当前位置: 仪器信息网 > 行业主题 > >

生命起源

仪器信息网生命起源专题为您整合生命起源相关的最新文章,在生命起源专题,您不仅可以免费浏览生命起源的资讯, 同时您还可以浏览生命起源的相关资料、解决方案,参与社区生命起源话题讨论。

生命起源相关的方案

  • 采用Biotage Initiator 微波化学合成仪模拟深海热泉的物理化学环境下进行生命起源前氨基酸的合成
    本论文采用 BiotageInitiator 微波化学合成仪模拟深海热泉的物理化学环境,在实验过程中压力梯度为 0-18bar,可以模拟到海平面以下 1000米的水热环境。耐士科技作为Biotage中国区总代理,以最优质的服务给客户提供Biotage全系产品以及相关技术服务。
  • 植物根系研究新技术Minirhizotron起源发展和应用.pdf
    植物根系研究新技术Minirhizotron起源发展和应用.pdf;全球最著名的《科学》杂志(Science),于今年6月发表了--应用植物根系监测系统BTC-2研究植物根系行为的文章“Plants Integrate Information about Nutrients and Neighbors. ” BTC-2微根窗根系监测系统及BTC-100高倍微根窗根系监测系统由美国Bartz公司研制生产,是目前世界上唯一国际通用的微根窗技术,易科泰生态技术公司为其亚洲地区总代理和技术服务中心
  • 叶绿素荧光与外星生命探索
    M矮星是我们银河系最常见的恒星,其中40%的M矮星有“超级地球”环绕,成为科学家外星生命探索关注的热点。这些M矮星系及其超级地球行星是否存在生命?如何存在?是否适合居住?“万物生长靠太阳”,M矮星光谱区别于太阳光谱,主要表现为更强的红外光谱、很低的PAR(光合有效辐射光谱,400-700nm)。意大利天文观测与生命科学研究人员为此在实验室设计了如下实验:利用叶绿素荧光技术,通过模拟太阳光、FR(750nm)、模拟M矮星光谱,检测蓝藻能否在M矮星光照下正常光合作用。实验采用了一种可合成叶绿素d和f的蓝藻,这种蓝藻可以利用750nm远红光进行放氧光合作用。
  • 水分活度|对微生物的新研究扩大了地球及其他地方生命的已知极限
    对探测地球以外生命感兴趣的科学家长期以来一直在研究盐分环境,他们知道液态水是生命所必需的,而盐可以让水在更广泛的温度范围内保持液态。盐还可以保存生命迹象,就像盐水中的泡菜一样。
  • EM科特扫描电镜在生命科学领域的应用
    电子显微镜广泛应用在生命科学领域,如动植物组织、细胞及各种微生物微观形态形貌,需要扫描电镜的高分辨和大景深进行表征。
  • 拉曼光谱在生命科学领域的应用
    本文列举了Horiba Scientific及其拉曼用户在生命科学研究(包括基础研究、生物医学、药物、化妆品以及食品)中的一些应用实例,显示了共聚焦拉曼技术、新的拉曼成像方法可为该领域的应用提供坚实的技术支持。
  • XRM应用介绍 | 生命科学
    XRM技术在生命科学领域中有着非常广泛的应用,高分辨断层三维扫描主要可以应用于骨科学、口腔科学、植物学以及医学领域中的呼吸系统研究、血管系统研究以及生物制药研究等方面。
  • SISKIYOU-生命科学研究探针定位优化
    光学机械探针定位器可以对生物样本进行更全面的研究。这种趋势技术在生命科学研究中扮演着关键的、不为人知的角色。光子技术使生命科学家能够在从神经元信号传导到心肌收缩以及细胞和细胞发育等过程的日益复杂的研究中探测样本。随着研究在越来越精细的分辨率水平上继续进行,对光机定位的要求变得越来越高。定位设备操纵用于与生物样本相互作用的探针。这包括定位光探头,如聚焦激光器或LED,以及定位物理探头,如电极或微量注射器。
  • OLS OMNI 生命科学: 类器官和细胞计数的解决方案
    OLS OMNI生命科学以智能、可靠和用户友好的技术加速生命科学和生物技术的细胞研究。持续在3D细胞培养、细胞计数、细胞检测、细胞成像和微生物学领域提供解决方案的合作伙伴。我们高度专注于细胞培养、干细胞扩增和分化、细胞计数和细胞测定的应用。
