当前位置: 仪器信息网 > 行业主题 > >

生物力学

仪器信息网生物力学专题为您整合生物力学相关的最新文章,在生物力学专题,您不仅可以免费浏览生物力学的资讯, 同时您还可以浏览生物力学的相关资料、解决方案,参与社区生物力学话题讨论。

生物力学相关的论坛

  • 【分享】生物力学的发展简史

    生物力学的发展简史生物力学一词虽然在20世纪60年代才出现,但它所涉及的一些内容,却是古老的课题。例如,1582年前后伽利略得出摆长与周期的定量关系,并利用摆来测定人的脉搏率,用与脉搏合拍的摆长来表达脉搏率等。1616年,英国生理学家哈维根据流体力学中的连续性原理,从理论上论证了血液循环的存在;到1661年,马尔皮基在解剖青蛙时,在蛙肺中看到了微循环的存在,证实了哈维的论断;博雷利在《论动物的运动》一书中讨论了鸟飞、鱼游和心脏以及肠的运动;欧拉在1775年写了一篇关于波在动脉中传播的论文;兰姆在1898年预言动脉中存在高频波,现已得到证实;材料力学中著名的扬氏模量就是英国物理学家托马斯扬为建立声带发音的弹性力学理论而提出的。1733年,英国生理学家黑尔斯测量了马的动脉血压,并寻求血压与失血的关系,解释了心脏泵出的间歇流如何转化成血管中的连续流,并他在血液流动中引进了外周阻力概念,并正确指出:产生这种阻力的主要部位在细血管处。其后泊肃叶确立了血液流动过程中压降、流量和阻力的关系;夫兰克解释了心脏的力学问题;斯塔林提出了透过膜的传质定律,并解释了人体中水的平衡问题。克罗格由于在微循环力学方面的贡献获得1920年诺贝尔奖金。希尔因肌肉力学的工作获得1922年诺贝尔奖金。他们的工作为60年代开始的生物力学的系统研究打下基础。到了20世纪60年代,一批工程科学家同生理学家合作,对生物学、生理学和医学的有关问题,用工程的观点和方法,进行了较为深入的研究,使生物力学逐渐成为了一门独立的学科。其中有些课题的研究也逐渐发展成为生物力学的分支学科,如以研究生物材料的力学性能为主要内容的生物流变学等。中国的生物力学研究,有相当一部分与中国传统医学结合,因而在骨骼力学、脉搏波、无损检测、推拿、气功、生物软组织等项目的研究中已形成自己的特色。生物力学的研究内容生物的各个系统,特别是循环系统和呼吸系统的动力学问题,是人们长期研究的对象。循环系统动力学主要研究血液在心脏、动脉、微血管、静脉中流动,以及心脏、心瓣的力学问题。呼吸系统动力学主要研究在呼吸过程中,气道内气体的流动和肺循环中血液的流动,以及气血间气体的交换。所有这些工作,包括生物材料的流变性质和动力学的研究,不仅有助于对人体生理、病理过程的了解,而且还能为人工脏器的设计和制造提供科学依据。生物力学还研究植物体液的输运。环境对生理的影响也是生物力学的一个研究内容。众所周知,氧对生物体的发育有很大影响,在缺氧环境下生物体发育较慢,在富氧环境下发育较快。即使在短期内,环境的影响也是明显的。实验表明:在含10%的氧气、压力为一个大气压的环境中的幼鼠,即使只生活24小时,在直径为15~30微米的肺小动脉壁下,也会出现大量的纤维细胞。若延续4~7天,纤维细胞则会过渡为典型的平滑肌细胞,这无疑会影响肺循环中血液的流动。又如处于高加速度状态中的人,其血液的惯性会有明显的改变,悬垂器官会偏离原位,从而改变体内血液的流动状态。

  • 【分享】生物力学试验机技术指标

    【分享】生物力学试验机技术指标

    生物力学试验机技术指标[~115583~]1.1. 设备名称:25KN生物力学电液伺服疲劳试验机1.2. 数量:1套1.3. 用途:此系统适合各种材料的生物力学性能试验,包括拉伸、压缩、弯曲、扭转、高、低周、蠕变和蠕变疲劳交互作用等。如:接骨板、椎间融合器、膝关节、脊柱固定器、金属涂层、髋关节、髓内钉等的力学鉴定。设备设计、制造应符合ISO国际标准,所有零部件和各种仪表的计量单位必须全部采用国际单位(SI)标准。1.4. 设备的结构应保证有足够的动静态强度、刚度、稳定性和高精度,采用先进技术,保证系统具有良好的动态品质,所选伺服系统执行组件精度高,可靠性好,抗干扰能力强,响应速度快。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624043_1602049_3.jpg[/img]

  • 【转帖】生物力学biomechanics

    生物 力学是应用 力学 原理和方法对生物体中的力学问题定量研究的 生物物理学 分支。其研究范围从生物整体到系统、 器官 (包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、 鞭毛 和纤毛运动到植物体液的输运等。 生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与 生理学 、 医学 有关的力学问题。依研究对象的不同可分为 生物流体力学 、 生物固体力学 和 运动生物力学 等。 在科学的发展过程工, 生物学 和力学相互促进和发展着。 哈维 在1615年根据 流体力学 中的连续性原理,按逻辑推断了 血液循环 的存在,并由马尔皮基于1661年发现蛙肺微血管而得到证实; 材料力学 中著名的扬氏模量是扬为建立声带发音的弹性力学理论而提出的;流体力学中描述直圆管层流运动的泊松定理,其实验基础是狗主动脉血压的测量;黑尔斯测量了马的动脉血压,为寻求血压和失血的关系,在 血液 流动中引进了外周阻力的概念,同时指出该阻力主要来自组织中的微血管;弗兰克提出了心脏的流体力学理论;施塔林提出了物质透过膜的传输定律;克罗格由于对微循环力学的贡献,希尔由于肌肉力学的贡献而先后(1920,1922)获诺贝尔生理学或医学奖。到了20世纪60年代,生物力学成为一门完整、独立的学科。生物固体力学是利用材料力学、弹塑性理论、 断裂力学 的基本理论和方法,研究 生物组织 和器官中与之相关的力学问题。在近似分析中,人与 动物 骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学以及应力套方法和先测弹力法等检测技术都已应用于骨力学研究。骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物,骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高。体现了骨以最少的结构材料来承受最大外力的功能适应性。木材和 昆虫 表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由 多糖 、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。生物流体力学是研究生物 心血管系统 、消化呼吸系统、 泌尿系统 、 内分泌 以及游泳、飞行等与 水动力学 、 空气动力学 、 边界层理论 和流变学有关的力学问题。人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、端流、渗流和两相流等流动型式相近。在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于 微血管 直径与 红细胞 直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显著。

