当前位置: 仪器信息网 > 行业主题 > >

生物酶

仪器信息网生物酶专题为您整合生物酶相关的最新文章,在生物酶专题,您不仅可以免费浏览生物酶的资讯, 同时您还可以浏览生物酶的相关资料、解决方案,参与社区生物酶话题讨论。

生物酶相关的资讯

  • Megazyme生物酶促销
    产品货号:CFGK-IC-6-1 产品名称:6种阳离子混标,Li/Na/K/Ca/Mg/NH4,溶于1%稀硝酸 规格:125ml 品牌:NSI 报价:1860.00元/瓶 促销价:1300.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BGLAN 产品名称:&beta -半乳糖苷酶 酶号:3.2.1.23 品牌:Megazyme 规格:8000Units(~40.9 U/mg) 报价:2840.00元/瓶 促销价:1700.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BSPRPD 产品名称:蛋白酶 酶号:3.4.21.14 品牌:Megazyme 规格:1g (10 U/mg of protein) 报价:3160.00元/瓶 促销价:1900.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-AMGDF 产品名称:淀粉转葡萄糖苷酶 酶号:3.2.1.3 品牌:Megazyme 规格:40 mL(3260 Units/mL) 报价:2400.00元/瓶 促销价:1440.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ACPEC 产品名称:酸性磷酸酶 酶号:3.1.3.2 品牌:Megazyme 规格:400 Units(~17 U/mg) 报价:2420.00元/瓶 促销价:1450.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ALPEC 产品名称:碱性磷酸酶 酶号:3.1.3.1 品牌:Megazyme 规格:400 Units(~10 U/mg) 报价:2625.00元/瓶 促销价:1580.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ISAMY 产品名称:异淀粉酶 酶号:3.2.1.68 品牌:Megazyme 规格:1000 Units(~280 U/mg) 报价:3060.00元/瓶 促销价:1830.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BLAAM 产品名称:&alpha -淀粉酶 酶号:EC:3.2.1.1 品牌:Megazyme 规格:40mL - 3000 Units/mL 报价:2360.00元/瓶 促销价:1420.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-GLUKEC 产品名称:葡糖酸激酶,己糖激酶 酶号:EC:2.7.1.12 品牌:Megazyme 规格:1500 Units 报价:2740.00元/瓶 促销价:1640.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-GPDHEC 产品名称:葡萄糖-6-磷酸脱氢酶 酶号:EC:1.1.1.49 品牌:Megazyme 规格:1500 Units 报价:5000.00元/瓶 促销价:3000.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-PGIEC 产品名称:磷酸葡萄糖异构酶 酶号:EC:5.3.1.9 品牌:Megazyme 规格:10000 Units 报价:2260.00元/瓶 促销价:1350.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-PGDHEC 产品名称:6-磷酸葡萄糖脱氢酶 酶号:EC:1.1.1.44 品牌:Megazyme 规格:150 Units 报价:3160.00元/瓶 促销价:1900.00元/瓶 促销日期截止2013.12.31日 关键词:Magazyme 生物酶 促销 化学 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 安徽集采报量落地!科华生物酶免术前八项需求量排名A组第二名
    就在刚刚安徽集采报量落地,科华生物酶免术前八项需求量超过6000万份,排在了A组第二名!如此优异的成绩离不开众多终端客户对科华生物产品的认可与信任。科华生物传染病检测项目亮点科华生物成立于1981年,是最早解决酶免成品试剂稳定性难题的厂家,在1989年最早推出了商品化乙肝五项酶联免疫诊断试剂盒。1991年,科华生物在国内率先推出丙型肝炎病毒抗体酶联免疫检测试剂盒;几年后丙肝抗体产品顺利通过了德国临检中心实验检定(灵敏度100%,特异性99.5%),科华成为中国第一家获得欧盟认证的企业。1995年成功研制人类免疫缺陷病毒抗体酶免检测试剂盒,全国采供血系统实验室增加HIV抗体检测,进一步保证输血安全。由此科华获得了市场和口碑双赢的”肝炎和传染病检测产品公司”的赞誉。部分酶免产品作为药字号产品,严格按照药品管理,每批次产品上市销售前需送至中国食品药品检定研究所进行批签发检定,近二十几年来我们药字号的酶免产品批签发合格率均为100%。
  • 生物酶促销
    产品货号:CFHN-E-BGLAN 产品名称:&beta -半乳糖苷酶 酶号:3.2.1.23 规格:8000Units(~40.9 U/mg) 报价:2840.00元/瓶 促销价:2130.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-BSPRPD 产品名称:蛋白酶 酶号:3.4.21.14 规格:1g (10 U/mg of protein) 报价:3160.00元/瓶 促销价:2370.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-AMGDF 产品名称:淀粉转葡萄糖苷酶 酶号:3.2.1.3 规格:40 mL(3260 Units/mL) 报价:2400.00元/瓶 促销价:1800.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-ACPEC 产品名称:酸性磷酸酶 酶号:3.1.3.2 规格:400 Units(~17 U/mg) 报价:2420.00元/瓶 促销价:1815.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-ALPEC 产品名称:碱性磷酸酶 酶号:3.1.3.1 规格:400 Units(~10 U/mg) 报价:2625.00元/瓶 促销价:1968.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-ISAMY 产品名称:异淀粉酶 酶号:3.2.1.68 规格:1000 Units(~280 U/mg) 报价:3060.00元/瓶 促销价:2296.00元/瓶 促销日期截止2013.6.30日 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 生物纺织酶添绿印染业 助力减少废水排放量
    p   近日,中科院天津工业生物研究所宋诙研究员领先开发了生物纺织酶技术,这一技术在印染材料前处理过程中代替烧碱,将极大减少废水排放,并节水节电,被业界评价为我国印染行业的又一重要技术创新。 /p p   你有没有想过你穿的一件件T恤衫、牛仔裤或者连衣裙是在怎样的环境下生产出来的?事实上,色彩绚丽的服装带来的却是对环境的极大破坏。印染行业一直是高污染、高耗能的落后产能代表,近年来,不少地方尤其是一线城市的印染行业逐渐外迁,甚至关停。 /p p   与此同时,印染又是纺织行业不可或缺的环节,在政策倒逼下,印染行业也在不断寻求技术创新,朝着绿色印染方向前进。 /p p   由中科院天津工业生物研究所宋诙研究员领先开发的生物纺织酶技术,在印染材料前处理过程中代替烧碱,可极大减少废水排放,并节水节电,被业界评价为我国印染行业的又一重要技术创新。 /p p   印染行业迫切需要抵制污染 /p p   “当前中国纺织产业的污染问题已经到了需要刻不容缓解决的地步。传统纺织生产不仅给环境带来污染,更是产生各种有害化学物质,对我们的身体造成损害。全社会应该共同抵制污染性、消耗性的生产过程??” /p p   国际环保地球誓言(EarthPledge)发布的数据显示:“全世界至少有8000种化学品在将原料制成纺织品的过程中,会使用25%的农药用于种植非有机棉。这将导致对人类和环境不可逆转的损害,还有2/3的碳排放量会在服装的购买后继续发生。”在加工服装面料的过程中会耗费几十加仑的水,尤其是面料染色过程,合成材料的染色需要2.4万亿加仑的水。 /p p   中国环境统计数据表明,在重点调查工业行业中,纺织业是排污大户。纺织工业废水排放量在全国41个行业废水排放中位居前列,而其中印染加工过程产生的废水排放占纺织废水排放量的七成以上。 /p p   此外,作为水污染的重要来源,中国的纺织工业还消耗了巨大的水资源,在水资源利用效率方面远远落后于世界其他地区。根据中国环境科学出版社出版的《全国重点行业工业污染防治报告》,在生产同类单位产品的情况下,我国印染废水中污染物平均含量是国外的2—3倍,用水量则高达3—4倍 同时,印染废水不仅是行业主要污染物,印染废水所产生的污泥处理起来存在问题。 /p p   这其中,印染材料的前处理由于使用到大量烧碱,造成的污染尤其严重。“染色前需要用烧碱处理,用蒸汽把它蒸硬,然后,再用盐酸把这些烧碱中和掉,这就排放出大量废水。”曾经在印染企业一线工作多年的河北纺联物资供销有限公司驻津办事处经理高忠强说。 /p p   针对这一现状,中国科学院天津工业生物技术研究所宋诙带领团队首先将目标瞄准可代替烧碱的新酶制剂开发。 /p p   生物酶制剂解决印染难题 /p p   传统的印染前处理工艺流程包括烧毛、退浆、精炼、漂白和丝光五个步骤。虽然此前有国外公司生产用于印染前处理的酶制剂,但仅用于退浆这一环节。 /p p   宋诙介绍道,酶制剂是一种高效、低耗、无毒的生物催化剂,基于酶制剂的生物处理方法是解决印染工业高污染和高消耗的理想途径,但是,此前,酶制剂品种单一成本偏高,酶制剂的复配及与纺织助剂的相容性研究缺乏,完整的酶法染前处理工艺尚未形成。 /p p   此次,宋诙团队与天津天纺集团、河北纺联物资供销有限公司达成密切合作,历经三年,研发出多种性质优良的纺织用生物酶制剂及其生产工艺,包括淀粉酶、碱性果胶酶、木聚糖酶和过氧化氢酶等,可以将退浆和精炼合并成一步完成,大大提高前处理的效率。 /p p   “退浆—精炼复合酶制剂解决了涤棉、纯涤纶坯布混合浆料退浆难的问题。以往的淀粉酶退浆只能解决淀粉上浆的坯布,有PVA混合浆料的坯布只能用高温碱煮去除。”天纺集团总工程师丁学琴说,含阻燃丝、纯涤纶组分的坯布品种不能高温碱煮退浆,否则会皱缩,而使用生物复合酶的退浆效果很好,防止了坯布皱缩,而且退除淀粉、PVA干净,同时处理后布匹手感蓬松、柔软,也为工厂解决了一个技术难题。 /p p   节水节电减少污水排放 /p p   宋诙介绍道,酶法退浆精炼一次完成,不仅省去了传统处理工艺的高温,并且,酶法处理温度在低温下进行,大大降低了前处理过程中的蒸汽用量,显著节约了蒸汽能耗,与传统工艺相比,节约蒸汽25%—50%,节省电量40%。 /p p   生物酶法前处理工艺替代传统工艺中的烧碱退浆和烧碱精炼过程,意味着生物发酵产品可替代烧碱、精炼剂等化学制剂,因此,可大大降低处理后废水的pH值及COD值,精炼剂等化学制剂的有效取代可使前处理废水中得COD值降低60%以上。 /p p   “生物复合酶制剂具有处理条件温和、效率高、专一性好等特点,应用生物酶处理对棉纤维几乎没有损伤,而对于坯布上的淀粉浆料及PVA浆料具有高效的降解作用,可达到良好的退浆效果。”宋诙说,经该技术处理的棉纤维质量较传统方法提高许多。 /p p   对于印染企业关心的价格问题,宋诙表示,生物复合酶酶活效价高、用量少,价格与一般纺织助剂相当,不会提高处理成本,大多数纺织企业可接受。此外,应用生物酶进行前处理可通过降低蒸汽能耗、省去碱性废水处理成本、以及减少多种化学助剂用量,从而达到显著降低前处理成本的目的,提高纺织行业的经济效益。 /p p   “在天纺的酶法前处理工艺应用中,12000米纯棉棉布和11000米芳纶热波卡布的酶法前处理与传统碱法工艺比较,可分别降低成本30%和70%。”丁学琴说。 /p p   预计三年内推广到近20家企业 /p p   今年3月至6月,河北宁纺集团成功完成了16000米布以上的生物酶法前处理工艺的应用示范和推广。 /p p   此前,应用该生物复合酶的生物酶法前处理工艺在天津天纺集团首次试验成功,完成了累计大于300万米布的中试生产实验,实验品种包括军用迷彩、帐篷防水布、芳纶等等。 /p p   宋诙表示,接下来将与河北纺联继续合作完善技术推广工作,组成技术服务小组,服务全国印染企业,以及未来三年可完成10—20家纺织企业的推广应用,累计创造新增利润5000万到1亿元人民币。 /p p   在近日举办的生物纺织酶成果发布会上,前来参会的福建经销商告诉说,他认为该产品会受到印染企业的欢迎,他已决定代理该产品。 /p p   “我们也会进一步完善技术,同时针对印染的其他环节开展研发,开发出更多技术和产品。”宋诙说。 /p
