当前位置: 仪器信息网 > 行业主题 > >

生物基质

仪器信息网生物基质专题为您整合生物基质相关的最新文章,在生物基质专题,您不仅可以免费浏览生物基质的资讯, 同时您还可以浏览生物基质的相关资料、解决方案,参与社区生物基质话题讨论。

生物基质相关的资讯

  • 微生物检测培养基质量控制问答
    微生物检测培养基质量控制问答1、培养基灭菌后成份会有所蒸发减少,如何处理这个问题?答:正常情况下蒸发量较少,可忽略不计。2、培养基融化后出现浑浊是有哪些方面的原因引起的?应如何避免?答:可能的情况有:1. 培养基配置用水不符合规定;2. 灭菌过程温度升温慢或降温慢;3. 培养基储存不当;4. 融化时沸腾时间较长等。3、准备好的培养基有效期如何验证?答:定期取出培养基验证其无菌性,促生长能力等方面。4、培养基配制好灭菌后,在高压容器中保温降至50℃左右,可不可行?答:建议最-好不要,避免过度受热。5、脱水培养基对湿度是否有要求?多少适宜?答:按要求室温干燥环境储存即可。6、培养基pH值测定温度在25℃,这个温度应怎么控制?答:可水浴控制培养基温度。7、配制培养基过程中,按说明书称定量,加规定的纯化水,煮沸溶解,为了避免煮沸过程总减少水分,是否要在配制过程适当增加水?答:可适量增加,自己掌握。8、商品培养基一定要当天配当天用吗?可否在一周内用完?答:不是即配即用的培养基的话,储存的当,可以使用。9、称量培养基时,注意不要吸入粉末,这粉末是指何物?答:就是你所称量的干粉培养基 ,因为培养基的粉末对呼吸道有刺激作用,而且培养基中的某些成分,如亚硒-酸盐、叠氮-化钠、乙酰胺等,长期吸入并在体内累积到一定量会对人体健康有危害。所以培养基配制称量需做好个人防护,且最-好选择少粉尘环保型颗粒培养基。10、煮培养基,用不锈钢锅在电磁炉上煮可行?硫乙醇培养基是否要煮沸?如何煮沸?用不锈钢锅在电磁炉上煮沸可行吗?可不可以水浴煮沸呢?答:硫乙醇应煮沸,量大时,我实验室用不锈钢锅在电磁炉上煮沸。不建议水浴煮沸,因为水浴煮沸琼脂粉很难溶,导致琼脂分装不均匀,前段分装的琼脂含量少,后段分装的琼脂含量高,导致有的管或瓶中的FT凝固。11、如培养基在高压灭菌器中温度需自然下降20度才开盖吗?答:高温灭菌器有安全阀,温度下降到安全阀可打开时将培养基取出室温冷却,各型号灭菌器安全开盖温度不尽相同。12、平板涂布和平板划线培养基表面水分过多,菌落蔓延如何解决?答:对于采用表面接种形式培养的固体培养基,应先对琼脂表面进行干燥:揭开平皿盖,将平板倒扣于烘箱或培养箱中(温度设为25℃~50℃);或放在有对流的无菌净化台中,直到培养基表面的水滴消失为止。注意不要过度干燥。商品化的平板琼脂培养基应按照厂商提供的说明使用。
  • 我国科学家解析小RNA的生物合成机制
    小RNA是真核生物中重要的基因调控分子,在生长发育、基因沉默、抵御病毒等动植物的各类生理过程中起着至关重要的作用。小RNA的生物合成中,Dicer家族核酸内切酶选择性识别小RNA前体,切割RNA至特定长度,并选择性地将一条链递呈给下游AGO蛋白从而介导下游基因沉默。Dicer如何起到“分子尺”和“分子刀”的功能,切割小RNA前体生成特定长度的小RNA这一机制尚不清晰。  国家“十三五”科技计划“蛋白质机器与生命过程调控”重点专项“植物非编码RNA介导基因沉默过程中重要蛋白质机器的结构功能研究(2016YFA0503200)”项目取得重要进展。项目团队以植物中特异性生成24-nt小RNA的Dicer Like 3 (DCL3)为对象开展了研究,利用合成的DCL3天然底物模拟物和冷冻电镜技术,解析了DCL3和天然底物模拟物的复合物结构,并从中观测到Dicer家族蛋白同时对前体小RNA的5’和3’端同时产生特异性识别的机制。项目团队通过进一步的结构分析,解析了Dicer家族内切酶对小RNA的长度测量机制并解释了小RNA的链选择性机制问题。项目团队通过生化和体内小RNA测序实验验证了末端识别和特异性切割对DCL3产生特性长度小RNA的重要性。  该研究首次观测到了Dicer家族酶切割小RNA前体的状态,成功阐释了Dicer对底物前体RNA末端识别、长度特异性切割以及链选择性呈递给下游AGO的机制,研究成果近期发表在Science杂志上。
  • 245万!广东省微生物分析检测中心基质辅助激光解吸飞行时间质谱仪鉴定系统采购项目
    项目编号:GZGK22P150A0484Z项目名称:广东省科学院微生物研究所(广东省微生物分析检测中心)基质辅助激光解吸飞行时间质谱仪鉴定系统采购项目采购方式:公开招标预算金额:2,450,000.00元采购需求:合同包1(基质辅助激光解吸飞行时间质谱仪鉴定系统):合同包预算金额:2,450,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1质谱仪基质辅助激光解吸飞行时间质谱仪鉴定系统1(套)详见采购文件2,450,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。
  • 沃特世推出全新Oasis PRiME MCX小柱和样品板,可有效去除生物基质中的磷脂及其它干扰物质
    使用全新样品制备工作流程制备超洁净样品,实现稳定、准确的LC和LC-MS定量分析? 美国马萨诸塞州米尔福德市,2018年1月26日 - 沃特世公司正式推出Waters Oasis PRiME MCX小柱和96孔板,这款产品能够选择性地保留并浓缩碱性化合物,同时去除多达99%的磷脂,而且样品处理速度比传统混合模式固相萃取(SPE)产品提升了一倍。成功去除生物基质中含量最高的干扰物质—磷脂,将不仅有助于研究人员获取准确的信息,还能简化分析操作、提高方法的稳定性并延长仪器正常运行时间。 沃特世的全新Oasis PRiME MCX小柱和样品板,可有效去除生物基质中的磷脂及其它干扰杂质 沃特世公司化学品技术中心首席产品运营经理Kim Haynes表示:“尽管大家都知道样品净化具有减少基质效应、降低检出限等诸多优势,但由于没有时间去开发样品制备方法,许多研究人员会选择省去样品制备步骤。他们希望以尽可能少的步骤,更快地获得准确结果。为此,我们针对Oasis PRiME MCX开发了精简的三步和四步法方案,这些方案不仅能够稳定地、且可重现地制备更洁净的样品,而且相较于传统混合模式SPE速度更快。最终,研究人员可以借助这些优势提升定量结果的可靠性,从而更好地为临床试验、临床研究以及法医毒理学、食品或环境研究提供支持。” Oasis PRiME MCX是一款混合模式(反相和阳离子交换)吸附剂,在定量分析生物基质(如血清、血浆、全血或人类/动物组织,以及牛奶、肉类和鸡蛋等食品样品)中的目标物时,这款吸附剂能够轻松应对此类分析所固有的复杂性。此外,该产品无需活化和平衡即可使用的特点,为研究人员节省了大量的时间和精力。除了能够简化流程外,Oasis PRiME MCX还能制备更洁净的样品,减少了色谱柱堵塞、离子源污染等原因引起的离子抑制效应和仪器停机,从而为研究人员提供了高度一致的结果。另外,样品越洁净,意味着色谱柱的使用寿命就越长。 沃特世小柱和样品板采用经过优化的专利工艺生产,与正压萃取装置或负压真空萃取装置配合使用时,不仅能够大幅提升工作流程的重现性,还能缩短样品处理时间。此外,为进一步保障质量,每一批用于Oasis PRiME MCX小柱和样品板的吸附剂在质控时都使用通用四步磷脂去除方案进行了测试。 目前,沃特世已开始向全球供应Oasis PRiME MCX小柱和96孔板。Oasis PRiME MCX的推出,为处于市场领先地位的沃特世样品制备产品系列Oasis PRiME HLB、Ostro、Sep-Pak、Oasis HLB和Oasis Mixed Mode IEX又增添了新成员。 高品质样品制备成就高品质分析结果 过去十年来,分析仪器技术飞速发展,分析检测限(LOD)已创历史最低记录。LC-MS仪器检测和定量痕量样品成分的能力较之以往也有了显著提升。即便如此,某些样品成分可能仍然无法被检出,而未检出的样品成分自然也就无法进行定性和定量。因此,在当前要想获取高质量的LC-MS数据,样品制备过程比以往任何时候都更加重要。 去除样品中的干扰组分(例如血液或血浆样品中的脂质和色素)是提高质谱仪信号强度和灵敏度的关键,因为这些组分会干扰样品中目标分析物的信号响应。此外,实践证明,去除样品中的基质干扰物质也是延长色谱柱和质谱仪使用寿命的可靠方法。 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。
  • 中检院征集微生物鉴定用基质辅助激光解吸电离飞行时间质谱仪质控品协作标定单位
    中检院拟开展微生物鉴定用基质辅助激光解吸电离飞行时间质谱仪质控品首批研制工作,现邀请有上述已注册产品,或正进行产品研发、拟申报注册的企业积极参与。请有意向的境内上述企业或境外企业的中国代理人于2022年07月08日前报名参加。联系人:许庭莹 刘东来联系电话:010-67095435邮箱:xutingying@nifdc.org.cn。 中检院2022年6月22日
  • 中科院微生物所在GITR/GITRL识别机制研究中获进展
    肿瘤坏死因子超家族(tumor necrosis factor superfamily,TNF superfamily)相关分子是天然/获得性免疫调节和功能发挥的关键,该家族许多成员都是肿瘤免疫治疗和抗炎症药物研发的药物靶标。近年来,4-1BB和GITR等激活型免疫检查点分子是备受关注的TNF受体(TNFR)超家族成员,有多款抗体药物处在临床验证阶段,其配体结合机制和抗体药物作用机制研究对于新型免疫治疗策略的开发具有重要参考价值。前期研究中,中国科学院微生物研究所研究员高福团队阐明了4-1BB与其配体和激活型抗体作用的分子基础,对于理解4-1BB活化的分子基础及抗体药物开发具有重要意义(Li Y., et al., 2018. Cell Reports)。近日,该团队报道了共刺激受体糖皮质激素诱导的肿瘤坏死因子受体家族相关蛋白(GITR)与其配体GITRL的“非典型”相互作用机制,相关研究成果发表在Cell Reports上。  GITR是参与T细胞应答调节的免疫检查点分子,靶向GITR的激活型单克隆抗体在临床研究中显示出良好的药物耐受性和显著的肿瘤抑制活性。GITR及其配体GITRL是TNF/TNFR超家族的重要成员。前期研究显示,TNF/TNFR超家族中受体-配体结合模式高度保守,受体分子与三聚体配体按照1:1的比例结合形成“3+3”的复合物,TNFR分子一般与由两个相邻TNF分子形成的侧裂区域结合,三聚体配体介导的受体交联被认为是受体信号激活的基本模式。鼠源GITR/GITRL复合物晶体结构解析与一系列细胞/蛋白水平实验验证显示,两个单体GITR分子与二体GITRL形成“2+2”复合物,GITR通过其CRD2结构域结合GITRL,二者之间的结合面与经典的TNF/TNFR超家族分子不同,位于GITRL的N149和位于GITR的D93-I94-V95决定受体/配体间主要的相互作用,表明GITR/GITRL不同于经典TNF/TNFR超家族的“非典型”相互作用模式。GITR单个结构域介导其与配体的结合现象提示,这种独特的作用模式或是TNF/TNFR超家族进化过程中的较为古老的结合模式,而其他TNFR超家族成员分子与配体结合往往已进化为由两个不同结构域介导结合的特异性与高亲和力。研究发现,小鼠GITR中的D93-I94-V95(DIV)与人GITR中相应的K105-F106-S107(KFS)区域决定受体与其配体结合的种属特异性。尽管鼠源与人源GITR/GITRL不能交叉识别,小鼠GITR配体结合关键位点“DIV”至“KFS”突变导致其与人GITRL交叉识别,并在NFAT-Luc-Jurkat T细胞信号模型中诱导T细胞激活信号。  该研究发现的GITR/GITRL不同于经典TNF/TNFR超家族的“非典型”相互作用模式,拓展了关于TNF/TNFR超家族分子相互作用模式的认知,并为基于GITR/GITRL相互作用的药物设计提供了理论基础。研究工作得到中科院战略性先导科技专项、国家重大科技专项的支持。  近年来,该团队在免疫检查点受体分子的配体识别机制及抗体药物作用机制研究方面开展了系列工作,相关成果发表在Cell Research、PNAS、Nature Communications、Cell Reports、EMBO Reports等上,这为理解T细胞免疫调节机制以及免疫检查点分子为基础的药物开发提供了重要的理论依据。