  • 【分享】髋关节假体摩擦磨损试验机-生物力学试验机

    髋关节置换是治疗髋关节疾病的一个有效手段,而假体在人体中的摩擦磨损是造成其失效的一个重要原因.借助人工髋关节模拟试验机,模拟髋关节假体在人体内的实际工况,考察假体材料的强度.摩擦磨损和蠕变等性能,对髋关节假体在临床中的成功应用是非常重要的.总结了髋关节假体摩擦磨损试验方法和髋关节模拟试验机的研究现状,并从试验机的结构模拟、运动模拟和润滑模拟三个方面对试验机进行了分析,探讨了模拟试验机的发展方向.髋关节假体摩擦磨损试验机-生物力学试验机髋关节假体摩擦磨损试验机-生物力学试验机。 聚乙烯用于人工髋、膝等关节置换材料已有40多年的历史,具有低的摩擦因数和磨损率、良好的机械性能及生物相容性.但聚乙烯磨损颗粒引起的局部界面骨溶解,导致假体无菌松动,是造成人工髋关节置换失败的主要原因.为了提高人工髋关节的摩擦性能,新的关节假体组合界面,如金属对金属、陶瓷对陶瓷引起了研究者的关注.金属对金属人工髋关节的线性摩擦率只相当于金属对普通超高分子聚乙烯的百分之一,但金属时金属人工髋关节存在应力遮挡效应,同时期释放的金属离子具有潜在的毒性.陶瓷材料具有良好的生物相容性、摩擦系数低,磨损小,耐磨力强,但陶瓷内衬断裂影响了陶瓷对陶瓷人工髋关节的长期效果.进一步改善材料的功能适应性,探索新的髋关节假体材料表面改性的方法,对人体髋关节生物摩擦行为和润滑机制进行研究是目前研究的主要问题.医学生物材料试验机,医用生物骨科材料试验机, 生物医用神经管材料试验机,骨组织 ... 医用材料试验机,医学生物骨科材料扭转试验机,髋关节模拟多功能测试机。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=187025]306_Bi-axial_DATA_SHEET.pdf[/url]

  • 生物力学试验机技术

    电机技术的优势测试性能值得信赖测试性能值得信赖无摩擦电机设计可确保精确控制,并且电机寿命可超过数十亿次循环ElectroForce 电机由 TA Electroforce 根据 高质量标准设计、开发和制造高保真感应控制低力度控制应用ElectroForce 电机享受 10 年保修清洁的电磁技术节能技术软件技术的优势灵活、易于使用灵活、易于使用测试设置和状态窗口可为用户提供指导可定制的窗口和视图直观、可配置的测试设置多个测试监控源直接控制数据实时控制测试参数安全性和测试历史跟踪[img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309220344391316_2379_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309220344391325_9396_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309220344391863_46_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309220344391325_9396_1602049_3.png[/img]

  • #材料力学期刊#Journal of Theoretical and Applied Mechanics

    #第二轮截稿:2022年2月25日第五届材料强度与应用力学国际会议 (MSAM 2022) 由山东科技大学承办,将于2022年8月19日至22日在山东青岛召开。欢迎您参会分享交流您的最新研究成果。参会形式包含:口头报告、张贴报告、听众。【应用力学类SCI期刊推荐】MSAM2022合作SCI期刊:Journal of Theoretical and Applied Mechanics (IF: 0.927) ISSN:1429-2955.征稿领域:固体力学 流体力学 流体结构相互作用 稳定性和振动系统 机器人和控制系统 材料力学 机器、车辆动力学和飞行结构;智能系统;纳米力学;生物力学;计算力学。【材料力学SCI期刊】合作SCI期刊 Strength of Materials (IF: 0.62) ISSN: 0039-2316征稿领域:材料力学、强度、疲劳、断裂、腐蚀、测试与评估等如果您有相关主题的英文原创文章,欢迎尽早积极投稿至MSAM2022:http://www.msamconf.org/如有问题也可咨询会议秘书:18154309082

  • 【转帖】物理力学

    物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。物理力学的产生物理力学作为力学的一个分支,是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下,促使了物理力学的建立。物理力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。物理力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。物理力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。物理力学注重运算手段,不满足于问题的原则解决,要求作彻底的数值计算。因此,物理力学的研究力求采用高效率的运算方法和现代化的电子运算工具。物理力学注重从微观到宏观。以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而物理力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是物理力学建立的主导思想和根本目的。虽然物理力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。物理力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。物理力学的主要内容物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。