  • 有望减缓温室气体增加,科学家用冷冻电镜全面解析微生物一氧化二氮还原酶组装过程
    无味无毒的气体一氧化二氮(N2O,nitrous oxide)可以通过生物和非生物两类过程形成,这导致大气中 N2O 浓度每年稳定增加 0.2-0.3 %。一氧化二氮是一种消耗臭氧的物质;它的全球变暖潜力超过了二氧化碳的 300 倍,因此已经被认为是 21 世纪最关键的人为排放物。微生物可以将 N2O 转化为 N2,这是反硝化过程的最后一步,这一反应完全由一氧化二氮还原酶(N2OR 酶)催化。大气中 N2O 释放和不断积累的一个主要因素是,在高流量氮的环境下,微生物还原 N2O 的能力有限。因此,利用 N2OR 酶的性能进行农业或生物修复应用是相当有意义的,这需要对该酶及其反应过程有一个详细的了解。除了 [ 4Cu:2S ] CuZ 簇,它还含有混合价的双铜电子转移中心 CuA,这使其成为目前已知最复杂的含铜酶。各种真核生物和原核生物酶在涉及氧运输、电子转移或氧化还原催化的过程中都会使用过渡金属铜,但其巨大的细胞毒性、对铁硫簇代谢的不利影响以及产生活性氧的倾向性,使得细胞内必须进行严格的平衡和调节。N2O 还原剂通过完全在细胞质外组装 CuA 和 CuZ 来规避与细胞内铜有关的风险,尽管 apo-N2OR 已经以折叠状态通过 Tat 途径被输出。然而,这种策略导致了新的复杂情况,特别是包括在周质中没有还原当量和高能化合物,如核苷三磷酸酯。I 族 N2O 还 原催化剂的共同结构包括两个核苷酸结合结构域(NosF)和两个跨膜结构域(NosY)。一些细菌输出体进一步与附属蛋白相互作用,以建立复杂的运输系统,NosD 蛋白被认为是与 NosFY 一起发挥这种作用。由于 NosDFY 的实际货物分子尚未被确定,不能排除 CuZ 成熟所需的周质硫源。为了了解 N2OR 成熟的分子基础,这项研究制作并表征了 NosDFY 复合物,并通过冷冻电子显微镜(cryo-EM)研究了它与 NosL 和 N2OR 的相互作用,揭示了由细胞质中 ATP 水解驱动的周质酶铜位点的顺序组装线。2022 年 7 月 27 日,德国弗莱堡大学生物物化学研究所所长奥利弗 艾因斯(Oliver Einsle)与美国范 安德尔(Van Andel)研究所首席研究员杜娟合作,在 Nature 发表其最新论文,题为《一氧化二氮还原酶的组装机制中的分子相互作用》(Molecular interplay of an assembly machinery for nitrous oxide reductase ) [ 1 ] 。该工作详细地解析了 N2OR 酶的三维结构和组装机理。▲图 | 相关论文(来源:Nature)p. stutzeri (施氏假单胞,一种革兰氏阴性细菌)在大肠杆菌中被生产为稳定的五亚基复合物 NosDF2Y2,并在膜部分溶解后通过色谱方法分离出来。NosF2Y2 异源四聚体形成了复合物的核心,45kDa 的 NosD 蛋白从其中突出到周质中,成为一个细长的 β 螺旋,与糖类结合的蛋白质以及糖水解酶家族具有结构相似性。NosD 的主轴从与 NosFY 对相关的双轴上倾斜,打破了分子的对称性。在 NosD-NosY 界面,NosD 的 C 端折叠成三个 α - 螺旋(hI-III),部分位于膜内,紧紧楔入 NosY 二聚体。▲图 | 无核苷酸状态下 P.stutzeri NosDFY 的三维结构(来源:Nature)为了描述 NosDFY 的 ATP 结合状态,研究者们产生了一个 NosF(E154Q)变体。在这一变体中,非活性谷氨酰胺取代了催化性谷氨酸残基 154,且该单点变体的 ATP 水解活性降低得十分明显。当在特定的背景下表达时,它会使得 N2OR 酶缺乏活性位点 CuZ 簇,从而导致功能失调。无效的 E154Q 变体使 NosF 处于 ATP 结合状态,正如其他 ABC 蛋白(ATP 结合盒式蛋白,ATP-binding cassette transporter)已经报道的那样。具体来说,ATP 的结合使得 NosF2 二聚体大幅度闭合,这一动作将直接传导到 NosY 二聚体,从而实现关闭跨膜间隙,最终诱导 NosD 在周质中发生复杂的构象变化。这一过程可以用三种主要的旋转模式来描述。▲图 | NosDFY 及铜与 NosD 的结合的构型动力学(来源:Nature)据悉,NosDFYL 在正十二烷基 β -D- 麦芽糖苷(DDM)中会被分离出来,并被重组到糖二醇胶束(GDN)和膜支架蛋白(MSP)纳米盘中,以 3.3- (纳米盘)或 3.04- (GDN 胶束)的分辨率进行冷冻电镜观察。NosL 在复合物中的位置立即变得清楚,其 N 端被解析到 NosL ( C24 ) 的脂质附着点,该位点正好位于膜界面,而脂质附着点本身并没有被解析。这种排列明晰了 NosL 实际上并不像以前提出的那样位于外膜中,而是位于细胞质膜的外叶中。▲图 | 无核苷酸的 NosDFY 接受来自 NosL 的 Cu+(来源:Nature)在三个组成部分的相互作用中,ATP 驱动的 NosD 的旋转运动控制着与其伙伴 NosL 和 N2OR 的相互作用,其具体相互作用模式见下图。负载铜的 NosL 只能在无核苷酸状态下与 NosDFY 结合,在这种状态下,NosD 上的铜结合点朝向膜,允许 Cu+ 从 NosL 转移到 NosD。随后 ATP 与 NosF 的结合引发了 NosD 的旋转,而与膜相连的 NosL 无法跟随,导致其释放。在这种构象中,NosD 现在可以通过相同的界面与 N2OR 相互作用,将其 " 含铜货物 " 转移到该酶的金属位点。然后 NosF 中的 ATP 水解使 NosDFY 回到其无核苷酸的开放构象,而 N2OR 二聚体向膜的移动最终将迫使其释放,并释放出 NosD 上 HMM 三联体的铜结合位点,以装载 NosL 的另一个金属阳离子。在任何一个方向,各自的相互作用伙伴的释放都是通过 NosD 的旋转运动机械地触发的,NosDFY 及其伙伴的复合物的结构十分详细地显示了 ATP 驱动的 NosD 的变形如何使单核伴侣 NosL 的单个铜离子逐步转移,最终组装成四核 CuZ 簇。因此,ABC 运体 NosDFY 作为一个跨膜能量转换器,动态地促进新生酶与 NosD 的铜供体的结合和分离,将一个主要的活性转运蛋白重新利用为 ATP 驱动的杠杆,跨越分隔两个非常不同的细胞区间的边界。▲图 | 铜从 NosL 经 NosDFY 到 N2OR 的运输模型(来源:Nature)总之,该研究以 NosDFY 与 NosL 和 N2OR 酶组成的复合结构为解析对象,这一结构中含有高度复杂的铜位点,利用冷冻电镜,复合结构的组装途径被完全展示。在这一途径中,NosDFY 作充当机械能量转换器的角色,而并不直接起到转运作用。这项工作是科学家首次解析如此复杂的 N2O 还原酶结构,将为微生物 N2O 降解提供完整的理论支撑,并有望推动 N2O 还原降解的技术研究。
  • 刘倩团队新成果:体内酶高效降解PET,环保新突破获专利认证
    中国科学院生态环境中心环境化学与生态毒理学国家重点实验室刘倩等在天然酶诱导的塑料生物降解技术方面取得进展。相关成果以“High-efficiency degradation of PET plastics by glutathione S-transferase under mild conditions”为题,在线发表于Environmental Science & Technology(Environ. Sci. Technol. 2024, DOI: 10.1021/acs.est.4c02132)。  塑料污染问题在全球范围内对环境和生态构成了重大威胁。应对这一挑战需要创新方法,特别是在塑料生物降解领域。塑料通常被认为是化学惰性、耐生物降解。虽然之前的研究已经发现一些能够降解塑料的酶,但大多数都是微生物酶或人造工程酶。  本研究发现PET塑料可以在温和的条件下被哺乳动物体内天然存在的酶高效降解,包括II期代谢同工酶——谷胱甘肽S-转移酶(GST)、I期代谢酶——细胞色素P450和胰蛋白酶。在环境或生理条件下,PET塑料的降解率可达到98.9%,降解速率为2.6 gL-1h-1。这一发现揭示了一种生物手段解决塑料污染的潜在的新途径。  图1. GST、CYP450、胰蛋白酶等天然酶诱导的塑料降解示意图  在降解机制方面,之前报道的微生物和工程酶基本上都是基于水解反应。本研究提出了一种新的PET降解机制,即通过氮化和氧化作用的PET单体裂解和释放。这一发现丰富了对塑料降解所涉及的机制和途径的理解。此外,在人血清样本中也测试了这种方法,结果表明GST能在人血清中降解PET塑料,表明塑料在真实生物和人体中降解的可能性,有助于更好地了解塑料在生物体中的代谢和归趋。  该技术目前已经获得中国发明专利(ZL202110114200X)和美国发明专利(US 11,952,468B2)授权。  该论文的通讯作者为刘倩研究员,第一作者为中心毕业生黄秀(现为四川大学华西公共卫生学院(华西第四医院)特聘副研究员)。该工作得到了国家自然科学基金委国家杰出青年基金、面上项目、青年基金以及四川大学引进人才科研启动经费资助等项目的支持。  相关论文链接:https://doi.org/10.1021/acs.est.4c02132
  • 中科院制备出酶燃料电池驱动的离子电渗透面膜
    离子电渗透,是一种离子流在电场力的驱动下在介质中有向扩散的物理过程。基于此原理,离子化的药物分子在电场力的作用下可主动透过皮肤的生物屏障,提高透皮和吸收的效果。然而目前基于离子电渗透的经皮给药技术或装置,都需依赖外接电源或金属基电池来驱动获得电场力,在安全性和便捷性上不甚理想。酶燃料电池是一种新型的燃料电池,可通过生物酶在电极上的催化,将廉价底物中的化学能直接转化为电能,在柔性可穿戴电子器件供电和传感等方面展示了应用潜力。鉴于其良好的产电性能、优异的安全性和生物相容性,酶燃料电池可提供产生电场力所需的清洁、安全、低成本的电能,进而促进药物经皮吸收,有望为基于离子电渗透的经皮给药技术提供了新的能源解决方案。中国科学院天津工业生物技术研究所体外合成生物学中心研究团队,首次将柔性可穿戴的酶燃料电池与面膜相结合,在无纺布基底上制备了基于葡萄糖和葡萄糖氧化酶的酶燃料电池,并证实了其可驱动离子电渗透以促进面膜相关有效成分的经皮吸收。首先,研究人员为了最大化离子电渗透效果同时保持材料的透水透气以及生物相容性,尝试了多种在无纺布基底上制备柔性电极的材料和方法,解决了电子中介体脱落、酶载量低、接触电阻大、由于碳纳米材料导致的面膜发黑等问题,所制备的酶燃料电池可以10 mM葡萄糖为底物产出约0.4 V的电压和23 μW/cm2的功率密度。其次,研究人员以罗丹明、烟酰胺、阿司匹林和熊果苷为例,对这些分子的经皮吸收效果进行了定性和定量的分析,基于Franz透皮实验的结果证明该离子电渗透面膜在15分钟内可提高2到3倍的分子经皮渗透量。此外,该面膜在基于小鼠急性足炎症模型的活体动物经皮给药实验中也表现出类似的促渗效果。最后,通过红细胞溶血实验和L929活性实验均证实了该面膜材料具有良好的生物相容性。这些结果初步证明了酶燃料电池驱动的离子电渗透面膜技术的可行性,为后续进一步提升其性能和可应用性奠定了基础,也为酶燃料电池驱动其他基于离子电渗透的经皮给药技术的开发提供了参考。该研究获得了国家重点研发计划的支持,相关发明专利已被授权,相关论文发表在Biosensors & Bioelectronics上,天津工业生物所博士生李泽华为论文第一作者,张以恒研究员、朱之光研究员为论文共同通讯作者。