  • 国标委公开《基质辅助激光解吸电离飞行时间质谱鉴别微生物方法通则》标准文本
    p   近日,国家质检总局、国家标准委公开了《基质辅助激光解吸电离飞行时间质谱鉴别微生物方法通则》(GB/T 33682-2017)标准文本。该标准收录在2017年5月12日国家质检总局、国家标准委公布的2017年第11号中国国家标准批准公告中,将于2017年12月1日开始实施。以下为该标准文本详细内容: /p p style=" text-align: center " & nbsp /p p style=" text-align: center " img width=" 600" height=" 845" title=" 1.png" style=" width: 600px height: 845px " src=" http://img1.17img.cn/17img/images/201706/insimg/891be57d-1c26-4f41-b8d3-1b139e38b5ff.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " /p p style=" text-align: center " /p p style=" text-align: center " /p p style=" text-align: center " img title=" 11.png" src=" http://img1.17img.cn/17img/images/201706/insimg/62379798-64e8-4dee-949b-b158ca9c4b14.jpg" / /p p style=" text-align: center " img width=" 600" height=" 619" title=" 12.png" style=" width: 600px height: 619px " src=" http://img1.17img.cn/17img/images/201706/insimg/9707e72c-95f9-404d-a080-893f5c7516d7.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 284" title=" 13.png" style=" width: 600px height: 284px " src=" http://img1.17img.cn/17img/images/201706/insimg/4170c196-2008-4ad9-861c-dd125d971a0d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 638" title=" 14.png" style=" width: 600px height: 638px " src=" http://img1.17img.cn/17img/images/201706/insimg/c2a0cecd-e163-46f5-8874-771fc16a41a8.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 583" title=" 15.png" style=" width: 600px height: 583px " src=" http://img1.17img.cn/17img/images/201706/insimg/f9ea288f-019c-4cc4-8518-97ea364cb6e3.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 723" title=" 17.png" style=" width: 600px height: 723px " src=" http://img1.17img.cn/17img/images/201706/insimg/4d083283-7e59-4899-a711-3595992901cf.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp /p
  • 生物物理所等在GPCR别构调节机制研究方面取得进展
    近日,《美国化学会志》期刊在线发表了中国科学院生物物理研究所王江云课题组与上海科技大学刘志杰和华甜课题组的研究论文。该研究首次通过基因密码子扩展方法,在昆虫细胞表达系统中实现含氟非天然氨基酸(3-三氟甲基-L-苯丙氨酸,mtfF)的插入,并成功用于大麻素受体CB1别构调节机制的研究。  氟原子由于具有对蛋白质环境变化高度敏感、100%天然丰度及没有背景信号等特点,被广泛用于蛋白质动态构象的研究。目前利用19F-NMR检测蛋白质动态构象主要通过蛋白质的半胱氨酸标记含氟原子的基团,进而实现信号检测。但是这需要在目标蛋白表面感兴趣的标记位点存在可接近的半胱氨酸残基,同时要将其他所有暴露在表面的半胱氨酸残基突变掉,这将会影响蛋白质的结构稳定性。半胱氨酸介导的位点特异性标记对于含有少量半胱氨酸残基的蛋白质来说是方便且通用的。然而,近2/3的人类GPCR含有超过10个半胱氨酸残基,并且所有暴露于表面的半胱氨酸残基的突变可能会对目标蛋白造成显著的结构扰动。此外,隐藏在蛋白质疏水核心内的残基不能通过这种方法进行标记。基于半胱氨酸标记方法局限性,发展简单便捷的真核系统蛋白质氟探针标记方法对研究真核生物蛋白质构象十分重要。  大麻素受体CB1是人大脑里表达量最高的GPCR之一,调控多种重要的生理活动,是治疗神经和精神类疾病、肥胖等的重要靶点。刘志杰/华甜课题组一直聚焦于大麻素受体结构与功能的系统性研究,在过去几年中成功解析了大麻素受体CB1和CB2在拮抗状态、类激活和激活状态下的三维结构,揭示了正构调节配体对大麻素受体的作用机制。为了进一步探究别构调节剂对CB1的调控机理以及不同配体如何对GPCR的动态构象进行调控等科学问题,王江云课题组与刘志杰/华甜课题组以及iHuman研究所核磁共振实验室副研究员刘东升合作,利用基因密码子扩展方法,首次获得真核细胞内识别含氟非天然氨基酸的mtfF-氨酰-tRNA合成酶,在昆虫细胞中实现CB1构象变化敏感位点的标记。借助上海科技大学iHuman研究所核磁共振平台,探究了不同正构配体以及别构调节剂Org27569对CB1的动态构象变化的调控,首次发现了Org27569和激动剂如何在CB1激活过程中协同稳定以前未被识别的前激活状态。  通过团队的密切合作和不懈努力,使用19F-NMR破译了受体的动态过程和多态性,同时结合X-射线晶体学方法,揭示了别构调节剂Org27569对CB1的独特调控机理,提出了CB1的激活和别构调节模型,尤其是Org27569和胆固醇分子在CB1激活过程中扮演的角色。基因编码的非天然氨基酸mtfF方法的建立可广泛用于GPCR动态构象变化研究的标记系统,也可以用于其它真核蛋白质动态构象的研究。  该研究得到国家自然科学基金委和国家高技术研究发展计划资助项目的支持。  论文链接
  • PNAS:何群等人发现生物钟基因转录调控新机制
    跟动物一样,植物也有称之为昼夜节律的 24 小时“生物钟”。这一生物计时器赋予了植物即便在没有光线的情况下,与生俱来测量时间的能力。例如,它们不仅仅是对日出产生反应,它们还知道日出就要到来,并做出相应的调整。在分子水平上,生物钟的节律振荡由生物钟基因及其编码蛋白的转录和翻译形成的自主的反馈环路组成。在脉孢节律振荡器(Neurospora circadian oscillator)中,WHITE COLLAR 复合物负责节奏频率(frq)转录,而且被认为是唯一的 frq 转录激活因子。现在,来自中国农业大学生物学院 何群 研究组揭示出了一种之前未知的生物钟基因转录的调控新机制,这将对于了解 WC 非依赖性 frq 转录至关重要。这一研究成果公布在《美国国家科学院院刊》(PNAS)杂志上。在这项最新研究中,科学家发现,当转录共阻遏因子 rco-1 被删除的时候, WC 非依赖方式中 frq 能进行组成型转录。并且对于 rco-1 突变型来说,高水平组成型 WC 非依赖性 frq 转录还会导致 WC 复合物活性受损,失去昼夜节律功能。同时,这一结果还表明, rco-1 能与组蛋白修饰因子SET-2,染色质重塑因子CHD-1共同作用,调控 frq 正常染色质结构,这一位点确保了节律 frq 转录。
  • 基因编辑技术再添新工具,真核生物中类CRISPR机制首次揭示