  • 物理学介绍

    物理学 物理学早期称为自然哲学,是自然科学中与自然界的基本规律关系最直接的一门学科。它以研究宇宙间物质各层次的结构、相互作用和运动规律以及它们的实际应用前景为自己的任务。 从17世纪牛顿力学的建立到19世纪电磁学基本理论的奠定,物理学逐步发展成为独立的学科,当时的主要分支有力学、声学、热力学和统计物理学、电磁学和光学等经典物理。本世纪初,相对论和量子论的建立使物理学的面貌焕然一新,促使物理学各个领域向纵深发展,不但经典物理学的各个分支学科在新的基础上深入发展,而且形成了许多新的分支学科,如原子物理、分子物理、核物理、粒子物理、凝聚态物理、等离子体物理等。在近代物理发展的基础上,萌发了许多技术学科,如核能与其它能源技术、半导体电子技术、激光和近代光学技术、光电子技术、材料科学等,从而有力地促进了生产技术的发展和变革。 19世纪以来,人类历史上的四次产业革命和工业革命都是以对物理学某些领域的基本规律认识的突破为前提的。当代,物理学科研究的突破导致技术变革所经历的时间正在缩短,从而在近代物理学与许多高技术学科之间形成一片相互交叠的基础性研究与应用性研究相结合的宽广领域。物理学科与技术学科各自根据自身的特点,从不 同的角度对这一领域的 研究,既促进了物理学的发展和应用,又加速了高技术的开发和提高。 我国的物理学专业,从来就不是纯物理专业,它是包括应用物理和技术物理在内的基础研究和应用研究相结合的专 业。建国以来,我国的许多新技术学科如半导体、核技术、激光、真空技术等的大部分,都是在物理学科中萌芽、形成和发展起来的。基础性工作与应用性工作同时并存、相互结合是我国物理学科的特点. 物理学科是一门基础学科。在物理学基础研究过程中形成和发展起来的基本概念、基本理论、基本实验手段和精密测量方法,已成为其他学科诸如天文学、化学、生物学、地学、医学、农业科学等学科的组成部分,并推动了这些学科的发展。物理学还与其他学科相互渗透,产生了一系列交叉学科,如化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等。这种相互渗透过程一直在进行之中,例如量子计算问题是当前的一个研究热点,有可能对信息科学产生重要的影响。数学对物理学的发展起了重要的促进作用,反过来物理学也促进了数学和其他交叉学科的发展。 物理学也是各种技术学科和工程学科的共同基础,物理量测量的规范化和标准化已成为计量学的一个重要研究内容。依据上述认识,物理学科可包含如下几个分支∶理论物理、粒子物理与原子核物理、原子和分子物理、凝聚态物理、等离子体物理、声学、光学以及无线电物理。

  • 【分享】物理学知识

    物理学物理学是研究自然界的物质结构、物体间的相互作用和物体运动最一般规律的自然科学。物理学研究的范围 —— 物质世界的层次和数量级物理学 (Physics)质子 10-15 m空间尺度:物 质 结 构物质相互作用物质运动规律微观粒子Microscopic介观物质mesoscopic宏观物质macroscopic宇观物质cosmological类星体 10 26 m时间尺度:基本粒子寿命 10-25 s宇宙寿命 1018 s绪 论E-15E-12E-09E-06E-031mE+03E+06E+09E+12E+15E+18E+21E+24E+27最小 的细胞原子原子核基本粒子DNA长度星系团银河系最近恒 星的距离太阳系太阳山哈勃半径超星系团人蛇吞尾图,形象地表示了物质空间尺寸的层次物理现象按空间尺度划分:量子力学经典物理学宇宙物理学按速率大小划分: 相对论物理学非相对论物理学按客体大小划分: 微观系统宏观系统 按运动速度划分: 低速现象高速现象 实验物理理论物理计算物理今日物理学物理学的发展● 牛顿力学 (Mechanics)研究物体机械运动的基本规律及关于时空相对性的规律● 电磁学 (Electromagnetism)研究电磁现象,物质的电磁运动规律及电磁辐射等规律● 热力学 (Thermodynamics)研究物质热运动的统计规律及其宏观表现● 相对论 (Relativity)研究物体的高速运动效应以及相关的动力学规律● 量子力学 (Quantum mechanics)研究微观物质运动现象以及基本运动规律二.物理学的五大基本理论物理学是一门最基本的科学 是最古老,但发展最快的科学 它提供最多,最基本的科学研究手段.物理学是一切自然科学的基础物理学派生出来的分支及交叉学科物理学构成了化学,生物学,材料科学,地球物理学等学科的基础,物理学的基本概念和技术被应用到所有自然科学之中.物理学与数学之间有着深刻的内在联系粒子物理学原子核物理学原子分子物理学固体物理学凝聚态物理学激光物理学等离子体物理学地球物理学生物物理学天体物理学宇宙射线物理学三. 物理学是构成自然科学的理论基础四. 物理学与技术20世纪,物理学被公认为科学技术发展中最重要的带头学科● 热机的发明和使用,提供了第一种模式:● 电气化的进程,提供了第二种模式:核能的利用激光器的产生层析成像技术(CT)超导电子技术技术—— 物理—— 技术物理—— 技术—— 物理粒子散射实验X 射线的发现受激辐射理论低温超导微观理论电子计算机的诞生● 1947年 贝尔实验室的巴丁,布拉顿和肖克来发明了晶体管,标志着信息时代的开始● 1962年 发明了集成电路● 70年代后期 出现了大规模集成电路● 1925 26年 建立了量子力学● 1926年 建立了费米 狄拉克统计● 1927年 建立了布洛赫波的理论● 1928年 索末菲提出能带的猜想● 1929年 派尔斯提出禁带,空穴的概念同年贝特提出了费米面的概念● 1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子晶体晶体管的发明大规模集成电路电子计算机信息技术与工程● 几乎所有的重大新(高)技术领域的创立,事先都在物理学中经过长期的酝酿.● 当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进"没有昨日的基础科学就没有今日的技术革命". —— 李政道量子力学能带理论人工设计材料五. 物理学的方法和科学态度提出命题推测答案理论预言实验验证修改理论现代物理学是一门理论和实验高度结合的精确科学从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来建立模型 用已知原理对现象作定性解释,进行逻辑推理和数学演算新的理论必须提出能够为实验所证伪的预言一切物理理论最终都要以观测或实验事实为准则当一个理论与实验事实不符时,它就面临着被修改或被推翻 六. 怎样学习物理学著名物理学家费曼说:科学是一种方法.它教导人们:一些事物是怎样被了解的,什么事情是已知的,现在了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则 如何思考事物,做出判断,如何区别真伪和表面现象 .著名物理学家爱因斯坦说:发展独立思考和独立判断地一般能力,应当始终放在首位,而不应当把专业知识放在首位.如果一个人掌握了他的学科的基础理论,并且学会了独立思考和工作,他必定会找到自己的道路,而且比起那种主要以获得细节知识为其培训内容的人来,他一定会更好地适应进步和变化 .● 学习的观点:从整体上逻辑地,协调地学习物理学,了解物理学中各个分支之间的相互联系.● 物理学的本质:物理学并不研究自然界现象的机制(或者根本不能研究),我们只能在某些现象中感受某些自然界的规则,并试图以这规则来解释自然界所发生任何的事情。我们有限的智力总试图在理解自然,并试图改变自然,这是我们物理,甚至是所有学科,所共同追求的目标。