  • 七大新兴产业看化工发展新机会之五:生物产业与化工科技相互借力升级
    目前全球所有的顶级化工www.ccin.com.cn企业都在投资生物技术研究,生物产业将成为增长最快的经济领域。在中国,以分子生物学、细胞生物学、发酵工程和酶工程为代表的生物技术在医疗、农业、能源、环保、食品、材料、纺织、建筑等领域起到重大促进作用。发展生物产业既依赖化工科技的突破,同时也将推进传统化工产业升级。   工业生物技术:   掀起绿色制造革命   生物能源、生物环保、生物制造等工业生物技术产业将是生物产业中的快速发展领域,也是我国应加强技术开发力度、及时跟进的新兴行业。提升现代发酵、生物催化等技术,打造工业生物技术产业,对于促进传统化工产业的升级改造、推进绿色制造业发展意义重大,是缓解化石能源紧张、保障国家能源安全、实施循环经济的迫切要求。到2020年,生物质能源占世界能源消费的比重将达到5%左右,生物基材料将替代10%~20%的化学材料,精细化学品的生物法制造将替代化学法的30%~60%。   发展生物产业,需要加强重大技术的基础研究和产业化应用,提高酶工程、发酵工程等生物技术水平,加快传统化学制造业的改造。重点包括开发生物燃料、溶剂、氨基酸与有机酸、功能性食品添加剂、生物材料、生化产品等,利用可再生的生物质原料生产乙醇、乳酸、1,3-丙二醇、1,4-丁二醇、琥珀酸等平台化合物,扩大乙烯、聚乳酸、纤维素等大宗原料化工品和生物材料生产规模,支持生物可降解溶剂、润滑剂、绿色表面活性剂、环氧树脂固化剂、聚酯(醚)多元醇等绿色精细化学品的产业化技术开发,注重赖氨酸、谷氨酸、苹果酸、木糖醇、柠檬酸等功能性食品与保健品生物合成开发规模。在生物环保领域,应加快推广应用发展生物漂白、生物制浆、生物制革和生物脱硫等绿色生产工艺新工艺、新设备,重点发展高性能的水处理絮凝剂、混凝剂等生物技术产品,鼓励废水处理、垃圾处理、生态修复生物技术产品的研究和产业化。   农用生物制品:   变革传统农化产业   农业是国计民生的基础,也是生物技术大展身手的舞台,特别是农药和化肥领域,发展以生物农药、生物化肥等农用生物制品,对于农业发展关系重大。   利用生物技术开发生物农药,具有资源来源广、低污染、低残留等优点。推广生物农药是实现现代农林业可持续发展、保护生态环境安全、发展绿色农业的重要途径。目前我国生物农药在诊断、制剂工艺、环境监测等环节上还缺乏配套技术,产业体系不健全,应重点利用生物技术进行病理、药理、代谢研发,制订生物农药标准规程等,加强生物农药企业创新能力和产业竞争力,提升微生物农药、植物源农药、生物化学农药、转基因生物农药和天敌生物农药开发技术,开展病毒制剂、真菌制剂、蛋白制剂、壳寡糖制剂等新型生物农药的产业化。   在化肥领域,针对传统化肥肥效快、利用率低的现状,利用生物技术可以有效提升化肥产品的使用效果,推进节能减排,实现产业更新升级。采用生物酶活化剂加入磷肥生成生物酶活化磷肥,可以减少土壤对磷的固定和氮的损失,提高磷的利用率和延长肥效,而将金属蛋白酶加入尿素中开发的多肽尿素,也可以有效提高氮肥利用率。   生物原药:   扩大规模问鼎高端   作为生物产业的重点和高端领域的生物原料药产业,我国暴露出产业规模小、自主创新能力弱、成果转化率低的问题。目前生化类原料药主要产品为抗生素、维生素、氨基酸、有机酸类等,很多产品科技含量低、附加值低、能耗高、污染高。特别是在生物技术原料药等高端领域,由于产业研发投入高、成果转化难度大,国内产品还主要以仿制为主。我国生物医药的技术专利明显偏少,上市的专利产品更是少之又少。目前全球生物技术专利中,美、欧、日分别占59%、19%和17%,包括中国在内的发展中国家仅占5%。   我国生物原药行业必须着力发展以现代前沿科技为依托的高新技术产品,转变现有生物原药企业产业生产方式,进一步加强自主创新能力,构建比较完善的产业链,尽快培育有核心竞争力的龙头企业和大批成长性良好的中小企业 形成一批有自主技术的大型生物企业,重点突破以促红细胞生成素、重组人胰岛素和粒细胞集落刺激因子为主要产品的重组白蛋白,以及单克隆抗体和疫苗等生物技术原料药产业。
  • HORIBA前沿用户动态|Nano Lett.:FluoroLog-3光谱仪助力打破纳米酶的pH限制
    在纳米酶出现之前,纳米材料一般被当作一种生物惰性物质,但随着纳米研究的快速发展,科学家们发现一些纳米材料具有模拟生物酶催化活性的能力,这种材料称之为纳米酶。与天然酶或模拟酶相比,纳米酶不仅具备催化功能,它还是一种性能独特的多功能纳米材料,比表面积大且更易化学修饰,具备催化效率高、稳定,能够实现规模化地制备等优点,在医学生物、化工、食品等领域的应用前景非常广泛。然而,如何保证纳米酶在生理pH值下的活性是目前一个技术难点。虽然光敏氧化(不饱和双键与单线态氧直接发生的氧化反应)由于绿色、高效而备受关注,但以单线态氧(1O2)为主要氧化物种的催化体系依然面临相同的问题,主要是因为1O2寿命短(小于4μs),迁移距离受限,导致中性条件下TMB等底物难以被氧化。近期,四川大学吴鹏教授团队和滑铁卢大学刘珏文教授团队合作,发现Mn(II)作为光氧化的催化媒介,可以克服纳米酶的pH限制,为利用纳米酶体系研究生物分子在生理条件下的性质提供新思路。在实验中,研究团队发现Mn(II)可以提高碳点(CDs)纳米酶在中性pH下的光敏氧化作用。该工作以碳点为对象,引入Mn(II)作为氧化中间体以增强其中性pH下的光催化性能。与其它常见金属离子相比,Mn(II)增强C-dots光催化能力具有好的特异性。与其它纳米酶相比,CDs/Mn2+在酸性和中性条件下均可保持很高的活性。该氧化中间体同样适用于中性条件增强氧化其它底物,如ABTS,dopamine和Amplex red等。研究人员利用FluorLog-3荧光光谱仪对单线态氧的近红外磷光发射进行表征后发现:光照时,CDs产生的1O2可被Mn2+有效猝灭,且配体(EDTA)的加入也能够进一步猝灭1O2,同时,Mn2+对CDs荧光的影响并不大。进一步的光谱表征证明:在该过程中,Mn2+被氧化为具有强氧化活性的Mn3+,且配体(EDTA)可长时间稳定Mn3+。Mn3+能够在中性pH下氧化纳米酶的底物TMB,因而成功将碳点纳米酶工作的pH范围拓展至中性。四川大学吴鹏教授团队和滑铁卢大学刘珏文教授团队合作的这项研究,其研究结果表明了:在中性pH条件下能够开发更多的纳米酶,并将之用于生物分析和生物医学应用。文章作者:Zhang, J.Y., Wu, P., Liu, J.W. et al.题目&杂志:Manganese as a Catalytic Mediator for Photo-oxidation and Breakingthe pH Limitation of Nanozymes. Nano Letters, 2019, 19, 3214-3220.DOI:10.1021/acs.nanolett.9b00725HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon 光学光谱技术拥有200年的发展历史。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 合成生物学有望在未来5-10年保持高速增长
    国信证券 (002736 )发布研究报告称,“双碳”背景下合成生物学有望在未来5-10年保持高速增长,看好合成生物学在低成本替代现有材料及制备新材料的潜力,具备技术及成本优势的合成生物学企业竞争优势明显。合成生物学是一门发展迅速的前沿交叉学科,被誉为第三次生物技术革命,其下游应用广泛,需求正在不断扩张。合成生物学是一门融合了生物学、信息学、基因组学、 化学等多学科的交叉学科,在学习自然生命系统的基础上建立出人工生物,并制造出满足人类需求产品。合成生物学通过设计和构建细胞工厂,能够使细胞以淀粉、纤维素、CO2等可再生碳为原料,生产重要的化工产品、天然药物、食品、生物能源等产品,合成生物学相可以实现更高的转化效率、更低的成本,更友好的路线。我国大品种氨基酸产能充沛,小品种氨基酸如丙氨酸、缬氨酸、异亮氨酸、等亟需扩大产能、降低成本,通过合成生物学的手段,可有效降低小品种氨基酸生产成本。丙氨酸在食品、医药日化等领域具有广泛应用,丙氨酸生产的化工流程温度高、压力大、酸碱强,环境污染严重。目前,工业化生产丙氨酸采用发酵法和微生物酶法代替了原有的化学合成法丙氨酸,华恒生物利用合成生物方法改造微生物突破厌氧发酵技术,使丙氨酸的生产成本较酶法降低50% 缬氨酸可以改善母猪生产性能,提高动物免疫力,在饲料行业的需求快速增长,由于缬氨酸的合成途径属于丙氨酸衍生物类型,华恒生物在具备丙氨酸厌氧发酵技术后又突破了低成本缬氨酸生物发酵技术 通过人工合成酶对丙烯酸定向加氨形成了β-丙氨酸,较传统天冬氨酸脱羧法极大的降低了产品成本。全球丙氨酸市场自2016年3.5万吨增长至2019年5万吨,年化复合增长率为13%,预计丙氨酸市场在未来四年内继续保持稳定增长,在2023年将达到8万吨,同比2019年5.1万吨增长57% 近年来全球缬氨酸市场规模保持着迅猛增长态势,全球需求量从2016年的0.73万吨增长到2019年的3.25万吨,年复合增长率高达65%。尼龙66重要上游原材料己二腈等目前国内化率仍在提升中,生物基戊二胺可实现替代法生产,长链尼龙作为具有优异的耐磨性和耐低温性,其重要的上游原材长链二元酸(DC12及DC10)可通过合成生物学实现低成本制备。PA66主要应用领域为工程塑料和工业纤维,在汽车轻量化的趋势下其市场潜力较大,但PA66的上游原材料己二腈生产技术壁垒很高,差能由欧、美、日控制,国内仅能实现小部分生产,且成本高昂。合成生物学可通过利用赖氨酸脱羧的方式生产戊二胺,通过尼龙56对尼龙66实现替代。长链尼龙的重要原料长链双元脂肪酸传统合成方法为化学合成法或由蓖麻油分解制备,凯赛生物通过合成生物学利用简单的烷烃经过发酵即可廉价制备DC12及DC10,在全球市场占据了较高份额。营养素市场空间广阔,合成生物学大有可为。长链不饱和脂肪酸DHA及ARA对婴幼儿记忆力、思维能力及视网膜发育具有重要作用,广泛应用与婴幼儿配方奶粉及保健品,随着人们健康意识的提高,对DHA及ARA的需求不断增加。DHA的主要生产来源为深海鱼类,但随着海洋污染加剧,鱼油DHA存在食品安全风险,且鱼油含有大量EPA,限制了其使用范围,通过生物发酵法生产的DHA有效规避了这些分险,在DHA市场中的市占率不断提高。
  • 生物芯片在食品检测中有望发挥更大作用
    南京大学化学化工学院分析化学学科主任 许丹科   仪器信息网讯 2014年5月8日,第三届中国食品与农产品质量安全检测技术国际论坛暨展览会在北京国际会议中心开幕。南京大学化学化工学院分析化学学科主任许丹科重点介绍了生物芯片在食品安全研究与应用,本文摘录了报告部分内容以飨读者。   据许丹科介绍,相对于传统的光谱、色谱、质谱、电化学等分析方法,生物分析方法的优势是检测周期短,通量高,操作简单,对大型设备依赖低,适合于企业的常规批量化检测、筛查。局限性在于可能存在极少数的假阳性,阳性样本需要做进一步验证,对抗原抗体等测试材料有较高需求。   为了应对传统生物学方法上述挑战,科学家将目光聚焦在生物芯片上。生物芯片将大量生物样品有序的固化于支持物的表面,组成密集二维排列的微型器件,能对生物分子、细胞和组织中的靶分子进行快速并行处理和分析的一种快速检测设备。其最大特征在于:高通量、体积小、集成化、信息多。   在农产品和食品中,生物芯片的&ldquo 主角&rdquo 是基因芯片和蛋白质芯片。基因芯片在食品安全中的食源性致病微生物快速检测、动物疫病病原菌检测、食物过敏原检测、转基因食品检测中承担重要作用。而蛋白质芯片主要应用于兽药残留检测、非法添加剂、生物酶素、食物过敏原检测、致病微生物当中。   芯片有三大类:一种是低密度芯片,适用于有限目标的,比较具体的日常性检测 一种是组学芯片,如基因组学芯片等,它具有高通量的特点,一般来说一个芯片上有上千或上万的靶点 最后是高通量生物芯片,采用类似96孔板的载体,可以实现多个靶标的检测,这种芯片可以实现样品的通量化又可以又有很好的平行性。   许丹科重点介绍了其在南京大学生命分析化学国家重点实验室的可视化生物芯片研究成果。可视化生物芯片作为可以替代ELISA的新技术,采用新的自行合成的纳米显色液,采用免疫竞争法。主要优势在于可以同时检测96个样本。每个样本可以从几个到十几个指标甚至更多。微量化是使得一滴样本就可以满足检测需求,芯片体积小,只需要90秒就可以自动读取,可视化。对于给出的SEM/AOZ/AMOZ/AHD四中检测项目来讲,检测限均小于或等于国标方法可视化生物芯片可以大大降低成本。另外通量更高,适用于企业日常的大量筛查要求。   生物技术与仪器分析结合,作为食品与农产品检测技术的一种趋势,具有良好的应用前景,未来不仅仅是实验室,科研院校,还有望在广大的工业生产领域的检测中崭露头角,成为不可替代的一种技术。
