当前位置: 仪器信息网 > 行业主题 > >

生物镁合金

仪器信息网生物镁合金专题为您整合生物镁合金相关的最新文章,在生物镁合金专题,您不仅可以免费浏览生物镁合金的资讯, 同时您还可以浏览生物镁合金的相关资料、解决方案,参与社区生物镁合金话题讨论。

生物镁合金相关的资讯

  • 国家镁及镁合金产品质量检测中心建成
    9月8日,国家镁及镁合金产品质检中心建成,实验室进入检测试运行阶段。   国家镁及镁合金产品质量检测中心位于淇滨区湘江路以南,兴鹤大街东侧,于2011年3月8日获得国家质检总局批准建设。该中心建筑面积1.4万平方米,内部设置了力学实验室、三坐标实验室、探伤室等20余个实验室。“实验室采用半透明式设计,在设计中就考虑到通风、光线、电磁辐射、振动影响等因素,合理布局了实验室水路、电路、排风、透光等功能区,检测面积2500多平方米,实验室布局和环境条件达到国内同行业领先水平。”市质量技术监督检验测试中心建材室主任钱亚锋向记者介绍。   实验室内,几名工人正在调试设备。钱亚锋说:“我们投资1100多万元购置了直读光谱仪、三坐标测量机、ICP光谱仪等国内一流的专业设备。中心目前已经拥有金属镁专业检验检测设备50余台套,其中进口大型设备11台套。”据了解,该中心配置了国际先进、国内一流的检测设备,检测能力基本覆盖镁及镁合金产品的原料和成品。“以前,国内没有专业镁及镁合金产品检测机构,金属镁产品都送到有色金属研究院等机构检验,国家镁及镁合金产品质量检测中心建成以后具备镁产品的质量检验、仲裁检验、标准制定、科学研究、技术服务等多种功能,能够承担国家、省、市监督抽查和定期监督抽查任务。总体达到国内一流水平。”   “国家镁及镁合金产品质量检测中心的建成,对我市打造‘中国镁谷’将产生重大而深远的影响。”市质监局副局长黄华说。
  • 制备好镁合金样品的原因:除了技术,还有这两款金相抛光布!
    金相样品制备中,镁和镁合金由于基体硬度较低而沉淀相硬度较高而很难制备,容易出现浮雕现象,研磨抛光过程载荷太大又可能造成机械峦晶等缺陷。因此,在抛光过程中,应设法恰当选用金相抛光布。我们实验室制备美镁合金样品通常使用的是四步法,其中第三、四步分别选用了两种材质的金相抛光布。无绒的SatinCloth抛光布和长绒的MicroMet抛光布,这两种金相抛光布均为QMAXIS的抛光布,下面分别介绍一下。SatinCloth金相抛光布:在中等抛光步骤,使用3μm金刚石抛光液,配合使用这款抛光布。其材质是由人工合成丝和蚕丝紧密编织而成,属无绒抛光布,其编织纹理适合配合9µm及以下的金刚石、Al2O3、SiO2 抛光液使用,不但能很好的Hold住研磨介质微粒,还可以使磨料颗粒分布均匀,与样品表面充分接触,达到快速磨削、去掉变形层,表面平整的效果。这款金相抛光布可应用于各种金属、岩相、陶瓷和涂层等材料样品的制备。用它来配合金刚石抛光液给镁合金样品做中等抛光,效果不错。MicroMet 金相抛光布:在精细抛光步骤,使用1μm金刚石抛光液,配合使用这款抛光布。其材质是由人造纤维与棉背衬编织而成,属长绒的抛光布,纤细的绒毛表面,对微细的研磨微粒有很好的分布和承载作用,主要应用于材料的精细抛光步骤,配合3µm及以下的金刚石、Al2O3、SiO2 抛光液使用,令抛光更加柔和细密,有效的去掉样品表面细微划痕,表面平整度和光洁度更佳,用它来配合金刚石抛光液给镁合金样品做精细抛光很是非常理想的。注意:抛光过程加载力不要过大,避免浮雕、机械孪晶等缺陷。温馨提示:由于镁合金容易被水侵蚀。制备步骤中尽量不用水,可将1到3份的甘油混合到酒精中作为润滑剂,也可在研磨制备步骤中都使用配制的甘油酒精混合液。 切记抛光时一定要用冷却剂,因为细的镁粉是火灾隐患,千万注意哦。镁合金样品制备难度大,要制备好,除了具备熟练的制备技术外,还要有无绒的SatinCloth和长绒的MicroMet这两款金相抛光布提供助力!需了解更多制备方法,欢迎与可脉检测的应用工程师联系,愿为您提供更快捷的解决方案。
  • 鹤壁镁及镁合金产品质检中心通过省级站批复
    鹤壁镁及镁合金产品质检中心通过省级站批复   ——下一步将申请国家级   4月13日,记者从我市质监局获悉,我市筹建国家镁及镁合金产品质检中心已完成立项工作,并通过省质监局对省级站的正式批复,正在与土地、规划等部门协调选址、规划、设计等工作。下一步,将通过省质监局向国家总局递交申报材料,待国家局批复后予以实施。   在我市建设国家镁及镁合金产品质检中心,将极大地提高我市金属镁产业在国内外的知名度和美誉度,进一步吸引国内外投资者来我市投资建厂,促使各类煤产业发展优势资源向我市聚集。同时,以国家质检中心为平台,聚集高层次生产、研发和检验人才,可以免费为企业培训检验人才,通过质量待检减轻企业重复建设实验室的负担,为企业提供新产品研发、试制、鉴定检验等技术服务。   目前,该项目已列入市政府大项目建设,进入项目建设“绿色通道”,由市政府大项目办公室统一组织实施、督办,在政策等方面将给予更多的支持。
  • 解决镁合金样品制备的浮凸问题,用这种金相抛光布很有效!
    镁及其合金材料,由于其基体硬度较低,延展性强,而沉淀相相对硬度又较高,因此,在金相样品制备过程中,样品是很难制备的。主要表现在浮凸现象较为突出。解决这个问题,一般的方法是适当减少抛光时间,或者抛光时用金刚石抛光膏替代抛光液。我们实验室,除了采用以上两种方法外,同时使用美国进口ChemoCloth金相抛光布配合抛光剂进行精细抛光,这种方法很有效。可脉检测工程师的建议我们,在镁及其合金样品的制备时,精细抛光步骤使用美国QMAXIS的ChemoCloth 抛光布,浮凸问题轻松可以解决。来自美国QMAXIS的这款ChemoCloth金相抛光布,使用耐化学腐蚀合成织物制成,无绒的表面,适用于配合1µm及以下的Al2O3、SiO2 抛光液,对钛、镁及其合金、不锈钢、铅 / 锡焊料、电子封装、软的有色金属和塑料等类材料的精细抛光。这款金相抛光布,对于我们制备镁合金样品非常适用。其多孔的纤维结构能更好地Hold住研磨介质颗粒,良好的耐化学腐蚀性,以及软硬适度的特性。这些特性使磨料可深入到织物内部,虽然抛光时去除率小了一些,但能有效避免浮凸现象产生,进而达到样品制备的技术要求。 除此之外,ChemoCloth 金相抛光布,非常耐腐蚀,一点也不会出现掉毛,掉色,和卷边的现象。使用了很久,除了表面自然磨耗外,没有给所制备的样品表面带来污染和二次损伤的现象,它比普通金相抛光布要耐用很多,使用寿命长的特点也很突出。解决镁合金样品制备的浮凸问题,用这种金相抛光布的确很有效!了解更多详情,随时联系可脉检测的金相工程师,会获得更专业的帮助。
  • 单智伟团队7月《科学》刊文一作刘博宇:原位电镜研究镁合金的应用与启发
    p    strong 仪器信息网讯 /strong 北京时间7月5日凌晨,国际顶级期刊《Science》刊发西安交通大学单智伟教授团队最新研究成果:通过采用原位电镜纳米力学测试技术,表明塑性差并不是镁的固有属性,通过提高流变应力(如通过细化晶粒或提高应变速率)来促进位错形核和滑移,可能是行之有效的增塑方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 186px " src=" https://img1.17img.cn/17img/images/201908/uepic/d367c37d-074a-416d-bf09-fd0a12a74a7b.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 186" border=" 0" vspace=" 0" / /p p   成果刊发消息一出,便引起业界广泛的关注。西安交通大学官网关于此项成果报道的关注点击也已迅速破万。关于此次刊发成果,西安交通大学青年教师刘博宇博士为本论文的第一作者,博士研究生刘飞为共同第一作者,西安交通大学单智伟教授、澳大利亚莫纳什大学聂建峰教授和美国内华达大学李斌教授为共同通讯作者。参与该工作的科研工作者还包括西安交通大学张磊教授、博士研究生杨楠、西安科技大学翟啸波博士、美国麻省理工学院李巨教授、约翰霍普金斯大学马恩教授、内华达大学博士研究生杨洋。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/735ec5c6-2054-4877-9e5c-f6aa64e575f3.jpg" title=" DSC_0066_副本.jpg" alt=" DSC_0066_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 西安交通大学青年教师刘博宇博士进行报告 /span /p p   7月13日,该刊发成果的第一作者刘博宇博士在成都“中国材料大会”的“透射电镜材料表征与评价”专场进行了题为《原位电镜技术在镁合金腐蚀防护和强韧化设计方面的应用与启发》的演讲报告,并讲解到了7月5日刊发《Science》文章中的系列研究过程。作为大会合作媒体,仪器信息编辑全程听取了报告,受益良多。以下,笔者将刘博宇博士现场演讲内容进行整理,以期为相关领域科研工作者带来启发。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201908/uepic/8ff04357-11e9-47c1-bbbd-2d1a2289d189.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 单智伟教授与团队成员一起讨论实验结果(图自西安交大官网) /span /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong “原位透射电镜技术”之于“金属结构材料研发” /strong /span /p p   直观来看,金属结构材料的研发与应用,往往是宏观的,看得见的,以米为单位的等 而原位透射电镜的观察与测试则是微观的,纳米的,原子的。两者似乎两不相干,从微观到宏观相隔着“世界上最遥远的距离”。但是,实际并非如此,如果我们合理找到研究的领域,去找到关键研究的问题,原位电镜技术在金属结构材料研究中可以发挥到非常巨大的作用。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 为什么研究镁? /span /strong /p p   作为最轻质的金属结构材料,镁在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统的金属材料,镁的塑性较差,型材和零件的变形加工困难,工艺成本高。这严重制约了镁作为结构材料的广泛应用。 /p p   镁,是最轻质的金属结构材料,密度与塑料相近。优点包括可降解易回收、电磁屏蔽、生物相容性、高阻尼等。在航空航天、汽车、高铁、电子产品和医疗等领域具有广阔的应用前景。各个国家也是十分重视,我国《“十三五”国家科技创新规划》也更是将镁基材料列为国家重点发展对象。 /p p   镁如此重要,为什么没有得到大家更多的关注呢?刘博宇将制约镁应用的瓶颈比喻为 strong “镁人病” /strong ,包括“皮肤病”之易腐蚀、“软骨病”之强度低、“脆骨病”之塑性差等,这些缺陷严重制约了镁作为结构材料的广泛应用。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 原位电镜技术能做什么?能有什么启发? /span /strong /p p    strong 一、原位电镜技术应用之镁/镁合金防腐蚀新技术:对材料表面改性的启发 /strong /p p   镁易腐蚀的原因包括:自身属性(最活泼的结构金属材料)、原生氧化膜不致密等。所以人们在寻找一种致密、稳定、牢固的防腐蚀膜层。 /p p   在原位电镜研究过程中,有趣的发现了电子束活化CO2与MgO可以生成MgCO3。这就给与一个 strong 启发: /strong strong 如果活化CO2与Mg的表面MgO发生反应是否可以生成MgCO3的致密膜? /strong 按照这种设计理念,进行原位电镜实验,假设Mg十分活泼,放进电镜样品室马上可以在表面生成MgO,然后加以电子束,结果确实在Mg表面生成了致密的MgCO3。(此部分工作由王悦存博士开展) /p p   那么生成的MgCO3致密膜是否防护有效?接下来进行了去离子水浸泡验证实验,发现电子束活化CO2处理过的表面更加耐腐蚀。同时,对已经腐蚀的表面进一步进行活化CO2反应处理,发现同样可以生成致密MgCO3。并表明该反应过程透射电镜电子束辐照不是关键, strong CO2的活化 /strong 才是关键。 /p p    strong 二、原位电镜技术应用之镁合金的强化/高塑性设计:对晶体结构设计的启发 /strong /p p   在镁中, strong 形变孪晶 /strong 会在极低的应力下大量产生,导致低强度。解决的方案是“ strong 时效强化 /strong ”,即引入析出相,像钉扎位错一样钉扎孪晶界,提高强度。但研究发现,镁合金的时效强化效果较弱。 /p p   借助原位电镜研究发现,镁中存在特殊的孪晶界,类似水波,逐波移动,这也导致了宏观的低强度。根据这一观察结果,设计了一系列不同形貌的析出相,选取含有不同形貌析出相的镁合金,进行原位透射电镜纳米力学测试。观察析出相对孪晶的阻碍作用,对比强化效果。最终表明,颗粒和棒状析出相对孪晶的抑制作用有限,片层和网状析出相对孪晶的抑制效果良好。(此部分工作主要由孙楠博士开展) /p p    strong 三、原位电镜技术应用之镁合金增强塑性 /strong /p p   一般来讲,均匀的变形需要 strong 5个独立滑移系 /strong 。而镁中易开动的& lt a& gt 滑移仅提供4个独立滑移系,且均不能协调& lt c& gt 沿方向的应变。理论讲, strong & lt c+a& gt 位错滑移可提供5个独立滑移系,且可协调& lt c& gt 轴应变 /strong 。(如下图) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 208px " src=" https://img1.17img.cn/17img/images/201908/uepic/23e7b5ad-d3d2-4861-9a69-089389fd9203.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 208" border=" 0" vspace=" 0" / /p p   但关于& lt c+a& gt 位错是否为有效的塑性载体,业界有不同的观点。 strong 主流观点 /strong 认为,& lt c+a& gt 位错不稳定,分解为不可动结构, strong 不承载塑性 /strong 。只能通过合金化提高塑性,加入某些特定元素,促进& lt c+a& gt 位错交滑和增殖,抑制分解。同时也有 strong 一些声音 /strong ,认为可以通过促进& lt c+a& gt 位错形核和滑移来提高镁合金的塑性。 /p p   在此背景下,高塑性镁合金的设计思路变得明了:如果主流观点是正确的,便 strong 制造更多的& lt c+a& gt /strong ;否则, strong 便放弃& lt c+a& gt ,或稳固& lt c+a& gt /strong 。但更为本质的问题,是需要解释这些性质背后的机理,这便要选择合适的研究方法。 br/ /p p    strong 为什么选择原位电镜技术的研究方法? /strong ——首先要了解传统研究方法的局限性:测试样本大都为块体、多晶材料(位错及孪晶会干扰对& lt c+a& gt 位错的分析);传统表征方法无法的到位错在三维空间的形态,导致争议性结果;无法原位观测位错行为,导致争议性结果;目前主要依赖计算机模拟,但模拟的结果与势函数、初始条件和模拟方法密切相关,可能与实施有偏差等。而结合这些局限性与实际需求,最终选择了原位电镜纳米力学测试技术。 /p p    strong 实验设计要回答哪些问题? /strong ——沿& lt c& gt 轴压缩,到底没有塑性?& lt c+a& gt 位错能滑移吗?能贡献塑性吗?& lt c+a& gt 位错究竟在哪(个滑移面上)?(此部分工作主要由刘飞博士开展) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 384px " src=" https://img1.17img.cn/17img/images/201908/uepic/c548aa6e-8b1b-49f4-93ac-f8d4a5e32304.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 384" border=" 0" vspace=" 0" / /p p   原位电镜纳米力学测试发现, strong 镁不是天生就脆 /strong !镁有很大的沿& lt c& gt 轴的塑性应变,位错应该功不可没。接着揭示了& lt c+a& gt 位错的典型滑移行为,包括:半位错环长大、刃位错滑移(主流观点认为不可滑)、位错偶极子、位错反复滑移等。(如上图)同时三维重构研究发现,& lt c+a& gt 位错既可以在锥面1上滑移,也可以在锥面2上滑移,还可以发生交滑移。(如下图) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 325px " src=" https://img1.17img.cn/17img/images/201908/uepic/df3c1cf4-90e4-448f-ae26-d1ff4fb212fe.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" / /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 小结 /strong /span /p p   原位电镜技术在材料结构研究中,并不是遥不可及,可以为微观测试与宏观性能搭建桥梁,对许多科研工作带来启发。具体应用包括实时观测材料在受外界刺激下的响应(力、电、热、气氛及多场耦合)、揭示材料微观组织和缺陷演化与力学行为和腐蚀行为的内在联系、“破译”决定材料性能的关键“基因密码”等。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 附:关于7月5日《Science》刊发文章 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 170px " src=" https://img1.17img.cn/17img/images/201908/uepic/8dbe3bab-c34b-45d2-a233-4841e840e3c4.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 600" height=" 170" border=" 0" vspace=" 0" / /p p   当前主流观点认为,塑性差是镁的本征属性,原因是镁中的锥面位错(一种晶体缺陷)会自发地分解为不可滑移的结构,无法协调塑性变形。因此,提高塑性需要通过添加某些特定的元素来调节锥面位错的行为。但也有一些学者持不同观点,认为锥面位错是有效的塑性变形载体,只要能促进锥面位错的形核和滑移,镁的塑性就可以提高。上述争议直接影响到下一代高塑性镁合金的设计思路和技术路线,因而成为一个急需解决的科学难题。然而,由于锥面位错的几何形态和结构非常复杂,很难通过实验来全面地解析。此前的研究通常以计算机模拟为主,相关观点和推论均缺乏有力的实验证据。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 382px " src=" https://img1.17img.cn/17img/images/201908/uepic/efd7c9cd-9c6b-4af6-b057-a855d3aece05.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 450" height=" 382" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1 亚微米尺寸镁的大塑性变形 图2 实验观测到的塑性变形是由锥面位错滑移主导的 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3 原位电镜捕捉到单根锥面位错的滑移 图4 三维图像重构帮助解析锥面位错的形态及其滑移面 /span /p p   针对上述难题,西安交通大学单智伟教授团队采用原位电镜纳米力学测试技术来解决样品几何形变、微观结构演化以及力学曲线三者之间一一对应的难题 选取合适的加载方向来消除其它位错的干扰 采用梯度样品设计来解决捕捉和表征单根位错难的问题 运用三维图像重构技术来解决位错滑移面不易确定的难题 并通过对比力学曲线的方式澄清了电子束影响的问题。得益于这些有针对性的实验设计,研究团队以令人信服的结果,证明了最起码对亚微米尺度的纯镁而言,各种类型的锥面位错(刃、螺、混合型)不仅可以滑移,而且可以导致非常大的塑性变形。与块体材料相比,微纳米样品呈现出更高的屈服强度和流变应力。因此,研究团队推测高应力促进了锥面位错的形核和滑移,进而提高了测试样品的塑性。通过进一步深入分析,不仅确定了位错的滑移面,而且还清晰地观察到锥面位错的交滑移、位错偶极子的形成以及位错往复运动等此前尚未报道过的重要现象。 /p p   该研究为完善镁的塑性变形理论提供了重要的实验数据,并为高塑性镁合金的开发带来新的启发。 /p p   该研究得到了国家重点研发计划、国家自然科学基金委、111计划2.0、中国博士后科学基金、陕西省重点产业创新链、西安交大青年拔尖人才计划和基本科研业务费等项目的资助。( strong 论文链接 /strong : a href=" https://science.sciencemag.org/content/365/6448/73" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://science.sciencemag.org/content/365/6448/73 /span /a )。 /p p   近年来,单智伟研究团队依托西安交通大学材料学院、金属材料强度国家重点实验室、西安交通大学微纳中心和陕西省镁基新材料工程研究中心,开展了一系列富有成效的基础研究、技术攻关和成果转化。2014年,发现了镁中不同于位错和孪晶的室温变形新机制,成果发表于《自然· 通讯》,并荣获美国TMS学会镁分会年度最佳基础研究论文奖 系统研究了镁合金中析出相形貌对孪晶行为的影响,并进而发展了一种判断镁合金强塑性的简单判据,成果发表于《材料科学技术》(封面推荐,2018) 发现通过活化二氧化碳,可以在室温下将镁表面的氧化层或腐蚀产物转变成一种致密的保护膜层,不仅可显著提升镁及其合金的抗腐蚀性和强韧性,而且大幅提高镁的抗氧化能力,从而发明了一种绿色、低成本镁合金涂层新技术,成果发表于《自然· 通讯》(2018),并获得国家发明专利授权 针对原镁冶炼工艺落后、自动化程度低和环境污染严重的现状,提出并验证了原本需要在真空条件下进行的原镁冶炼可以在常压进行,并与华西能源公司联合攻关,开展了原镁常压生产的工业化装置的开发。针对原镁杂质元素种类多、含量高、波动大的痼疾,从原子机理出发,开发出全新的工艺流程,可在不显著增加成本的情况下,从料球直接生产出99.99%以上纯度的高纯镁,革新了此前领域内普遍认为皮江法(硅热还原法)不能直接生产高纯原镁的认知。上述成果的推广和应用,有望从整体上提升镁基产品质量和性能。 /p p br/ /p
  • 中国生物材料学会征集《镍钛形状记忆合金骨板形状恢复能力测试方法》等10项团体标准意见