    图中是Fanzor蛋白(灰色、黄色、浅蓝色和粉色)与ωRNA(紫色)及其目标DNA(红色)复合的冷冻电镜图。非目标DNA链呈蓝色。图片来源:麻省理工学院美国麻省理工学院麦戈文脑研究所、麻省理工学院博德研究所和哈佛大学张锋团队在真核生物中发现了第一个可编程的RNA引导系统。29日发表于《自然》杂志上的论文称,这种基于Fanzor蛋白的系统能对人类基因组进行编辑,类似于CRISPR的基因编辑系统。与CRISPR-Cas系统相比,Fanzor蛋白系统更精准,有望成为被递送至人类细胞的新型基因编辑工具。研究表明,RNA引导的DNA切割机制存在于包括真核生物在内的所有生命王国。张锋表示,这个新系统是对人类细胞进行精确改变的另一种方式,补充了已有的基因组编辑工具。两年前,团队成员在原核生物中发现了一类名为OMEGA的RNA可编程系统,这种系统通常与细菌基因组中的转座元件或“跳跃基因”相关联,并可能产生CRISPR-Cas系统。这项研究还突显了原核生物OMEGA系统和真核生物中Fanzor蛋白之间的相似之处,表明Fanzor蛋白可能也使用RNA引导的机制来靶向和切割DNA。在这项研究中,研究人员从真菌、藻类和变形虫物种以及北圆蛤中均分离出Fanzor蛋白。Fanzor蛋白的生化特征研究结果表明,它们是切割DNA的核酸内切酶,使用附近的非编码RNA(即ωRNA)来靶向基因组中的特定位置。这是第一次在动物等真核生物中发现这种机制。进一步研究发现,Fanzor蛋白可对人类细胞基因组的特定位点进行靶向的插入与缺失编辑,证明了Fanzor蛋白作为基因组编辑工具的潜力。研究人员通过工程化技术,在蛋白质中引入了一系列突变,使其活性增加了10倍。此外,Fanzor蛋白没有显示出“附带活性”,即当RNA引导内切酶切割DNA时,会同时降解邻近的DNA或RNA。这些结果表明,Fanzor蛋白有可能被开发为高效的基因组编辑程序。
  • 微生物所合作发现结核抵抗人群抵御结核分枝杆菌感染的固有免疫机制
    结核病(TB)是由结核分枝杆菌(Mtb)引起的一类重大传染性疾病。据世卫组织发布的最新报告,在2020年,全球有近990万结核病患者,并有约151万人因结核感染导致死亡。中国科学院微生物研究所刘翠华课题组长期致力于研究Mtb等重要病原菌与宿主相互作用的分子机制,近年来发表系列研究工作,在病原菌与宿主相互作用机制方面取得重要成果,为抗结核治疗及药物研发提供了多种新思路和潜在新靶点。  以往认为,健康个体受到Mtb感染时,往往会发展成为潜伏感染者或活动性TB患者。有趣的是,近年来临床上发现有一部分与TB患者持续密切接触的个体,既不发展为活动性TB患者并显示出相关症状,也未表现出潜伏感染者的免疫学诊断特征。这类长期密切接触病原菌的健康个体被称作TB抵抗者。  目前对于这类TB抵抗者的抗感染免疫机制所知甚少,深入揭示相关机制有望为TB的预防和治疗提供新线索和新策略。近日,刘翠华课题组与首都医科大学附属北京胸科医院教授逄宇团队合作,揭示了TB抵抗者人群在应对Mtb感染时的固有免疫应答特征。该合作研究发现:与对照组、潜伏感染者及活动性TB患者相比,TB抵抗者的外周血单核巨噬细胞在受到Mtb侵染时,可产生更高水平的TNF-α、IL-1β及IL-6等细胞因子,并且其清除胞内病原菌的能力更强。  随后的一系列筛选及功能验证实验结果表明:在Mtb感染过程中,组蛋白去乙酰化酶6(HDAC6)仅在TB抵抗者来源的巨噬细胞中维持稳定的表达水平及酶活性,而在其他实验组人群中出现显著下降。同时,进一步抑制或沉默HDAC6可阻抑TB抵抗者来源巨噬细胞中细胞因子的分泌以及其中含Mtb的囊泡的酸化能力。这些结果提示,TB抵抗者来源的巨噬细胞高效清除Mtb感染的能力依赖于HDAC6,后者可能是一个促进细胞因子产生以及自噬流畅通进而加速Mtb清除的关键宿主因子。综上,该研究揭示了TB抵抗者人群依赖HDAC6清除Mtb感染的固有免疫新机制,为临床上TB患者密切接触者的TB感染和发病风险预测提供了重要新标识,并为靶向宿主的TB治疗提供了新思路。  目前,相关结果已在线发表于The FASEB Journal。该工作得到国家重点研发计划、国家自然科学基金及北京市医院管理中心“扬帆”项目的支持。  论文链接
  • 从分子机制到临床治疗的生物大分子制药整体解决方案
    抗体药经过30余年的发展,已成为全球医药市场的重要组成部分,目前大分子生物制药市场(包括重组蛋白类药物)急速增长已突破千万亿美元。从2017年市场表现来看,全球10大最畅销药物中:除2个小分子药物以外,另外8个都是大分子药物,包括6个抗体药物和2个融合蛋白。其中药王“Humira”销售额高达184亿美元,上市16年来累计为Abbvie贡献了1120亿美元销售额。近年来新型肿瘤免疫调节抗体药物(如PD-1/PD-L1阻断剂)的兴起也带来了新的治疗突破,其中由BMS研发的第一个针对PD-1的治疗型抗体Opdivo,以近60亿美元上榜Top10。 在药物研发方向,生物大分子药物市场高度集中,巨头垄断地位“超然”,而同时生物制药市场也孕育着诸多新机会和变化,新靶点、新作用机制的抗体药层出不穷,研发企业在生物制药领域大有可为。针对生物大分子制药研发流程的每一个环节,PerkinElmer公司可提供覆盖分子-细胞-活体-组织的全方位检测技术、仪器平台、试剂耗材及相关服务。 针对生物大分子制药研发流程的每一个环节,PerkinElmer公司可提供覆盖分子-细胞-活体-组织的全方位检测技术、仪器平台、试剂耗材及相关服务。针对杂交瘤、噬菌体或人源B细胞等不同文库的抗体筛选,高通量多模式检测系统、多标试剂(如高灵敏度免洗Alpha技术)及细胞株、高内涵细胞显微成像系统、自动化样品处理工作站可以在分子及细胞水平提供最佳的高通量抗体筛选及优化方案。对于抗体药物的临床前/临床功能验证、安全评价及治疗效果,可借助生化检测及分子影像学平台,完成从分子机制、细胞信号通路、组织微环境及整体动物水平的系统评价。针对抗体工艺开发及生产质控过程中的抗体纯度、糖基化、片段化/聚合化、荷电异质性及宿主细胞残留等重要质控指标,全自动毛细管电泳抗体分析系统和多模式检测及专业试剂盒可大大降低该环节的技术成本。另外,随着医疗大数据时代的到来,PerkinElmer Signal数据挖掘分析系统,结合高质量显微成像技术和数字定量病理智能算法,为基础研究到临床实践的转化进一步助力加速。该应用方案将涵盖: 体外抗体高通量筛选及优化体外抗体功能性评价及研究动物活体水平抗体治疗评价临床组织病理抗体诊断治疗详情请点击样本封面下载生物大分子制药整体解决方案样本:关于珀金埃尔默:作为全球领先的科研仪器和服务提供商,珀金埃尔默公司致力于为创建更为健康的世界而不懈努力。我们的业务涵盖医学诊断、科研和分析仪器等。我们在全球拥有11000名专业技术人员,时刻准备着为客户提供最优质的服务,帮助客户解决各项科学难题。我们在分析检测、医学成像、信息技术和售后服务方面的专业知识,以及深入的市场洞察力,可协助客户为改善我们的生活环境而不懈探索。2017年,珀金埃尔默年应收达23亿美元,为超过150个国家和地区提供服务,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默公司的信息,请访问PerkinElmer官方网站www.perkinelmer.com.cn
  • 利用徕卡THUNDER成像系统探索微生物肠道免疫机制
    由SARS-CoV-2冠状病毒引起的Covid-19影响了世界的方方面面。免疫和治疗方法等抗病毒方向的研究在2020年具有高优先级,显微镜在这类研究中起着举足轻重的作用。了解受体结合、基因组释放、复制、组装和病毒出芽的基本原理及免疫应答,可以使用不同的方法和显微镜。鉴于显微镜在感染生物学中的重要作用,我们举例阐述不同的显微技术及其在这些研究领域中的应用。 研究背景人类出生后胃肠道立刻被复杂的微生物群落定植(1000余种,且数量100万亿),而这些肠道微生物群落影响宿主生理的多个方面,包括代谢、免疫反应、行为和昼夜节律等等。先前的研究认为肠道微生物群落主要是共生菌,共生菌可控制病原菌数量,而黏膜屏障免疫对于维持共生菌群和抵抗侵入性细菌感染至关重要。微生物-肠-脑轴是将大脑和肠道功能整合的双向信息交流系统,并涉及神经、免疫和内分泌机制。除了神经内分泌系统和神经免疫系统之外,该轴还包括了中枢神经系统(CNS)、自主神经系统(ANS)的交感神经和副交感神经分支以及肠道神经系统(ENS)。从肠道到CNS的传入纤维(如大脑、扣带回、小脑扁桃体和扁桃体皮质)以及肠道平滑肌的效应纤维是沿着微生物-肠-脑轴进行双向信息交流的主要途径。图1 微生物-肠-脑轴肠道神经系统(ENS)遍布肠道组织的每个角落,将收集到的信息迅速地传递到自体或非自体类型的细胞,织就一个庞大又复杂的网络系统。新涌现的多个研究报道发现ENS可以作为免疫系统的感应平台,但对ENS与上皮细胞的互作机制还知之甚少。 2019年12月,Jarret等人在Cell发表了题为Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity的文章。借助单分子mRNA荧光原位杂交(smFISH THUNDER Imager 3D Live Cell),研究发现ENS神经元分泌IL-18作用于肠道上皮细胞中的杯状细胞,促进杯状细胞抗菌蛋白(AMP)的表达,在肠道免疫中起着重要作用。研究过程鉴于大脑中神经元会分泌IL-18,而大量研究表明ENS可能在调节粘膜屏障免疫中发挥关键作用,因此研究人员大胆猜测肠道神经元也会分泌IL-18。接下来作者构建ENS特异性敲除IL-18小鼠和多种细胞类型特异性敲除IL-18R小鼠,并分别用鼠伤寒沙门氏菌(S.t)感染。之后作者通过共聚焦观察发现不携带ENS所产生的IL-18的小鼠则更容易受到感染。为了证实这一发现,研究人员使用了IL18 mRNA探针在小鼠中进行了单分子mRNA荧光原位杂交(smFISH),结果显示在IL-18-/-小鼠结肠中IL18 mRNA探针的信号丢失。图3 THUNDER验证结果与Confocal观察结果一致A)用于分析IL-18+神经元的Confocal正交视图。IL-18(红色),Tubb3(绿色)。 B)通过smFISH观察野生型与IL18-/-小鼠结肠中的IL18 mRNA(白色)和DAPI(蓝色)。同时通过smFISH检测小鼠肠组织中IL18与Tubb3的表达,观察到IL18 mRNA探针与神经元特异性Tubb3 mRNA探针共定位。图4 smFISH检测小鼠肠组织中IL18(红色)、Tubb3(白色)表达;DAPI(蓝色)表示细胞核总之,这些数据表明肠神经元是结肠中IL-18的新产生者。研究还结合了单细胞转录组技术来探究ENS来源IL-18的功能以及作用方式。 实验方法1. 处死小鼠,移出结肠并用冷PBS冲洗。纵向剖开结肠组织平铺于滤纸。2. 用4%多聚甲醛PBS溶液固定3小时,后置于30%蔗糖、4%PFA的PBS溶液中4℃过夜。3. 包埋,制成将7mm厚切片,并用于smFISH染色。4. 设计的探针库与Cy5(IL-18)、TMR(Tubb3)结合,将切片与smFISH探针库杂交。5. 封片前去除ENS内的自发荧光信号。6. 在Leica THUNDER Imager 3D Live Cell上进行smFISH成像,使用自带的THUNDER Computational Clearing设置。 看到这里大家可能会有一个疑问:为什么不用共聚焦做smFISH而是选择徕卡THUNDER?对,为什么?小编也提出过这个问题,但是下面这段话做出了很好地解释。smFISH的实验过程中探针会发出大量光子,而共聚焦则会显著限制光子收集的数量,为了最大限度回收这些光子,更建议使用宽场技术。 徕卡THUNDER凭借其高分辨、快速、大视野的特点,可大限度回收实验中smFISH探针发出的大量光子,减少光损耗,更适用于smFISH成像。不仅可以获得清晰锐利的图像,实验结果更便于统计分析且重复性高,是您进行组织大视野快扫的不二之选。 参考文献1、 Jarret et al., 2020, Cell 180, 50–632、 Brain Res. 2018 August 15 1693(Pt B): 128–1333、 Jung, Y. J.,et al., 2017, Sci Rep 7(1):173604、 Zhang, H., et al. 2018, Synth Syst Biotechnol 3(2): 113-120