  • 赛默飞宣布合作推进生物制药表征和监测方法
    p style=" text-align: justify text-indent: 2em margin-top: 15px " 4月8日,服务科学的全球领导者赛默飞世尔科技公司和生物药物开发产品的领先供应商Genovis开始开展一项合作研究项目,以开发先进的终端产品。使用液相色谱-质谱(LC-MS)设备,表征和监测新型或复杂生物治疗药物。 br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 将赛默飞世尔科技公司领先的LC-MS技术与Genovis先进的生物酶的样品制备和分析技术结合在一起,以简化生物治疗药物的分析。赛默飞全球客户解决方案中心的专业知识还将帮助Genovis确定最佳的硬件/软件配置,以便在研发阶段对生物治疗药物进行关键质量(CQA)分析。 /p p style=" text-align: justify text-indent: 2em margin-top: 15px " “随着向生物大分子的转变,公司的目标是将更有药效的药物推向市场,但这些药物也更加复杂。”赛默飞世尔科学公司全球营销和战略、药物和生物制药高级主管约翰伦特里说:“通过与Genovis合作,我们计划开发完善的工作流程,为制备和评估复杂的生物治疗药物提供强大和先进的解决方案。” /p p style=" text-align: justify text-indent: 2em margin-top: 15px " “我们很高兴能与赛默飞世尔科技合作,实现更加完善的分析工作流程。”Genovis首席执行官Fredrick Olsson说。 “通过此次合作,我们将与赛默飞世尔欧洲生物制药客户解决方案中心的专家一起开发世界一流仪器的新产品和解决方案,并通过创新满足两家公司对生物制药客户不断增长的需求。” /p p br/ /p
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis
  • 盛奥华SH-812型BOD测定仪在生物医药行业的应用
    生物医药行业应用案例 —SH-812型BOD5测定仪随着我国医药工业的发展,制药污水已逐渐成为重要的污染源之一。生物制药行业污水主要包括抗生素生产污水、合成药物生产污水、中成药生产污水以及各类制剂生产过程的洗涤水和冲洗污水四大类。其污水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放属难处理的工业污水。▍项目背景客户是上海某生物科技公司,主要生产修饰性核苷、核苷酸、亚磷酰胺基因单体、靶向示踪剂和生物酶等各个系列产品,该企业车间生产用水、废水统一排放在排放口按当地环保要求进行各项水质指标的检测,为工艺及时调整、污水排放的处理能力提升和符合达标排放的政策要求提供有力支持。▍应用情况仪器型号:SH-812型BOD5测定仪 SH-100L型智能培养箱测量项目:BOD采购时间:2023年12月▍项目验收2023年12月,盛奥华技术工程师开车抵达客户公司,现场讲解、培训操作了仪器的使用操作和注意事项。客户对仪器的性能、智能化的操作及测量数据准确度很满意,表示12孔位的样品数测量,且能每个培养瓶独立控制,满足了他们日常不同的样品检测频次需求,大大提升了他们的工作效率。▍仪器特点采用7英寸触摸主屏及1.5英寸全彩副屏显示,多屏联动,支持自动息屏和一键唤醒功能;每个培养瓶可随时独立操作、运行、显示结果;内置大容量锂电池,可进行独立充电,也可同时充电工作;采用智能控制系统,连续采集、连续分析、自动记录数据,培养过程无需专人值守,全程自动完成;无汞压差法,实验过程安全可靠,测量结果准确度高;测量结果无需换算,直接显示BOD浓度,自动打印检测结果;量程范围广,内置10条分段量程,用户可自行选择调用;预留自定义参数,可根据需求进行标定;自动生成彩色数据图谱,检测过程更加直观清晰;自动记录测量数据,方便实时查看当前及历史数据;无线数据汇总,可通过大屏查看历史数据、实时图谱;仪器内置APP小程序,可以通过手机实时获取、查看数据;测量周期、延时时间可调节,用户可根据实际情况进行调整;总结BOD测定仪作为水质检测的重要仪器,具有广阔的应用前景和重要性。它可以准确地测量水样中的BOD值,为水质评价、污水处理、水源开发等方面提供科学依据和支持,为水资源管理和环境保护的发展提供技术支持。盛奥华新款SH系列智能BOD测定仪可满足用户的各项检测需求,未来我们也会继续创新研发,不断技术升级,为祖国的青山绿水环保事业贡献一份力量。
  • 中国五大生物产业国际竞争力分析
    我国进入转变发展方式的关键期,生物产业作为我国“十一五”规划确定的战略性高新技术产业,对我国经济结构调整具有重大支撑作用。   2008年国务院审议并原则通过“转基因生物新品种培育科技重大专项” 2009年,农作物生物育种被列入国家战略性新兴产业发展规划 今年中央一号文件明确指出,要在科学评估,依法管理基础上推进转基因新品种产业化。目前,生物技术作为中国重点发展的高技术,已经列入中国《国家中长期科学和技术发展规划纲要》、《国民经济和社会发展第十一个五年规划纲要》。   中国的生物产业经过20多年的发展,已经开始了从跟踪仿制到自主创新的转变,从实验室探索到产业化的转变,从单项技术突破到整体协调发展的转变。   2009年6月2日,国务院办公厅发布的《促进生物产业加快发展的若干政策》中,阐述了现代生物产业发展的重点领域:生物医药领域、生物农业领域、生物能源领域、生物制造领域、生物环保领域。目前这五大生物产业跟国际相比,还存在一定差距。   生物医药:增长居新兴市场之首   从世界生物医药产业看,据IMS Health 药品战略组织报告称,北美、欧洲、日本是世界最大的三个药品市场,但对市场增长的驱动已经减弱。世界一些新兴市场包括中国、印度、巴西等增长正猛,正在以12%~13%的年增长率,成为世界药品市值量的主要来源。   报告还显示,新兴市场对于全球药品市场增长的贡献,在2001年仅为13%,但IMS预测,到2011年将上升至33%,2020年将达到50%,新兴市场的市值也将达到4000亿美元。   在这些新兴市场中,除日本以外的亚太地区药品市场总体增长13.3%,居各区域市场增幅之首,销售额占全球药品市场11%的份额,合计为783亿美元。其中,中国、韩国和印度的增长分别达到25.7%、10.7%和13.0%,可见,中国在新兴市场中占有重要地位。   但是2009年上半年,由于受国际金融危机影响,中国生物医药制造业增幅稍有落后,累计完成工业总产值4766.6亿元,同比增长17.8%。中国生物技术制药单一企业目前最大年销售额不足5000万美元,与美国Amgen公司相比销售额不足其0.4%,可见中国的生物技术制药企业还比较弱小,还要加大发展力度。   生物农业:转基因植物研究与国际同步   中国生物农业的重点领域是生物良种选育,包括农作物和畜禽水产良种,动物疫苗和药物。   据农业部统计,目前中国动物产业产值已超过1.3万亿元,占农业总产值的35%,而发达国家占60%~70%。经过20多年的努力,中国转基因植物研究与国际基本同步,在发展中国家属领先地位。到2009年5月,农业部转基因生物安全办公室共批准转基因生物安全证书987项。   中国登记的生物农药品种达到140种 登记注册的生物农药生产企业大约200多家,已经形成10多个产值超数亿元、粗具规模的一批现代生物农药创新企业。   在生物肥料、疫苗与酶添加剂等方面取得了成效,有些已实现产业化。如高效固氮耐氮工程菌、饲料用植酸酶生产工艺达国际领先水平,饲料用酶制剂年产量约5000吨,生产厂家约40家。畜禽药物、生物兽药、使中国基本控制了高致病性禽流感、口蹄疫等重大疫病发生。   生物能源:起步晚、发展快   生物能源指由生物质转变而成的能源。当今最重要的生物燃料是燃料乙醇和生物柴油。   中国从2002年开始燃料乙醇的试点,目前已经成为继巴西、美国之后的第三大燃料乙醇生产国和消费国。2007年中国燃料乙醇产能达160万吨,目前燃料乙醇的消费量已占汽油消费量的20%左右,黑龙江、吉林、辽宁、河南、安徽五省及湖北、河北、山东、江苏部分地区已基本实现车用乙醇汽油替代普通无铅汽油。2010年中国燃料乙醇产量将达到500万吨/年,乙醇汽油使用率达50%以上。   近年来,中国加快生物柴油的开发力度,2006年-2007年中石油、中粮油、中海油等企业已经完成了生物柴油的中试,开始进行大规模、大生产建设。据统计,2007年底,中国生物柴油行业年产能超过300万吨。现有产能1万吨及以上的生物柴油企业有26家,以每吨柴油7000元计算,产值在3亿元以下的有13家,3亿元~ 10亿元之间有12家,10亿元以上的有一家。2010年中国生物柴油产量将达到200万吨/年。   生物制造:正在形成产业   生物制造业包括采用微生物细胞、生物酶以及基因工程、合成生物学和细胞融合为生物技术制造业。制造的产品主要是大宗化工产品,包括生物能源、生物材料和化学品等。   美国2007年提出“生物质多年项目计划”,目标是达到“10年内减少汽油消费20%”。欧洲开发一系列工艺将生物质原料部分取代传统的石油炼制,生产能源和化学品,实现节能减排、提高石化产品的国际竞争力。目前,一些国家研发出成熟的生物制造技术,如巴西利用丰富的甘蔗糖发酵生产燃料乙醇,每升仅为25美分。   目前,中国生物制造业已经进入工业化阶段,正在形成产业。中国对于生物制造的发展应解决“与人争粮、与地争粮”的问题。开发农业以废弃物为原料发酵生产的燃料酒精、生物材料、大宗化工产品等生物制造产品。同时改造现有生产菌种,减少微生物细胞在生长过程中的二氧化碳排放,提高原料转化为产品的转化率。   生物环保:14000亿的带动   20世纪70年代以来,发达国家就非常重视生物技术在环境领域的应用,国际上许多环境生物技术成果已进入商品化、产业化阶段。   中国环境问题不容乐观,在工业快速发展的同时,也给环境带来了污染公害。环境生物技术作为一种低成本、低能耗、低污染的绿色技术,在世界各国的生态环境保护中得到优先发展和应用。中国“十一五”期间,环保投资达到14000亿元,国家在水环境、固体废弃物、清洁生产等生物环保产品的开发与生产投入了大量的人力和物力,加速了中国生物产业个领域的研发进程。   三步走实现生物技术强国   当前,我国生物产业发展依然面临着严峻挑战。我国要实现生物技术产业的跨越式发展,使中国成为生物技术强国,应分三步走:   第一步为技术积累阶段,力争2010年完成。生物技术研发整体水平处于发展中国家领先地位,论文数量达到世界前六位,专利数量进入世界前六位。生物产业总产值达到8000亿元,其中现代生物产业总产值达到2000亿元。   第二步为产业崛起阶段,力争2015年完成。生物技术研发整体水平处于世界领先地位,论文和专利总数达到世界前3-4位,农业生物产业进入世界前3-4位,医药生物技术产业进入世界前6-8位。   第三步为持续发展阶段,从2020年开始进入持续发展阶段。生物技术研究开发与产业化整体达到世界先进国家水平,成为世界生命科学和生物技术的顶尖人才聚集中心和主要创新中心之一,生物产业总产值达到25000亿元~30000亿元,占当时GDP的7%~8%,成为国民经济的支柱产业之一。
  • 中国科学家获有机化学领域国际重要奖项