    p style=" text-align: justify text-indent: 2em " 日前,中国生物材料学会发布关于征集《可降解镁合金半连续铸棒》等10项团体标准意见的通知。 strong 具体如下: /strong /p p style=" text-align: justify text-indent: 2em " 各学会会员及有关单位: /p p style=" text-align: justify text-indent: 2em " 根据2019年中国生物材料学会批准立项的团体标准项目,由中国生物材料学会团体标准化技术委员会归口的《可降解镁合金半连续铸棒》等10项团体标准项目已形成征求意见稿,并完成编制说明的编写。 /p p style=" text-align: justify text-indent: 2em " 现公开征集意见,请各相关单位或个人将意见或建议填写至征求意见稿反馈表(附件21),并于2020年5月20日前以电子邮件的形式发送至各标准工作组联系人邮箱。逾期无回复或反馈按无意见处理,请各位专家和相关单位积极参与。 /p table cellspacing=" 0" cellpadding=" 0" class=" table table-bordered" style=" box-sizing: border-box margin: 0px 0px 20px padding: 0px border: 1px solid rgb(221, 221, 221) font-variant-numeric: inherit font-variant-east-asian: inherit font-stretch: inherit font-size: 15.4px line-height: inherit font-family: SourceHanSansCN-Regular, " noto=" " sans=" " cjk=" " source=" " han=" " vertical-align:=" " border-spacing:=" " background-color:=" " max-width:=" " white-space:=" " width:=" " tbody style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " tr class=" firstRow" style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " strong 序号 /strong /p /td td width=" 351" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " strong 标准名称 /strong /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " strong 制修订 /strong /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " strong 工作组联系人 /strong /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " strong 电子邮箱 /strong /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 1 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 可降解镁合金半连续铸棒(Biomedical biodegradable magnesium alloys semi-continuous casted bars) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 朱世杰 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " zhusj@zzu.edu.cn br style=" box-sizing: border-box " / & nbsp & nbsp br style=" box-sizing: border-box " / & nbsp /p p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " & nbsp /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 2 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 可降解医用镁合金毛细管材(Biomedical degradable magnesium alloy microtubes) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 朱世杰 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " zhusj@zzu.edu.cn /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 3 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 可降解镁合金热挤压棒材(Biomedical biodegradable magnesium alloys extruded bars) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 朱世杰 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " zhusj@zzu.edu.cn /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 4 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 镍钛形状记忆合金骨板形状恢复能力测试方法(Standard for Evaluating Shape Recoverability of & nbsp Nickel-Titanium Shape Memory Alloy Bone Plates) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 闫鹏伟 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " supeyan@qq.com /p p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " & nbsp /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 5 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 镍钛形状记忆合金骨植入物体外镍离子释放模型(The model of Nickel ion release in vitro of & nbsp nickel-titanium shape memory alloy bone implant) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 郑亚亚 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 441845847@qq.com /p p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " & nbsp /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 6 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 镍钛形状记忆合金心脏封堵器形状恢复性能评价方法(Evaluation method for evaluating shape recovery & nbsp ability of Nickel-Titanium shape memory alloy cardiac occlude) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 刘艳文 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " liuyanwen@lifetechmed.com /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 7 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法(Test method for evaluating shape recoverability & nbsp of Nickel-Titanium shape memory alloy self-expanding vascular stent) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 李勇 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " liyong@microport.com /p p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " & nbsp /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 8 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 心脏封堵器体外脉动耐久性测试方法(Standard test methods for in vitro pulsatile durability testing of & nbsp Cardiac occluder) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 姚斌 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " liuyanwen@lifetechmed.com /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 9 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 直管型血管支架 磁共振适用性 射频致热试验方法(Standard Test Method for Measurement of Radio Frequency Induced Heating & nbsp On Straight Tubular Stents During Magnetic Resonance Imaging) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 张争辉 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " zzhyy17@163.com /p p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " & nbsp /p /td /tr tr style=" box-sizing: border-box margin: 0px padding: 0px border: 0px font: inherit vertical-align: baseline " td width=" 25" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 10 /p /td td width=" 383" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 外科植入物用Ti-24Nb-4Zr-8Sn合金(Wrought Ti-24Nb-4Zr-8Sn Titanium Alloy for & nbsp Surgical Applications) /p /td td width=" 5" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 制定 /p /td td width=" 43.66666666666667" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " 郝玉琳 /p /td td width=" 134" valign=" top" style=" box-sizing: border-box margin: 0px font-style: inherit font-variant: inherit font-weight: inherit font-stretch: inherit font-size: inherit line-height: 1.42857 font-family: inherit vertical-align: top overflow-wrap: break-word word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" box-sizing: border-box padding-top: 2px border: 0px font: inherit vertical-align: baseline " ylhao@imr.ac.cn /p /td /tr /tbody /table p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/a6a1b616-5712-474f-a4c9-9ecc2f1e4aad.doc" title=" 附件1:《可降解镁合金半连续铸棒》征求意见稿.doc" 附件1:《可降解镁合金半连续铸棒》征求意见稿.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/470e3963-e2ae-40b2-8eb1-7365dd9436fb.docx" title=" 附件2:《可降解镁合金半连续铸棒》编制说明.docx" 附件2:《可降解镁合金半连续铸棒》编制说明.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/a5b167c3-73ec-4d31-8349-b1b1a3c027e6.doc" title=" 附件3:《可降解医用镁合金毛细管材》征求意见稿.doc" 附件3:《可降解医用镁合金毛细管材》征求意见稿.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/30dbd099-4028-4ab3-9438-8592251ba06e.docx" title=" 附件4:《可降解医用镁合金毛细管材》编制说明.docx" 附件4:《可降解医用镁合金毛细管材》编制说明.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/5a9e7d8a-8311-48ce-8386-d15c23203dc5.doc" title=" 附件5:《可降解镁合金热挤压棒材》征求意见稿.doc" 附件5:《可降解镁合金热挤压棒材》征求意见稿.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/b7eb32fb-f924-4ee7-a075-4c702e545bec.docx" title=" 附件6:《可降解镁合金热挤压棒材》编制说明.docx" 附件6:《可降解镁合金热挤压棒材》编制说明.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/b78cb9c8-2e1b-4e7e-94f7-27e3842c2d6d.docx" title=" 附件7:《镍钛形状记忆合金骨板形状恢复能力测试方法》征求意见稿.docx" 附件7:《镍钛形状记忆合金骨板形状恢复能力测试方法》征求意见稿.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/80ab6a9c-9b2b-40bf-bfe2-305972209709.doc" title=" 附件8:《镍钛形状记忆合金骨板形状恢复能力测试方法》编制说明.doc" 附件8:《镍钛形状记忆合金骨板形状恢复能力测试方法》编制说明.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/7ecfb1a1-1cc7-49c8-b3c8-290e3aa5e68f.docx" title=" 附件9:《镍钛形状记忆合金骨植入物体外镍离子释放模型》征求意见稿.docx" 附件9:《镍钛形状记忆合金骨植入物体外镍离子释放模型》征求意见稿.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/6d2ac525-ca1f-4015-9934-78347485ed90.doc" title=" 附件10:《镍钛形状记忆合金骨植入物体外镍离子释放模型》编制说明.doc" 附件10:《镍钛形状记忆合金骨植入物体外镍离子释放模型》编制说明.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/6d5bffab-29ec-4a87-992d-67f3f78bef76.doc" title=" 附件11:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》征求意见稿.doc" 附件11:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》征求意见稿.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/6e0aa921-ba62-40dd-bda2-802615468cba.doc" title=" 附件12:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》编制说明.doc" 附件12:《镍钛形状记忆合金心脏封堵器形状恢复性能评价方法》编制说明.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/f9f2366a-a29f-48bc-9174-73a9cf95ab7a.docx" title=" 附件13:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》征求意见稿.docx" 附件13:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》征求意见稿.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/5b6bcc1d-609f-4b94-bf70-e392edf1518a.doc" title=" 附件14:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》编制说明.doc" 附件14:《镍钛形状记忆合金自膨式血管支架形状恢复能力测试方法》编制说明.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/f388dbbe-5877-4eee-92c8-dce16595ea34.docx" title=" 附件15:《心脏封堵器体外脉动耐久性测试方法》征求意见稿.docx" 附件15:《心脏封堵器体外脉动耐久性测试方法》征求意见稿.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/a8e29df8-a908-4ee3-8002-d095a7967d71.doc" title=" 附件16:《心脏封堵器体外脉动耐久性测试方法》编制说明.doc" 附件16:《心脏封堵器体外脉动耐久性测试方法》编制说明.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/1e61a66a-ac3d-4b6f-b8b3-bad5da2ed049.docx" title=" 附件17:《直管型血管支架 磁共振适用性 射频致热试验方法》征求意见稿.docx" 附件17:《直管型血管支架 磁共振适用性 射频致热试验方法》征求意见稿.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/1212d876-cc6c-4910-9fd5-2e3064979be7.doc" title=" 附件18:《直管型血管支架 磁共振适用性 射频致热试验方法》编制说明.doc" 附件18:《直管型血管支架 磁共振适用性 射频致热试验方法》编制说明.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/944e5ed5-8974-4bf4-b611-d1d53185604d.docx" title=" 附件19:《外科植入物用Ti-24Nb-4Zr-8Sn合金》征求意见稿.docx" 附件19:《外科植入物用Ti-24Nb-4Zr-8Sn合金》征求意见稿.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/52cfec65-ff6e-4b3f-9ecb-c9a4db721a68.pdf" title=" 附件20:《外科植入物用ti-24nb-4zr-8sn合金》编制说明.pdf" 附件20:《外科植入物用ti-24nb-4zr-8sn合金》编制说明.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202004/attachment/47a5488c-c74d-4183-b5d6-725fb8f39d9e.docx" title=" 附件21: 中国生物材料学会团体标准征求意见稿反馈表.docx" 附件21: & nbsp 中国生物材料学会团体标准征求意见稿反馈表.docx /a /p
  • 赛恩思光谱仪为精密合金产业提供先进的检测技术
    随着先进材料科学与工程技术的迅猛发展,对于精密合金的需求也随之日益增长。而在这一领域,品质和精确度始终处于核心地位。对于众多合金生产企业而言,确保产品质量与合金成分的精确度就显得至关重要。而四川赛恩思仪器,正为这些行业领头企业提供了先进、可靠的检测技术。东莞市天耀五金实业有限公司,作为专业的精密镁合金压铸、铝合金压铸生产商,近日采购了赛恩思OES-802直读光谱仪。作为该领域的行业领头,天耀五金实业非常注重其产品的质量与合金成分的精确度。赛恩思OES-802直读光谱仪将帮助他们进行四系铝合金以及镁合金的检测,确保A356、A365等铝合金牌号的产品品质始终保持在行业的前列。赛恩思OES-802直读光谱仪凭借其卓越的性能,准确地检测合金的元素成分,确保合金生产过程中的严格质控,为客户带来更高的产品信赖度。无论是对于精密合金压铸,还是高要求的技术研发与产品应用,这款仪器都能提供强大的技术支持。四川赛恩思仪器,多年来一直致力于研发与生产先进的分析检测仪器。与国内外的许多知名企业建立了长期稳固的合作关系,积累了丰富的经验。公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 师昌绪:中国高温合金之父——2010年度获奖人
    人物小传:1920年生于河北省徐水县,1945年毕业于西北工学院矿冶系,1952年获美国欧丹特大学冶金博士学位,1955年回国。他是我国著名的物理冶金学家、材料科学家、战略科学家,中国科学院院士,中国工程院院士,第三世界科学院院士。曾任中科院金属所所长、中国科学院部技术科学部主任、国家自然科学基金委副主任、中国工程院副院长。   这是一位九旬老人的退休生活:每天上午8点钟离开家,9点钟到办公室,来访的客人有时一天好几拨,请他提供咨询意见的、指导科研工作的、题词的、写序的……几乎有求必应。此外,去年一年,北到哈尔滨、南到广州,他出了10次差,还在北京主持、参与了几十个学术会议。   这位乐此不疲、退而不休的老人,就是2010年度荣获国家科技奖最高奖的两位得主之一,我国高温合金材料的奠基人、在材料腐蚀、镁合金、碳纤维等多个领域贡献卓著的战略科学家师昌绪先生。   “我这样的生活很没意思,也不希望别人都像我一样。”师先生自我解嘲说:“但我已经是这么个定型了,在家反而苦恼,所以天天工作,生活很充实,觉得能对得起国家、民族,也就是这个样子。   “美国人做出来了,我们怎么做不出来?”   1月7日上午,在国家自然科学基金委(以下简称基金委)的一间会议室里,记者见到了91岁的师先生。虽然发已掉光、牙已全无,但老先生却背不驼、眼不花,步伐稳健、思维敏捷。听着后辈和老同事讲述他的往事,师先生时而会心一笑,时而神色凝重 他对数十年前的事情记得一清二楚,时不时插话补充两句 说到激动处,忍不住用手指敲得桌子“笃笃“直响。   “北京、上海,这两个地方任你选。”1955年6月,时任中科院技术科学部主任的严济慈,对刚从美国回来的师昌绪说。   结果,这位35岁的洋博士选择了沈阳,因为中科院金属所在沈阳。到金属所后,他被指定为鞍钢工作组的负责人,由物理冶金理论研究,转向炼钢、轧钢工艺开发。两年之后,师昌绪又服从国家需要,转任金属所高温合金研究组的负责人,带领一支小分队常驻抚顺钢厂,研制航空发动机的核心材料——高温合金。师昌绪带领科研人员奋力攻关,很快开发出代替镍基合金GH33的铁基高温合金GH135,用这种新材料制作的航空发动机关键部件——涡轮盘,装备了大量飞机。   更难啃的骨头在后面。1964年,中国的新型战斗机设计出来了,就差发动机用的耐高温高压涡轮叶片。此前,只有美国能研制这种空心叶片,国内的人都没见过。一天晚上八九点钟,航空材料研究所的副总工程师荣科找到师昌绪家里,问他能不能牵头搞空心叶片。“我也没见过空心叶片,也不知道怎么做。”师先生回忆说,“但我当时就想,美国人做出来了,我们怎么做不出来?中国人不比美国人笨,只要肯做,就一定能做出来。”   第二天,他与时任金属所所长的李薰先生研究决定接受这个任务。荣科听到这一消息自然高兴,但同时也“提醒”师昌绪:我可是立了军令状的,做不出来,我把脑袋割下来。师昌绪一笑:咱们就共同承担吧。   为啃下这块硬骨头,由师昌绪挂帅,从金属所的相关研究室挑选了“一百单八将”,成立了专门的项目组。他们采纳了容科“设计——材料——制造一体化”的建议,与发动机设计和制造厂等合力攻关。在当时的条件下,要在100毫米的叶片上均匀做出粗细不等、最小直径只有0.8毫米的9个小孔,谈何容易!他们攻克了型芯定位、造型、浇注、脱芯,以及断芯无损检测等一道道难关,于1965年研制出中国第一代铸造多孔空心叶片,使我国成为世界上第二个能研制这种叶片的国家。   后来,国家决定把空心叶片的生产转移到远在贵州的一个工厂,航空部点名师昌绪带队到生产第一线,帮助解决生产中的技术难题。当时从沈阳到贵阳要坐48个小时的闷罐火车,路上连喝的水都没有。工厂的条件极为艰苦,一日三餐吃的都是发霉的大米和红薯干,以至于厂里的总工程师过意不去,利用星期天到集市上买来白面,给科研人员蒸馍改善生活。师昌绪他们日夜在车间里鏖战。经过几个月的努力,他们终于克服了实际生产中的技术难关,至今所生产的数十万个叶片没出过一起质量问题。   “当时当然有压力了,但关键看你敢不敢往前冲。”忆当年,师先生雄心不改,“只要努力,肯定能做出来,除非你不努力。”   “我自己最大的特点,就是好管闲事”   “师先生,这个事您可别管!”2000年春,年近80的师昌绪找到基金委材料科学部原常务副主任李克健,说想和他一起抓一下碳纤维。李克健听后立马摇头,“这事太复杂!谁抓谁麻烦!”   李克健说的是大实话。质量轻、强度高的碳纤维是航天、航空用基础原材料,我国从1975年就开始攻关,大会战搞了不少,钱花了很多,但就是拿不出合格稳定的产品,以至于许多人避之唯恐不及。   “我们的国防太需要碳纤维了,不能总是靠进口。”师先生说,“如果碳纤维搞上不去,拖了国防的后腿,我死不瞑目。”   李克健听后深受感动,接受了师先生的邀请。这年8月,师先生召集了由原国防科工委、科技部、总装备部、基金委等相关单位58人参加的座谈会,探讨怎样把碳纤维搞上去。大家的一致意见是,碳纤维能搞上去。会议纪要里,专门写了这样一句:请师昌绪院士作为技术顾问和监督。   师先生欣然从命,很快又召集了第二次座谈会,讨论具体方法。座谈会上,有人给师先生泼凉水:上亿的资金哪里去找?就是钱弄来了,谁去协调指挥?过去几个部委联合起来都没弄好,你师老能指挥得动么?   “只要国家需要,困难再大也要干!”不服输的师先生上书中央,陈说利害。很快,这封信批转到科技部,科技部在863计划中专门增设了1亿元的碳纤维专项。在实施过程中,师先生吸取以前的教训,定了一条规矩:统一领导,谁拿专项的钱,谁就归我们管,不管你是哪个单位的。然后,专项领导小组派人到申报单位,现场取样,让第三方单位统一测试。数据出来后,大家一起讨论,优胜劣汰,结果。志在必得的一所知名大学落选,产品过硬的民营企业威海拓展一举中标。师先生一抓到底,不仅多次到威海实地指导,还专门给航空总公司写信化缘3000万元,帮助相关单位开展应用试验。现在,无论是航天还是航空,我国所需的碳纤维已可立足国内,完全依赖进口成为历史。   “我自己最大的特点,就是好管闲事”。师先生笑称。   凡是对国家有益的,对别人有益的,他都不避利害,乐于去管。   “师老很有眼光,他所管的闲事,要么是刚刚起步、困难很多,要么是涉及面广、关系复杂。只要这些闲事关系到国家的重大需求,师先生就抓住不放,该呼吁的呼吁,能扶持的扶持。”李克健说。   这样的例子还有很多。   从上世纪五六十年代开始,多个部委在全国各地陆续建立了26个材料环境腐蚀试验查与监测网站,检测材料在大气、海洋、土壤等环境中的腐蚀数据,为今后的大工程建设提供选材和防腐设计的决策依据。据基金委原秘书长袁海波回忆,80年代中期,我国开始大刀阔斧地推进科技体制和拨款制度改革,期间出现盲区,许多腐蚀监测站成为被遗忘的角落,陷入人走站亡的困境。1986年,基金委会成立,出任副主任的师昌绪力排众议,说服有关部委的领导,把腐蚀监测站的的数据检测分析建设列为基金委的重大项目,常年给予支持。后来等三峡大坝和核电站等工程上马时,大家才发现:腐蚀监测站提供的数据资料太重要了!   上世纪90年代,生物医用材料在国际上方兴未艾。由于我国起步晚,跟国外的差距很大,搞生物医用材料的学者和企业地位不高,这方面的研究没有引起应有的重视。李克健回忆说,当时师先生敏锐地觉察到,生物医用材料将是事关13亿国人健康的大产业,应该加快发展。经过他多方奔走,中国生物材料委员会在1996年宣告成立。由于该委员会的人员涉及十几个学会,关系比较复杂,找不到合适的主席人选,75岁的师先生只好勉为其难,连续干了两届。去年,中国科协批准成立中国生物材料学会 明年,世界生物材料大会明年将在成都举行。   ……   数十年“管闲事”的结果,是“管”出了一位名副其实的战略科学家。 “与师先生相处20多年,我感受最深的,就是他的亲和力。不管到哪儿,在哪个地方工作,都有很强的亲和力、吸引力和凝聚力。”说到这里,袁海波很是感慨,“作为一个大科学家,做到这一点是很不容易的。在技术科学和工程科学领域,尤其需要团队精神,需要德高望重的学术牵头人,把方方面面的力量凝聚起来。“这一点,当前在我国科技界特别重要,也特别不容易!” 亲和力来自淡泊名利的品格。国际材料联合会是世界材料学界的权威学术机构,加入该组织对促进我国材料科学的发展非常重要。据曾任中国材料研究学会副理事长的袁海波回忆,1986年国际材料联在美国举行会议,师先生与清华大学的李恒德教授应约参加,期间做了大量工作,妥善处理了与台湾相关的议题,终于在1991年底说服国际材联修改章程,接纳中国材料联合会代表中国成为其会员,台湾作为中国的一个地区与中国材料联合会并存。1991年,中国材料研究学会在中国材料联合会的基础上正式成立,许多人认为师先生是该研究会理所当然的理事长。结果,师先生主动让贤,自己只做顾问。 “师先生就是这样,以事业为重,以把大家的积极性调动起来为重,从不考虑自己的位子、自己的利益。”袁海波说。 亲和力来自尊重他人的作风。“1964年我担任师先生研究室的学术秘书,刚开始挺拘谨的,后来发现他一点架子也没有。”说起40多年前的往事,中科院金属所前所长李依依院士至今仍很动感情,“师先生非常尊重别人,从不把自己摆得很高。他带领我们研究高温合金,不像有的老师,要求你一定要照着他说的去做,而是划一个大的范围,让你放手去干;你有什么不同的想法,他也支持你做,哪怕做错了再重来都可以。跟师先生工作心情是非常愉快的,在他的团结指导下,完全可以指到哪儿就能打到哪儿。” 让李依依特别钦佩的,是师先生对每一个人都平等相待,哪怕对方只是普通的工人。“在金属所工作时,从他家到科研大楼只有一两百米的距离,5分钟的路程他要走半个小时,因为一路上老有人找他聊天。前几年,我跟师先生重回贵州叶片生产厂,老工人们都围过来跟他握手:‘师老师,您好久没来了!’。” 亲和力来自严谨求实的学风。虽然年事已高,但师先生开会做演讲、报告,不管是学术的还是管理类的,极少让别人“代劳”;凡是让他办的事情,都一丝不苟,绝不马虎。袁海波刚担任基金委秘书长不久,把大家精心编辑的《科技成果汇编》送给师先生过目。“我原以为他大的方面看一看就完了,没想到每一篇他都认真修改,改了一半多,连每一项成果的英文标题都不放过!” 1998年,鉴于师先生在高温合金材料领域的卓越贡献,包括GE等大公司在内的11个国际跨国公司联合授予他“突出贡献奖”,并称他为“中国高温合金之父”。 “这不对!”师先生听说后立即纠正,“在国内搞高温合金有人比我早,我只是做了较大的贡献。” 师先生说:“我这个人没什么本事,就在于能团结大家。”