  • 日渐深入的机制解析研究——代谢组学在生物医学与食品科学领域的最新进展
    仪器信息网讯 我们知道细胞内的生命活动由众多基因、蛋白质、以及小分子代谢产物来共同承担,而上游的(核酸、蛋白质等)大分子的功能性变化最终会体现于代谢层面,如神经递质的变化、激素调控、受体作用效应、细胞信号释放、能量传递和细胞间通讯等,所以代谢组处于基因调控网络和蛋白质作用的网络的下游,所提供的是生物学的终端信息。因此科学家们常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么。  代谢组学(Metabolomics)是20世纪90年代末期发展起来的一门新兴学科,是研究关于生物体被扰动后(如基因的改变或环境变化后)其代谢产物种类、数量及其变化规律的科学。代谢组学着重研究的是生物整体、器官或组织的内源性代谢物质的代谢途径及其所受内在或者外在因素的影响及随时间变化的规律。代谢组学通过揭示内在和外在因素影响下代谢整体的变化轨迹来反映某种病理生理过程中所发生的一系列生物事件。  8月12日,仪器信息网举办了“2021年代谢组学技术及应用新进展”主题网络研讨会,聚焦代谢组学的前沿应用,包括其在生物医学以及食品科学领域的最新进展。(点击了解会议的回放视频)  在科学家们不断努力开发高覆盖率的组学方法的同时,代谢组学和脂质组学的整合正成为一种新兴的机制研究方法。代谢组和脂质组的整合提供了一个完整的代谢图谱,使全面的网络分析能够识别疾病病理中的关键代谢驱动因素,有助于研究脂质和其它代谢产物在疾病进展中的相互联系。  复旦大学生命科学学院/人类表型组研究院的唐惠儒教授团队的主要研究是代谢表型组,也就是小分子代谢物的定量组成及变化规律。通过结合核磁共振波谱、质谱及量子化学计算等多种技术,实现准确测量人类血液、尿液和唾液等样品中代谢物的绝对结构,定量它们的浓度及其变化规律。  本次会上唐教授作了题为《脂蛋白代谢组定量揭示病理生理内涵》的报告。  脂蛋白是脂质成分在血液中存在、转运及代谢的形式。脂蛋白代谢更是通过肝脏、肠道等大量器官参与的活动,如果代谢出现紊乱可引起一些严重危害人体健康的疾病。脂蛋白组分的定量方法常用的有核磁共振波谱法以及质谱法等。报告介绍了唐教授团队在脂蛋白代谢组定量揭示病理生理研究的最新工作进展,其团队当前正在进行的研究:通过分析10余个独立队列5万余人血浆/血清健康人群各脂蛋白亚类及组分的参比浓度范围,希望能够进一步定义什么是健康人。  中国科学院大连化学物理研究所刘心昱副研究员作了题为《代谢组学在重大疾病诊疗中的应用》的报告。  肝癌是严重影响我国人民健康的恶性肿瘤,早期无明显临床症状,发展快且易转移。报告介绍了刘心昱团队针对肝癌的早期筛查缺乏可靠标志物的问题,利用代谢组学技术全景解析了肝癌代谢紊乱,揭示了肝癌发生过程中的代谢重编程过程,发现并验证了肝癌早期诊断标志物。针对肝癌术后易复发转移,建立基于代谢小分子的风险预测模型,有效的预测肝癌患者术后复发转移风险。中国医学科学院北京协和医学院药物研究所贺玖明研究员作了题为《质谱成像空间代谢组学与脑科学研究》的报告。  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。目前,科学家对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量的分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  报告介绍了贺玖明团队开发的一种空间分辨代谢网络作图方法、高通量AFADESI-MSI方法和代谢组学策略,及其最新研究进展。中国检验检疫科学研究院的张九凯研究员作了题为《基于质谱的代谢组学及其相关衍生技术在食品真实性鉴别中的应用》的报告。  随着食品产业全球化布局进程的加快和食品供应链不断延长和复杂化,经济利益驱动的食品掺假现象日益凸显。以代谢组学为代表的组学技术能够针对食品中的尽可能多的代谢产物,从整体角度进行定性定量分析,为食品真实属性鉴别研究提供了一种新兴的研究工具。近年来,随着检测技术的发展,代谢组学产生了很多衍生技术,包括脂质组学、挥发组学和风味组学等。  报告介绍了代谢组学及其相关衍生组学技术在食品物种及品种鉴别、产地溯源、品质分级和掺假掺杂识别等真实属性鉴别研究,为进一步保证食品质量安全、保障消费者利益提供了技术支撑。
  • 科学家发现微生物群重塑肿瘤微环境的新机制
    近期,美国国家癌症研究所(National Cancer Institute)的研究团队发现肠道微生物群可通过影响单核吞噬细胞系统重塑肿瘤微环境。该研究在《Cell》上发表,题为:Microbiota triggers STING-type IFN-dependent monocyte reprogramming of the tumor microenvironment。  单核吞噬细胞(Mononuclear phagocytes, MPs)系统是固有免疫的重要成分,包括单核细胞(Mo)、巨噬细胞(Mac)和树突状细胞(Dc),其在宿主防御和组织修复中发挥着重要作用。MPs也是肿瘤微环境中(Tumor Microenvironment, TME)的关键组成部分之一,既可以增强抗肿瘤效应,也可以导致肿瘤免疫抑制状态。该研究发现,高纤维饮食后的肠道微生物源信号可将TME中的MPs编程为具有免疫活性的Mo和Dc,从而改善肿瘤免疫检查点阻断治疗的效果。  该研究揭示了肠道微生物群影响TME的新机制,为肿瘤免疫治疗提供了新方向。  注:此研究成果摘自《Cell》,文章内容不代表本网站观点和立场。  论文链接:https://doi.org/10.1016/j.cell.2021.09.019
  • 新冠嗅觉丧失症的生物学机制最新研究进展:由炎症而非病毒本身所致
    虽然新冠介导的嗅觉丧失的破坏性影响众所周知,但其背后的生物学机制仍然是一个谜。4月18日发表在《美国医学会神经病学杂志》上的一项研究表明,当身体的免疫系统对新冠病毒感染作出反应时,嗅觉丧失很可能是发生炎症的附带后果,而不是病毒的直接作用。 作者表示:“作为一名神经病理学家,我想知道为什么丧失嗅觉是新冠而不是其他呼吸道疾病的一个常见症状。因此,我们决定对嗅觉机制进行深入研究,看看当新冠病毒侵入人体时,在细胞水平上实际发生了什么事。”为了进行研究,研究人员从23名新冠病亡者和一个对照组患者的大脑底部嗅球(传递携带气味信息的神经脉冲的部位)中收集了组织。对照组由14名死于其他原因的人所组成,他们在死亡时体内并没有被检测到新冠病毒。研究人员对所有收集的组织进行了任何可检测到的新冠病毒颗粒的评估,并使用光学和电子显微镜检查其中的细胞、血管和神经元(神经细胞)的结构和特征,以及存在的轴突(传递电脉冲的神经元部分)的数量。从3名患者的临床记录和其余患者的家庭访谈中获得了有关嗅觉和味觉的信息。23名新冠患者中有3名被确定失去了嗅觉,4名嗅觉能力下降以及2名同时失去嗅觉和味觉。对照组的14名患者中没有人被确定为失去嗅觉或味觉。研究人员想从两组的研究中了解三件事:嗅觉系统中神经元的退化(损伤)水平、嗅觉轴突丢失的数量以及微血管病变(小血管疾病)的严重程度。研究人员将没有感染新冠病毒的患者的组织与感染新冠病毒的患者(尤其是那些嗅觉减弱或完全丧失嗅觉的患者)的组织进行比较后发现,新冠患者的血管损伤程度更严重,并且嗅球中的轴突量要少得多。该研究的另一个主要发现是,尽管神经和血管受损,在大多数新冠患者的嗅球中并未检测到新冠病毒颗粒。作者解释道,依赖于常规病理检查的先前研究推测,嗅觉神经元和嗅球的病毒感染可能在与新冠相关的嗅觉丧失中起作用。然而新研究表明,嗅觉上皮细胞的新冠病毒感染会导致炎症,进而损害神经元,减少可用于向大脑发送信号的轴突数量,并导致嗅球功能失调。图源:Cheng-Ying Ho, 美国约翰斯霍普金斯医疗集团图形显示了新冠病毒在鼻腔内的感染如何导致炎症,进而损害神经细胞,减少可用于向嗅球(帮助大脑处理信号)发送气味信号的轴突(脉冲传输器)的数量。而这往往导致新冠患者的嗅觉减弱或完全丧失。
  • 《基因组生物学》:基因融合被证明是 水稻新基因产生的重要机制
    科技日报讯 (记者赵汉斌)新基因是生物表型进化和物种形成的动力和源泉。记者近日从中国科学院昆明植物研究所获悉,研究人员近期研究发现,基因融合是水稻及其近缘种新基因产生的重要机制,这意味着新基因研究取得了又一项重要进展。相关研究结果发表在著名国际期刊《基因组生物学》上。  “由两个或两个以上基因形成的融合基因,不仅可以绕过漫长而又低效的位点突变带来的有害步骤,又可以通过序列重排而将远源相关或者不相关的功能结构域进行组合,极易产生新的结构特征和新的功能,从而助推物种的适应性演化。”论文通讯作者之一、中国科学院昆明植物研究所研究员章成君介绍,基于此,由他领衔的专题攻关组自主开发了基于系统发育框架的动态鉴定融合新基因的流程。  此次研究中,章成君、周艳丽等人利用我国最主要的粮食作物中稻属的多个基因组数据,在最年轻的分支上选取了4个目标物种,共鉴定到310个融合基因。其中粳稻、籼稻、非洲栽培稻和短舌野生稻分别含有80、62、67和43个物种特异的基因。通过基因组重测序分析,他们发现这些物种特异基因在群体中的固定频率分别为31.8%、15.4%、21.5%和93.3%,这可能对物种的适应性演化起着至关重要的作用。  研究人员进一步以粳稻为例,分析发现约有三分之一的融合新基因与其母基因有相似的表达模式,约三分之一的融合新基因具有分化的新表达模式。用基因编辑技术CRISPR/Cas9敲除实验表明,无论表达模式分化与否,融合基因都能介导表型效应,从而影响物种的适应性。  此项工作有望在大数据时代为融合基因的研究奠定方法和理论基础,并对未来优质水稻育种产生重要影响。
  • 美康生物:子公司已取得液相色谱质谱联用仪、基质辅助激光解吸电离飞行时间质谱仪的注册证
    10月18日有投资者向美康生物(300439)提问, 董秘您好,请问贵公司有生产质谱仪吗?  公司回答表示,尊敬的投资者您好!公司与赛默飞分别于2018年9月、2021年3月达成战略合作,共同推动临床质谱仪以及相关配套设备的本地化生产,从而加速临床质谱技术在国内的应用普及。目前公司下属子公司已取得液相色谱质谱联用仪、基质辅助激光解吸电离飞行时间质谱仪的注册证。感谢您的关注!