    p   有机化学领域最有影响的国际奖项之一、2020年“亚瑟· 科普学者奖”(Arthur C. Cope Scholar Awards)日前揭晓,西湖大学理学院化学讲席教授邓力成为获奖者之一。美国化学会主席Charpentier博士(音译:沙彭蒂耶)给邓力教授发来的贺信中称,邓力在有机小分子催化领域中取得重大突破,即对弱键催化概念的建立和发展所作出的原创性贡献。中国科学院院士、著名有机化学家丁奎岭院士表示:“有机小分子催化自2000年以来取得了突飞猛进的发展,是一个非常值得期待的研究领域,而邓力是这个领域的开拓者和引领者之一。” /p p   西湖大学邓力实验室助理研究员罗济生介绍,催化剂具有大大加快化学反应发生甚至创造全新反应的魔力。它能够帮助我们更快地创造新功能分子,例如抗癌药物,也可以让我们廉价而节能地大规模生产功能分子,降低或消除对环境的污染。传统的化学催化剂是含金属的小分子,依赖于金属形成强健的能力来促使化学反应的发生。而自然界原本就存在一种最强大的催化剂——人类体内的生物酶。它可以促使人体内各种化学反应发生,把食物分解成营养物质,使细胞产生能量等等。并且它只需通过温和的弱键作用,就能“催生”化学反应按照我们生理需要快速而精准地发生。 /p p   邓力团队一直在寻找这样一种自然而高效的催化剂。2000年,他们发现一类不含金属的天然产物金鸡纳碱,经过简单转化后所得的衍生物,可以有效地催化重要的有机化学反应。通向新世界的大门就此被打开。此后,他们模仿生物酶中常见的协同弱键催化模式发展更高效的有机小分子催化剂,成功开发一系列新催化剂及新反应,被世界各国的有机化学家们广泛应用。近年来又研究发明了一系列接近生物酶效率的新型有机分子催化剂。丁奎岭称赞:“邓力模拟生物大分子酶的催化过程,取得了多项原创性学术成果,使化学小分子作为催化剂的效率实现了几个数量级的提升,这是惊人的进步,将该领域的研究水平推到了一个新高度。” /p p   罗济生说,基础科研领域的发展往往会带来“不可想象”的连锁反应。邓力团队的研究成果已成为有机合成化学的新知识,不同领域的开发应用会带来不同效果。比如在医药领域,弱键协同催化可以让制药成本更加低廉 在化工领域,可以大幅度减少环境污染。邓力发明报道的催化剂和化学反应已经被应用于工业界,很多催化剂已经授权给知名试剂和大制药公司使用。 /p p   “亚瑟· 科普学者奖”创立于1986年,每年分三个类别评出10名优秀获奖者,表彰他们在有机化学领域的重要原创性贡献。历届获奖者包括巴里· 夏普莱斯、罗伯特· 格拉布斯等诺贝尔化学奖得主。 /p
  • 上海市2024年度合成生物学领域项目申报指南正式发布
    近日,上海市科学技术委员会发布了2024年度“科技创新行动计划”合成生物学领域项目申报指南,面向“合成生物学先进使能技术”、“合成生物学应用研究”两个专题进行征集,旨在深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心。全文内容如下:关于发布上海市2024年度“科技创新行动计划”合成生物学领域项目申报指南的通知各有关单位:为深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《上海市建设具有全球影响力的科技创新中心“十四五”规划》《上海市加快合成生物创新策源 打造高端生物制造产业集群行动方案(2023-2025年)》,上海市科学技术委员会发布2024年度“科技创新行动计划”合成生物学领域项目申报指南。一、征集范围专题一、合成生物学先进使能技术方向1:新型基因编辑技术开发研究目标:开发具有自主知识产权的新型基因编辑系统不少于2套,编辑效率、脱靶率、保真度和紧凑性等关键指标优于CRISPR-Cas9及其衍生的基因编辑系统,并在至少3种工业底盘菌株中实现应用。研究内容:针对放线菌等工业底盘菌株,运用蛋白质大语言模型等人工智能算法,高通量挖掘特殊生境宏基因组,开发精度高、脱靶低的新型基因编辑系统并开展应用研究。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过2个项目,每项资助额度不超过200万元。方向2:新型酶元件挖掘与多酶催化体系构建研究目标:从头设计不少于3种非天然新型生化反应,开发一批能够高效催化该类反应的新型酶元件并解析反应机制,通过构建多酶催化体系,实现不少于2种医药或材料等功能分子的生物制造。研究内容:通过计算机辅助设计、机器学习、自动化和高通量筛选等手段进行酶的设计与改造,开发新型蛋白支架,设计开发新型非天然生化反应体系并开展多酶级联适配研究,实现高附加值功能分子的生物制造。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过2个项目,每项资助额度不超过200万元。方向3:非细胞生物合成技术开发研究目标:设计并获得不少于10种适用于非细胞蛋白表达体系的功能元件;从头设计和建立不少于3种医药或材料等功能分子的非细胞生物合成体系。研究内容:突破传统生物制造细胞代谢高度网络化、生长耦联依赖等瓶颈,开发适配非细胞合成体系的高活性、高稳定性功能元件,从头设计基因复制-转录-翻译相耦合的非细胞蛋白表达体系并解析分子合成机制,实现医药或材料等功能分子的非细胞生物合成,开展规模化放大生产等应用研究。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过2个项目,每项资助额度不超过200万元。方向4:生物合成过程实时检测技术开发研究目标:建立不少于3种适用于生物合成过程和生物代谢过程的实时检测技术,可单次同时检测反应体系中反应物、代谢物、目标产物等不少于5种物质,最低检测浓度不超过0.01 g/L,单次样品检测时间不超过5分钟。研究内容:开发多维检测技术、新型检测试剂,实现反应物、代谢物、目标产物的实时定性和定量检测;建立稳定同位素示踪等检测方法,开发相关数据分析系统,开展生物合成过程中细胞内外物质含量检测和手性分析,提升生物过程的检测效率和生物酶的筛选效率。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过2个项目,每项资助额度不超过200万元。专题二、合成生物学应用研究方向1:基于多维结构核酸的高密度数据存储研究目标:开发基于多维结构核酸的高密度数据存储技术,建立精准组装技术和三维修饰方案;搭建数据存储基元结构库,核酸编码基元结构不少于60种;研发多维结构核酸的大规模制备方法,单次制备规模不少于1 L;建立研究数据写入技术体系,开展数据存储应用验证,数据存储类型不少于4种,数据存储密度不少于20 Gb/cm2;发展用于核酸长期保存的方法不少于2种。研究内容:结合先进算法设计并合成系列尺寸均一、形貌精确可控的多维结构核酸,并构建核酸多维结构库;通过序列特异性空间寻址,实现功能性分子在框架核酸中的三维精准组装,并研究多维结构核酸的大批量均一制备方法;建立用于局部组装或全局排布的数据写入方法,以及核酸长期保存方法,实现高密度数据存储应用。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。方向2:大环芳香骨架功能分子的生物合成研究目标:构建不少于2种能够合成卟啉或酞菁等具有大环芳香骨架功能分子的微生物底盘,并实现不少于3种功能分子的生物合成,产量不低于20 g/L,产品纯度不低于90%。研究内容:解析卟啉或酞菁等具有大环芳香骨架功能分子的生物合成调控机制,通过挖掘和设计关键合成元件,构建微生物底盘细胞,并优化生物代谢与生物合成途径,实现生物医药领域商品化大环芳香骨架功能分子的高效生物合成并开展中试放大与分离纯化研究。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。方向3:抗感染多肽候选药物的高通量筛选与生物制造研究目标:开发翻译后修饰肽展示技术,挖掘不少于5种可用于多肽翻译后修饰的新型酶元件,建立容量不低于5×1011个翻译后修饰肽的展示库;研发不少于2个抗感染候选药物,并运用合成生物技术高效制备至少1种多肽候选药物,产量不低于0.5 g/L。研究内容:系统挖掘、表征和改造可用于多肽翻译后修饰的新型酶,研究多肽翻译后修饰方法,以及适用于不同翻译后修饰多肽的展示方法,并建立结构多样的活性多肽展示库;通过高通量筛选和活性评价获得抗感染候选药物,解析其抗感染作用机制,并运用合成生物技术实现高效制备。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。申报主体要求:本市企业。方向4:基于烟草等植物底盘的药物制造研究目标:基于烟草等植物底盘,建立不少于3000种标准化功能元件的元件库,设计和构建不少于2种可超量表达医药大分子或小分子的底盘,构建服务于医药产品开发的植物底盘工程化平台。研究内容:面向新药研发需求,开发高效植物遗传转化等技术并开展元件数据库建设,规模化表征适用于烟草等植物底盘的调控元件及线路,设计和构建可满足特定场景需求的植物底盘系统,实现异源蛋白糖基化等复杂修饰和复杂代谢产物时空调控,实现生物大分子或小分子药物的超量合成。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。申报主体要求:本市企业。方向5:病毒载体和疫苗的生物制造研究目标:构建可稳定表达(类)病毒载体、(类)病毒疫苗的细胞株,建立能够在胞内完成遗传物质和蛋白质衣壳自组装并形成完整(类)病毒颗粒的方法,实现(类)病毒载体、疫苗的规模化生产应用,生产效率优于现有的多质粒瞬转系统。研究内容:阐明细胞株中病毒相关异源基因表达与(类)病毒包装的关系与调控机制,设计多信号响应型细胞调控表达系统,操控多种异源基因在细胞内实现时空可控的协同表达,构建稳定表达(类)病毒载体、疫苗的细胞株并开发规模化悬浮生产工艺,解决细胞毒性和包装效率低等问题,实现(类)病毒载体、疫苗的高效生产。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。申报主体要求:本市企业。方向6:生物农药的创制与高效生物制造研究目标:构建能够高效表达生物农药分子的微生物底盘,实现不少于2种生物农药的生物制造并开展中试放大研究,单批规模不低于100 L,产量不低于10 g/L;建立用于生物农药创制的合成生物技术方法,提高生物农药开发效率。研究内容:通过细胞模型优化、代谢途径设计、多尺度建模,融合机器学习等人工智能技术,开展工业菌种的设计和优化,构建合成生物农药分子的高效微生物底盘并实现多种上市生物农药的中试生产;运用合成生物学技术改造修饰现有生物农药分子并完成活性分析,设计候选农药分子的生物合成途径,实现高活性新型生物农药分子的高效创制。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。申报主体要求:本市企业。方向7:生物基材料的高效生物制造研究目标:解析若干生物基单体或聚合物的生物合成机制,构建不少于2种新型菌株;实现不少于2种生物基单体或聚合物的高效生物合成,并完成新型高性能生物材料的制备和加工。研究内容:通过挖掘关键功能元件,建立高通量筛选方法、全细胞催化技术体系以及发酵工艺,完成秸秆、蔗渣等非粮生物基原料高效生物转化,实现高性能生物基塑料、纤维或橡胶等材料的规模化生产。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。申报主体要求:本市企业。方向8:以CO2为原料高效合成生物燃料研究目标:挖掘并解析不少于2种高效固碳新元件,构建能够高效利用CO2的工业菌株,CO2利用率不低于80%;实现不少于2种燃料等高值化学品的中试放大生产,单批规模不低于5000 L,产量不低于10 g/L。研究内容:解析生物固定CO2和碳链增长过程的新途径和新机制,挖掘和设计高效催化固碳和碳链增长的酶元件,开发能够高效转化利用CO2的菌株,完成生物燃料等多碳化学品(三碳及以上)的生物合成,实现生物燃料等高值化学品的规模化生产和示范应用。执行期限:2024年12月1日至2027年11月30日。经费额度:非定额资助,拟支持不超过1个项目,每项资助额度不超过300万元。申报主体要求:本市企业。二、申报要求除满足前述相应条件外,还须遵循以下要求:1.项目申报单位应当是注册在本市的法人或非法人组织,具有组织项目实施的相应能力。2.对于申请人在以往市级财政资金或其他机构(如科技部、国家自然科学基金等)资助项目基础上提出的新项目,应明确阐述二者的异同、继承与发展关系。3.