展需求,保障国家中长期科技规划纲要部署的蛋白质重大研究计划的实施,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化,提供全面和完整的技术与条件保障,打造开放、协作、创新的国际一流蛋白质科学研究平台,为我国的蛋白质科学基础研究提供强有力的支撑。   背景介绍   蛋白质科学研究(上海)设施于2010年12月破土动工,总投资约7亿元,总建筑面积3.3万平方米,由中科院上海生科院承建,并依托上海设施同步筹建&ldquo 国家蛋白质科学中心· 上海&rdquo 。迄今,已有逾10位诺贝尔奖得主到访,对蛋白质中心表现出浓厚兴趣。
  • 【综述】蛋白质组学研究进展
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201601/insimg/4a14f65e-cb82-47d8-87d5-ea4b0d204756.jpg" title=" sss_56a5b6877c56c.jpg" / /p p   1、蛋白质组和基因组 br/ /p p   蛋白质组是指一种基因组所表达的全套蛋白质1,其英文为“proteome”。 有关蛋白质组的系统研究是蛋白质组学,英文为“proteomics”。基因组是生命体中全部基因的集合体,其英文为“genome”。有关基因组的系统研究是基因组学,其英文为“genomics”。 “proteome”和“proteomics”是由Marc Wilkins 及其同事于20世纪90年代初参照基因组和基因组学两个英文单词而创造出来的2。蛋白质组学是研发、利用、改进各种技术手段研究蛋白质组或在细胞某一生理通路中相关蛋白质集合的组成、结构、功能、代谢的一门新兴科学。 /p p   基因决定蛋白质的水平,然而,蛋白质的水平分为转录水平和表达水平,mRNA只包含前者,后者则是由mRNA被翻译所实现,而在翻译过程中通常伴随对蛋白质功能和活性起至关重要的修饰过程,如糖基化、泛素化等3。通过研究蛋白质组学,可以获取蛋白定位与修饰的定性信息和相关定量数据,丰富认知蛋白质表达水平和相关蛋白作用,对了解生命复杂活动有更深更全的认识。 /p p   2、蛋白质组的发展背景 /p p   自二十世纪九十年代以来,传统生物学得以突飞猛进地发展,并取得瞩目成就,其中三个重要点彪炳史册,也促使传统生物学获得质的转变。 /p p   第一 基因、表达序列标记(EST, expressed sequence tag)、蛋白质序列数据库的成长。细菌、酵母、线虫、果蝇的全部基因序列逐渐明了,甚至后来人类基因组计划也顺利告捷 其它的植物、动物、微生物也不断在探索。人们把已经掌握的基因分门别类地建立了序列数据库。 /p p   第二 生物信息学的发展。易获取的浏览型生物信息工具层出不穷,这种免费的网页式数据库可以让我们从其中获得所需的特殊的物质结构,如蛋白质结构中的结构域和模体等。 /p p   第三 寡核苷酸微阵列技术的发展。通过不同荧光标记的DNA样本同时与微阵列反应,形成不同荧光的现象,大幅提高Northern blot 的效率4。 /p p   3、蛋白质组学分类 /p p   蛋白质组学分类可有不同原则。 /p p   根据蛋白质来源可分为植物蛋白质组学、动物蛋白质组学、微生物蛋白质组学。植物蛋白质组学是以来源于植物或与植物相关蛋白质为研究对象,分析其在植物发生、生长、调节、凋谢等生命过程中的作用、功能、代谢、结构等的体系。同理,动物蛋白质组学是以来源于动物或与动物相关蛋白质为研究对象,最重要的一大内容就是研究人类相关蛋白质。微生物蛋白质组学是以来源于微生物或与微生物相关蛋白质为研究对象。 /p p   根据研究目的和阶段不同可分为结构蛋白质组学、表达蛋白质组学、功能蛋白质组学。结构蛋白质组学主要分析蛋白质大分子的多级结构形态,包括氨基酸顺序、二级结构、三级结构和四级结构 并着重于研究其共性结构特征和特殊功能基团 也是用于建立细胞内信号转导的网络图谱并解释某些特定蛋白表达对细胞产生特定的作用5。表达蛋白质组学是以经典蛋白质组技术如双向凝胶电泳和图像分析为方法着重于研究细胞内蛋白质表达过程及结果的体系3。功能蛋白质组学是以细胞内单一同种蛋白质功能体现、蛋白质之间、蛋白质与其他大分子之间相互作用关系为研究目的,研究和表述选定蛋白质,探明有关蛋白的修饰和信号转导通路,疾病机制或蛋白-药物作用关系3。 /p p   根据研究内容,还可分为组成性蛋白质组学、差异显示蛋白质组学、相互作用蛋白质组学。组成性蛋白质组学是鉴定某个体系的蛋白质并阐述其翻译后修饰的特性。差异显示蛋白质组学又名比较蛋白质组学,是对重要生命过程或人类重大疾病进行生理、病理体系或过程的蛋白质表达比较。相互作用蛋白质组学则是研究蛋白质间相互作用,绘制某体系蛋白质作用网络图谱8。 /p p   4、白质组学研究工具 /p p   蛋白质组学研究的重要工具主要有四个。 /p p   第一,蛋白质、表达序列标记(EST, expressed sequence tag)、基因序列数据库的建立与成熟 也可以说是生物信息学。因为蛋白质组学中所用的大多数技术所获得的数据通常都是高通量、高复杂度的,只有通过生物信息学分析才能对蛋白质的种类、结构和功能进行分析确定。 /p p   第二,质谱(MS)技术。其将样品分子离子化,根据离子间质荷比的差异分离并确定质量,实现高灵敏度、高特异性。首先,质谱技术能准确测量高达100kDa的完整大分子蛋白质,其准确度和特异度比SDS-PAGE还要高。其次,质谱技术也能准确测量从蛋白质分解下来的多肽。最后,它还可以测定多肽的氨基酸顺序,即多肽测序4。现有三条途径,一是肽链质量图谱,二是串联质谱途径,三是联合途径7。其中一种较理想的技术平台是表面增强激光解吸离子化飞行时间质谱(SEL-DI)技术,可分析疏水性蛋白质、pI过高或过低蛋白质、低分子量蛋白质(& lt 25 000)和未经处理的样品中许多被掩盖的低浓度蛋白质,短时间内即可获得蛋白质的分子量、PI、特殊修饰位点等参数8。 /p p   第三,能将MS数据与数据库中特异的蛋白质顺序匹配的软件。它是快速、特异地将第一和第二工具联系在一起的分析方式。 /p p   第四,蛋白分析分离方法。通过蛋白分析分离方法可以简化蛋白复合物,同时产生不同蛋白质差异比较方法。普通的蛋白质分析分离方法包括1D-SDS-PAGE、高效液相色谱法(HPLC)、毛细管电泳(CE)、等点聚焦电泳(IEF)等。其中二维凝胶电泳如2D-SDS-PAGE是目前蛋白质组学中分离单一蛋白质的广泛应用方法。当然,多维分析分离方法是最理想的分离蛋白质和多肽的方法,譬如,离子交换液相色谱与反相高效液相色谱串联形成的分离系统是分离多肽混合物的有力方法4。 /p p   5、白质组学的应用 /p p   蛋白质组学原则性应用包括四个方面4:组成性应用、蛋白质表达模型、蛋白质网络图谱、蛋白质修饰图谱。组成性应用是指运用质谱及其相关技术将目的蛋白质按相关标准定性或定量地纳入蛋白质数据库,在此过程中研发相应技术的应用。蛋白质表达模型是指研究在生理或病理状态目的蛋白质在细胞内定位并表达情况,同时研究细胞在暴露物理、化学、药物等因素下蛋白质表达状况。蛋白质网络图谱是研究两种或两种以上蛋白质在生物体内组成结构、表达功能、调节控制间作用情况。蛋白质修饰图谱是探明蛋白质的修饰定位及修饰后功能表现。 /p p   当然,蛋白质组学在生活中无处不在,疾病、食品、植物、药品等等。 /p p   蛋白质组学在疾病中应用方向主要是发现新的疾病标志物,以探明疾病发生机制、发展变化,为治疗途径提供思路。Brea等利用双向电泳串联质谱技术,差异比较心源性脑栓塞患者和粥样硬化血栓性梗死患者各12例的血清蛋白,发现触珠蛋白相关蛋白和淀粉样蛋白A等蛋白质在粥样硬化血栓性梗死患者血清中显著升高9。 /p p   蛋白质组学在食品中应用方向主要是检测食品中过敏源检测、鉴定食品成分等,也给食品科学研究提供了新的研究思路和技术3。李明云等优化了相应的试验条件,并将蛋白质组双向电泳相关技术引入大黄鱼肝脏蛋白质分析中,得到了较清晰的大黄鱼肝脏蛋白双向电泳图谱。 /p p   蛋白质组学在植物中应用方向主要是植物群体遗传、环境信号应答与适应机制、植物组织器官、植物亚细胞等7。其中,如果研究的植物是农作物如棉花、马铃薯、水稻等,就可以简单地视作蛋白质组学在农业中的运用了。Chang等对玉米强制缺氧和低氧研究,发现低氧处理的效应不仅是氧气含量过低诱导增加糖酵解酶,通过质谱鉴定了46个相关蛋白质10。 /p p   蛋白质组学在药品中应用方向主要是药物研发、药物作用机制、耐药机制、药物毒理学等。在对紫杉醇类药物抗癌作用研究中,Bauer等对乳腺癌复发患者进行紫杉醇类药物治疗后进行蛋白质组学分析,发现a-防卫素可作为预测该类药物治疗乳腺癌治疗作用的生物标记物11。 /p p   6、展望 /p p   蛋白质组学在短短30年间发展迅猛,渗入到生活的许多方面,也对保证人类生存质量和良性繁衍有重大作用。但其思路不开阔,技术高效性、灵敏性、特异性仍有待提高,应用普及度低,蛋白质分离、纯化技术研发,基因组学丰富度低是制约蛋白质组学及其相关技术发展的瓶颈。不过,相信随着物理技术和化学方法的不断发展,研究水平的深入,蛋白质组学会随着基因组学的发展得到更进一步地丰富。 /p p   参考文献: /p p   1.诗,吕建新主编《分子生物学检验技术》第2版 /p p   2.Pandey A, Mann M. Proteomics to study genes and genomics [J] Nature,2000,405(6788):837-846. /p p   3.尹稳、伏旭、李平《蛋白质组学的应用研究进展》 [J]. 生物技术通报 2014年第1期 /p p   4.aniel C. Liebler《Introduction to Proteomics》:1-13 /p p   5.英超,党源,李晓艳,等. 蛋白质组学及其技术发展 [J]. 生物技术通讯,2010,21(1):139-144. /p p   6.鑫《比较蛋白质组学研究与应用进展》[J]. 国际免疫学杂志 2006年5月第29卷第3期:156-159 /p p   7.宇,荆玉祥,沈世华《植物蛋白质组学研究进展》 [J] 植物生态学报,2004,28(1):114-125 /p p   8.ore LE,Pfeiffer R,Warner M,et al. Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology . Biochem Mol Toxicol , 2005,19(3):176. /p p   9.rea D,Sobrino T,Blanco M, et al. Usefulness of haptog lob in and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation [J]. Atherosclerosis,2009,205:561-567. /p p   10.ng,W.W.,L.Huang,M.Shen,C.Webster,A.L.Burlingame& amp J.K.Roberts.2000.Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low oxygen environment,and identification of proteins by mass spectrometry.Plant Physiology,122:295~318. /p p   11.er JA,Chakravanhy AB,Rosenbluth JM,et al.Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neo-adjuvant paclitaxel and radiation[J].Clin Cancer Res,2010,16(2):681-690. /p p br/ /p