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—2008197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199
  • 投资969亿!山西省重点打造现代医药、合成生物等产业链
    山西省第十二次党代会明确提出了“实施全产业链培育工程,分行业做好战略设计,推行‘链长制’,培育引进一批头部企业、‘链主’企业,建链补链强链,提升本地配套率,增强产业链稳定性和竞争力。”的重大战略部署。根据省委、省政府工作部署,山西省结合产业基础和行业发展趋势,按照产业“关联性强、契合性严、协作性紧、盈利性好”等标准确定了首批十大重点产业链;按照企业“市场竞争力强、行业影响力大、主体意愿度高”等标准确定了20户“链主”企业,441户链上企业。2022年要重点推进总投资969亿元的82个产业链项目,其中49个项目当年建成投产。总的目标是,力争到2025年,十大重点产业链规模效应初步显现,营业收入突破8400亿元,培育形成6大千亿级产业链,4大五百亿级产业链,实现十大重点产业链核心竞争力、市场占有率、抗风险能力的全面提升。首批确定的十大重点产业链主要任务如下:特钢材料产业链要围绕“原材料开采加工—特殊钢、精品钢冶炼及压延—零部件加工及装备制造”链条,打造精品钢、高端冷轧硅钢、极薄无取向硅钢、车轴钢等高附加值产品,构建具备世界级核心竞争力的特钢产业链。新能源汽车产业链要围绕“车用原材料—零部件—系统总成—整车—配套基础设施”链条,打造动力电池负极材料、新能源汽车驱动电机、大功率快速充电设备、智能化电动重卡及乘用车等高水准特色产品,构建产品种类较为完备的新能源汽车产业链。高端装备制造产业链要围绕“原材料—关键部件、系统总成—轨道交通制造、智能煤机、工程机械”链条,打造客运电力机车、快速掘进煤机成套装备、全地面大型特种起重机等拳头产品,构建辐射带动力强、具有国际竞争力的高端装备制造产业链。风电装备产业链要围绕“零部件及原材料—整机设备制造—风电场开发运营”链条,打造大功率风力发电机、风电塔筒、风电整机等成套产品,构建国内一流的风电装备产业链。氢能产业链要围绕“绿色炼焦—焦炉煤气制高纯氢—制、储、运、加氢等设备及产品”链条,打造氢燃料电池电堆、氢气压缩机、固态储氢设备、氢能源车辆等氢能应用关键产品,构建安全高效的氢能产业链。铝镁精深加工产业链要围绕“铝土矿—氧化铝—电解铝—铝精深加工”及“炼镁用白云岩—金属镁—镁合金—镁精深加工”链条,打造航空航天精密铸件、铝镁合金汽车轮毂、轻量化部件等高精尖产品,构建绿色循环的铝镁精深加工产业链。光伏产业链要围绕“工业硅—多晶硅—拉棒—切片—电池—辅材—组件”链条,打造新一代N型光伏电池、高效光伏组件等行业领先产品,构建具有较强国际竞争力的光伏产业链。现代医药产业链要围绕“制药原材料—医药研发—医药制造”链条,打造道地中药材、特色原料药、经典中成药、生物创新药等具有山西特色的医药产品,构建具备差异化竞争优势的现代医药产业链。第三代半导体产业链要围绕“材料—装备—芯片—封装—应用”链条,打造大尺寸碳化硅衬底、高端晶圆检测设备、高效深紫外LED芯片等进口替代产品,构建国内先进的第三代半导体产业链。合成生物产业链要围绕“玉米加工—合成生物单体—合成生物高分子材料—工业丝、民用丝、工程塑料加工”链条,打造戊二胺、生物基聚酰胺、长链二元酸等技术领先的产品,构建具有国际影响力的合成生物产业链。
  • “诊疗装备与生物医用材料”重点专项2021申报指南:拟启动LC-MS/MS研发等13个方向
    5月17日,科技部发布“诊疗装备与生物医用材料”重点专项2021年度项目申报指南及“揭榜挂帅”榜单。该重点专项围绕前沿技术研究及样机研制、重大产品研发、应用解决方案研究、监管科学研究4个任务,拟启动13个方向,拟安排国拨经费概算2亿元。“诊疗装备与生物医用材料”重点专项2021年度项目申报指南拟支持方向如下:1. 前沿技术研究及样机研制:1.1 先进结构与功能内镜成像技术研究及样机研制;1.2 有源植入器械磁共振兼容技术研究及样机研制;1.3 术中放疗定量化技术研究及样机研制;1.4 仿生骨电学活性牙槽骨/牙周再生材料研制;1.5 可抑制骨与皮肤肿瘤术后复发的生物材料研制2. 重大产品研发:2.1 新型可降解镁合金硬组织植入器械研发;2.2 天然生物材料构建的降解调控神经移植物产品研发;2.3 新型核酸分析系统平台研发;2.4高效液相色谱—三重四极杆质谱联用仪研发3. 应用解决方案研究:3.1 基于国产迷走神经刺激器的临床应用解决方案研究;3.2 半个性化高强度高韧性全膝置换用人工关节的临床解决方案研究4. 监管科学研究:4.1 标准数字光学模体研究;4.2 放疗设备统一接口标准研究“诊疗装备与生物医用材料”重点专项2021年度“揭榜挂帅”榜单任务如下:1. 小型化重离子治疗装置研发2. 光子计数能谱CT研发3. 新型生物医用材料及产品安全性和有效性评价研究“诊疗装备与生物医用材料”重点专项2021年度项目申报指南详细内容如下:本重点专项总体目标是:抢抓健康领域新一轮科技革命和制造领域向服务型制造转型的契机,以精准化、智能化和个性化为方向,以诊疗装备和生物医用材料重大战略性产品为重点,系统加强“卡脖子”部件攻关;重点突破一批引领性前沿技术,协同推进监管科学技术提升;开展应用解决方案、应用评价示范研究,加快推进我国医疗器械领域创新链与产业链和服务链的整合;以实现“高端引领”为目标,为建立新产业形态、改变产业竞争格局、促进我国医疗器械整体进入国际先进行列提供科技支撑。2021年度指南部署坚持全链条部署、一体化实施的原则/要求,围绕前沿技术研究及样机研制、重大产品研发、应用解决方案研究、监管科学研究4个任务,拟启动13个方向,拟安排国拨经费概算2亿元。项目统一按指南二级标题(如1.1)的研究方向申报。除特殊说明外,每个项目拟支持数为1~2项,实施周期不超过3年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。除特殊说明外,项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名负责人,每个课题设1名负责人。指南中“拟支持数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。1. 前沿技术研究及样机研制1.1 先进结构与功能内镜成像技术研究及样机研制研究内容:探索具有先进性、原创性,无需造影剂的新型结构与功能光学内镜医学成像技术(含窄带多光谱成像、组织成分分析、血流成像等),突破窄带多光谱光源器件,同时实现精细血管结构成像与基于代谢及成分改变的功能成像,并结合大数据分析,实现肿瘤早期精准诊断。考核指标:研制医疗器械原理样机,可观察血管深度10~100μm,目标图像最高分辨率优于10μm,窄带多光谱光源单位面积光功率密度不小于1500mW/mm2,单光源窄带光出射波长数不少于9个,实现蛋白质、脂质等组织成分在线分析,体模定量检测指标误差不超过10%,功能成像分辨率1080p以上,最高帧速率60帧/秒以上;提交证明该技术先进性和实用性的设计报告、分析报告、测试报告、查新报告;申请/获得不少于2项核心发明专利。有关说明:鼓励产学研医检联合申报。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。1.2 有源植入器械磁共振兼容技术研究及样机研制研究内容:研究有源植入器械的磁共振兼容技术,解决人体及器械在磁共振扫描仪射频磁场中的电磁建模、计算、测量难点,研究磁共振扫描仪、有源植入器械和患者的相互影响关系;研发和测试新型磁共振兼容的有源植入器械,实现有源植入器械开机状态下的安全扫描;研究有源植入器械的磁共振兼容系统性评价方法、装置和规范。考核指标:研制原理样机,建立有源植入器械磁共振兼容的系统性设计、测试和评价方法,研制新型磁共振兼容植入导线及其连接结构,研制具备磁共振风险防护的有源植入器械软件和硬件,支撑至少2种磁共振兼容有源植入器械获得注册证;在有源植入器械开机情况下,实现1.5T和3.0T磁共振扫描仪在T1、T2、DWI、EPI等临床扫描序列及参数的正常扫描,符合临床诊疗安全要求;提交证明该技术先进性和实用性的设计报告、分析报告、测试报告、查新报告;申请/获得不少于2项核心发明专利。有关说明:鼓励产学研医检联合申报。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。1.3 术中放疗定量化技术研究及样机研制研究内容:围绕术中放疗定量化控制需求,开展荧光图像引导、基于蒙特卡洛方法的术中放疗剂量算法、术中调强放疗方法、适用于术中放疗的柔性控制和治疗头屏蔽优化设计等技术研究;基于现有的或设计创新的放射源系统,设计术中放疗机器人系统,包括小型化、轻量化治疗头,实现治疗头的助力柔性位姿控制;设计囊状施照器,实现平面、球面、半球面剂量分布。考核指标:研制1台术中放疗原理验证机,包含放射源、术中放疗剂量算法以及平端、球囊状、半球囊状施照器各1套;具备术中调强放疗功能;图像引导误差不大于1mm,机械定位误差不大于1mm,剂量计算误差不大于3%,最大治疗射野不小于10cm2,治疗头的尺寸和重量不超过国外同类产品;提交证明该技术先进性和实用性的设计报告、分析报告、技术测试报告、第三方检测报告、查新报告;申请/获得不少于2项核心发明专利。有关说明:鼓励产学研医检联合申报。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。1.4 仿生骨电学活性牙槽骨/牙周再生材料研制研究内容:围绕牙槽骨/牙周组织再生,开展骨电学活性植入材料仿生设计技术、可控制备技术、组织再生调控技术研究,揭示牙槽骨/牙周组织免疫特性与材料电响应性级联调控机制,研发用于牙缺失后牙槽骨缺损及牙周组织缺损修复的电学活性植入材料,建立临床先进治疗技术。考核指标:研发至少2种具有自主知识产权的仿生骨电学活性牙槽骨/牙周缺损修复材料;经批量动物实验验证,牙缺失后的牙槽骨垂直向骨增量不低于8mm,满足种植手术需要,引导牙周组织再生治疗3个月后骨增量不低于60%;申请/获得不少于4项核心发明专利,建立至少2项产品技术要求,取得第三方检测报告。有关说明:鼓励产学研医检联合申报。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。1.5 可抑制骨与皮肤肿瘤术后复发的生物材料研制研究内容:揭示材料干预和调控肿瘤微环境的关键材料学要素和机理,研发恶性骨肿瘤切除后抑制肿瘤复发、促进骨再生的新型骨科材料及其工程化和临床应用技术,以及可抑制黑色素肿瘤切除后复发的新型生物材料,为具有重大疾病治疗功能的生物材料研究提供启示。考核指标:研发至少2种具有自主知识产权的抑制骨与皮肤局部肿瘤术后复发的生物材料;经批量动物实验验证,在不外加药物或生长因子/细胞的条件下,术后12个月骨局部肿瘤复发率低于20%,材料内部新骨生成率大于60%,无延迟愈合或不愈合现象发生,黑色素瘤抑制率大于80%;制定产品技术要求2项,申请/获得核心发明专利4项,建立产品临床手术规范。有关说明:鼓励产学研医检联合申报。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。2. 重大产品研发2.1 新型可降解镁合金硬组织植入器械研发研究内容:围绕新型可降解镁合金作为硬组织植入器械所存在的产品化和产业化问题,开展新型可降解镁合金硬组织植入器械的设计及先进加工、降解调控、生物学评价、大动物实验、临床适应证及临床试验研究;建立相关标准及规范。考核指标:开发出4种针对不同用途的可降解镁合金硬组织植入器械产品,其中2种产品获得医疗器械注册证;可降解镁合金材料抗拉强度不低于230MPa,延伸率不低于15%,体内植入90天强度下降不大于20%,生物相容性满足国标GB/T16886标准;骨折内固定螺钉直径3.5mm规格最大扭矩不小于0.8Nm;埋头加压空心螺钉均匀降解模式下降解周期24个月;300μm规格口腔引导组织再生膜拉伸断裂力不小于30N;肿瘤骨切缘填充器直接接触骨肿瘤细胞48小时后坏死率不小于50%;申请/获得不少于5项核心发明专利,制定不少于5项标准和规范。有关说明:项目实施周期不超过5年;企业牵头申报,鼓励产学研医检合作,牵头单位须具备较好的研究基础和较强的产业化能力,临床机构须承担临床研究任务;实施过程中将根据项目执行情况进行动态调整。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。2.2 天然生物材料构建的降解调控神经移植物产品研发研究内容:通过研究微纳结构、化学组分、生物信号时空分布等仿生构建神经再生微环境的关键技术,优化神经移植物材料的生物相容性等性能;研发3D生物打印、静电纺丝、相分离等技术,构建由天然生物材料(如壳聚糖、丝素蛋白、细胞基质等)制备的功能型神经移植物,包括线性调控材料降解速度(体内降解时间为3~12月),具有多分支(1~3)、拓扑结构(材料表面特定形状)和导电性等,改善周围神经再生能力,制备性能优异的神经移植物,充分满足临床需求;进一步提高粗大、长距离、特殊形状周围神经缺损的修复疗效,实现组织工程神经移植物产品转化新突破。考核指标:完成3种产品临床前研究,修复人体分叉神经缺损及不短于6cm的长距离神经缺损;按照医疗器械生物学评价标准和指导原则,完成产品的生物学评价;明确缺损修复的临床评价指标,3种产品进入临床试验;1种产品获得注册证;申请/获得核心发明专利不少于15项(其中国际发明专利不少于5项)。有关说明:项目实施周期不超过5年;企业牵头申报,鼓励产学研医检合作,牵头单位须具备较好的研究基础和较强的产业化能力,临床机构须承担临床研究任务;实施过程中将根据项目执行情况进行动态调整。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。2.3 新型核酸分析系统平台研发研究内容:研发现场快速和高通量全自动等核酸检测系统(二选一);实现封闭式“样本进,结果出”全流程一体化,其中样本核酸提取需要实现裂解、纯化、洗脱全步骤,检测性能不低于临床常规核酸检测。考核指标:整机产品及两种以上配套试剂获得医疗器械产品注册证,检测下限不差于250拷贝/毫升;现场快速核酸检测系统全流程检测时长不超过30分钟,试剂常温储存;高通量全自动核酸检测系统单样本检测周期不超过4小时,24小时检测通量不低于3000个测试;提供核心部件、全系统的可靠性设计和失效模型设计文件及相关测试报告;申请/获得不少于10项相关技术发明专利。有关说明:拟支持不超过2项(现场快速和高通量全自动各不超过1项),项目实施周期不超过5年;企业牵头申报,鼓励产学研医检合作,牵头单位须具备较好的研究基础和较强的产业化能力,临床机构须承诺安装本项目研发的创新设备并承担临床研究任务;实施过程中将根据项目执行情况进行动态调整。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。2.4 高效液相色谱—三重四极杆质谱联用仪研发研究内容:研发高效液相色谱—三重四极杆质谱联用仪;实现高灵敏度离子透镜聚焦系统、四极杆质量分析器、高压射频电源、高效离子源等核心部件国产化。考核指标:整机产品及至少一种配套试剂获得产品注册证;核心部件和配套软件实现国产化;质量范围5~3000amu,全质量数范围达到单位质量分辨率,扫描速度不低于12000amu/s,MRM模式极性切换时间不大于5ms,动态范围达到6个数量级;电喷雾源正离子模式,1pg利血平进样,信噪比不低于50000;电喷雾源负离子模式,1pg氯霉素进样,信噪比不低于20000;大气压化学电离模式,1pg利血平进样,信噪比不低于5000;提供核心部件、整机的可靠性设计和失效模型设计文件,以及相关测试报告;申请/获得不少于10项核心发明专利。有关说明:项目实施周期不超过5年;企业牵头申报,鼓励产学研医检合作,牵头单位须具备较好的研究基础和较强的产业化能力,临床机构须承诺安装本项目研发的创新设备并承担临床研究任务;实施过程中将根据项目执行情况进行动态调整。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。3. 应用解决方案研究3.1 基于国产迷走神经刺激器的临床应用解决方案研究研究内容:围绕成人和儿童癫痫的治疗,研发基于国产植入式迷走神经刺激器(已获得医疗器械注册证,优先支持国家创新医疗器械产品)的新型癫痫治疗技术集成解决方案,系统加强产品集成(包括国产核心产品、配套产品、软件产品等)及不同层级医疗机构的临床应用规范研究,强化临床应用为导向的研究。考核指标:完成针对完整诊疗路径的创新性解决方案,形成适用于不同层级医疗机构的产品配置方案、技术操作规范、临床诊疗规范及相关验证报告,并完成不少于500例的临床队列研究;技术操作规范、临床诊疗规范应得到中华医学会或中国医师协会或中国抗癫痫协会认可,发表临床专家共识。有关说明:本项目为临床研究类项目,下设课题数不超过6个,参与单位总数不超过15家。牵头单位具备较强的创新能力和组织能力,参与项目的医疗机构必须已开展解决方案必需的国产核心产品上市后临床应用并提供证明;鼓励产学研医检合作,不同类型医疗机构、核心装备制造商、检验机构共同参与研究。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。3.2 半个性化高强度高韧性全膝置换用人工关节的临床解决方案研究研究内容:使用自主知识产权的、具有男性和女性性别差异性设计的国产高强度高韧性全膝置换用人工关节(已获得Ⅲ类医疗器械注册证),进行前瞻性队列研究,内容包括术前AI图像分割、重建和测量,术中切骨面测量,术后影像学分析,膝关节功能和运动能力评估,并对不同层级医院的应用推广临床路径差异化进行临床方案研究。考核指标:完成针对完整诊疗路径的创新性解决方案,形成适用于不同层级医疗机构的产品配置方案、技术操作规范、临床诊疗规范及相关验证报告,并完成不少于500例的临床队列研究;技术操作规范、临床诊疗规范应得到中华医学会二级及以上学术组织认可,发表临床专家共识。有关说明:本项目为临床研究类项目,下设课题数不超过6个,参与单位总数不超过15家。牵头单位具备较强的创新能力和组织能力,参与项目的医疗机构必须已开展解决方案必需的国产核心产品上市后临床应用并提供证明;鼓励产学研医检合作,不同类型医疗机构、核心装备制造商、检验机构共同参与研究。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。4. 监管科学研究4.1 标准数字光学模体研究研究内容:开展医用光学领域的全链条共性技术研究,研究人眼视网膜、组织血氧等仿生模体的数字化溯源技术,建立医用光学检测与影像技术的标准化评价体系和检测系统,为医用光学诊疗器械的创新研究、检验验证、使用中的质量控制以及第三方技术评价等全流程提供技术支撑。考核指标:建立多模态、多尺度且可溯源至国际单位制的“标准数字光学模体”不少于2种,建立医用光学检测与影像技术的标准化评价体系和检测系统,空间尺度测量不确定度优于2μm(k=2),光学折射率测量不确定度优于0.001(k=2);研制人眼视网膜、组织血氧等可溯源仿生模体不少于2种;获得用户验证报告不少于2家;申报行业标准或国家级技术规范不少于2项;申请/获得核心发明专利不少于2项。有关说明:国家市场监督管理总局推荐牵头单位,鼓励产学研医检联合申报,支持国家级开放共性关键技术平台建设,形成公共服务能力。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。4.2 放疗设备统一接口标准研究研究内容:研究参考基于DICOM协议、IHE-ROTDWII的放疗设备标准数据传输接口,支持常规放疗和先进放疗技术;通过参考国际通用公有协议(DICOM,TDWII等)的标准数据接口,开发完整的放疗设备接口协议,开展标准数据接口验证,实现对国内外放疗厂商设备间相互的实时驱动,实现治疗计划数据、治疗中的影像数据、治疗中的计划修正和质控数据、治疗记录数据等实时互通;形成国家/行业标准,实现放疗中心多品牌设备的统一管理,提升流程的效率和便捷性。考核指标:形成标准设备数据接口1套;获得不少于5家主流放疗设备厂商的互联互通验证报告1套;形成国家/行业标准建议,在标准管理机构立项;形成公共服务能力。有关说明:国家药品监督管理局推荐牵头单位,鼓励产学研医检联合申报,支持国家级开放共性关键技术平台建设。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。附件:“诊疗装备与生物医用材料”重点专项2021年度项目申报指南.pdf“诊疗装备与生物医用材料”重点专项2021年度“揭榜挂帅”榜单.pdf“诊疗装备与生物医用材料”重点专项2021年度项目申报指南和榜单形审要求.pdf“诊疗装备与生物医用材料”重点专项2021年度项目申报指南和榜单专家名单.pdf近期会议推荐:生物医用材料检测技术应用与进展网络研讨会该网络会议对听众免费,会议日程及报名二维码如下:
  • 生物医用材料研发重点专项名单公示
    近日,科技部公示了“生物医用材料研发与组织器官修复替代”重点专项拟进入审核环节的2016年度项目信息,其中31个项目名列在内,获得中央财政经费共计3.34亿元,项目实施周期为2-4.5年。 通知原文如下:  关于对国家重点研发计划“生物医用材料研发与组织器官修复替代”重点专项2016年度项目安排进行公示的通知 根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现将“生物医用材料研发与组织器官修复替代”重点专项拟进入审核环节的2016年度项目信息进行公示。序号项目编号项目名称项目牵头 承担单位项目 负责人中央财 政经费项目实施周期(年)12016YFC1100100基于天然细胞外基质的系列智能凝胶原位诱导非骨组织再生的机制及理论研究华中科技大学邵增务12504.522016YFC1100200生物材料化学信号、微纳米结构及力学特性对非骨组织再生诱导作用及其机制研究中国科学院上海硅酸盐研究所常江7504.532016YFC1100400生物材料表面/界面及表面改性研究浙江大学高长有14004.542016YFC1100500具有生物功能的个性化假体快速成型及3D打印关键技术研究与应用中国人民解放军第三军医大学唐康来13154.552016YFC1100600个性化硬组织重建植入器械的3D打印技术集成和应用研究上海交通大学郝永强11854.562016YFC1100700可降解医用高分子原材料产业化及其植入器械临床应用关键技术中国科学院长春应用化学研究所陈学思15804.572016YFC1100800具有原位组织诱导及修复再生功能的聚乙交酯及其共聚物纤维网复合真皮替代物的研发浙江大学韩春茂14204.582016YFC1100900动物源组织或器官免疫原性消除及防钙化技术中国人民解放军第二军医大学徐志云11254.592016YFC1101000动物源组织或器官免疫原性消除及防钙化技术中国医学科学院阜外医院王巍6754.5102016YFC1101100基于血管化的复杂组织工程化构建中国人民解放军第三军医大学朱楚洪12504.5112016YFC1101200基于轴突定向诱导的视神经再生微管关键技术研究温州医科大学附属眼视光医院吴文灿7504.5122016YFC1101300重要生命器官构建的工程化技术研究中国人民解放军军事医学科学院基础医学研究所王常勇10504.5132016YFC1101400人类器官的构建及工程化技术体系建立中国人民解放军第四军医大学金岩9504.5142016YFC1101500脊髓损伤及脑损伤再生修复生物材料产品的研发烟台正海生物科技股份有限公司张赛20004.5152016YFC1101600组织工程神经移植物产品研发与应用江苏益通生物科技有限公司杨宇民6254.5162016YFC1101700基于阵列微管精密3D打印的诱导型周围神经修复支架沈阳尚贤微创医疗器械股份有限公司罗卓荆3754172016YFC1101800耐磨、抗菌、生物活性固定PEEK人工关节的研发与产业化江苏奥康尼医疗科技发展有限公司王友10004.5182016YFC1101900高性能人工关节中奥汇成科技股份有限公司郑诚功10004.5192016YFC1102000生物活性脊柱及节段骨缺损修复器械的产品研发天津正天医疗器械有限公司张凯13154.5202016YFC1102100新型生物活性脊柱融合器和节段骨缺损修复产品的开发上海锐植医疗器械有限公司汤亭亭11854.5212016YFC1102200具有血管组织修复功能的新一代全降解聚合物支架四川兴康脉通医疗器械有限公司王云兵12504.5222016YFC1102300具有血管组织修复功能的全降解聚合物支架山东华安生物科技有限公司葛雷12504.5232016YFC1102400全降解镁合金冠脉药物洗脱支架研发赛诺医疗科学技术有限公司郑玉峰7904.5242016YFC1102500可降解锌合金冠脉支架的研发、评价和临床应用研究山东瑞安泰医疗技术有限公司张海军7104.5252016YFC1102600低模量高强度亲水牙种植体系统研发江苏创英医疗器械有限公司宿玉成5004.5262016YFC1102700新型牙种植体研发及其工程化技术研究成都普川生物医用材料股份有限公司周学东5004.5272016YFC1102800新型颌面软硬组织修复材料研发北京爱美客生物科技有限公司孙宏晨12104.5282016YFC1102900个性化颌面部软、硬组织再生修复材料研发上海瑞邦生物材料有限公司蒋欣泉10904.5292016YFC1103000新型血液净化材料及佩戴式人工肾关键技术研发及产业化成都欧赛医疗器械有限公司赵长生18034.5302016YFC1103100一种可穿戴便携式腹膜透析(人工肾)装置北京智立医学技术股份有限公司郑红光1972312016YFC1103200新一代生物材料质量评价关键技术研究中国食品药品检定研究院杨昭鹏19154.5  公示时间为2016年6月23日至2016年6月27日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。  联系人:于善江  联系电话:010-88225130  传真:010-88225200  电子邮件:yusj@cncbd.org.cn    中国生物技术发展中心  2016年6月23日