  • 基质辅助激光解吸电离质谱技术突破 新基质实现快速诊断
    疾病的非侵入性快速筛查方法在临床医疗领域中具有重要意义,可以实现疾病的早期发现。然而传统的方法难以实现短时间大量样本的检测,急需发展一种高通量的体液代谢物检测新方法。基质辅助激光解吸电离(MALDI)是一种高通量的电离质谱技术,MALDI质谱已经成为生物分析化学中不可或缺的工具之一,在生物活性小分子检测、代谢组学分析、小分子质谱成像等许多重要领域具有广泛应用。   在国家自然科学基金委和中国科学院的大力支持下,中科院化学所活体分析化学院重点实验室聂宗秀研究员课题组长期致力于开发高通量代谢小分子分析新方法,先后发展了用于基质辅助激光解吸电离质谱成像的新基质和新技术(Anal. Chem. 2018, 90, 729;Chem. Comm. 2018, 54, 10905),以及新型基质喷涂装置(Anal. Chem. 2018, 90, 8309.)。最近,他们开发了一种TiO2/MXene纳米材料新基质,建立了基于尿液中小分子代谢物的疾病快速筛查方法。利用该基质,他们提取了尿液样本的约550种代谢小分子图谱,结合机器学习算法的数据分析,显示疾病组和健康对照组之间小分子代谢物群的差异,正常组和疾病组的区分准确度为96.8 %,膀胱癌与尿路结石疾病之间的诊断准确率达到88.3 %。同时,他们还发现两组疾病在能量代谢通路,组氨酸、色氨酸代谢通路,嘌呤代谢路径,苯乙酸类化合物代谢路径中的46个小分子代谢物有显著差异,并鉴定出了其中的11个代谢物。相关研究结果发表于近期的Advanced Functional Materials期刊上(Adv. Funct. Mat. 2021, 31, 2106743)。第一作者是博士生陈俊宇,通讯作者是赣南医学院江丽霞教授、中科院化学所刘会会副研究员和聂宗秀研究员。
  • 化学博士投身生物学研究 发展先进成像技术揭示生命体运行机制——访北京大学孙育杰教授
    生命体是最复杂的物质运动形式,小到细胞内纳米级分子,大到组织乃至人体,通过研究和解析这些不同水平的生命对象,方能够更好地理解疾病机制、攻克医学难题。这个过程中,成像技术扮演着举足轻重的角色。北京大学孙育杰教授长期致力于成像技术的开发和生物学应用研究,尤其在染色质结构与功能的研究中取得了显著成果。仪器信息网有幸采访了孙育杰教授,围绕他如何与成像技术和生物学结缘、当前团队主要的研究工作以及对我国超分辨显微镜发展现状的看法进行访谈。孙育杰教授 北京大学受访人简介:孙育杰现为北京大学终身教授,博雅特聘教授,未来技术学院 • 国家生物医学成像科学中心(NBIC),生物医学前沿创新中心(BIOPIC),膜生物学国家重点实验室研究员、博士生导师,获得Elsevier Scopus高引青年科学家奖、青年海外高层次人才引进计划、国家基金委杰青基金,任多模态跨尺度生物医学成像国家重大科技基础设施副总工程师。跨专业“结缘”单分子技术 确立发展先进工具回答生物学问题的研究范式事实上,从本科到博士,孙育杰的专业一直都不是生物学。本科和硕士阶段,孙育杰就读于中国科学技术大学应用化学系,主修物理化学;后来到美国匹兹堡大学攻读博士,仍是化学专业,直到博士阶段后期才真正接触生物学。而这一次的接触,却成为了之后所投身事业的开端。也是这个时候,孙育杰开始与单分子技术打交道,当时是用原子力显微镜研究生物样品,这让他感到颇有意思,同时认为这是一个很有潜力的方向。于是博士毕业后,孙育杰申请到宾夕法尼亚大学医学院的博士后职位,继续开展相关研究。孙育杰回忆最开始转向生物学领域时所面临的困难:“我当时所在的实验室主要是用单分子成像和单分子操纵技术研究生物大分子,这类研究要求科研人员具备综合的知识背景,既要懂技术,也要懂生物学,还要懂物理化学的原理。其他两个方面同我的背景都很契合,面临的最大困难,就是生物学背景相对薄弱。”于是,在研究初期,孙育杰通过自学,快速恶补所欠缺的生物学知识,后来结合自己长期积累的物理和化学知识,终于顺利地开展相关课题,用单分子技术研究和揭示马达蛋白的工作机制。“从这个时候,我也就确定了兴趣点。什么叫兴趣点?就是未来或许研究对象会改变,但我的研究思路和研究范式基本不变,这个研究范式就是发展先进的工具来解决生物学和医学的问题。”孙育杰介绍道。以染色质结构和功能为研究主线 用成像技术获得独特发现2011年初,孙育杰回国加入北京大学生物医学前沿创新中心(BIOPIC),仍延续之前的研究范式,即用单分子技术研究生物大分子,并在实验室里搭建了单分子荧光、单分子定位超分辨、光镊、磁镊等多种单分子技术平台。由于中心挂靠在北京大学生命科学学院,实验室很多研究生是生物学背景,为了能够因材施教,孙育杰让团队中一部分学生集中做成像技术和探针标记方法的开发,另一部分对生物学感兴趣的学生用这些技术去开展生物学研究。2013年,孙育杰确定以“染色质的结构和功能”作为主要生物学研究方向。“染色质是我们细胞里的遗传物质,以人的细胞为例,细胞核直径只有10微米,但其中的染色体抻开后总长度却可以达到两米,并且复制、转录、修复和调控都很精准,这是一个很有冲突、很有趣的现象。所以围绕染色质的结构和功能去发展我们开发的技术以及解答更多生物医学问题就变成了我们的研究主线。”孙育杰介绍道。基因组的紊乱或失调会导致很多疾病,研究基因组的结构和功能对于理解疾病、解决医学难题非常关键。这项研究自2008年从美国兴起后,很快成为生命科学领域热门的研究分支,许多实验室纷纷加入,希望解析出基因组结构变化与疾病的关系。谈到基因组研究,人们很容易联想到高通量测序技术。孙育杰却另辟蹊径,用成像技术来研究基因组,这也是团队的最大特色。他认为,任何技术都不是完美的,成像技术会获得基因测序技术不能实现的独特发现。“我们也会与做基因测序的团队合作开展课题研究,两种技术相互补充以便同时获得成像数据和测序数据,进而更好地回答生物学问题。其实无论是什么技术,能够获得靶点信息、找到解决方案、帮助人们理解疾病,才是重点。”2021年,孙育杰团队用随机光学重构超分辨显微技术(STORM)观察DNA的复制过程,得到了一些“非常有趣”的结论和模型,相关成果在PNAS和Genome Biology上发表。这一研究也得到了美国“4D核组学计划”研究团体知名专家的关注和肯定。开发高通量、自动化的超分辨成像技术 用于药物和靶点筛选经过多年发展,孙育杰课题组取得了丰硕的成绩,不仅在成像技术开发、染色质结构和功能研究、相关策略对生物学和医学领域具体应用以及多模态成像探针等方面发表了百余篇文章,实验室还培养出许多优秀的学生,有些博士毕业生已经成为香港科技大学、悉尼科技大学、重庆医科大学和西南大学等知名高校的教授。此时,孙育杰又开始思考:除了当前的研究内容,还能做哪些更有实际应用价值、更有影响力的技术?在基因组的研究过程中,孙育杰发现,能够动态、高分辨率解析细胞超微结构和变化过程的工具十分紧缺,当前的研究工具并不成熟。于是在2018年,孙育杰对团队的构成作了调整,专门组建了一支小团队来研发基于单分子定位的高通量、自动化超分辨显微成像技术(SMLM)。该技术是主流的超分辨成像技术之一,包括随机光重建显微术(STORM)和光激活定位显微术(PALM)。“我一直在思考这个技术,它是所有超分辨率成像技术中分辨率最高、最精准、定量能力最强的,却也是成像最慢、最难用的。我们要把这种超分辨成像设备改造成一种快速、高通量、自动化的体系,将来用于靶点筛查与药物筛选。”孙育杰介绍到,“这项技术如何实现筛选功能呢?细胞里的微观结构可以反映病理,观察微观结构需要超分辨成像技术。用药后,我们用这个体系观察这些微观结构的变化,从而判断药物是否产生作用。此外,该体系还可以进行大规模基因敲除,通过观察微观结构的改变筛选靶点。”2020年,孙育杰团队获得了国家自然科学基金委的重大科研仪器研制项目支持。项目的合作方有清华大学做微孔阵列的团队和北京航空航天大学做自动化和图像算法的团队。国产超分辨显微镜发展,瓶颈在于核心部件的工程和工艺2014年,诺贝尔化学奖颁给了三位在超分辨率荧光显微技术方面做出卓越贡献的科学家。此后,超分辨成像技术及其产业化在全球得以快速发展,我国也不例外。尤其近两年,多家创业公司及传统国产光学仪器企业纷纷推出商业化超分辨光学显微镜,资本界也将目光投向这一领域,整个市场一片繁荣景象。孙育杰教授既是超分辨显微成像技术的使用者,也是技术开发者,谈及国产超分辨显微镜的发展,他认为,经过了近三十年的发展,超分辨技术再想有百分之百的原理创新已非常困难,所以国内纯粹的原理创新不太多;但从技术推进的角度来说,研究人员都在对已有的原理进行创新发展,对技术进行改良和创新,这方面我国与国际处于并跑水平。对于当前我国超分辨显微镜发展所面临的困难和挑战,孙育杰表示最大的问题是许多核心零部件被“卡脖子”。他讲到:“超分辨显微镜的显微系统和普通显微镜的显微系统很多零部件是不一样的,包括物镜、平移台、相机、光学滤片等,都要求十分精密。成像分辨率越高,成像需求就越特殊,某些国产核心零部件的水平还存在明显差距。”近些年,科学仪器行业的“国产替代”的声音日趋增多,面对这些困难,超分辨显微镜的国产替代之路又有多长?孙育杰认为,大概需要10年,最快5年。同时,他也认为,超分辨显微镜没有必要完全国产化,但要做到不被“卡脖子”。“目前国内已经有一些公司在生产这些零部件,但他们做出来的产品稳定性还不够好。能不能做到良好的稳定性,涉及到材料和工艺,因此现在要解决的不是技术问题,而是工程和工艺问题。”担任生物医学成像大设施副总工程师 最看重团队和人才2020年,北京大学作为法人建设单位,联合中科院生物物理所等单位共同建设多模态跨尺度生物医学成像国家重大科技基础设施,孙育杰担任副总工程师。2022年11月,生物医学成像大设施竣工。该平台是我国科学家在生物医学成像领域首倡的大科学设施,包括宏观、介观、微观的各种成像设备和全尺度图像整合平台四部分,整个设施共有100多台/套仪器设备。大设施将在今年年底开始试运行,试运行一年后将正式运行。孙育杰讲到:“生物医学成像大设施是给研究者们提供的一站式打破尺度壁垒的成像体系,是一个非常好的生态。然而大设施最宝贵的并不是价值十几亿的仪器设备,而是跨领域的人才团队。成像大设施聚集了精通数学、成像技术、算法、机械、电子等各个学科的人才,经过多年融合、打磨,形成交叉学科研究团队,数学家了解成像,成像专家懂算法,算法工程师也了解生物学……这才是大设施最有价值、最宝贵的财富。”孙育杰团队掠影后记:要了解孙育杰团队的研究工作,首先要弄清楚单分子技术的概念。孙育杰从一个长期研究者的角度进行了诠释:单分子技术是一类把研究对象作为一个分子去测量的技术,有像荧光显微镜这种观察的技术,也有像原子力显微镜这种操纵的技术。我认为单分子是揭示生物学问题内在机制非常强大的一类技术,因为用这个工具一个一个地测分子,再将测得的值合到一起,画一个直方图,就可以同时得到两个结果,集群平均值和具体分布。单分子技术测得的分布可以揭示很多集群实验得不到的额外信息,比如过渡态、罕见发生的事件、一些不同步的体系等。我总说它是下游技术,因为无论是研究发育、遗传,或是其他应用,前面动物、器官、生化等实验都做过了,后面想知道具体机制的时候,单分子技术就能在细胞内或体外用纯化的组分研究相关机制。总体而言,在已有的细胞生物学和生化研究基础上提出假设,单分子技术可以证明这个假设,更好地揭示机制。采访中,孙育杰一再强调,无论是开发成像技术还是标记方案,最终都是为了更好地回答生物学和医学问题,这才是发展这些先进工具的意义。
  • 前沿 | 安捷伦质谱助力七叶树药效成分研究,揭示七叶皂苷和七叶素生物合成进化机制
    2023 年 10 月,陈士林团队在《自然-通讯》(Nature Communications) 发表“Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis”的文章,作者采用多组学研究策略和质谱技术揭示了天然药物七叶皂苷和七叶素特异性合成的分子机制,并在大肠杆菌中实现了七叶素的绿色生物合成。研究背景现代植物化学和药理学的研究证明,草药中特异性积累的有效成分是其发挥药效的物质基础,七叶树属植物是一种温带北半球的多年生树木,该属植物由于分别含有药用活性成分七叶皂苷和七叶素被广泛应用于临床。七叶皂苷(玉蕊醇型三萜皂苷)制剂已经在临床中以口服、静脉注射和局部涂抹的方式广泛使用,用于治疗慢性静脉功能不全、水肿和痔疮等疾病。七叶素(香豆素类成分),也被称为 6,7- 二羟基香豆素 -6-O- 葡萄糖苷,与地高辛一起被广泛用作常见的眼药水七叶洋地黄双苷滴眼液的原料,以缓解眼疲劳、眼痛和干眼等症状。然而,目前对于这两种有效成分的合成、调控和转运机制的分子遗传学研究还相对薄弱。研究结果此次发表的研究通过空间代谢组揭示七叶皂苷在七叶树属植物娑罗子的子叶中特异性积累,解析了中华七叶树高质量基因组,并通过代谢组学、转录组学以及合成生物学技术等方法,成功解析七叶皂苷生物合成途径中关键的环化、氧化、酰基化和葡萄糖醛酸化等催化步骤。同时,课题组通过全被子植物基因组层面共线性研究发现该类三萜代谢基因簇的招募和进化模式,更好地理解了玉蕊醇型三萜类化合物在无患子目植物中的形成机制。针对七叶素的合成途径,研究团队根据关键基因在基因组中存在的拷贝数目及表达模式,筛选和验证了合成过程中关键基因的功能,在大肠杆菌中重建了七叶素的生物合成途径并完成了七叶素的绿色合成。研究结论本文以具有重要药用价值的七叶树为研究对象,综合运用基因组、转录组、代谢组、空间代谢组以及合成生物学等多种技术手段,揭示了七叶树中高价值代谢物七叶皂苷和七叶素的生物合成及进化过程。其意义在于,一方面为推动这些活性化合物的生物合成研究进展以促进其生产应用提供了良好的基础,另一方面为其他药用树木代谢物相关研究提供了良好的研究范式。专家团队此次发表的论文的共同第一作者为中国中医科学院中药研究所孙伟、尹青岗、万会花、高冉冉,共同通讯作者是中国中医科学院/成都中医药大学陈士林、北京化工大学孙新晓、东北林业大学徐志超。本草基因组学团队负责人陈士林院士 2022 年组织发布了千种本草基因组研究计划,在《创新》(The Innovation)、《自然-植物》(Nature Plants)、《分子植物》(Molecular Plant)、《自然-通讯》(Nature Communications) 等国际著名刊物发表了一系列的草药基因组学研究成果,极大地推动了学术界从分子遗传学层面理解中草药中有效成分的合成、转运、积累和调控,助力天然产物药物的绿色生物合成以及高含量药效成分品种的精准选育。参考文献:[1] Sun W, Yin Q, Wan H, et al. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis[J]. Nature communications, 2023, 14(1): 6470.