所有申报单位和项目参与人应遵守科研诚信管理要求,项目负责人应承诺所提交材料真实性,申报单位应当对申请人的申请资格负责,并对申请材料的真实性和完整性进行审核,不得提交有涉密内容的项目申请。4.申报项目若提出回避专家申请的,须在提交项目可行性方案的同时,上传由申报单位出具公函提出回避专家名单与理由。5.所有申报单位和项目参与人应遵守科技伦理准则。拟开展的科技活动应进行科技伦理风险评估,涉及科技部《科技伦理审查办法(试行)》(国科发监〔2023〕167号)第二条所列范围科技活动的,应按要求进行科技伦理审查并提供相应的科技伦理审查批准材料。6.所有申报单位和项目参与人应遵守人类遗传资源管理相关法规和病原微生物实验室生物安全管理相关规定。7.已作为项目负责人承担市科委科技计划在研项目2项及以上者,不得作为项目负责人申报。8.项目经费预算编制应当真实、合理,符合市科委科技计划项目经费管理的有关要求。9.每位项目负责人申报项目不超过1项,各研究方向同一单位限报1项。三、申报方式1.项目申报采用网上申报方式,无需送交纸质材料。申请人通过“中国上海”门户网站(http://www.sh.gov.cn)—政务服务—点击“上海市财政科技投入信息管理平台”进入申报页面,或者直接通过域名https://czkj.sheic.org.cn/进入申报页面:【初次填写】使用“一网通办”登录(如尚未注册账号,请先转入“一网通办”注册账号页面完成注册),进入申报指南页面,点击相应的指南专题,进行项目申报;【继续填写】使用“一网通办”登录后,继续该项目的填报。有关操作可参阅在线帮助。2.项目网上填报起始时间为2024年9月26日9:00,截止时间(含申报单位网上审核提交)为2024年10月18日16:30。四、评审方式采用一轮通讯评审方式。五、立项公示上海市科学技术委员会将按规定向社会公示拟立项项目清单,接受公众异议。六、咨询电话服务热线:8008205114(座机)、4008205114(手机) 上海市科学技术委员会2024年9月18日附件:关于发布上海市2024年度“科技创新行动计划”合成生物学领域项目申报指南的通知.pdf
  • 国际首次!我国科学家在实验室实现二氧化碳到淀粉的人工合成
    编者注:如何理解这一突破的意义呢?中新网如此评价:“继上世纪60年代在世界上首次完成人工合成结晶牛胰岛素之后,中国科学家又在人工合成淀粉方面取得重大颠覆性、原创性突破——国际上首次在实验室实现二氧化碳到淀粉的从头合成。”各位网友对此前景展开了脑洞大开的想象:首先,是对农业的影响,人工合成代替自然生产,粮食生产不再受限于土地面积。其次,碳中和问题,困扰全球的全球变暖有望通过这一途径得到解决。最后,宇宙探索,三位宇航员的吃播场面让我们大开眼界,但长期宇宙探索的食物供应仍是待解决的问题,这一突破可以解决二氧化碳充裕地区的食物供应问题,如火星、金星等。近期,中科院天津工业生物技术研究所在淀粉人工合成方面取得重大突破,国际上首次在实验室实现了二氧化碳到淀粉的从头合成。成果于9月24日在国际学术期刊《科学》上发表。淀粉是粮食最主要的成分,也是重要的工业原料。记者了解到,目前,人类使用的淀粉主要由玉米等农作物通过自然光合作用固定二氧化碳生产。由于淀粉合成与积累涉及约60步代谢反应以及复杂的生理调控,理论能量转化效率仅为2%左右。“农作物通过自然光合作用固定二氧化碳生产淀粉需要较长的生产周期和较大种植面积,需要使用大量土地、淡水等资源以及肥料、农药等农业生产资料。如果能设计人工生物系统,不依赖植物从二氧化碳合成淀粉,将是影响世界的重大颠覆性技术。”天津工业生物技术研究所所长马延和告诉记者。科研团队乔婧科研助理、蔡韬副研究员、马延和研究员、朱蕾蕾研究员、孙红兵科研助理(从左至右)在中国科学院天津工业生物技术研究所实验室合影(9月16日摄)。新华社记者 金立旺 摄研究团队采用了一种类似“搭积木”的方式,联合中科院大连化学物理研究所,利用化学催化剂将高浓度二氧化碳在高密度氢能作用下还原成碳一(C1)化合物,然后通过设计构建碳一聚合新酶,依据化学聚糖反应原理将碳一化合物聚合成碳三(C3)化合物,最后通过生物途径优化,将碳三化合物又聚合成碳六(C6)化合物,再进一步合成直链和支链淀粉(Cn化合物)。记者了解到,这一人工途径的淀粉合成速率是自然界中玉米淀粉合成速率的8.5倍。研究所副研究员、论文第一作者蔡韬表示,这一人工途径突破了传统植物低密度光能固碳转化的局限,使高效固定二氧化碳高效合成淀粉成为可能,为创建新功能的生物系统提供了新的科学基础。据蔡韬介绍,在计算设计的人工途径中,获得碳一到碳三化合物直接聚合的生物酶催化剂是成功构建这条途径的核心关键。为此,研究团队从头设计构建了非自然碳碳缩合酶,实现了C1到C3化合物的直接聚合。进一步,研究团队从动物、植物、微生物等31个不同物种来源挖掘合适的生物酶催化剂,构建了一条只有11步主反应的人工合成淀粉途径,实现了从二氧化碳到淀粉的从头合成,将天然淀粉的羧化-还原-重排-聚合的复杂合成过程简化为人工淀粉的还原-聚合的合成过程,显著降低了合成的复杂度。这一设想也成为天津工业生物技术研究所瞄准的前沿方向。2015年,研究所以项目制模式布局二氧化碳到淀粉人工合成的攻关任务。几年时间里,研究团队从头设计了一条只需11步主反应的非自然二氧化碳固定与淀粉合成新途径,在实验室中首次实现了从二氧化碳到淀粉分子的全合成。在中国科学院天津工业生物技术研究所实验室,科研人员展示人工合成淀粉样品(9月16日摄)。新华社记者 金立旺 摄由于缺少自然途径长期的进化过程,研究中面临的另一难题是不同物种的生物酶催化剂难以适配。针对这个问题,研究团队开发了模块组装优化与时空分离反应策略,通过别构调控优化、顺序分步反应创建,解决了人工途径中底物竞争、产物抑制、热/动力学匹配设计等问题,获得淀粉合成速率和效率显著提升的人工途径,实现直链淀粉和支链淀粉的可控合成。“按照目前的技术参数,在能量供给充足的条件下,1立方米大小的生物反应器年产淀粉量相当于5亩土地的玉米淀粉年平均产量,为淀粉生产的车间制造替代农业种植提供了一种可能。如果未来该系统过程的成本能够降低到具有经济可行性,将可能节约90%以上的耕地和淡水资源,避免农药、化肥等对环境的影响。”蔡韬告诉记者。这一成果得到国内外领域专家的高度评价,认为该工作是“典型的0到1的原创性突破”,不仅对未来的农业生产、特别是粮食生产具有重要影响,也对全球生物制造产业的发展具有里程碑式的意义。
  • 跨越式突破 中国首次在实验室实现人工合成淀粉
    粮食不需要土地种植,可以在生产车间中制造出来。如今,这个看似天方夜谭的想象正在成为可能。日前,中国科学院天津工业生物技术研究所(以下简称“天津工业生物所”)在淀粉人工合成方面取得重大突破性进展,在国际上首次在实验室实现了二氧化碳到淀粉的从头合成。该成果于北京时间9月24日在线发表在国际学术期刊《科学》。“这也意味着,我们所需要的淀粉,今后可以将二氧化碳作为原料,通过类似酿造啤酒的过程,在生产车间中制造出来。”天津工业生物所所长马延和说。将二氧化碳还原生成甲醇,再转化为淀粉淀粉是人类粮食的最主要成分,同时也是重要的工业原料。目前淀粉主要由农作物通过光合作用,将太阳光能、二氧化碳和水转化而成。长期以来,科研人员一直在努力改进光合作用这一生命过程,希望提高二氧化碳和光能的利用效率,最终提升淀粉的生产效率。这次,天津工业生物所的科研人员就成功创制了一条利用二氧化碳和电解产生的氢气合成淀粉的人工路线。这条路线涉及11步核心生化反应,淀粉合成速率是玉米淀粉合成速率的8.5倍。从能量角度看,光合作用的本质是将太阳光能转化为淀粉中储存的化学能。因此,将光能高效地转变为化学能并储存下来成为关键。“我们想到了光能—电能—化学能的能量转变方式。”天津工业生物所副所长王钦宏说:“首先,光伏发电将光能转变为电能,通过光伏电水解产生氢气;然后,通过催化剂利用氢气将二氧化碳还原生成甲醇,将电能转化为甲醇中储存的化学能。这个过程的能量转化效率超过10%,远超光合作用的能量利用效率。”自然界中并不存在甲醇合成淀粉的生命过程。王钦宏说:“要想人工实现这个过程,关键是要制造出自然界中原本不存在的酶催化剂。”科研人员挖掘和改造了来自动物、植物、微生物等31个不同物种的62个生物酶催化剂,最终优中选优,使用10个酶逐步将甲醇转化为淀粉。这种路径不仅能合成易消化的支链淀粉,还能合成消化慢、升糖慢的直链淀粉。“也许在不久的将来,不需要种地,也能够满足我们对碳水化合物的需要。”王钦宏说。在人工合成途径构建上实现跨越式突破不依赖植物光合作用、人工合成碳水化合物,一直是世界各国科学家的梦想。此前,华人科学家杨培东曾带领团队利用聚糖反应成功将二氧化碳转化为多种单糖混合物。“但是,他们还尚未实现复杂碳水化合物的人工定向合成。”天津工业生物所副研究员蔡韬说:“也就是说,他们的路线方法合成的是多种简单糖类化合物的混合物,还很难定向到其中的一种。”专家介绍,淀粉高效人工合成的挑战主要来自低密度太阳能到高密度电能和氢能,低浓度二氧化碳到高浓度二氧化碳,以及复杂合成途径到简单合成途径3个方面。此前,在众多科研人员的努力下,前两个问题已基本得到了解决。“这次,我们主要在人工合成途径构建方面实现了跨越式突破。”马延和说。他介绍,一是跨越了人工途径进化的鸿沟。克服了不同来源、不同遗传背景的生物酶之间热力学与动力学不匹配等瓶颈,二氧化碳到淀粉的碳转化速率和效率显著提升;二是跨越了从虚拟到现实的鸿沟。团队用计算机可以设计出很多条合成途径,通过各种模块的组装和适配,最终筛选出了符合条件的路径,实现了人工淀粉合成。“经过分析鉴定,我们合成的淀粉样品无论成分还是理化性质,都和自然生产的淀粉一模一样。”蔡韬说。据科研团队介绍,在充足能量供给的条件下,按照目前的技术参数推算,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩土地玉米种植的平均年产量。马延和说:“这一成果使淀粉生产的传统农业种植模式向工业车间生产模式转变成为可能,并为二氧化碳原料合成复杂分子开辟了新的技术路线。”创新科研组织模式,让不同专长的团队协同攻关专家预计,如果未来该系统过程成本能够降低到可与农业种植相比的经济可行性,将可能会节约90%以上的耕地和淡水资源,避免农药、化肥等对环境的负面影响,提高人类粮食安全水平,促进碳中和的生物经济发展。重大原创性突破的背后,除了科研团队多年的努力和坚持之外,科研组织模式的创新功不可没。天津工业生物所自2015年起,聚焦人工合成淀粉与二氧化碳生物转化利用,开展需求导向的科技攻关,集聚所内外创新资源,加强“学科—任务—平台”整合,实现各方科研力量的有机融合和高效协同。研究所根据项目研究需求进行人才布局,组建了当初平均年龄30周岁的优秀青年科学家团队。传统科研模式一般以课题组为单元进行,优势是能够集中在一个领域方向,但不是所有的研究项目都适合这样的模式。马延和说:“比如,我们这个项目是一个多领域多方向交叉的工作,这就需要将具备不同专长的人和团队组织起来,协同合作才能够完成,传统科研模式显然不太适合。”根据项目特点,研究所创立了新的科研组织模式,即三维管理模式。“三维管理模式,具体来说就是所里统一拨付经费,设立总体研究部、研究组和平台实验室。”蔡韬说:“总体研究部负责项目矩阵管理;研究组是根据领域方向和学科布局设置的特色学科组,实现专业分工;平台实验室则负责为项目提供装备方法支撑。”“在这种新模式下,要实现哪一步目标、需要哪些人来做哪些任务,我们在整个项目层面都会事先进行具体分析。”蔡韬说,“比如,途径设计就是由所里生物设计中心科技组来负责,总体研究部通过任务分解,将相关研究任务定向委托给他们。简单来说,这个模式更容易实现专业的人做专业的事,全预算的方式也能够保证团队一直稳定地做这一件事。”项目实施过程中,也会对承担分任务的科研团队进行严格考核。通不过考核的团队,则由新的团队替换来重新完成任务。“整个项目过程中,共有十多个小团队参与。”蔡韬说,“不同团队聚在一起,为一件事、一个目标、一个任务共同努力,协同攻关,最终实现了原创性重大突破。”
  • 贺建奎:第三代DNA合成仪取得科研突破,已申请专利