  • “诊疗装备与生物医用材料”重点专项2021申报指南征求意见
    2月4日,科技部发布“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项2021年度项目申报指南(征求意见稿),向社会征求意见和建议。征求意见时间为2021年2月4日至2021年2月24日,修改意见请于2月24日24点之前发至电子邮箱sfs_swyyc@most.cn。相关重点专项2021年项目实施中,拟积极探索“揭榜挂帅”、部省联动等新型组织实施模式,研究设立青年科学家项目,欢迎大家关注和支持。附件:“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项2021年度项目申报指南(征求意见稿).pdf关于“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项2021年度项目申报指南(征求意见稿)稿中提到,本专项针对高端诊疗装备和生物医用材料依赖进口、新冠肺炎疫情中暴露的应急医疗装备短板以及医药领域安全监管长期处于被动型和回溯性模式等问题,聚焦于医疗装备、生物医用材料、体外诊断等领域的重大产品,以及所涉及的关键技术及核心部件、前沿技术及样机、应用解决方案、监管科学、应用示范, 实现高端引领,促进我国高端诊疗装备和生物医用材料整体水平进入国际先进行列。本专项执行期为2021-2025年,按照全链条部署、一体化实施的原则,设置了前沿技术研究及样机研制、重大产品研发、应用解决方案研究、监管科学研究、应用示范研究五项任务。本批指南拟启动前四项任务中的16个研究方向。1. 前沿技术研究及样机研制1.1 先进结构与功能内镜成像技术研究及样机研制1.2 有源植入器械磁共振兼容技术研究及样机研制1.3 术中放疗定量化技术研究及样机研制1.4 仿生电活性牙槽骨/牙周再生材料研制1.5 可防治肿瘤的生物医用材料研制2. 重大产品研发2.1 小型化重离子治疗装置研发2.2 光子计数能谱CT研发2.3 新型可降解镁合金硬组织植入器械研发2.4 天然生物材料构建的降解调控神经移植物产品研发2.5 新型核酸分析系统平台研发2.6 高效液相色谱—三重四极杆质谱联用仪研发3. 应用解决方案研究3.1 基于国产迷走神经刺激器的应用解决方案研究3.2 半个性化高强度高韧性全膝置换用人工关节的临床解决方案研究4 监管科学研究4.1 标准数字光学模体研究4.2 放疗设备统一接口标准研究4.3 新型生物医用材料安全性及有效性评价研究
  • 国产临床质谱机遇 LC-MS/MS等仪器拟获“诊疗装备与生物医用材料”重点专项支持
    2020年2月4日,科技部发布关于对“十四五”国家重点研发计划“诊疗装备与生物医用材料”等12个重点专项2021年度项目申报指南征求意见的通知。本次征求意见指南为“十四五”首批启动重点专项2021年第一批部署的任务,其他研究任务将于后续陆续部署启动。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,认真研究收到的意见和建议,修改完善相关重点专项的项目申报指南。征集到的意见和建议,将不再反馈和回复。征求意见时间为2021年2月4日至2021年2月24日,修改意见请于2月24日24点之前发至电子邮箱。联系方式:sfs_swyyc@most.cn(诊疗装备与生物医用材料)其中,为全面落实《“健康中国 2030”规划纲要》,科技部会同有关部门,组织专家制定了国家重点研发计划“诊疗装备与生物医用材料”重点专项实施方案。专项针对高端诊疗装备和生物医用材料依赖进口、新冠肺炎疫情中暴露的应急医疗装备短板以及医药领域安全监管长期处于被动型和回溯性模式等问题,聚焦于医疗装备、生物医用材料、体外诊断等领域的重大产品,以及所涉及的关键技术及核心部件、前沿技术及样机、应用解决方案、监管科学、应用示范,实现高端引领,促进我国高端诊疗装备和生物医用材料整体水平 进入国际先进行列。专项执行期为2021—2025 年,按照全链条部署、一体化实施的原则,设置了前沿技术研究及样机研制、重大产品研发、应用解决方案研究、监管科学研究、应用示范研究五项任务。本批指南拟启动前四项任务中的16个研究方向。在重大产品研发任务中,设立6个研究方向。包含小型化重离子治疗装置研发、光子计数能谱 CT 研发、新型可降解镁合金硬组织植入器械研发、天然生物材料构建的降解调控神经移植物产品研发、新型核酸分析系统平台研发、高效液相色谱—三重四极杆质谱联用仪研发等。意见稿中还特别说明,项目企业牵头申报,鼓励产学研医检合作,牵头单位须具备较好的研究基础和较强的产业化能力,临床机构须承担临床验证任务;实施过程中将根据项目执行情况进行动态调整。其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于 2:1。更多详细内容请见附件“十四五”国家重点研发计划“生物安全关键技术研究”重点专项2021年度项目申报指南(征求意见稿).pdf
  • 工信部、药监局联合开展生物医用材料创新任务揭榜挂帅(第一批)工作
    工业和信息化部办公厅 国家药监局综合司关于组织开展生物医用材料创新任务揭榜挂帅(第一批)工作的通知工信厅联原函〔2022〕325号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、药品监督管理部门,有关中央企业,有关行业协会:生物医用材料是生产诊断、治疗、修复和替代人体组织、器官或增进其功能所需医疗器械不可或缺的新材料,包括高分子材料、金属材料、无机非金属材料等,对保障人民群众健康具有重要意义。为加快我国生物医用材料研制生产及应用进程,推进生物医用材料上下游协同创新攻关,更好支撑医疗器械产业高质量发展,工业和信息化部、国家药监局联合开展生物医用材料创新任务揭榜挂帅工作。有关事项通知如下。一、任务内容和预期目标生物医用材料创新任务揭榜挂帅工作聚焦高分子材料、金属材料、无机非金属材料三大重点方向,征集遴选一批掌握关键核心技术、具备较强创新能力的单位集中攻关,重点突破一批量大面广、技术先进、带动性强、安全可靠的标志性生物医用材料,材料性能符合临床应用要求、形成稳定可靠的规模化生产能力,加速在相关下游医疗器械产品领域实现落地应用。(一)高分子材料用于人工血管、覆膜支架、人工关节、椎间融合器、可吸收缝合线、球囊导管、血液透析器、体外膜肺氧合机等医疗器械产品的高分子材料,包括但不限于聚氨酯、聚L-丙交酯-己内酯(PLCL)、医用聚醚醚酮(PEEK)、医用聚乳酸衍生物(PLA/PLGA)、医用聚对二氧环己酮(PDO)、超细聚乙烯纤维屏蔽材料、聚四氟乙烯(PTFE)、膨体聚四氟乙烯(ePTFE)、非邻苯类增塑剂、医用植入硅橡胶、聚甲醛(POM)、医用聚砜(PSU)、医用聚醚砜(PES)、超高分子量聚乙烯、环烯烃聚合物(COP/COC)、尼龙及其弹性体、聚乙醇酸(PGA)、聚4-甲基-1-戊烯(PMP)等。(二)金属材料用于心脏起搏器、心脏瓣膜、神经刺激器、神经血管导丝、血管支架、人工关节、骨科植入器械等医疗器械产品的金属材料,包括但不限于超薄钛及钛合金、超细钛丝、镍钛合金管材、超细镍钛丝、铂钨/铂镍/铂铱合金超细丝材、镍钴铬钼合金丝材、超细铂合金管材/环材、钴铬合金管材/棒材/丝材、可降解医用镁合金材料、医用增材制造用钽粉等。(三)无机非金属材料用于仿生复合骨支架、义齿、骨缺损填充及修复材料等医疗器械产品的无机非金属材料,包括但不限于双相磷酸钙(BCP)陶瓷、义齿微晶玻璃、氧化锆复合氧化铝、再生修复用生物玻璃等无机非金属材料等。二、推荐条件(一)揭榜申报主体须是材料生产企业和医疗器械生产企业组建的上下游联合体,鼓励医疗卫生机构、高校及科研院所、检测机构等共同参与,牵头单位为1家。参与联合体的单位须为在中华人民共和国境内注册、具有独立法人资格的企事业单位,具有较强的技术创新能力和产业化应用能力。(二)各省、自治区、直辖市及计划单列市工业和信息化主管部门会同药品监督管理部门作为推荐单位,优先推荐技术指标先进、技术路线成熟、推广应用方案完备、经费预算合理、揭榜团队综合能力强的项目。(三)每个单位牵头申报项目不能超过3个,已列入前期相关揭榜挂帅项目的不得重复申报。三、工作要求(一)申报主体可通过申报系统(http://biomed.caict.ac.cn/)进行申报,完成注册后填写申报所需材料。申报截止时间为2023年2月10日。(二)推荐单位于2023年2月24日前使用账号登录系统并确认推荐名单。(三)请推荐单位高度重视生物医用材料创新任务揭榜挂帅工作,充分调动重点企业、专精特新“小巨人”企业、单项冠军企业、医疗卫生机构、高校及科研院所、相关产业联盟及行业协会的积极性申报揭榜挂帅项目,按照政府引导、企业自愿、公开公正的原则做好推荐工作,并结合区域产业优势和临床资源,加大对“揭榜挂帅”重点品种、重点企业配套支持力度,优先配置入选“揭榜挂帅”的项目用地、用能、排污等指标资源,出台鼓励应用推广的配套政策。(四)工业和信息化部、国家药监局委托第三方专业机构组织遴选并公布入围揭榜单位名单,建立“赛马机制”,每个揭榜产品择优选择揭榜团队(原则上不超过3家)进行攻关,拟将揭榜挂帅攻关方向纳入现有政策支持渠道,依托国家产融合作平台提供投融资对接服务,并优先提供审评相关的技术咨询服务。(五)入围揭榜挂帅单位完成攻关任务后(原则上名单公布之日起3年内),工业和信息化部、国家药监局委托专业机构开展测评工作,择优确定揭榜优胜单位(每个揭榜方向原则上不超过2家)。鼓励完成揭榜任务的相关材料以医疗器械主文档形式进行登记,并通过新材料首批次应用保险补偿等政策加大应用推广支持力度。(六)中国信息通信研究院、国家药监局医疗器械技术审评中心和中国医疗器械行业协会为揭榜挂帅工作提供过程管理、平台建设、评估组织、协调服务等支撑工作。联系人及电话:工业和信息化部原材料工业司   王成龙010-68205568 刘伯民010-68205564工业和信息化部消费品工业司   符一男010-68205638国家药监局医疗器械注册管理司  胡雪燕010-88330635工作咨询:中国信息通信研究院 李 曼010-62302915 王子函010-62305979国家药监局医疗器械技术审评中心 孙小闻010-86452726中国医疗器械行业协会 苏文娜010-68205638附件:1.生物医用材料创新任务揭榜挂帅单位推荐表.doc2.生物医用材料创新任务揭榜挂帅单位申报材料.doc工业和信息化部办公厅国家药监局综合司2022年12月7日
  • 科普|岛津试验机推进医用植入物材料研究
    导语随着科技的发展,越来越多的医用植入物材料用于对失效组织进行介入治疗、修复或替换,能够显著改善病人的生存质量。医用植入物材料在体内长期受到多向复合载荷影响,因此基力学性能的稳定显得尤其重要。通过使用电子试验机,模拟医用植入材料在体内受到的各种力学模型下材料的变化状况与趋势,能为这些材料的设计、制造、长期可靠性的研究,提供客观科学的数据支持。今天,我们将带大家一起看看两种常见医用植入物新材料力学测试的案例,镁合金与Pluronic F127水凝胶。小科普镁合金是医用植入物最广泛采用的金属材料之一,如心血管支架、骨植入材料骨钉、骨板等。镁是人体必需的常量元素之一,人体可以通过尿液排出体外,多孔镁合金材料作为一种可降解的生物材料,能为再生细胞提供三维生长的空间,有利于养料和代谢物的交换运输。心血管支架用鞘管Pluronic F127水凝胶是由70%的聚氧化乙烯和30%的聚氧化丙烯构成的共聚物,是近年来应用于组织工程研究的一种良好的支架材料,在体内可稳定降解,可最终被再生组织完全替代吸,其降解吸收速度可通过改变溶液的浓度来调节,可以使用3D打印技术完成制造,是一种理想的骨移植支架新材料。Pluronic F127水凝胶岛津解决方案分析利器岛津采用AGS-X电子试验机开发了镁合金、F 127水凝胶材料的检测方法,测试方便快捷,数据与曲线准确直观。岛津AGS-X电子试验机高效实现镁合金材料(中空管)单一拉伸测试使用岛津AGS-X电子试验机配合岛津气动双推夹具,能够完成镁合金中空管的拉伸测试,测得镁合金中空管的抗拉强度和断裂点载荷,并保证断裂位置始终在管材的中间位置,此应用可适用于穿刺针类样品的拉伸测试,通过简单数据与曲线对照,就可以直观判定镁合金的抗拉性能是否达到要求。镁合金中空管拉伸测试曲线F127水凝胶循环拉伸/压缩测试使用岛津AGS-X电子试验机配合拉伸和压缩夹具,实现对F127水凝胶材料的循环拉伸、循环压缩测试,通过曲线可以直观观察水凝胶材料在循环拉伸过程中随着循环次数增加,载荷递增,循环压缩过程中出现载荷波动现象,还能输出原始数据文件(CSV文件),直接获取每个采样点上的准确数据。F127水凝胶循环拉伸测试与曲线F127水凝胶循环压缩测试与曲线岛津其他医用植入物测试夹具部分展示结语近年来,岛津AG系列电子试验机承担了越来越多新材料的检测项目,其优异的测试性能,简单便捷的操作,稳定的工作状态为医用植入物开发研究提供了便利,具有很大的优势。岛津一直致力于“为了人类和地球的健康”这一愿景,不断开发新方法,服务于大众,为医学领域的发展和人民生活健康安全保驾护航。撰稿人:王正宇本文内容非商业广告,仅供专业人士参考。
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 国标委发布47项材料、化妆品检测新标准
    近日,国家质量监督检验检疫总局、国家标准化管理委员会批准发布了《 金属材料 薄板和薄带 反复弯曲试验方法》、《化妆品中苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ的测定 高效液相色谱法》等83项国家标准。   其中47项标准涉及金属材料、染料、塑料、橡胶、化妆品等的检测方法。有关化妆品检测的标准均为初次制定,主要的检测方法为高效液相色谱法、气相色谱-质谱法等。 序号 标准号 标准名称 代替标准号 实施日期 1 GB/T 235-2013 金属材料 薄板和薄带 反复弯曲试验方法 GB/T 235-1999 2014-05-01 2 GB/T 238-2013 金属材料 线材 反复弯曲试验方法 GB/T 238-2002 2014-05-01 3 GB/T 2061-2013 散热器散热片专用铜及铜合金箔材 GB/T 2061-2004 2014-05-01 4 GB/T 2376-2013 硫化染料 染色色光和强度的测定 GB/T 2376-2003 2014-01-31 5 GB/T 2377-2013 还原染料 色光和强度的测定 GB/T 2377-2006 2014-01-31 6 GB/T 2387-2013 反应染料 色光和强度的测定 GB/T 2387-2006 2014-01-31 7 GB/T 2915-2013 聚氯乙烯树脂 水萃取液电导率的测定 GB/T 2915-1999 2014-01-31 8 GB/T 3994-2013 粘土质隔热耐火砖 GB/T 3994-2005 2014-05-01 9 GB/T 4348.1-2013 工业用氢氧化钠 氢氧化钠和碳酸钠含量的测定 GB/T 4348.1-2000 2014-01-31 10 GB/T 5071-2013 耐火材料 真密度试验方法 GB/T 5071-1997 2014-05-01 11 GB/T 5126-2013 铝及铝合金冷拉薄壁管材涡流探伤方法 GB/T 5126-2001 2014-05-01 12 GB/T 5249-2013 可渗透性烧结金属材料 气泡试验孔径的测定 GB/T 5249-1985 2014-05-01 13 GB/T 5475-2013 离子交换树脂取样方法 GB/T 5475-1985 2014-01-31 14 GB/T 5476-2013 离子交换树脂预处理方法 GB/T 5476-1996 2014-01-31 15 GB/T 10120-2013 金属材料 拉伸应力松弛试验方法 GB/T 10120-1996 2014-05-01 16 GB/T 11064.1-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第1部分:碳酸锂量的测定 酸碱滴定法 GB/T 11064.1-1989 2014-05-01 17 GB/T 11064.2-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第2部分:氢氧化锂量的测定 酸碱滴定法 GB/T 11064.2-1989 2014-05-01 18 GB/T 11064.3-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第3部分:氯化锂量的测定 电位滴定法 GB/T 11064.3-1989 2014-05-01 19 GB/T 11064.4-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第4部分:钾量和钠量的测定 火焰原子吸收光谱法 GB/T 11064.4-1989, GB/T 11064.16-1989 2014-05-01 20 GB/T 11075-2013 碳酸锂 GB/T 11075-2003 2014-05-01 21 GB/T 11212-2013 化纤用氢氧化钠 GB/T 11212-2003 2014-01-31 22 GB/T 12652-2013 亚洲薄荷素油 GB/T 12652-2002 2014-02-15 23 GB/T 13531.4-2013 化妆品通用检验方法 相对密度的测定 GB/T 13531.4-1995 2014-02-15 24 GB/T 13748.1-2013 镁及镁合金化学分析方法 第1部分:铝含量的测定 GB/T 13748.1-2005 2014-05-01 25 GB/T 13748.4-2013 镁及镁合金化学分析方法 第4部分:锰含量的测定 高碘酸盐分光光度法 GB/T 13748.4-2005 2014-05-01 26 GB/T 13748.7-2013 镁及镁合金化学分析方法 第7部分:锆含量的测定 GB/T 13748.7-2005 2014-05-01 27 GB/T 13748.8-2013 镁及镁合金化学分析方法 第8部分:稀土含量的测定 重量法 GB/T 13748.8-2005 2014-05-01 28 GB/T 13748.9-2013 镁及镁合金化学分析方法 第9部分:铁含量测定 邻二氮杂菲分光光度法 GB/T 13748.9-2005 2014-05-01 29 GB/T 13748.10-2013 镁及镁合金化学分析方法 第10部分:硅含量的测定 钼蓝分光光度法 GB/T 13748.10-2005 2014-05-01 30 GB/T 14457.2-2013 香料 沸程测定法 GB/T 14457.2-1993 2014-02-15 31 GB/T 14458-2013 香花浸膏检验方法 GB/T 14458-1993 2014-02-15 32 GB/T 16579-2013 D001大孔强酸性苯乙烯系阳离子交换树脂 GB/T 16579-1996 2014-01-31 33 GB/T 16580-2013 D201大孔强碱性苯乙烯系阴离子交换树脂 GB/T 16580-1996 2014-01-31 34 GB/T 16598-2013 钛及钛合金饼和环 GB/T 16598-1996 2014-05-01 35 GB/T 16865-2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 GB/T 16865-1997 2014-05-01 36 GB/T 17519-2013 化学品安全技术说明书编写指南 GB/T 17519.2-2003 2014-01-31 37 GB/T 19277.2-2013 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分: 用重量分析法测定实验室条件下二氧化碳的释放量 2014-01-31 38 GB 19601-2013 染料产品中23种有害芳香胺的限量及测定 GB 19601-2004 2014-10-01 39 GB/T 20020-2013 气相二氧化硅 GB/T 20020-2005 2014-01-31 40 GB/T 27201-2013 认证机构信用评价准则 2013-12-01 41 GB/T 27202-2013 认证执业人员信用评价准则 2013-12-01 42 GB/T 27415-2013 分析方法检出限和定量限的评估 2013-12-01 43 GB/T 29640-2013 塑料 玻璃纤维增强聚对苯二甲酰癸二胺 2014-01-31 44 GB/T 29641-2013 浇铸型聚甲基丙烯酸甲酯声屏板 2014-01-31 45 GB/T 29642-2013 橡胶密封制品 水浸出液的制备方法 2014-01-31 46 GB/T 29643-2013 工业用氢氧化钠 实验室样品和进行项目测定用主溶液的制备 2014-01-31 47 GB/T 29644-2013 硫化橡胶 N-苯基-&beta -萘胺含量的测定 高效液相色谱法 2014-01-31 48 GB/T 29645-2013 塑料 聚苯乙烯再生改性专用料 2014-01-31 49 GB/T 29646-2013 吹塑薄膜用改性聚酯类生物降解塑料 2014-01-31 50 GB/T 29647-2013 坚果与籽类炒货食品良好生产规范 2014-02-01 51 GB/T 29648-2013 全自动旋转式PET瓶吹瓶机 2014-04-01 52 GB/T 29649-2013 生物基材料中生物基含量测定 液闪计数器法 2014-01-31 53 GB/T 29650-2013 耐火材料 抗一氧化碳性试验方法 2014-05-01 54 GB/T 29651-2013 锰矿石和锰精矿 全铁含量的测定 火焰原子吸收光谱法 2014-05-01 55 GB/T 29652-2013 直接还原铁 碳和硫含量的测定 高频燃烧红外吸收法 2014-05-01 56 GB/T 29653-2013 锰矿石 粒度分布的测定 筛分法 2014-05-01 57 GB/T 29654-2013 冷弯钢板桩 2014-05-01 58 GB/T 29655-2013 钕铁硼速凝薄片合金 2014-05-01 59 GB/T 29656-2013 镨钕镝合金化学分析方法 2014-05-01 60 GB/T 29657-2013 钇镁合金 2014-05-01 61 GB/T 29658-2013 电子薄膜用高纯铝及铝合金溅射靶材 2014-05-01 62GB/T 29659-2013 化妆品中丙烯酰胺的测定 2014-02-15 63 GB/T 29660-2013 化妆品中总铬含量的测定 2014-02-15 64 GB/T 29661-2013 化妆品中尿素含量的测定 酶催化法 2014-02-15 65 GB/T 29662-2013 化妆品中曲酸、曲酸二棕榈酸酯的测定 高效液相色谱法 2014-02-15 66 GB/T 29663-2013 化妆品中苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ的测定 高效液相色谱法 2014-02-15 67 GB/T 29664-2013 化妆品中维生素B3(烟酸、烟酰胺)的测定 高效液相色谱法和高效液相色谱串联质谱法 2014-02-15 68 GB/T 29665-2013 护肤乳液 2014-08-01 69 GB/T 29666-2013 化妆品用防腐剂 甲基氯异噻唑啉酮和甲基异噻唑啉酮与氯化镁及硝酸镁的混合物 2014-02-15 70 GB/T 29667-2013 化妆品用防腐剂 咪唑烷基脲 2014-02-15 71 GB/T 29668-2013 化妆品用防腐剂 双(羟甲基)咪唑烷基脲 2014-02-15 72 GB/T 29669-2013 化妆品中N-亚硝基二甲基胺等10种挥发性亚硝胺的测定 气相色谱-质谱/质谱法 2014-02-15 73 GB/T 29670-2013 化妆品中萘、苯并[a]蒽等9种多环芳烃的测定 气相色谱-质谱法 2014-02-15 74 GB/T 29671-2013 化妆品中苯酚磺酸锌的测定 高效液相色谱法 2014-02-15 75 GB/T 29672-2013 化妆品中丙烯腈的测定 气相色谱-质谱法 2014-02-15 76 GB/T 29673-2013 化妆品中六氯酚的测定 高效液相色谱法 2014-02-15 77 GB/T 29674-2013 化妆品中氯胺T的测定 高效液相色谱法 2014-02-15 78 GB/T 29675-2013 化妆品中壬基苯酚的测定 液相色谱-质谱/质谱法 2014-02-15 79 GB/T 29676-2013 化妆品中三氯叔丁醇的测定 气相色谱-质谱法 2014-02-15 80 GB/T 29677-2013 化妆品中硝甲烷的测定 气相色谱-质谱法 2014-02-15 81 GB/T 29678-2013 烫发剂 2014-08-01 82 GB/T 29679-2013 洗发液、洗发膏 2014-08-01 83 GB/T 29680-2013 洗面奶、洗面膏 2014-08-01
  • “先进结构与复合材料”重点专项2021申报指南:拟安排6.32亿元启动37个项目