  • 重磅!优质图谱的前处理-htx基质喷雾仪
    质谱成像作为一种高效新型的技术,可以直接从生物组织切片的表面获得多种蛋白质或者小分子代谢物的空间分布信息。在质量分析的同时,可实现对待测样品的成分、分布状态进行图像化。磨刀不误砍柴功,采用基质分散待测样品的前处理方法是maldi技术的主要特色和关键步骤。在众多的成像前处理系统中,HTX公司的自动基质喷雾仪TMSP-M3独树一帜,通过独特的专利控温喷头技术优势确保了细腻均一的喷涂过程,保证了质谱成像较高的分辨率和灵敏度。以美国-范德比尔特大学医学院化学系-质谱研究中心进行的实验为例:通过对体外以及在cf人肺两种环境中培养的生物膜进行蛋白成像表达。来研究铜绿假单胞菌的生物膜结构。成像实验流程如下:一,样品前处理 图1图1是分别对细菌生物膜以及cf患者肺部细菌生物膜进行培养和冲洗处理。然后使用TMSP-M3对两种切片进行酶处理和基质覆盖,通过调节基质流速(0.2 ml/min)以及喷头速率等多个参数对整个样品区进行喷涂,使得基质与样品形成良好的共结晶,避免了传统手动方法以及由于喷涂不均匀造成的蛋白扩散或移位现象。二,maldi成像图结果分析 图2图2a是对照组(未经处理)铜绿假单胞菌生物膜四个切面的maldi图。由于该菌对宿主钙卫蛋白有依赖性,所以表明生物膜内有金属敏感性细菌亚群。故展示了不同分子量化合物在生物膜空间分布上的异质性;图2b是暴露于钙卫蛋白培养基中的铜绿假单胞菌生物膜四个切面的maldi 图。相比边缘区域,中心有明显的蛋白分布,推测是由于存在营养梯度差异造成的。总结细菌生物膜的识别和定位,使我们有机会重新发现生物膜结构的异质性,这些实验收集的信息和数据具有很高的临床意义。TMSP-M3基质喷雾仪因为超精密机械装置,移动式喷嘴精确定位,独一无二的控温喷头,确保了稳定一致的基质覆盖效果,帮助提高质谱成像的信号强度和分辨率,从而获得优越的样品重现性和高质量的质谱数据;与此同时,也越发普遍的应用到生物制药、蛋白质组学、环境科学、病理学、微生物鉴定等领域。 关于HTX公司:美国HTX科技公司一直致力于组织成像和分子成像技术的不断发展,成像研究集中于样品制备和 maldi 质谱成像领域。HTX成像研究方面借鉴了htx科技公司长期以来在科学仪器领域的经验,包括生物学、设备工程、研究应用和商业开发方面的专业经验。依托先进的分析平台为样品制备和自动化工作流程提供了一系列解决方案。通用实验科技(中国)有限公司(labcare scientific china limited):作为美国HTX公司在中国区的唯一授权经销商,全权负责htx产品的售前、售后技术支持工作。如有需要请不吝联络我们设在中国的业务部门和售后服务中心,联系电话:400 821 3360。
  • 广州生物院等在染色质高级结构调控细胞命运机制研究中获进展 成果发表于Cell Reports
    真核生物基因组DNA缠绕在组蛋白八聚体上形成染色质,并在染色质架构蛋白的作用下逐级折叠形成远距离的染色质相互作用(或染色质环)、拓扑相关结构域和染色质区室等染色质高级结构。远距离染色质互作可以调控基因表达,在细胞命运决定过程中具有关键作用。CCCTC结合因子(简称CTCF)最早被认为是绝缘子结合蛋白,随后发现CTCF在转录激活/抑制、基因印记、X染色体失活等方面均发挥重要的调控作用。近年来,CTCF被认为是染色质架构蛋白,与Cohesin复合物等在调控远距离染色质相互作用和维持染色质“成环”等方面起到重要作用。然而,CTCF是否在同一生物学过程中发挥其多重功能至今尚不清楚。4月5日,中国科学院广州生物医药与健康研究院研究员姚红杰课题组联合美国加州大学圣地亚哥分校教授付向东课题组,在Cell Reports上,发表了题为CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming的研究论文。该研究运用体细胞重编程到诱导多能干细胞为模型,结合多维组学技术,并联合生物信息分析,揭示了CTCF介导的染色质绝缘和染色质结构变化协同调控干细胞多能性获得的新机制。研究发现,CTCF在体细胞重编程过程中表达逐渐升高,并发挥促进体细胞重编程为诱导多能干细胞的作用。在这一过程中,CTCF具有同时抑制体细胞相关基因表达和促进多能性基因网络激活的双重功能。机制分析发现,CTCF通过发挥染色质绝缘功能抑制体细胞相关基因的表达,同时,CTCF具有维持多能性基因染色质开放的作用,CTCF还结合在部分多能性基因启动子区,促进这些多能性基因增强子(Enhancer)和启动子(Promoter)之间的相互作用(EP互作)。此外,该研究还揭示了CTCF与染色质重塑因子SMARCA5形成蛋白复合物,有助于维持多能性基因的染色质开放和多能性转录因子的结合,促进多能性基因网络的激活。研究表明,在体细胞重编程为诱导多能干细胞过程中,CTCF发挥了介导染色质绝缘和染色质重塑的协同调控作用。该研究进一步完善了CTCF的生物学功能,并为后续研究细胞命运决定的调控机理提供了新思路。研究工作得到国家杰出青年科学基金、国家重点研发计划、国家自然科学基金联合基金项目和中科院战略性先导科技专项等的支持。  论文链接 本研究的模式图
  • 中科院动物所等揭示大熊猫对竹子黄酮类化合物的代谢规律及其肠道微生物适应性响应机制
    植物次生代谢产物(Plant secondary metabolites,PSMs)在植食性哺乳动物的觅食生态中起到重要作用。黄酮类化合物是一类重要的PSMs,在植物中广泛存在;具有显著的促进健康的作用,包括抗菌、抗病毒、增强免疫,以及心血管保护等功能。目前,对食源性黄酮类天然复合成分的整体代谢规律及其与动物肠道微生物的双向作用,尚缺乏清晰的认识;关于黄酮类化合物的生态学功能研究相对较少,特别是其对濒危野生动物的生理影响及动物对食物中黄酮类化合物的适应性演化机制鲜有研究。  大熊猫属于食肉目动物,具有食肉目动物的消化生理特征,但其食性特化为专性食竹。竹中具有丰富的黄酮类化合物。因此,大熊猫-竹子为研究食源性黄酮类化合物在植食性动物与植物之间的生态学功能提供了理想模型。  9月22日,中国科学院院士、中科院动物研究所研究员魏辅文团队联合成都大熊猫繁育研究基地,在Microbiome上发表了题为Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal的研究论文。该研究运用代谢组学、宏基因组学和体外培养等方法,在完整的年周期内同步采集野外大熊猫的可获得样本(食物和粪便);采集成都大熊猫繁育研究基地中圈养大熊猫的食物、粪便和血浆,剖析了大熊猫对黄酮类化合物的吸收代谢、利用偏好和生物转化,以及黄酮类化合物对大熊猫肠道微生物组成和功能的影响。主要研究结果如下:  大熊猫对黄酮类化合物的利用规律:利用代谢组学方法,在竹子中鉴定了97个黄酮类单体化合物;与竹笋相比,竹叶中含有更多种类和更高丰度的黄酮类化合物。因此,随着食笋和食叶的季节性转化,黄酮类物质的摄入存在显著的季节性差异。血浆靶向代谢组学检测发现,直接以原型化合物的形式进入血液的化合物仅有12种。食物与粪便代谢组的比较分析发现,大熊猫对食物源黄酮类化合物的利用在亚类和单体水平上均有不同的偏好性,对食物源中的38种单体具有较高的利用率,且粪便中有新的黄酮类单体化合物生成。  大熊猫肠道微生物适应性响应机制:粪便代谢组和宏基因组关联分析显示,PSMs-黄酮类化合物与肠道微生物的季节性具有显著的相关性。体外培养实验证明,黄酮类物质的季节性的差异摄入驱动了大熊猫肠道微生物的季节性变化,如野外大熊猫肠道微生物关键物种的变化(狭义梭菌属1,Clostridium sensu stricto 1),特别是对有益菌的生长促进作用,如益生菌丁酸梭菌(Clostridium butyricum)。食物中黄酮类摄入越高,大熊猫肠道微生物的多样性越低,微生物毒力因子的丰度也更低。宏基因组功能分析揭示了70%黄酮类化合物的吸收转化由肠道微生物参与完成,且肠道微生物也促进大熊猫对黄酮类物质的转化和利用偏好。  以上结果证明,在长期演化过程中,大熊猫季节性食物转化行为是大熊猫对竹中有益元素最大化利用的适应。其中,黄酮类化合物对维持大熊猫肠道微生态的动态平衡发挥重要作用。该研究拓展了关于大熊猫营养生态学的认识:有益的PSMs可以通过调控肠道微生物,正反馈调节宿主生理,从而影响大熊猫的觅食策略。此外,该研究也为圈养大熊猫管理提供了重要参考,即食物源黄酮类化合物是大熊猫重要的天然益生元,对大熊猫的临床健康管理,特别是肠道疾病的治疗具有广阔的应用前景。  该研究首次以非模式野生动物为模型,探索食源性黄酮类化合物的吸收代谢规律及其与肠道微生物的互作模式。从动物生态学的视角,应用多组学方法探讨有益的PSMs对植食性哺乳动物的生理作用。黄酮类化合物与肠道微生物的双向作用为探究动物-肠道微生物共演化提供了新思路。研究得到中科院战略性先导科技专项(B类)、国家自然科学基金的资助。
  • 上海有机所等在高活性天然产物生物合成中发现新自抗性机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   GyrI-like蛋白广泛存在于原核与真核生物中,并被注释为小分子结合蛋白。近期,中国科学院上海有机化学研究所生命有机化学国家重点实验室唐功利课题组与周佳海课题组以及瑞士洛桑联邦理工学院袁曙光合作,以抗肿瘤抗生素谷田霉素(YTM)和CC-1065为研究对象,报道了GyrI-like家族的一个亚家族蛋白具有水解YTM和CC-1065环丙基的特性,且这类酶能够赋予微生物对YTM和CC-1065的抗性。相关研究成果在线发表于《自然· 通讯》( i Nat.Commun. /i 2017, DOI: 10.1038/s41467-017-01508-1)。 /p p   谷田霉素家族化合物是一类来源于微生物、含有环丙烷药效团的高活性天然产物,目前包括YTM、CC-1065和多卡霉素。这些化合物主要是对细胞内的遗传物质DNA进行烷基化修饰,从而达到杀死细胞的目的(IC50为pM级)。唐功利课题组长期以来致力于谷田霉素家族化合物的生物合成研究,此次发现是继克隆了YTM和 CC-1065的生物合成基因簇,以及揭示 DNA 糖苷酶 YtkR2开启DNA修复机制以来取得的又一突破。 /p p   该研究得到了国家自然科学基金委、上海市科委、中科院战略性先导科技专项的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171211356416650773.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/87622366-468a-46b7-99e7-63c86a510812.jpg" / /p p style=" text-align: center " GyrI-like家族环丙基水解酶赋予微生物对YTM和CC-1065的抗性 /p
  • 岛津推出用于分析疏水多肽蛋白的MALDI新基质
    岛津制作所(SSI)近日发布了ATHAP-MALDI基质方法工具包,用于改进对包含跨膜疏水蛋白和多肽的分析能力。传统的LC-MS/MS和MALDI-TOF 很难分析包含疏水基团的膜蛋白。烷基化三羟基苯乙酮(ATHAP)新基质在此方法中发挥了特殊的作用。  许多疾病的生物标志物是包含疏水基团的膜蛋白。之前用液质和MALDI-TOF的检测效果都不理想,这类蛋白和多肽一般不被目标分析物列表所包含。由于疏水多肽的低溶解性,其难于在液相质谱中得到检测。采用如α -氰基-4-羟基肉桂酸 (CHCA)、芥子酸(SA)、二羟基苯甲酸(DHB)等传统基质的MALDI法离子化效率较低,从而导致用MALDI-TOF检测这些物质灵敏度很差。  “疏水性是将横跨膜片段整合到脂质双分子层的主要动力。这些新的基质工具包为科学家分析这些重要物质的生物和物理化学性质提供了前所未有的可能性。”岛津公司Scott Kuzdzal博士说。“这些工具包可以提高分析灵敏度,开拓对从抗菌肽到癌症蛋白标志物等关键疏水性分子结构和功能的研究。”  ATHAP基质由广岛大学和田中耕一尖端科技实验室联合开发,并授权给岛津制作所。本研究得到日本学术振兴会(JSPS) “世界领先创新科技研发资助项目 (FIRST Program) ”的赞助支持。编译:郭浩楠