  • 总裁专访 | 蛋白质组学新里程
    2020年是蛋白质组学发展关键的一年,全球新冠疫情突显了蛋白质组学在应对公共卫生危机中的临床应用。人类可以从这次新冠疫情中汲取许多经验,毫无疑问地,这些将在未来几年内影响蛋白质组学发展。近日,Technology Networks与布鲁克道尔顿生命科学质谱执行副总裁Rohan Thakur博士进行了交流,讨论了蛋白质组学的研究现状以及蛋白质组学在新冠疫情研究中发挥的作用。Rohan Thakur:我认为HUPO Connect 2020大会有两个特别的亮点:PaSER的推出和实现真正意义上的单细胞分析。首先是PaSER的推出,这是我们IPA并购的第一款基于GPU强大数据处理功能的搜索引擎软件。PaSER适用于翻译蛋白质组学,其涉及到很多运算并产生的文件格式较大。当您进行搜库时,这些生成的大量数据集将遇到很多问题,如假阳率等。PaSER致力于解决减少搜库时间以至于花费更少的时间用在数据分析上。间由传统60-90分钟的运行缩短到11分钟。例如Roman Fischer博士和Andrew Webb博士的研究就利用timsTOF Pro成功缩短了分析时间。 布鲁克于2020年5月8日完成了与IPA的资产并购,并在HUPO 2020大会推出了新产品PaSER,实现了“实时数据采集与分析”功能,当数据采集完成时很快即可以获得蛋白与肽段信息。第二个亮点是Matthias Mann教授发表了关于单细胞蛋白质组学在原型系统上取得了早期数据。从这个系统得到的单细胞的数据实现真正的单细胞蛋白质组学分析,而不是仅仅将多个细胞放在一起并称之为单细胞分析。这是蛋白质组学中一个突破性成就,Matthias展示的数据非常让人震撼。Rohan Thakur:Catherine Wong(黄超兰)教授在《Nature Communications》上发表的一篇关于COVID-19的研究论文。他们利用timsTOF Pro得到蛋白质组学数据并提出了新冠肺炎两阶段的发病机制。Rohan Thakur:由于许多软件都是为分析小型数据而编写的,所以我们现在面临最根本的挑战是如何处理成爆发势态的海量数据。如果需要比较蛋白质组学与基因组学,您需要通过取得基因组学、蛋白质组学、糖组学、代谢组学等一系列数据,比较多组学数据才能提供生物护照或完整个人报告,这也是为什么个性化医疗从五年前开始如此流行的原因。近年来,蛋白组学处理数据速度不同往昔,高速的数据采集与处理允许您首先决定蛋白质组学研究数据是否合理。科学家们可以成功进行全群体的蛋白质组学研究,这些在短短两三年内取得的进步,实际正在改变人们对数据的看法,我认为这是我们所有人都面临的挑战。Rohan Thakur:MetaboScape是布鲁克代谢组学分析的关键软件包,SCiLS是一款出色的成像软件。在MALDI-2发布后,我们使用SpatialOMx从一个组织样本中收集蛋白质组学和代谢组学数据。通过综合这些信息并将其提供给技术人员、病理学家或肿瘤科医生,他们可以根据治疗或疾病进展来查看不同的分子特征,并决定如何进行个性化治疗。这就是我们正在进行的工作——连接软件生态系统,为用户提供各组学间的无缝体验,加速或扩宽用户决策过程并提供更合理的治疗方案。但是,目前生成的海量数据只会带来新的问题,还不能帮助科学家做出具有可行性的决定,这也是布鲁克主要想解决的目标。Rohan Thakur:我们有两项主要工作。一个是澳大利亚JeremyNicholson教授团队在研究COVID-19相关代谢和代谢物方面展现了出色的研究成果,为了解新冠后综合症铺平了道路。图:澳大利亚国家表型研究中心(ANPC)第二个项目是,Catherine Wong(黄超兰)教授团队用timsTOF Pro技术对COVID-19患者与健康志愿者的尿液样本进行蛋白质组学分析。这项研究利用dia-PASEF等方法可以检测到更多蛋白质提高了蛋白的覆盖深度。我认为新冠疫情带来的积极面在于为组学带来前所未有的关注度,科学家试图利用蛋白质组学和代谢组学来了解全世界的疾病,这几乎接近“登月”式的共同努力,有助于突出“组学”的运用来解决真正影响人类健康的问题。
  • 蛋白质组学产业动态|共同打造First-in-Class ADC,诗健生物与昱言生物达成战略合作
    2023 年11 月,上海诗健生物科技有限公司(以下简称“诗健生物“)与 昱言科技(北京)有限公司(以下简称“昱言生物”)产品开发合作框架协议签约仪式在上海顺利举行,双方就诗健生物联接子-载荷技术EZWi-Fit®与昱言生物发现的First-in-class靶点及抗体达成ADC共同开发战略合作。双方合作的首个ADC 靶点高度新颖,与当下ADC研发赛道靶点重度雷同的情形迥异。双方前期合作研究结果表明,该ADC分子在多种肿瘤模型上的药效及抗耐药性等方面都具备前所未有的显著优势,在灵长类毒理实验中表现出良好的安全性,具有差异化的临床适应症和开发途径,有望成功应对较为广泛类型的肿瘤治疗的未满足临床需求。合作项目目前价值逾50亿元人民币,并获得多家海外MNC的高度青睐,已就海外权益的授权开展洽谈。此后,双方将持续致力于ADC系列产品开发、临床及商业化的深入合作。  诗健生物是一家临床阶段的ADC新药研发公司,拥有ADC临床管线及全面的新药研发能力,也建立了拥有自主知识产权的新一代ADC技术平台EZWi-Fit®。  昱言生物在质谱-蛋白质组学领域多年深耕,拥有多个世界领先、不断更新迭代优化、全面的整合蛋白组学技术,包括目前领跑全球的单细胞蛋白组、针对血液的DeepSEEN®、针对组织的SurfSEEN®等核心工具。昱言自主获取全质控、高质量、高深度、多维度、无偏倚的全景蛋白质组学信息,利用昱言内部独有的整合组学系统PrOmics®,发现真确的疾病机理,开发出更精准的、高度可验证可转化的创新生物标志物和创新药物靶点。  