  • 谁家可以测原子力显微镜探针力常数

    最近做完一组生物力学数据,因为用了好几根针测的,还有不同牌子的,现在各个数据间要对比,因此需要探针的具体力常数,而不是上面标好的,我用的本原spm5500,这个机器貌似不带这功能,谁家可以测,求帮助

  • 好书推荐,电化学、物理学和生物化学的交叉学科

    《生物传感器》 59RMB,张先恩,化工出版社 生物传感器是一类特殊形式的传感器,由生物分子识别元件与各类物理、化学换能器组成,用于各种生命物质和化学物质的分析和检测。生物传感器融生物学、化学、物理学、信息科学及相关技术于一体,已经发展成为一个十分活跃的研究领域。 本书系统地介绍了生物传感器的基本原理、类型、特点、应用、研究进展和发展前沿,包括生物传感器的生物分子敏感元件基础及其固定化方法,电化学、微热学、半导体、声波、光学、表面等离子体共振等各种原理的生物传感器;同时详述了DNA、蛋白质、生物计算机的生物芯片、丝网印刷、分子印迹、纳米技术等在生物传感器中的应用等。 本书内容丰富,系统性强,反映了生物传感器领域的发展历程、经典成果和最新进展,并融入了作者多年的研究结果和心得。适合于高等学校生命科学与生物技术、分析化学和传感器技术及相关专业的高年级学生、研究生、教师和科研单位相关专业研究人员参考。等兄弟弄到电子版的话,马上就上传![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=20363]目录[/url][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 求助医学文献5篇

    【序号】:1【作者】:HeineyJP Barnett MD Vrabec GA 【题名】:股骨远段内固定:逆行交锁髓内钉、动力髁螺钉与锁定板的生物力学分析【期刊】:《临床骨科杂志》2009年第2期【年、卷、期、起止页码】:【全文链接】:http://www.cqvip.com/QK/98319X/200902/30156940.html【序号】:2【作者】:聂明喜 王建民 孙永健 李保良【题名】:新型防脱出螺钉治疗股骨颈骨折的生物力学特性【期刊】:《当代医学》2012年第9期【年、卷、期、起止页码】:【全文链接】:http://www.cqvip.com/QK/90953A/201209/41317065.html【序号】:3【作者】:葛鹏 申才良 董福龙 章仁杰 宋旆文 王以进【题名】:腰骶部椎间融合支架的改进及力学性能研究【期刊】:《安徽医科大学学报》2013年第8期【年、卷、期、起止页码】:【全文链接】:http://www.cqvip.com/QK/91094X/201308/46539642.html【序号】:4【作者】:[u

  • 精度0.1μm试验机

    精度0.1μm试验机瑞士thelkin生物力学试验机技术[img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309220322361557_1424_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/09/202309220322363505_8268_1602049_3.png[/img]

  • 【资料】什么叫物理力学

    物理力学physical mechanics  从物质的微观结构及其运动规律出发 ,运用近代物理、物理化学和量子化学等学科的成就,通过分析研究和数值计算阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释的力学分支。物理力学的基础是量子力学、统计力学和原子、分子物理学。  物理力学是20世纪 50 年代末出现的 。首先提出这一名称并做了开创性工作的是中国学者钱学森。物理力学产生的背景是:①出现了极端条件下的工程技术问题,所涉及的温度可高达几千至几百万开,压力达几万到几百万大气压(1大气压等于101325帕),应变率达106~108秒-1等 。在上述条件下,介质和材料的性质很难用实验方法直接测定,而需用微观分析的方法来阐明。②出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题。③出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项。④由于对新材料的需求以及大批新型材料的出现,要求寻找一种以微观理论为依据合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。  物理力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已比较清楚,为从微观状态推算出宏观特性提供了基础和可能。  其特点是:①注重机理分析。着重分析问题的机理,并借助建立理论模型来解决具体问题;只在作机理分析的资料不足时,才求助于新的实验。②注重运算手段。不满足于问题的原则解决,要求直接利用物理力学的成果作彻底的数值计算,力求采用高效率的运算方法和现代化的电子运算工具。③注重从微观到宏观。物理力学建立在近代物理和近代化学成就之上,运用这些成就建立起物质宏观性质的微观理论 ,是物理力学建立的主导思想和根本目的。  虽然物理力学引用了近代物理和近代化学的许多结果 ,但它并不完全是统计物理或物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术中提出的各种具体问题。物理力学面临的问题要比基础学科中提出的问题复杂得多,它不能只靠简单的推演方法或只借助于某一学科的成就,而必须尽可能结合实验和运用多学科的成果。  研究内容主要有平衡现象和非平衡现象。平衡现象包括气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡等;解决这类问题主要借助于统计力学方法。非平衡现象包括4个方面:①趋向于平衡态的过程 ,如各种化学反应和驰豫现象(包括能量驰豫和化学驰豫)。②偏离平衡状态较小的稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射输运等。③远离平衡态的问题,如开放系统中遇到的各种能量耗散过程。④平衡和非平衡状态下发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。  物理力学的研究工作 ,目前主要集 中在以下 3 个方面:①高温气体性质:研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的驰豫现象。②稠密流体性质:主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等。③固体材料性质:利用微观理论研究材料的弹性、塑性、强度以及本构关系等。