  • UV-1100紫外可见分光光度计在生命科学中的应用
    UV-1100紫外可见分光光度计在生命科学中的应用UV-1100紫外可见分光光度计在生命科学中的应用UV-1100紫外可见分光光度计在生命科学中的应用
  • 丹纳赫生命科学合成生物学解决方案
    合成生物学被认为将催生新一代生物技术的革命,欧美等发达国家早在十多年前就开始设立和资助大型合成生物学研究中心。至今为止,美国政府已支持设立3个大型合成生物学研究中心,英国政府已经资助6个大型合成生物学研究中心。其中,美国国防高级研究计划局(DARPA)资助的“生命铸造厂(Living Foundries)计划”是实施最早、规模最大的计划之一,目标是利用合成生物学技术构建基千生物体的新型制造平台。德国、荷兰、日本、新加坡澳大利亚等国也在紧密跟进,在各大研究中心与学术机构中,一般都搭建有生物铸造厂作为核心。我国合成生物学领域的布局晚于欧美等发达国家,但推进速度快、投入集中、目标明确。2013年,中国把建设“合成生物研究重大科技基础设施”项目列入《国家重大科技基础设施建设中长期规划(2012-2030年)》的总体部署,并于2018年1月批复立项,设施计划投入9.4亿元人民币。同时,科技部从2018年至2020年连续3年发布国家重点研发计划“合成生物学”重点专项:教育部自2018年开始启动合成生物学前沿科学中心立项和建设。丹纳赫生命科学平台整合了独特的优势技术,产品和方案,盖了合成生物学的“设计-构建测试学习闭环工作流,针对现有生物铸造厂中试错实验量大、自动化手段少、大片段DNA合成成本高、研究维度单一等局限,提供了围绕川克曼库尔特生命科学自动化工作平台为核心的高通量现代合成生物学工业平台。运用创新的纳升级声波移液系统、IDT单链寡核苷酸和双链DNA片段、美谷分子的智能微孔板检测系统、SCIEX基于高端质谱的代谢/脂质蛋白等多组学分析技术、徕卡显微系统的高分辨和共聚焦显微镜等,有效降低成本、提升通量、拓展研究深度和广度。
  • 细胞凋亡实验
    细胞死亡根据其性质、起源及生物学意义区分为凋亡和坏死两种不同类型。凋亡普遍存在于生命界,在生物个体和生存中起着非常重要的作用。它是细胞在一定生理条件下一系列顺序发生事件的组合,是细胞遵循一定规律自己结束生命的自主控制过程。细胞凋亡具有可鉴别的形态学和生物化学特征。
  • 格物优信高温容器生命周期管理系统(铁水罐、鱼雷罐、钢包)
    在钢铁厂整个出钢生产过程中,每个环节都有其承载铁水或者钢水的器皿,主要有铁水包、鱼雷罐、钢包、混铁炉、转炉和中间包。钢包等高温容器内部耐火材料,被高温钢水长期侵蚀,将导致包壁磨损,若无法及时发现容器内壁薄弱区域,未能及时处理,就会造成穿包漏包,从而带来重大经济损失和生产及人身安全事故,而且由于高温容器分布区域广,钢铁厂对于高温容器的管理、调度无法进行有效管理,造成巨大的生产成本增加。格物优信针对此种情况,对铁水包、鱼雷罐、钢包和中间包等重点区域建设了一套高温容器全生命周期管理系统,这是冶金行业目前迫切所需的,通过高温容器罐体数据进行采集监测,流转过程中的设备管理,格物优信高温容器生命周期管理系统可实现高温容器全方位安全诊断和设备维修数据分析,可以有效提高工作效率,提高工厂效益和保障安全生产。
  • 飞纳电镜和含水样品的冰雪奇缘
    液体和扫描电镜真空系统,本就是天敌。电镜的真空系统是服务于电子光路,为电子提供一条“畅通无阻”的大道,而液体在这样的真空状态下会快速蒸发,对真空系统带来巨大威胁,因此,原则上扫描电镜是不能直接观察液体或含液体的样品。但在生命科学领域,含水的样品实在是数不胜数,放眼其分支植物学、动物学、微生物学等,也都避不开含水样品的表征工作,此外食品科学以及材料科学领域也同样会面临含水样品。那么如何来解决扫描电镜不能直接观察含水样品的矛盾?最常用的方式便是对样品进行干 燥处理,但是干燥又会面临处理过程繁琐,或是样品结构变形的新矛盾。何不返璞归真,想办法不让液体在电镜中挥发呢?