此次合作,双方旨在通过各自优势技术的有机联合,加速开发 First-in-class ADC药物,实现互利共赢。  昱言生物创始人兼董事长黄超兰教授表示: 诗健生物是一家处于临床阶段的ADC药物研发公司,具有自主知识产权,独特和领先的ADC linker-payload平台,我们联合开发的ADC药物展现了高度优异的有效性和安全性。首个合作的ADC药物分子FS001在结直肠癌,胆管癌,肺鳞癌等难治癌种当中有着极大的治疗潜力和市场前景。我们看好FS001将成为全球新药物靶点领域,兼具First-in-class和Best-in-class属性的ADC治疗药物。此次,昱言生物与诗建生物战略合作,强强联合,必将使实体瘤治疗更上一个高台阶,为癌症精准医疗开拓出一个崭新的前景。我们相信,经过共同努力,我们双方一定能够在ADC药物开发的发展上,建立长期的、深入的合作,实现优势互补、互利共赢。  诗健生物创始人兼CEO周清博士表示:昱言生物是一家优秀的蛋白质组学研发公司,具备从临床蛋白组信息挖掘,靶点及抗体的发现和验证,最终到产品转化的一站式整合蛋白质组学能力。在双方前期合作当中,昱言公司展现出了在First-in-class靶点及抗体发现上的超高实力。此次诗健生物与昱言生物合作的首个ADC分子具备显著的优效性和安全性。双方在ADC领域的深度战略合作,将大大助力诗健公司的EZWi-Fit®平台技术和其他创新成果拓展到更广阔的First-in-Class治疗靶点和临床适应症。  关于昱言生物  Foreseen Biotechnology  昱言生物成立于2021年,由黄超兰教授在巢生孵化,红杉,源码,招银国际等资本支持下创办。有多位具有跨国药企研发经验的海归博士为创始高管团队。昱言生物蓬勃高速发展,目前在北京、上海、和无锡各设有一个研发中心,北京逾千平的总部运行了多台高精度的质谱仪用于临床大队列样本的蛋白质组获取和整合组学系统PrOmics®的靶点筛选 上海研发中心位于上海市的张江药谷核心地带,多名在跨国药企有丰富创新项目研发经验的海归博士带领团队,专注于临床蛋白组信息挖掘和下游产品的转化,具有药物靶点选择,靶点验证,抗体筛选,抗体验证,生物标志物的检测试剂盒开发和治疗药物早期开发等一系列的顶尖转化医学能力 无锡研发中心致力于精神神经类疾病诊断产品的后期临床转化开发和临床获批。  关于诗健生物  Escugen Biotechnology  诗健生物于2017年在上海浦东新区张江高科技园成立,聚焦ADC新药研发,公司由兼具数十年国外和本土生物医药企业研发经验的资深“海归”科学家创建,创业团队在国内外行业领先的生物医药企业累积了丰富和成功的研发经验,研发能力覆盖抗体发现、生物偶联、工艺开发和质量研究、临床前研究和临床研究。诗健生物的首个临床阶段管线ESG-401是一款靶向TROP-2 的ADC,采用创新型稳定可降解联接子,从而显著降低了脱靶毒性。临床研究数据提示,ESG-401耐受剂量远高于同靶点其他ADC,脱靶毒性和在靶毒性发生率低,程度轻,有明显的安全性优势。由此带来的ADC剂量和体内暴露的提升,使该管线在晚期多线经治乳腺癌患者中展现出令人鼓舞的药效,且对内脏和颅内转移灶都有显著抑瘤效果。    关于诗健生物EZWi-Fit® ADC 技术平台  EZWi-Fit®是诗健生物具有自主知识产权的新一代ADC技术平台,已成功递交专利优先权申请,并取得注册商标。  EZWi-Fit®技术平台采用稳定可降解联接子和拓扑异构酶I(TopI)抑制剂载荷。该平台产生的针对多种靶点的ADC体内活性明显高于其他TopI抑制剂为载荷的ADC 在包括MMAE、Dxd在内的多种载荷分子耐药模型上,仍显示出强大的抗肿瘤活性 在靶点表达水平低、异质性高的多种PDX模型上稳定地展现肿瘤抑制和消除的作用 具有良好的药代动力学特征和安全性。诗健生物已系统地完成了平台技术的机制研究,在分子、细胞和体内水平完成了抗耐药、旁观者效应、低表达靶点肿瘤模型上的体内活性等方面阐明了机理,为该技术相对国际对标技术平台的竞争优势提供了具有说服力的客观证据。诗健生物已利用该平台技术对针对多个靶点的ADC开展体外和体内研究,均获得了优效性证据,也在数款ADC的非人灵长类动物安全性评价中获得了优异的安全性数据。  EZWi-Fit®在多个维度超越了国际ADC领域对标技术。诗健生物正以此为依托,拓展”First-in-Class”和“Best-in-Class”ADC管线的布局。
  • GE医疗携完整蛋白质研究解决方案亮相第八届中国蛋白质组学大会
    2013年9月7日, 重庆 &ndash 在今天开幕的第八届中国蛋白质组学大会上,GE医疗生命科学部以&ldquo 成功的要素&rdquo (Ingredients for Success)为主题精彩亮相。通过仪器展示、技术培训等多种形式,向参会嘉宾、学者全面展示其完整的蛋白质研究解决方案。 GE医疗此次从&ldquo 探索、 发现、纯化、鉴定、确证&rdquo 五个方面展示了其领先的蛋白质研究解决方案。从组学的解析和修饰的鉴定,到分子及细胞水平的结构与功能的探索,GE医疗都可以提供一系列的世界领先的科研工具,以跨学科的技术与手段,帮助科学家解决蛋白质组学研究中的难题。 GE展台 会议期间,GE医疗展示了AKTA Pure 和AKTA Avant蛋白纯化系统,这两款世界知名的生物大分子纯化系统已经成为基础科研机构和医药企业的必备工具,而其丰富的色谱柱与填料产品,更是为应对分离纯化的各种挑战提供了多样化的选择。就在会议前夕,GE医疗发布了最新的AKTAPure150纯化系统,其系统单泵最高流速可以达到150mL/min,且可以兼容直径范围在70~100mm的工业层析柱。伴随着这款高流速系统的推出,Ä KTApure 系列选择将更丰富,涵盖从实验室级别到小规模工业级别的梯度解决方案,用户可以根据预期的纯化规模选择更为合适贴心的系统。 