  • 【分享】中国物理学现状 ——献给世界物理年

    为了纪念伟大的爱因斯坦发表改变世界的五篇论文一百周年,以及他逝世50周年,联合国大会在04年6月份一致通过决议把2005年定为“世界物理年”。   谈到物理学,首先要对物理学下一个定义。物理者,万物之理也。在英文中PHYSICS一词与PHYLOSOPHY(哲学)很相近,物理学最早被称为自然哲学,是哲学专门研究自然界的分支。这个概念最早可追溯到亚里士多德《物理学》一书,后来在牛顿的巨著《自然哲学的数学原理》给了物理学的诞生时一个比较准确的定义:用数学工具解决自然哲学问题,即用数学了解整个自然界的运动规律。中国古代采用“格物至知”一词来定义这门学科,即采用分析的方法研究物质获得知识,与中国古代哲学重视整体统一性而严重忽略事物细节和内部规律的做法大相径庭。   从诞生的那一天起,物理学就通过对自然界五花八门千变万化的各种现象内在本质的探索来帮助人类认识这个世界,从而能改造这个世界。既然物理学追求的是物质世界的一切运动规律,那么从广义上讲,一切自然科学都是物理学。这中说法毫不过分,自然科学本身就是人类为了认识这个世界而发展起来的方法和知识体系,自然科学的其他分支诸如化学,生命科学,宇宙学(天文),地球科学(地理)等等研究领域都是自然界的一部分或是一个知识层面,只有物理学研究的是整个自然界,大到浩瀚宇宙小到基本粒子。相比于其他学科定性概念居多研究深度有限而言,物理学深入探索整个自然界一切现象的本质规律,并尽可能地使其数学定量化,其他自然科学学科领域最基础最本质的运动规律和产生现象的原因都要靠物理学来回答,因此从广义上讲一切自然科学都是广义上的物理学。  然而这并不意味着其他自然科学学科可以简单地并入物理学成为他的一个分支,系统科学的出现表明,很多宏观概念还原到微观本质上的物理学规律以后是不能准确地反映这个概念的,因为在微观还原过程中层层近似并且忽略了在微观情况下可以忽略而组成宏观系统后影响较大不能忽略的那部分因素,因此还原论只是寻找本质,而本质并不代表一切。在化学和生物学等学科中很多概念都是复杂系统特有而对单个粒子意义不大的性质,诸如PH值、反应速率、生态系统等等。物理学本身也有很多这样的概念,例如温度本质上虽然是分子平均动能的体现,但在实际研究中后者显然不能替代前者。   于是我们通常所说的物理学便是狭义上的物理学。探讨中国物理学的现状,首先要知道世界物理学的现状,因为中国物理学一直落后于西方,它的现状和发展很基本上是由世界物理学现状及发展所决定的。国内将物理学列为一级学科,其下有理论物理,粒子物理及原子核物理,原子分子物理,凝聚态物理,光学,声学,等离子体物理,无线电物理八个二级学科。从研究目的和方法上可以把物理学分为理论物理,实验物理和应用物理三个领域。其中粒子物理和原子核物理以及原子分子物理两个二级学科主要属于实验物理方面,而后五个二级学科大多研究方向以应用为主,可划归到应用物理领域。   理论物理本身可分为基础理论研究和应用理论研究两大部分,公众往往把这个小小的基础理论研究部分误认为是物理学本身了,这是因为从古到今成就物理学界耳熟能详的大师级人物基本都来自这个领域。基础理论研究就是一步一步深入探索寻找自然界最深层次的统一规律,它是整个物理学最前沿的最神秘也是最挑战人类智力的部分,其成果也是物理学最核心最辉煌的,这些成果包括历史上的牛顿力学,麦克斯韦电磁理论,到二十世纪初的相对论和量子力学以及目前的量子场论和超弦,现在研究基础理论的学者们都是在做量子场论(既结合了相对论之后更深入的量子理论)及在场论基础上发展起来的超弦假说。   大三时教我热统的老师曾说搞基础理论研究一般只有两个结果:一是是零,即成为后人成功的铺路石而终生默默无闻;另一个是无穷大,既成为诸如爱因斯坦、狄拉克、费曼、温博格或威藤等等那样的大师级人物。而能成为后者的毕竟是少数幸运天才,因此不但研究理论物理的人是所有研究物理的人中很少的一部分(小于 5%,在中国应该更少),搞基础理论的人在研究理论物理的人中也只是少部分,剩下的一大半做的是应用理论研究,这其中包括凝聚态理论,量子光学,原子分子理论等等,它们大多采用现成的量子理论来解释各自领域的内在物理机制,与基础理论研究最大的区别是它们停留在原子(确切地说是核外电子)的层面上采用现有的量子理论解决问题,而对更深入的粒子本质不做探讨。由于应用理论研究很大程度上是对现有基础理论的复杂应用,于是它的研究方式不可避免地引入大量计算,甚至有人将计算物理看做物理学的又一分支。   谈完理论物理,下面说一说实验物理和应用物理。其实这两个领域并没有明显的界限,区别只是实验出的结果应用程度大小的问题。本文所说的实验物理主要是指高能物理(即粒子物理),他的实验目的不是以应用而是以验证基础理论是否正确为主,并希望通过高能实验的某些新现象来促进基础理论的发展,这个领域最重要也是最独特实验仪器便是“加速器”。建造加速器需要国家政府投入大量的财力物力而且在经济上很难得到回报,因此世界上除几个大国外其他国家都对它望而却步。由于加速器更新改进的财政困难使得国际粒子物理学研究陷入一个瓶颈,中国自然也不例外。这样客观上导致了中国研究高能物理的人与研究理论物理的人一道成为物理学界为数很少的小团体。

  • 求助中文文献一篇

    【序号】:1【作者】:祖丹 海涌 鲁世保 杨晋才 刘玉增 刘铁 孟祥龙 周立金 逄川【题名】:腰椎棘突间动态稳定装置Coflex最佳置入位置的生物力学研究【期刊】:中华外科杂志 (Chinese Journal of Surgery)【年、卷、期、起止页码】:2014, 52(3)【全文链接】:http://d.wanfangdata.com.cn/Periodical_zhwk201403006.aspx