    5月13日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南。指南中明确:2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷与陶瓷基复合材料、先进工程结构材料、结构材料制备加工与评价新技术、基于材料基因工程的结构与复合材料7个技术方向。按照“基础前沿技术、共性关键技术、示范应用”三个层面,拟启动37个项目,拟安排国拨经费6.32亿元。其中,拟部署9个青年科学家项目,拟安排国拨经费3600万元,每个项目400万元。1. 高性能高分子材料及其复合材料1.1 高性能全芳香族纤维系列化与规模化制备关键技术(共性关键技术)研究内容:针对航空航天、武器装备等亟需的高强高韧结构材料应用需求,开展高性能全芳香族纤维制备关键技术及其应用研究。揭示大分子刚性链结构、纤维纺丝成型、凝聚态及其性能之间的内在规律,攻克全芳香族纤维制备共性科学问题;研究高强/高模芳纶纤维成型和热处理工艺,突破制备关键制备技术及成套装备;研究高伸长耐高温芳纶III纤维、芳纶纸及其蜂窝应用技术;探讨高性能液晶纺丝聚芳酯聚合物结构设计、固态缩聚反应动力学和纤维冷却成型机理,攻克聚芳酯纤维制备关键技术。1.2 面向高端应用的阻燃高分子材料关键技术开发(共性关键技术)研究内容:面向5G通讯和轨道交通等高端制造业的需求,形成一批具有国际领先水平和自主知识产权的合成树脂材料及应用技术。重点开发PCB的无卤高阻燃、高Tg、低介电性能的环氧树脂;高阻燃耐老化热塑性弹性体TPE和聚脲弹性体无卤阻燃技术及应用;研发本征阻燃高温炭化不熔滴聚酯和低热释放本征阻燃聚碳酸酯合成技术;本征阻燃尼龙66工程化制备及其应用,完成万吨级规模化生产与应用示范。1.3 低成本生物基工程塑料的制备与产业化(共性关键技术)研究内容:面向生物基高分子材料成本高和高性能工程塑料牌号少的问题,集中开发低成本生物基呋喃二甲酸(FDCA)、异山梨糖醇的制备技术;开发1,4-环己烷二甲醇(CHDM)和2,2,4,4-四甲基环丁二醇(CBDO)的国产化制备技术,基于生物基单体和新型单体开发PEF、PCF、PIF和PETG等生物基聚酯以及PIC、PCIC等生物基聚碳酸酯,从单体、聚合物到后端应用全链条研究。精细调控产品结构,研究产品的耐温性能、力学性能、阻隔性能等,开发不低于8种高性能聚酯和聚碳酸酯产品,并在包装领域得到应用。2. 高温与特种金属结构材料2.1 高温合金纯净化与难变形薄壁异形锻件制备技术(共性关键技术)研究内容:针对国产高温合金冶金质量差、材料综合利用率低、力学性能波动大等问题,研究镍基高温合金纯净熔炼、返回料处理和再利用技术,返回料与全新料混合重熔工艺;开发难变形高温合金成分优化及纯净熔炼、铸锭均匀化热处理、合金铸锭均质开坯、棒料细晶锻制、大型薄壁异形环形件整体制备等工艺技术,建立合金工艺与成分、组织和性能的影响关系,实现高温合金棒材和锻件组织均匀性和性能一致性的优化控制,完成合金制备工艺、材料与构件质量评估及在先进能源动力装备的考核验证。2.2 高品质TiAl合金粉末制备及3D打印关键技术(共性关键技术)研究内容:针对电子束3D打印所需的低氧含量球形TiAl合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl合金粉末和工业化TiAl构件增材制造关键技术;开展增材制造TiAl合金的材料—工艺—组织—缺陷—性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。2.3 光热发电用耐高温熔盐特种合金研制与应用(示范应用)研究内容:针对太阳能光热发电产业低成本高效发电可持续发展需求,以下一代低成本高效超临界二氧化碳光热发电系统中耐高温氯化物混合熔盐特种金属材料及其制造技术为研究对象,研究耐高温不锈钢、高温合金板材及其焊接界面在高温氯化物、硝酸盐中的腐蚀机理和服役寿命预测技术,研究满足氯化物和硝酸盐熔盐发电系统用的耐高温不锈钢、高温合金板材成分和组织设计及其批量制造技术,开发耐高温熔盐不锈钢、高温合金成型和焊接行为及其先进制备技术,发展高温合金长寿命高吸收率吸热涂层,实现高性能不锈钢、高温合金产品开发及应用示范。2.4 海洋工程及船用高端铜合金材料(共性关键技术)研究内容:针对舰船和海洋装备泵体、管路及阀门等耐蚀性差、服役寿命短、高端材料依靠进口的问题,研究海洋工程及船用新型高性能铜合金材料设计、成分—组织—工艺内禀关系、腐蚀行为及耐蚀机理,开发耐高流速海水冲刷型铜合金承压铸件制备、超大口径耐蚀铜合金管材加工及管附件成形、海洋油气开采用高耐磨高耐蚀铜合金管棒材加工及热处理组织性能调控等高质量低成本工业化制造技术,开展产品应用技术研究,实现高端铜合金典型产品示范应用。3. 轻质高强金属及其复合材料3.1 苛刻环境能源井钻采用高性能钛合金管材研究开发及应用(示范应用)研究内容:针对我国油气、可燃冰等能源钻采高耐蚀和轻量化的紧迫需求,研究苛刻环境下高强韧耐蚀钛合金多相组织强韧化、抗疲劳机理,以及高温、高压、腐蚀、疲劳等服役环境下材料损伤及失效机理;建立服役环境适应性材料设计方法及油气井钻采用钛合金钻杆、油套管服役性能适用性评价方法;开发高性能大规格钛合金无缝管材成套工艺技术及关键应用技术;制定专用标准规范,开展苛刻服役条件下应用研究,实现工业化规模稳定生产,在典型应用场景实现示范应用。3.2 先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对汽车、飞行器以及船舶等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。3.3 高性能镁合金大型铸/锻件成形与应用(共性关键技术)研究内容:针对商用车、高速列车、航空航天等领域的轻量化紧迫需求,探索热—力耦合条件下大容积镁合金凝固与形变过程中成分—组织—性能演变规律与调控技术,开发适合于大型铸/锻件的高性能镁合金材料;研究大型镁合金铸/锻件组织均匀化与缺陷调控机理,开发高致密度铸造成形技术、大体积熔体清洁传输及半连续铸造技术、挤锻复合一体成形技术;开展大型承载件的结构设计、产品制造、腐蚀防护及使役性能评价等技术研究,并实现示范验证与规模化应用。3.4 新型结构功能一体化镁合金变形加工材制造技术(共性关键技术)研究内容:针对航空航天、轨道交通、能源采掘、电子通信等重大装备升级换代的紧迫需求,研究新型强化相对镁合金力学性能与功能特性的协同调控机理,发展新型结构功能一体化镁合金材料与新型非对称加工技术,开发大规格高强阻尼镁合金环件、宽幅阻燃镁合金型材、高强可溶镁合金管材、高强电磁屏蔽/高导热镁合金板材的工业化制造成套技术及关键应用技术,并实现典型示范应用。3.5 极端环境特种服役构件用构型化金属基复合材料(示范应用)研究内容:针对航空航天特种服役构件用耐疲劳高强韧铝基复合材料、耐热高强韧钛基复合材料以及岛礁建设与隧道掘进等重大工程用高耐磨钢铁基复合材料,开发铝、钛基复合材料用合金粉末的低成本制备技术,解决传统制粉技术细粉出粉率低、氧含量高等技术难题,实现高端铝、钛合金粉末规模化制备。探索复合材料体系—复合构型设计—复合技术—宏微观性能耦合机制与协同精确控制机理,开发跨尺度分级复合构型的定位控制、界面效应与组织精确调控、性能及质量稳定性控制、大型结构件塑性加工与热处理、低成本批量制备等产业化关键技术,开展特种服役性能评价、全寿命预测评估与应用技术研究,建立相关标准规范,实现其稳定化生产与应用示范。3.6 高端装备用高强轻质、高强高导金属层状复合材料研制及应用(示范应用)研究内容:针对高速列车、先进飞机、防护车辆等高端装备轻量化、高性能化的迫切需求,研究高性能多层铝合金板材、铜包铝合金等层状复合材料界面结构与复合机理,探索应用人工智能、大数据等前沿技术优化界面调控的理论与方法,阐明铝合金复合板材的叠层结构、复合界面、陶瓷颗粒第二相等在高应变速率下抵抗冲击的作用机理;开发防护车辆、特种装备等用抗冲击多层高强铝合金复合板材的工业化制造成套技术及复合板材的性能评价等关键应用技术;开发高速列车、航空航天、电力电器等高端装备用铜包铝合金复合材料短流程高效工业化生产成套技术及多场景应用关键技术,实现在高端装备上的示范应用。4. 先进结构陶瓷与陶瓷基复合材料4.1 高端合金制造及钢铁冶金用关键结构陶瓷材料开发及应用(示范应用)研究内容:面向冶金产业提升的发展需求,研究高端合金制造及钢铁新技术领域用关键结构陶瓷材料组分设计与制备技术,开发高品质高温合金制备用结构陶瓷材料、冶金领域用高效节能硼化锆陶瓷电极、薄带连铸用结构功能一体化陶瓷材料的规模化生产工艺,开展应用评价技术研究,建立规模化生产线,研制关键生产设备,制定制备及检测标准。4.2 低面密度空间轻量化碳化硅光学—结构一体化构件制备(基础前沿技术)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学—结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度空间轻量化碳化硅光学—结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学—结构一体化构件材料制备。4.3 高性能硅氧基纤维及制品的结构设计与产业化关键技术(示范应用)研究内容:针对高效隔热防护服、高强芯片、高保真通讯电缆等对高性能硅氧基纤维及制品的应用需求,研究硅氧前驱体化学组成、结构重组、多级微纳结构演变对纤维成型的影响规律,攻克硅氧基无机制品高温均匀化熔制拉丝关键技术,开发高强玻璃纤维;研究前驱体分子缩聚和纳米/微米多级孔组装结构演变对孔结构形成的影响规律,突破多孔玻璃纤维常温挤出成型技术,开发低介电、低热导、轻质柔性玻璃纤维;研究模拟月球和火星环境的微重力、高真空环境下玄武岩材料熔制技术及深空环境对纤维成型的作用机制,开发高性能连续玄武岩纤维;开展高性能玻璃纤维及复合制品产业化示范,形成千吨级生产线;开发极端环境的模块化连续玄武岩纤维成型装置,实现微重力下自主成纤中试。5. 先进工程结构材料5.1 海洋建筑结构用耐蚀钢及防护技术(共性关键技术)研究内容:针对海洋建筑结构对长寿命钢铁材料的需求,研究高盐雾、高湿热、强辐射等严酷海洋环境下,钢铁结构材料的失效机理与材料设计准则;防腐涂层的成分设计、制备技术、涂装工艺及腐蚀评价;耐蚀钢板/钢筋的成分设计、制备技术、焊接技术及腐蚀评价;复合钢板的制备技术、焊接技术及腐蚀评价;海洋建筑结构用钢的服役评价、设计规范及示范应用。开展免维护海洋结构用低合金耐蚀钢板及复合钢板的成分设计及制备技术研究;开展防腐涂层设计与制备技术、钢板与涂层耦合耐蚀机理研究;研究低成本耐蚀钢筋母材与覆层协同耐蚀机制与制备技术;开展耐蚀钢连接技术研究;建立复杂海洋环境钢材及构件的服役评价及全寿命周期预测方法。6. 结构材料制备加工与评价新技术6.1 金刚石超硬复合材料制品增材制造技术(示范应用)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用含金刚石的球形复合粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。6.2 高强轻质金属结构材料精密注射成形技术(共性关键技术)研究内容:针对5G基站、消费电子、无人机或机器人等领域对高强轻质结构零件的迫切需求,研究粉末冶金高强轻质金属结构材料及其注射成形工艺过程精确控制原理与方法、小型复杂构件精密成形、低残留粘结剂设计及杂质元素控制、强化烧结致密化及合金的强韧化。重点突破粉末冶金高强轻质钢设计及其粉末制备、低成本近球形钛合金微细粉末制备、可烧结高强粉末冶金铝合金及近球形微细粉末制备、组织性能精确调控等关键技术,实现高强轻质金属复杂形状制品的稳定化宏量生产。6.3 大型复杂薄壁高端金属铸件智能液态精密成型技术与应用(共性关键技术)研究内容:面向大涵道比涡扇航空发动机、新能源汽车等对超大型复杂薄壁高端金属铸件的需求,打破传统“经验+试错法”研发模式,探索基于集成计算材料工程、大数据与人工智能相结合的金属铸件智能液态精密成型关键技术。研究超大型复杂薄壁金属铸件凝固过程的组织演变与缺陷形成机理,建立多物理场耦合作用下铸件组织与缺陷的预测模型,发展数据驱动的材料综合性能与铸造工艺多因素智能化寻优方法,形成金属铸件智能液态精密成型数字孪生模型及系统。6.4 复杂工况下冶金领域关键部件表面工程技术与应用(示范应用)研究内容:针对冶金领域高温、重载、高磨损等复杂工况对关键部件表面防护技术的迫切需求,开展复合增强表面工程材料及涂镀层结构的理性设计,开发高效率、高性能激光熔覆、堆焊、冷喷涂、复合镀等技术及多技术结合的复合表面工程技术,攻克复杂工况下冶金领域关键部件表面耐高温、耐磨损、抗疲劳涂镀层制备的关键技术,开展其服役性能评价和寿命预测,并应用于挤压芯棒、结晶器、除鳞辊等典型部件,在大型钢铁冶金企业得到示范应用。7. 基于材料基因工程的结构与复合材料7.1 结构材料多时空大尺寸跨尺度高通量表征技术(基础前沿技术)研究内容:针对高温合金、轻合金和高性能复合材料等的工程化需求,基于先进电子、离子、光子和中子光源,集成多场原位实验与多平台关联分析技术,研发晶粒、组成相、相界面、化学元素、晶体缺陷与织构的多时空跨尺度高通量表征、智能分析与快速评价技术,研发大尺寸多尺度组织结构和宏微观力学性能高通量表征技术与试验装备,实现典型工程化结构材料制备、加工和服役过程中内部组织结构的动态演化和交互作用规律的高效研究,建立材料成分—组织—性能的多尺度统计映射关系与定量模型,在典型结构材料的改性、工艺优化和服役评价等方面得到实际应用。7.2 金属结构材料服役行为智能化高效评价技术与应用(共性关键技术)研究内容:针对金属结构材料腐蚀、疲劳、蠕变等服役性能评价耗时长、成本高的问题,通过多物理场耦合、宏微观跨尺度损伤建模,融合智能传感、信号处理、机器学习等现代技术,研发材料服役性能物理实验与模拟仿真实时交互和数字孪生的智能化高效评价技术和装置;研究金属结构材料数据虚实映射与数据交互规则,建立数据关联平台,加速材料服役性能数据的积累,形成关键金属结构材料安全评价数据系统;集成结构模型与损伤模型,发展基于大数据技术的金属结构材料服役安全评价和寿命预测的新技术和新方法,并获得实际应用。7.3 基于材料基因工程的新型高温涂层优化设计研发(共性关键技术)研究内容:针对海上动力装备用热端部件及其海洋腐蚀环境,发展高温涂层的高通量制备技术,开展新型高性能高温涂层成分和组织结构的高通量实验筛选和优化研究;研发涂层—基体界面结构和性能多尺度高效模拟设计和预测技术,研发涂层高温力学性能、界面强度、残余应力和高温腐蚀性能等的高通量实验技术,开展涂层与界面性能和工艺优化研究;综合利用材料基因工程关键技术,研发出具有重要工程应用前景的新型超高温、耐腐蚀涂层。7.4 高强韧金属基复合材料高通量近净形制备与应用(共性关键技术)研究内容:针对航空航天领域高强韧金属基复合材料应用需求,围绕非连续增强金属基复合材料强韧性失配及复杂构件成形加工周期长、成本高、材料利用率低的突出问题,结合利用材料基因工程思想和近净形制备技术原理,研发铝基、钛基复合材料高通量近净形制备技术及其高通量表征技术;测试和采集基体/增强相界面物理化学数据,建立基体/增强相界面热力学和动力学物性数据库;研究铝基、钛基复合材料成分—构型—工艺—界面—性能交互关联集成计算技术,实现材料体系与构型及其近净形制备工艺方案与参数的高效同步优化,并在航空航天等领域得到工程示范应用。7.5 先进制造流程生产汽车用钢集成设计与工程应用(示范应用)研究内容:鉴于钢铁工业绿色制造、生态发展对先进制造流程生产高端钢铁材料的迫切需求,基于材料基因工程的思想,针对近终形流程生产汽车用钢,采用多场耦合和跨尺度计算技术,集成材料开发与产品应用的跨尺度计算模型,构建一体化集成计算平台,建立材料基础数据和工艺、产品数据库,开发基于数据挖掘和强化机制的组织性能定量关系模型,实现产品成分—工艺—组织—性能的精准预报;开展在近终形流程生产汽车用钢的示范应用,研制出代表性产品并实现工程应用。7.6 增材制造用高性能高温合金集成设计与制备(共性关键技术)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程所需高温合金精密构件服役特点和增材制造物理冶金特点,应用材料基因工程理念,发展多层次跨尺度计算方法和材料大数据技术,形成增材制造用高性能高温合金的高效计算设计方法、增材制造全流程模拟仿真技术与机器学习技术,结合高通量制备技术和快速表征技术,建立增材制造用高性能高温合金的材料基因工程专用数据库;发展适合高温合金增材制造工艺特性的机器学习、数据挖掘、可视化模拟等技术,开展增材制造用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。7.7 极端服役条件用轻质耐高温部件高通量评价与优化设计(共性关键技术)研究内容:发展基于大数据分析和数据挖掘的高温钛合金、钛铝金属间化合物等轻质耐高温部件组织结构与疲劳、蠕变等关键性能的定量预测模型;研制实时瞬态衍射、原位成像表征装置,发展三维无损检测高效分析技术;研究高温腐蚀环境下组织结构演化和性能退化机理、高温和循环载荷等多因素耦合作用下的损伤累积及高通量评价与寿命预测技术;基于极端环境服役性能需求,利用机器学习和数据挖掘技术,实现轻质耐高温材料的成分、组织、制备工艺、服役性能的高效优化,并在航空、航天、核能等领域实现在极端服役条件下工程示范应用。8. 青年科学家项目8.1 车载复合材料LNG高压气瓶制造基础及应用技术研究内容:针对车载复合材料液化天然气(liquefiednaturalgas,LNG)高压气瓶的制造与应用,研究LNG介质相容的树脂基复合材料体系设计与制备;耐极端环境复合材料LNG气瓶结构设计技术;复合材料LNG高压气瓶抗渗漏、抗漏热和抗振动技术;复合材料LNG高压气瓶制造技术;复合材料LNG高压气瓶的性能评价技术。8.2 新一代结构功能一体化泡沫的制备和应用研究内容:面向结构功能一体化泡沫技术迭代的迫切需求,开发具备负泊松比和高耐火保温等功能的泡沫,主要针对新型多级结构负泊松比结构泡沫材料、耐高温聚酰亚胺泡沫和高温可发泡防火材料等开展攻关,并开展其复合材料研究,在结构支撑、保温隔热等领域得到应用。8.3 单晶高温合金先进定向凝固技术及其精确模拟研究内容:针对当前航空发动机单晶涡轮叶片生产合格率低、冶金缺陷频发的现状,开展单晶高温合金及叶片高温度梯度液态金属冷却(LMC)定向凝固技术研究,突破LMC技术中动态隔热层配置、晶体取向控制、模壳制备、低熔点金属污染控制等关键技术,实现LMC技术的多场耦合、多尺度精确模拟,研究复杂结构单晶叶片在高梯度定向凝固中的缺陷形成、演化机理,发展缺陷控制技术。8.4 海洋油气钻采关键部件用高强高韧合金研究内容:针对海洋油气随钻测量和定向钻井、海底井口设备关键部件主要依靠进口问题,开展时效硬化型高强韧镍基、铁镍基耐蚀合金设计、高纯净低偏析冶金、强韧化机理、应力腐蚀疲劳失效寿命评估理论与方法等基础共性技术和产业化关键技术研究,实现高强韧、大规格、高均质耐蚀合金和超高强度高耐蚀合金稳定批量生产和工程化应用。8.5 基于增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体增材制造用粉体原料的设计与高通量制备技术;开发基于增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。8.6 基于激光技术的材料服役行为多维度检测技术和装备研究内容:针对核电、海工等领域极端条件下结构材料服役性能远程在线、多维度、智能化检测的发展需求,开展基于激光技术的光谱、表面声波、超声或多种方法融合的材料组分、结构特性、力学性能、缺陷特征检测新原理和新方法研究,发展极端条件下结构材料服役行为的实时、原位、无损监检测技术,研制与材料基因工程大数据、人工智能分析算法和机器人技术深度融合的材料多维、多尺度在线监检测原型装置,实现多场耦合极端环境下材料多层次、多维度服役性能原位无损在线测量及示范应用。8.7 超高刚度镁基复合材料的集成计算设计与制备研究内容:以航空、航天或高铁领域为应用场景,针对超高刚度镁基复合材料特点,发展高刚度镁合金集成材料计算软件和镁基复合材料高通量实验技术,开展基于弹性变形抗力提升的镁合金基体成分设计和增强体种类、尺寸和分布形态对镁合金刚度和强韧性影响规律的研究工作,研发多尺度增强体复合构型强化的镁合金材料高效制备与组织调控技术,建立高刚度镁基复合材料及其典型构件的全流程制备技术,并实现在重大工程中的应用验证。8.8 增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分—工艺—结构—性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。8.9 新一代抗低温耐腐蚀高强韧贝氏体轨道钢研究内容:针对低温下贝氏体钢中亚稳残余奥氏体易转变为脆性马氏体,增加贝氏体钢轨道安全服役隐患的问题,研究腐蚀、低温环境下贝氏体轨道钢(含钢轨和辙叉)的失效破坏机制,建立贝氏体轨道钢“夹杂物特性—组织结构—常规性能—服役条件—失效方式及寿命评估”数据库,开发适用于腐蚀、低温环境的新一代高强韧性、长寿命贝氏体轨道钢及其冶金全流程制造关键技术。近期会议推荐:【复合材料性能表征与评价网络研讨会】该网络会议对听众免费,会议日程及报名二维码如下:
  • 盘点!新材料在汽车轻量化技术中的应用
    20 世纪70 年代的发生的石油危机,推动了国外汽车轻量化材料技术的发展。发达国家在研究如何解决能源短缺和环境恶化的过程中,制定了一些非常严格的强制性法律和制度,目的是为了降低车辆的燃油消耗,减少汽车的尾气排放。因此,汽车厂商为了满足政策法规的要求,投入了大量的人力及物力用于研发节能环保、轻量化、可回收的材料。此外,各国政府为企业、大学以及研究机构提供了大量的资金支持,用于研发汽车轻量化材料,从而进一步促进了汽车轻量化的发展。目前,我国汽车材料产业已经初具规模,大量自主研发的新材料以及新技术已经成功实现商业化。一、车用高强度钢材料及其技术发展趋势为了在与其他种类竞争中保持优势地位,扩大高强度钢材料在汽车上的应用范围,巩固高强度钢在汽车用材中的主导地位,未来高强度钢的技术开发将紧密围绕汽车工业降低成本、减轻车辆自重的要求来展开。研究重点内容包括:1.新一代先进高强度钢(板、管材)的开发目前的高强度钢(比如双相钢、低合金高强度钢、TRP 钢和复相钢)的强度均在400~1200MPa 左右。而通过对化学成分的优化设计以及对冶炼技术的改进,可以减少或取消贵重合金元素的用量,开发出强度更高,且其他性能(塑性、韧性、成形性)优良的高强度钢。比如,高成形性的品种、高弹性模量的品种和成形后强化非烘烤硬化新品种等。2.先进的成形技术研发目前高强度钢的成形工艺主要有深冲、延展、拉伸翻边、弯曲等,由于这些工艺本身的局限性,先进成形技术的研发显得十分迫切。未来成形技术研发方向主要有:管件液压成形、板件液压成形、辊压成形、电磁成形与气体热成形等 此外先进高强度钢的焊接高强度钢与其他合金连接的激光拼焊技术以及开发新的连接技术,也是未来研发的重点。3.成形过程的CAE 分析高强度钢在汽车工业中的应用遇到的难题是“成形”。由于强度的升高,必然造成成形困难且成形后可能发生开裂和回弹,用计算机进行成形的CAE 分析,对成形过程的变形路径进行优化,以保证成形而避免开裂 对回弹进行模拟分析,预测回弹,进而进行回弹补偿,可大大提高和改善高强度钢的成形性,从而大大节约模具调试时间和修模工作量。4.进一步研发超细晶粒钢超细晶粒钢是一种新的高强度钢板材料。这样的钢材料的主要经济指标得到了进一步提高,与现有的钢材相比较而言,其强度和韧性均超过了现有钢材的一倍以上。新型超细晶粒钢主要类型分为400MPa 级和800MPa级,具备了高均匀度、超细晶粒以及高洁净度等三大主要特征。二、铝合金材料的应用进展最近几年来,全球性的能源和环境问题愈发严峻,面对这样的形势,很多汽车制造商就要在降低车辆自重和降低燃油消耗方面加大投入和研发力度,降低因为汽车生产过程多带来的环境损害后果。在材料属性方面,铝硅合金多具有共晶和亚共晶结构,也有一部分的汽车零件仍然会使用传统的过共晶铝硅合金,但是这种材料的铸造性能和机加工性能不够优越,近些年来多采用的是低硅或中硅亚共晶铝硅合金材料。再者不同用途的汽车零部件,所采用的铝合金材料特点也存在差异。铝铸造产品多应用于转向机构和制动器零部件中,铝铸造零部件可以承受大于10MPa 以上的压力,其耐腐蚀性和强度也较高,要不断研究开发出力学性能高、耐腐蚀强度高的铝合金材料。研发具有良好铸造性能的Al-Cu 系耐热铝合金以满足制动器耐热要求;研发具有良好耐磨性的Al-Si-Fe-Mn-Cr 合金以满足自动变速箱离合器零件、冷气压缩机汽缸、换挡拨叉件的要求。此外,应用于车体与悬挂系统的部件,除了具备高强度外,还要求开发具备能量吸收与良好的变形特性,Al-Si-Mg 系非热处理型高强高韧性铝合金是未来研发方向之一。三、镁合金材料的应用进展镁及镁合金材料是一种较为理想的汽车轻量化材料,但存在一些必须解决的问题,如材料性能随着温度升高而降低问题和腐蚀问题等。因此需要进一步研究开发新的镁合金材料及其成形制造技术。镁合金材料的成形方法分为铸造加工成形和塑性成形,当前主要运用的是铸造成形方法,且压铸方法是镁合金铸造成形方法中应用最广泛的。最近发展起来的镁合金压铸新技术包括充氧压铸和真空压铸,充氧压铸在生产汽车镁合金零部件上的应用较广泛,真空压铸可生产出AM60B 镁合金汽车方向盘和轮毂。镁合金成形以铸造工艺为主,但铸件的缺陷限制了镁合金性能的提高,局限了镁合金的广泛应用。镁合金使用塑性成形方法,可有效地消减铸件缺陷的影响,通常采用热处理强化和形变强化可明显地提高合金的性能,但由于镁的密排六方结构,变形难度比钢、铝和铜等要大。如果直接运用铝合金已有的塑性成形方法,往往会使得镁合金材料的成品率很低,使塑性加工成形成本过高,影响了镁合金在各领域的应用。因此,加快发展镁合金塑性成形方法也是研究的热点和发展的趋势。四、碳纤维增强树脂基复合材料应用碳纤维增强聚合物基复合材料( Carbon Fiber Reinforced Polymers,CFRP) 具 有独特的性能优势,是汽车新材料领域备受关注。相较于其他汽车材料而言其优势有以下几个方面:1.力学性能优异汽车上使用的碳纤维增强树脂基复合材料密度仅为1.5~2.0g/cm3,只达到普通碳钢密度的20~25%,质量是同体积铝合金的约2/3,但是碳纤维复合材料的综合力学性能要高于传统的金属材料,抗拉强度达到了钢材的3~4 倍。CFRP 的疲劳强度是抗拉强度占比达到70%~80%。另外,CFRP 的振动阻尼特性也要优于轻金属,例如通常轻合金发生震动后需要9s 震动才能停止,而CFRP 振动2s便可以停止。2.一体化制造汽车结构发展的另外一种趋势就是模块化与整体化。采用复合材料能够在其成型过程中制成形状各异的曲面,能够完成汽车零部件的一体化制造。采用一体化成型制造一方面可以大幅度减少汽车零部件数量和零部件之间的连接工序,另一方面也使得零件的生产周期大幅缩短。3.吸能抗冲击性强CFRP 具有的粘弹性也相当出色,同时碳纤维和基体之间会因为局部的微小摩擦而产生界面应力。在粘弹性与界面摩擦力共同作用下,CFRP 汽车制件能够表现出优越的吸能抗冲击能力。再者,经过特殊制作的碳纤维复合材料,其具有的碰撞吸能结构可以在剧烈碰撞状态下碎裂成很小的碎片,使得撞击能量得以最大化的分散,这种材料的能量吸收能高出普通金属材料的5 倍左右,极大提升了汽车的安全性,保障乘车人员的生命安全。4.耐腐蚀性好碳纤维丝束和树脂材料共同组成了碳纤维增强聚合物基复合材料,其耐酸碱性能也较为优异,用其制造的汽车零部件无需进行表面防腐处理,其耐候性及耐老化性极好,寿命是普通钢材的约2 ~3 倍。五、结语汽车轻量化是实现节能、减排的重要技术措施之一。世界铝业协会的报告指出,汽车自重每减轻10%,燃油消耗可降低6%~8%。因此,汽车轻量化对于节约能源、减少排放、实现可持续发展战略具有十分积极的意义。高强钢、铝合金、镁合金和天然纤维增强聚合物生态复合材料是当前轻量化、节能环保、可回收汽车新材料的重要组成。轻量、节能、环保和可回收将成为国内外汽车工业发展的重要方向。参考文献:[1]范子杰,桂良进,苏瑞意.汽车轻量化技术的研究与进展[J].汽车安全与节能学报,2014(01):1-16.[2]陈晓斌,韩英淳,胡平,等.板料材质及厚度对车身结构性能及轻量化的影响[J].吉林大学学报(工学版),2010,40(增刊).[3]高阳. 汽车轻量化技术方案及应用实例[J].汽车工程学报,2018,8(001):1-9.[4]彭孟娜,马建伟.碳纤维及其在汽车轻量化中的应用[J].合成纤维工业,2018,041(001):53-57.[5]付彭怀,彭立明,丁文江.汽车轻量化技术:铝/镁合金及其成型技术发展动态[J].中国工程科学,2018,20(001):84-90.