GE医疗的Biacore与 MicroCal非标记生物物理技术,是全面解析生物分子相互作用的不二选择,此次展示的ITC200从高灵敏的热力学角度解密分子间的相互作用,及其结构和功能,在分子水平上描述相互作用的发生机制,在药物设计、蛋白质和酶工程,以及蛋白质结构等领域有这广泛的应用。此外GE医疗还展出了DeltaVision高分辨活细胞显微镜,DV Elite拥有创新的优秀光学组件,是目前最灵敏的显微镜之一,已成为长时间活细胞成像和研究的利器。 GE医疗员工向参会代表介绍高分辨活细胞成像系统 在大会举办的&ldquo 蛋白质组学新技术培训&rdquo 中,GE医疗生命科学部应用工程师张名昌进行题为&ldquo 如何成功进行荧光Westernblotting实验&rdquo 的技术培训,介绍了运用GE医疗生命科学部的ImageQuant LAS和Typhoon系列成像系统实现荧光WesternBlotting的整体解决方案。同时,还与到场嘉宾一同分享和讨论荧光Western Blotting的实验经验和应用。 更多相关信息,请咨询GE医疗生命科学部热线:800-810-9118 或 400-810-9118。
  • 三问中国人类蛋白质组计划
    前不久,历经多年论证、被誉为我国生命科学研究领域里程碑事件的中国人类蛋白质组计划(简称CNHPP)正式在京启动,来自清华大学、北京大学、中国科学院、军事医学科学院、解放军总医院、复旦大学等40多所高校、科研机构的近百名专家,共同见证了这一历史性时刻。 蛋白质组计划和基因组计划有何不同?中国的蛋白质组研究在国际上处于什么位置?中国人类蛋白质组计划将如何进行? 围绕上述问题,人民日报记者独家采访了有关专家。 一问 为什么要搞中国人类蛋白质组计划? 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能从根本上阐释生命 相比&ldquo 蛋白质组&rdquo ,&ldquo 蛋白质&rdquo 一词更为人们所熟知。它是生物体内一种极为重要的高分子有机物,占人体干重的54%,1838年由荷兰科学家格里特首先发现。 基于此,1994年,澳大利亚科学家率先提出&ldquo 蛋白质组&rdquo ,意指某个时刻,某个组织、器官或个体中所有蛋白质的集合,是一个整体的概念。 科学家们之所以对蛋白质组产生浓厚兴趣,还得从人类基因组计划说起。2003年4月,经由6国科学家历时13年奋战的人类基因组计划画上了句号。 &ldquo 科学界曾经认为,只要绘制出人类基因组序列图,就能了解疾病的根源。但我们错了。&ldquo 国际蛋白质组组织首任主席萨姆 哈纳什说,事实上,我们只了解10%基因的功能,剩下的90%仍是未知的。 &ldquo 人们总以为蛋白质组计划是基因组计划的附庸或者说是子产品,这也是一个误区。人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能去揭示人类 生、老、病、死的全部秘密,基因组序列只是提供了一维遗传信息,而更复杂的多维信息则发生在蛋白质组层面。&rdquo 国际人类蛋白质组计划执委、亚太蛋白质组组织 主席、中国科学院院士贺福初说,基因组和蛋白质组的关系,好比词典与文章、元素表与化工厂。 &ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大,想要解密基因组,必须先系统认识蛋白质组。&rdquo 贺福初认为。 他举例说,人体各个器官如耳、鼻、喉、心、肝、肺,其基因组完全相同,不同的是蛋白质组。因此,不同器官形态、功能各异,是蛋白质组在背后&ldquo 操盘&rdquo 。 &ldquo 就 像蛹化蝶,无论形态如何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红这样比喻。在她看来,人的每一种生命形态,都是特定蛋白 质组在不同时间、空间出现并发挥功能的结果。比如,某些蛋白质表达量偏离常态的高或低,就能够表征人体可能处于某种疾病状态。 &ldquo 生,源于基 因组;命,却一定由蛋白质组决定。只有蛋白质组才能从根本上阐释生命。&rdquo 贺福初进一步解释道,&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊 断标志物、治疗和创新药物,可以全面提高疾病防诊治水平。这个项目如完成,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo , 进而找到针对性的诊断措施、干预措施和预防措施。&rdquo 二问 中国能搞人类蛋白质组计划吗? 以贺福初院士为代表的中国蛋白质组研究团队,在该领域向世界交上了一份漂亮的答卷,在某些方面已走在全球前列 近代以来,中国先后错过了多次世界科技革命的机遇。蛋白质组学研究,恰恰是我国生命科学中少数几个能够始终跻身世界前沿的科学领域。 据专家介绍,中国人类蛋白质组事业的发展,也催生了一系列大型研究基地和覆盖全国的协作网络。据不完全统计,目前包括中科院、教育部、卫生计生委、军队以及 湖南、广东、重庆、浙江等在内的省部级重点实验室已超过10个。由贺福初院士发起,以军事医学科学院、清华、北大为代表的7家单位共同筹建的北京蛋白质组 研究中心,于2005年被确立为&ldquo 人类肝脏蛋白质组计划&rdquo 国际执行总部,成为一座世界级的&ldquo 生命之都&rdquo 。 此外,自2000年至2010年,中国累计发表论文2800多篇,位列全球该领域第四。值得一提的是,最近4年,中国在该领域发文量直线上升,历史性地达到1000多篇,年度论文发表数已跃居世界第二(第一为美国),位居全国其他学科前列。 