  • HTX TM-Sprayer基质喷雾仪:MALDI质谱成像“好搭档”
    在过去几十年中,MALDI质谱成像技术已被广泛应用在生物标志物发现和药物研发等多个领域。但是MALDI质谱成像的技术操作中,要获得高质量、重复性好的质谱结果,并不容易。组织样品基质的选择和覆盖十分关键,要尽可能的满足组织切片上的蛋白无扩散或移位现象,基质与蛋白形成良好的共结晶,并不是十分容易的事情。然而,美国HTX technologies公司研发的全自动基质喷涂设备让这一切变得简单可行。HTX公司研发的全自动 MALDI 基质喷涂设备(TM-Sprayer)近期,南卡罗莱纳医科大学-细胞与分子药理学&实验治疗学部发布了一篇基于MALDI FTMS成像技术的癌变生物标记物N-聚糖的研究。该研究中利用了超高分辨、超高灵敏度的solariX MALDI FTMS质谱平台,通过对福尔马林固定石蜡包埋(FFPE)组织中的N-聚糖进行质谱成像分析,确定了N-聚糖为组织癌变生物标志物。 实验操作中,在对5μm厚的FFPE甲状腺癌组织切片样品进行酶处理和基质覆盖时均使用了HTX公司的自动喷雾仪产品(TM-Sprayer)来执行,而非传统的手动处理。HTX的这款TM-Sprayer基质喷雾仪最大特点就是能够以精准模式和可调节模式对整个样品区或部分区域进行喷涂,该研究中首先利用TM-Sprayer将浓度为0.1μg/μL的糖苷酶(PNGase F)喷涂在组织切片表面,37℃环境下孵育。随后,选用基质CHCA进行精确覆盖,确保了细腻、均一稳定的基质涂层。后续获得的MALDI成像结果也显示了较高的信号强度和分辨率。 实验结果Figure 1. Example N-glycan signal from a single section of thyroid cancer. A Total average spectrum from the image with example glycoform structures per m/z B Tile view of example images. Inset top right, photomicrograph of unstained tissue prior to imaging. Abbreviations: GlcNAc, N-acetylglucosamineFigure 2. Image segmentation showing complexity of N-glycan signatures in a thyroid cancer tissuesection. A Pathologist marked H&E stain of section highlighting adjacent nontumor, anaplastic, and necrotic regions. B SCiLS image segmentation of N-glycans from 2D mapping. White asterisks markcalculated overlaps of anaplastic and necrotic regions.Figure 3. Quantification of N-glycan signatures from regional areas on tissue. Statistical testing was donecomparing nontumor adjacent and anaplastic regions (ROC-1) or anaplastic versus necrotic (ROC-2).A Photomicrograph depicting areas selected for measuring relative abundance of N-glycan expression.B A high mannose (Man9) structure distinguishing nontumor adjacent compared to anaplastic tumor ornecrotic regions. C A biantennary N-glycan defining necrotic regions with low expression in nontumoradjacent and anaplastic. D A tetrantennary fucosylated structure with low expression in adjacent nontumor and increasing expression in anaplastic and necrotic tissues regions.TM-Sprayer最大的特点就是可以为MALDI质谱成像提供高重现性和高质量数据,该产品已被应用在多个领域的MALDI成像实验中,并有相当数量的科研文献提到应用了该款产品获得优质数据。在质谱成像领域势必将成为MALDI成像的好搭档。 关于HTX公司美国HTX科技公司一直致力于组织成像和分子成像技术的不断发展,成像研究集中于样品制备和 MALDI 质谱成像领域。HTX成像研究方面借鉴了HTX科技公司长期以来在科学仪器领域的经验,包括生物学、设备工程、研究应用和商业开发方面的专业经验。依托先进的分析平台为样品制备和自动化工作流程提供了一系列解决方案。 通用实验科技(中国)有限公司(Labcare Scientific China Limited)作为美国HTX公司在中国区的唯一授权经销商,全权负责HTX产品的售前、售后技术支持工作。如有需要请不吝联络我们设在中国的业务部门和售后服务中心,联系电话:400 821 3360。
  • 质谱成像基质微喷雾系统介绍
    p style=" text-align: center " img title=" 777bed85-1539-45ee-942f-2da79fdecaab.jpg!w280x280.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/8bfd14b1-a50c-4748-810d-bf1ab36643a2.jpg" / /p p    strong 产品名称:质谱成像基质微喷雾系统 /strong /p p strong   生产厂家:HST公司 /strong /p p strong   产品型号:Matrix Spotter /strong /p p   产品说明:MALDI质谱成像技术已成为生物标志物研究、医学、药物研究等方面的重要手段,自动化的基质喷涂技术可大大提高MALDI质谱成像的灵敏度和分辨率。HST公司研发的μMatrix(矩阵观察)微喷雾系统是质谱组织成像领域内一款新型的基质制备设备。通过电脑控制的压电式模块,只需要pl(微微升)的上样量,即可产生高重现性和均一性的Matrix制备。在组织多肽领域,该系统也可以制备均质的酶消化样本。与市场上传统的纳升级喷雾系统不同,此微喷雾系统采用全新的精细雾点控制模块,率先在细微的组织表面高分辨率的精确均匀喷洒各种基质。也可将胰蛋白酶直接喷洒在组织表面,进行表面蛋白质原位酶解,不但能看到目标蛋白质的分布,而且能通过质谱仪直接鉴定蛋白质。 /p p    strong 产品特点 /strong /p p    strong 1 精确性和均一性 /strong /p p style=" text-align: center " img title=" 1.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201708/insimg/ea870112-6430-4961-a8ea-6a712357d84d.jpg" / /p p   μMatrix Spotter可以将世界地图上的任何区域绘制成微斑点的矩阵阵列。 /p p strong   2 操作简单 /strong /p p style=" text-align: left " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/3cb58275-0b11-41c8-82d9-9e0fdff9379d.jpg" / /p p   其软件直观的用户界面可以精确控制基质的数量、斑点面积以及位置。 /p p   strong  3 可重现性 /strong /p p img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/a6045498-e497-40db-a68f-2172aaf999bd.jpg" / /p p   通过使用pL-级压电式喷雾单元模块,为矩阵观察提供各种基质溶液的高还原性斑点,如HCCA(L) 和 DHB (R)。 /p p strong   产品优势 /strong /p p   μMatrix Spotter的操作软件可以精确选择基质打印区域,从而尽量减少基质溶液的使用 /p p   通过压电式喷雾单元在组织切片上方的垂直“PL”喷雾可实现打印区域基质的一致性 /p p   MALDI MS成像的组织提取物可实现少量重复打印控制。重复数量和干燥时间可根据个个实验的目的进行优化控制 /p p   可同时打印4个氧化铟锡载玻片 /p p   胰蛋白酶溶液和优化的溶剂混合液喷涂在组织切片上,可用于MALDI质谱成像实验。 /p p strong   产品应用 /strong /p p   MS成像 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/45f9935e-1a9b-4be8-9bf5-282ccdef201b.jpg" / /p p   小鼠脑组织脂质成像 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/94e1224e-34bc-498b-9bf7-63c9af59ec4f.jpg" / /p p   SA基质晶体 小鼠脑脂质 /p p   使用μ矩阵观察 m/z 788 m/z 826 m/z 850 /p p   使用空气喷射式方法 /p p   乳腺癌组织的胰蛋白酶消解 /p p style=" text-align: center " img title=" 6.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201708/insimg/1591d1a3-aa7d-41fe-9dd0-0241b31643e2.jpg" / /p p   使用 μMatrix Spotter对进行胰蛋白酶消解后的乳腺癌组织MALDI-TOF MS。质谱成像显示肽m/z 1213和1396的分布 肽m/z 1213通过MS/MS分析被识别为人类Igα-2 链。 /p p   发芽马铃薯毒素成像 /p p style=" text-align: center " img title=" 7.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201708/insimg/3563ca74-a951-4072-bf3b-8a7f6fe6132e.jpg" / /p p   使用μMatrix Spotter显示50通道DHB马铃薯芽切片成像。 /p p strong   技术参数 /strong /p p   应用精度:± 50μm; /p p   喷雾分辨率:5760*1440 dpi; /p p   样品槽:支持6个样品瓶位; /p p   喷雾速度:大约30秒 (在 5*5 cm sup 2 /sup 区域上); /p p   自动应用控制器:定量重复喷雾; /p p   板支架:384 孔板,专用铟锡导电载玻片(ITO slide glass); /p p   加热板:温度范围20~50 span style=" font-family: arial, helvetica,sans-serif " ℃ /span ; /p p   压电式喷雾单元:3 PL /最少。 /p p & nbsp /p