  • 培训讲座直播--又一个物理学家抢生物狗饭碗的故事,生物型扫描探针显微技术

    [color=#ffffff][b]1[/b][/color]在线培训讲座推荐 :力与光的舞蹈——与先进光学深入结合的生物型扫描探针显微技术2017年11月29[b]详情 ↓[/b][align=center][color=inherit]报告人:[/color]叶鸣博士[/align][align=center]2010年毕业于中国科学院上海应用物理研究所,获得理学博士学位。[/align][align=center]博士期间主要从事基于原子力显微镜(AFM)的生物分子自组装研究。[/align][align=center]毕业后加入德国马克斯普朗克聚合物研究所[/align][align=center]主要从事功能表面及界面物理方向的博士后研究[/align][align=center]具有超过13年的生物学AFM应用经验[/align][align=center]现任Bruker纳米表面仪器部应用科学家[/align][align=center][color=inherit]不管他6不6,反正我觉得他6[/color][/align][align=center][color=inherit]他的报告我是搬好小板凳占好位置了[/color][/align][color=inherit]报告内容:[/color] 随着扫描探针技术(SPM)的发展,在生物学领域获得了越来越多的深入应用。一个主要的发展趋势是将扫描探针技术结合于各种先进的光学方法,综合扫描探针的力学测量与丰富的光学信息于一体。这样的结合为今天的生物学研究打开了一扇特别的窗口,为科学家深入理解生物学过程提供了新颖独特的有力工具。本次的webinar将集中于Bruker Bioscope Resolve一系列的先进力学测量功能与先进光学整合的实际应用。为大家带来这一领域最先进前沿的研究概览与展望。[color=inherit][/color]别害羞,免费哒。报名链接:[url]http://www.instrument.com.cn/webinar/meeting_3162.html[/url][color=#ffffff][b]1[/b][/color]

  • 【讲座推荐】培训讲座直播--又一个物理学家抢生物狗饭碗的故事,生物型扫描探针显微技术

    在线培训讲座推荐 :力与光的舞蹈——与先进光学深入结合的生物型扫描探针显微技术2017年11月29[b]详情 ↓[/b][align=center][color=inherit]报告人:[/color]叶鸣博士[/align][align=center]2010年毕业于中国科学院上海应用物理研究所,获得理学博士学位。[/align][align=center]博士期间主要从事基于原子力显微镜(AFM)的生物分子自组装研究。[/align][align=center]毕业后加入德国马克斯普朗克聚合物研究所[/align][align=center]主要从事功能表面及界面物理方向的博士后研究[/align][align=center]具有超过13年的生物学AFM应用经验[/align][align=center]现任Bruker纳米表面仪器部应用科学家[/align][align=center][color=inherit]不管他6不6,反正我觉得他6[/color][/align][align=center][color=inherit]他的报告我是搬好小板凳占好位置了[/color][/align][color=inherit]报告内容:[/color]随着扫描探针技术(SPM)的发展,在生物学领域获得了越来越多的深入应用。一个主要的发展趋势是将扫描探针技术结合于各种先进的光学方法,综合扫描探针的力学测量与丰富的光学信息于一体。这样的结合为今天的生物学研究打开了一扇特别的窗口,为科学家深入理解生物学过程提供了新颖独特的有力工具。本次的webinar将集中于Bruker Bioscope Resolve一系列的先进力学测量功能与先进光学整合的实际应用。为大家带来这一领域最先进前沿的研究概览与展望。[color=inherit][/color]别害羞,免费哒。报名链接:[url]http://www.instrument.com.cn/webinar/meeting_3162.html[/url]

  • 求助医学文献5篇

    【序号】:1【作者】:秦岭; 梁国穗;【题名】:骨生物力学的基础与检测方法【期刊】:第四届国际骨质疏松研讨会暨第二届国际骨矿研究会议会议文集【年、卷、期、起止页码】:【全文链接】:http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=36&CurRec=35&recid=&filename=LNGZ200403001032&dbname=IPFDLAST2013&dbcode=IPFD&pr=&urlid=&yx=&v=MDY0NzdJOUZaZXNNRGhOS3VoZGhuajk4VG5qcXF4ZEVlTU9VS3JpZlp1VnZIeWpuVTd2Tkkxc2RLU1BNZExHNEh0WE1y【序号】:2【作者】:石瑾; 王兴海; 欧阳钧; 原林; 刘畅; 傅群武;【题名】:不同直径人皮质骨拉力螺钉的生物力学性能研究【期刊】:医用生物力学 1999年02期【年、卷、期、起止页码】:【全文链接】:http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=24&CurRec=3&recid=&filename=YISX199902002&dbname=C

  • 生物物理化学专业词汇

    生物物理学 biophysics分子生物物理学 molecular biophysics生物物理化学 biophysical chemistry分子动力学 molecular dynamics柔性 flexibility   指生物大分子,如蛋白多肽链和磷脂脂肪酸链活动程度的大小。如需转载,请注明来自:FanE『翻译中国』http //www.FanE.cn序参数 order parameter一级结构 primary structure二级结构 secondary structure三级结构 tertiary structure四级结构 quaternary structure螺旋结构 helical structureα螺旋 α-helixβ折叠 β-pleated sheet   蛋白质二级结构中的一种构象,其多肽链在空间的走向发生180°的转变。链间氢键 interchain hydrogen bond链内氢键 intrachain hydrogen bondβ转角 β-bend, β-turn蛋白质折叠 protein folding解折叠 unfolding解旋 unwinding内旋转 internal rotation三股螺旋 triple helix, triplex螺旋度 helicity分子肺 molecular lung   血红蛋白随氧的得失,其四级结构和亚基间距离发生显著变化,这种一张 一合的情况与肺的呼吸类似,可理解为分子肺。双螺旋 duplex, double helix碱基堆积 base stacking扭结 kink水结构 water structure结合水 bound water生物能学 bioenergetics[离子]近层水 primary water   离子与水作用,使分子沿着离子造成的电场排列,在离子周围形成结合较紧密、有序性较高的水层。全反构型 all transconfiguration

  • 西安交通大学XTDIC 三维数字散斑动态变形测量分析系统

    XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的动态测量。其主要应用有:[b]材料力学性能测量:[/b]DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。[b]细观力学测量:[/b]借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。[b]损伤与破坏检测:[/b]DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。[b]生物力学测量:[/b]DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。[b]大中专院校的研究教学:[/b]本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。