    1月31日,贺建奎博士发布:贺建奎实验室“第三代DNA合成仪 (酶促反应法)取得科研突破。核心技术已于上月申请了国家专利。除了建立实验室来研究罕见病的基因治疗以外,贺建奎还在为另一个项目筹资,希望在三年内研发出中国首个“第三代生物酶促反应法DNA合成仪”。通过先前信息,贺建奎表示,他希望研制一款“集成的,易于使用的,桌面式DNA合成仪器”,实现高纯度长片段的DNA合成,将我国的DNA合成技术提升到第三代,达到世界先进水平。在贺建奎看来,如果能成功研制出DNA合成仪,将有助于建立合成生物学的数字存储平台,促进各类信息的长期保存、共享和开发。事实上,2017年,贺建奎就带领瀚海基因团队开发第三代基因测序仪,用于无创产前检测(NIPT)、传染病检测、农业育种等方面。当时媒体也有过密集的曝光。
  • 生物分离纯化:难跑的最后一棒
    科学家利用层析系统开发高效的蛋白分离介质。诺维信供图   注射疫苗出现副作用,使用血液制品感染疾病,热销的生物制品紧急召回……这样的消息接连见诸报端。这在国家生化工程技术研究中心(北京)首席科学家苏志国看来,出现上述问题的背后,可能都是生物分离纯化技术不过关在“捣鬼”。   “生物制药对纯度要求颇高,需要通过生物分离纯化技术将有害物质或杂质去除,但又不能破坏目标产物的活性,其过程十分复杂。”苏志国说,包括生物制药在内的生物技术各相关产业流程,到最后都绕不过分离纯化这一步。   业内人士更是形象地将分离纯化技术,比作为生物技术产业化的“最后一棒”,而跑过的人都知道这一棒的艰难程度。   不可替代的产业角色   根据业内人士的共识,生物技术有所谓的上、下游之分。习惯上,把由生物学家从事的工作,包括分子生物学、生物化学、生物物理学以及遗传、育种、细胞培养、代谢等的研究划分为上游技术,而把生物技术初级制品的进一步分离、纯化、精制,进而制成最终产品的过程统称为下游技术。   因此,生物分离纯化技术常常被称作生物技术的下游工程。   从工业流程上来看,分离纯化技术也是距离终端产品最近的关键一步。   在生物技术科研和生产过程中,存在着大量的蛋白质、多肽和核酸等生物大分子的分析、分离和纯化工作,需要高效快速的分析、分离和制备方法。   而生物分离纯化技术又有别于传统的化学分离方法。全球最大生物酶制剂生产商诺维信中国研发部高级经理吴桂芳向《中国科学报》记者表示:“与化学方法相比,生物分离纯化要保持生物分子的活性,通常需要低温、特定的酸碱度、渗透压等。”   苏志国进一步解释,化学分离法通常利用物质挥发度的不同,比如蒸馏、精馏,通过加热来分离 但对于生物分子,例如蛋白质,通过加热就容易失去活性,所以传统化工方法往往不适用于具有生物活性产物的分离纯化。因此,生物分离纯化技术具有不可替代的产业角色。   据吴桂芳介绍,在生物制品的生产流程中,分离纯化成本一般占总成本的60%以上,主要是因为分离过程中的选择性不高,有效成分损失多。对于一些对终产物纯度要求高的产品,分离步骤越多,产物的最终收率越低。   特别是用于临床的生物医药产品,不仅要达到很高的纯度,而且还要在分离过程中最大限度地保持其生物活性,因为一旦失活,不仅失效,甚至可能产生有毒有害物质。苏志国认为,不合格疫苗等生物制品在人体出现副作用,其背后往往存在生产企业生物分离纯化技术不过关的问题。   令学者又爱又怵   据苏志国观察,很多学生非常愿意学习生物分离纯化技术,甚至从其他专业“投奔”过来。“因为产业需求大,很多企业都需要这方面人才,毕业生好找工作。”   而与此形成鲜明对比的是,国内长期在这一领域从事研究的学者却并不多。   苏志国对《中国科学报》记者说:“有别于大多数基础科学研究,生物分离纯化技术的应用性很强,需要产业实践来检验,很难出理论成果,也不容易在国际一流期刊上发论文。”   该领域的科研人员还需要直面来自企业的压力。花了真金白银的企业不会在乎学者发了多少文章,而是看能不能解决产业化问题。因此,研究者对于从事生物分离纯化技术研究的矛盾心理也就不难理解了。   那么,生物分离纯化技术到底难在哪?   马宁宁来自北京义翘神州生物技术有限公司。该公司以蛋白和抗体生产见长,去年还被世界知名生物技术公司Life Technologies选为战略合作伙伴。身为研发副总经理的他对于生物分离技术之难深有体会。   据他介绍,生物活性物质对外界很敏感,具有天生的不稳定性,对分离条件要求高,从而限制了分离的手段,而同时其分离和纯化又是一个非常复杂的过程。   例如,生物合成的发酵液或反应液是很复杂的多相体系。它含有微生物细胞、细胞碎片、代谢产物、未用完的培养基等,杂质含量较高,而目标产物的浓度却非常低,常常不到百分之一甚至千分之一 有的杂质还具有与产物非常相似的化学结构及理化性能,很难去除 目标产物具有生理活性物质,极不稳定,遇热或遇某些化学试剂极易失活或分解,还容易受到环境微生物的污染,因此常常要求在无菌条件下进行分离纯化。   受制于人的局面必须打破   生物分离纯化的复杂性,直接导致了其工艺流程长、需要的设备多,对原材料要求高等特点。   而在生物分离纯化领域,我国生物产业却面临着受制于国外厂商的尴尬局面。   马宁宁表示,有些设备和原材料看似简单,但对精度和GMP规范符合程度的要求很高,国内还不能生产,只能从国外进口。   “例如色谱柱,国内产品精度和强度能达到生物制药生产要求的很难找到。”他对《中国科学报》记者说,“再比如分离介质,进口产品在国内的售价要比在原产国高出50%~100%。”   苏志国认为,这意味着我国具有战略意义的生物产业,其命脉却掌握在别国手中。“长期以来我国生物分离纯化关键技术、设备和部分原材料依靠国外引进,这是发展阶段所决定的,但我们若想实现生物技术新产品的创制,就必须打破这一局面。”   他建议,应加强生物分离纯化技术的基础研究,“因为基础科学是原动力,而如何在复杂系统中分离生物产品,其中某些科学规律还不清楚”。   而各个被访者均重点阐述的,就是要攻克在设备和原材料方面的难题,其中又以分离介质为甚。   吴桂芳表示,应针对特定的产品开发高选择性的分离纯化介质,从而缩短分离流程,提高产品得率。这需要材料学、化学、生物技术及化学工程的紧密合作,并与终端市场需求、生产企业需求的紧密结合。   据马宁宁观察,分离纯化介质虽然附加值高,但由于用量低,并且技术要求高,对于习惯生产低端大宗工业品的企业不具吸引力,还需依靠有技术优势的中小企业来开发,但这些企业又因规模小不受国家重视。   他认为,国家在选择扶持对象时,应该更多关注专于某个细分领域的小企业,“这样的企业非常重要,没有它们,现代化的生物技术产业链就无法建立,这些小公司不该被忽视”。   记者手记   产业化长跑不能倒在冲刺阶段   科技产品从基础研究到投放市场,会经历漫长的过程。如果把这比作长跑,那生物技术产业化就是马拉松。   这段时间记者接连跑了两家生物技术企业,其负责人无不感慨生物产业的煎熬:多少品种在中试阶段表现良好,结果一放大生产就功亏一篑。   而生物分离纯化正是产业化冲刺阶段的关键技术。   我们常说,不要输在起跑线上。经过近些年的努力,我国在生物技术基础研究上的成果可谓丰硕,已成为在国际顶级期刊上发表论文的常客。   而在距离产业化最近的生物分离纯化阶段,我们同样需要强大的合力共同攻坚。   与大多数基础科学不同,生物分离纯化技术研究的应用性很强,需要产业实践来检验,很难出理论成果,也不容易在国际一流期刊上发论文,不少学者望而却步或者来了又走。   那么,能不能针对这一特点调整科研评价体系,把更多优秀学者吸引过来呢?   生物分离纯化过程复杂,涉及多种设备和原材料,其中有些虽然附加值高,但由于用量低,并且技术要求高,对于习惯生产低端大宗工业品的企业不具吸引力,还需依靠有技术优势的中小企业来开发,但这些企业往往规模小,抗风险能力差,一个订单被国外抢走就可能倒闭。   它们就像机器上的一颗颗螺丝钉,易被忽视但又不可或缺。它们期盼扶持政策的甘霖。国家能否鼓励更多的中小企业专于某一细分领域,给起跑不久的它们推上一把,这样,生物产业的整体才能尽早抵达终点。
  • 上海硅酸盐所提出“纳米催化医学”肿瘤治疗新策略
    p   癌症是少数现代医学仍然无法攻克的疾病之一,癌细胞以其复杂多样的代谢方式和生态微环境给癌症治疗带来极大的困难。在目前癌症的治疗策略中,化疗仍是最常用的手段之一。但常规的癌症化疗,在高毒性的药物作用于全身造成强烈毒副作用的同时,病灶的药效却随之大幅降低。事实上,强毒副作用与低化疗效果成为了癌症病人的主要死亡原因之一。因此,开发无毒、安全和高效的癌症治疗体系尤为重要。 /p p   近日,中国科学院上海硅酸盐研究所研究员施剑林、陈雨带领的科研团队提出了“纳米催化医学”的新型肿瘤治疗策略,利用多元化、高选择性和高特异性的催化反应实现安全、无毒药物在肿瘤区域微环境刺激下原位转化为有毒物质,从而达到选择性杀死肿瘤细胞而不对正常组织产生毒副作用的目的。最新的一项将纳米催化医学策略成功应用于肿瘤治疗的工作发表在《自然-通讯》上。 /p p   在该项工作中,研究团队合成了一种枝状介孔二氧化硅纳米粒子作为药物输运系统载体,依次负载直径2 nm的超小四氧化三铁纳米粒子和葡萄糖氧化酶,构建一种新型的纳米催化剂。该纳米催化剂中的葡萄糖氧化酶是一种高活性有机酶,且四氧化三铁纳米粒子是一种高效、高稳定性的Fenton反应催化剂。该催化剂利用肿瘤细胞内旺盛的葡萄糖原料和微酸性代谢环境,连锁地进行高效的生物酶催化反应和化学Fenton催化反应。在第一步生物酶催化反应中,葡萄糖氧化酶选择性地催化肿瘤内的d-葡萄糖生成过氧化氢与葡萄糖内脂。过氧化氢作为下一步化学Fenton催化反应的反应物,在酸性条件下被四氧化三铁催化生成高毒性的活性氧物种-羟基自由基。高毒性的羟基自由基可以诱导肿瘤细胞的凋亡,在实现杀死肿瘤细胞的同时,不对正常的组织和器官造成损害。体内动物实验结果显示,该纳米催化剂对健康的小鼠在1个月的时间内没有不良影响,表明其具有良好的体内生物安全性。在荷瘤鼠的体内治疗毒性研究中发现,其对于4T1乳腺癌肿瘤和U87脑胶质瘤肿瘤的抑制效率分别达64.67%和57.24%,表明该纳米催化剂具有较好的肿瘤杀伤和抑制能力。 /p p   此外,该团队利用瘤内催化反应策略,开展了不同的无毒副作用肿瘤化疗的系列前沿探索工作。如利用介孔氧化硅纳米颗粒作为载体,将无毒的金属朴啉分子输运至癌症病灶,在常规的超声外场作用下,瘤内催化产生大量单线态氧自由基,安全高效杀灭肿瘤(J. Am. Chem. Soc., 2017, 139, 1275-1284)。该团队还合成得到无毒的非晶铁纳米颗粒,进入肿瘤后,这种纳米颗粒在肿瘤弱酸性环境下释放出二价铁离子,催化肿瘤过表达的过氧化氢,原位产生活性氧组分,同样达到安全高效杀灭肿瘤的目的(Angew. Chem. Int. Ed., 2016, 55, 2101-2106)。这些工作为未来的肿瘤精准治疗提供了全新的路径。 /p p   该研究工作得到了国家重点研发计划“青年科学家”专项(纳米专项)、国家自然科学基金、中国化学会青年人才托举工程以及中科院青年创新促进会等的资助和支持。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/c586eb99-c6e8-41c8-b2e9-73c1aa46ffde.jpg" / /p p style=" text-align: center " strong 基于纳米催化剂的连锁催化反应用于肿瘤治疗的示意图 /strong /p p   论文题目:Tumor-selective catalytic nanomedicine by nanocatalyst delivery /p p    /p p & nbsp /p
  • 德国Brand新品吸头上市啦
    德国Brand公司10月推出了新品吸头,增加了以下优点: 1.增加了容积标识,快速观察移液体积,即时进行校准,减少实验误差 2.特殊选择的PP材质,纯度更高,透明度更好,降低污染,非常适合生物学实验 3.吸头壁更薄,重量减轻25%,退吸头更加方便省力 对于一些灵敏度高的实验,如生物酶测试、PCR、DNA/RNA纯度测试等都对塑料耗材提出更高的质量要求。德国Brand移液器吸头采取特殊选择的PP材料,不含DiHEMDA (di-(2-hydroxyethyl) methyldodecylammonium),特别适合制造吸头。纯度更高,减少溶出物,极大降低了污染。 DiHEMDA是一种聚丙烯塑料材质,在生物测试中对实验容易产生干扰,造成实验误差。 PLASTIBRAND吸头,无论带滤芯还是不带滤芯产品,均是在严格超净环境中制造,符合ISO14644-1 Class 8标准。 如有需求,敬请联系: 北京五洲东方科技发展有限公司- Brand授权代理商 全国总代 010-82388866-328
  • 这些仪器及方法,教你挑选放心酸菜!