  • 《新材料产业“十二五”发展规划》发布
    为培育和发展新材料产业,推动材料工业转型升级,支撑战略性新兴产业发展,加快走中国特色的新型工业化道路,依据《中华人民共和国国民经济和社会发展第十二个五年规划纲要》和《国务院关于加快培育和发展战略性新兴产业的决定》,我部组织制定了《新材料产业“十二五”发展规划》。现印发你们,请结合实际,认真贯彻落实。   工业和信息化部   二〇一二年一月四日   附件:1.《新材料产业“十二五”发展规划》.doc   2.《新材料产业“十二五”重点产品目录》.pdf   前 言   材料工业是国民经济的基础产业,新材料是材料工业发展的先导,是重要的战略性新兴产业。“十二五”时期,是我国材料工业由大变强的关键时期。加快培育和发展新材料产业,对于引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,构建国际竞争新优势具有重要的战略意义。   根据《中华人民共和国国民经济和社会发展第十二个五年规划纲要》和《国务院关于加快培育和发展战略性新兴产业的决定》的总体部署,工业和信息化部会同发展改革委、科技部、财政部等有关部门和单位编制了《新材料产业“十二五”发展规划》。本规划是指导未来五年新材料产业发展的纲领性文件,是配置政府公共资源和引导企业决策的重要依据。 专栏1 新材料的定义与范围 新材料涉及领域广泛,一般指新出现的具有优异性能和特殊功能的材料,或是传统材料改进后性能明显提高和产生新功能的材料,主要包括新型功能材料、高性能结构材料和先进复合材料,其范围随着经济发展、科技进步、产业升级不断发生变化。为突出重点,本规划主要包括以下六大领域:①特种金属功能材料。具有独特的声、光、电、热、磁等性能的金属材料。②高端金属结构材料。较传统金属结构材料具有更高的强度、韧性和耐高温、抗腐蚀等性能的金属材料。③先进高分子材料。具有相对独特物理化学性能、适宜在特殊领域或特定环境下应用的人工合成高分子新材料。④新型无机非金属材料。在传统无机非金属材料基础上新出现的具有耐磨、耐腐蚀、光电等特殊性能的材料。⑤高性能复合材料。由两种或两种以上异质、异型、异性材料(一种作为基体,其他作为增强体)复合而成的具有特殊功能和结构的新型材料。⑥前沿新材料。当前以基础研究为主,未来市场前景广阔,代表新材料科技发展方向,具有重要引领作用的材料。   一、发展现状和趋势   (一)产业现状   经过几十年奋斗,我国新材料产业从无到有,不断发展壮大,在体系建设、产业规模、技术进步等方面取得明显成就,为国民经济和国防建设做出了重大贡献,具备了良好发展基础。   新材料产业体系初步形成。我国新材料研发和应用发端于国防科技工业领域,经过多年发展,新材料在国民经济各领域的应用不断扩大,初步形成了包括研发、设计、生产和应用,品种门类较为齐全的产业体系。   新材料产业规模不断壮大。进入新世纪以来,我国新材料产业发展迅速,2010年我国新材料产业规模超过6500亿元,与2005年相比年均增长约20%。其中,稀土功能材料、先进储能材料、光伏材料、有机硅、超硬材料、特种不锈钢、玻璃纤维及其复合材料等产能居世界前列。   部分关键技术取得重大突破。我国自主开发的钽铌铍合金、非晶合金、高磁感取向硅钢、二苯基甲烷二异氰酸酯(MDI)、超硬材料、间位芳纶和超导材料等生产技术已达到或接近国际水平。新材料品种不断增加,高端金属结构材料、新型无机非金属材料和高性能复合材料保障能力明显增强,先进高分子材料和特种金属功能材料自给水平逐步提高。   但是,我国新材料产业总体发展水平仍与发达国家有较大差距,产业发展面临一些亟待解决的问题,主要表现在:新材料自主开发能力薄弱,大型材料企业创新动力不强,关键新材料保障能力不足 产学研用相互脱节,产业链条短,新材料推广应用困难,产业发展模式不完善 新材料产业缺乏统筹规划和政策引导,研发投入少且分散,基础管理工作比较薄弱。   (二)发展趋势   当今世界,科技革命迅猛发展,新材料产品日新月异,产业升级、材料换代步伐加快。新材料技术与纳米技术、生物技术、信息技术相互融合,结构功能一体化、功能材料智能化趋势明显,材料的低碳、绿色、可再生循环等环境友好特性倍受关注。发达国家高度重视新材料产业的培育和发展,具有完善的技术开发和风险投资机制,大型跨国公司以其技术研发、资金、人才和专利等优势,在高技术含量、高附加值新材料产品中占据主导地位,对我国新材料产业发展构成较大压力。   从国内看,“十二五”是全面建设小康社会的关键时期,是加快转变经济发展方式的攻坚时期,经济结构战略性调整为新材料产业提供了重要发展机遇。一方面,加快培育和发展节能环保、新一代信息技术、高端装备制造、新能源和新能源汽车等战略性新兴产业,实施国民经济和国防建设重大工程,需要新材料产业提供支撑和保障,为新材料产业发展提供了广阔市场空间。另一方面,我国原材料工业规模巨大,部分行业产能过剩,资源、能源、环境等约束日益强化,迫切需要大力发展新材料产业,加快推进材料工业转型升级,培育新的增长点。 专栏2 战略性新兴产业对部分新材料的需求预测 01 新能源 “十二五”期间,我国风电新增装机6000万千瓦以上,建成太阳能电站1000万千瓦以上,核电运行装机达到4000万千瓦,预计共需要稀土永磁材料4万吨、高性能玻璃纤维50万吨、高性能树脂材料90万吨,多晶硅8万吨、低铁绒面压延玻璃6000万平方米,需要核电用钢7万吨/年,核级锆材1200吨/年、锆及锆合金铸锭2000吨/年。 02 节能和新能源汽车 2015年,新能源汽车累计产销量将超过50万辆,需要能量型动力电池模块150亿瓦时/年、功率型30亿瓦时/年、电池隔膜1亿平方米/年、六氟磷酸锂电解质盐1000吨/年、正极材料1万吨/年、碳基负极材料4000吨/年;乘用车需求超过1200万辆,需要铝合金板材约17万吨/年、镁合金10万吨/年。 03 高端装备制造 “十二五”期间,航空航天、轨道交通、海洋工程等高端装备制造业,预计需要各类轴承钢180万吨/年、油船耐腐蚀合金钢100万吨/年、轨道交通大规格铝合金型材4万吨/年、高精度可转位硬质合金切削工具材料5000吨。到2020年,大型客机等航空航天产业发展需要高性能铝材10万吨/年,碳纤维及其复合材料应用比重将大幅增加。 04 新一代信息技术 预计到2015年,需要8英寸硅单晶抛光片约800万片/年、12英寸硅单晶抛光片480万片/年,平板显示玻璃基板约1亿平方米/年,TFT混合液晶材料400吨/年。 05 节能环保 “十二五”期间,稀土三基色荧光灯年产量将超过30亿只,需要稀土荧光粉约1万吨/年;新型墙体材料需求将超过230亿平方米/年,保温材料产值将达1200亿 元/年 火电烟气脱硝催化剂及载体需求将达到40亿元/年,耐高温、耐腐蚀袋式除尘滤材和水处理膜材料等市场需求将大幅增长。 06 生物产业 2015年,预计需要人工关节50万套/年、血管支架120万个/年,眼内人工晶体100万个/年,医用高分子材料、生物陶瓷、医用金属等材料需求将大幅增加。可降解塑料需要聚乳酸(PLA)等5万吨/年、淀粉塑料10万吨/年。   二、总体思路   (一)指导思想   深入贯彻落实科学发展观,按照加快培育发展战略性新兴产业的总体要求,紧紧围绕国民经济和社会发展重大需求,以加快材料工业升级换代为主攻方向,以提高新材料自主创新能力为核心,以新型功能材料、高性能结构材料和先进复合材料为发展重点,通过产学研用相结合,大力推进科技含量高、市场前景广、带动作用强的新材料产业化规模化发展,加快完善新材料产业创新发展政策体系,为战略性新兴产业发展、国家重大工程建设和国防科技工业提供支撑和保障。   (二)基本原则   坚持市场导向。遵循市场经济规律,突出企业的市场主体地位,充分发挥市场配置资源的基础作用,重视新材料推广应用和市场培育。准确把握新材料产业发展趋势,加强新材料产业规划实施和政策制定,积极发挥政府部门在组织协调、政策引导、改善市场环境中的重要作用。   坚持突出重点。新材料品种繁多、需求广泛,要统筹规划、整体部署,在鼓励各类新材料的研发生产和推广应用的基础上,重点围绕经济社会发展重大需求,组织实施重大工程,突破新材料规模化制备的成套技术与装备,加快发展产业基础好、市场潜力大、保障程度低的关键新材料。   坚持创新驱动。创新是新材料产业发展的核心环节,要强化企业技术创新主体地位,激发和保护企业创新积极性,完善技术创新体系,通过原始创新、集成创新和引进消化吸收再创新,突破一批关键核心技术,加快新材料产品开发,提升新材料产业创新水平。   坚持协调推进。加强新材料与下游产业的相互衔接,充分调动研发机构、生产企业和终端用户积极性。加强新材料产业与原材料工业融合发展,在原材料工业改造提升中,不断催生新材料,在新材料产业创新发展中,不断带动材料工业升级换代。加快军民共用材料技术双向转移,促进新材料产业军民融合发展。   坚持绿色发展。牢固树立绿色、低碳发展理念,重视新材料研发、制备和使役全过程的环境友好性,提高资源能源利用效率,促进新材料可再生循环,改变高消耗、高排放、难循环的传统材料工业发展模式,走低碳环保、节能高效、循环安全的可持续发展道路。   (三)发展目标   到2015年,建立起具备一定自主创新能力、规模较大、产业配套齐全的新材料产业体系,突破一批国家建设急需、引领未来发展的关键材料和技术,培育一批创新能力强、具有核心竞争力的骨干企业,形成一批布局合理、特色鲜明、产业集聚的新材料产业基地,新材料对材料工业结构调整和升级换代的带动作用进一步增强。   到2020年,建立起具备较强自主创新能力和可持续发展能力、产学研用紧密结合的新材料产业体系,新材料产业成为国民经济的先导产业,主要品种能够满足国民经济和国防建设的需要,部分新材料达到世界领先水平,材料工业升级换代取得显著成效,初步实现材料大国向材料强国的战略转变。 专栏3 “十二五”新材料产业预期发展目标 01 产业规模 总产值达到2万亿元,年均增长率超过25%。 02 创新能力 研发投入明显增加,重点新材料企业研发投入占销售收入比重达到5%。建成一批新材料工程技术研发和公共服务平台。 03 产业结构 打造10个创新能力强、具有核心竞争力、新材料销售收入超150亿元的综合性龙头企业,培育20个新材料销售收入超过50亿元的专业性骨干企业,建成若干主业突出、产业配套齐全、年产值超过300亿元的新材料产业基地和产业集群。 04 保障能力 新材料产品综合保障能力提高到70%,关键新材料保障能力达到50%,实现碳纤维、钛合金、耐蚀钢、先进储能材料、半导体材料、膜材料、丁基橡胶、聚碳酸酯等关键品种产业化、规模化。 05 材料换代 推广30个重点新材料品种,实施若干示范推广应用工程。   三、发展重点   (一)特种金属功能材料   稀土功能材料。以提高稀土新材料性能、扩大高端领域应用、增加产品附加值为重点,充分发挥我国稀土资源优势,壮大稀土新材料产业规模。大力发展超高性能稀土永磁材料、稀土发光材料,积极开发高比容量、低自放电、长寿命的新型储氢材料,提高研磨抛光材料产品档次,提升现有催化材料性能和制备技术水平。   稀有金属材料。充分发挥我国稀有金属资源优势,提高产业竞争力。积极发展高纯稀有金属及靶材,大规格钼电极、高品质钼丝、高精度钨窄带、钨钼大型板材和制件、高纯铼及合金制品等高技术含量深加工材料。加快促进超细纳米晶、特粗晶粒等高性能硬质合金产业化,提高原子能级锆材和银铟镉控制棒、高比容钽粉、高效贵金属催化材料发展水平。   半导体材料。以高纯度、大尺寸、低缺陷、高性能和低成本为主攻方向,逐步提高关键材料自给率。开发电子级多晶硅、大尺寸单晶硅、抛光片、外延片等材料,积极开发氮化镓、砷化镓、碳化硅、磷化铟、锗、绝缘体上硅(SOI)等新型半导体材料,以及铜铟镓硒、铜铟硫、碲化镉等新型薄膜光伏材料,推进高效、低成本光伏材料产业化。   其他功能合金。加快高磁感取向硅钢和铁基非晶合金带材推广应用。积极开发高导热铜合金引线框架、键合丝、稀贵金属钎焊材料、铟锡氧化物(ITO)靶材、电磁屏蔽材料,满足信息产业需要。促进高强高导、绿色无铅新型铜合金接触导线规模化发展,满足高速铁路需要。进一步推动高磁导率软磁材料、高导电率金属材料及相关型材的标准化和系列化,提高电磁兼容材料产业化水平。开发推广耐高温、耐腐蚀铁铬铝金属纤维多孔材料,满足高温烟气处理等需求。 专栏4 特种金属功能材料关键技术和装备 01 稀土功能材料技术 开发高纯稀土金属集成化提纯、磁能积加矫顽力大于65的永磁材料、高容量大功率储能材料、稀土合金快冷厚带等生产技术。 02 稀有金属材料技术 开发多元合金熔炼、大型合金铸锭成分均匀化控制、中间合金制备、超高纯(≥6N)金属加工及清洗、大尺寸超高纯金属靶材微观组织控制、硬质合金全致密化烧结及涂层沉积定向控制等技术。 03 半导体材料技术 实现8英寸、12英寸硅单晶生长及硅片加工产业化,突破12英寸硅片外延生长等技术,开发多晶硅绿色生产工艺。 04 其他功能合金技术 开发新一代非晶带材高速连铸工艺、薄规格(0.18-0.20mm)高磁感取向硅钢生产技术、超细超纯铜合金制备加工工艺。 05 特种金属功能材料关键装备 12-18英寸硅单晶生长的直拉磁场单晶炉,线切割机,高频电磁感应快速加热装置,等静压成套设备,大尺寸、超高真空、超高温烧结炉,熔盐电解精炼设备,高功率电子束熔炼炉,大型化学气相沉积炉等。   (二)高端金属结构材料   高品质特殊钢。以满足装备制造和重大工程需求为目标,发展高性能和专用特种优质钢材。重点发展核电大型锻件、特厚钢板、换热管、堆内构件用钢及其配套焊接材料,加快发展超超临界锅炉用钢及高温高压转子材料、特种耐腐蚀油井管及造船板、建筑桥梁用高强钢筋和钢板,实现自主化。积极发展节镍型高性能不锈钢、高强汽车板、高标准轴承钢、齿轮钢、工模具钢、高温合金及耐蚀合金材料。 专栏5 重大装备关键配套金属结构材料 01 电力 核电用汽轮机转子锻件、发电机转轴锻件、承压壳体材料、换热管材、堆内构件材料、锆合金包壳管等;超超临界火电机组锅炉管、叶片、转子;燃机用高温合金叶片、高温合金轮盘锻件;水电机组用大轴锻件、抗撕裂钢板、薄镜板锻件等。 02 交通运输 轨道列车用大型多孔异型空心铝合金型材、高速铁路车轮车轴及轴承用钢;车辆用第三代汽车钢及超高强钢、高品质铝合金车身板、变截面轧制板、大型镁合金压铸件、型材及宽幅板材等。 03 船舶及海洋工程 船用高强度易焊接宽厚板、特种耐腐蚀船板、货油舱和压载舱等相关耐蚀管系材料、殷瓦钢等;海洋工程用高强度特厚齿条钢、大口径高强度无缝管、不锈钢管及配件、深水系泊链、超高强度钢等。 04 航空航天 高强、高韧、高耐损伤容限铝合金厚、中、薄板,大规格锻件、型材、大型复杂结构铝材焊接件、铝锂合金、大型钛合金材、高温合金、高强高韧钢等。   新型轻合金材料。以轻质、高强、大规格、耐高温、耐腐蚀、耐疲劳为发展方向,发展高性能铝合金、镁合金和钛合金,重点满足大飞机、高速铁路等交通运输装备需求。积极开发高性能铝合金品种及大型铝合金材加工工艺及装备,加快镁合金制备及深加工技术开发,开展镁合金在汽车零部件、轨道列车等领域的应用示范。积极发展高性能钛合金、大型钛板、带材和焊管等。 专栏6 高端金属结构材料关键技术和装备 01 高品质特殊钢技术 开发超高纯铁(S+P<35ppm)冶炼、大规格铸锭熔铸、大锻件最佳化学成分配比、成型和热处理工艺技术,低成本、低能耗高品质特钢流程技术。 02 新型轻合金材料技术 发展高洁净、高均匀性合金冶炼和凝固技术,大规格铸锭均质化半连铸技术,大型材等温挤压、拉伸与校正技术,复杂锻件等温模锻、铝合金板材新型轧制、中厚板(80-200mm)固溶淬火、预拉伸与多级时效技术,高性能铸造镁合金及高强韧变形镁合金制备、低成本镁合金大型型材和宽幅板材加工、腐蚀控制及防护技术,钛合金冷床炉熔炼、15吨以上铸锭加工、2吨以上模锻件锻压、型材挤压、异型管棒丝材成型和残料回收技术。 03 高端金属结构材料关键装备 开发高功率(单枪功率≥500Kw)电子束炉和等离子炉,大型特钢精炼真空电渣炉,高纯净大规格铝锭半连铸装备,等温模锻、等温挤压、固溶淬火、三级时效等装备,大型厚板预拉伸、时效成型热压及超声摩擦搅拌焊接装备,8吨以上钛合金熔炼真空自耗电弧炉,30MN以上镁合金压铸机和挤压机,大面积等温焊接等成套装备。   (三)先进高分子材料   特种橡胶。自主研发和技术引进并举,走精细化、系列化路线,大力开发新产品、新牌号,改善产品质量,努力扩大规模,力争到2015年国内市场满足率超过70%。扩大丁基橡胶(IIR)、丁腈橡胶(NBR)、乙丙橡胶(EPR)、异戊橡胶(IR)、聚氨酯橡胶、氟橡胶及相关弹性体等生产规模,加快开发丙烯酸酯橡胶及弹性体、卤化丁基橡胶、氢化丁腈橡胶、耐寒氯丁橡胶和高端苯乙烯系弹性体、耐高低温硅橡胶、耐低温氟橡胶等品种,积极发展专用助剂,强化为汽车、高速铁路和高端装备制造配套的高性能密封、阻尼等专用材料开发。   工程塑料。围绕提高宽耐温、高抗冲、抗老化、高耐磨和易加工等性能,加强改性及加工应用技术研发,扩大国内生产,尽快增强高端品种供应能力。加快发展聚碳酸酯(PC)、聚甲醛(POM)、聚酰胺(PA)、聚对苯二甲酸丁二醇酯(PBT)、聚苯醚(PP0)和聚苯硫醚(PPS)等产品,扩大应用范围,提高自给率。积极开发聚对苯二甲酸丙二醇酯(PTT)和聚萘二甲酸乙二醇酯(PEN)等新型聚酯、特种环氧树脂和长碳链聚酰胺、耐高温易加工聚酰亚胺等新产品或高端牌号。力争到2015年国内市场满足率超过50%。   其他功能性高分子材料。巩固有机硅单体生产优势,大力发展硅橡胶、硅树脂等有机硅聚合物产品。着力调整含氟聚合物产品结构,重点发展聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)及高性能聚四氟乙烯等高端含氟聚合物,积极开发含氟中间体及精细化学品。加快电解用离子交换膜、电池隔膜和光学聚酯膜的技术开发及产业化进程,鼓励液体、气体分离膜材料开发、生产及应用。大力发展环保型高性能涂料、长效防污涂料、防水材料、高性能润滑油脂和防火隔音泡沫材料等品种。 专栏7 先进高分子材料关键技术和装备 01 核心技术 加强基础聚合物制备、集成创新和成套工艺技术研究,开发分子结构设计、分子量控制及工艺参数控制等先进聚合技术。加快PA6高压前聚工艺技术、PBT直接酯化法生产技术、PC酯交换和PI技术产业化。突破φ4000mm甲基流化床、φ1200mm苯基沸腾床等有机硅单体合成技术。开发反应体系配方设计和后处理工艺,材料改性和加工成型技术以及配套助剂,可降解及回收材料技术等。 02 关键装备 开发大型在线检测控制聚合反应器、流化干燥床、脱气釜、汽提釜、直接脱挥装置、螺杆聚合反应器、先进混炼机、专用模具、高速挤出和大型注射成型设备、大型无水无氧聚合反应器等。   (四)新型无机非金属材料   先进陶瓷。重点突破粉体及先驱体制备、配方开发、烧制成型和精密加工等关键环节,扩大耐高温、耐磨和高稳定性结构功能一体化陶瓷生产规模。重点发展精细熔融石英陶瓷坩埚、陶瓷过滤膜和新型无毒蜂窝陶瓷脱硝催化剂等产品。积极发展超大尺寸氮化硅陶瓷、烧结碳化硅陶瓷、高频多功能压电陶瓷及超声换能用压电陶瓷。大力发展无铅绿色陶瓷材料。建立高纯陶瓷原料保障体系。   特种玻璃。以满足建筑节能、平板显示和太阳能利用等领域需求为目标,加快特种玻璃产业化,增强产品自给能力。重点发展平板显示玻璃(TFT/PDP/OLED),鼓励发展应用低辐射(Low-E)镀膜玻璃、涂膜玻璃、真空节能玻璃及光伏电池透明导电氧化物镀膜(TCO)超白玻璃。加快发展高纯石英粉、石英玻璃及制品,促进高纯石英管、光纤预制棒产业化。积极发展长波红外玻璃、无铅低温封接玻璃、激光玻璃等新型玻璃品种。   其他特种无机非金属材料。巩固人造金刚石和立方氮化硼超硬材料、激光晶体和非线性晶体等人工晶体技术优势,大力发展功能性超硬材料和大尺寸高功率光电晶体材料及制品。积极发展高纯石墨,提高锂电池用石墨负极材料质量,加快研发核级石墨材料。大力发展非金属矿及其深加工材料。开发高性能玻璃纤维、连续玄武岩纤维、高性能摩擦材料和绿色新型耐火材料等产品。加快推广新型墙体材料、无机防火保温材料,壮大新型建筑材料产业规模。 专栏8 新型无机非金属材料关键技术和装备 01 先进陶瓷技术 开发高纯超细陶瓷粉体及先驱体制备、陶瓷蜂窝结构设计技术。 02 特种玻璃技术 开发超薄玻璃基板成型、低辐射镀膜玻璃膜系设计与制备、高纯石英粉(≥5N)合成和光纤管(金属杂质<1ppm)制备技术、电子专用石英玻璃及制品制备技术、6代以上TFT-LCD玻璃基板及OLED玻璃基板制备技术。 03 其他特种无机非金属材料技术 开发高纯石墨(≥4N)电加热连续式化学提纯、高温连续式绝氧气氛窑生产、柔性石墨碾压法和挤压法加工技术,半导体用石墨保温材料加工技术,人工晶体生长及加工等技术。 04 新型无机非金属材料关键装备 开发6代以上TFT-LCD用玻璃基板窑炉,气氛加压陶瓷烧结炉,超硬材料用大型压机、大功率(30-100kw)微波等离子体和超大面积(150-300mm2)热灯丝CVD金刚石膜成套装备,高纯石墨用高温(3000-3500℃)各项同性等静压机,(炉内氧含量≤1000ppm)连续式绝氧气氛窑,石墨负极材料包覆和炭化装备等。   (五)高性能复合材料   树脂基复合材料。以低成本、高比强、高比模和高稳定性为目标,攻克树脂基复合材料的原料制备、工业化生产及配套装备等共性关键问题。加快发展碳纤维等高性能增强纤维,提高树脂性能,开发新型超大规格、特殊结构材料的一体化制备工艺,发展风电叶片、建筑工程、高压容器、复合导线及杆塔等专用材料,加快在航空航天、新能源、高速列车、海洋工程、节能与新能源汽车和防灾减灾等领域的应用。 专栏9 高性能增强纤维发展重点 01 碳纤维 加强高强、高强中模、高模和高强高模系列品种攻关,实现千吨级装置稳定运转,提高产业化水平,扩大产品应用范围。 02 芳纶 扩大间位芳纶(1313)生产规模,突破对位芳纶(1414)产业化瓶颈,拓展在蜂巢结构、绝缘纸等领域的应用。 03 超高分子量聚乙烯纤维 积极发展高性能聚乙烯纤维(UHMWPE)干法纺丝技术及产品,突破纺丝级专用树脂生产技术,降低生产成本。 04 新型无机非金属纤维