  • 【资料】原子物理学发展史

    原子物理学 atomic physics 研究原子的结构、运动规律及相互作用的物理学分支学科。主要研究:①原子的电子结构。②原子的能级结构和光谱规律。③原子之间或原子与其他物质的碰撞和相互作用。 原子结构模型的建立 1897年J.J.汤姆孙发现电子,论证电子普遍存在,并确认它是各种原子的共同组成部分之后,对于在中性的原子内,正电荷和电子质量以及电子是如何分布的,成为摆在物理学家面前的首要问题。1904年汤姆孙提出原子的正电荷和质量均匀分布于原子体内、电子镶嵌在体内的“葡萄干圆面包模型”。1911年E.卢瑟福分析α粒子散射实验与汤姆孙原子模型的明显歧离,提出原子的有核模型,原子的正电荷和质量分布在中心很小的核内。原子的有核模型 得到 a 粒子 散 射更为深入的实验研究支持而被 普遍接受。但是在原子的有核模型中,电子绕核运动有加速度,根据经典电动力学,将不断向外辐射能量,电子将最终塌缩于原子核,因而原子是不稳定的;而且电子绕核运动发出连续谱也与实际上原子的线状光谱不符。这些事实表明,研究宏观现象确立的经典电动力学不适用于原子中的微观过程,因此需要进一步探索原子内部运动规律,建立适合于微观过程的原子理论。 原子物理学和量子力学 1913年N.玻尔在卢瑟福的原子有核模型基础上,结合原子光谱的经验规律,应用M.普朗克、A.爱因斯坦的量子概念,提出原子结构的新假设,建立玻尔氢原子理论,成功地解决了原子的稳定性问题,并说明了原子光 谱的规律性 。玻尔理 论是原子理论发展的重要里程碑。1924年 L. V.德布罗意提出微观粒子具有波粒二象性 ,不久被实验证实,1926年E.薛定谔、W.K.海森伯、M.玻恩、P.A.M.狄拉克等人建立微观粒子运动规律的量子力学。量子力学的建立为解决原子问题提供了锐利的武器,量子力学在阐明原子现象的种种问题中也逐步发展和完善,从而开创了近代物理的新时代。20世纪30年代可称为原子物理的时代。原子物理学取得丰硕的成果,原子能级的结构和能级的精细结构、原子在外场中的能级结构、原子光谱规律、原子的电子壳层结构以及原子的深 层能 级结构和X射线标识谱等问题相继圆满解决,所获得的关于原子结构的种种知识成为了解分子的结构,固体的性质,以及说明许多宏观现象和规律的基础。 原子物理学的新阶段 20世纪50年代末期,由于空间技术、空间物理和核试验的发展,不仅要求精确测定原子光谱的波长 、研究原子的能级 , 而且对于谱线强度 、跃迁几率、碰撞截面等也要求提供准确的数据,因此要求对原子物理进行新的实验和理论探索。原子物理学的发展曾对激光的产生和激光技术的发展作出重大贡献。激光问世之后,应用激光技术研究原子物理学问题,实验精度有了很大提高,从而发现很多新现象和新问题。微波波谱学新的实验方法也成为研究原子能级结构的有力工具。因此原子物理学的研究又重新成为很活跃的领域。原子碰撞研究已成为原子物理学的一个主要发展方向,研究课题非常广泛,涉及光子、电子、离子、中性原子等与原子和分子碰撞的物理过程,应用和发展了电子束、离子束、粒子加速器、同步辐射加速器、激光光源和各种能谱仪等测谱设备,以及电子、离子探测器、光电探测器和微弱信号检测方法,电子计算机的应用,加速了理论计算和实验数据的处理。原子光谱与激光技术的结合,达到了前所未有的高分辨率,利用激光高功率密度发展了非线性光学,饱和吸收、双光子吸收和多光子吸收等成为原子物理学中另一个十分活跃的研究方向 。极端物理条件( 高温、低温、高压、强场)下和特殊条件( 高激发态、高离化态 )下原子的结构和物性的研究也已成为原子物理研究中的重要课题。60年代开始发展起来的将低能离子长时间约束在一个很小的空间范围内运动的离子存储技术,使人们可以从实验上近似得到孤立的、静止不动的单个带电粒子。近年来利用激光技术将中性原子降温减速并约束于空间很小范围内的原子囚禁技术取得重要的成果。这种存储技术正被应用于多种原子物理测量工作,测量精度更进一步提高,已成为量子电动力学理论最精确的检验手段之一,并可望建立新的精度更高的光频标准。 原子物理学是其他基础科学和技术科学如化学、生物学、空间物理、天体物理、物理力学等的基础,激光技术、核技术和空间技术的研究也都要求原子物理学提供重要数据,因此研究和发展原子物理学至今仍有十分重要的理论和实际意义。 取自"维客网"