历经十余年的努力,中国蛋白质组研究团队向世界交上了一份漂亮的答卷:成功构建迄今国际上质量最高、规模最大的人类第一个器官&mdash &mdash 肝脏蛋白质组的表达谱、修 饰谱、连锁图及其综合数据库;首次实现人类组织与器官转录组和蛋白质组的全面对接;在炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜 在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌 细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物 标记&hellip &hellip 上述几项成果均发表于国际顶级的《科学》《自然》系列杂志。 三问 中国人类蛋白质组计划怎样进行? 将分三个阶段进行,计划产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 世界蛋白质组学领域内的新一轮科技竞赛已开始。中科院院士张玉奎指出,虽然中国在蛋白质组一些领域走在了世界前列,但国外有些团队如今正快马加鞭。这警醒我们:必须加快步伐,否则很快将被甩出第一阵营。 &ldquo 逆水行舟不进则退,我们绝不能丧失已经取得的优势。&rdquo 贺福初说。 据悉,中国人类蛋白质组计划将分三个阶段展开。第一阶段,全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及主要的组织器官的蛋白质组,了解疾病发生的主要 异常,进而研制诊断试剂、筛选药物,力争2017年左右完成;第二阶段,争取覆盖中国人的其他常见疾病,提升中国人群疾病的防治水平;第三阶段,实现人类 更多疾病的覆盖。 当前,全球每年产生的生物数据总量高达EB级(10的18次方比特),生命科学领域正在爆发数据革命。生物数据最大的是基因组数据,它完成后,蛋白质组数据 无疑将成为更大、更重要和更核心的科学数据。我国已部署建设的蛋白质科学基础设施将相继投入运行,这是国际上最大的蛋白质组学研究基地,将有力支撑和推动 中国人类蛋白质组计划的实施和大数据的产生。中国人类蛋白质组计划产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 。 &ldquo 这 项计划,是以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,绘制人类蛋白质组生理和病理精细图谱、构建人类蛋白质组&lsquo 百科全书&rsquo , 为提高重大疾病防诊治水平提供有效手段和中国生物医药产业发展提供原动力。&rdquo 贺福初说,&ldquo 我们首先看重科学价值,其次才是经济效益,因为这是真正的原始创 新,是中国能够引领世界科技发展的重要领域之一。&rdquo
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 赛分科技参加第五届蛋白质和多肽大会
    2012年3月23-25日,第五届蛋白质和多肽大会(五周年庆)在北京国际会议中心隆重召开,本届会议的主题是“强大的蛋白质和多肽”。除主论坛外,大会科技议题还包括:蛋白质科技前沿、蛋白质组学与宏蛋白质组学、人类疾病与蛋白质发现、蛋白药物及其临床意义、非人类蛋白的研发、多肽科学、多肽化学与合成方法、多肽药物发现、对生物活性肽及其应用的探索、肽的新应用、蛋白质工程技术、仪器设备的创新等14大分会和100多个分论坛。赛分科技作为全球知名的生物分离色谱领航者,积极参加了此次会议,并带来了赛分科技的最新科技成果——“抗体分析方法包”。 赛分科技最新解决方案——“抗体分析方法包” 在此次会议中,赛分科技总裁兼首席技术官黄学英博士应邀主持了“蛋白质质量控制/质量评价与分析工具”专场,并发表了“单克隆抗体在分离与鉴定中的全套解决方案”的主题报告。 黄学英博士在报告中 单克隆抗体作为一种重要的治疗蛋白质,越来越受到关注。赛分科技推出的抗体分析方法包为单克隆抗体的分析和鉴定提供了完整的解决方案。其中,Zenix™ 300体积排阻色谱柱可高效分离抗体单体、多聚体、片段、轻链和重链;Antibodix™ 阳离子交换色谱柱用于分离在结构上差异很小的单克隆抗体异构体。Bio-C8反相色谱柱可分离Fab和Fc以及轻重链。 与会观众和专家们对赛分科技的“抗体分析方法包”产生了浓厚的兴趣,积极提问,并纷纷索取相关产品资料。会议交流热烈,气氛友好。 赛分科技展台 赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。
  • 解析人类蛋白质组草图公布
    1 人类蛋白质组草图公布   之前,尽管不少大型的蛋白质组数据集,已经收集约上万个蛋白数据,然而覆盖80%的人类蛋白质组的草图却并未绘制。此次的研究,则突破了这一局限。   该图谱由德国慕尼黑工业大学、约翰霍普金斯大学/印度生物信息研究所等机构的两个团队独立完成。其中,在印度生物信息研究所和美国约翰霍普金斯大学等机构绘制了17 924个基因编码的蛋白质草图,其总数约占人类基因总数的84% 而慕尼黑理工大学领衔的团队,则对19 629个基因编码的蛋白质绘制草图,其总数约占人类基因总数的92%。不过,印度和美国团队,与德国团队所采用的实验数据来源略有不同,印度和美国的研究者从30个人体组织的许多不同的样品及细胞系(包括7种胎儿组织和6种血细胞类型)中提取、纯化所有蛋白质,并用质谱技术揭示组成各蛋白片段的氨基酸序列,因而两种数据的分析方法相对统一 德国的团队所采用的数据从公共数据库收集获得,而后与实验室生成的数据合并完成分析。在德国的研究中,慕尼黑工业大学的Bernhard Kü ster等人建立了搜索性公共数据库ProteomicsDB,而公共数据库收集获得的质谱分析数据约占ProteomicsDB数据的60%,其他的数据来自于60个人类组织体液,13个体液,147个癌细胞系。   这些蛋白大多为健康人群中组织和器官中表达的蛋白,对于理解疾病状态下发生的变化,具有现实的意义,如德国团队完成的数据能用于识别数百个翻译的基因间非编码RNAs(lincRNAs),比较分析通过蛋白质对癌症药物的敏感性,发现mRNA和组织中蛋白的定量关系等。