  • LUMiSizer在沙棘汁稳定性研究上的应用
    沙棘汁由沙棘俗名醋柳、酸溜溜榨汁所得。含有极高的维生素,维生素C的含量每100克鲜果含有800到1100毫克。起源于地质运动的冰期和间冰期,经过亿万年严酷的自然选择,沙棘以其超凡的生命力傲立于世,被誉为植物中的“生命之王”。本文利用LUMiSizer稳定性分析仪对沙棘汁在高压微射流均质的影响下,稳定性的差异,并确定了离心沉降可以快速表征沙棘汁的沉淀、絮凝和起霜等不稳定现象的发生。
  • AFM/SPM在生命科学领域的应用
    是德科技AFM系列都可以选择配有专用接口平台,可方便地将高精度AFM成像部件直接与各类倒置显微镜联用,从而实现多种显微手段同时成像,既可以得到光学的明场像、暗场像、荧光图或激光共聚焦图,又可以轻松获得原子力图像;对用一个样品的同一个位置同时原位得到高衬度的光学图和高分辨的AFM图,这是生命科学领域用户最心仪的显微解决方案。 是德科技AFM还具有很强的兼容性,可与各个厂商的倒置显微镜和激光共聚焦联用,也可支持FRET,暗场和明场成像多种光学附件功能。
  • 丹纳赫生命科学公共卫生与疾病预防控制综合解决方案
    丹纳赫生命科学,拥有丰富的适用于疾控系统的领先解决方案和产品,可以为疾控系统的传染性疾病检测,食品中有害物质例行监测,环境污染物风险因子筛查,毒理分析,疫苗与新药研发,营养、食品、健康与慢性病管理与研究,职业性中毒与肿瘤等方面的分析与监测工作提供广阔的仪器平台与分析方法。全方位支持疾控中心为健全国家公共卫生应急管理体系,提高应对突发重大公共卫生事件的能力水平,完善国家疾病预防控制体系做出贡献。
  • 丹纳赫生命科学精准医疗解决方案
    精准医学(Precision Medicine)是以实现个体化医疗为目标,伴随基因组测序技术的快速发展以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。其本质是通过适合人群大队列研究的基因组、转录组、蛋白质组、翻译后修饰组和代谢组学等新一代“基因型-表型”的大数据,结合最先进的医学前沿技术与个体临床表型,对大样本人群与特定疾病类型进行生物标记物的分析、鉴定、验证与应用,从而精确寻找到疾病的病因和治疗的靶点,并对同一种疾病的不同状态和过程进行精确分类,提高疾病的预防效益与诊治效率,最终实现对患者进行个性化精准治疗。我国的精准医学涵盖疾病“研究”、“诊断”和“个性化治疗”等三个方面,国家鼓励在基因组测序、多组学等生物标志物等研究技术的基础上,结合“合成生物学”、“系统生物学”、“疫苗”和“生物药”的最新技术与进展,借助“大数据”、“大健康”、“人工智能”等新兴技术手段,促进“生物样本库”、“人群队列研究”往纵深方向发展,进而加快科学研究成果向临床应用的转化,不断推进个性化治疗。与此同时,国家对“癌症”、“疑难杂症”、“糖尿病”、“心脑血管疾病”等具有代表性的疾病投入了大量的资源,并且在监管和制度方面也给予了政策扶持,其目的就是为了集中力量快速实现研究、诊断及治疗疾病的“个性化”和“精准化”,全方位推进精准医学在我国的发展。丹纳赫生命科学拥有丰富的精准医学解决方案和业界领先的技术创新。产品、流程与应用的有机组合,能更好地满足精准医学的市场需求,加速实验室的研究成果向临床转化。结合精准医学的具体实践,解决方案可以分为“基础/临床医学研究”、“诊断”和“个性化治疗”三个方面,这三个方面层层递进,又互相依存,形成了支撑中国精准医学事业迈向纵深发展的的巨大宝库。为了让大家全面了解丹纳赫精准医学的具体应用,我们推出了“合成生物学”、“多组学”、“高通量自动化二代测序”、“超微病理研究与应用”、“基因治疗与细胞治疗”等具有代表性的解决方案;同时,结合“新型冠状病毒解决方案”,一共推出了六大核心解决方案,希望大家喜欢。如需获取进一步的信息,欢迎大家扫描封底上的二维码,关注丹纳赫生命科学微信公众号,即时获得支持。
  • 抗击新型冠状病毒(COVID-19) – 天美生命科学实验室设备整体解决方案
    天美生命科学实验室设备产品线一直致力于为广大用户提供最优质的科研仪器,针对此次新型冠状病毒的检测、确诊、疫苗的研制等一系列问题,我们将提供整体解决方案,做好科研及医护人员的坚实后盾。
  • Balance_应用案例_生命科学领域移液器的校准
    移液器作为生命科学领域实验室中的常用仪器,具有广泛的应用。而对于移液器容量的日常测试,通常采用的就是称量的方法,而主要的仪器,也是实验室内最为常用的仪器之一——天平。法规与速度的完美结合梅特勒托利多移液器日常测试解决方案,即确保了法规的一致性,同时满足了快速测试的要求。采用XP26微量天平,配合移液器校准组件,完全满足ISO8655国际标准,或JJG646国家标准对于微升级移液器测试的要求。只需几分钟,即可完成一支最低1ul容量的单道移液器测试。
  • 丹纳赫生命科学生物制药行业整体解决方案