  • 江苏通报昆山“3• 31”爆燃事故原因:集装箱内氢气发生爆燃
    p   近日,江苏省应急管理厅发布了昆山“3· 31”爆燃事故通报,通报部分内容如下:2019年3月31日7时12分许,苏州昆山市昆山汉鼎精密金属有限公司机加工车间外一存放镁合金碎屑废物的集装箱发生爆燃事故,造成7人死亡、5人受伤。初步分析,事故直接原因是企业在镁合金铸件机加工过程中,使用了含水较高的乳化切削液,收集的镁合金碎屑废物未进行有效的除水作业,镁与水发生放热反应,释放氢气,又因镁合金碎屑堆垛过于集中,散热不良,使得反应加剧,瞬间引发集装箱内氢气发生爆燃,爆燃的冲击波夹带着燃烧的镁合金碎屑冲破集装箱对面机加工车间的卷帘门,导致机加工车间内卷帘门附近的员工伤亡。 /p p   根据国家企业信用信息公示系统显示,镁合金铸件,镁合金及其应用产品是汉鼎精密经营业务之一。此次事故暴露出昆山汉鼎精密金属有限公司对镁合金碎屑废物的危险性辨识和风险评估不到位,事故隐患排查治理不到位,废物暂存仓库设置不合理以及现场管理不到位等问题。 /p p   此次事故和“3· 21”响水爆炸事故无疑加速了江苏省化工行业企业整治活动。就在4月8日,江苏省委常委会召开会议,强调对省内不符合安全生产标准的企业、园区必须关闭,对环保不达标的企业、园区必须关停,对落后低端企业必须淘汰。对符合安全生产、环保标准的企业要支持技术改造、支持配套产业、支持完善产业链。并计划到2020年底,全省化工生产企业数量减少到2000家,到2022年不超过1000家。 /p p br/ /p
  • Axia ChemiSEM扫描电镜在金属防腐蚀领域的应用
    腐蚀一直是材料及能源损失的重要诱因,在工业比较发达的国家,每年因腐蚀造成的直接经济损失占国民经济总产值的1%~4%,约有30%的设备因腐蚀而报废。镁铝合金具有强度高、质量轻等优良特性,应用范围广泛,与其他常用工程金属材料相比具有许多优势 但其较差的耐腐蚀性制约了它在一些高新领域的应用。提高镁合金的耐腐蚀性,将其应用在航空航天、船舶、汽车、军事等领域,对我国工业的发展将起到重要的作用。因此,研究镁合金表面的耐腐蚀性膜层有着广阔的前景和重大的意义[1]。 为提高镁合金的抗腐蚀性能,通常在其表面构筑化学转化膜[2],目前,已有许多类型的化学转化膜应用于镁合金基底,包括铬酸盐转化膜[3]、锡酸盐转化膜[4]、氟化膜、稀土转化膜(RE)、Mg-Al水滑石转化膜、离子液体薄膜、熔盐膜、钒基转化膜、硬脂酸转化膜等。化学转化膜,也称为金属转化膜。它是金属(包括镀层金属)表层原子与介质中的阴离子相互反应,在金属表面生成附着力良好的隔离层,这层化合物隔离层称为化学转化膜。化学转化膜的形成不仅包含多步化学反应和电化学反应,同时也伴随着多种物理化学变化,反应产物也更为复杂。对镁合金表面进行转化膜处理是既方便又能灵活运用的防腐方法。化学转化法设备简单占地面积小、制备工艺能耗少、成本低廉、容易操作且仿形能力强。相比于镁合金表面自然形成的氧化膜,化学转化膜具有更加优异的防腐蚀功效,它还可以为其他类型的涂层打底,进而提高涂层的结合强度。化学转化处理所形成的膜层增加了镁合金表面的粗糙度,使得膜层与金属表面的结合更为牢固。 Axia ChemiSEM扫描电镜,可进行样品成分信息的采集、处理和展示;依托先进镜筒技术,保持系统始终处于稳定状态,可聚焦样品采集数据,提供高质量图像,可以同时保存四通道图片;采用全开门式设计,耐用性和灵活性更高;可搭载多款扫描电镜软件实现多种自动化功能;简约化设计,全方面性能出色,可表征各种不同类型材料,提供全面的信息。其成像平台即时可用,集成实时定量能谱面分析功能,成像即刻并融合成分信息,专为快速分析而设计,操作轻松自如。 下图为镁合金表面的锶磷化膜在Axia ChemiSEM钨灯丝扫描电镜下的SEM图像,我们的Axia ChemiSEM扫描电镜配备高质量的ETD和CBS两种探测器。CBS、ETD探测器可以同时成像,既可观察成分衬度,又能获取形貌信息(左图为ETD成像,右图为CBS成像)。从扫描电镜中我们可以清晰的看到磷化膜层均匀致密地覆盖于镁合金表面,有长方体形状的晶体错落堆叠,尺寸不一,但彼此间紧密挨连,几乎没有缝隙。 利用Axia ChemiSEM扫描电镜标配的能谱对锶磷化膜的表面进行成分分析,分析结果如下,从能谱的结果中我们可以清晰的知道该膜层含有C、O、P、Sr元素,分析结果准确、高效。 Axia ChemiSEM搭载多款扫描电镜软件实现多种自动化功能,电镜操作更加智能化,在保证分析精度的情况下,获得的分析结果更高效、准确,可以解决用户的实实在在的问题。 参考文献 [1] 曹京宜, 王臣业, 徐敏等. 镁铝合金表面锶磷化膜的改性及其腐蚀性能研究[J]. 2017.[2] 李鑫庆. 化学转化膜技术与应用[M]. 北京: 机械工业出版社, 2005.[3] Gray J E, Luan B. Protective coatings on magnesium and its alloys—Acritical review [J]. J Alloys Compd, 2002, 336: 88.[4] Elsentriecy H H, Azumi K, Konno H. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91D magne-sium alloy[J]. Electrochim Acta, 2008, 53: 4267.
  • “先进结构与复合材料”重点专项2022申报指南:拟启动1项任务
    4月27日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2022年度项目申报指南。指南中明确:2022年度定向指南部署围绕轻质高强金属及其复合材料的技术方向,拟启动1项指南任务,拟安排国拨经费不超过2000万元。项目统一按指南二级标题(1.1)的研究方向申报,实施周期不超过3年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名项目负责人,项目中每个课题设1名课题负责人。1. 轻质高强金属及其复合材料1.1 青海盐湖新型镁基材料及前端制造技术(共性关键技术类)研究内容:针对青海盐湖镁资源现状和氯化镁特点,研究无水氯化镁颗粒熔融与净化一体化装备和能耗控制系统,开发青海盐湖金属镁低能耗电解制备技术;研究电解金属镁熔液合金化原理及工艺,开发冶金短流程合金制造技术;研究盐湖金属镁深度除杂原理及工艺,发展盐湖金属镁低成本纯净化工艺技术,为镁合金结构材料更大规模应用创造条件;发展结合盐湖成分特点和当地产业特点的新型盐湖镁基结构材料,开发具有大规模应用前景的车用镁合金复杂零部件,实现在汽车上的示范应用;研究氧化镁、氢化镁等镁化合物产品,发展新型盐湖镁基耐火材料,实现盐湖镁基耐火材料在冶金领域的示范应用。考核指标:金属镁电解直流电耗12000千瓦时/吨,电流强度大于460千安,电流效率≥92%,实现3种及以上中间合金稳定生产,合金元素含量≥10wt.%,电解金属镁及中间合金产能≥5万吨/年;短流程冶金过程全流程电耗降低值≥850千瓦时/吨,镁合金锭坯、金属镁损耗≤3%,镁合金锭坯不良率≤0.5%,形成年产1万吨高品质镁合金锭坯示范生产线;电解金属纯镁深度纯净化后铁含量≤50ppm、镍含量≤5ppm,生产能力大于1万吨; 发展3种及以上盐湖镁合金结构材料,成本、力学与耐蚀性能和现有AM50(皮江法)相当,并在3种及以上车用复杂或重要构件上示范应用;高纯氧化镁、氢化镁产品的主含量大于99.5wt.%,综合性能与皮江法镁相当;与现有盐湖产品相比,高端镁质耐火材料寿命提高20%,应用新产品钢液中夹杂物量降低15%以上,年生产能力≥1万吨,实现工程示范应用。有关说明:定向择优。由教育部、中科院、青海省科技厅组织推荐,拟支持1项。申报项目中应不少于1个课题由青海省有关单位作为课题牵头单位。
  • 上海硬质合金展邀请函-新诺仪器要您2024第十六届中国国际粉末冶金及硬质合金展览会
    2024第十六届中国国际粉末冶金及硬质合金展览会上海新诺仪器集团有限公司诚意邀请您参观将于2024年3月6-8日在上海世博展览馆隆重举行的中国国际粉末冶金及硬质合金展览会。备受瞩目的2024第十六届中国国际粉末冶金及硬质合金展览会将比上一届届展览会规模更大,专业性、国际性更强,亮点更多,活动更为精彩纷呈,为您提供更多学习交流机会和无限商机。新诺邀请函上海新诺仪器集团有限公司是一家专注于粉末成型解决方案供应商,位于上海闵行区。公司主营:压片机、热压机、等静压机、红外压片机、荧光压样机、纽扣电池封口机、以及冷热压模具等红外荧光光谱仪配套设备。旗下医诺凯生物公司致力于高端实验室箱体设备的研发智造,主营:干燥箱、培养箱、试验箱、电阻炉等实验室常规设备。 源头工厂,可提供OEM,上海新诺仪器集团有限公司,上海医诺凯生物技术有限公司期待您更多合作!上海硬质合金展中国国际粉末冶金及硬质合金展览会(PM CHINA)是全球粉末冶金行业的旗舰级展会,自2008年创办之初的数百平方米,到2023年增长到40,000平方米,以年均增长30%的速度发展壮大,拥有广泛的国际知名度和全球影响力。本届展会(2024年)展览面积将超过45,000平方米,中外展商约900家,参展品牌1500+个,国内外观众预计将达到65,000+人次。PM CHINA将搭建技术交流与商贸合作的优质平台,汇聚国内外优秀企业和业界精英,分享世界前沿技术、创新应用和解决方案,为行业高质量发展注入磅礴动力。展品范围五展联动展馆:上海世博展览馆地址:上海市浦东新区国展路1099号(近世博轴西侧)地铁:8号线中华艺术宫站(3号口出)、7号线/8号线 耀华路站(4号口出)、13号线 世博大道站(4号口出)
  • 关于印发重庆市材料工业高质量发展“十四五”规划的通知
    重庆市材料工业高质量发展“十四五”规划我市材料工业包含冶金、建材及其新材料产业,是实体经济的根基,是全市经济稳增长的压舱石。为推动材料工业高质量发展,依据《成渝地区双城经济圈建设规划纲要》《“十四五”原材料工业发展规划》《重庆市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》《重庆市制造业高质量发展“十四五”规划(2021—2025年)》等文件,特制定本规划。一、现状及形势(一)取得的成效。综合质效跃上新台阶。2020年全市规模以上材料工业企业超过1100家,总产值达到3233亿元,培育百亿级企业4家,新材料占材料工业总产值比重比“十二五”末提升21.8个百分点。产业结构调整迈出新步伐。“十三五”期间,化解钢铁产能816万吨、电解铝18.5万吨、水泥420万吨,烧结砖10亿标砖,钢铁、电解铝、水泥、平板玻璃产能利用率达到80%以上。创新驱动激发新动能。创建6家国家级企业技术中心,2家市级制造业创新中心,成立重庆市轻量化材料产业联盟,建成3家智能工厂和27个数字化车间,3家企业获评5G+工业互联网先导应用和创新示范智能工厂,4种产品获评国家制造业单项冠军产品。绿色发展引领新趋势。在西南地区率先开展水泥行业错峰生产,水泥、墙材行业协同处置利废逾千万吨,减排二氧化碳300余万吨,建成绿色工厂19家、节水型企业22家。(二)面临的形势。“十四五”时期,我市材料工业高质量发展机遇和挑战并存。从机遇看,国内超大市场规模优势进一步发挥,新型城镇化、乡村振兴、农业现代化加快推进,我市作为国家中心城市和西部地区唯一的直辖市,加速引领周边地区新兴领域和消费升级对高端材料的需求,为材料工业持续健康发展提供了广阔空间;依托“一带一路”和长江经济带,构建起西部陆海新通道、中欧班列、渝甬通道等国际贸易大通道,为材料工业要素集聚和产品输出提供了便利条件;成渝地区双城经济圈发展战略的实施,将有效促进国内两大制造业基地生产要素资源合理流动、高效聚集、优化配置,为材料工业强化产业链韧性提供了基础支撑;新发展格局加快构建,新一轮科技革命和产业变革加速演进,为材料工业转型升级锻造新优势提供了强劲动力。从挑战看,国际政治经济形势日益复杂多变,新冠肺炎疫情影响深远,对产业链供应链稳定提出了更高的要求 “双碳”以及“能耗双控”目标下,绿色低碳发展任务更加紧迫;行业创新能力体系建设有待加强,新旧动能转化亟待加快,高端产品供给仍显不足;空间布局仍需完善,要素成本提升预期加强,重点产业链补链强链挑战依旧艰巨。总体来看,“十四五”时期是我市材料工业跨关口、培优势、上台阶的战略决胜期,面对新形势、新要求,要保持战略定力,增强底线思维,紧紧抓住战略契机,积极应对挑战,加强统筹谋划,推进材料工业高质量发展。二、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大、十九届历次全会和二十大精神,全面落实习近平总书记对重庆提出的营造良好政治生态,坚持“两点”定位、“两地”“两高”目标,发挥“三个作用”和推动成渝地区双城经济圈建设等重要指示要求,立足新发展阶段,完整、准确、全面贯彻新发展理念,积极融入新发展格局,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,着眼提升产业基础高级化、产业链现代化、供给高端化、发展绿色化、智造数字化,统筹传统材料和新材料发展,深化补短板、锻长板、固底板,促进绿色低碳转型,加速信息技术赋能,为我市建设国家重要先进制造业中心提供有力的材料支撑。(二)基本原则。坚持创新驱动。强化企业创新主体地位,构建以企业为主体的产学研用联合创新平台,加大原始创新、集成创新、引进消化吸收再创新和协同创新力度,着力突破一批核心关键技术和共性技术,持续推动数字化转型,促进产业向智能、高效、服务方向转变。坚持市场主导。充分发挥市场在资源配置中的决定性作用,强化企业主体地位,更好发挥政府作用,以经济社会发展及支柱产业、新兴产业需求为导向,因地制宜构建具有本地特色的材料工业体系。坚持生态优先。以长江经济带绿色发展为引领,绿色制造为重点,鼓励研发绿色低碳新材料;以节能减排为抓手,提升资源能源利用效率和清洁生产水平,强化产品全生命周期和全产业链绿色发展。坚持集群发展。依托领军企业和“链主”企业完善产业生态链,着力固根基、扬优势、补短板、强弱项,建设国家重要轻合金、玻璃纤维和复合材料以及具有较强影响力的先进钢铁、绿色建材产业基地,培育一批具有核心竞争力和带动力强、特色鲜明、优势互补的新材料产业。坚持开放引领。加大新材料招商力度,加强国际国内的交流与合作,积极承接中东部地区产业转移,通过引资、引智、重组等方式,提升研发、制造、应用和服务水平,构建共享共赢的开放型产业体系。(三)发展目标。做大做强三大特色新材料产业,培育壮大三大前沿新材料产业,做优做精两大先进基础材料产业,重点围绕轻合金、先进钢铁、装配式建筑三条产业链补链强链延链,推动产业基础高级化、产业链现代化,着力构建现代产业体系。到2025年,全市材料工业总产值和增加值增速保持合理水平,新材料产业规模持续扩大,企业效益稳步提升,产业布局更加合理,创新能力明显增强,绿色低碳发展水平显著提高,产业基础再造取得成效,高质量发展格局初步形成。专栏1 “十四五”主要发展目标指标类别指标名称2020年现状2025年预期目标绝对值年均增速总量结构规模以上(下同)总产值(亿元)3323.7850008.5%新材料产业产值(亿元)925.15200016.7%增加值(亿元)909.9150010.5%综合质效全员劳动生产率(万元/人)56.7766%营业收入利润率(%)6.77/创新能力研发投入(亿元)53.48610%企业中建有研发机构的企业占比(%)23.25016.6%企业牵头的高端创新平台(个)27/两化融合数字化车间(个)27102/智能化工厂(个)313/绿色发展绿色工厂(个)1940/节水型企业(家)2237/企业培育百亿级领军、“链主”企业(家)36/“小巨人”企业(家)1020/三、重点方向(一)做大做强三大特色新材料产业。1.先进有色合金。围绕打造轻合金产业链,重点发展铝合金、镁合金、钛合金等产业,做大做强铜产业,有序发展再生有色金属等绿色循环经济产业,打造1800亿级先进有色合金产业集群,其中轻合金产业链超过1500亿元。专栏2 先进有色合金重点板块铝合金:引导氧化铝、电解铝绿色低碳发展,稳步发展再生铝,构建与后端铝加工制造能力相适应的原材料本地供应保障体系。铝加工重点发展航空航天用铝、新能源汽车用铝、轨道交通用铝、船舶用铝,支持发展电子电器用铝、新型包装用铝、建筑用铝、装饰装修用铝、全铝家具等高附加值铝合金精深加工产品。镁合金:重点开发面向新基建、电子信息、汽车、电动工具、油气开采等领域应用的型材、板带材、压铸件等。鼓励拓展应用领域,加快开发高性能铸造镁合金及变形镁合金、耐蚀镁合金等产品。支持综合利用项目和先进节能环保工艺技术改造。钛合金:鼓励发展钛合金棒、线、板、带材,加快钛合金生产企业现有产能释放和后续产线建设。积极引进精深加工配套企业,延长钛合金产业链。铜产业:做强做大高端铜管,积极发展精密铜带、箔、丝材,新能源汽车及高效电机专用电磁线,支持发展低松比铜粉、复合铜粉、包覆铜粉等铜基粉末材料。鼓励上游原材料供应、仓储和下游铜材加工、检测、应用企业集中布局。2.高性能纤维和复合材料。聚焦汽车、航空航天、装备制造等领域轻量化需求,以玻璃纤维及复合材料、金属基复合材料为主攻方向,探索发展其他高性能纤维和复合材料,建设250亿级高性能纤维和复合材料产业集群。专栏3 高性能纤维和复合材料重点板块玻璃纤维及复合材料:重点发展超细、高强高模、耐碱、低介电、高硅氧、可降解、异形截面等高性能玻璃纤维及制品,支持发展低介电玻璃纤维电子布、微纤维玻璃棉高效绝热及过滤材料、微纤维棉衍生品等。金属基复合材料:重点发展铝镁复合板、铝铜复合板材、钢钛复合材料等,加强铝(镁、钛、铜)等金属基复合材料、金属—陶瓷复合材料等新型复合材料开发。其他高性能纤维和复合材料:重点培育玄武岩纤维、碳纤维、陶瓷纤维、石英纤维等其他高性能纤维及增强复合材料。3.新能源材料。把握新能源产业快速发展机遇,以光伏材料、风电材料和储能材料为主攻方向,培育200亿级新能源材料产业。专栏4 新能源材料重点板块光伏材料:重点发展光伏玻璃、边框、支架等,培育发展宽幅、超薄光伏玻璃,以及太阳能光伏组件。风电材料:着力培育风电纱研发生产基地,延伸发展风电叶片;积极引育基体、芯材、涂层材料和金属材料等风电材料。储能材料:重点发展高能量密度锂电池材料及其前驱体,石墨、石墨烯、硅碳等负极材料,高性能隔膜,金属箔及复合箔等电化学储能材料产业体系。探索发展磁储能用高性能高温超导材料,相变储能材料,金属液流电池材料,氢能制造、存储、运输用新材料等。(二)培育壮大三大前沿新材料。1.气凝胶。以硅基气凝胶为重点,加快推动气凝胶产品设计及应用,聚力开拓下游应用领域,完善上下游产业链,打造全国气凝胶产业之都。专栏5 气凝胶重点板块硅基气凝胶材料:重点发展高质量、规模化、稳定化、低成本的气凝胶颗粒、绝热毡、隔热板、涂料、纤维等产品。新型气凝胶材料:针对超高温绝热、废水吸附治理、大气污染物过滤、电极材料、催化、生物医药等应用领域,探索发展铝、钛、锆基等新型氧化物气凝胶,聚丙烯纤维气凝胶等有机气凝胶,碳气凝胶、石墨烯气凝胶等碳基气凝胶。气凝胶产品设计及应用:加快推动气凝胶在深冷绝热领域的产品设计开发,扩大在工业保温、建筑节能、高端装备、纺织服装领域的应用规模;研发在污染物治理、有机物过滤、超级电容器等非绝热保温应用领域产品。2.石墨烯。围绕石墨烯材料的低成本规模化制备开发,提高石墨烯产品质量稳定性和一致性。加快在电子信息、新能源、复合材料、健康环保等领域的应用,开发具有吸附、过滤、净化等功能的石墨烯环保产品和系统,培育发展电化学、超级电容、燃料电池等领域用石墨烯。突破石墨烯产业前沿技术和共性关键技术,研发单层石墨烯、微片衍生物、高导热功能材料、电磁屏蔽材料、传感器材料、改性涂料、医用敷料、抗菌复合材料等,推动石墨烯上下游产业集聚。3.未来材料。积极引育纳米材料,拓展纳米材料在光电、新能源、医药等领域应用范围。加强智能材料、仿生材料、液态金属、高熵合金和新型超导材料等领域探索。面向空天、深海、深地等国家重大工程需求,加强极端环境所需特种材料研发,形成一批创新成果。(三)做优做精两大先进基础材料。1.先进钢铁材料。面向全市经济社会建设需要和下游产业升级需求,以高品质绿色建筑用钢、汽车用钢、优特钢、高端不锈钢等为主攻方向,做强1300亿级先进钢铁材料产业链。