同时,这两项研究也发现了许多新蛋白,而编码这些蛋白的基因之前被认为位于基因组的非编码区域,因而也丰富了对于遗传学研究的认识。   2 研究团队的基本背景   此次研究的美国和印度团队,由约翰霍普金斯大学的副教授Akhilesh Pandey领衔,而他也是印度生物信息学研究所首席科学顾问。此前,印度生物信息学研究所和约翰霍普金斯大学的生物信息学团队就有广泛的合作,例如两个机构的26名科学家经过18个月的努力,排列出了人类的X染色体顺序,并将其与黑猩猩、老鼠的基因组相比较,发现了新基因。   慕尼黑工业大学的化学和功能蛋白质组学分析者Bernhard Kü ster,其研究的主要领域是探索蛋白质的相互作用及其与活性药物成分的相互作用,分析癌症发生发展的分子机制,以及开发相应的临床治疗方法。作为研究者,Bernhard Kü ster也曾参与了蛋白质组技术平台上具有雄厚基础的Cellzome公司的发明(新的酶相互作用化合物的方法)。而Cellzome公司的药物研发平台,可对于特定蛋白相互作用的药物进行筛选,其具有高度的灵敏性,而葛兰素史克(GSK)公司也正在看中了这一点已将其并购。   3 中国人类蛋白质组计划(CNHPP)   在人类蛋白质组草图公布的同时,&ldquo 中国人类蛋白质组计划(CNHPP)&rdquo 已经由科技部正式批准启动实施。此前,中国科学家已倡导并领衔人类第一个器官(肝脏)国际蛋白质组计划(HLPP)。   在&ldquo 中国人类蛋白质组计划&rdquo 中,&ldquo 激光解析基体辅助离子源-蛋白测序仪器&rdquo 课题是重点研究方向之一,致力于蛋白质测序仪器和试剂国产化,从而加速蛋白质组学和生物质谱技术在临床领域的研究与应用。   4 蛋白质组测序技术的开发   蛋白质组是一个细胞、组织、有机体在一定时间内表达的所有蛋白质(总蛋白质)。对蛋白质组进行系统的、全面的研究,而快速、准确、低成本的蛋白质分离纯化技术(如双向电泳、计算机图像分析与大规模数据处理技术以及质谱技术等)的发展,则是系统、全面研究的基础。有了基因组计划和基因组测序技术的发展经验,人类在蛋白质组草图公布的前后,也就有了对低成本、高效率的蛋白质组测序技术的格外重视。例如,亚利桑纳州立大学的Stuart Lindsay团队正在致力于研究让单链肽段穿过纳米孔的技术,从而将纳米孔单分子DNA测序技术(第三代基因测序技术,采用纳米孔的单分子读取,与之前的测序技术测序时间长、价格比较昂贵、测序分子需要大量扩增、还需要进行荧光标记等相比,第三代测序技术读取数据更快,测序成本明显降低)的设计理念应用于蛋白质组的测序,开发蛋白质单分子测序技术。   5 蛋白质组学与个性化医疗   人类蛋白质组草图的成果表明,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成。这也说明了基因组和蛋白质组之间的巨大差别。例如,表观遗传研究的核心内容即是基因的拼接和翻译后修饰,而蛋白质随时间和空间的动态变化等,使得蛋白质组的研究远比基因组研究复杂。   尽管目前的个性化医疗以基因解析为特征,然而真正衔接基因型与疾病表型的还是蛋白质。随着蛋白质组测序技术的快速发展,也许蛋白质组学的研究会带动个性化医疗新的发展阶段。   本文作者:中国科学院上海生命科学信息中心 于建荣 江洪波。
  • 新技术找到人类蛋白质关键变构位点
    从不同角度显示的人类蛋白质PSD95-PDZ3 的三维图像。图片来源:安德烈福尔/CRG科技日报根据6日发表在《自然》网站上的一项新研究,人类蛋白质表面的潜在治疗靶点的数量比之前认为的要多得多。西班牙巴塞罗那基因组调控中心(CRG)的研究人员开发出一项突破性新技术,揭示了许多控制蛋白质功能的“秘密大门”,从理论上讲,这些“门”可以显著改变痴呆症、癌症和传染病等各种疾病的进程。现在,他们已经绘制出这些被称为“变构位点”的靶点的第一张图。这种发现靶点的方法可能会改变药物发现的“游戏规则”,从而研发更安全、更智能且更有效的药物。它使世界各地的研究实验室能够靶向任何蛋白质,包括那些以前被认为“无药可及”(undruggable)的蛋白质。蛋白质在所有生物体中发挥着核心作用,并执行重要功能,如提供支撑结构、加速反应、充当信使或对抗疾病。它们由氨基酸组成,在三维空间中折叠成无数不同的形状。蛋白质的形状对其功能至关重要,氨基酸序列中只要有一个错误就会对人类健康造成潜在的毁灭性后果。变构是蛋白质功能中一大未解之谜。当分子与蛋白质表面结合时会产生变构效应,这反过来又会导致该蛋白质远处的位置发生变化,从而通过“遥控”来调节其功能。许多致病突变,包括许多癌症驱动因素,都是因为其变构效应而具有病理性。尽管变构位点很关键,但它们却非常难找。此次,研究人员开发了一种名为双深度PCA(ddPCA)的技术来应对这一挑战。他们将其描述为一种“蛮力实验”,就好比发现一辆车有问题之后,不只是检查局部,而是拆卸整辆车,并逐个检查零件。通过一次性测试一万件零件,研究人员确定了所有真正重要的部件。CRG系统生物学项目协调人、该研究报告的作者本莱纳教授解释说:“我们故意以数千种不同的方式打破事物,以建立一个事物如何运作的完整图景。”该方法通过改变构成蛋白质的氨基酸来发挥作用,从而产生数千种不同版本的蛋白质,而序列中只有一两个差异。然后,研究人员在实验室的活细胞中同时测试突变蛋白质的影响。研究人员称,每个细胞都是一个小工厂,会生产不同版本的蛋白质。在一个试管中有数百万个不同的工厂,因此可以非常迅速地测试一种蛋白质的所有不同版本的工作情况。实验收集的数据被输入计算机神经网络进行分析,产生全面的地图,精确定位蛋白质表面的变构位置。该技术有望促进蛋白质功能和进化的研究。如果扩大规模,可以从氨基酸序列中精确预测蛋白质的特性。研究人员认为,一旦成功,这将开启预测性分子生物学的新时代,使发展新药和清洁的、以生物学为基础的工业成为可能。