    中国的经济多年来一直保持了离速的稳定增长。近年来,中国政府对千人民健康的不断关注,从2015年起不断地改革药品和医疗器械等的审评审批制度,加大了对千创新药械的鼓励和支持。生物制药市场也迎来了蓬勃的发展。目前,一些国产生物药已经获得批准进入市场,一大批生物药项目处千研发后期或临床阶段,等待报批商业化,这些中国创新药物将极好的服务于人类健康,提高人类对抗疾病的能力。同时一大批国内优秀企业,也走出国门,在全世界各地设立研发生产中心,看好全球的健康市场。丹纳赫生命科学生物制药整体解决方案分为“抗体研发” , “工艺开发和临床前研究” , “工艺放大和临床研究”和 “商业化生产“ 四个方面。这些解决方案根据不同阶段,为客户提供高通量的,完善的,合规的产品技术和服务,深入参与和帮助生物制药研发和生产企业,协助企业降低生物制品的成本并加快上市时间。丹纳赫生命科学会持续加强自身服务千该市场的能力,未来将通过技术,商业模式,本土化创新等方面,更加深入的参与和推动中国生物制药的产业发展。
  • 丹纳赫生命科学超微病理研究与应用解决方案
    超微病理学是从细胞超微结构水平以至分子水平研究疾病的病因、发病机理、病理变化和探索疾病防治的学科,是组织学和病理学向微观的深入发展,又称为超微结构病理学。电子显微镜技术作为探索微观世界的一种有力手段,在半个多世纪的实践中,显示出它旺盛的生命力和广阔的应用前景。电子显微镜技术的应用,不仅在阐明疾病的发生、发展及转归规律方面发挥了卓越的作用,而且逐步扩大到临床医学范畴,在对疾病的诊断和鉴别诊断中亦起着举足轻重的作用,特别是在肾脏疾病、血液病、病毒性疾病以及某些肿瘤的诊断等方面,其作用尤为明显。跟使用光学显微镜的传统病理观察相比,电子显微镜最大的优点是其高分辨率。电镜的最大分辨率可达0.2nm,比普通光学显微镜的极限(200m)提高了大约1000倍,因此可以观察到更细微的亚细胞病变结构,或更早期的病变迹象,从而提高病理诊断质量。
  • 丹纳赫生命科学新冠病毒解决方案
    随着新型冠状病毒肺炎疫情的爆发,社会各界亟需精准医学领域的科技力量为疫情的防治提供有力的支持。对传染性疾病的医疗工作者来说,如何借助最新的检测技术实现快速、安全、准确地完成检测任务 如何利用药物试验和新型临庆研究的最近进展,精准辅助患者的用药和进一步的跟踪与治疗,如何提升实验室整体的生物安全性和可靠性,是摆在人们面前的挑战。丹纳赫生命科学平台拥有新型冠状病毒检测、分析与研究的工作流和前沿解决方案(有些已纳入新型冠状肺炎的诊疗标准),在疫情期间可用于病毒检测与筛查,提供安全、快速精准的实验数据和结果通过一系列已验证的技术创新,全面提升实验室的生物安全性 通过高通量自动化系统的有机整合,显著提高样本检验通量:借助最新的临床前沿技术,提升检验的灵敏度和可靠性 利用先进的创新技术,精准辅助病人的精准用药。这些方案在国家疾控中心、各省市疾控中心和在以武汉协和医院检验科为代表的众多医疗机构中都得到了广泛的应用。
  • 利用 FTIR 光谱实现整个生命周期的塑料材料鉴定——使用配备 ATR 的 Agilent Cary 630 FTIR 鉴定塑料的 聚合物类型
    鉴于塑料广泛应用于我们日常的生活中,更充分地了解塑料的生命周期非常有用。从地下开采出来后,原油和天然气会被精炼成多种烃产品,例如乙烷和丙烷[1]。这些产品用作塑料颗粒或微粒的起始材料或结构单元,然后用于生产塑料产品。根据成品的不同,可以使用不同的工艺(如注塑、成型机械和吹塑)对塑料颗粒进行成型加工。最终塑料产品包括大多数行业中使用的各种物品,包括饮料和液体装瓶、包装材料、婴儿用品、玩具、纺织品、建筑以及许多其他样品类型[2]。
  • 培安公司:微波合成的发展趋势
    本文由CEM公司首席科学家 Michael J Collins Jr 撰写,主要介绍了目前微波在有机化学的应用,以及微波技术的发展进程。同时也讨论了微波技术在未来的发展趋势,这其中包括:化学家们对微波能量的理解,当前主流的使用方法,现有的硬件以及微波技术在材料合成、生命科学、放大以及流动化学中的应用等等。 微波在合成化学中的起源 什么是微波 微波合成的接受度 微波合成的发展方向 微波合成的潜在应用领域 微波合成是一种安全且高效快速的有机合成方法。微波能量可迅速加热反应物,使化学反应更快捷进行的同时也减少副反应的产生。微波技术在实验室中已被普遍接受。微波合成的继续增长必须克服微波操作困难的错觉。随着微波合成进入越来越多的本科实验课程中,很多化学家在很早时候就接触到了微波仪器。微波能量势必在材料合成和生物化学中得到更多的应用,此技术是在放大和和流动化学中取得更好的应用。
  • 和频振转光谱学:胶原蛋白二阶光学非线性效应的分子学起源
    The molecular origins of second order nonlinear effects in type I collagen fibrils have been identified with sum-frequency generation vibrational spectroscopy. The dominant contributing molecular groups are: i) the methylene groups associated with a Fermi resonance between the fundamental symmetric stretch and the bending overtone