  • 长春应化所等从物理学角度提出新的普适进化理论

    美国物理学联合会(American Institute of Physics)近日报道了由中国科学院长春应用化学研究所、吉林大学和美国纽约州立大学石溪分校汪劲教授领导的研究组,从物理学角度系统阐释了生物进化中由来已久的难题,其中包括著名的“红皇后假说”。相关研究成果发表在《化学物理杂志》(J. Chem. Phys., 137, 065102)上。 虽然关于进化的定性描述以及观测到的相关现象和性质已经建立起来,但是完整的量化普适进化动力学理论并不存在。汪劲教授领导的研究小组提出了一个新的普适进化理论。这个理论包括两个基本要素:进化过程产生的适应度势景观和环流进化驱动力。进化可以看作在适应度势形成的“山峰”和“山谷”景观中穿越的旅行路线;环流使得生物种群的进化沿着适应度势景观以螺旋方式前进。 进化论可以解释生物系统为何和如何随时间改变,但是关于生命的故事中仍有许多未解之谜,比如生物界为什么普遍采用有性繁殖来繁衍后代。传统的进化论强调生物系统适应物理环境的过程。而真实的生物进化,是由物理环境和生物环境共同决定。但是,如何考虑复杂的生物环境的影响,一直是传统进化论中没有解决的难题。 该研究的关键性突破是,通过引入“流”的概念,揭示和量化了生物相互作用所导致的进化驱动力。汪劲教授解释说,在新理论中,进化过程中形成的“势”(物理环境)与“流”(生物环境)景观好比是进化驱动力的“阴阳”两面,类似于量子世界中的波粒二象性,或者是决定电子运动的电场与磁场。该研究发现,同种群或种群间生物个体的相互作用会导致“流”的产生,即使物理环境保持不变,在“流”的驱动下进化可以永无止境。 这一发现为解释“红皇后假说”提供了理论依据。该假说指出,生物体需要不断进化以适应协同进化的生物环境,即,协同进化也可以导致无止境的选择压。在英国作家路易斯·卡洛尔的《爱丽丝镜中奇缘》中,红皇后对爱丽丝答到:“在这个国度中,必须不停地奔跑,才能使你保持在原地。”进化生物学家利•范•瓦伦于1973年借用红皇后颇有禅意的回答提出红皇后假说,恰如其分地描绘了自然界中激烈的生存竞争法则:不进即是倒退,停滞等于灭亡。自然界中,物种之间形成非常复杂的相互作用、相互依存的协同进化关系,由此导致的诸多现象,可通过红皇后假说得到解释,包括有性繁殖的起源问题。有性繁殖是生物体抵御寄生物入侵的有效策略。与寄生物之间的协同进化可以为生物体维持遗传变异,通过有性繁殖过程中的基因重组,生物体能够获得更多的多样性特征。在与寄生物之间的生存竞争中,某些先前不必要的特征可能会突然变成决定生死的关键,进而使生物体通过有性繁殖获得生存优势。 在共生的世界里,没有对“最适者生存”的保证,为了生存必须不停地“奔跑”。http://www.cas.cn/ky/kyjz/201208/W020120823498395517656.jpg 势与流推动着进化。图中曲面表示隐藏在进化背后的势函数,其梯度(黑色箭头)是主要来自于物理环境的进化驱动力,紫色箭头描述另一种重要的进化驱动力——流,产生于生物环境。进化沿着势函数减少的方向进行。图中蓝色“峡谷”区域对应着进化的一种最佳状态,但是在“峡谷”中进化不会停止,峡谷中的“水流”推动着永无止境的进化。这就是著名的红皇后假说中指出的:产生于生物间相互作用的“流”推动着永无止境的进化过程。物种的进化速度必须得赶上“峡谷”中“水流”的速度,否者会在生存竞争中被淘汰掉。 相关链接: 《化学物理杂志》论文链接 美国物理学联合会相关报道

  • 高校科研院所招聘联盟诚聘华中科大航空航天学院-崔新光副教授课题组研究助理,坐标武汉市,你准备好了吗?

    [b]职位名称:[/b]华中科大航空航天学院-崔新光副教授课题组研究助理[b]职位描述/要求:[/b]崔新光(http://ae.hust.edu.cn/info/1110/1625.htm),华中科技大学航空航天学院副教授。课题组将主要开展以呼吸力学为核心,生物力学和环境力学为两翼,并与生物医学工程、大气环境以及飞行器内空气环境相交叉结合的三个研究方向的研究工作。需要科研助理一名,协助科研以及课题组管理工作。联系方式:崔新光:Xinguang_cui@hust.edu.cn,邮件请注明“科研助理+学校+姓名”[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/63791]查看全部[/url]

  • 【转帖】物理学之美

    物理学之美 (谨以此文献给2005世界物理年,高岩)   物理学(physics)一词起源于古希腊,拉丁文原意是“自然”。自公元前七世纪,物理学就以自然哲学的形式从人类的生产劳动中萌芽出来,先后经历了古代物理学、经典物理学、近代物理学和现代物理学四个阶段。然而物理学在这近三千年的发展历程中却存在着一些起过作用的、科学之外的,并且在一定程度上为非理性的、有价值的动力因素,它们与美学有关。   美学是一门既古老又年轻的科学。从古代到现代,随着人类思维能力的发展和审美领域的扩大,人们开始对审美经验进行思考;于是美学思想便逐步形成。西方美学思想亦发源于古希腊;其早期的美学思想大都依附于自然科学,往往是在探究宇宙本原时涉及美的问题。其代表人物就是柏拉图和亚里士多德。亚里士多德关于美的理论是建立在对柏拉图唯心主义理式论的批判基础上的,他认为美不存在于超感性的理式世界;美只存在于具体的美的事物中。   美学观念在自然科学的发展中起的作用是不可替代的。早在我国春秋时期,庄子则有“原天地之美,而达万物之理”的言句。而在古代西方,毕达哥拉斯学派则把对自然奥秘的探索与对自然美的追求统一起来;把数的和谐性作为科学解释的最高原则。自那时以来,寻求自然界的美成为了推动自然科学发展的动力。

  • 求助中文文献5篇,感谢

    序号:1文章题目:老龄去势骨质疏松动物模型生物力学—生物化学—生物流变学研究作者:王成学;期刊:吉林大学博士论文全文链接:http://dlib.cnki.net/kns50/detail.aspx?dbname=CDFD2008&filename=2008020271.nh序号:2文章题目:药物治疗骨质疏松动物模型的生物力学实验研究作者:罗民;期刊:吉林大学博士论文全文链接:http://dlib.cnki.net/kns50/detail.aspx?dbname=CDFD2009&filename=2009093442.nh序号:3文章题目:骨质疏松动物模型的研究进展作者:戚孟春;期刊:现代口腔医学杂志, Journal of Modern Stomatology, 编辑部邮箱 2002年 02期 全文链接:http://dlib.cnki.net/kns50/detail.aspx?dbname=CJFD2002&filename=XDKY200202048序号:4文章题目:骨质疏松动物模型骨的拉伸、压缩、扭转实验研究作者:罗民; 孟广伟; 马洪顺;期刊:生物医学工程研究, Journal of Biomedical Engineering Research, 编辑部邮箱 2007年 02期 全文链接:http://dlib.cnki.net/kns50/detail.aspx?dbname=CJFD2007&filename=SDSG200702009序号:5文章题目:常用骨质疏松动物模型特点的综述作者:贾经汉; 邱新建; 陈志坚;期刊:广西中医学院学报, Journal of Guangxi Traditional Chinese Medical University, 编辑部邮箱 2006年 04期 全文链接:http://dlib.cnki.net/kns50/detail.aspx?dbname=CJFD2006&filename=GSZB200604041

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制