    刚刚结束的3.15晚会将“老坛酸菜”推上了风口浪尖,谁曾想,陪伴了一代人的经典口味,最终以如此令人咋舌的姿态出现在大众视野。 据报道,老坛酸菜并非全部在企业标准化腌制池中腌制。记者跟随企业的货车,暗访到了老坛酸菜的真实生产“车间”。露天的农田,一个个铺着塑料薄膜的土坑,腌制好的酸菜就放在土坑里。工人们有的穿着拖鞋,有的光着脚,踩在酸菜上,就连称量酸菜的磅秤也是直接放到酸菜上,一边干活一边抽烟,抽完的烟头甚至直接扔到酸菜上,更别提一次性口罩、手套了… … 这些“土坑酸菜”存在的食品安全问题,远比你想的还危险! 一、 环境导致的微生物污染传统发酵食品,除了乳酸菌之外,还含有酵母、霉菌等多种菌株。在发酵的过程中,如果环境(无氧、洁净)或温度没有控制好,就会造成某种非乳酸菌的微生物类群占据主导地位,从而导致微生物污染。食品中微生物的检测,可以参考如下方案:方案1、食品和物体表面中微生物检测方案使用仪器:微生物自动分析仪(点击进入相应仪器专场)微生物快速检测系统 检测项目:活菌总数、大肠菌群、大肠杆菌、粪大肠菌群、肠杆菌、金黄色葡萄球菌、绿脓杆菌/铜绿假单胞菌、沙门氏菌、李斯特菌、粪肠球菌、酵母菌方案优势:相比于传统的平板计数法,方便、快捷,不需要样品前处理,直接加样,系统自动出报告,无需专业检测人员。二、 腌制蔬菜产生的亚硝酸盐亚硝酸盐是一种致癌物。腌制过程中,蔬菜本身所含的硝酸盐被生物酶还原为亚硝酸盐;如果用变质腐烂的蔬菜腌制,亚硝酸盐含量会更高。同时,菜叶上附着的一些环境细菌也有类似的生物酶,也可以将硝酸盐转化成亚硝酸盐,所以腌菜里不可避免的会有亚硝酸盐。酱腌菜中亚硝酸盐的检测,可参考如下方案:方案2、水果蔬菜中硝酸盐、亚硝酸盐检测方案使用仪器:离子色谱仪(点击进入相应仪器专场)离子色谱仪 样品谱图:方案优势:参照GB 5009.33-2010,采用离子色谱法可准确测定植物产品中的硝酸盐和亚硝酸盐。三、 食品添加剂严重超标为了防止酸菜腐败,同时保持良好的色泽,这些土坑酸菜会添加超过标准2-10倍的防腐剂(亚硫酸钠、二氧化硫、山梨酸、苯甲酸等),以及日落黄、柠檬黄等人工色素。食品中添加剂检测,可参考如下方案:方案3、食品中二氧化硫(亚硫酸盐)检测方案使用仪器:定氮仪(点击进入相应仪器专场)全自动定氮仪 方案优势:采用凯氏定氮仪进行食品中二氧化硫的测定。总的二氧化硫通过酸性气体蒸馏而被释放,经过氧化氢溶液氧化形成硫酸,然后用标准氢氧化钠溶液进行滴定。方案4、食品中山梨酸检测方案使用仪器:液相色谱仪(点击进入相应仪器专场)高效液相色谱仪 样品谱图:方案优势:参照国标的基础上,也行液相条件优化,可同时实现山梨酸、苯甲酸、糖精钠、安赛蜜、脱氢乙酸5种物质同时分析。四、 农药及重金属污染土坑酸菜的原料,未经清洗、检测等预处理,较容易存在农药及重金属(如铅、镉)等超标情况。食品中农药残留量、重金属的检测,可参考如下方案:方案5、蔬菜中农药残留检测方案使用仪器:气相色谱仪(点击进入相应仪器专场)气相色谱仪 样品谱图:方案优势:采用气相色谱电子捕获器检测器检测,对于负电性强的化合物具有极高的灵敏度,可分别测出痕量的六六六、滴滴涕。方案6、米粉和蔬菜中重金属检测方案使用仪器:电感耦合等离子体质谱仪(点击进入相应仪器专场)电感耦合等离子体质谱仪 方案优势:采用微波消解预处理的方式,可同时测定铅砷镉铬汞铜锌锰等多种金属元素。 小编为大家整理了酸菜腌制过程中可能涉及的4个关键风险点,并附上部分参考仪器及检测方案,帮助企业在生产过程中抓好食品安全管理,检测机构顺利开展实验,让大众吃上真正、放心的“老坛酸菜“。 (注:以上仪器及方案仅为小编部分挑选,不构成任何推荐或购买意见,仅参考,谢谢!) 更多相关解决方案,请关注行业应用栏目 ——酱腌菜检测方案专场
  • 贺建奎受邀今年3月在牛津大学演讲
    贺建奎将在英国知名学府做系列演讲“我来北京是为了发展,我将会继续进行科学研究。” 贺建奎在微博上表示。这位前南方科技大学明星学者因基因编辑婴儿事件备受争议,如今他回归社会后,一举一动都令国内外学术界关注。2022年12月,据《南华早报》报道,贺建奎于2023年3月拜访英国,并受邀在牛津大学进行一系列公开演讲,贺建奎届时也将接受公开采访。图源自网页链接邀请贺建奎来英国的学者表示,他们将会在2023年3月进行一系列的公开谈话,讨论贺建奎进行的研究所涉及到的伦理问题。有关基因编辑受精卵英国一直走得很“前卫”。2022年8月,英国《卫报》报道,英国生育监管机构将考虑改革基因编辑和实验室培养卵子的法律。英国《卫报》报道的截图具体来说,英国人类受精和胚胎学管理局(HFEA)计划实施一系列新的生殖治疗方案,他们认为如果人类基因组编辑技术在医学上被证明是足够安全和合理的,那么相关法律的变革,可能会为使用实验室培养的卵子和精子,以及人类基因组编辑铺平道路。不难想象,英国对人类基因组编辑的开放探讨,或许是贺建奎此次受邀在知名学府演讲的主要原因之一。实际上,这也并非是贺建奎的第一次演讲。2022年4月,贺建奎曾应邀在哈佛大学进行了一次线上演讲,主题是关于“基因编辑时代的边界”。贺建奎亦表示,“反响很好,感谢亚利桑那州立大学J. Benjamin Hurlbut的邀请”。贺建奎到哈佛大学进行演讲的邀请函,图源自贺建奎微博数年前,贺建奎因“基因编辑婴儿”事件饱受争议,并接受了严厉的惩罚。2022年4月,贺建奎释放出来,回归社会。准备“东山再起”,还是选择基因治疗领域出来后,贺建奎打算“东山再起”。这一次,他在北京重新建立了“贺建奎实验室”,并表示这个实验室主要从事罕见遗传病的基因治疗科学研究。2022年11月,贺建奎搬进了北京的新办公室,贺建奎实验室正式启动。贺建奎与他在北京的实验室,图源自贺建奎微博贺建奎一直在关注罕见病的基因治疗领域相关的研究,在微博上他与罕见病患儿的亲属互动,他表示,“计划在未来的2-3年内,攻克3-5种罕见病”。建立了实验室后,他主要想要解决的第一种罕见病就是杜氏肌营养不良症(Duchenne muscular dystrophy,DMD)。这是一种致命的肌肉疾病,主要影响十几岁的男孩和年轻男性,其中许多患者会在20岁出头时死亡。图源自Science官网截图2022年12月1日,《科学》杂志也报道了贺建奎最新的动向,新闻中写道“他开设了一个新的实验室,来开发(普通家庭)‘负担得起的’基因疗法”,同时也提到贺建奎的实验室将筹集资金来研究如何对抗DMD这种罕见病。为第三代DNA合成仪项目筹资奔波除了建立实验室来研究罕见病的基因治疗以外,贺建奎还在为另一个项目筹资,希望在三年内研发出中国首个“第三代生物酶促反应法DNA合成仪”。图源自网页链接新闻题图通过相关材料介绍,贺建奎表示,他希望研制一款“集成的,易于使用的,桌面式DNA合成仪器”,实现高纯度长片段的DNA合成,将我国的DNA合成技术提升到第三代,达到世界先进水平。在贺建奎看来,如果能成功研制出DNA合成仪,将有助于建立合成生物学的数字存储平台,促进各类信息的长期保存、共享和开发。事实上,2017年,贺建奎就带领瀚海基因团队开发第三代基因测序仪,用于无创产前检测(NIPT)、传染病检测、农业育种等方面。当时媒体也有过密集的曝光。然而,2018年,在他“制造”出了一对基因编辑双胞胎后,全球震惊,许多科学家谴责他打开了“改造人类胚胎”的潘多拉魔盒,基因编辑技术的使用很可能会失控。围绕人类胚胎的基因编辑伦理的讨论自此就没有停止过,贺建奎的事业遭受重击,第三代测序仪也就不了了之了。如今,他再次拾起“第三代生物酶促反应法DNA合成仪”,可谓是重操旧业。此次,贺建奎受邀到牛津大学围绕基因编辑伦理进行演讲,或许能让我们更好地探讨这一敏感话题。以生殖为目的的生殖细胞能否进行基因编辑、有无必要进行基因编辑,医学伦理如何约束新技术的不当使用,同时也能保证它能为病患谋福祉,或许这些问题短时间内不会有答案。参考资料1.Chinese scientist behind gene-edited babies to speak at Oxford University (msn.com)2.Chinese scientist behind gene-edited babies to speak at Oxford University | South China Morning Post (scmp.com)3.贺建奎Jiankui的微博_微博 (weibo.com)4.Newsat a glance: Antibioticmaking clams, marijuana for research, and China’s ‘Friedmann’ | Science | AAAS5.UK fertility watchdog considers laws for gene editing and lab-grown eggs | Genetics | The Guardian
  • 康宁反应器技术再次亮相印度孟买2014 CPhI
    一年一度的印度原料药展将于12月2-4号在印度孟买拉开序幕。康宁反应器技术将派出强大技术和商务团队参展,欢迎您光临康宁展台P12。康宁反应器技术全球业务总监姜毅博士将在12月2日下午16:00-16:45在会展中心Hall 1 – 1st Floor做题为“创新驱动绿色发展:康宁高通量-微通道反应器技术实现工业化生产”的专题报告。欢迎有兴趣的客户提前和我们预约洽谈,预约电话:张经理 18516085581 展会介绍: 该展自2005年首届举办以来,凭借印度医药市场的蓬勃发展,吸引了来自全世界尤其是中国原料药生产商和贸易商的广泛关注。该展览会净面积约15000平方米,共有来自中国、法国、德国、意大利、英国、美国、日本、新加坡等86个国家和地区的800多家公司参展,其中印度本土的参展公司近350家。展览会期间,到会的参观商达到32000人次,多数是来自印度、巴基斯坦、孟加拉国等南亚地区的生产商和贸易商。 2012年该展览会净面积约15000 平方米,共有来自中国、法国、德国、意大利、英国、美国、日本、新加坡等 86 个国家和地区的 800 多家公司参展,其中印度本土的参展公司近 350 家。展览会期间,到会的参观商达到 32000 人次,多数是来自印度、巴基斯坦、孟加拉国等南亚地区的生产商和贸易商。 展品范围: 医药原料、化工中间体、精细化工产品、活性配料、生物碱、抗生素、生物酶、荷尔蒙及合成品、植物及动物提取物、生物催化剂、磷脂、色素及色散剂、诊断试剂、血清及疫苗等。
  • 转基因技术或成灭蚊利器
    科学家借助转基因技术成功破坏蚊子精子中的X染色体,使蚊子的后代95%都为雄性。    只有母蚊子在吸血的时候传播疟疾。   疟疾仅依靠蚊子传播,尽管捕捉或者喷洒杀虫剂能够减少蚊子数量,但是疟疾每年持续杀死成百上千人,而且大部分都出现在撒哈拉以南非洲地区。借助性别缺陷策略控制蚊虫种群的想法在60多年前就已经被科学家提出,但是这事实上是首次进行验证。   由伦敦帝国理工学院的Andrea Crisanti教授和Nikolai Windbichler博士带领的研究团队,将一种黏菌基因移植到非洲疟蚊身上。这种基因会产生一种名为核酸内切酶的生物酶,当它识别出一种特殊的序列时就会破坏DNA。   研究人员在5个笼子中各准备了50只母蚊子和50只公蚊子,并且引进了150只性别扰乱的雄性新蚊子,四代之内母蚊子的数量就骤然下降。在经历了数代之后,其中4个笼子的蚊子完全灭绝。这是因为在产生精子的过程中X染色体被破坏,留下很少携带X染色体的精子来形成雌性胚胎。   Crisanti称他的团队借助了一种意外的巧合:核酸内切酶的目标序列在蚊子的X染色体中非常丰富。当蚊子或者人类的精子正常产生时,X染色体和Y染色体各占一半。而在新培育的蚊子种群中,攻击X染色体的核酸内切酶在精子形成的过程中被激活。这样就使雄性几乎不形成含X染色体的精子,它们的后代超过95%都是雄性。   重要的是这种变化是可遗传的,因此雄性蚊子会将它传递给大约半数的雄性后代。这就意味着,如果对一个种群施加人为压力,这种特性就能够传播,直到雄性只产生雄性后代,或许会完全根除蚊子种群。   Crisanti教授解释称,这些效果是非常有益的,因为只有母蚊子咬人并传播疟疾。因此母蚊子数量的减少或许会延缓疟疾的传播。尽管还需要几年时间才能进行野外实验,但其它的研究人员称,这项技术标志着我们朝向一种遗传控制策略迈出了重要的一步。
  • 大昌华嘉携美国鲁道夫系列产品亮相中国化学会第四届分子手性学术研讨会
    浙江江大学环境与资源学院和中国化学会有机分析专业委员会于2011年11月10日-13日在浙江大学环境与资源学院主办&ldquo 中国化学会第四届全国分子手性学术研讨会&rdquo 。 会议期间同时召开&ldquo 2011绿色手性论坛&rdquo 。这次研讨会聚焦手性研究的前沿领域以及最新研究成果,为国内外手性研究以及相关领域工作者打造优质的学术交流平台。 会议的议题包括:手性的起源、合成、拆分与表征;手性环境污染物环境行为与生态毒理;手性分子与生物大分子的相互作用;生物酶的立体选择性催化;手性材料及手性分子自组装。 大昌华嘉携美国鲁道夫全系列产品赞助本次研讨会,在会议现场展出了美国鲁道夫公司的旋光仪、折光仪、密度计,为用户提供最全面的药品食品质量控制方案。大昌华嘉架产品专家在现场为到会老师及专家详细讲解了产品特性,受到了广泛的欢迎。 大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉商业(中国)有限公司具有200年历史的瑞士国际贸易公司,作为美国鲁道夫产品在国内的总代理,负责其所有产品、技术的推广销售和服务。 大昌华嘉科学仪器部 咨询电话:4008210778
  • 广西建设非粮生物质酶解国家重点实验室
    经科技部审批,非粮生物质酶解国家重点实验室已列入第二批依托转制院所和企业建设国家重点实验室名单,正式落户广西投入建设。   该重点实验室承建单位是广西明阳生化科技股份有限公司,技术支持单位是广西科学院,其主要任务是围绕国际非粮生物质酶解的前瞻、前沿性技术及国内生物质产业发展的共性、关键技术,开展生物质酶的发展和评估、酶的分子改造、酶的表达和制备等应用基础研究。
  • 立白拟投资5亿元建国际科研中心
    去年年销售额达130亿的立白上周正式披露大研发战略,立白首席发言人许晓东表示,按照最新五年规划,立白2014年销售目标为200亿,大研发战略则是其中最重要组成部分,将投资5亿建立白国际科研中心,计划2014年底建成并投入使用,并从产品价值链开始执行可持续性发展科研项目。   立白首席科学家张利萍向南都记者表示,广州市委书记万庆良作出“12338”决策部署,工信部去年底也发布《工业转型升级投资指南》,其中就包括以天然可再生资源为原料的表面活性剂和洗涤剂等新能源、新材料的应用。在此背景下,立白将2012年定为创新年,目前主业洗涤剂中来源于可再生资源的原料已占70%以上,原料生物降解性超过90%.   记者了解到,2008年全球石油消费量8487 .8万桶/日,即309 .8亿桶/年,世界石油探明储量到2009年为12610亿桶,可开发探明储量40 .7年。然而棕榈油作为未来石油替代品到2009年产量不过4510万吨,仅占所有植物油市场份额34%.目前日化产品中的包材仍有85%以上是石油化工衍生物,且超70%是非生物降解性材料,最后只能通过焚烧处理,C O 2排放大。对此张利萍表示,立白的研究方向是通过生物或种植业技术制成可再生包材,将塑料的自然库存从石油转化为可种植植物。“目前已启动《生物酶制剂代替部分表面活性剂》项目,并已成功应用到去渍霸高浓度全效洗衣粉等产品中,用多种复合酶制剂代替单一蛋白酶,同时利用酶制剂与表面活性剂的协同效应,降低了表面活性剂的用量,高效去污和节水25%以上。基础研发短期并没有绝对成本优势,但长期则必将成为实现200亿目标的最重要保障。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制