  • 蛋白质技术实现突破 IBM助力癌症研究
    近日,IBM宣布全球网格大同盟助力”征服癌症”项目取得重大突破,科学家可以通过计算系统对以前复杂的手动流程实现自动化,加速识别与癌症有关的蛋白质结构,找出治愈癌症的最佳方案。   “结晶化”技术被攻克,蛋白质识别速度大幅提升   据世界卫生组织透露,2007年,在全球总的死亡人口中,癌症占13%。 该组织声称,2008年新增癌症病例1270万例,死亡760万人。在今后20年内,每年诊断出来的新增癌症病例将骤增至2100万,将有1300万人死于癌症。   IBM全球网络大同盟“征服癌症”项目旨在建立一个计算系统,用来准确识别固化蛋白质样本,实现样本x光检查,方便科学家进一步探索某些可能引发癌症的蛋白质的结构、形状和相互之间的作用。这个蛋白质样本固化流程叫做“结晶化”, 现已攻克。通过改进蛋白质 X 射线结晶学,研究人员能够更快地确定多种与癌症相关的蛋白质的结构,发现可能的药物介入方法,以便攻克这种致命的疾病。   在过去,人们不可能对某个给定的蛋白质的9,216张图片全部进行人工检查。即便有人试图以每秒一张图片的速度对图像进行检查,检查完所有12,500个蛋白质的图像也需要1,333天。人为评估也会有很大变化,即使同一个人也会存在不一致的情况。计算机检查同时具有定性和定量两方面的优势。但是,在对晶体识别流程实现自动化的早期阶段,计算机的准确率当时只有70%,而且只能对大约850个特征进行检查,现在已经能够对大约15,000个特征进行分析。   现在,通过全球网络大同盟,全球150万电脑用户志愿贡献剩余计算能力,参与数据处理。借助强大的计算处理能力,新的系统下,科学家们可以成功识别80%带有晶体的图像以及结晶之前存在98%的清澈蛋白质溶液液滴。 与人为检查相比,它对每个蛋白质进行检查的图像数量可以达到前者的6倍,而时间却极大地缩短。   IBM热心公益,全球网络大同盟服务社会   全球网格大同盟是IBM全球公众事业合作部公益捐赠合作项目的一项内容。当今世界,约有10亿台个人计算机,其中大多数的使用时间不到5%。想方设法使目前没能被充分运用的计算力最终造福全人类,这就是全球网格大同盟的宗旨。IBM全球董事长及首席执行总裁彭明盛于2004年11月16日向公众宣布全球网格大同盟将成为造福人类社会最大的公众网格。   全球网格大同盟目前已经成为化学领域有关蛋白质方面的权威数据库。这些数据可以帮助全球科研人员揭开众多癌症生长的神秘面纱,例如,乳腺癌、前列腺癌或者儿童白血病。同时,利用IBM的慈善处理器,通过对晶体的识别实现自动化,可加速各种生物科学和基因研究项目的研究速度,可以用于对其它试图获取蛋白质结构的项目。例如,全球营养水稻项目——利用全球网格大同盟来探索如何培育出抗病能力更强的水稻 发现治疗登革热的药物项目——发现有希望对抗登革热、丙型肝炎、西尼罗河病以及黄热病等病毒的药物的线索等。   据统计,全世界20%的新发癌症病人,以及24%的癌症死亡病人都在中国,目前中国的癌症生存患者和治愈患者仅为13%。促进蛋白质结晶技术的快速发展,可以为预防、早期诊断及治疗癌症,提供更多的技术可行性,对中国意义重大。   为此,IBM中国公众事业合作部经理彭文杰女士表示:“‘征服癌症’项目所取得的成果,说明了全球网格大同盟为科学领域带来的巨大价值。那些自愿捐献PC处理器计算资源的人,为中国和世界攻克癌症的发展进程做出了巨大贡献。他们值得为此而骄傲。”
  • 校准蛋白质分析仪的重要性及步骤
    蛋白质分析仪是生物化学和分子生物学实验室中重要的设备,它用于定量分析蛋白质样品,支持从基础研究到药物开发的广泛应用。为了确保蛋白质分析的数据准确性和重复性,定期进行仪器的校准是至关重要的。本文将讨论校准仪器的重要性,并概述有效的校准步骤。   蛋白质分析仪校准的重要性首先体现在保障数据质量上。精确的蛋白质测量对于了解生物样本中的蛋白质表达水平、检测疾病标志物、验证药物作用靶点等都至关重要。未经校准的仪器可能导致错误的结果,影响研究结论和治疗决策。   校准仪器有助于满足监管要求。在制药和临床领域,蛋白质分析必须符合严格的法规标准。定期校准的仪器能够产生符合这些标准的数据,帮助企业和医疗机构遵守法规,减少合规风险。   可以提高实验室之间的数据一致性。不同实验室使用的不同仪器,即使型号相同,也可能因为使用环境和操作习惯的差异而产生不同的测量结果。通过实施标准化的校准程序,可以确保不同实验室之间的测量结果具有可比性,这对于多中心研究和数据分析尤为重要。   蛋白质分析仪的校准步骤通常包括以下几个关键环节:   选择适当的标准物质:使用已经由认证机构校准过的标准蛋白质溶液作为参考。这些标准物质应当覆盖仪器的工作范围,并且具有已知的浓度和特性。   控制环境条件:在进行校准之前,确保实验室的环境条件(如温度和湿度)符合仪器的使用要求。环境因素对蛋白质测量有显著影响,因此控制这些条件对于获取准确结果至关重要。   操作人员培训:确保操作仪器的人员具有足够的知识和技能,以正确执行校准程序。这包括了解仪器的工作原理、操作规程以及校准的具体步骤。   执行校准程序:按照制造商提供的说明书或行业标准进行校准。这可能包括预热仪器、执行零点调整、检查和调整测量系统等步骤。   记录和验证:记录校准结果,并根据需要进行调整。完成校准后,使用标准物质验证仪器是否达到了预期的准确度。   定期复校:根据仪器的使用频率和制造商的建议,定期重复校准流程。这有助于及时发现和修正任何潜在的问题,保持仪器的较佳性能。   综上所述,校准蛋白质分析仪对于确保数据的准确可靠、满足法规要求、提高实验室间数据的一致性至关重要。通过遵循正确的校准步骤,用户可以确保他们的仪器始终处于较佳工作状态,从而获得高质量的测量结果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制