  • 以微知著,极至所见
    以微知著,极至所见关注我们,更多干货和惊喜好礼Exploris 240/120 01 更小的机身却蕴含更高的分辨率和更快的扫描速度,有效实现数据信息zui大化;02 AcquireX智能化数据采集模式,自动迭代更新分析方法,实现复杂样品的深度分析;03 传承于Orbitrap 的数据质量及超强稳定性,正负切换功能实现代谢组学大队列分析;每年6月份举行的美国质谱年会是质谱界的”盛宴”,在这场大会中,全球质谱人汇聚一堂,盛话质谱新品,学术新发现… … 今年由于新冠疫情的影响,美国质谱年会取消了线下的会议日程,并以“ASMS 2020 Reboot”为议题重启“云”上的形式,将研讨会内容实时直播。美国当地时间6月2日,赛默飞在质谱年会上重磅推出两款智能化Exploris系列质谱—— Orbitrap Exploris™ 120和Orbitrap Exploris™ 240。这两款新产品的到来,进一步拓展了赛默飞超高分辨质谱的产品线,同时也为我们带来全新的体验。这两款新产品均可适用于食品、环境、公安司法、制药和科研等用户的需求,下面就让我们一起来见证Exploris系列新品在代谢组学和脂质组学中的应用吧。代谢组学发现研究:以微知著,极至所见您的样品,增加研究深度和广度Orbitrap一向以超高分辨率(R100,000)、亚ppm的质量精度,以及超强稳定性著称。Exploris 系列传承了Orbitrap 的所有特点,同时为我们带来更多的极zhi体验。 在常规的代谢组学和脂质组学研究中,我们的研究对象往往是血液、细胞、组织等基质非常复杂的样本。在这样一项没有“答案“的研究中,我们设立的标准越高,找到答案的可能性就越大。仪器的分辨率是不可或缺的提高标准的手段之一。Orbitrap Exploris 240 的分辨率高达240,000(@200 m/z),不但可以让我们的目标物和”背景“离子分离的更加彻底,同时可以获得每个代谢物准确的精细同位素分布信息。夫子之“性能“,是否予您心有戚戚焉呢?这正是热门应用领域代谢流研究所遇到的问题之一。在我们往期的文章中有介绍,在生物体内部复杂的代谢网络中,会存在着“明修栈道,暗渡陈仓”的情况。对某一代谢物来说,往往存在多种功能性质不同的代谢通路,可能导致代谢物中间体丰度变化不显著。通过代谢流研究,有望让我们的科研成果更进一步,更深入准确地了解疾病发生发展的过程。 我们采用非标、全标以及混合的E.coli样品进行的一项实验中,采用Orbitrap Exploris 240,结合Compound Discoverer代谢流研究流程,验证了代谢流研究的准确性。真正做到以微知著,极至所见,为机制验证提供最jia工具,增加研究深度和广度。众所周知,Orbitrap 全系列质谱在提高分辨率的同时,不会损失仪器的灵敏度。Orbitrap Exploris 240 和120的扫描速度可达22Hz,对于正常的色谱峰来说,即便采用240,000的分辨率进行采集,也可获得足够多的数据点用于定性和定量研究。我们以乙酰肉碱为例,在240,000的分辨率模式下,可以获得13个扫描点,完全满足定量要求。代谢组学深度鉴定:AcquireX智能化采集模式,增加鉴定深度代谢物鉴定一直是代谢组学研究的瓶颈之一,目前对代谢物鉴定最行之有效的办法是建立标准品谱图数据库,通过谱图对比、碎片确证的方式,可以对代谢物进行快速准确的鉴定。科研工作者在分析手段上做了大量的研究工作,目的就是为了获得更多更有意义的碎片离子谱图。Automatically updated run-to-run inclusion/exclusion(点击查看大图)在2018年发布的小分子终端旗舰机Orbitrap ID-X上,我们引入了AcquireX自动化智能化数据采集模式。这种新型的采集模式采用深度机器学习,自动迭代更新排除和包含列表,从而采集到更多有意义的数据,深受代谢组学研究者信赖和喜爱。在新产品Orbitrap Exploris 240中,我们同样引入了AcquireX的采集模式,以帮助到更多的科研工作者,为科研谋取福利。TOTAL NUMBER OF DDA IN JECTIONS(点击查看大图)相较于最常用的传统DDA模式,AcquireX 模式采集的MS2的数量将多139%以上。从而增加代谢物组覆盖率和未知化合物鉴定的置信度,对最ju挑战的低丰度、高复杂性样品获得前所未有的结果,特别适用于代谢组学、脂质组学、代谢物鉴定等应用。 代谢组学通量性研究:传承于Orbitrap 的数据质量及超强稳定性,适用于大队列分析我们知道,代谢组学技术要走向临床应用,通过大队列研究寻找生物标记物是其中一种重要的研究方式。受限于仪器的稳定性和不同仪器间的重现性,大队列研究面临很多困难。传承于Orbitrap 的数据质量及超强稳定性,正负实时切换等技术,Orbitrap Exploris 系列质谱在临床大队列研究中将大有可为。以Orbitrap Exploris 240 为例,通过25个覆盖不同质量数范围的化合物进行监测,3个不同实验室连续检测6天的结果发现,98.7%的化合物质量数偏差均在1ppm以内;同时正负实时切换,与单独采集模式相比,仪器的响应偏差和RSD%均在10%以内。这些数据将为队列分析提供最jia质量的数据,最小化仪器因素对实验结果的影响。结语作为科学领域服务的世界领导zhe,赛默飞在质谱创新领域不断推陈出新。Exploris系列质谱全新的设计,为我们带来更优越的分析性能和体验。本期小编就为大家介绍就到这里,我们将在下周陆续介绍新产品在蛋白组学、食品环境和生物药领域的应用,带您领略Orbitrap Exploris 240和Orbitrap Exploris 120的风采,敬请期待。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • UNCW Center for Mari发布珊瑚和其它底栖基质类型原位代谢测量系统 CISME新品
    珊瑚和其它底栖基质类型原位代谢测量系统 CISME CISME便携式潜水呼吸系统用于原位检测珊瑚和其它底栖基质的代谢率。这个名字来源于珊瑚原位代谢,并发音为“kiss-me”,以反映仪器与珊瑚之间的温和互动。 CISME在短时间孵化期间测量氧气通量和pH,其中水流量和光照水平由操作人员控制。从这些浓度变化计算呼吸(R)和光合作用(P)。样品环提供水样,可以滴定总碱度(TA)以测量钙化率(CA)。可以基于O2和CO2通量计算R和P,从中可以计算RQ和PQ。样品环也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 检测指标l 在原位孵育期间的氧气通量和pH值的变化,其中水流量和光由操作人员控制。根据浓度的变化,计算呼吸速率和光合速率。 l 样品环提供水溶液样品,用于总碱度(TA)滴定,从中计算钙化率。 l 样品环可用于进行实验,其中操作人员引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 参数l 测量O2的变化,以1秒的间隔测量pH值。l 泡沫密封容器抵至浅表面的珊瑚,珊瑚礁基质,如草皮,珊瑚藻和沉降块来捕获海水。l 可编程孵化程序(R,P,R + P,P + R,Custom multistep (自定义多步)。l 孵育体积:88ml+16ml样品环。l 可拆卸的样品环容积用于收集孵育的水溶液的子样品或引入添加剂。l 350-1200毫升min-1可变流量 通过泵反馈。l 可变光(PAR):0-2500μmolm-2s-1。l 无需破坏性取样。l 耐水压80米。l 附件:孵化分离生物体的流动室,如大型藻类,小动物 用于沉积物培养的适配器。 在藻类基质上检测n 实例CISME检测了位于波多黎各珊瑚礁:加勒比海珊瑚Orbicella faveolata上的 40个标记菌落的代谢率的季节变化。两个珊瑚礁位于波多黎各。每个珊瑚礁有20个被标记的珊瑚每个珊瑚每季度用CISME测量一次,以寻找新陈代谢的季节性变化模式一年重复检测4次。结果显示夏末R升高,但P没有变化,因此夏末的P / R比率较低。 P,CA和P / R比率≥实验室公布测量值,表明原地条件优于陆基海水系统。 使用可编程功能的CISME生成的P vs I曲线与使用Walz潜水荧光计的快速光曲线相比 原位海水酸化实验n 系统标准组成CISME由一个带有电子装置的浮力丙烯酸耐压外壳组成,通过防水电缆连接到孵化流量传感器头,操作人员将其连接到珊瑚/基质表面以进行孵化。l 一个主控机(包括:专有主板;O2板 适配器 WiFi卡 LED驱动器 编程和储存必要文件的USB 全部采用防水丙烯酸外壳)。 l 一个7200 aH的锂离子电池和充电器以及三个HD泡沫浮子。l 一个完整泵头“(由3D构成,具体包括:pH电极 光纤传感器 循环泵 LED光源 氯丁橡胶泡沫密封;另外还包括:三个牵开器“wings”,三个Cetacea牵开器和八个18毫升样品环 “仿真”环和环状填充物。l 一个粘度杯,用来培养小的独立样品。l 插拔连接器连接主控机与头部的电缆线,连接电池与主控机的电缆线,以及连接CISME与UW平板电脑的WiFi电缆线。 l 备件:二个额外的泡沫密封和胶水,二个额外的Presens点更换件和胶水 光纤维维修工具 备用O形圈。 备用' 仿真' 环和环形填充。 氧气校准套筒。 用于组装的工具和零件包:15 mm扳手,薄的15/22两用扳手,用于pH螺丝钉的长内六角扳手,O形圈镐,用于清洗螺丝钉的内六角扳手,带Molykote 111的洗涤器,额外的O形圈 ,硅胶包,Q-tips, l 许可证:允许使用装有专有的Android软件的平板电脑运行CISME。l 一个定制的潜水箱,用于安装系统。 l 一个运输箱,Seahorse brand品牌或同等产品(客户可以选择黑色,黄色或橙色)。l 一张录有用户手册和教学视频的DVD。n 选配水下平板电脑CISME定制的由Inova设计的SZ-Dive水下容器(HOUSE),抗压深度达 80米;安装了CISME安卓软件的三星Galaxy S2 8“平板电脑。 CISMEHOUSEn 有关的检测图片创新点:原位检测珊瑚和其它底栖基质的代谢率,也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 珊瑚和其它底栖基质类型原位代谢测量系统 CISME
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制