of methylene, and ii) the carbonyl and peptide groups associated with the amide I band. The noncentrosymmetrically aligned methylene groups are characterized by a distinctive tilt relative to the axis perpendicular to the main axis of the collagen fiber, a conformationproducing a strong achiral contribution to the second order nonlineareffect. In contrast, the stretching vibration of the carbonyl groups associated with the amide I band results in a strong chiral contribution to the optical second order nonlinear effect. The length scale of these chiral effects ranges from the molecular to the supramolecular.
  • 晶体日记 (十)- 寻找“Q”峰背后的原因(3):孪晶有“鬼”
    关于很多同学眼中的“鬼峰”,我们看过了“答案”起源于基本的数据处理(数据还原和数据校正)对|Fo|的影响。很多时候在遇到偏大的Q峰的时候,不管是一些审稿人还是学生,都会马上去想到“吸收校正”(不知道这个想法起源于何处),然后很多同学会莫名地把90%的原因归结于此。
  • SEM在生命科学领域的应用
    是德科技的FE-SEM 8500采用热场发射电子枪,为用户提供高亮度、高分辨的成像性能。独特的设计使其可以在1kV条件下达到优于10nm的分辨率。创新的全静电透镜设计保证了重复性,并无需定期的调校。FE-SEM 8500提供多种成像模式:包括二次电子成像、背散射电子成像和形貌成像。
  • 通用电气生命科学:应用SPR 技术揭密HIV
    自1990 年推出了第一台商业化的SPR 生物传感器-Biacore,Biacore 对HIV 的研究做出了很大的贡献。现在我们特地翻译了这篇《应用SPR 技术揭密HIV》的综述,望能给各位专家,老师和同道提供有益的启示。
  • Nano ITC在生命科学领域的应用
    Proteomics research is uncovering a vast array of new proteins, including enzymes. It is now clear that the old assumption that one gene encodes one protein in incorrect. One gene can encode for several proteins, and many proteins have multiple functions: which function is displayed is controlled by the protein’s molecular environment. The structure and function of a protein are controlled by interactions with macromolecules such as other proteins, nucleic acids and lipids. Studying a protein in isolation (for example, obtaining the crystal or NMR structure of a purified protein) is critical to establishing a structural basis for the protein’s function(s). However, true functional characterization of the protein generally requires manipulation of multi-component systems under stringently-controlled conditions, and evaluating the roles of the physical characteristics of the protein. Proteomics has highlighted the need for a technique that can quantify the interactions between molecules under physiologically-relevant conditions.

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制