专栏6 先进钢铁材料重点板块高品质建筑用钢:重点发展耐候钢、大尺寸型钢、海工钢、高强结构用钢,加快建筑结构用高强度抗震钢筋、高延性冷轧带肋钢筋等产品开发,支持热镀锌无铬钝化板、无铬彩涂板等应用。汽车用钢:加快推动超高强钢和热成型钢研发及产业化,支持发展汽车用棒、线材,加快节能与新能源汽车用钢、先进轨道交通装备用钢等产品开发应用。优特钢:重点发展耐高温钢、耐蚀钢、钝化或耐指纹膜钢、轴承钢、高性能工模具钢、高性能电工钢、非晶合金、高温合金等,鼓励短流程生产优特钢,培育发展高品质铁基合金粉末、半导体用钢等。高端不锈钢:重点发展装饰管、不锈钢流体焊管和无缝管,培育发展高端精密不锈钢板、带、丝、线材等。2.绿色建材。以发展节能环保、安全耐久的绿色建材为目标,以高技术含量、高附加值产品为主攻方向,重点完善装配式建筑产业链,做优做精玻璃、陶瓷和新型墙材产业,打造1500亿级绿色建材产业集群,其中装配式建筑产业链达到1000亿元。专栏7 绿色建材重点板块装配式建筑:水泥产业重点发展低熟料水泥、利废水泥等绿色水泥,做优做强高标号优质水泥,机场跑道、高速铁路等工程专用水泥和低热、低碱、膨胀等特种水泥。支持拓展水泥制品应用领域和范围,积极发展预拌砂浆、高性能混凝土、功能化混凝土等下游产品。砂石产业布局一批千万吨级大型机制砂石生产保障基地,提高供应保障能力,不断提升优质和专用产品应用比例。装配式建筑产业重点发展梁、柱、板、墙、阳台、楼梯等预制混凝土部件,集成式厨房、卫生间等部品,以及钢筋灌浆套筒、预埋锚件、临时支撑系统等配件。玻璃:重点发展在线Low-E(低辐射镀膜)玻璃、高端汽车玻璃、高档建筑玻璃、装饰玻璃、热致调光玻璃等玻璃深加工产品。积极发展与汽车、电子信息、智能家电等先进制造业产业集群配套的航空玻璃、机车玻璃、电子玻璃、微晶玻璃等特种玻璃。陶瓷:提升发展轻质高强陶瓷、薄型陶瓷、高端装饰装修陶瓷砖、发泡陶瓷、地暖陶瓷、岩板等绿色化、功能化、高端化的建筑陶瓷产品。大力发展节水和轻量化、智能化卫生陶瓷及整体卫浴产品。支持发展以压电陶瓷材料、热电陶瓷材料、铁电陶瓷材料、介电陶瓷材料、超导电陶瓷材料为代表的电子陶瓷材料,以高导热陶瓷材料、耐热陶瓷材料、隔热陶瓷材料为代表的热功能陶瓷材料。新型墙材:重点研发生产导热系数小、性能优良的高效节能保温砌块。支持利用煤矸石、建筑固废、页岩资源等,发展烧结页岩空心砌块、轻质高强节能隔墙板材、高档清水装饰砖、生态透水砖等新型墙体材料。四、主要任务(一)健全产业创新体系。加快研发机构培育,支持建立企业技术中心、工程技术中心、工业和信息化重点实验室等,争取设立区域性研发总部、组建法人化独立研发公司,鼓励有条件的企业牵头建设制造业创新中心。推动创新平台加快制定本领域技术路线图,健全成果转化、专利许可转让等机制,提升共性技术转移扩散能力。加强关键核心技术攻关和应用研究,以“卡脖子”的战略性新兴材料为重点,探索“揭榜挂帅”“赛马机制”等方式,支持材料生产、应用企业联合科研单位开展协同攻关。鼓励创新资源聚合,支持新材料领域应用示范、测试评价以及产业联盟等平台建设。探索建设一批面向社会开放的共性技术资源库、行业数据资源库、通用模型库等共享数据库。加快完善计量校准、标准普及、检验检测与认证认可咨询、质量诊断与改进提升、品牌培育等产业创新服务体系。专栏8 创新发展重点任务企业技术中心:在轻合金、功能材料、高性能纤维和复合材料、优特钢、装配式建筑、玻璃、陶瓷等领域持续培育壮大一批技术创新中心,提升重点产业链创新能力和创新水平。制造业创新中心:以关键共性技术协同开发、转移转化和产业化应用为主要任务,在高性能纤维和复合材料、轻合金、气凝胶、石墨烯、先进钢铁等重点领域建设一批市级制造业创新中心,争创国家级制造业创新中心。应用示范平台:围绕新材料技术应用创新,建立和完善气凝胶、石墨烯、新能源材料、轻合金、功能材料、新型建筑材料等领域搭建新材料应用示范平台,加快材料研制、生产、验证及应用进程。(二)培育壮大产业链群。深入落实“链长制”,围绕轻合金、先进钢铁、装配式建筑等重点产业链,支持领军企业、“链主”企业积极向重点产业链中与现有主营业务关联度较高环节延伸布局,补齐产业链短板。加强创新链、供应链、价值链与产业链招商协同,依托生产制造类项目同步引进企业研发设计、营销结算中心等生产性服务类项目。推动领军企业、“链主”企业加强供应商管理库存、协同式供应链库存管理和供应链运输管理,建立供应链风险等级预警机制,做好应急预案。围绕产业链部署创新链,探索领军企业、“链主”企业提需求及认可采购、上下游企业揭榜参与的协作模式,推动领军企业、“链主”和中小企业补链成群。支持企业通过中欧班列(成渝)、西部陆海新通道、长江黄金水道等通道建设,加速有序优化产业链、供应链配置。专栏9 产业链培育重点任务轻合金产业链:培育产业链领军和“链主”企业,支持企业通过强创新、拓市场、抓重组等方式快速做大做强。加快推动高端铝加工、钛合金精深加工、特铝新材、镁合金等产业链补短板项目建设,不断推进轻合金产业链上游提质、下游延伸。先进钢铁材料产业链:依托领军和“链主”企业,加快推进提质增效、智能热轧、特冶航材、高端金属材料等产业链补短板项目建设,着力补齐优特钢、不锈钢短板。深化战略合作,吸引各类钢铁相关产业布局完善产业链上下游关键环节。装配式建筑产业链:培育壮大领军和“链主”企业,推进一批绿色智能装配式建筑基地等产业链补短板项目建设,支持定标准、强创新、拓市场、抓重组等方式做大做强。(三)促进产业融合发展。加快新一代信息技术和材料工业融合,促进5G、工业互联网、大数据、人工智能等技术在全产业链的集成应用。鼓励智能生产设备、智能检测与装配设备、智慧物流与仓储装备等智能制造装备在材料工业的普及,推动企业信息系统与生产设备的互联互通,支持建设数字化车间和智能工厂。促进工业设计与材料工业深度融合,连接材料产品需求和供给、艺术和技术,丰富产品品种、提高产品附加值, margin-top:10px "(四)抓好示范引领。聚焦国民经济、国防安全重点领域,针对新材料供需衔接、产用合作等短板,探索搭建新材料生产应用示范平台,重点突破关键领域新材料共性应用技术,引导制定产品标准与设计规范,促进新材料标准及下游应用设计规范衔接配套,推动形成新材料产业化应用示范。认真落实重点新材料首批次应用保险补偿机制试点工作,突破材料应用的初期市场瓶颈,激活和释放下游行业对新材料产品的有效需求。鼓励在创新驱动、智能制造、绿色低碳、补短板等领域建设示范项目。加快对节能低碳、安全性好、性价比高的绿色建材的推广应用,支持企业参与绿色建材下乡活动。(五)加强要素保障。多措并举抓好煤、电、水、气、运等生产要素协调,稳住关键产品供应,保障园区建设、项目用地和用工需求。促进金融服务重点向人工智能、大数据、工业软件、5G通信、工业互联网等与材料工业融合创新应用项目和“专精特新”企业倾斜,扩大直接融资渠道,缓解融资难问题,降低融资成本。鼓励资源型企业“走出去”,提高材料工业发展和经济社会发展必需的矿产品原材料保障水平。落实创新领军人才等相关政策,大力引进材料工业海外高层次人才及团队,加大专业技术人才、经营管理人才和技能人才的培养力度,提高产业技术队伍整体素质,完善面向材料工业的人才服务体系。(六)加大宣传引导。充分利用各种媒体,采取多种方式,加强对我市材料工业高质量发展宣传报道,消除对钢铁、有色、建材等行业在市场准入时“一刀切”列入“两高一资”行业的误区,切实增强行业自信,引导产城共融发展,全面打造市场化法治化国际化一流营商环境,为材料工业高质量发展营造良好的舆论氛围和有利外部环境。充分发挥行业协会、专业机构作用,加强规划宣贯落实。
  • 岛津推出《电子探针在汽车材料中的应用》数据集
    汽车行业是一个涉及多种材料的综合性产业,材料应用的多元化是其突出的特点,虽然钢铁材料仍占主导地位,更安全、更节能、更环保的发展趋势要求,使得汽车轻量化设计越来越受到重视,高强合金、轻金属和非金属材料的应用发展前景广阔。 轻量化是汽车的发展趋势,在更安全的前提下,资源友好和环境友好的可持续发展战略使命也对汽车材料的应用和发展提出了更高的挑战。世界各国都在努力改进和研发新的汽车材料,提高材料的比强度、降低构件的重量、减少制造的成本和耗能。 主要涉及以下几个关键性材料: 一、高强度钢和超高强度钢的开发:可用于车身车架、横纵梁等关键部位。世界各国和各大车企都在大力参与开发各种高强度钢板,如冷轧含磷板、双相钢(DP 钢)板以及目前最先进的相变诱发塑性钢(TRIP 钢)板等。 二、轻金属包括镁合金、铝合金和钛合金等的应用呈现出越来越广的趋势。 (1)铝合金:密度约是钢铁的三分之一,现已广泛用于汽车发动机、变速器、差速器壳体、铝轮毂、转向节及各种换热器等部位,是汽车上应用最多的轻质金属材料。而且随着铸锻焊、冲压等制造技术的发展,会有更多的部件采用铝合金制造。(2)镁合金:镁合金的密度仅相当于铝合金材料的 66%左右,但在比强度和刚度等机械性能要明显优于钢铁和铝合金,而且在成型效率和尺寸稳定性方面也有很大的优势。目前镁合金在汽车上一般可用于发动机气缸体、壳体、进气歧管、方向盘、转向器、轮毂等零部件。由于镁元素化学特性特别活波,工艺难以控制这在一定程度上限制了镁合金的应用。 (3)钛合金:具有密度小、质量轻、比强度高、耐腐蚀及高低温性能优异等特点,使之可以在一些恶劣的工作条件中保障汽车的性能。但由于钛合金原材料获取困难,加工成本较高。在汽车制造中,一般将高强耐热钛合金用来生产发动机配气系统、曲轴连杆机构和底盘零件,例如气门、气门弹簧、凸轮轴、连杆、涡轮转子和紧固件等。 三、非金属材料在整车占比也在不断扩大。 其中塑料占很大比例,塑料在汽车上的应用有密度低,成形性好,耐腐蚀,弹性形变可吸收冲击能量,除常规的热塑性和热固性塑料外,也包括塑料纤维增强的复合材料。另外,陶瓷、复合材料和功能材料在车用材料领域也占有重要地位。 岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终坚持创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。早在上世纪 60 年代岛津公司就开始研制和生产电子探针,独有的 52.5°高检出角及兼顾高灵敏度和高分辨率的全聚焦晶体,可在微米级的微小区域到最大 90×90mm 的广域范围中可进行精准分析。电子探针 EPMA(Electron Probe Micro Analyzer)是将聚焦电子束照射到样品,通过激发样品发出的电子信号进行细微结构的观察,通过检测指定区域内发出的元素特征 X 射线进行定性、定量及面分析等多种测试分析。 为了更好的服务于岛津电子探针 EPMA 客户,岛津公司分析中心也开展了汽车行业多种材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 国家镁产品质检中心落户河南鹤壁
    近日,国家质检总局下发文件,正式批准鹤壁市筹建国家镁及镁合金产品质量监督检验中心。3月21日,鹤壁市主要领导回应称,这将对鹤壁做大做强金属镁精深加工产业,进一步提升技术标准、产业升级和结构优化,起到极大的促进作用。   按照文件要求,国家镁及镁合金产品质量监督检验中心将于18个月之内建成,占地面积41亩,建筑面积12000平方米。建成后将具备质量检验、仲裁检验、标准制定、科学研究、技术咨询的职能 能够承担省、市监督抽查和定期监督抽查任务,开展国内镁及镁制品标准制修订工作。同时,实验室布局和环境条件要达到国内同行业领先水平。   据了解,鹤壁目前有金属镁及相关企业30余家,2010年金属镁产业实现销售收入达33亿元,是我国重要的金属镁产业基地之一。国家镁及镁合金产品质量监督检验中心落户鹤壁,将有助于鹤壁成为国内一流的镁及镁合金制品检验检测和科学研究基地、镁制品技术人才培养基地、新产品技术孵化基地等,大大提高鹤壁“镁”在国内外的知名度和美誉度。
  • 河南发文大力发展新材料,目标产业规模突破1万亿
    近日,河南省人民政府印发《河南省加快制造业“六新”突破实施方案》(下称《方案》),提出把“六新”(新基建、新技术、新材料、新装备、新产品、新业态)突破作为提升战略竞争力的关键举措和重要标志,找准着力点、突破口,开辟发展新领域、新赛道,塑造发展新动能、新优势,加快推进新型工业化。《方案》提到,要大力发展新材料。将新材料作为新兴产业发展的基石和先导,聚焦先进基础材料、关键战略材料、前沿新材料等领域,推动全省新材料产业产品高端化、结构合理化、发展绿色化、体系安全化。到2025年,全省新材料产业规模突破1万亿元,实现从原材料大省向新材料强省转变,为制造强省建设提供有力支撑。《方案》明确,为实现1万亿元新材料产业规模目标,将开展以下三大措施:(一)提质发展先进基础材料1. 先进钢铁材料。推进先进钢铁材料产业精品化、优特化、品质化、特色化发展,大力发展EP防爆钢、超高强钢等高品质特殊钢,重点开发智能制造、轨道交通等领域高端装备用钢,突破发展海洋工程装备和高技术船舶用特种棒线材、板材、管材以及高强度汽车钢等尖端产品,加快发展高端轴承钢、齿轮钢等核心基础零部件用钢,依托河南钢铁集团打造全国一流大型钢铁企业,优化钢铁产业布局,引领先进钢铁材料全产业链提升。2. 先进有色金属材料。推动先进有色金属材料产业延伸高端产品链条,实现从材料向器件、装备跃升。突破铝基复合材料、高端工业型材等关键技术,大力发展新能源、航空航天等领域轻量化高端铝材,推动铝合金向高端精品铝加工延伸。加快发展高精度铜板带、高端铜箔等铜基新材料,推进高端铜基材料在高端装备、新能源汽车等领域应用。推进研发低成本高纯镁提纯精炼、高性能铸造镁合金和镁铝复合材料等制备及精密成型技术,拓展轻量化高强度镁合金在军工、电子信息等领域应用。发展超宽高纯度高密度钨钼溅射靶材、电子功能钨钼新材料及精深加工产品。加强铅锌冶炼伴生有价金属提取、提纯等技术研发应用,提高资源综合利用率。3. 先进化工材料。推进先进化工材料产业向功能化学品、专用化学品、精细化学品发展,延伸发展下游高端产品,实现从关键基础原料到高端化工新材料跨越。大力发展特种尼龙纤维、尼龙切片等尼龙新材料,发展尼龙注塑、聚氨酯精深加工,打造国内领先的尼龙新材料生产研发基地。加快推动可降解材料、生物基材料、先进膜材料、氟基新材料、盐化新材料向终端及制成品方向发展,推动产品迭代升级。4. 先进无机非金属材料。推进先进无机非金属材料向绿色化、功能化、高性能化方向提升,实现从耐材、建材等传统领域向电子信息、航空航天等新兴领域拓展。重点发展芯片制造、油气钻探等领域用复合超硬材料及制品和关键装备,扩大应用领域,打造全球最大的超硬材料研发生产基地。聚焦细分领域,加快发展吸附分离、高效催化分子筛材料,空心玻璃微珠材料,气凝胶材料等先进无机非金属材料,重点发展功能耐火材料、高效隔热材料、氢冶金用关键耐火材料等,积极发展优质浮法玻璃、超薄玻璃等新型玻璃和特种水泥、绝缘及介质陶瓷等新型建材。(二)培育壮大关键战略材料1. 电子功能材料。加快发展半导体、光电功能材料、新型电子元器件材料产业,打造全国新兴先进电子材料基地。加快布局发展氮化镓、碳化硅、磷化铟等半导体材料,开发Micro—LED(微米发光二极管)、OLED(有机发光二极管)用新型发光材料,薄膜电容、聚合物铝电解电容等新型电子元器件材料,电子级高纯试剂和靶材、封装用键合线、电子级保护及结构胶水等工艺辅助及封装材料。加快湿电子化学品、高纯特种气体、高纯金属材料研发和规模化生产。2. 高性能纤维材料。重点研发48K以上大丝束、T1100级碳纤维制备技术,重点发展玄武岩纤维、电子级玻璃纤维等高性能纤维材料,推动碳纤维在汽车制造、航空航天等领域应用,建设国内最大的碳纤维生产基地。重点突破对位芳纶原料高效溶解等关键技术和大容量连续聚合、高速纺丝等制备技术,推动产业链向航空航天、国防军工等领域延伸。重点发展超高分子量聚乙烯板材、薄膜、纤维等制品,拓展在机械制造、医疗器械等领域应用。加快发展光致变色纤维、温感变色纤维等功能化、差别化再生纤维素纤维和差别化氨纶纤维,推动氨纶产业发展壮大。3. 新型动力及储能电池材料。大力发展正负极、电解液、隔膜等金属离子电池材料,布局发展钠离子电池、全(半)固态电池产业。突破发展质子交换膜、膜电极、催化剂和扩散层等氢燃料电池关键材料,建设国家氢燃料电池产业基地。重点发展晶体硅光伏电池材料和化合物薄膜,开发大尺寸单晶硅、多晶硅太阳能硅材料、多晶硅薄膜等,研发新型高效钙钛矿电池材料和铜铟镓硒等薄膜电池材料,打造“硅烷—颗粒硅—单晶硅片—电池片—组件—电站”产业链。4. 生物医用材料。重点研发体外膜肺氧合机用中空纤维膜、CT(电子计算机断层扫描)用弥散强化金属及合金等医疗装备材料,打造一批医疗装备材料生产基地。加快发展用于心血管、人工关节等临床治疗的功能性植/介入医用材料,推动聚乳酸可降解材料在医用领域应用。突破发展医用苯乙烯类热塑性弹性体、生物相容性材料、生物墨水、医用级聚砜/聚醚砜材料等先进材料,推动医疗耗材产业高端化发展。5. 节能降碳环保材料。加快发展基于溶剂、膜材料、金属有机框架等碳捕集材料,重点研发CO2(二氧化碳)合成低碳烯烃、芳烃、醇酯等碳利用技术,加快发展结构装饰一体化保温板材、节能自保温型墙体及材料,推动珍珠岩保温材料、超高保温节能玻璃等产品研发应用。大力发展水污染治理、工业废气处理等领域催化剂材料、混合基质膜、高性能中空纤维膜,加强相关技术研发和产品推广,研发推广有害物质含量低的涂料、油墨等材料,减少有害物质源头使用。(三)抢滩占先前沿新材料1. 纳米材料。积极发展金属、陶瓷、复合材料等领域纳米材料,开发电子级球形纳米材料、稀土纳米材料等产品,前瞻布局发展量子点发光材料、球形氧化铝氮化硼导热材料等先进纳米材料,加快济源纳米材料产业园建设,支持碳纳米管、分子筛等细分领域持续壮大。2. 石墨烯材料。重点发展石墨烯储能器件、功能涂料等特种功能产品,拓展在防腐涂料、触摸屏等领域应用,开发基于石墨烯的散热、传感器材料等,研发规模化制备和微纳结构测量表征等关键技术,开发大型石墨烯薄膜制备设备及计量检测仪器,加快建设一批石墨烯产业基地。3. 增材制造材料。加快发展3D打印专用钛合金、铝合金等金属粉末,开发高性能稳定性光敏树脂、粘结剂、工程塑料与弹性体和碳化硅、氮化硅等陶瓷粉末、片材,研发金属球形粉末、纳米改性球形粉体等材料成形与制备技术,加快培育增材制造材料产业。4. 先进复合材料。大力发展超导复合材料、碳/碳复合材料等,开发高性能碳纤维、硼纤维、碳化硅纤维等增强体和先进树脂、合金、陶瓷等基体材料,开展高熵合金、液态金属等先进合金研究,打造“高性能纤维—先进复合材料—功能部件”产业链。附件:河南省新材料重点事项清单
  • 岛津EPMA在形状记忆合金中的应用
    形状记忆合金是通过热弹性与马氏体相变及其逆变而具有形状记忆效应的由两种以上金属元素所构成的材料。迄今为止,人们发现具有形状记忆效应的合金有50多种,在航空航天、机械电子、生物医疗等领域具有广泛的应用。下文将举例介绍电子探针(EPMA)在镍-钛形状记忆合金中的应用。图1. 岛津场发射电子探针EPMA-8050G岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现:01优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。(加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA)02大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。按原子比由Ti和Ni各占50%的合金称为镍-钛合金(Nitinol),具有良好的形状记忆性能和超弹性性能。形状记忆合金具有一个显著的特点,即变形到任意形状后,加热到相变温度(相变点)或更高时,能恢复变形前的原始形状,而超弹性合金则是在载荷作用下变形,在载荷消除后恢复原始形状。相变温度大致可以在0℃-100℃之间变化,主要通过改变Ti和Ni的合金原子比值或者加入1%或更少的第三相元素(比如Cr、Co、Cu等)。正畸金属丝是一种典型的镍-钛合金,具备形状记忆和超弹性性能,主要的选材差异在于根据患者的牙周状况和对疼痛的敏感程度来选择具有不同相变温度的矫正材料。图2. 展示了正畸金属丝中主要的合金元素面扫描图像及相分析结果,清晰可见材料基体的元素组成以及其中离散分布的微米级别的混合相结构。图2. 正畸金属丝中各合金元素面扫描图像及相分析结果选择三种具有不同相变温度的正畸材料分别进行定量分析,结果如表1所示,总含量低于1%的Cr元素存在较为明显的含量差异。表1. Af27、Af35、Af40型号正畸金属丝元素定量测试结果结合图3. 展示的三种不同型号的元素面扫描结果,可以更清楚地看到Cr元素含量的差异,同时离散分布的点状微结构中Ni元素被替代的情况也存在差别。图3. 各型正畸金属丝中的元素面扫描图像(a)Af27,(b)Af35,(c)Af40图4. 展示了放大条件下Af27材料中微结构的元素面扫描及相分析结果,表明多化合物混合相的存在。图4. Af27正畸金属丝中化合物相分析更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制